
xylem Documentation
Release 0.1.0

Open Source Robotics Foundation

May 28, 2014

Contents

1 xylem‘s Design Overview 3
1.1 Motivation . 3
1.2 Goals . 3
1.3 Supported platforms . 5
1.4 Plugins . 6
1.5 Improvements over rosdep . 10
1.6 Terminology . 15

2 xylem Rules 17
2.1 xylem Rules File Specification . 17
2.2 Examples . 20

3 xylem Python API 21
3.1 Database . 21
3.2 Indices and tables . 22

4 xylem package 23
4.1 Subpackages . 23
4.2 Submodules . 29
4.3 xylem.log_utils module . 29
4.4 xylem.terminal_color module . 29
4.5 xylem.update module . 30
4.6 xylem.util module . 31
4.7 Module contents . 31

5 Installing from Source 33

6 Hacking 35

7 Code Style 37

8 Testing 39

9 Building the Documentation 41

Python Module Index 43

i

ii

xylem Documentation, Release 0.1.0

xylem is a package manager abstraction tool. It can be used to install dependencies on any supported platform.

For example, if you want to install boost on your machine you would simply run xylem install boost. This
command would cause xylem to determine your OS and OS Version, look up the corresponding package managers
for that OS, OS Version tuple, look up the appropriate value for boost for that OS pair, and finally invoke the package
manager to install boost, e.g. for Ubuntu that might be sudo apt-get install libboost-all-dev.

This tool allows you to generalize your installation instructions and define your software package’s dependencies
once. xylem also has an API which can be used to automate installation of resources, like for automated tests or for
simplified installation scripts.

Contents:

Contents 1

xylem Documentation, Release 0.1.0

2 Contents

CHAPTER 1

xylem‘s Design Overview

1.1 Motivation

What is the motivation for developing xylem as a new tool as opposed to updating rosdep?

rosdep was originally designed for use with rosbuild and both code and command line interface are structured
for that purpose. The notion of stacks, packages and manifests where where rosdep keys were defined at a stack
level is deeply baked into the design. Later adaptations to work with catkin were bolted on to that design in a
suboptimal way and in became increasingly hard to extend rosdep with new features. Thus, rosdep has a lot of
unused or overly complicated code.

Moreover, rosdep is currently linked tightly to several other ROS tools like bloom, such that even minor changes
in rosdep can have deep ramifications in the tool chain. Due to this fragility, releases are slow and infrequent.
Moreover, rosdep is not modular enough to facilitate extensions through third-party python packages. Together, all
this implies that it is extremely difficult to improve rosdep, implement new features, and get them released.

Therefore it was concluded that it be more efficient to start fresh, borrowing ideas and code from rosdep, but
designing it the way it should be rather than the way it used to be. Hence, xylem was born.

1.2 Goals

xylem is supposed to supersede rosdep as a package manager abstraction tool that can be used to install dependen-
cies on any supported platform in a uniform manner. In particular, the goals of xylem are the following.

1.2.1 Separation of concerns

xylem addresses one of the key shortcomings of rosdep, namely its tight coupling with other ROS tools, with a
modular design that considers the following building blocks.

• A core library that provides the infrastructure to read in rule files, resolve keys depending on the user platform
and invokes package managers to install the desired software.

• A set of plugins that provide specific functionality:

– operating system support (e.g. Ubuntu, OS X, cygwin)

– backend installers, i.e. package managers (e.g. APT, PIP, Homebrew)

– frontend input of keys (e.g. directly from the command line or by parsing a directory of ROS packages)

– sources of rules (e.g. rules files or released ROS packages from rosdistro)

3

xylem Documentation, Release 0.1.0

– command verbs (e.g. xylem install, xylem update)

xylem comes with default plugins for all of the above points of extension.

1.2.2 Extensibility

Plugins should be able to extend the core tool from within other Python packages, such that extensions can be made
without the need to touch the core package. This allows extensions to be developed and distributed somewhat inde-
pendently of xylem releases. General purpose plugins that have proven to be useful to a range of users should be
considered for inclusion into the core library.

1.2.3 Independence from ROS

One aim with designing xylem in a modular and extensible way is allowing it to be completely independent from
ROS. In particular the core library should not have any ROS specific special cases or assumptions. Any functionality
that is specific to ROS should be implemented as plugins, and possibly distributed as a separate package xylem-ros.

The ways in which rosdep is currently tied to ROS are:

• Frontend input, for example by scanning a directory for ROS packages and checking / installing their dependen-
cies.

• Extracting resolution rules from rosdistro information.

• API access from tools like catkin or bloom.

• Use of other ROS specific packages, e.g. rospkg.os_detect.

1.2.4 Replace rosdep

One aim for xylem together with its ROS specific plugins is to provide a full future replacement for rosdep. This
entails providing command line tools to check and install dependencies of ROS packages as well as providing an
appropriate python API that allows tools such as catkin or bloom to query xylem for dependency information. We
do not aim at backward compatibility at the CLI or API level, but at the level of provided features.

In particular, this also means that the keys currently specified in package.xml files of ROS packages should continue
to work with xylem (for non-EOL distributions at the very least).

Full backward compatibility in particular to EOL tools such as rosbuild does not have to be achieved.

1.2.5 Consider improvements

The design of xylem should consider the know limitations of rosdep and improve beyond the functionality of
rosdep. While proposed enhancements possibly are not implemented right away, it should be ensured that future
extensions allow their realization without the need to break backwards-compatibility or for heavy redesign.

The following list of exemplar improvements is not necessarily exhaustive, nor definitive. More details on some of
these ideas can be found further blow.

• improve rule files

– smaller backwards-compatible changes, mostly syntactic sugar for less repetition for different platforms
(any_version, any_os)

– support versions in rules files, e.g. parsed from package.xml files [details]

– support different types of dependencies such as test dependencies

4 Chapter 1. xylem‘s Design Overview

xylem Documentation, Release 0.1.0

– support package managers with options (such as formula options on homebrew, use flags on gentoo?)

– consider precedence of conflicting rules [details]

– inter-key dependencies [details]

• support package manager sources (e.g. PPAs for APT on Ubuntu) [details]

• support package manager prerequisites (such as PM is installed, PM cache is up-to-date, correct PPA is installed)
[details]

• support multiple resolution alternatives on the same platform with sensible defaults as well as user-configurable
arbitration between them (e.g. macports vs homebrew, apt vs pip) [details <Alternative resolutions_>_]

• configure source/cache location and supply working cache with installation [details]

• configure package manager plugins from config/cli (e.g. whether to use sudo or not, supply additional command
line arguments) [details]

• support concurrent invocations of xylem, in particular the update verb for tools such as bloom running in
parallel. [details]

• support automatic cache updates (integrate update with native package manager, cronjob, ...)

• support virtual packages and/or A OR B logic

• support proxies

• support derivative operating systems (e.g. use Ubuntu rules on Ubuntu derivatives if no specific rules are avail-
able)

• warn users when xylem is out of date [details]

• version the rules database and force update on version changes

• improve situation on Windows

1.2.6 Anti-Goals

xylem does not aim to replace package managers or package software itself. While support for package-manager-
less platforms can be achieved with backend plugins such as the source installer, it is not an objective of xylem to
systematically maintain such installation scripts.

