
TurtleBot3Blockly Documentation
Release 0.0.1

Aravind Krishnan

Oct 29, 2017

Contents:

1 About 3
1.1 Waffle . 4
1.2 Burger . 4

2 Software Setup 5
2.1 TurtleBot3 + Remote PC + Blockly . 5
2.2 Installation . 5

3 Launch Blockly web interface 7

4 Basic Maneuvers 9
4.1 Moving Forward . 9
4.2 Moving Backward . 9
4.3 Turning Right . 10
4.4 Turning Left . 10
4.5 Turn Left/Right in degrees . 10
4.6 Stop . 10

5 A Simple Program 11
5.1 Drag and drop blocks . 11
5.2 Launch the program . 12

6 Block Creation - Overview 13
6.1 Understanding the file structure . 13

7 Specifics of Block Creation 17
7.1 Block with an input . 17
7.2 Block with an output . 19
7.3 Block without an input or output . 20

8 License 23

9 Frequently Asked Questions 25
9.1 1. Where can I get more information about the TurtleBot3? . 25
9.2 2. Where can I order the TurtleBot3 (Waffle or Burger) from? . 25
9.3 3. What changed in the documentation recently? . 25

10 Contact 27

i

11 Changelog - [development] 29

ii

TurtleBot3Blockly Documentation, Release 0.0.1

A detailed documentation on how to use Blockly (free and open source software) with TurtleBot3.

Contents: 1

TurtleBot3Blockly Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

About

Dabit Industries is an official reseller of the latest ROS based development platform - TurtleBot3. We want to help our
customers to quickly understand how to get started programming the TurtleBot3. The usual requirements are to have
a background in Linux, software engineering and some bit of robotics. Now, we want to introduce Blockly and make
the TurtleBot3 much easier to program while having fun.

Blockly is a free and open source web interface that can be used to program the TurtleBots. Its intuitive drag-and-drop
based programming style welcomes everyone to try out the logic based programming and is easy to get started.

We will help you understand the required concepts necessary to work with Blockly and get your TurtleBot up and
running in no time!

You can order the TurtleBot3 here.

TurtleBot3 is available in two variants:

• Waffle

• Burger

Waffle comes with an Intel ® RealSense TM camera for 3D perception and the Burger doesn’t. All other sensors remain
the same in both models. The Burger is a stacked up model of the TurtleBot3 whereas Waffle has a wider base (perhaps
intentionally named after the way they look).

3

https://dabit.industries
https://www.ros.org
https://developers.google.com/blockly/
https://dabit.industries/collections/turtlebot-3

TurtleBot3Blockly Documentation, Release 0.0.1

1.1 Waffle

1.2 Burger

4 Chapter 1. About

CHAPTER 2

Software Setup

To program a TurtleBot3 with Blockly some software packages must be installed. This section on software setup is
also helpful for those who would like to create custom blocks to either add new funtionalities or modify the existing
ones.

2.1 TurtleBot3 + Remote PC + Blockly

Before we begin the software setup let’s understand, on a high level, how the three things are connected.Also note that
TurtleBot3 and Remote PC should be connected to the same WiFi network.

Remote PC

A Desktop PC or Laptop a.k.a Remote PC should have Ubuntu 16.04 and ROS Kinetic Kame installed. Re-
mote PC will run ROS and be the ROS_MASTER.

TurtleBot3

TurtleBot3 runs a custom Linux version called Ubuntu Mate and will need its own setup. Once TurtleBot3 is up
and running ROS, it should connect to the Remote PC and recognize it as the ROS_MASTER.

Blockly

Now that the Remote PC and TurtleBot3 are connected, you need to setup Blockly software package and launch it.
This way, using ROS, Blockly can send commands to TurtleBot3.

The steps below will help you install and launch Blockly on the Remote PC. They are adapted from the instructions
provided by Erle Robotics.

2.2 Installation

2.2.1 Linux

5

http://turtlebot3.robotis.com/en/latest/pc_software.html
http://erlerobotics.com/blog/

TurtleBot3Blockly Documentation, Release 0.0.1

Note: TurtleBot3s are tested on Ubuntu 16.04 and ROS Kinetic Kame. So, these are two prerequisites to
setup Blockly and work with a TurtleBot3.

