
GoCD Python API client Documentation
Release 1.1.0

Grigory Chernyshev

Apr 13, 2017

Contents

1 Intro 1

2 Contents: 3
2.1 Yet another GoCD python client . 3
2.2 Usage . 4
2.3 Release History . 8

3 Indices and tables 11

i

ii

CHAPTER 1

Intro

This library is a high level python API wrapper upon ThoughtWorks GoCD REST API.

Here are some highlights:

• it’s created and designed with simplicity in mind, so it would be easy to start using it.

• there is only one class, that you would need to initialize and work with.

• pipelines are linked together, so you can iterate over predecessors or descendants of a given pipeline.

• it’s very close to the original REST API implementation from ThoughtWorks.

• every class and function is annotated with @since decorator, which gives possibility to check at runtime
whether specific feature is supported on given server version.

• it’s possible to use latest library version with any GoCD server version, even if some parameters or headers are
different: we have special methods to pass correct parameters depending on the server version.

• every version of GoCD is meticulously tested, thanks to releases of it in Docker container. Here is a list of
versions supported so far:

– 16.1.0

– 16.2.1

– 16.3.0

– 16.6.0

– 16.7.0

– 16.8.0

– 16.9.0

Older version should work as well, but as they are not supported and there is no Docker images for them, you
should use them on your own risk.

1

https://github.com/grundic/yagocd

GoCD Python API client Documentation, Release 1.1.0

2 Chapter 1. Intro

CHAPTER 2

Contents:

Yet another GoCD python client

Introduction

This library is a high level python API wrapper upon ThoughtWorks GoCD REST API. From the official documenta-
tion:

Go Continuous Delivery is continuous integration/deployment server, which helps you automate and
streamline the build-test-release cycle for worry-free.

Using it, you can access to internals of the Pipelines, check their statuses, download Artifacts and more. It is designed
with maximum comfort and productivity from the user perspective, so it should be very easy to use it in your own
project. More information is available at official documentation

Installation

$ pip install yagocd

Quick example

from yagocd import Yagocd

go = Yagocd(
server='https://example.com',
auth=('user', 'password'),
options={

'verify': False # skip verification for SSL certificates.

3

http://yagocd.readthedocs.io

GoCD Python API client Documentation, Release 1.1.0

}
)

for pipeline in go.pipelines: # Iterate over all pipelines
for instance in pipeline: # Iterate over each instance of some pipeline

for stage in instance: # Iterate over each stages of some pipeline instance
for job in stage: # Iterate over each job of some pipeline

for root, folder, files in job.artifacts: # Iterate over artifacts
→˓like `os.walk` manner

for artifact in files:
print(artifact.data.url)

print property of each job
for key, value in job.properties.items():

print("{} => {}".format(key, value))

Different implementations of GoCD API

Here is list of similar projects, that implements GoCD API:

• py-gocd [python]: A Python API for interacting with Go Continuous Delivery

• gocdapi [python]: A Python API for accessing resources and configuring Go (thoughtworks) continuous-
delivery servers

• gomatic [python]: A Python API for configuring GoCD

• goapi [ruby]: Go (http://www.go.cd) API ruby client

• gocd-api [NodeJS]: Access http://www.go.cd API via nodeJS

• gocd-api [GoLang]: An implementation of the gocd API

Licence

MIT

Usage

Here you can find quick introduction into the usage of different components of the library. It’s far from complete and
is not intended to cover all functionality. To get more information you can address modules documentation.

Initialization

To use GoCD Python API client in a project you have to import it first:

from yagocd import Yagocd

Next, you can create an instance of the client for connecting to the server:

client = Yagocd(
server='http://localhost:8153/',
auth=('admin', 'secret')

)

4 Chapter 2. Contents:

https://github.com/gaqzi/py-gocd/
https://github.com/joaogbcravo/gocdapi
https://github.com/SpringerSBM/gomatic
https://github.com/ThoughtWorksStudios/goapi
http://www.go.cd
https://github.com/birgitta410/gocd-api
http://www.go.cd
https://github.com/christer79/gocd-api
https://raw.githubusercontent.com/grundic/yagocd/master/LICENSE

GoCD Python API client Documentation, Release 1.1.0

Here, we created a client, which would connect to the server running on a localhost, port number 8153. Please note,
that you don’t have to put go/ context path to the server variable. auth is a tuple of login and password for
connecting to the server. There is possibility to set additional parameters during initialization, passing them to the
options variable:

• context_path: server context path to use (default is go/).

• verify: verify SSL certs. Defaults to True.

Managers

Yagocd is the only class that you usually would need to work with, therefore it gives access to all other resources.
Each resource have a manager associated with it. Managers represents a classes with list of public methods that could
be used by client code. In some cases those methods return some objects that could inspected or used. Majority of
those objects are inherited from Base class, which has special data attribute for accessing to object’s data via dot
notation, e.g.:

pipeline = client.pipelines['Shared_Services']
print(pipeline.data.name)
>> Shared_Services

Further you would find examples of using some of those managers.

Pipelines

Pipelines are one of the core components in GoCD architecture. The pipelines API allows users to view pipeline
information and operate on it.

Listing pipelines

Here how you can get list of them:

pipelines = client.pipelines.list()

Or you can use iteration instead list():

for pipeline in client.pipelines:
print(pipeline)

Beware though, listing all pipelines could be heavy operation in case you have zillions of pipelines of your server.

Getting specific pipeline

If you know the name of the pipeline in advance, you can use get() or array-like access syntax:

pipeline = client.pipelines.get('Shared_Services')
OR
pipeline = client.pipelines['Shared_Services']

As there no separate method for getting specific pipeline, current implementation of get() is based on filtering the
results of the list().

