
wormhole Documentation
Release 0.1

wormhole developers

Mar 14, 2017

Contents

1 Tutorial 1

2 User Guide 5

3 Developer Guide 15

i

ii

CHAPTER 1

Tutorial

Binary Classification on the Criteo CTR Dataset

This tutorial gives a step-by-step example for training a binary classifier on the Criteo Kaggle CTR competetion
dataset. In this dataset, each example (text line) presents a displayed ad with the label clicked (+1) or not (-1). The
goal is to predict the probability of being clicked for a new ad. This is a standard click-through rate (CTR) estimation
problem.

In the following we assume a recent Ubuntu (>= 13.10) and bash is used, it should apply to other Linux distributions
and Mac OS X too.

Preparation

We first build wormhole using 4 threads:

git clone https://github.com/dmlc/wormhole
cd wormhole && make deps -j4 && make -j4

Then download the dataset, which has two text files train.txt and test.txt. Even though wormhole can
directly read these two files, we split train.txt to multiple files to easy training and validation. The following
command divides train.txt into multiple 300MB size files, and store them in a compressed row block (crb)
format:

wget https://s3-eu-west-1.amazonaws.com/criteo-labs/dac.tar.gz
tar -zxvf dac.tar.gz
mkdir data
wormhole/bin/convert.dmlc -data_in train.txt -format_in criteo -data_out data/train -
→˓format_out libsvm -part_size 300

1

https://www.kaggle.com/c/criteo-display-ad-challenge/
https://www.kaggle.com/c/criteo-display-ad-challenge/

wormhole Documentation, Release 0.1

Linear Method

We first learn a linear logistic regression using linear.dmlc. We train on the first 20 parts and validate the model
on the last 6 parts. A sparse regularizer 4|𝑤|1 is used to control the model complexity. Furthermore, we solve the
problem via asynchronous SGD with minibatch size 10000 and learning rate 0.1.

Now generate the configuration file (learn more):

cat >train.conf <<EOF
train_data = "data/train-part_[0-1].*"
val_data = "data/train-part_2.*"
data_format = "libsvm"
model_out = "model/criteo"
lambda_l1 = 4
lr_eta = .1
minibatch = 10000
max_data_pass = 1
EOF

We train the model using 10 workers and 10 servers:

mkdir model
wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/linear.dmlc train.conf

A possible training log is

2015-07-22 04:50:55,285 INFO start listen on 192.168.0.112:9091
connected 10 servers and 10 workers
training #iter = 1
sec #example delta #ex |w|_0 logloss AUC accuracy

1 1.8e+06 1.8e+06 30509 0.507269 0.758684 0.769462
2 3.7e+06 1.9e+06 50692 0.469855 0.782046 0.780102
3 5.5e+06 1.9e+06 70856 0.462922 0.785047 0.784311
4 7.5e+06 2e+06 85960 0.462718 0.786288 0.783614
...

18 3.4e+07 2e+06 231968 0.453590 0.793880 0.789032
19 3.6e+07 2e+06 242017 0.454674 0.794033 0.788652
20 3.7e+07 8.4e+05 248066 0.461133 0.791255 0.784265

validating #iter = 1
sec #example delta #ex |w|_0 logloss AUC accuracy
30 4.6e+07 9.3e+06 248066 0.459048 0.791334 0.785863

hit max number of data passes
saving final model to model/criteo
training is done!

Then we can perform prediction using the trained model. Generate the prediction config file

cat >pred.conf <<EOF
val_data = "test.txt"
data_format = "criteo_test"
model_in = "model/criteo"
predict_out = "output/criteo"
EOF

and predict:

mkdir output
wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/linear.dmlc pred.conf
cat output/criteo* >pred.txt

2 Chapter 1. Tutorial

wormhole Documentation, Release 0.1

Then the i-th line of pred.txt will contains the prediction 𝑝 = ⟨𝑤, 𝑥⟩ for be i-th example (line) in test.txt. We
can convert it into a probability by 1/(1 + exp(−𝑝)).

