
webkitpony Documentation
Release 0.1

Toni Michel

May 24, 2014





Contents

1 Motivation 3

2 Goal 5

3 Understanding webkitpony 7
3.1 Understanding webkitpony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The webview object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The webkitpony.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 The settings module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Getting started 13
4.1 Install webkitpony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Indices and tables 15

i



ii



webkitpony Documentation, Release 0.1

“building webapp-like desktop applications in python”

webkitpony is a micro framework to build dektop applications with web technologies on the basis of the python
binding of the webkit rendering engine (http://code.google.com/p/pywebkitgtk/).

The project is hosted on github: https://github.com/tonimichel/webkitpony

Artwork by IYOMI

Contents 1

http://code.google.com/p/pywebkitgtk/
https://github.com/tonimichel/webkitpony
http://iyomi.de


webkitpony Documentation, Release 0.1

2 Contents



CHAPTER 1

Motivation

Building desktop applications with standard toolkits like GTK works fine - but tweaking the UI beyond the boundaries
of window managers is exhausting. In contrast, building a web ui with HTML, Javascript and CSS is quite flexible.
Acctually, the motivation behind webkitpony was to stay in a djangonaut-familiar environment when it comes to build
desktop applications. As the basic technology (the webkit rendering engine) was given - it was about playing around
and creating a simple-to-use django-like development process. The result was webkitpony.

At schnapptack, we use this approach for building desktop applications or solutions that explicitely need a non-browser
client. Often we also combine having native logic and remote logic from a web application.

3

http://schnapptack.de


webkitpony Documentation, Release 0.1

4 Chapter 1. Motivation



CHAPTER 2

Goal

The goal of webkitpony is to provide an alternative to standard desktop application development approaches. It
especially targets on developers familiar with django. However, the framework is so simple, that even non-django
programmers will get the point fastly.

5



webkitpony Documentation, Release 0.1

6 Chapter 2. Goal



CHAPTER 3

Understanding webkitpony

3.1 Understanding webkitpony

3.1.1 Project structure

A webitpony project follows a certain structure. The following figure shows the example project _ponyfarm_:

Let’s start with a brief overview:

• urls.py: contains a list of tuples, each matching a regular expression (representing a url) to a view function.

• views.py: contains the view functions referenced in the urls.py module.

• settings.py: contains your project’s settings like e.g. whether to enable the webkit inspector or not.

• ride.py: the starting point for riding your pony: python ride.py.

• templates: contains your templates with jinja2 template syntax available.

• static: contains the static files of your project like css and javascript.

Those who are familiar with django might already have become an idea of the webkitpony principle.

3.1.2 HTML - Python Interaction

To understand webkitpony, it is important to understand the communication between the web ui and the python code:

7



webkitpony Documentation, Release 0.1

On the left-hand side we have the webkit (represented as a webview object), which we’ll call UI. On the right-hand
side we have the python application.

Whenever a link is clicked, the url of that link, namely the href attribute is sent to the webkitpony url dispatcher, which
looks up the url patterns and triggers the view, passing the webview and url parameters if specified.

3.1.3 A full example

As we saw in the figure before, the html contains a button “calculate”. Note that all links are prefixed with ‘action:’
which is used to distinguish between referencing urls and files.

<body>
<a id="calculate" href="action:/calculate/1/">Calculate</a>

</body>

The urls.py module defines a variable urlpatterns. It consists of tuples matching urls to callback functions,
which we call views. Each tuple is a regular expression (describing a url) and a view (being invoked if the regex
matches). In case a regex contains a grouped expression, its value is passed as parameter to the view function.

urlpatterns = (
(r’^calculate/(?P<id>[0-9]+)/$’, views.calculate)

)

The views.py module defines the view function previously registered on the calculate url. The first paramter is
always the webview object representing the webkit. Further parameters depend on the pattern. In this example id is

8 Chapter 3. Understanding webkitpony



webkitpony Documentation, Release 0.1

passed.

def calculate(webview, id):
# do some stuff
return webview.render(’myapplication/myview.html’, {

’this’: ’is’,
’the’: ’template context’

})

})

As you might notice, this principle is similar to django except, that the view takes a webview object instead of
request and returns webview.render instead of a HttpResponse. Again the webview.render is comparable to
django.shortcuts.render. It takes a template and a template context. The templates themselfs build upon
jinja2.