Open terminal and enter the following instructions to install and develop Blockly.

$ mkdir -p ~/blockly_ws/src
$ cd ~/blockly_ws/src
$ git clone https://github.com/dabit-industries/turtlebot3_blockly
$ cd turtlebot3_blockly/frontend/
$ git submodule add https://github.com/dabit-industries/ace-builds.git ace-builds
$ git submodule init
$ git submodule update
$ git submodule add https://github.com/dabit-industries/blockly.git blockly
$ git submodule init
$ git submodule update
$ cd ~/blockly_ws/
$ catkin_make_isolated -j2 --pkg turtlebot3_blockly --install

or

$ mkdir -p ~/blockly_ws/src
$ cd ~/blockly_ws/src
$ git clone --recurse-submodules https://github.com/dabit-industries/turtlebot3_
→˓blockly
$ cd ~/blockly_ws
$ catkin_make_isolated -j2 --pkg turtlebot3_blockly --install

6 Chapter 2. Software Setup

CHAPTER 3

Launch Blockly web interface

Once the software package is setup there are a few commands to launch the Blockly web interface. Open terminal and
type the following commands and leave the terminal running.

$ cd ~/blockly_ws
$ source devel_isolated/setup.bash
$ roslaunch turtlebot3_blockly turtlebot3_blockly.launch

Note: To launch the web interface of blockly, you don’t necessarily have to start roscore but you should if you
plan to connect TurtleBot3 and test it during development.

Open a web browser and type 127.0.0.1:1036 in the address bar. The Blockly web interface should open and
will look like the image below.

7

TurtleBot3Blockly Documentation, Release 0.0.1

8 Chapter 3. Launch Blockly web interface

CHAPTER 4

Basic Maneuvers

Are you ready to make the TurtleBot3 perform basic actions like moving forward, backward, turning right, left and
stop?

It’s quite simple in Blockly. You just need to select the appropriate block from the list of blocks available. Let’s look
at each of the basic actions and program the TurtleBot3 to move accordingly.

4.1 Moving Forward

This block makes the TurtleBot3 move forward in three preset speed values - SLOW, NORMAL and FAST for a
desired amount of time in seconds. Behind this block there is a short piece of code in Python that talks to the robot
from the Blockly web interface and commands it to move forward with one of the preset values as programmed by
the user. The figure below shows how the block is dragged into the workspace. The time and speed values are then
changed.

The other basic maneuver blocks of the TurtleBot3 are shown in the following figures.

4.2 Moving Backward

9

https://www.python.org/

TurtleBot3Blockly Documentation, Release 0.0.1

4.3 Turning Right

4.4 Turning Left

4.5 Turn Left/Right in degrees

All the commands shown above move the TurtleBot3 for a desired amount of time. To turn the TurtleBot3 a specific
amount (degree) you can use the Turn Left/Right __ degrees command. Left turn is counter-clockwise and right turn
is clockwise direction. This block uses the data from an Inertial Measurement Unit (IMU) sensor.

4.6 Stop

You will find out how to load the program onto the TurtleBot3 and make it move, in the next page.

10 Chapter 4. Basic Maneuvers

CHAPTER 5

A Simple Program

Let’s write a simple program to make the TurtleBot3 do the following tasks consecutively:

1. Move forward for two seconds

2. Wait for one second

3. Move backward for three seconds

4. Wait for one second

5.1 Drag and drop blocks

Launch the Blockly web interface and ensure that TurtleBot3 is connected to the master (your pc/laptop).

On the left sidebar of the Blockly web interface you will find Dabit-Turtlebot3 icon. Click on it and drag a
Move_Forward block onto the workspace.

11

TurtleBot3Blockly Documentation, Release 0.0.1

Our task is to move the TurtleBot3 for two seconds, so change the seconds field to 2 and let’s run it at a NORMAL
speed.