Factorization Machine

Factorization machine learns an additional embedding comparing to the linear model, which catches the high-order in-
teractions between features. The usage of difacto.dmlc is similar to linear.dmlc. First generate the configure
file

cat >train.conf <<EOF
train_data = "data/train-part_[0-1].*"
val_data = "data/train-part_2.*"
data_format = "libsvm"
model_out = "model/criteo"
embedding {

dim = 16
threshold = 16
lambda_l2 = 0.0001

}
lambda_l1 = 4
lr_eta = .01
max_data_pass = 1
minibatch = 1000
early_stop = 1
EOF

Then train the model:

wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/difacto.dmlc train.conf

We can reuse the previous pred.conf for prediction:: config file

cat >pred.conf <<EOF
val_data = "data/train-part_2.*"
data_format = "libsvm"
model_in = "model/criteo"
predict_out = "output/criteo"
embedding {

dim = 16
threshold = 16
lambda_l2 = 0.0001

}
EOF

and predict:

wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/difacto.dmlc pred.conf
cat output/criteo* >pred.txt

What’s Next?

• Use another dataset with different formats or storing on HDFS, Amazon S3

• Train the model over multiple machines on Apache Yarn, Amazon EC2

1.1. Binary Classification on the Criteo CTR Dataset 3

wormhole Documentation, Release 0.1

4 Chapter 1. Tutorial

CHAPTER 2

User Guide

Build & Run

Prerequisites

Wormhole can be built on both Linux and Mac OS X. Some apps are also tested on Windows. To build wormhole,
both git and a recent C++ compiler supporting C++11, such as g++ >= 4.8 and clang >= 3.5, are required.
Install them on

1. Ubuntu >= 13.10:

$ sudo apt-get update && sudo apt-get install -y build-essential git

2. Older version Ubuntu via ppa:ubuntu-toolchain-r/test:

3. Centos via devtoolset

4. Mac OS X: can either use the clang provided by command line tools or download a compiled gcc from
hpc.sourceforge.net

Build

Type make to build all apps. It may take several minutes for the first time due to building all dependencies such as
gflags. There are several options for advanced usages.

make xgboost selectively builds xgboost. Similarly for linear, difactor, ...

make -j4 uses 4 threads for parallel building. For the first building, we suggest to build deps and apps separately:
make deps -j4 && make -j4

make CXX=g++-4.9 uses a different compiler

make DEPS_PATH=your_path changes the path of the deps. In default all deps will be installed on wormhole/
deps. We can change the path if them are installed on another place.

5

http://ubuntuhandbook.org/index.php/2013/08/install-gcc-4-8-via-ppa-in-ubuntu-12-04-13-04/
http://linux.web.cern.ch/linux/devtoolset/
http://hpc.sourceforge.net/

wormhole Documentation, Release 0.1

make USE_HDFS=1 supports read/write HDFS. It requires libhdfs, which is often installed with Hadoop. Ap-
parently Cloudera only ships static version of libhdfs. Hortonworks includes the shared version but not in the
lib/native folder. Used ldconfig etc to point compiler, linker and runtime to correct location.

make USE_S3=1 supports read/write AWS S3. libcurl4-openssl-dev is required, it can be installed via
sudo apt-get install libcurl4-openssl-dev on Ubuntu

make dmlc=<dmlc_core_path> in order to run XGBOOST in distributed mode on YARN. Combine with
USE_HDFS=1.

Run

Wormhole runs both in a laptop and in a cluster. A typical command to run a application:

$ tracker/dmlc_xxx.py -n num_workers [-s num_servers] app_bin app_conf

tracker/dmlc_xxx.py the tracker provided by dmlc-core to launch jobs on various platforms

-n number of workers

-s number of servers. Only required for parameter server applications

app_bin the binary of the application, which is available under bin/

app_conf the text configuration file specifying dataset and learning method, see each app’s documents for details

Local machine

The following command runs linear logistic regression using two workers and a single server on a small dataset:

$ tracker/dmlc_local.py -n 2 -s 1 bin/linear.dmlc learn/linear/guide/demo.conf

Apache Yarn

First make sure the environments HADOOP_HOME and JAVA_HOME are set properly. Next compile the Yarn tracker:

$ cd repo/dmlc-core/yarn && ./build.sh

Then a Yarn job can be submitted via tracker/dmcl_yarn.py. For example, the following codes run xgboost
on Yarn

hdfs_path=/your/path

hadoop fs -mkdir ${hdfs_path}/data
hadoop fs -put learn/data/agaricus.txt.train ${hdfs_path}/data
hadoop fs -put learn/data/agaricus.txt.test ${hdfs_path}/data

tracker/dmlc_yarn.py -n 4 --vcores 2 bin/xgboost.dmlc \
learn/xgboost/mushroom.hadoop.conf nthread=2 \
data=hdfs://${hdfs_path}/data/agaricus.txt.train \
eval[test]=hdfs://${hdfs_path}/data/agaricus.txt.test \
model_out=hdfs://${hdfs_path}/mushroom.final.model

Run tracker/dmlc_yarn.py -h for more details.

6 Chapter 2. User Guide

wormhole Documentation, Release 0.1

Sun Grid Engine

Use tracker/dmlc_sge.py

MPI

Wormhole can be run over multiple machines via mpirun, which is often convenient for a small cluster. Assume file
hosts stores the hostnames of all machines, then use:

$ tracker/dmlc_mpi.py -n num_workers -s num_servers -H hosts bin conf

to launch wormhole on these machines. See next section for an example to setup a cluster with mpirun.

Setup an EC2 Cluster from Scratch

In this section we give a tutorial to setup a small cluster and launch wormhole jobs on Amazon EC2.

1. Assume all data are stored Amazon S3.

2. Use a middle range instance as the master node to build wormhole and submit jobs, and several high end
instances to do the computations.

3. Use NFS to dispatch binaries and configurations and mpirun to launch jobs.

Setup the master node

First launch an Ubuntu 14.04 instance as the master node. It is mainly used for compiling codes, a middle end instance
such as c4.xlarge is often good enough. Install required libraries via:

$ sudo apt-get update && sudo apt-get install -y build-essential git libcurl4-openssl-
→˓dev

Then build wormhole with S3 support:

$ git clone https://github.com/dmlc/wormhole.git
$ cd wormhole && make deps -j4 && make -j4 USE_S3=1

Next setup NFS:

$ sudo apt-get install nfs-kernel-server mpich2
$ echo "/home/ubuntu/ *(rw,sync,no_subtree_check)" | sudo tee /etc/exports
$ sudo service nfs-kernel-server start

Finally copy the pem file used to access the master node to master node’s ~/.ssh/id_rsa so that this node can access to
all other machines.

Setup the slave nodes

First launch several Ubuntu 12.04 instances with the same pem file as the slaves nodes. High-end instances such as
c4.4xlarge and c4.8xlarge are recommended. Save their private IPs in file hosts:

2.1. Build & Run 7

wormhole Documentation, Release 0.1

$ cat hosts
172.30.0.172
172.30.0.171
172.30.0.170

Then install both NFS and mpirun on these slave nodes. Assume the master node has private IP 172.30.0.160:

while read h; do
echo $h
ssh -o StrictHostKeyChecking=no $h <<'ENDSSH'

sudo apt-get update
sudo apt-get install -y nfs-common mpich2
sudo mount 172.30.0.160:/home/ubuntu /home/ubuntu
ENDSSH
done <hosts

Next install depended libraries on all slave nodes:

$ mpirun -hostfile hosts sudo apt-get install -y build-essential libcurl4-openssl-dev

Put all things together

Test if everything is OK:

$ mpirun -hostfile hosts uname -a
$ mpirun -hostfile hosts ldd wormhole/bin/linear.dmlc

Now we can submit jobs from the master node via:

$ wormhole/tracker/dmlc_mpi.py -n ? -s ? -H hosts wormhole/bin/? ?.conf

Input Data

Wormhole supports various input data sources and formats.

Data Formats

Both text and binary formats are supported.