1.3 Supported platforms

xylem aims to support at least the following platforms (which is what rosdep currently supports) with their native
package managers

• arch (pacman)

• windows/cygwin (apt-cyg)

• debian (apt)

• freebsd (pkg_add)

• gentoo (portage)

• opensuse (zypper)

• osx (homebrew, macports)

• redhat (yum)

1.3. Supported platforms 5

xylem Documentation, Release 0.1.0

as well as the following language-specific cross-platform packages managers

• ruby (gem)

• python (pip)

and a platform independent source installer:

• source

On the wish list is better support for Windows, but it is unclear how this could be achieved.

1.4 Plugins

In order to be modular and extensible by independent Python packages, xylem uses the Entry Points concept of
setuptools. The following discusses the pluggable parts of xylem laid out above in more detail.

1.4.1 OS support

Operating system support includes:

• detecting OS name, version, codename (currently in rospkg.os_detect)

• register installers, default installer, installer order of preference etc with installer context
(rosdep2.installers.InstallerContext)

Notes:

• Should OS support be plugin at all?

• Should are OS settings like registered installers and installer order of preference always per-OS as is in rosdep,
or do we possibly need optional per-version distinction for these?

• What is relation between OS support plugins and installer plugins? Should OS plugin register all supported
installers? Should installer plugin be able to register themselves for specific or all platforms?

• consider the distinction version_type vs codename_type

• support overriding detected OS from settings/cli

1.4.2 Backend installers

The supported installers are defined as plugins such that support for new installers can be added by external Python
packages. Installers typically represent support for a specific package manager like APT, but not necessarily, as is the
case for the source installer. The minimal functionality an installer needs to provide is:

• check if specific packages are installed

• install packages

Additional functionality is optional (these are ideas):

• support uninstall

– e.g. source installer does not support this

• support native reinstall

– is using the pm’s native reinstall command as opposed to uninstall+install ever needed?

• support to attempt install without dependencies

6 Chapter 1. xylem‘s Design Overview

http://stackoverflow.com/questions/774824/explain-python-entry-points

xylem Documentation, Release 0.1.0

– this would be needed for a specified-only option to the install command.

– not sure if we need this at all.

• support package versions

– check which version of package is installed

– check if installed package is outdated

– upgrade installed package to latest version

– install specific version of package

• support cache update

– check if package manager cache is outdated

– update cache (like apt-get update) or provide instructions for user how to update pm

• support options

– some package managers additional options supplied when installing a package (homebrew, gentoo (use
flags)?)

– pass correct options to installer

– check if options for installed package satisfy the requested options (e.g. they are superset)

• native dependencies

– list all package manager dependencies of specific packages

– the idea is that we let the package manager install the dependencies and only issue the install command
for the necessary leafs

– do we need this?

Notes:

• how is support for optional features formalized in the code?

• if new package managers can be added as plugins, then they need to be able to register themselves for specific
or all operating systems

1.4.3 Frontend input

It needs to be possible to extend the way the user passes keys to be resolved to xylem. The basic usage would be
directly passing a list of keys on the command line or API function. Another input would be parsing of ROS packages
and checking the package.xml files. Another one would be a new file format .xylem, which allows non ROS
packages to specify dependencies for convenient installation.

Notes:

• I’m not sure how exactly this would look.

• Implementing these as new command verbs gives ultimate flexibility, but on the other hand it makes much more
sense if the standard commands like install or check can be extended. E.g. ROS support plugins for
xylem should be able to provide an option like --from-path for the install verb.

• For compatibility of different frontends there are the following ideas:

– Either the desired frontend has to be specified at the command line, e.g. xylem install
--frontend=ros desktop_full --rosdistro=hydro, xylem install --ros
--from-path src,

1.4. Plugins 7

xylem Documentation, Release 0.1.0

– or the frontends register command line options that are unique, e.g. xylem install --rospkg
desktop_full, xylem install --ros-from- path .,

– or xylem can work some magic to find out which frontend the user desires, i.e. it determines if the
input from the positional command line arguments consists of keys, directories, or ROS-packages. For
directories is checks if they contain ROS packages with package.xml files or .xylem files. There
is an order on which frontend takes precedence, which can be overwritten by explicitly specifying the
frontend. This last alternative might make for the best just works user experience, but needs to be carefully
thought through in order to not appear confusing.

1.4.4 Rules sources

The rosdep model for the definition of rules is configured in source files (e.g. 20-default-sources.yaml)
that contain the URLs of rules files (base.yaml). Multiple source files are considered in their alphabetical order.
Having multiple files allows robot vendors to ship their own source files independently of the xylem base install.
Possibly, rules plugins could also make use of this by shipping with additional default sources files. Initially, xylem
will be using the same format, with some backwards- compatible (and already implemented) changes to the rules file
format (any_os, any_version). Plugins can define new types of sources for rules. Right now we can foresee the
following cases that might come as new source plugins:

• New rules file format that is not compatible with the existing format.

– This would work in a very similar fashion to the initial plugin.

• Rules derived from rosdistro.

– This is somewhat different, since it’s sources are not specified by URLs but rather implicit using the
rosdistro package.

Notes:

• Do we only support the cache model for sources, where a static rules database is built with the update com-
mand, but no new information is generated upon key resolution? This implies that rules sources that query
some other database format (rosdistro?) or online sources at resolution time are not possible. In particular the
rosdistro plugin would generate a list of rules for all released packages upon update (and not on-demand
upon key resolution).

• What do the rules plugins return? The parsed rules from a given file in a (clearly defined) rules database format
(something like the current dict database)? In any case the returned data should be in some versioned format,
to allow future extensions to that format. This is probably the same format in which xylem keeps cached the
database.

• Should we consider allowing for the possibility of loading parsed (and pickled) rules databases with the update
command (for increased speed of update)? Here the original rules files would always be specified, but a binary
version can be additionally added (somewhat like in homebrew all formula need to specify the source to build
them, but some can additionally provide the binary package as a bottle).

• When are the different rules sourced merged (including arbitration of precedence)? During update, or while
loading the cache database for resolution? Do we keep all possible resolutions in the database, or only the one
that takes highest precedence?

• How is order of precedence defined between different rules plugins? Only by the order of the rules files? Do
platform support plugins play a role in defining the precedence of different installers on a per-OS or per-version
basis? Can user settings influence the order of precedence?

• Should the .list files be able to reference sources from multiple rules source plugins within the same file
(which would also allow to control precedence if the entries are ordered within the file)?