The following figure shows the remaining steps to complete the program. You can find the Wait 1 seconds block
inside the Control icon on the left sidebar.

5.2 Launch the program

After writing the program you should launch it to make the TurtleBot3 move. Click once on the Launch icon on the
far left of the Blockly web interface and you should see TurtleBot3 perform the tasks consecutively.

12 Chapter 5. A Simple Program

CHAPTER 6

Block Creation - Overview

By now you have an idea that blocks are the fundamental elements in this drag and drop Blockly sofware. We will
discuss how to create new blocks and/or to edit the existing ones.

This guide is adapted from Erle Robotics documentation on Block Creation and we will focus on the block creation
pertaining to TurtleBot3’s functionalities.

6.1 Understanding the file structure

Code changes or development typically happens inside the blockly_ws/src/ folder.

There are four different files one should edit to create a new block.

- turtlebot3_blockly/frontend/blockly/generators/python/scripts/turtlebot3/example.py
- turtlebot3_blockly/frontend/blockly/generators/python/customName.js
- turtlebot3_blockly/frontend/blockly/blocks/customName.js
- turtlebot3_blockly/frontend/pages/blockly.html

A detailed description of the contents of these four files, in a particular order will help in creating or editing a block.

Note: The filenames with the .js extension must be the same.

Let’s take a look at the blockly/ directory

$ cd turtlebot3_blockly/frontend/blockly/

Note: blockly was one of the submodules that we cloned during the software setup.

The directories blocks/ and generators/ contain a few files that we must edit. Each block that you see on the Blockly
web interface has its own python script that provides the block’s functionality.

13

TurtleBot3Blockly Documentation, Release 0.0.1

6.1.1 The Python script

Let’s look into the generators/python/scripts/turtlebot3/ directory.

$ cd generators/python/scripts/turtlebot3/

This directory should contain a few python scripts already.

Move Forward is a custom block that moves the TurtleBot3 forward in one of three speed modes - SLOW, NORMAL
and FAST. A python script called move_forward.py shown below is the backend code for this block.

1 import rospy, sys
2 import time
3 from geometry_msgs.msg import Twist
4

5 pub = rospy.Publisher('cmd_vel', Twist, queue_size=10)
6 #rospy.init_node('circle_mode', anonymous=True)
7 rate = rospy.Rate(10) # 10Hz
8 twist = Twist()
9 start = time.time()

10 flag=True #time flag
11 # Angular velocity = linear velocity / radius
12 speed=dropdown_speed # SLOW, NORMAL, FAST
13 twist.linear.z = 0.00
14

15 # CLOCKWISE rotation
16 if speed =='SLOW':
17 twist.linear.y = 0.05
18 twist.linear.x = 0.05
19 elif speed =='NORMAL':
20 twist.linear.y = 0.25
21 twist.linear.x = 0.25
22 elif speed == 'FAST':
23 twist.linear.y = 0.75
24 twist.linear.x = 0.75
25 while not rospy.is_shutdown() and flag:
26 sample_time=time.time()
27 if ((sample_time - start) > 3):
28 flag=False
29 pub.publish(twist)
30 twist = Twist()
31 pub.publish(twist)
32 rate.sleep()

6.1.2 The Javascript (Block functionality)

The Blockly web interface needs a javascript file that can link the python script of our custom block and to describe
the fields of the block. For instance, SLOW, NORMAL and FAST are one of the fields of a block.

14 Chapter 6. Block Creation - Overview

TurtleBot3Blockly Documentation, Release 0.0.1

$ cd ~/turtlebot3_blockly/frontend/blockly/generators/python/dabit-turtlebot3.js

Once the dabit-turtlebot3.js file opens, look for the particular code section written to link the move_forward
block. It should look something similar to this image below.

6.1.3 The Javascript (Look and feel of the block)

In addition to the previous dabit-turtlebot3.js file there is one more with the same name inside the blocks/
directory. Here we describe the look and feel of the block along with few other features - for instance, whether the
block connects to any previous or future block(s).