LIBSVM

Wormhole supports a more general version of the LIBSVM format. Each example is presented as a text line:

label feature_id[:weight] feature_id[:weight] ... feature_id[:weight]

label a float label

feature_id a unsigned 64-bit integer feature index. It is not required to be continuous.

weight: the according float weight, which is optional

8 Chapter 2. User Guide

wormhole Documentation, Release 0.1

Compressed Row Block (CRB)

This is a compressed binary data format. One can use bin/text2crb to convert any supported data format into it.

Customized Format

Adding a customized format requires only two steps.

1. Define a subclass to implement the function ParseNext of ParserImpl. Examples:

• Parse the text Criteo CTR dataset criteo_parser

• Parse the binary crb format: crb_parser

2. Then add the this new parser to a reader. For example, adding them in the minibatch reader

Data Sources

Besides standard filesystems, wormhole supports the following distributed filesystems.

HDFS

To support HDFS, compile with the flag USE_HDFS=1 such as make USE_HDFS=1 or set the flag in config.mk.
An example filename of a HDFS file

hdfs:///user/you/ctr_data/day_0

Amazon S3

To supports Amazon S3, compile with the flag USE_S3=1. Besides, one needs to set the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY properly. For example, add the following two lines in
~/.bashrc (replace the strings with your AWS credentials):

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

An example filename of a S3 file

s3://ctr-data/day_0

Microsoft Azure Blob Storage (Alpha support)

To support Azure blob storage, compile with the flag USE_AZURE=1 and DEPS_PATH=deps, which needs the
Azure C++ Storage SDK (https://github.com/Azure/azure-storage-cpp)

Install Azure Storage SDK (TODO: move to make/deps.mk) :: sudo apt-get -y install libboost1.54-all-dev libssl-
dev cmake libxml++2.6-dev libxml++2.6-doc uuid-dev

cd deps && mkdir -p lib include

git clone https://git.codeplex.com/casablanca cd casablanca/Release mkdir build.release cd build.release
CXX=g++ cmake .. -DCMAKE_BUILD_TYPE=Release make -j4 cp Binaries/libcpprest* ../../../lib cp -r ../in-
clude/* ../../../include/ cd ../../..

2.2. Input Data 9

https://github.com/dmlc/dmlc-core/blob/master/src/data/parser.h
https://github.com/dmlc/wormhole/blob/master/learn/base/criteo_parser.h
https://github.com/dmlc/wormhole/blob/master/learn/base/crb_parser.h
https://github.com/dmlc/wormhole/blob/master/learn/base/minibatch_iter.h
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://github.com/Azure/azure-storage-cpp
https://git.codeplex.com/casablanca

wormhole Documentation, Release 0.1

git clone https://github.com/Azure/azure-storage-cpp cd azure-storage-cpp/Microsoft.WindowsAzure.Storage
mkdir build.release cd build.release CASABLANCA_DIR=../../../../casablanca/ CXX=g++ cmake .. -
DCMAKE_BUILD_TYPE=Release make -j4 cp Binaries/libazurestorage* ../../../lib cp -r ../includes/* ../../../in-
clude/ cd ../../../..

One also needs to set the environment variables properly (About Azure storage account):

export AZURE_STORAGE_ACCOUNT=mystorageaccount
export AZURE_STORAGE_ACCESS_KEY=EXAMPLEKEY
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/dmlc-core/deps/lib

An example filename of an Azure file :: azure://container/agaricus.txt.test

Linear Method

Given data pairs (𝑥, 𝑦), the linear method learns the model vector 𝑤 by minizing the following objective function:∑︁
(𝑥,𝑦)

ℓ(𝑦, ⟨𝑥,𝑤⟩) + 𝜆1|𝑤|1 + 𝜆2‖𝑤‖22

where ℓ(𝑦, 𝑝) is the loss function, see Config.Loss.

