
transaction Documentation
Release 1.2

Zope Foundation Contributors

Jun 19, 2017

Contents

1 Compatibility issues 3

2 Two-phase commit 5

3 Before-commit hook 7

4 After-commit hook 9

5 Error handling 11

6 Synchronization 13

7 Explicit vs implicit transactions 15
7.1 Transaction convenience support . 15
7.2 Dooming Transactions . 17
7.3 Savepoints . 20
7.4 Hooking the Transaction Machinery . 24
7.5 Writing a Data Manager . 30
7.6 Writing a Resource Manager . 36
7.7 Transaction integrations / Data Manager Implentations . 41
7.8 transaction API Reference . 42

8 Indices and tables 51

Python Module Index 53

i

ii

transaction Documentation, Release 1.2

Transaction objects manage resources for an individual activity.

Contents 1

transaction Documentation, Release 1.2

2 Contents

CHAPTER 1

Compatibility issues

The implementation of Transaction objects involves two layers of backwards compatibility, because this version of
transaction supports both ZODB 3 and ZODB 4. Zope is evolving towards the ZODB4 interfaces.

Transaction has two methods for a resource manager to call to participate in a transaction – register() and join(). join()
takes a resource manager and adds it to the list of resources. register() is for backwards compatibility. It takes a
persistent object and registers its _p_jar attribute. TODO: explain adapter

3

transaction Documentation, Release 1.2

4 Chapter 1. Compatibility issues

CHAPTER 2

Two-phase commit

A transaction commit involves an interaction between the transaction object and one or more resource managers. The
transaction manager calls the following four methods on each resource manager; it calls tpc_begin() on each resource
manager before calling commit() on any of them.

1. tpc_begin(txn)

2. commit(txn)

3. tpc_vote(txn)

4. tpc_finish(txn)

5

transaction Documentation, Release 1.2

6 Chapter 2. Two-phase commit

CHAPTER 3

Before-commit hook

Sometimes, applications want to execute some code when a transaction is committed. For example, one might want to
delay object indexing until a transaction commits, rather than indexing every time an object is changed. Or someone
might want to check invariants only after a set of operations. A pre-commit hook is available for such use cases: use
addBeforeCommitHook(), passing it a callable and arguments. The callable will be called with its arguments at the
start of the commit (but not for substransaction commits).

7

transaction Documentation, Release 1.2

8 Chapter 3. Before-commit hook

CHAPTER 4

After-commit hook

Sometimes, applications want to execute code after a transaction commit attempt succeeds or aborts. For example,
one might want to launch non transactional code after a successful commit. Or still someone might want to launch
asynchronous code after. A post-commit hook is available for such use cases: use addAfterCommitHook(), passing
it a callable and arguments. The callable will be called with a Boolean value representing the status of the commit
operation as first argument (true if successfull or false iff aborted) preceding its arguments at the start of the commit
(but not for substransaction commits). Commit hooks are not called for transaction.abort().

9

transaction Documentation, Release 1.2

10 Chapter 4. After-commit hook

CHAPTER 5

Error handling

When errors occur during two-phase commit, the transaction manager aborts all the resource managers. The specific
methods it calls depend on whether the error occurs before or after the call to tpc_vote() on that transaction manager.

If the resource manager has not voted, then the resource manager will have one or more uncommitted objects. There
are two cases that lead to this state; either the transaction manager has not called commit() for any objects on this
resource manager or the call that failed was a commit() for one of the objects of this resource manager. For each
uncommitted object, including the object that failed in its commit(), call abort().

Once uncommitted objects are aborted, tpc_abort() or abort_sub() is called on each resource manager.

11

transaction Documentation, Release 1.2

12 Chapter 5. Error handling

CHAPTER 6

Synchronization

You can register sychronization objects (synchronizers) with the tranasction manager. The synchronizer must imple-
ment beforeCompletion() and afterCompletion() methods. The transaction manager calls beforeCompletion() when it
starts a top-level two-phase commit. It calls afterCompletion() when a top-level transaction is committed or aborted.
The methods are passed the current Transaction as their only argument.

13

transaction Documentation, Release 1.2

14 Chapter 6. Synchronization

CHAPTER 7

Explicit vs implicit transactions

By default, transactions are implicitly managed. Calling begin() on a transaction manager implicitly aborts the pre-
vious transaction and calling commit() or abort() implicitly begins a new one. This behavior can be convenient
for interactive use, but invites subtle bugs:

• Calling begin() without realizing that there are outstanding changes that will be aborted.

• Interacting with a database without controlling transactions, in which case changes may be unexpectedly dis-
carded.

For applications, including frameworks that control transactions, transaction managers provide an optional explicit
mode. Transaction managers have an explicit constructor keyword argument that, if True puts the transaction
manager in explicit mode. In explicit mode:

• It is an error to call get(), commit(), abort(), doom(), isDoomed, or savepoint() without a
preceding begin() call. Doing so will raise a NoTransaction exception.

• It is an error to call begin() after a previous begin() without an intervening commit() or abort() call.
Doing so will raise an AlreadyInTransaction exception.

In explicit mode, bugs like those mentioned above are much easier to avoid because they cause explicit exceptions that
can typically be caught in development.

An additional benefit of explicit mode is that it can allow data managers to manage resources more efficiently.

Transaction managers have an explicit attribute that can be queried to determine if explicit mode is enabled.

Contents:

Transaction convenience support

(We really need to write proper documentation for the transaction package, but I don’t want to block the conve-
niences documented here for that.)

15

transaction Documentation, Release 1.2

with support

We can now use the with statement to define transaction boundaries.

>>> import transaction.tests.savepointsample
>>> dm = transaction.tests.savepointsample.SampleSavepointDataManager()
>>> list(dm.keys())
[]

We can use it with a manager:

>>> with transaction.manager as t:
... dm['z'] = 3
... t.note(u'test 3')

>>> dm['z']
3

>>> dm.last_note == u'test 3'
True

>>> with transaction.manager: #doctest ELLIPSIS
... dm['z'] = 4
... xxx
Traceback (most recent call last):
...
NameError: ... name 'xxx' is not defined

>>> dm['z']
3

On Python 2, you can also abbreviate with transaction.manager: as with transaction:. This does
not work on Python 3 (see see http://bugs.python.org/issue12022).

Retries

Commits can fail for transient reasons, especially conflicts. Applications will often retry transactions some number of
times to overcome transient failures. This typically looks something like:

for i in range(3):
try:

with transaction.manager:
... some something ...

except SomeTransientException:
continue

else:
break

This is rather ugly and easy to get wrong.

Transaction managers provide two helpers for this case.