One can imagine a source files to look like this (not sure if this is correct YAML, but the idea should be clear):

8 Chapter 1. xylem‘s Design Overview

xylem Documentation, Release 0.1.0

Overriding rules with highest precedence, but with legacy format
- format: rules
sources:

- ’some/special/rules.yaml’
Latest rules in new format
- format: rules2
sources:

- ’latest/rules/using/new/rules/format/base.yaml’
Existing rules in legacy format
- format: rules
sources:

- ’https://github.com/ros/rosdistro/raw/master/rosdep/base.yaml’
- ’https://github.com/ros/rosdistro/raw/master/rosdep/python.yaml’
- ’https://github.com/ros/rosdistro/raw/master/rosdep/ruby.yaml’

this entry for the rosdistro rules plugin has no URLs, but is
present to mark it as least-precedent

- format: rosdistro

• Do we support rules plugins that do not have an entry in any sources file (like rosdistro), or do we force all
plugins to have at least an empty entry (example file above) in order to be ‘activated’ upon update.

• Should rules plugins include an abstraction to tell if the database is out of date (for a specific URL)? Something
like comparing the last- changed timestamp of the cached databased with the last-changed timestamp of the
online rules file. This might be used to speed up update and also to determine whether to remind the user to
call update.

1.4.5 Commands

The top level command verbs to the xylem executable should be plugins. These can pretty much define any new
functionality. It is not quite clear how exactly other plugins can interact with commands, e.g. frontend plugins should
somehow be able to extend the install verb.

These are the core commands:

• update to update the rules database

– If partial updates are supported, where only outdated rules files are pulled, there should be an option to
force updating everything.

– Needs to make sure to remove stale database cache files even on partial update, which are no longer
referenced from the source files. Possibly add a clean command, that wipes the cache completely.

• install to install packages

– options: --reinstalll, --simulate, --skip-keys, --default-yes,
--continue-on-error, --specified-only (would this mean to not resolve dependencies
on xylem level, or also stop possible dependency resolution of package manager, if that is even possible)

• check to check if packages installed

– options: --skip-keys, --continue-on-error, --specified- only

• init to initialize config file and sources.list.d (possibly in custom location according to
XYLEM_PREFIX). By default the built- in default sources / config is copied to the new location. Is a no-op
with warning if sources / config is present.

options:

– --from-prefix to copy the config/sources that would be used with this given prefix

– --from-system to copy the config/sources that would be used with empty prefix

1.4. Plugins 9

xylem Documentation, Release 0.1.0

– --force to clear the config/sources even if they are present

These commands for dependency resolution could be useful:

• depends (options: --depth where 0 means no limit)

• depends-on (options: --depth where 0 means no limit)

There should also be some commands for checking how a key resolves on a specific operating system, possibly listing
alternative resolutions (pip vs apt) highlighting the one that would be chosen with install. It should also be possible
to determine where these resolutions come from, e.g. which source files.

• resolve

• where-defined

Notes:

• we might want to steal the alias mechanism from catkin_tools, but that is maybe low priority, since xylem
command invocations would be much less frequent than catkin build invocations.

1.5 Improvements over rosdep

In the following we elaborate on some of the concrete improvements over rosdep listed above. Some of them are
far future, some should be implemented right away.

1.5.1 Sources and cache location

The xylem model of a lookup database cache that is updated with and update command is somewhat analogous to
apt-get. By default a system-wide cache is maintained that needs to be updated with sudo. We assume that many
developer machines are single-user and/or are maintained by an admin that ensures regular update invocations (e.g.
cronjob).

On top of the general scenario the following specific use-cases need to be supported with regards to the database cache:

• xylem needs to allow users to maintain their own cache in their home folder and use xylem independent from
the system-wide installation and without super user privileges.

• Robot vendors need to be able to add to the default sources independently from the core xylem install and
without post- installation work.

• xylem needs to be functional out of the box after installation. update requires internet connectivity, which is
not given in some lab/robot environments. Therefore we need to make sure that xylem can be packaged (e.g.
as debian) with a pre-generated binary cache. This needs to be possible for the default sources bundled with
xylem as well as vendor supplied additional source files.

• Tools like bloom need to be able to create temporary caches independent from the system wide install and
without super-user privileges.

We propose the following solution:

• Firstly, we assume that each URL/entry in the source files has it’s own binary database cache file, all of which
get merged upon lookup.

• The user can specify the XYLEM_PREFIX environment variable (overwritten by a command line option, maybe
--config-prefix or -c). By default an empty prefix is assumed.

• The cache will live in <prefix>/var/cache/xylem and the sources in
<prefix>/etc/xylem/sources.d/

10 Chapter 1. xylem‘s Design Overview

xylem Documentation, Release 0.1.0

• A xylem installation comes bundled with default source files and default cache files. However, in particular the
cache is not installed into the /var/cache location directly.

• The init command installs the default sources and default cache into the corresponding locations. There
are command line options to copy existing sources/cache from another prefix, but by default the built-in files
are used. The source files are only installed if they are not present. The cache files are only installed, if the
corresponding source file was either not present, or was present and identical to the default. Existing cache files
are not overwritten. There is a flag (maybe --force), that causes it to overwrite the default files (sources and
cache). Additional source files/cache files are not overwritten.

• init is called as part of the post-installation work at least for debians, maybe also pip? Note that this does not
require internet connection and sets up a working config and cache.

• The default source files could be handled as conffiles in the debians, such that they are updated upon apt-get
upgrade, where the user is queried what should happen if he has changed the default sources.

• update does not automatically use the the built-in sources if none exist under the given prefix. However, if the
default source files do not exist, it warns the user and possibly tells him to call xylem init (or even offers
to call it). This warning can be disabled in the settings for users that want to explicitly delete the default config
files.

• Robot vendors that want to supply additional default sources can hook into init (with an entry point) and
register their additional default sources as well as binary caches. All the above mechanisms work for those
vendors. For example, if the additional vendor package gets installed, a subsequent post-install init does
recognize the missing caches for installed default sources and installs them to ensure out-of-the-box operation.
Likewise, calling update in a custom prefix after installing an additional vendor package will warn the user,
that some of the default sources are not installed and urge her to call init, which will add these additional
default sources (and cache files), while not touching the existing default source files from the core library.

For rosdep, there is pull request for a slightly different solution. However, what we suggest addresses some of the
remaining issues:

• (re-)installing from debs does not overwrite existing cache files.

• python2 and python3 debians can be installed side-by-side (at least if the default source files are not handled as
conffiles)

Notes:

• Should it be sources.list.d or sources.d? Note that we probably change the source files from .list
to .yaml, so does sources.list.d still make sense?

• Can we ensure that the binary (pickled) database format is compatible between python2 and python3?

• If the default files have been updated, and the user updates the xylem installation, init will not change the existing
default sources. Do we need to / can we detect if they are unchanged and replace them automatically if they are
unchanged? If they are changed, ask the user what to do (like debian conffile).

• Do the API calls respect the XYLEM_PREFIX environment variable or need explicit setting of a prefix
parameter? I think the latter.

• It was mentioned that the debian install needs to work out-of-the-box “without any post-installation work”. Why
exactly? Is post-install work (like calling init) ok if it does not require internet connectivity?

• Maybe the system wide settings file is also affected by XYLEM_PREFIX, i.e. lives in
<prefix>/etc/xylem/config?