3.1.4 Passing data from HTML to Python

Sometimes we want to send some form data from the UI to our python-side application. As we are not in the web, we
do not have POST or GET. So, we need a way to pass data from html to the application. For this purpose webkitpony
provides a Javascript connector enabling an Ajax-like JSON communicaton between javascript and python code.
Consider the following example:

<body>

<form id="myform">
<input type="text" value="" name="first_name">
<input type="submit" value="save">

</form>

<script>
var form = $(’#myform’)

form.submit(function() {
var data = {}

form.find(’input[type="text"]’).each(function() {
var field = $(this)
data[field.attr(’name’)] = field.val()

})

webkitpony.send(’/calculate/1/’, {data: data}, function(response) {
console.log(’We sent ’ + data + ’ and received ’ + response)

})

return false
})

</script>
</body>

To send the form to the application we bind a submit event, construct our json-serializable data object and in-
voke webkitpony.send(url, data, callback). Similarily to a non-javascript link click, the url is routed
through our project’s urls.py invoking the matching view function:

def calculate(webview, id):
result = backend.perform_calculation(webview.DATA)
return webview.json_response({’result’: result})

3.1. Understanding webkitpony 9

http://jinja.pocoo.org/


webkitpony Documentation, Release 0.1

The view function unpacks the data from the webview object (similiarily to request.POST). Instead of returning
webview.render webview.json_response(result) is returned which does not re-rendered the webview.
Instead json is passed back to webkitpony.send which finally executes the callback function.

Of course, we can also use webkitpony.send for links:

<body>

<a id="mylink">Calculate</a>

<script>
$(’#mylink’).click(function() {

webkitpony.send(’/calculate/1/’, {data: ’some data’}, function(response) {
console.log(’We sent ’ + data + ’ and received ’ + response)

})
return false

})
</script>

</body>

This might be useful to build Javascript applications without “reload”.

3.2 The webview object

The webview object is comparable with the request and response objects of a django request/response cycle and is
always passed as first parameter to any view. The public interface provides the following methods and attributes:

webview.render(template, context)

Renders the webview. Parameter template is a string specifying the path to your template relative to your project’s
template dir. Parameter context is a dictionary applied as template context. Templates build upon jinja2.

webview.json_response(data)

Usefull in combination with the client-side webkitpony.send(url, data, callback) from
webkitpony.js. Takes a single parameter data which must be a json-serializable data structure, e.g. a
dict. Triggers the callback method of the foregoing webkitpony.send passing data as response.

webview.data

Comparable with request.POST. Provides the python deserialized dictionary of the foregoing
webkitpony.send code.

3.3 The webkitpony.js

The webkitpony.js contains Javascript utils to enable the communication between the UI and the python-side of
your application. At the moment webkitpony.js requires jQuery, which is inlcuded in the download package.

For now webkitpony.js provides a single method:

webkitpony.send(url, data, callback)

Parameter url is the url being processed by the pony’s url dispatcher. data is a json-serializable object which is sent
to the application being available in our views via webview.DATA. callback is a simple function taking a single
parameter response. response contains the data sent back by the application.

10 Chapter 3. Understanding webkitpony



webkitpony Documentation, Release 0.1

3.4 The settings module

settings.DEBUG

Boolean indicating whether debug or development mode is enabled. If so, the webkit dom inspector and Javascript
console as well as the right click context menu of webkit is availbale.

settings.WITDH

The default width when the pony is started.

settings.HEIGHT

The default height when the pony is started.

settings.RESIZABLE

Boolean indicating whether the window is resizable or not.

settings.URLCONF

Specifies the project’s urlconf module.

3.4. The settings module 11



webkitpony Documentation, Release 0.1

12 Chapter 3. Understanding webkitpony



CHAPTER 4

Getting started

4.1 Install webkitpony

4.2 Tutorial

13



webkitpony Documentation, Release 0.1

14 Chapter 4. Getting started



CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15


	Motivation
	Goal
	Understanding webkitpony
	Understanding webkitpony
	The webview object
	The webkitpony.js
	The settings module

	Getting started
	Install webkitpony
	Tutorial

	Indices and tables