Running and retrying functions as transactions

The first helper runs a function as a transaction:

16 Chapter 7. Explicit vs implicit transactions

http://bugs.python.org/issue12022

transaction Documentation, Release 1.2

def do_somthing():
"Do something"
... some something ...

transaction.manager.run(do_somthing)

You can also use this as a decorator, which executes the decorated function immediately1:

@transaction.manager.run
def _():

"Do something"
... some something ...

The transaction manager run method will run the function and return the results. If the function raises a
TransientError, the function will be retried a configurable number of times, 3 by default. Any other excep-
tions will be raised.

The function name (if it isn’t '_') and docstring, if any, are added to the transaction description.

You can pass an integer number of times to try to the run method:

transaction.manager.run(do_somthing, 9)

@transaction.manager.run(9)
def _():

"Do something"
... some something ...

The default number of times to try is 3.

Retrying code blocks using a attempt iterator

An older helper for running transactions uses an iterator of attempts:

for attempt in transaction.manager.attempts():
with attempt as t:

... some something ...

This runs the code block until it runs without a transient error or until the number of attempts is exceeded. By default,
it tries 3 times, but you can pass a number of attempts:

for attempt in transaction.manager.attempts(9):
with attempt as t:

... some something ...

Dooming Transactions

A doomed transaction behaves exactly the same way as an active transaction but raises an error on any attempt to
commit it, thus forcing an abort.

Doom is useful in places where abort is unsafe and an exception cannot be raised. This occurs when the programmer
wants the code following the doom to run but not commit. It is unsafe to abort in these circumstances as a following
get() may implicitly open a new transaction.

1 Some people find this easier to read, even though the result isn’t a decorated function, but rather the result of calling it in a transaction. The
function name _ is used here to emphasize that the function is essentially being used as an anonymous function.

7.2. Dooming Transactions 17

transaction Documentation, Release 1.2

Any attempt to commit a doomed transaction will raise a DoomedTransaction exception.

An example of such a use case can be found in zope/app/form/browser/editview.py. Here a form validation failure must
doom the transaction as committing the transaction may have side-effects. However, the form code must continue to
calculate a form containing the error messages to return.

For Zope in general, code running within a request should always doom transactions rather than aborting them. It is
the responsibilty of the publication to either abort() or commit() the transaction. Application code can use savepoints
and doom() safely.

To see how it works we first need to create a stub data manager:

>>> from transaction.interfaces import IDataManager
>>> from zope.interface import implementer
>>> @implementer(IDataManager)
... class DataManager:
... def __init__(self):
... self.attr_counter = {}
... def __getattr__(self, name):
... def f(transaction):
... self.attr_counter[name] = self.attr_counter.get(name, 0) + 1
... return f
... def total(self):
... count = 0
... for access_count in self.attr_counter.values():
... count += access_count
... return count
... def sortKey(self):
... return 1

Start a new transaction:

>>> import transaction
>>> txn = transaction.begin()
>>> dm = DataManager()
>>> txn.join(dm)

We can ask a transaction if it is doomed to avoid expensive operations. An example of a use case is an object-relational
mapper where a pre-commit hook sends all outstanding SQL to a relational database for objects changed during the
transaction. This expensive operation is not necessary if the transaction has been doomed. A non-doomed transaction
should return False:

>>> txn.isDoomed()
False

We can doom a transaction by calling .doom() on it:

>>> txn.doom()
>>> txn.isDoomed()
True

We can doom it again if we like:

>>> txn.doom()

The data manager is unchanged at this point:

>>> dm.total()
0

18 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

Attempting to commit a doomed transaction any number of times raises a DoomedTransaction:

>>> txn.commit()
Traceback (most recent call last):
DoomedTransaction: transaction doomed, cannot commit
>>> txn.commit()
Traceback (most recent call last):
DoomedTransaction: transaction doomed, cannot commit

But still leaves the data manager unchanged:

>>> dm.total()
0

But the doomed transaction can be aborted:

>>> txn.abort()

Which aborts the data manager:

>>> dm.total()
1
>>> dm.attr_counter['abort']
1

Dooming the current transaction can also be done directly from the transaction module. We can also begin a new
transaction directly after dooming the old one:

>>> txn = transaction.begin()
>>> transaction.isDoomed()
False
>>> transaction.doom()
>>> transaction.isDoomed()
True
>>> txn = transaction.begin()

After committing a transaction we get an assertion error if we try to doom the transaction. This could be made more
specific, but trying to doom a transaction after it’s been committed is probably a programming error:

>>> txn = transaction.begin()
>>> txn.commit()
>>> txn.doom()
Traceback (most recent call last):

...
ValueError: non-doomable

A doomed transaction should act the same as an active transaction, so we should be able to join it:

>>> txn = transaction.begin()
>>> txn.doom()
>>> dm2 = DataManager()
>>> txn.join(dm2)

Clean up:

>>> txn = transaction.begin()
>>> txn.abort()

7.2. Dooming Transactions 19

transaction Documentation, Release 1.2

Savepoints

Savepoints provide a way to save to disk intermediate work done during a transaction allowing:

• partial transaction (subtransaction) rollback (abort)

• state of saved objects to be freed, freeing on-line memory for other uses

Savepoints make it possible to write atomic subroutines that don’t make top-level transaction commitments.

Applications

To demonstrate how savepoints work with transactions, we’ve provided a sample data manager implementation that
provides savepoint support. The primary purpose of this data manager is to provide code that can be read to understand
how savepoints work. The secondary purpose is to provide support for demonstrating the correct operation of savepoint
support within the transaction system. This data manager is very simple. It provides flat storage of named immutable
values, like strings and numbers.

>>> import transaction
>>> from transaction.tests import savepointsample
>>> dm = savepointsample.SampleSavepointDataManager()
>>> dm['name'] = 'bob'

As with other data managers, we can commit changes:

>>> transaction.commit()
>>> dm['name']
'bob'

and abort changes:

>>> dm['name'] = 'sally'
>>> dm['name']
'sally'
>>> transaction.abort()
>>> dm['name']
'bob'

Now, let’s look at an application that manages funds for people. It allows deposits and debits to be entered for multiple
people. It accepts a sequence of entries and generates a sequence of status messages. For each entry, it applies the
change and then validates the user’s account. If the user’s account is invalid, we roll back the change for that entry.
The success or failure of an entry is indicated in the output status. First we’ll initialize some accounts:

>>> dm['bob-balance'] = 0.0
>>> dm['bob-credit'] = 0.0
>>> dm['sally-balance'] = 0.0
>>> dm['sally-credit'] = 100.0
>>> transaction.commit()

Now, we’ll define a validation function to validate an account:

>>> def validate_account(name):
... if dm[name+'-balance'] + dm[name+'-credit'] < 0:
... raise ValueError('Overdrawn', name)

And a function to apply entries. If the function fails in some unexpected way, it rolls back all of its changes and prints
the error:

20 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> def apply_entries(entries):
... savepoint = transaction.savepoint()
... try:
... for name, amount in entries:
... entry_savepoint = transaction.savepoint()
... try:
... dm[name+'-balance'] += amount
... validate_account(name)
... except ValueError as error:
... entry_savepoint.rollback()
... print("%s %s" % ('Error', str(error)))
... else:
... print("%s %s" % ('Updated', name))
... except Exception as error:
... savepoint.rollback()
... print("%s" % ('Unexpected exception'))

Now let’s try applying some entries:

>>> apply_entries([
... ('bob', 10.0),
... ('sally', 10.0),
... ('bob', 20.0),
... ('sally', 10.0),
... ('bob', -100.0),
... ('sally', -100.0),
...])
Updated bob
Updated sally
Updated bob
Updated sally
Error ('Overdrawn', 'bob')
Updated sally

>>> dm['bob-balance']
30.0

>>> dm['sally-balance']
-80.0

If we provide entries that cause an unexpected error:

>>> apply_entries([
... ('bob', 10.0),
... ('sally', 10.0),
... ('bob', '20.0'),
... ('sally', 10.0),
...])
Updated bob
Updated sally
Unexpected exception

Because the apply_entries used a savepoint for the entire function, it was able to rollback the partial changes without
rolling back changes made in the previous call to apply_entries:

>>> dm['bob-balance']
30.0

7.3. Savepoints 21

transaction Documentation, Release 1.2

>>> dm['sally-balance']
-80.0

If we now abort the outer transactions, the earlier changes will go away:

>>> transaction.abort()

>>> dm['bob-balance']
0.0

>>> dm['sally-balance']
0.0

Savepoint invalidation

A savepoint can be used any number of times:

>>> dm['bob-balance'] = 100.0
>>> dm['bob-balance']
100.0
>>> savepoint = transaction.savepoint()

>>> dm['bob-balance'] = 200.0
>>> dm['bob-balance']
200.0
>>> savepoint.rollback()
>>> dm['bob-balance']
100.0

>>> savepoint.rollback() # redundant, but should be harmless
>>> dm['bob-balance']
100.0

>>> dm['bob-balance'] = 300.0
>>> dm['bob-balance']
300.0
>>> savepoint.rollback()
>>> dm['bob-balance']
100.0

However, using a savepoint invalidates any savepoints that come after it:

>>> dm['bob-balance'] = 200.0
>>> dm['bob-balance']
200.0
>>> savepoint1 = transaction.savepoint()

>>> dm['bob-balance'] = 300.0
>>> dm['bob-balance']
300.0
>>> savepoint2 = transaction.savepoint()

>>> savepoint.rollback()
>>> dm['bob-balance']
100.0

22 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> savepoint2.rollback()
Traceback (most recent call last):
...
InvalidSavepointRollbackError: invalidated by a later savepoint

>>> savepoint1.rollback()
Traceback (most recent call last):
...
InvalidSavepointRollbackError: invalidated by a later savepoint

>>> transaction.abort()

Databases without savepoint support

Normally it’s an error to use savepoints with databases that don’t support savepoints:

>>> dm_no_sp = savepointsample.SampleDataManager()
>>> dm_no_sp['name'] = 'bob'
>>> transaction.commit()
>>> dm_no_sp['name'] = 'sally'
>>> transaction.savepoint()
Traceback (most recent call last):
...
TypeError: ('Savepoints unsupported', {'name': 'bob'})

>>> transaction.abort()

However, a flag can be passed to the transaction savepoint method to indicate that databases without savepoint support
should be tolerated until a savepoint is rolled back. This allows transactions to proceed if there are no reasons to roll
back:

>>> dm_no_sp['name'] = 'sally'
>>> savepoint = transaction.savepoint(1)
>>> dm_no_sp['name'] = 'sue'
>>> transaction.commit()
>>> dm_no_sp['name']
'sue'

>>> dm_no_sp['name'] = 'sam'
>>> savepoint = transaction.savepoint(1)
>>> savepoint.rollback()
Traceback (most recent call last):
...
TypeError: ('Savepoints unsupported', {'name': 'sam'})

Failures

If a failure occurs when creating or rolling back a savepoint, the transaction state will be uncertain and the transaction
will become uncommitable. From that point on, most transaction operations, including commit, will fail until the
transaction is aborted.

In the previous example, we got an error when we tried to rollback the savepoint. If we try to commit the transaction,
the commit will fail:

7.3. Savepoints 23

transaction Documentation, Release 1.2

>>> transaction.commit()
Traceback (most recent call last):
...
TransactionFailedError: An operation previously failed, with traceback:
...
TypeError: ('Savepoints unsupported', {'name': 'sam'})

We have to abort it to make any progress:

>>> transaction.abort()

Similarly, in our earlier example, where we tried to take a savepoint with a data manager that didn’t support savepoints:

>>> dm_no_sp['name'] = 'sally'
>>> dm['name'] = 'sally'
>>> savepoint = transaction.savepoint()
Traceback (most recent call last):
...
TypeError: ('Savepoints unsupported', {'name': 'sue'})

>>> transaction.commit()
Traceback (most recent call last):
...
TransactionFailedError: An operation previously failed, with traceback:
...
TypeError: ('Savepoints unsupported', {'name': 'sue'})

>>> transaction.abort()

After clearing the transaction with an abort, we can get on with new transactions:

>>> dm_no_sp['name'] = 'sally'
>>> dm['name'] = 'sally'
>>> transaction.commit()
>>> dm_no_sp['name']
'sally'
>>> dm['name']
'sally'

Hooking the Transaction Machinery

The transactionmachinery allows application developers to register two different groups of callbacks to be called,
one group before committing the transaction and one group after.

These hooks are not designed to be used as replacements for the two-phase commit machinery defined by a resource
manager (see Writing a Resource Manager). In particular, hook functions must not raise or propagate exceptions.

Warning: Hook functions which do raise or propagate exceptions will leave the application in an undefined state.

The addBeforeCommitHook() Method

Let’s define a hook to call, and a way to see that it was called.

24 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> log = []
>>> def reset_log():
... del log[:]

>>> def hook(arg='no_arg', kw1='no_kw1', kw2='no_kw2'):
... log.append("arg %r kw1 %r kw2 %r" % (arg, kw1, kw2))

Now register the hook with a transaction.

>>> from transaction import begin
>>> from transaction._compat import func_name
>>> import transaction
>>> t = begin()
>>> t.addBeforeCommitHook(hook, '1')

We can see that the hook is indeed registered.

>>> [(func_name(hook), args, kws)
... for hook, args, kws in t.getBeforeCommitHooks()]
[('hook', ('1',), {})]

When transaction commit starts, the hook is called, with its arguments.