1.5.2 Settings and command line arguments

There should be a canonical way to supply arguments to xylem. We propose a system config file, a user config file
and command line options. The order of precedence of arguments specified multiple times is:

1.5. Improvements over rosdep 11

http://raphaelhertzog.com/2010/09/21/debian-conffile-configuration-file-managed-by-dpkg/
https://github.com/ros-infrastructure/rosdep/pull/312

xylem Documentation, Release 0.1.0

command line > user > system

We use yaml syntax for the configuration files, and suggest the following locations:

• system: <prefix>/etc/xylem/config.yaml

• user: $HOME/.xylem.yaml

In general all options should be supported both by the CLI and the config files (where it makes sense). One exception
is the environment variable XYLEM_PREFIX, because this configures the location of the system-wide config file in
the first place.

Command line arguments can be grouped in the following way:

• global command line arguments applicable to all commands such as disable-plugins or os

• command specific command line arguments

• In order to achieve a good user experience, the command specific options should be further grouped. For
example, all commands that take a list of keys as arguments, should do so in the same way, e.g. offering
skip-keys)

It has to be seen if and how either or both kinds of arguments can be injected by plugins (e.g. frontend plugins inject
new arguments to all commands that take a list of keys as input).

In particular it needs to be possible to supply arguments to the backend installer plugins (e.g. as-root or
additional-arguments, see rosdep#307). yaml format gives a lot of flexibility, but there should also be some
conventions (not necessarily enforced) to ensure that the plugins name their options in a uniform way, such that it may
even be possible and reasonable to pass certain options to all installer plugins.

Notes:

• Should user file be in $HOME/.config/xylem.yaml, or even $HOME/.config/xylem/config.yaml
(see stackexchange.com)? What about config locations on Windows?

1.5.3 Inter-key dependencies in rules files

In general, we rely on the backend package manager to install dependencies for resolved keys. Dependencies between
keys in rules files is at the moment only used for the interplay between homebrew and pip on OS X it seems. Should
this be a general feature for rules to depend on other keys? In particular if we reactivate the source installer this would
be needed. In particular when considering adding versions to the rules files, doing dependency resolution right is not
quite trivial I guess.

Dependencies on other keys might be reasonable on different levels. Currently they are part of the installer section,
but maybe they could be defined also at the rule level.

1.5.4 Notify user about outdated database

Ideally, if the source plugins can tell when they are outdated, we would fork a process on every invocation to check if
database is out of date and inform the user that an update would be good on the next run. Maybe limit the update check
to only fire if the database has not been updated for a certain amount of time (a day, a week, could be customizable).

1.5.5 Versions in rules files

In general the user should expect a command xylem install boost to install the latest version of boost on
the given system, i.e. on Ubuntu the version that apt-get install boost would install. For some package
managers, like apt for a specific Ubuntu release, this might be always the same version of boost, for other package

12 Chapter 1. xylem‘s Design Overview

https://github.com/ros-infrastructure/rosdep/pull/307#issuecomment-36572637
http://unix.stackexchange.com/questions/68721/where-should-user-configuration-files-go

xylem Documentation, Release 0.1.0

managers such as pip or homebrew, this will always refer to the latest version. This gives rise to two challenges with
respect to software versions. Firstly, at any given time the key boost refers to different versions of the boost library
on different platforms. Secondly, at two different points in time the key boost refers to two different versions of the
boost library on the same platform. These challenges need to be taken into consideration, since the goal of xylem is
to allow specification of dependencies in a uniform way that is robust over time, i.e. can be supplied as part of install
instructions today and still be valid tomorrow.

At the moment, rosdep does not really consider versions, which users find confusing in particular in conjunction
with ROS packages that may specify versioned dependencies (rosdep#325).

In general we assume that package managers can only install one version of a specific package at a time (largely true for
apt, homebrew, pip). We also assume that we never install a specific version of a package with the package manager,
but only the latest version, or possibly upgrade an already installed package to the latest version. Nevertheless, the
package manager should be able to tell us, which version of a package is installed and which version would be
installed/upgraded (i.e. the latest version on that platform).

For some libraries multiple incompatible major versions need to be present at the same time. Here xylem follows
suite with package managers such as apt and homebrew and introduces new keys for the specific versions (as rosdep
does currently). For example, for Eigen there are the version specific eigen2 and eigen3 keys, as well as a general
eigen key that points to the latest version (i.e. is currently the same as eigen3).

What could be considered, is that xylem allows for input keys to be associated with version requirements (==, <=,
>= etc) and then check, if the installed or would-be installed version matches. This would solve the use case with
ROS packages above, where there is a one-to-one relation between xylem key and apt package. However, it is unclear
how the version is handled if a key resolves to 0 or more than 1 packages. However, the most we would offer in terms
of action is upgrading an already installed package to the latest version, and informing the user if a matching version
cannot be achieved by upgrading or if the version requirements are incompatible themselves (i.e. user installs foo and
bar, which depend on baz>1.0 and baz<1.0 respectively). Special care needs to be taken to correctly merge multiple
versioned resolutions of the same key.

Another level of support for versions in rules would be to allow the resolution rules themselves to be conditional on a
version, e.g. allowing to specify that eigen would resolve to libeigen2-dev or libeigen3-dev, depending
on the version. With this, the versioned key eigen==2 and eigen==3 could be resolved at the same time. Things
could get really complicated and I’m not sure we want to go down that route unless there is a good concrete use case
where this is beneficial.

Notes:

• check how package managers deal with versions, in particular the capabilities (install multiple version of same
package, install specific version of package not only latest) and syntax for versioned dependencies

– apt

– homebrew

– pip: https://pip.pypa.io/en/latest/user_guide.html#requirements-files, http://pythonhosted.org/setuptools/setuptools.html#declaring-
dependencies

• interesting blog about abstract vs concrete dependencies in python https://caremad.io/blog/setup-vs-
requirement/

1.5.6 Improved package manager abstraction

[TODO: these are only random thoughts. transform them into a coherent and comprehensible description]

• support stuff like custom ppa’s for apt, taps for homebrew

• the ros-ppa should not be special in xylem

• possibly specified on a per-rules-file basis? (identify real world use cases / needs)

1.5. Improvements over rosdep 13

https://github.com/ros-infrastructure/rosdep/issues/325
https://pip.pypa.io/en/latest/user_guide.html#requirements-files
http://pythonhosted.org/setuptools/setuptools.html#declaring-dependencies
http://pythonhosted.org/setuptools/setuptools.html#declaring-dependencies
https://caremad.io/blog/setup-vs-requirement/
https://caremad.io/blog/setup-vs-requirement/

xylem Documentation, Release 0.1.0

• if custom ppa’s are supported, provide tools to list the ppa’s for bunch of keys / rules sources

• rules should never specify the ppa location, but rather have some sort of names prerequisite. this way the user
could configure/overwrite the prerequisite in the config file if he e.g. has a customized mirror of that ppa or tap.