$ cd ~/turtlebot3_blockly/frontend/blockly/blocks/dabit-turtlebot3.js

6.1.4 The HTML

Update the blockly.html file to reflect the changes of our custom block in the Blockly web interface.

The <category> tag contains the block details and below is an image that shows the contents of it.

Now that you have an idea of what files to edit, let’s look at the specifics of a block creation in the next page.

6.1. Understanding the file structure 15

TurtleBot3Blockly Documentation, Release 0.0.1

16 Chapter 6. Block Creation - Overview

CHAPTER 7

Specifics of Block Creation

Blocks are of three types:

1. Block with an input

2. Block with an output

3. Block without an input or output

We looked at the .js files in the previous section. We should edit them to categorize these blocks into the three types
as mentioned as above. Let’s go over these types in detail.

7.1 Block with an input

To create a block with an input the two .js files to be edited are:

• turtlebot3_blockly/frontend/blockly/generators/python/customName.js

• turtlebot3_blockly/frontend/blockly/blocks/customName.js

We will be looking at the same example of move_forward block. The file inside ../generators/python/customName.js
has the following code.

Blockly.Python['move_forward'] = function(block) {

var dropdown_speed = block.getFieldValue('speed');

var code = "";
code += "dropdown_speed = \"" + dropdown_speed.toString() + "\"\n";
code += Blockly.readPythonFile("../blockly/generators/python/scripts/turtlebot3/move_
→˓forward.py");
return code;

};

The code snippet above takes in a value for speed {SLOW, NORMAL or FAST} from the user.

17

TurtleBot3Blockly Documentation, Release 0.0.1

var dropdown_speed = block.getFieldValue('speed');

The .js file in the location ../blockly/blocks/customName.js has the following code

Blockly.Blocks['move_forward'] = {
init: function() {
this.appendDummyInput()

.appendField("Move_Forward ")

.appendField(new Blockly.FieldDropdown([["SLOW", "SLOW"], ["NORMAL", "NORMAL
→˓"], ["FAST", "FAST"]]), "speed")

.appendField("Speed");
this.setPreviousStatement(true);
this.setNextStatement(true);
this.setColour(65);
this.setTooltip('');
this.setHelpUrl('http://erlerobotics.com/docs/Robot_Operating_System/ROS/Blockly/

→˓Intro.html');
}

};

Apart from the input of the speed value from the user, we also see the following:

this.setPreviousStatement(true);
this.setNextStatement(true);

These two lines give the block a way to conenct to previous and future blocks.

For instance

The repeat block is connected to the move_forward block which is again connected to the Wait block.

The python script for the group of blocks is

for count in range(2):
dropdown_speed = "SLOW"
import rospy, sys
import time

18 Chapter 7. Specifics of Block Creation

TurtleBot3Blockly Documentation, Release 0.0.1

from geometry_msgs.msg import Twist

pub = rospy.Publisher('cmd_vel', Twist, queue_size=10)
#rospy.init_node('circle_mode', anonymous=True)
rate = rospy.Rate(10) # 10Hz
twist = Twist()
start = time.time()
flag=True #time flag
Angular velocity = linear velocity / radius
speed=dropdown_speed # SLOW, NORMAL, FAST
twist.linear.z = 0.00

CLOCKWISE rotation
if speed =='SLOW':

twist.linear.y = 0.05
twist.linear.x = 0.05

elif speed =='NORMAL':
twist.linear.y = 0.25
twist.linear.x = 0.25

elif speed == 'FAST':
twist.linear.y = 0.75
twist.linear.x = 0.75

while not rospy.is_shutdown() and flag:
sample_time=time.time()
if ((sample_time - start) > 3):

flag=False
pub.publish(twist)

twist = Twist()
pub.publish(twist)
rate.sleep()
import time
time.sleep(3)

7.2 Block with an output

A block that does not take any input from the user but will have an output. A generic example of a clicking a picture
with a camera module fixed to the turtlebot3.

The first .js file’s code would look like

Blockly.Python['take_a_picture'] = function(block) {

window.open(
'/pages/images/imageViewer.html',
'_blank' // <- This is what makes it open in a new window.