>>> log
[]
>>> t.commit()
>>> log
["arg '1' kw1 'no_kw1' kw2 'no_kw2'"]
>>> reset_log()

A hook’s registration is consumed whenever the hook is called. Since the hook above was called, it’s no longer
registered:

>>> from transaction import commit
>>> len(list(t.getBeforeCommitHooks()))
0
>>> commit()
>>> log
[]

The hook is only called for a full commit, not for a savepoint.

>>> t = begin()
>>> t.addBeforeCommitHook(hook, 'A', dict(kw1='B'))
>>> dummy = t.savepoint()
>>> log
[]
>>> t.commit()
>>> log
["arg 'A' kw1 'B' kw2 'no_kw2'"]
>>> reset_log()

If a transaction is aborted, no hook is called.

>>> from transaction import abort
>>> t = begin()
>>> t.addBeforeCommitHook(hook, ["OOPS!"])
>>> abort()

7.4. Hooking the Transaction Machinery 25

transaction Documentation, Release 1.2

>>> log
[]
>>> commit()
>>> log
[]

The hook is called before the commit does anything, so even if the commit fails the hook will have been called. To
provoke failures in commit, we’ll add failing resource manager to the transaction.

>>> class CommitFailure(Exception):
... pass
>>> class FailingDataManager:
... def tpc_begin(self, txn, sub=False):
... raise CommitFailure('failed')
... def abort(self, txn):
... pass

>>> t = begin()
>>> t.join(FailingDataManager())

>>> t.addBeforeCommitHook(hook, '2')

>>> from transaction.tests.common import DummyFile
>>> from transaction.tests.common import Monkey
>>> from transaction.tests.common import assertRaisesEx
>>> from transaction import _transaction
>>> buffer = DummyFile()
>>> with Monkey(_transaction, _TB_BUFFER=buffer):
... err = assertRaisesEx(CommitFailure, t.commit)
>>> log
["arg '2' kw1 'no_kw1' kw2 'no_kw2'"]
>>> reset_log()

Let’s register several hooks.

>>> t = begin()
>>> t.addBeforeCommitHook(hook, '4', dict(kw1='4.1'))
>>> t.addBeforeCommitHook(hook, '5', dict(kw2='5.2'))

They are returned in the same order by getBeforeCommitHooks.

>>> [(func_name(hook), args, kws)
... for hook, args, kws in t.getBeforeCommitHooks()]
[('hook', ('4',), {'kw1': '4.1'}),
('hook', ('5',), {'kw2': '5.2'})]

And commit also calls them in this order.

>>> t.commit()
>>> len(log)
2
>>> log
["arg '4' kw1 '4.1' kw2 'no_kw2'",
"arg '5' kw1 'no_kw1' kw2 '5.2'"]
>>> reset_log()

While executing, a hook can itself add more hooks, and they will all be called before the real commit starts.

26 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> def recurse(txn, arg):
... log.append('rec' + str(arg))
... if arg:
... txn.addBeforeCommitHook(hook, '-')
... txn.addBeforeCommitHook(recurse, (txn, arg-1))

>>> t = begin()
>>> t.addBeforeCommitHook(recurse, (t, 3))
>>> commit()
>>> log
['rec3',

"arg '-' kw1 'no_kw1' kw2 'no_kw2'",
'rec2',

"arg '-' kw1 'no_kw1' kw2 'no_kw2'",
'rec1',

"arg '-' kw1 'no_kw1' kw2 'no_kw2'",
'rec0']
>>> reset_log()

The addAfterCommitHook() Method

Let’s define a hook to call, and a way to see that it was called.

>>> log = []
>>> def reset_log():
... del log[:]

>>> def hook(status, arg='no_arg', kw1='no_kw1', kw2='no_kw2'):
... log.append("%r arg %r kw1 %r kw2 %r" % (status, arg, kw1, kw2))

Now register the hook with a transaction.

>>> from transaction import begin
>>> from transaction._compat import func_name
>>> t = begin()
>>> t.addAfterCommitHook(hook, '1')

We can see that the hook is indeed registered.

>>> [(func_name(hook), args, kws)
... for hook, args, kws in t.getAfterCommitHooks()]
[('hook', ('1',), {})]

When transaction commit is done, the hook is called, with its arguments.

>>> log
[]
>>> t.commit()
>>> log
["True arg '1' kw1 'no_kw1' kw2 'no_kw2'"]
>>> reset_log()

A hook’s registration is consumed whenever the hook is called. Since the hook above was called, it’s no longer
registered:

7.4. Hooking the Transaction Machinery 27

transaction Documentation, Release 1.2

>>> from transaction import commit
>>> len(list(t.getAfterCommitHooks()))
0
>>> commit()
>>> log
[]

The hook is only called after a full commit, not for a savepoint.

>>> t = begin()
>>> t.addAfterCommitHook(hook, 'A', dict(kw1='B'))
>>> dummy = t.savepoint()
>>> log
[]
>>> t.commit()
>>> log
["True arg 'A' kw1 'B' kw2 'no_kw2'"]
>>> reset_log()

If a transaction is aborted, no hook is called.

>>> from transaction import abort
>>> t = begin()
>>> t.addAfterCommitHook(hook, ["OOPS!"])
>>> abort()
>>> log
[]
>>> commit()
>>> log
[]

The hook is called after the commit is done, so even if the commit fails the hook will have been called. To provoke
failures in commit, we’ll add failing resource manager to the transaction.

>>> class CommitFailure(Exception):
... pass
>>> class FailingDataManager:
... def tpc_begin(self, txn):
... raise CommitFailure('failed')
... def abort(self, txn):
... pass

>>> t = begin()
>>> t.join(FailingDataManager())

>>> t.addAfterCommitHook(hook, '2')
>>> from transaction.tests.common import DummyFile
>>> from transaction.tests.common import Monkey
>>> from transaction.tests.common import assertRaisesEx
>>> from transaction import _transaction
>>> buffer = DummyFile()
>>> with Monkey(_transaction, _TB_BUFFER=buffer):
... err = assertRaisesEx(CommitFailure, t.commit)
>>> log
["False arg '2' kw1 'no_kw1' kw2 'no_kw2'"]
>>> reset_log()

Let’s register several hooks.

28 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> t = begin()
>>> t.addAfterCommitHook(hook, '4', dict(kw1='4.1'))
>>> t.addAfterCommitHook(hook, '5', dict(kw2='5.2'))

They are returned in the same order by getAfterCommitHooks.

>>> [(func_name(hook), args, kws)
... for hook, args, kws in t.getAfterCommitHooks()]
[('hook', ('4',), {'kw1': '4.1'}),
('hook', ('5',), {'kw2': '5.2'})]

And commit also calls them in this order.