• issue of trust for the user (auto add alternavte pm sources? query user?)

• issue of reliability of sources for the maintainer

– tool support to ensure ROS core packages are only using ubuntu or osrf ppa?

• maybe the right abstraction is package manager prerequisites

– possibly not support undoing these prerequisites

– prerequisites should be performed before any packages is installed

– could query user or be automatic (with explicit option) or fail with instructions to user

– allow user to configure and also skip specific or all prerequisite checks.

– special prerequisite is the ‘availability’, which checks if the pm is installed. This should be treated spe-
cially, because maybe the selection of used package manager should depend on which is installed (e.g.
macports vs homebrew). Ability to list available package managers

– maybe with the previous it makes sense to distinguish general prerequisites (apt is installed and possibly
up-to-date) and per-key prerequisites (certain ppa is installed)

– concrete examples: * apt: ppa installed * source installer: tools installed (gcc etc) * brew: homebrew
installed, Tap tapped * pip: pip installed

1.5.7 Alternative resolutions

Allow for alternatives with resolutions on a specific platforms, e.g. the use can choose macports vs homebrew on OS
X, or to use pip over apt for python packages on Ubuntu.

Notes:

• multiple resolutions for one key on a specific os/version

• how to do the right thing by default? (e.g. detect if either homebrew or macports is installed to determine the
default. Maybe some people never want to fallback to macports, maybe some want to fall back to macports if a
key is not defined for homebrew)

• have preferred order of the different alternatives, customizable (at what granularity?)

• for debian releases only apt dependencies are allowed, for stuff like homebrew we can also depend on pip / gem

• per rules file or per key

• xylem resolve command should list all alternatives and help to arbitrate

1.5.8 Random points

• bring back the source installer

• improve windows situation; possibly source installer? windows 8 app store :-)

• integrate/interact with http://robotpkg.openrobots.org somehow? Check their solution for ideas for xylem.

• continue on error option for install

• authority on rules and versions

14 Chapter 1. xylem‘s Design Overview

http://robotpkg.openrobots.org

xylem Documentation, Release 0.1.0

1.6 Terminology

[TODO: Define terms]

• xylem key

• key database

• rules file

• (backend) installer

• package manager

• platform –> os/version tuple

• installer

• installer context

• package -> pm package

• rules file

1.6. Terminology 15

xylem Documentation, Release 0.1.0

16 Chapter 1. xylem‘s Design Overview

CHAPTER 2

xylem Rules

This module implements parsing and validating of rules spec files.

Note: These xylem rules files are compatible with rosdep’s files.

2.1 xylem Rules File Specification

First, the top level rules file has these properties:

• The rules file is a YAML 1.1 compliant file

• The rules file contains a single dictionary, the rules dict

2.1.1 the rules dict

The rules dict contains a mapping between xylem keys and definitions for specific operating systems and package
managers.

The rules dict has these properties:

• The keys of the rules dict are package manager agnostic xylem keys

• The values of the rules dict must be a dictionaries also, os definition dicts

2.1.2 the os specific definition dict

An os specific definition dict is a mapping of operating system names to os specific definitions. They have these
properties:

• It has keys which map to os_names, e.g. ubuntu, osx

• There is a special ‘any’ key, i.e. ‘any_os’

• It can have values of type dict, with os_version keys

• It can have values of type list, a set of packages for the default installer

• It can have values of type str, a package for the default installer

• A value of null or ‘[]’ indicates no action is required to resolve for this os

When the value is a dict, then the keys of that dict are os_version’s and the values of that dict are os_name and
os_version specific definitions for those xylem keys.

17

xylem Documentation, Release 0.1.0

the ‘any_os’ key

The ‘any_os’ key for the os specific definition dict can be used to indicate that the following definition matches any
operating systems. This is useful for situations like the pip installer, which works on most operating systems, but is
not specific to any one operating system. When the ‘any_os’ key is used, then the installer must be specified explicitly,
i.e. no default key is used. Conversely, if the ‘any_os’ key is used, then the ‘any_version’ key must be used for the
os_version as well, which makes sense because it doesn’t make sense to have a definition which matches all operating
systems but only a specific operating system version.

For example, consider this rule snippet:

foo:
any_os:
any_version:

pip:
packages: [foo]

ubuntu: [python-foo]
debian: [python-foo]
osx:
any_version:

homebrew: [foo]

In this case foo will be resolved like this:

windows:7 -> pip:foo
ubuntu:precise -> apt:python-foo
debian:wheezy -> apt:python-foo
osx:mountain_lion -> homebrew:foo

You can imagine the logic to implement this behavior as such:

foo_dict is a dictionary like the above YAML structure
os_name = get_os_name()
os_version = get_os_version()
if os_name in foo_dict:

if os_version in foo_dict[os_name]:
return foo_dict[os_name][os_version]

elif ’any_version’ in foo_dict[os_name]:
return foo_dict[os_name][’any_version’]

elif ’any_os’ in foo_dict:
if ’any_version’ in foo_dict[’any_os’]:

return foo_dict[’any_os’][’any_version’]
raise NotFound

list and string expansion into os_version’s any_version

When the value of the os definition dict is a str, then it is converted into a list containing that str.

Whether the value is a str converted into a list or originally a list, the list is expanded into an any version (‘any_version’)
key-value pair, where the list is the value. Then the processing continues as normal.

For example, this snippet:

foo:
ubuntu: [libfoo]

is expanded to:

18 Chapter 2. xylem Rules

xylem Documentation, Release 0.1.0

foo:
ubuntu:
any_version: [libfoo]

The above snippet is a intermediate expansion, as any_version: [libfoo] will get expanded further later.

The case where no action is required, can occur when the package exists on the system by default. For example, on
OS X many times the software package comes with OS X and no action is required for it to be resolved. This is
represented with an empty list or null.

Whether originally a dict or expanded to a dict from a list, the resulting os specific definition dict always has os_names
for keys and os_version specific definitions as values.

2.1.3 the os_version specific definition dict

The os_version specific definition dict’s have these properties:

• It has keys which map to os_version’s for the parent os_name.

• There can be one any_version key, i.e. ‘any_version’

• The values can be a list or str, and are converted like the os definition dict

• The final values must be an installer specific definition dict

The os_version specific definition dict’s are exactly like the os_name specific definition dict’s, except that the resulting
values are installer specific definition dict’s, and there is a wild card key.

the ‘any_version’ key

The any_version key, ‘any_version’, indicates that the value, which is an installer specific definition dict, applies to all
os_version’s which do not have an explicit definition. For example, consider this snippet:

foo:
ubuntu:
lucid: [libfoo-1.8]
any_version: [libfoo]

The above snippet will provide libfoo-1.8 if you ask xylem to resolve foo for ubuntu:lucid, but will return
libfoo for any other version of ubuntu, e.g. for ubuntu:precise xylem will resolve it as libfoo.

