
Trollcast Documentation
Release v0.2.0

Martin Raspaud

August 18, 2014

Contents

1 Installing trollcast 3

2 Setting up trollcast 5
2.1 The local_reception section . 5
2.2 The host sections . 6

3 Modes of operation 7
3.1 Server mode, giving out data to the world . 7
3.2 Client mode, retrieving data . 7

4 API 9
4.1 Client . 9
4.2 Server . 10

5 Indices and tables 13

Python Module Index 15

i

ii

Trollcast Documentation, Release v0.2.0

To the source code page.

Trollcast is a tool to exchange polar weather satellite data. It aims at providing near real time data transfer between
peers, and should be adaptable to any type of data that is scan-based. At the moments it works on hrpt minor frame
data (both big and little endian).

The protocol it uses is loosely based on bittorrent.

Warning: This is experimental software, use it at your own risk!

Contents 1

http://github.com/mraspaud/trollcast

Trollcast Documentation, Release v0.2.0

2 Contents

CHAPTER 1

Installing trollcast

Download trollcast from the source code page and run:

python setup.py install

3

http://github.com/mraspaud/trollcast

Trollcast Documentation, Release v0.2.0

4 Chapter 1. Installing trollcast

CHAPTER 2

Setting up trollcast

A trollcast config file describes the different parameters one needs for running both the client and the server.

[local_reception]
localhost=nimbus
remotehosts=safe
data=hrpt
data_dir=/data/hrpt
file_pattern=*.temp
max_connections=2
station=norrköping
coordinates=16.148649 58.581844 0.02
tle_files=/var/opt/2met/data/polar/orbitalelements/*.tle

[safe]
hostname=172.29.0.236
pubport=9333
reqport=9332

[nimbus]
hostname=172.22.8.16
pubport=9333
reqport=9332

2.1 The local_reception section

• localhost defines the name of the host the process is going to run on locally. This name will be user further
down in the configuration file as a section which will hold information about the host. More on this later.

• remotehosts is the list of remote hosts to communicate with.

• data give the type of data to be exchange. Only hrpt is available at the moment.

• data_dir is the place where streaming data from the reception station is written.

• file_pattern is the fnmatch pattern to use to detect the file that the reception station writes to. Trollcast will watch
this file to stream the data to the network in real time.

• max_connections tells how many times the data can be sent. This is usefull for avoiding too many clients
retrieving the data from the same server, putting unnecessary load on it. Instead, clients will spread the data
among each other, creating a more distributed load.

• station: name of the station

5

Trollcast Documentation, Release v0.2.0

• coordinates: coordinates of the station. Used for the computation of satellite elevation. Lon/lats in degrees,
altitude in kilometers.

• tle_dir: directory holding the latest TLE data. Used for the computation of satellite elevation.

2.2 The host sections

• hostname is the hostname or the ip address of the host.

• pubport on which publishing of messages will occur.

• reqport on which request and transfer of data will occur.

6 Chapter 2. Setting up trollcast

CHAPTER 3

Modes of operation

3.1 Server mode, giving out data to the world

The server mode is used to serve data to remote hosts.

It is started with:: trollcast_server my_config_file.cfg

This will start a server that watches a given file, as specified in the configuration file. Add a -v if you want debugging
info.

Note: In the eventuality that you want to start a sever in gateway mode, that is acting as a gateway to another server,
add mirror=name_of_the_primary_server in your configuration file.

3.2 Client mode, retrieving data

The client mode retrieves data.

Here is the usage of the client:

usage: client.py [-h] [-t TIMES TIMES] [-o OUTPUT] -f CONFIG_FILE
satellite [satellite ...]

positional arguments:
satellite eg. noaa_18

optional arguments:
-h, --help show this help message and exit
-t TIMES TIMES, --times TIMES TIMES

Start and end times, <YYYYMMDDHHMMSS>
-o OUTPUT, --output OUTPUT

Output file (used only in conjuction with -t)
-f CONFIG_FILE, --config_file CONFIG_FILE

eg. sattorrent_local.cfg
-v, --verbose

There are two ways of running the client:

• The first way is to retrieve a given time interval of data. For example, to retrieve data from NOAA 18 for
the 14th of November 2012, between 14:02:23 and 14:15:00, the client has to be called with:

7

Trollcast Documentation, Release v0.2.0

trollcast_client -t 20121114140223 20121114141500 -o noaa18_20121114140223.hmf -f config_file.cfg noaa_18

• The second way is to retrieve all the data possible data and dump it to files:

trollcast_client -f config_file.cfg noaa_15 noaa_16 noaa_18 noaa_19

In this case, only new data will be retrieved though, contrarily to the time interval retrieval where old data
will be retrieved too if necessary.