>>> t.commit()
>>> len(log)
2
>>> log
["True arg '4' kw1 '4.1' kw2 'no_kw2'",
"True arg '5' kw1 'no_kw1' kw2 '5.2'"]
>>> reset_log()

While executing, a hook can itself add more hooks, and they will all be called before the real commit starts.

>>> def recurse(status, txn, arg):
... log.append('rec' + str(arg))
... if arg:
... txn.addAfterCommitHook(hook, '-')
... txn.addAfterCommitHook(recurse, (txn, arg-1))

>>> t = begin()
>>> t.addAfterCommitHook(recurse, (t, 3))
>>> commit()
>>> log
['rec3',

"True arg '-' kw1 'no_kw1' kw2 'no_kw2'",
'rec2',

"True arg '-' kw1 'no_kw1' kw2 'no_kw2'",
'rec1',

"True arg '-' kw1 'no_kw1' kw2 'no_kw2'",
'rec0']
>>> reset_log()

If an after commit hook is raising an exception then it will log a message at error level so that if other hooks are
registered they can be executed. We don’t support execution dependencies at this level.

>>> from transaction import TransactionManager
>>> from transaction.tests.test__manager import DataObject
>>> mgr = TransactionManager()
>>> do = DataObject(mgr)

>>> def hookRaise(status, arg='no_arg', kw1='no_kw1', kw2='no_kw2'):
... raise TypeError("Fake raise")

>>> t = begin()

>>> t.addAfterCommitHook(hook, ('-', 1))
>>> t.addAfterCommitHook(hookRaise, ('-', 2))
>>> t.addAfterCommitHook(hook, ('-', 3))

7.4. Hooking the Transaction Machinery 29

transaction Documentation, Release 1.2

>>> commit()

>>> log
["True arg '-' kw1 1 kw2 'no_kw2'", "True arg '-' kw1 3 kw2 'no_kw2'"]

>>> reset_log()

Test that the associated transaction manager has been cleaned up when after commit hooks are registered

>>> mgr = TransactionManager()
>>> do = DataObject(mgr)

>>> t = begin()
>>> t._manager._txn is not None
True

>>> t.addAfterCommitHook(hook, ('-', 1))
>>> commit()

>>> log
["True arg '-' kw1 1 kw2 'no_kw2'"]

>>> t._manager._txn is not None
False

>>> reset_log()

Writing a Data Manager

Simple Data Manager

>>> from transaction.tests.examples import DataManager

This transaction.tests.examples.DataManager class provides a trivial data-manager implementation
and docstrings to illustrate the the protocol and to provide a tool for writing tests.

Our sample data manager has state that is updated through an inc method and through transaction operations.

When we create a sample data manager:

>>> dm = DataManager()

It has two bits of state, state:

>>> dm.state
0

and delta:

>>> dm.delta
0

Both of which are initialized to 0. state is meant to model committed state, while delta represents tentative changes
within a transaction. We change the state by calling inc:

30 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> dm.inc()

which updates delta:

>>> dm.delta
1

but state isn’t changed until we commit the transaction:

>>> dm.state
0

To commit the changes, we use 2-phase commit. We execute the first stage by calling prepare. We need to pass a
transation. Our sample data managers don’t really use the transactions for much, so we’ll be lazy and use strings for
transactions:

>>> t1 = '1'
>>> dm.prepare(t1)

The sample data manager updates the state when we call prepare:

>>> dm.state
1
>>> dm.delta
1

This is mainly so we can detect some affect of calling the methods.

Now if we call commit:

>>> dm.commit(t1)

Our changes are”permanent”. The state reflects the changes and the delta has been reset to 0.

>>> dm.state
1
>>> dm.delta
0

The prepare() Method

Prepare to commit data

>>> dm = DataManager()
>>> dm.inc()
>>> t1 = '1'
>>> dm.prepare(t1)
>>> dm.commit(t1)
>>> dm.state
1
>>> dm.inc()
>>> t2 = '2'
>>> dm.prepare(t2)
>>> dm.abort(t2)
>>> dm.state
1

7.5. Writing a Data Manager 31

transaction Documentation, Release 1.2

It is en error to call prepare more than once without an intervening commit or abort:

>>> dm.prepare(t1)

>>> dm.prepare(t1)
Traceback (most recent call last):
...
TypeError: Already prepared

>>> dm.prepare(t2)
Traceback (most recent call last):
...
TypeError: Already prepared

>>> dm.abort(t1)

If there was a preceeding savepoint, the transaction must match:

>>> rollback = dm.savepoint(t1)
>>> dm.prepare(t2)
Traceback (most recent call last):
,,,
TypeError: ('Transaction missmatch', '2', '1')

>>> dm.prepare(t1)

The abort() method

The abort method can be called before two-phase commit to throw away work done in the transaction:

>>> dm = DataManager()
>>> dm.inc()
>>> dm.state, dm.delta
(0, 1)
>>> t1 = '1'
>>> dm.abort(t1)
>>> dm.state, dm.delta
(0, 0)

The abort method also throws away work done in savepoints:

>>> dm.inc()
>>> r = dm.savepoint(t1)
>>> dm.inc()
>>> r = dm.savepoint(t1)
>>> dm.state, dm.delta
(0, 2)
>>> dm.abort(t1)
>>> dm.state, dm.delta
(0, 0)

If savepoints are used, abort must be passed the same transaction:

>>> dm.inc()
>>> r = dm.savepoint(t1)
>>> t2 = '2'
>>> dm.abort(t2)

32 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '1')

>>> dm.abort(t1)

The abort method is also used to abort a two-phase commit:

>>> dm.inc()
>>> dm.state, dm.delta
(0, 1)
>>> dm.prepare(t1)
>>> dm.state, dm.delta
(1, 1)
>>> dm.abort(t1)
>>> dm.state, dm.delta
(0, 0)

Of course, the transactions passed to prepare and abort must match:

>>> dm.prepare(t1)
>>> dm.abort(t2)
Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '1')

>>> dm.abort(t1)

The commit() method

Called to omplete two-phase commit

>>> dm = DataManager()
>>> dm.state
0
>>> dm.inc()

We start two-phase commit by calling prepare:

>>> t1 = '1'
>>> dm.prepare(t1)

We complete it by calling commit:

>>> dm.commit(t1)
>>> dm.state
1

It is an error ro call commit without calling prepare first:

>>> dm.inc()
>>> t2 = '2'
>>> dm.commit(t2)
Traceback (most recent call last):
...
TypeError: Not prepared to commit

7.5. Writing a Data Manager 33

transaction Documentation, Release 1.2

>>> dm.prepare(t2)
>>> dm.commit(t2)

If course, the transactions given to prepare and commit must be the same:

>>> dm.inc()
>>> t3 = '3'
>>> dm.prepare(t3)
>>> dm.commit(t2)
Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '3')

The savepoint() method

Provide the ability to rollback transaction state

Savepoints provide a way to:

• Save partial transaction work. For some data managers, this could allow resources to be used more efficiently.