2.1.4 the installer specific definition dict

The installer specific definition dict has keys for installers, e.g. apt, pip, or homebrew. The installer specific defi-
nition dict is similar to the os_version specific definition dict except the default_installer key is interpreted differently.

the ‘default_installer’ key

When the default installer key, ‘default_installer’, is used in the installer specific definition dict, that indicates that the
following definition is for the default installer for that operating system. This key cannot be used under the any_os
key.

2.1. xylem Rules File Specification 19

xylem Documentation, Release 0.1.0

2.2 Examples

Basic:

foo: # xylem key
ubuntu: # os name
precise: # os version (or codename)

apt: # installer
packages: [libfoo] # packages are a list

This is an example of using some of the available shortcuts:

foo:
ubuntu: libfoo
debian: libfoo

bar:
ubuntu:
lucid: libbar-1.2
any_version: libbar

baz:
any_os:
any_version:

pip: [baz]
ubuntu: [libbaz]

Which expands to:

foo:
ubuntu:
any_version:

default_installer:
packages: [libfoo]

debian:
any_version:

default_installer:
packages: [libfoo]

bar:
ubuntu:
lucid:

default_installer:
packages: [libbar-1.2]

any_version:
default_installer:

packages: [libbar]
baz:

any_os:
any_version:

pip:
packages: [baz]

ubuntu:
any_version:

default_installer:
packages: [libbaz]

20 Chapter 2. xylem Rules

CHAPTER 3

xylem Python API

Experimental: the xylem Python library is still unstable.

The xylem Python module supports both the xylem command-line tool as well as libraries that wish to use xylem data
files to resolve dependencies.

As a developer, you may wish to extend xylem to add new OS platforms or package managers.

Table of Contents

• xylem Python API
– Database
– Indices and tables

3.1 Database

Implements the update functionality.

This includes the functions to collect and process source files. Part of this process is to load and run the spec parser,
which are given by name in the source files.

xylem.update.handle_spec_urls(spec, urls)
Load a given spec parser by spec name and processed all urls.

Returns a list of new rules from parsed urls

Parameters

• spec (str) – name of a spec parser to load

• urls (list of str) – list of urls to load for the given spec parser

xylem.update.load_url(url, retry=2, retry_period=1, timeout=10)
Load a given url with retries, retry_periods, and timeouts.

Based on https://github.com/ros-infrastructure/rosdistro/blob/master/src/rosdistro/loader.py

Parameters

• url (str) – URL to load and return contents of

• retry (int) – number of times to retry the url on 503 or timeout

• retry_period (float) – time to wait between retries in seconds

21

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
https://github.com/ros-infrastructure/rosdistro/blob/master/src/rosdistro/loader.py
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float

xylem Documentation, Release 0.1.0

• timeout (float) – timeout for opening the URL in seconds

xylem.update.update(prefix=None, dry_run=False)
Update the xylem cache.

If the prefix is set then the source lists are searched for in the prefix. If the prefix is not set (None) or the source
lists are not found in the prefix, then the default, builtin source list is used.

Parameters

• prefix (str or None) – The config and cache prefix, usually ‘/’ or someother prefix

• dry_run (bool) – If True, then no actual action is taken, only pretend to

xylem.update.verify_rules(rules, spec)
Verify that a set of rules are valid for internal storage.

Parameters rules (dict) – set of nested dictionaries which is the internal DB format

3.2 Indices and tables

• genindex

• modindex

• search

22 Chapter 3. xylem Python API

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

CHAPTER 4

xylem package

4.1 Subpackages

4.1.1 xylem.commands package

Submodules

xylem.commands.main module

xylem.commands.main.create_subparsers(parser, cmds)

xylem.commands.main.list_commands()

xylem.commands.main.load_command_description(command_name)

xylem.commands.main.main(sysargs=None)

xylem.commands.main.print_usage()

xylem.commands.update module

xylem.commands.update.main(args=None)

xylem.commands.update.prepare_arguments(parser)

Module contents

4.1.2 xylem.sources package

Submodules

xylem.sources.impl module

xylem.sources.impl.get_default_source_urls()
Return the list of default source urls.

Returns lists of source urls keyed by spec type

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

23

xylem Documentation, Release 0.1.0

xylem.sources.impl.get_source_urls(prefix)
Return a list of source urls.

Parameters prefix – prefix on which to look for etc/xylem/sources.list.d

Type prefix: str

Returns lists of source urls keyed by spec, or None if no configs found

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

xylem.sources.impl.load_source_lists_from_path(path)
Return a list of source urls from a given directory of source lists.

Only files which have the .yaml extension are processed, other files, hidden files, and directories are ignored.

Parameters path (str) – directory containing source list files

Returns lists of source urls keyed by spec type

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

xylem.sources.impl.parse_list(data, file_path=’<string>’)
Parse a given list of urls and returns them as a list of source urls.

Parameters data (str) – string containing a list of source urls

Returns lists of source urls keyed by spec type

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

Raises ValueError, yaml.YAMLError

xylem.sources.impl.parse_list_file(file_path)
Parse a given list file and returns a list of source urls.

Parameters file_path (str) – path to file containing a list of source urls

Returns lists of source urls keyed by spec type

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

Module contents

xylem.sources.get_default_source_urls()
Return the list of default source urls.

Returns lists of source urls keyed by spec type

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

xylem.sources.get_source_urls(prefix)
Return a list of source urls.

Parameters prefix – prefix on which to look for etc/xylem/sources.list.d

Type prefix: str

Returns lists of source urls keyed by spec, or None if no configs found

Return type dict‘(:py:obj:‘str: list‘(:py:obj:‘str))

24 Chapter 4. xylem package

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

xylem Documentation, Release 0.1.0

4.1.3 xylem.specs package

Submodules

xylem.specs.impl module

exception xylem.specs.impl.SpecParsingError(msg, related_snippet=None)
Bases: exceptions.ValueError

Raised when an invalid spec element is encountered while parsing.

xylem.specs.impl.get_spec_parser(name)
Return a spec parser of a given name, or None if it is not found.

Parameters name (str) – name of the requested spec parser

Returns the requested spec parser, or None if it isn’t found

Return type types.FunctionType

xylem.specs.impl.list_spec_parsers()
List available spec parsers, by name.

Returns list of spec parsers by name

Return type list‘(:py:obj:‘str)

xylem.specs.rules module

This module implements parsing and validating of rules spec files.

Note: These xylem rules files are compatible with rosdep’s files.

xylem Rules File Specification

First, the top level rules file has these properties:

• The rules file is a YAML 1.1 compliant file

• The rules file contains a single dictionary, the rules dict

the rules dict The rules dict contains a mapping between xylem keys and definitions for specific operating systems
and package managers.