2.2. Usage 5

GoCD Python API client Documentation, Release 1.1.0

Pipelines are linked together

There is an interesting feature when you are working with pipelines through Yagocd library: as pipelines could have
relations between each other, this information is used to build a graph of dependencies between them. You can use
this in your code like this:

pipeline = client.pipelines.get('Consumer_Website')
for child in pipeline.predecessors:
print(child)

for parent in pipeline.descendants:
print(parent)

predecessors and descendants are properties for accessing appropriate relations. By default only direct re-
lations are fetched. If you need to get all of them, you can use get_predecessors(transitive=True) and
get_descendants(transitive=True) methods correspondingly.

Getting instance of a pipeline

First of all, there is a difference between pipeline and pipeline instance: first is a descriptor or configuration of a
pipeline. You can schedule execution of it or get it’s history. Pipeline instance is an execution of a given pipeline. You
can check it’s logs, for example.

History would give you execution history of a given pipline. To get pipeline history, i.e. pipeline instances, you can use
history() or full_history(). Latter would not stop after first 10 items, but would iterate over all executions
of a given pipeline.

It’s possible to use last() method, which would return you the most recent pipeline instance.

Finally, it’s possible to get instance of a pipeline by it’s counter using get() method and passing counter as a
parameter.

Accessing stages of a pipeline instance

As pipeline could have one or more stages, you might want to access this information. You can use stages()
method to get list of available stages:

pipeline = client.pipelines.get('Consumer_Website')
pipeline_instance = pipeline.last()
stages = pipeline_instance.stages()
OR
for stage in pipeline_instance:
print(stage)

If you are interested in specific stage, you can get it by name:

stage = pipeline_instance['stage_name']

Stages

The stages API allows users to view stage information and operate on it.

6 Chapter 2. Contents:

GoCD Python API client Documentation, Release 1.1.0

Accessing jobs of a stage instance

Stage instance gives you access to it’s job instances:

stage_instance = client.stages.get(
pipeline_name='Consumer_Website',
pipeline_counter=31,
stage_name='Commit',
stage_counter=1

)

jobs = stage_instance.jobs()
OR
for job in stage_instance:

print(job)

If you are interested in specific job, you can get it by name:

job = stage_instance['job_name']

Jobs

The jobs API allows users to view job information.

Accessing artifacts

You can list available artifacts for specific job:

artifacts = job.artifacts.list()
OR
for artifact in job.artifacts:
print(artifact)

Each artifact could have some files or directories in it. You can iterate over them and get it’s content:

for filename in artifact.files():
content = filename.fetch()

If you know the name of the file or the directory, you can download it like this:

file_content = job.artifacts['/path/to/filename.txt']
dir_zip_content = job.artifacts['/path/to/folder.zip']

Accessing properties

Job could have properties set during build. The are represented in dictionary-based form. You can iterate over them
like this:

for name, value in job.properties.items():
print(name, value)

Or you can read value of specific property by it’s name:

2.2. Usage 7

GoCD Python API client Documentation, Release 1.1.0

value = job.properties['property_name']

Release History

1.0.0 (2017-04-13)

Improvements - Added elastic profile support. - Added package repositories API support. - Added package man-
agement API support. - Added encryption API support. - Improvements in ValueStreamMap. - Added enumerations
(constants) for stage result and state. - Reworked artifact manager (breaking change!) - ETag is now part of resource
object (breaking change!)

Miscellaneous - Added support for 16.11.0 version. - Added support for 17.01.0 version. - Added support for 17.02.0
version. - Added support for 17.03.0 version. - Refactored managers urls and parameters.

0.4.4 (2016-12-01)

Improvements - Client’s manager are now initialized just once, which makes possible to cache the results of their
calls.

0.4.3 (2016-11-23)

Improvements - Improvements in ValueStreamMap. - Added possibility to programmatically disable version check
in Since decorator, using ENABLED flag.

Miscellaneous - Added support for 16.10.1 version.

0.4.2 (2016-10-28)

Improvements - ValueStreamMap: put dictionary instead of StageInstance.

0.4.1 (2016-10-09)

Improvements - Added custom exception error, which outputs error in clear format. - Added support for pluggable
SCM materials API. - Added support for template API. - Improvements in ValueStreamMap.

Miscellaneous - Documentation updated. - Docker image updated, which used in testing. - Added support for 16.10.0
version.

0.4.0 (2016-10-01)

Improvements

• Added support for pipeline config API.

• Added support for version API.

• Added support for plugin info API.

• Added support for environments API.

• Added methods for getting different internal information (undocumented): support and process_list.

8 Chapter 2. Contents:

GoCD Python API client Documentation, Release 1.1.0

• Added magic methods for iterating and key based access for some classes.

• All classes and their methods are now decorated with @since decorator, which adds possibility to check at
run-time whether given functionality already supported in the GoCD server and let’s dynamically select correct
headers.

Testing

• Now tests are executed for GoCD version, running in Docker container, which add possibility to test for any
available version of the server. Also cassettes are also saved individually for each GoCD version.

• Added testing for PEP8 and other checks via flake8.

0.3.2 (2016-07-26)

Improvements

• Added support of value_stream_map functionality.

Bugfixes

• Fix return value of Artifact.fetch method from text to binary.

0.2.0 (2016-05-24)

Improvements

• Added support of getting server version through parsing /about page.

• Added Confirm: true header to some API calls.

2.3. Release History 9

GoCD Python API client Documentation, Release 1.1.0

10 Chapter 2. Contents:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

	Intro
	Contents:
	Yet another GoCD python client
	Usage
	Release History

	Indices and tables