• Provide the ability to revert state to a point in a transaction without aborting the entire transaction. In other
words, savepoints support partial aborts.

Savepoints don’t use two-phase commit. If there are errors in setting or rolling back to savepoints, the application
should abort the containing transaction. This is not the responsibility of the data manager.

Savepoints are always associated with a transaction. Any work done in a savepoint’s transaction is tentative until the
transaction is committed using two-phase commit.

>>> dm = DataManager()
>>> dm.inc()
>>> t1 = '1'
>>> r = dm.savepoint(t1)
>>> dm.state, dm.delta
(0, 1)
>>> dm.inc()
>>> dm.state, dm.delta
(0, 2)
>>> r.rollback()
>>> dm.state, dm.delta
(0, 1)
>>> dm.prepare(t1)
>>> dm.commit(t1)
>>> dm.state, dm.delta
(1, 0)

Savepoints must have the same transaction:

>>> r1 = dm.savepoint(t1)
>>> dm.state, dm.delta
(1, 0)
>>> dm.inc()
>>> dm.state, dm.delta
(1, 1)
>>> t2 = '2'
>>> r2 = dm.savepoint(t2)

34 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '1')

>>> r2 = dm.savepoint(t1)
>>> dm.inc()
>>> dm.state, dm.delta
(1, 2)

If we rollback to an earlier savepoint, we discard all work done later:

>>> r1.rollback()
>>> dm.state, dm.delta
(1, 0)

and we can no longer rollback to the later savepoint:

>>> r2.rollback()
Traceback (most recent call last):
...
TypeError: ('Attempt to roll back to invalid save point', 3, 2)

We can roll back to a savepoint as often as we like:

>>> r1.rollback()
>>> r1.rollback()
>>> r1.rollback()
>>> dm.state, dm.delta
(1, 0)

>>> dm.inc()
>>> dm.inc()
>>> dm.inc()
>>> dm.state, dm.delta
(1, 3)
>>> r1.rollback()
>>> dm.state, dm.delta
(1, 0)

But we can’t rollback to a savepoint after it has been committed:

>>> dm.prepare(t1)
>>> dm.commit(t1)

>>> r1.rollback()
Traceback (most recent call last):
...
TypeError: Attempt to rollback stale rollback

7.5. Writing a Data Manager 35

transaction Documentation, Release 1.2

Writing a Resource Manager

Simple Resource Manager

>>> from transaction.tests.examples import ResourceManager

This transaction.tests.examples.ResourceManager class provides a trivial resource-manager imple-
mentation and doc strings to illustrate the protocol and to provide a tool for writing tests.

Our sample resource manager has state that is updated through an inc method and through transaction operations.

When we create a sample resource manager:

>>> rm = ResourceManager()

It has two pieces state, state and delta, both initialized to 0:

>>> rm.state
0
>>> rm.delta
0

state is meant to model committed state, while delta represents tentative changes within a transaction. We change the
state by calling inc:

>>> rm.inc()

which updates delta:

>>> rm.delta
1

but state isn’t changed until we commit the transaction:

>>> rm.state
0

To commit the changes, we use 2-phase commit. We execute the first stage by calling prepare. We need to pass a
transation. Our sample resource managers don’t really use the transactions for much, so we’ll be lazy and use strings
for transactions. The sample resource manager updates the state when we call tpc_vote:

>>> t1 = '1'
>>> rm.tpc_begin(t1)
>>> rm.state, rm.delta
(0, 1)

>>> rm.tpc_vote(t1)
>>> rm.state, rm.delta
(1, 1)

Now if we call tpc_finish:

>>> rm.tpc_finish(t1)

Our changes are “permanent”. The state reflects the changes and the delta has been reset to 0.

36 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> rm.state, rm.delta
(1, 0)

The tpc_begin() Method

Called by the transaction manager to ask the RM to prepare to commit data.

>>> rm = ResourceManager()
>>> rm.inc()
>>> t1 = '1'
>>> rm.tpc_begin(t1)
>>> rm.tpc_vote(t1)
>>> rm.tpc_finish(t1)
>>> rm.state
1
>>> rm.inc()
>>> t2 = '2'
>>> rm.tpc_begin(t2)
>>> rm.tpc_vote(t2)
>>> rm.tpc_abort(t2)
>>> rm.state
1

It is an error to call tpc_begin more than once without completing two-phase commit:

>>> rm.tpc_begin(t1)

>>> rm.tpc_begin(t1)
Traceback (most recent call last):
...
ValueError: txn in state 'tpc_begin' but expected one of (None,)
>>> rm.tpc_abort(t1)

If there was a preceeding savepoint, the transaction must match:

>>> rollback = rm.savepoint(t1)
>>> rm.tpc_begin(t2)
Traceback (most recent call last):
,,,
TypeError: ('Transaction missmatch', '2', '1')

>>> rm.tpc_begin(t1)

The tpc_vote() Method

Verify that a data manager can commit the transaction.

This is the last chance for a data manager to vote ‘no’. A data manager votes ‘no’ by raising an exception.

Passed transaction, which is the ITransaction instance associated with the transaction being committed.

The tpc_finish() Method

Complete two-phase commit

7.6. Writing a Resource Manager 37

transaction Documentation, Release 1.2

>>> rm = ResourceManager()
>>> rm.state
0
>>> rm.inc()

We start two-phase commit by calling prepare:

>>> t1 = '1'
>>> rm.tpc_begin(t1)
>>> rm.tpc_vote(t1)

We complete it by calling tpc_finish:

>>> rm.tpc_finish(t1)
>>> rm.state
1

It is an error ro call tpc_finish without calling tpc_vote:

>>> rm.inc()
>>> t2 = '2'
>>> rm.tpc_begin(t2)
>>> rm.tpc_finish(t2)
Traceback (most recent call last):
...
ValueError: txn in state 'tpc_begin' but expected one of ('tpc_vote',)

>>> rm.tpc_abort(t2) # clean slate

>>> rm.tpc_begin(t2)
>>> rm.tpc_vote(t2)
>>> rm.tpc_finish(t2)

Of course, the transactions given to tpc_begin and tpc_finish must be the same:

>>> rm.inc()
>>> t3 = '3'
>>> rm.tpc_begin(t3)
>>> rm.tpc_vote(t3)
>>> rm.tpc_finish(t2)
Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '3')

The tpc_abort() Method

Abort a transaction

The abort method can be called before two-phase commit to throw away work done in the transaction:

>>> rm = ResourceManager()
>>> rm.inc()
>>> rm.state, rm.delta
(0, 1)
>>> t1 = '1'
>>> rm.tpc_abort(t1)

38 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> rm.state, rm.delta
(0, 0)

The abort method also throws away work done in savepoints:

>>> rm.inc()
>>> r = rm.savepoint(t1)
>>> rm.inc()
>>> r = rm.savepoint(t1)
>>> rm.state, rm.delta
(0, 2)
>>> rm.tpc_abort(t1)
>>> rm.state, rm.delta
(0, 0)

If savepoints are used, abort must be passed the same transaction:

>>> rm.inc()
>>> r = rm.savepoint(t1)
>>> t2 = '2'
>>> rm.tpc_abort(t2)
Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '1')

>>> rm.tpc_abort(t1)

The abort method is also used to abort a two-phase commit:

>>> rm.inc()
>>> rm.state, rm.delta
(0, 1)
>>> rm.tpc_begin(t1)
>>> rm.state, rm.delta
(0, 1)
>>> rm.tpc_vote(t1)
>>> rm.state, rm.delta
(1, 1)
>>> rm.tpc_abort(t1)
>>> rm.state, rm.delta
(0, 0)

Of course, the transactions passed to prepare and abort must match:

>>> rm.tpc_begin(t1)
>>> rm.tpc_abort(t2)
Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '1')

>>> rm.tpc_abort(t1)

This should never fail.

The savepoint() Method

Provide the ability to rollback transaction state

7.6. Writing a Resource Manager 39

transaction Documentation, Release 1.2

Savepoints provide a way to:

• Save partial transaction work. For some resource managers, this could allow resources to be used more effi-
ciently.

• Provide the ability to revert state to a point in a transaction without aborting the entire transaction. In other
words, savepoints support partial aborts.

Savepoints don’t use two-phase commit. If there are errors in setting or rolling back to savepoints, the application
should abort the containing transaction. This is not the responsibility of the resource manager.

Savepoints are always associated with a transaction. Any work done in a savepoint’s transaction is tentative until the
transaction is committed using two-phase commit.

>>> rm = ResourceManager()
>>> rm.inc()
>>> t1 = '1'
>>> r = rm.savepoint(t1)
>>> rm.state, rm.delta
(0, 1)
>>> rm.inc()
>>> rm.state, rm.delta
(0, 2)
>>> r.rollback()
>>> rm.state, rm.delta
(0, 1)
>>> rm.tpc_begin(t1)
>>> rm.tpc_vote(t1)
>>> rm.tpc_finish(t1)
>>> rm.state, rm.delta
(1, 0)

Savepoints must have the same transaction:

>>> r1 = rm.savepoint(t1)
>>> rm.state, rm.delta
(1, 0)
>>> rm.inc()
>>> rm.state, rm.delta
(1, 1)
>>> t2 = '2'
>>> r2 = rm.savepoint(t2)
Traceback (most recent call last):
...
TypeError: ('Transaction missmatch', '2', '1')

>>> r2 = rm.savepoint(t1)
>>> rm.inc()
>>> rm.state, rm.delta
(1, 2)

If we rollback to an earlier savepoint, we discard all work done later:

>>> r1.rollback()
>>> rm.state, rm.delta
(1, 0)

and we can no longer rollback to the later savepoint:

40 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

>>> r2.rollback()
Traceback (most recent call last):
...
TypeError: ('Attempt to roll back to invalid save point', 3, 2)

We can roll back to a savepoint as often as we like:

>>> r1.rollback()
>>> r1.rollback()
>>> r1.rollback()
>>> rm.state, rm.delta
(1, 0)

>>> rm.inc()
>>> rm.inc()
>>> rm.inc()
>>> rm.state, rm.delta
(1, 3)
>>> r1.rollback()
>>> rm.state, rm.delta
(1, 0)

But we can’t rollback to a savepoint after it has been committed:

>>> rm.tpc_begin(t1)
>>> rm.tpc_vote(t1)
>>> rm.tpc_finish(t1)

>>> r1.rollback()
Traceback (most recent call last):
...
TypeError: Attempt to rollback stale rollback

Transaction integrations / Data Manager Implentations

The following packages have been integrated with the transaction package so that their transactions can be
integerated with others.

ZODB ZODB was the original user of the transaction package. Its transactions are controlled by by
transaction and ZODB fully implements the 2-phase commit protocol.

SQLAlchemy An Object Relational Mapper for Python, SQLAlchemy can use zope.sqlalchemy to have its transac-
tions integrated with others.

repoze.sendmail repoze.sendmail allows coupling the sending of email messages with a transaction, using the Zope
transaction manager. This allows messages to only be sent out when and if a transaction is committed, preventing
users from receiving notifications about events which may not have completed successfully.

7.7. Transaction integrations / Data Manager Implentations 41

http://www.zodb.org
http://www.sqlalchemy.org
https://github.com/zopefoundation/zope.sqlalchemy
http://docs.repoze.org/sendmail/narr.html

transaction Documentation, Release 1.2

transaction API Reference

Interfaces

interface transaction.interfaces.ITransactionManager
An object that manages a sequence of transactions.

Applications use transaction managers to establish transaction boundaries.

explicit
Explicit mode indicator.

This is true if the transaction manager is in explicit mode. In explicit mode, transactions must be begun
explicitly, by calling begin() and ended explicitly by calling commit() or abort().

begin()
Explicitly begin and return a new transaction.

If an existing transaction is in progress and the transaction manager not in explicit mode, the previous
transaction will be aborted. If an existing transaction is in progress and the transaction manager is in
explicit mode, an AlreadyInTransaction exception will be raised..

The newTransaction method of registered synchronizers is called, passing the new transaction object.

Note that when not in explicit mode, transactions may be started implicitly without calling begin. In
that case, newTransaction isn’t called because the transaction manager doesn’t know when to call it.
The transaction is likely to have begun long before the transaction manager is involved. (Conceivably the
commit and abort methods could call begin, but they don’t.)

get()
Get the current transaction.

In explicit mode, if a transaction hasn’t begun, a NoTransaction exception will be raised.

commit()
Commit the current transaction.

In explicit mode, if a transaction hasn’t begun, a NoTransaction exception will be raised.

abort()
Abort the current transaction.

In explicit mode, if a transaction hasn’t begun, a NoTransaction exception will be raised.

doom()
Doom the current transaction.

In explicit mode, if a transaction hasn’t begun, a NoTransaction exception will be raised.

isDoomed()
Returns True if the current transaction is doomed, otherwise False.

In explicit mode, if a transaction hasn’t begun, a NoTransaction exception will be raised.

savepoint(optimistic=False)
Create a savepoint from the current transaction.

If the optimistic argument is true, then data managers that don’t support savepoints can be used, but an
error will be raised if the savepoint is rolled back.

An ISavepoint object is returned.

In explicit mode, if a transaction hasn’t begun, a NoTransaction exception will be raised.

42 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

registerSynch(synch)
Register an ISynchronizer.