The rules dict has these properties:

• The keys of the rules dict are package manager agnostic xylem keys

• The values of the rules dict must be a dictionaries also, os definition dicts

the os specific definition dict An os specific definition dict is a mapping of operating system names to os specific
definitions. They have these properties:

• It has keys which map to os_names, e.g. ubuntu, osx

• There is a special ‘any’ key, i.e. ‘any_os’

• It can have values of type dict, with os_version keys

• It can have values of type list, a set of packages for the default installer

4.1. Subpackages 25

http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/functions.html#str

xylem Documentation, Release 0.1.0

• It can have values of type str, a package for the default installer

• A value of null or ‘[]’ indicates no action is required to resolve for this os

When the value is a dict, then the keys of that dict are os_version’s and the values of that dict are os_name and
os_version specific definitions for those xylem keys.

the ‘any_os’ key The ‘any_os’ key for the os specific definition dict can be used to indicate that the following
definition matches any operating systems. This is useful for situations like the pip installer, which works on most
operating systems, but is not specific to any one operating system. When the ‘any_os’ key is used, then the installer
must be specified explicitly, i.e. no default key is used. Conversely, if the ‘any_os’ key is used, then the ‘any_version’
key must be used for the os_version as well, which makes sense because it doesn’t make sense to have a definition
which matches all operating systems but only a specific operating system version.

For example, consider this rule snippet:

foo:
any_os:
any_version:

pip:
packages: [foo]

ubuntu: [python-foo]
debian: [python-foo]
osx:
any_version:

homebrew: [foo]

In this case foo will be resolved like this:

windows:7 -> pip:foo
ubuntu:precise -> apt:python-foo
debian:wheezy -> apt:python-foo
osx:mountain_lion -> homebrew:foo

You can imagine the logic to implement this behavior as such:

foo_dict is a dictionary like the above YAML structure
os_name = get_os_name()
os_version = get_os_version()
if os_name in foo_dict:

if os_version in foo_dict[os_name]:
return foo_dict[os_name][os_version]

elif ’any_version’ in foo_dict[os_name]:
return foo_dict[os_name][’any_version’]

elif ’any_os’ in foo_dict:
if ’any_version’ in foo_dict[’any_os’]:

return foo_dict[’any_os’][’any_version’]
raise NotFound

list and string expansion into os_version’s any_version When the value of the os definition dict is a str, then it is
converted into a list containing that str.

Whether the value is a str converted into a list or originally a list, the list is expanded into an any version (‘any_version’)
key-value pair, where the list is the value. Then the processing continues as normal.

For example, this snippet:

foo:
ubuntu: [libfoo]

26 Chapter 4. xylem package

xylem Documentation, Release 0.1.0

is expanded to:

foo:
ubuntu:
any_version: [libfoo]

The above snippet is a intermediate expansion, as any_version: [libfoo] will get expanded further later.

The case where no action is required, can occur when the package exists on the system by default. For example, on
OS X many times the software package comes with OS X and no action is required for it to be resolved. This is
represented with an empty list or null.

Whether originally a dict or expanded to a dict from a list, the resulting os specific definition dict always has os_names
for keys and os_version specific definitions as values.

the os_version specific definition dict The os_version specific definition dict’s have these properties:

• It has keys which map to os_version’s for the parent os_name.

• There can be one any_version key, i.e. ‘any_version’

• The values can be a list or str, and are converted like the os definition dict

• The final values must be an installer specific definition dict

The os_version specific definition dict’s are exactly like the os_name specific definition dict’s, except that the resulting
values are installer specific definition dict’s, and there is a wild card key.

the ‘any_version’ key The any_version key, ‘any_version’, indicates that the value, which is an installer specific
definition dict, applies to all os_version’s which do not have an explicit definition. For example, consider this snippet:

foo:
ubuntu:
lucid: [libfoo-1.8]
any_version: [libfoo]

The above snippet will provide libfoo-1.8 if you ask xylem to resolve foo for ubuntu:lucid, but will return
libfoo for any other version of ubuntu, e.g. for ubuntu:precise xylem will resolve it as libfoo.

the installer specific definition dict The installer specific definition dict has keys for installers, e.g. apt, pip,
or homebrew. The installer specific definition dict is similar to the os_version specific definition dict except the
default_installer key is interpreted differently.

the ‘default_installer’ key When the default installer key, ‘default_installer’, is used in the installer specific defi-
nition dict, that indicates that the following definition is for the default installer for that operating system. This key
cannot be used under the any_os key.

Examples

Basic:

foo: # xylem key
ubuntu: # os name
precise: # os version (or codename)

apt: # installer
packages: [libfoo] # packages are a list

4.1. Subpackages 27

xylem Documentation, Release 0.1.0

This is an example of using some of the available shortcuts:

foo:
ubuntu: libfoo
debian: libfoo

bar:
ubuntu:
lucid: libbar-1.2
any_version: libbar

baz:
any_os:
any_version:

pip: [baz]
ubuntu: [libbaz]

Which expands to:

foo:
ubuntu:
any_version:

default_installer:
packages: [libfoo]

debian:
any_version:

default_installer:
packages: [libfoo]

bar:
ubuntu:
lucid:

default_installer:
packages: [libbar-1.2]

any_version:
default_installer:

packages: [libbar]
baz:

any_os:
any_version:

pip:
packages: [baz]

ubuntu:
any_version:

default_installer:
packages: [libbaz]

xylem.specs.rules.expand_definition(definition)

xylem.specs.rules.expand_installer_definition(installer_dict)

xylem.specs.rules.expand_os_definition(os_dict)

xylem.specs.rules.expand_os_version_definition(version_dict)

xylem.specs.rules.expand_rules(rules)

xylem.specs.rules.rules_spec_parser(data)

Module contents

xylem.specs.get_spec_parser(name)
Return a spec parser of a given name, or None if it is not found.

28 Chapter 4. xylem package

xylem Documentation, Release 0.1.0

Parameters name (str) – name of the requested spec parser

Returns the requested spec parser, or None if it isn’t found

Return type types.FunctionType

xylem.specs.list_spec_parsers()
List available spec parsers, by name.

Returns list of spec parsers by name

Return type list‘(:py:obj:‘str)

exception xylem.specs.SpecParsingError(msg, related_snippet=None)
Bases: exceptions.ValueError

Raised when an invalid spec element is encountered while parsing.

4.2 Submodules

4.3 xylem.log_utils module

xylem.log_utils.debug(msg, file=None, *args, **kwargs)
Print debug to console or file.

Works like print and optionally uses terminal colors. Can be enabled or disabled with enable_debug().

xylem.log_utils.enable_debug(state=True)
En- or disable printing debug output to console.

xylem.log_utils.error(msg, file=None, exit=False, *args, **kwargs)
Print error statement and optionally exit.

Works like print and optionally uses terminal colors.

xylem.log_utils.info(msg, file=None, *args, **kwargs)
Print info to console or file.

Works like print and optionally uses terminal colors.

xylem.log_utils.warning(msg, file=None, *args, **kwargs)
Print warning to console or file.

Works like print and optionally uses terminal colors.

4.4 xylem.terminal_color module

Module to enable color terminal output.

class xylem.terminal_color.ColorTemplate(template)
Bases: string.Template

delimiter = ‘@’

pattern = <_sre.SRE_Pattern object at 0x7f8f3a3dab10>

xylem.terminal_color.ansi(key)
Return the escape sequence for a given ansi color key.