Contents:

8 Chapter 3. Modes of operation

CHAPTER 4

API

4.1 Client

Trollcast client. Leeches all it can :)

class trollcast.client.Client(cfgfile=’sattorrent.cfg’)
The client class.

get_all(satellites)
Retrieve all the available scanlines from the stream, and save them.

get_lines(satellite, scanline_dict)
Retrieve the best (highest elevation) lines of scanline_dict.

order(time_slice, satellite, filename)
Get all the scanlines for a satellite within a time_slice and save them in filename. The scanlines will be
saved in a contiguous manner.

send_lineinfo_to_server(*args, **kwargs)
Send information to our own server.

stop()

class trollcast.client.HaveBuffer(cfgfile=’sattorrent.cfg’)
Listen to incomming have messages.

add_queue(queue)
Adds a queue to dispatch have messages to

del_queue(queue)
Deletes a dispatch queue.

run()

send_to_queues(sat, utctime)
Send scanline at utctime to queues.

stop()
Stop buffering.

class trollcast.client.RTimer(tries, warning_message, function, *args, **kwargs)

alert()

reset()

9

Trollcast Documentation, Release v0.2.0

run()

stop()

class trollcast.client.Requester(host, port, station, pubport=None)
Make a request connection, waiting to get scanlines .

get_line(satellite, utctime)
Get the scanline of satellite at utctime.

get_slice(satellite, start_time, end_time)
Get a slice of scanlines.

ping()
Send a ping.

recv(timeout=None)
Receive a message. timeout in ms.

send(msg)
Send a message.

send_lineinfo(sat, utctime, elevation, filename, pos)
Send information to our own server.

stop()
Close the socket.

trollcast.client.compute_line_times(utctime, start_time, end_time)
Compute the times of lines if a swath order depending on a reference utctime.

trollcast.client.create_requesters(cfgfile)
Create requesters to all the configure remote hosts.

trollcast.client.create_subscriber(cfgfile)
Create a new subscriber for all the remote hosts in cfgfile.

trollcast.client.create_timers(cfgfile, subscriber)

trollcast.client.reset_subscriber(subscriber, addr)

4.2 Server

Trollcast, server side.

Trollcasting is loosely based on the bittorrent concepts, and adapted to satellite data.

Limitations:

• HRPT specific at the moment

TODO:

• Include files from a library, not only the currently written file to the list of scanlines

• Implement choking

• de-hardcode filename

class trollcast.server.FileStreamer(holder, configfile, *args, **kwargs)
Get the updates from files.

TODO: separate holder from file handling.

10 Chapter 4. API

Trollcast Documentation, Release v0.2.0

on_created(event)
Callback when file is created.

on_modified(event)

on_opened(event)
Callback when file is opened

update_satellite(satellite)
Update satellite and renew the orbital instance.

class trollcast.server.Heart(holder, *args, **kwargs)

run()

stop()

class trollcast.server.Holder(configfile)

add_scanline(satellite, utctime, elevation, line_start, filename, line=None)
Adds the scanline to the server. Typically used by the client to signal newly received lines.

get(*args, **kwargs)

get_scanline(satellite, utctime)

send_have(satellite, utctime, elevation)
Sends ‘have’ message for satellite, utctime, elevation.

send_heartbeat(next_pass_time=’unknown’)

class trollcast.server.Looper

stop()

class trollcast.server.MirrorStreamer(holder, configfile)
Act as a relay...

run()

stop()
Stop streaming.

class trollcast.server.Responder(holder, configfile, *args, **kwargs)

forward_request(address, message)
Forward a request to another server.

run()

stop()

class trollcast.server.Socket(addr, stype)

class trollcast.server.SocketLooper(*args, **kwargs)

class trollcast.server.SocketLooperThread(*args, **kwargs)

trollcast.server.serve(configfile)
Serve forever.

trollcast.server.timecode(tc_array)

4.2. Server 11

Trollcast Documentation, Release v0.2.0

12 Chapter 4. API

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

Trollcast Documentation, Release v0.2.0

14 Chapter 5. Indices and tables

Python Module Index

t
trollcast.client, 9
trollcast.server, 10

15

	Installing trollcast
	Setting up trollcast
	The local_reception section
	The host sections

	Modes of operation
	Server mode, giving out data to the world
	Client mode, retrieving data

	API
	Client
	Server

	Indices and tables
	Python Module Index