);

var code = "";
code += Blockly.readPythonFile("../blockly/generators/python/scripts/brain/take_a_
→˓picture.py");
return code;

};

And the other .js file would have the following code

7.2. Block with an output 19

TurtleBot3Blockly Documentation, Release 0.0.1

Blockly.Blocks['take_a_picture'] = {
init: function() {
this.appendDummyInput()

.appendField("Take a picture");
this.setPreviousStatement(true);
this.setNextStatement(true);
this.setColour(0);
this.setTooltip('');
this.setHelpUrl('http://erlerobotics.com/docs/Robot_Operating_System/ROS/Blockly/

→˓Intro.html');
}

};

7.3 Block without an input or output

A block that typically configures some backend functionality without the need for an input or produce any output to
the screen or on the robot.

An example would be to calibrate the IMU (Inertial Measurement Unit)

which doesn’t necessarily have to take an input or produce an output, but simply calibrate the IMU with values
hardcoded during the configuration.

And the two .js files

Blockly.Python['calibrate_imu'] = function(block) {

var code = "";
code += Blockly.readPythonFile("../blockly/generators/python/scripts/brain/calibrate_
→˓imu.py");
return code;

};

Blockly.Blocks['calibrate_imu'] = {
init: function() {
this.appendDummyInput()

.appendField("Calibrate IMU");
this.setPreviousStatement(true);
this.setNextStatement(true);
this.setColour(0);
this.setTooltip('');
this.setHelpUrl('http://erlerobotics.com/docs/Robot_Operating_System/ROS/Blockly/

→˓Intro.html');

20 Chapter 7. Specifics of Block Creation

TurtleBot3Blockly Documentation, Release 0.0.1

}
};

7.3. Block without an input or output 21

TurtleBot3Blockly Documentation, Release 0.0.1

22 Chapter 7. Specifics of Block Creation

CHAPTER 8

License

The documentation is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

23

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

TurtleBot3Blockly Documentation, Release 0.0.1

24 Chapter 8. License

CHAPTER 9

Frequently Asked Questions

9.1 1. Where can I get more information about the TurtleBot3?

You can find more detailed information about the TurtleBot3 in the following link: http://turtlebot3.robotis.com/en/
latest/introduction.html

9.2 2. Where can I order the TurtleBot3 (Waffle or Burger) from?

You can order them at our online shopping website https://dabit.industries/collections/turtlebot-3

9.3 3. What changed in the documentation recently?

changelog.rst

25

http://turtlebot3.robotis.com/en/latest/introduction.html
http://turtlebot3.robotis.com/en/latest/introduction.html
https://dabit.industries/collections/turtlebot-3

TurtleBot3Blockly Documentation, Release 0.0.1

26 Chapter 9. Frequently Asked Questions

CHAPTER 10

Contact

For specific enquiries contact aravind AT dabit.industries

27

TurtleBot3Blockly Documentation, Release 0.0.1

28 Chapter 10. Contact

CHAPTER 11

Changelog - [development]

• Edited documentation text

• Fixed: “WARNING: Title underline too short” in faq.rst

• Added changelog to contents.rst

• Included seconds in basic blocks

• Launch Blockly page created

• Images and GIFs changed to show time in basic blocks

• Copyrights corrected

• Included Waffle and Burger images with description

• Explained how to write a simple program to move TurtleBot3

29

	About
	Waffle
	Burger

	Software Setup
	TurtleBot3 + Remote PC + Blockly
	Installation

	Launch Blockly web interface
	Basic Maneuvers
	Moving Forward
	Moving Backward
	Turning Right
	Turning Left
	Turn Left/Right in degrees
	Stop

	A Simple Program
	Drag and drop blocks
	Launch the program

	Block Creation - Overview
	Understanding the file structure

	Specifics of Block Creation
	Block with an input
	Block with an output
	Block without an input or output

	License
	Frequently Asked Questions
	1. Where can I get more information about the TurtleBot3?
	2. Where can I order the TurtleBot3 (Waffle or Burger) from?
	3. What changed in the documentation recently?

	Contact
	Changelog - [development]