4.2. Submodules 29

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/functions.html#print
http://docs.python.org/library/functions.html#print
http://docs.python.org/library/functions.html#print
http://docs.python.org/library/functions.html#print
http://docs.python.org/library/string.html#string.Template

xylem Documentation, Release 0.1.0

xylem.terminal_color.disable_ANSI_colors()
Disable output of ANSI color serquences with ansi().

Set all the ANSI escape sequences to empty strings, which effectively disables console colors.

xylem.terminal_color.enable_ANSI_colors()
Enable output of ANSI color serquences with ansi().

Colors are enabled by populating the global module dictionary _ansi with ANSI escape sequences.

xylem.terminal_color.fmt(msg)
Replace color annotations with ansi escape sequences.

xylem.terminal_color.sanitize(msg)
Sanitize the existing msg, use before adding color annotations.

4.5 xylem.update module

Implements the update functionality.

This includes the functions to collect and process source files. Part of this process is to load and run the spec parser,
which are given by name in the source files.

xylem.update.handle_spec_urls(spec, urls)
Load a given spec parser by spec name and processed all urls.

Returns a list of new rules from parsed urls

Parameters

• spec (str) – name of a spec parser to load

• urls (list of str) – list of urls to load for the given spec parser

xylem.update.load_url(url, retry=2, retry_period=1, timeout=10)
Load a given url with retries, retry_periods, and timeouts.

Based on https://github.com/ros-infrastructure/rosdistro/blob/master/src/rosdistro/loader.py

Parameters

• url (str) – URL to load and return contents of

• retry (int) – number of times to retry the url on 503 or timeout

• retry_period (float) – time to wait between retries in seconds

• timeout (float) – timeout for opening the URL in seconds

xylem.update.update(prefix=None, dry_run=False)
Update the xylem cache.

If the prefix is set then the source lists are searched for in the prefix. If the prefix is not set (None) or the source
lists are not found in the prefix, then the default, builtin source list is used.

Parameters

• prefix (str or None) – The config and cache prefix, usually ‘/’ or someother prefix

• dry_run (bool) – If True, then no actual action is taken, only pretend to

xylem.update.verify_rules(rules, spec)
Verify that a set of rules are valid for internal storage.

Parameters rules (dict) – set of nested dictionaries which is the internal DB format

30 Chapter 4. xylem package

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
https://github.com/ros-infrastructure/rosdistro/blob/master/src/rosdistro/loader.py
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

xylem Documentation, Release 0.1.0

4.6 xylem.util module

Provides common utility functions for xylem.

xylem.util.add_global_arguments(parser)

class xylem.util.change_directory(directory=’‘)
Bases: object

xylem.util.create_temporary_directory(prefix_dir=None)
Create a temporary directory and return its location.

xylem.util.custom_exception_handler(type, value, tb)

xylem.util.handle_global_arguments(args)

xylem.util.pdb_hook()

xylem.util.print_exc(exc)

class xylem.util.redirected_stdio
Bases: object

class xylem.util.temporary_directory(prefix=’‘)
Bases: object

4.7 Module contents

4.6. xylem.util module 31

xylem Documentation, Release 0.1.0

32 Chapter 4. xylem package

CHAPTER 5

Installing from Source

Given that you have a copy of the source code, you can install xylem like this:

$ python setup.py install

Note: If you are installing to a system Python you may need to use sudo.

If you do not want to install xylem into your system Python, or you don’t have access to sudo, then you can use a
virtualenv.

33

https://virtualenv.pypa.io/

xylem Documentation, Release 0.1.0

34 Chapter 5. Installing from Source

CHAPTER 6

Hacking

Because xylem uses setuptools you can (and should) use the develop feature:

$ python setup.py develop

Note: If you are developing against the system Python, you may need sudo.

This will “install” xylem to your Python path, but rather than copying the source files, it will instead place a marker
file in the PYTHONPATH redirecting Python to your source directory. This allows you to use it as if it were installed
but where changes to the source code take immediate affect.

When you are done with develop mode you can (and should) undo it like this:

$ python setup.py develop -u

Note: If you are developing against the system Python, you may need sudo.

That will “uninstall” the hooks into the PYTHONPATH which point to your source directory, but you should be wary
that sometimes console scripts do not get removed from the bin folder.

35

http://pythonhosted.org/setuptools/
http://pythonhosted.org/setuptools/setuptools.html#development-mode

xylem Documentation, Release 0.1.0

36 Chapter 6. Hacking

CHAPTER 7

Code Style

The source code of xylem aims to follow the Python style guide and the PEP 8 guidelines. In particular a line width
of 79 characters is enforced for python code, while multiline comments or docstrings as well as text files should use a
line width of 72.

The test-suite checks that all xylem code passes the flake8. On top of that identifer names should follow the rules
layed out in PEP 8 and docstrings should adhere to PEP 257, however these are not automatically checked.

The most important rules are readability and consistency and use of common sense.

37

http://docs.python-guide.org/en/latest/writing/style
http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008#naming-conventions
http://www.python.org/dev/peps/pep-0257

xylem Documentation, Release 0.1.0

38 Chapter 7. Code Style

CHAPTER 8

Testing

In order to run the tests you will need to install nosetests and flake8.

Once you have installed those, then run nosetest in the root of the xylem source directory:

$ nosetests

39

https://nose.readthedocs.org/
https://flake8.readthedocs.org/

xylem Documentation, Release 0.1.0

40 Chapter 8. Testing

CHAPTER 9

Building the Documentation

In order to build the docs you will need to first install Sphinx. We use the Read the Docs Sphinx Theme, which you
can install with:

$ sudo pip install sphinx_rtd_theme

You can build the documentation by invoking the Sphinx provided make target in the docs folder:

$ # In the docs folder
$ make html
$ open _build/html/index.html

Sometimes Sphinx does not pickup on changes to modules in packages which utilize the __all__ mechanism, so on
repeat builds you may need to clean the docs first:

$ # In the docs folder
$ make clean
$ make html
$ open _build/html/index.html

41

http://sphinx-doc.org/
https://github.com/snide/sphinx_rtd_theme

xylem Documentation, Release 0.1.0

42 Chapter 9. Building the Documentation

Python Module Index

x
xylem, 21
xylem.commands, 23
xylem.commands.main, 23
xylem.commands.update, 23
xylem.log_utils, 29
xylem.sources, 24
xylem.sources.impl, 23
xylem.specs, 28
xylem.specs.impl, 25
xylem.specs.rules, 17
xylem.terminal_color, 29
xylem.update, 21
xylem.util, 31

43

	xylem`s Design Overview
	Motivation
	Goals
	Supported platforms
	Plugins
	Improvements over rosdep
	Terminology

	xylem Rules
	xylem Rules File Specification
	Examples

	xylem Python API
	Database
	Indices and tables

	xylem package
	Subpackages
	Submodules
	xylem.log_utils module
	xylem.terminal_color module
	xylem.update module
	xylem.util module
	Module contents

	Installing from Source
	Hacking
	Code Style
	Testing
	Building the Documentation
	Python Module Index