Configuration

The configuration is defined in the protobuf file config.proto

Input & Output

Type Field Description
string train_data The training data, can be either a directory or a wildcard filename
string val_data The validation or test data, can be either a directory or a wildcard filename
string data_format data format. supports libsvm, crb, criteo, adfea, ...
string model_out model output filename
string model_in model input filename
string predict_out the filename for prediction output. if specified, then run/ prediction. otherwise run training

Model and Optimization

Type Field Description
Con-
fig.Loss

loss the loss function. default is LOGIT

float lambda_l1 l1 regularizer: 𝜆1|𝑤|1
float lambda_l2 l2 regularizer: 𝜆2‖𝑤‖22
Con-
fig.Algo

algo the learning method, default is FTRL

int32 minibatch the size of minibatch. the smaller, the faster the convergence, but the/ slower the
system performance

int32 max_data_pass the maximal number of data passes
float lr_eta the learning rate 𝜂 (or 𝛼). often uses the largest/ value when not diverged

10 Chapter 2. User Guide

https://github.com/Azure/azure-storage-cpp
https://azure.microsoft.com/en-us/documentation/articles/storage-create-storage-account/
https://github.com/dmlc/wormhole/blob/master/learn/linear/config.proto

wormhole Documentation, Release 0.1

Config.Loss

Name Description
SQUARE square loss: 1

2 (𝑝− 𝑦)2

LOGIT logistic loss: log(1 + exp(−𝑦𝑝))

SQUARE_HINGE squared hinge loss: max
(︀
0, (1− 𝑦𝑝)2

)︀
Config.Algo

Name Description
SGD asynchronous minibatch SGD
ADAGRAD similar to SGD, but use adagrad
FTRL similar to ADAGRAD, but use FTRL for better sparsity

Adavanced Configurations

Type Field Description
int32 save_iter save model for every k data pass. default is -1, which only saves for the/ last iteration
int32 load_iter load model from the k-th iteration. default is -1, which loads the last/ iteration model
bool local_data give a worker the data only if it can access. often used when the data has/ been dispatched

to workers’ local filesystem
int32 num_parts_per_filevirtually partition a file into n parts for better loadbalance. default is 10
int32 rand_shuffle randomly shuffle data for minibatch SGD. a minibatch is randomly picked from/

rand_shuffle * minibatch examples. default is 10.
float neg_sampling down sampling negative examples in the training data. no in default
bool prob_predict if true, then outputs a probability prediction. otherwise ⟨𝑥, 𝑦⟩
float dropout the probably to set a gradient to 0. no in default
float print_sec print the progress every n sec during training. 1 sec in default
float lr_beta learning rate 𝛽, 1 in default
int32 num_threads number of threads used by a worker / a server. 2 in default
int32 max_concurrencythe maximal concurrent minibatches being processing at the same time for/ sgd, and the

maximal concurrent blocks for block CD. 2 in default.
bool key_cache cache the key list on both sender and receiver to reduce communication/ cost. it may

increase the memory usage
bool msg_compressioncompression the message to reduce communication cost. it may increase the/ computation

cost.
int32 fixed_bytes convert floating-points into fixed-point integers with n bytes. n can be 1,/ 2 and 3. 0 means

no compression.

Performance

Factorization Machine

Difacto is refined factorization machine (FM) with sparse memory adaptive constraints.

Given an example 𝑥 ∈ R𝑑 and an embedding dimension 𝑘, FM models the example by

𝑓(𝑥) = ⟨𝑤, 𝑥⟩+ 1

2
‖𝑉 𝑥‖22 −

𝑑∑︁
𝑖=1

𝑥2
𝑖 ‖𝑉𝑖‖22

2.4. Factorization Machine 11

wormhole Documentation, Release 0.1

where 𝑤 ∈ R𝑑 and 𝑉 ∈ R𝑑×𝑘 are the models we need to learn. The learning objective function is

1

|𝑋|
∑︁
(𝑥,𝑦)

ℓ(𝑓(𝑥), 𝑦) + 𝜆1|𝑤|1 +
1

2

𝑑∑︁
𝑖=1

[︀
𝜆𝑖𝑤

2
𝑖 + 𝜇𝑖‖𝑉𝑖‖2

]︀
where the first sparse regularizer 𝜆1|𝑤|1 induces a sparse 𝑤, while the second term is a frequency adaptive regulariza-
tion, which places large penalties for more frequently features.

Furthermore, Difacto adds two heuristics constraints

• 𝑉𝑖 = 0 if 𝑤𝑖 = 0, namely we mark the embedding for feature i is inactive if the according linear term is filtered
out by the sparse regularizer. (You can disable it by l1_shrk = false)

• 𝑉𝑖 = 0 if the occur of feature i is less the a threshold. In other words, Difacto does not learn an embedding for
tail features. (You can specify the threshold via threshold = 10)

Train by Asynchronous SGD. w is updated via FTRL while V via adagrad.

Configuration

The configure is defined in the protobuf file config.proto

Input & Output

Type Field Description
string train_data The training data, can be either a directory or a wildcard filename
string val_data The validation or test data, can be either a directory or a wildcard filename
string data_format data format. supports libsvm, crb, criteo, adfea, ...
string model_out model output filename
string model_in model input filename
string predict_out the filename for prediction output. if specified, then run/ prediction. otherwise run training

Model and Optimization

Type Field Description
float lambda_l1 l1 regularizer for 𝑤: 𝜆1|𝑤|1
float lambda_l2 l2 regularizer for 𝑤: 𝜆2‖𝑤‖22
float lr_eta learning rate 𝜂 (or 𝛼) for 𝑤
Con-
fig.Embedding

embedding the embedding 𝑉

int32 minibatch the size of minibatch. the smaller, the faster the convergence, but the/ slower the
system performance

int32 max_data_passthe maximal number of data passes
bool early_stop stop earilier if the validation objective is less than prev_obj - min_objv_decr

Config.Embedding

embedding 𝑉 . basic:

Type Field Description
int32 dim the embedding dimension 𝑘
int32 threshold features with occurence < threshold have no embedding (𝑘 = 0)
float lambda_l2 l2 regularizer for 𝑉 : 𝜆2‖𝑉𝑖‖22

12 Chapter 2. User Guide

https://github.com/dmlc/wormhole/blob/master/learn/difacto/config.proto

wormhole Documentation, Release 0.1

advanced:

Type Field Description
float init_scale V is initialized by uniformly random weight in/ [-init_scale, +init_scale]
float dropout apply dropout on the gradient of 𝑉 . no in default
float grad_clipping project the gradient of 𝑉 into [−𝑐𝑐]. no in default
float grad_normalization normalized the l2-norm of gradient of 𝑉 . no in default
float lr_eta learning rate 𝜂 for 𝑉 . if not specified, then share the same with 𝑤
float lr_beta leanring rate 𝛽 for 𝑉 .

Adavanced Configurations

Type Field Description
int32 save_iter save model for every k data pass. default is -1, which only saves for the/ last iteration
int32 load_iter load model from the k-th iteration. default is -1, which loads the last/ iteration model
bool local_data give a worker the data only if it can access. often used when the data has/ been dispatched

to workers’ local filesystem
int32 num_parts_per_filevirtually partition a file into n parts for better loadbalance. default is 10
int32 rand_shuffle randomly shuffle data for minibatch SGD. a minibatch is randomly picked from/

rand_shuffle * minibatch examples. default is 10.
float neg_sampling down sampling negative examples in the training data. no in default
bool prob_predict if true, then outputs a probability prediction. otherwise ⟨𝑥, 𝑦⟩
float print_sec print the progress every n sec during training. 1 sec in default
float lr_beta learning rate 𝛽, 1 in default
float min_objv_decr the minimal objective decrease in early stop
bool l1_shrk use or not use the contraint 𝑉𝑖 = 0 if 𝑤𝑖 = 0. yes in default
int32 num_threads number of threads used within a worker and a server
int32 max_concurrencythe maximal concurrent minibatches being processing at the same time for/ sgd, and the

maximal concurrent blocks for block CD. 2 in default.
bool key_cache cache the key list on both sender and receiver to reduce communication/ cost. it may

increase the memory usage
bool msg_compressioncompression the message to reduce communication cost. it may increase the/ computation

cost.
int32 fixed_bytes convert floating-points into fixed-point integers with n bytes. n can be 1,/ 2 and 3. 0 means

no compression.

Performance

2.4. Factorization Machine 13

wormhole Documentation, Release 0.1

14 Chapter 2. User Guide

CHAPTER 3

Developer Guide

15

	Tutorial
	User Guide
	Developer Guide