Synchronizers are notified about some major events in a transaction’s life. See ISynchronizer for details.

If a synchronizer registers while there is an active transaction, its newTransaction method will be called
with the active transaction.

unregisterSynch(synch)
Unregister an ISynchronizer.

Synchronizers are notified about some major events in a transaction’s life. See ISynchronizer for details.

clearSynchs()
Unregister all registered ISynchronizers.

This exists to support test cleanup/initialization

registeredSynchs()
Determine if any ISynchronizers are registered.

Return true is any are registered, and return False otherwise.

This exists to support test cleanup/initialization

interface transaction.interfaces.ITransaction
Object representing a running transaction.

Objects with this interface may represent different transactions during their lifetime (.begin() can be called to
start a new transaction using the same instance, although that example is deprecated and will go away in ZODB
3.6).

user
A user name associated with the transaction.

The format of the user name is defined by the application. The value is text (unicode). Storages record the
user value, as meta-data, when a transaction commits.

A storage may impose a limit on the size of the value; behavior is undefined if such a limit is exceeded
(for example, a storage may raise an exception, or truncate the value).

description
A textual description of the transaction.

The value is text (unicode). Method note() is the intended way to set the value. Storages record the
description, as meta-data, when a transaction commits.

A storage may impose a limit on the size of the description; behavior is undefined if such a limit is exceeded
(for example, a storage may raise an exception, or truncate the value).

extension
A dictionary containing application-defined metadata.

commit()
Finalize the transaction.

This executes the two-phase commit algorithm for all IDataManager objects associated with the transac-
tion.

abort()
Abort the transaction.

This is called from the application. This can only be called before the two-phase commit protocol has been
started.

7.8. transaction API Reference 43

transaction Documentation, Release 1.2

doom()
Doom the transaction.

Dooms the current transaction. This will cause DoomedTransactionException to be raised on any attempt
to commit the transaction.

Otherwise the transaction will behave as if it was active.

savepoint(optimistic=False)
Create a savepoint.

If the optimistic argument is true, then data managers that don’t support savepoints can be used, but an
error will be raised if the savepoint is rolled back.

An ISavepoint object is returned.

join(datamanager)
Add a data manager to the transaction.

datamanager must provide the transactions.interfaces.IDataManager interface.

note(text)
Add text (unicode) to the transaction description.

This modifies the .description attribute; see its docs for more detail. First surrounding whitespace is
stripped from text. If .description is currently an empty string, then the stripped text becomes its value,
else two newlines and the stripped text are appended to .description.

setExtendedInfo(name, value)
Add extension data to the transaction.

name is the text (unicode) name of the extension property to set

value must be picklable and json serializable (not an instance).

Multiple calls may be made to set multiple extension properties, provided the names are distinct.

Storages record the extension data, as meta-data, when a transaction commits.

A storage may impose a limit on the size of extension data; behavior is undefined if such a limit is exceeded
(for example, a storage may raise an exception, or remove <name, value> pairs).

addBeforeCommitHook(hook, args=(), kws=None)
Register a hook to call before the transaction is committed.

The specified hook function will be called after the transaction’s commit method has been called, but
before the commit process has been started. The hook will be passed the specified positional (args) and
keyword (kws) arguments. args is a sequence of positional arguments to be passed, defaulting to an empty
tuple (no positional arguments are passed). kws is a dictionary of keyword argument names and values to
be passed, or the default None (no keyword arguments are passed).

Multiple hooks can be registered and will be called in the order they were registered (first registered,
first called). This method can also be called from a hook: an executing hook can register more hooks.
Applications should take care to avoid creating infinite loops by recursively registering hooks.

Hooks are called only for a top-level commit. A savepoint creation does not call any hooks. If the trans-
action is aborted, hooks are not called, and are discarded. Calling a hook “consumes” its registration too:
hook registrations do not persist across transactions. If it’s desired to call the same hook on every trans-
action commit, then addBeforeCommitHook() must be called with that hook during every transaction; in
such a case consider registering a synchronizer object via a TransactionManager’s registerSynch() method
instead.

getBeforeCommitHooks()
Return iterable producing the registered addBeforeCommit hooks.

44 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

A triple (hook, args, kws) is produced for each registered hook. The hooks are produced in the order in
which they would be invoked by a top-level transaction commit.

addAfterCommitHook(hook, args=(), kws=None)
Register a hook to call after a transaction commit attempt.

The specified hook function will be called after the transaction commit succeeds or aborts. The first
argument passed to the hook is a Boolean value, true if the commit succeeded, or false if the commit
aborted. args specifies additional positional, and kws keyword, arguments to pass to the hook. args is a
sequence of positional arguments to be passed, defaulting to an empty tuple (only the true/false success
argument is passed). kws is a dictionary of keyword argument names and values to be passed, or the default
None (no keyword arguments are passed).

Multiple hooks can be registered and will be called in the order they were registered (first registered,
first called). This method can also be called from a hook: an executing hook can register more hooks.
Applications should take care to avoid creating infinite loops by recursively registering hooks.

Hooks are called only for a top-level commit. A savepoint creation does not call any hooks. Calling a hook
“consumes” its registration: hook registrations do not persist across transactions. If it’s desired to call the
same hook on every transaction commit, then addAfterCommitHook() must be called with that hook during
every transaction; in such a case consider registering a synchronizer object via a TransactionManager’s
registerSynch() method instead.

getAfterCommitHooks()
Return iterable producing the registered addAfterCommit hooks.

A triple (hook, args, kws) is produced for each registered hook. The hooks are produced in the order in
which they would be invoked by a top-level transaction commit.

set_data(ob, data)
Hold data on behalf of an object

For objects such as data managers or their subobjects that work with multiple transactions, it’s convenient
to store transaction-specific data on the transaction itself. The transaction knows nothing about the data,
but simply holds it on behalf of the object.

The object passed should be the object that needs the data, as opposed to simple object like a string.
(Internally, the id of the object is used as the key.)

data(ob)
Retrieve data held on behalf of an object.

See set_data.

interface transaction.interfaces.IDataManager
Objects that manage transactional storage.

These objects may manage data for other objects, or they may manage non-object storages, such as relational
databases. For example, a ZODB.Connection.

Note that when some data is modified, that data’s data manager should join a transaction so that data can be
committed when the user commits the transaction.

transaction_manager
The transaction manager (TM) used by this data manager.

This is a public attribute, intended for read-only use. The value is an instance of ITransactionManager,
typically set by the data manager’s constructor.

abort(transaction)
Abort a transaction and forget all changes.

Abort must be called outside of a two-phase commit.

7.8. transaction API Reference 45

transaction Documentation, Release 1.2

Abort is called by the transaction manager to abort transactions that are not yet in a two-phase commit. It
may also be called when rolling back a savepoint made before the data manager joined the transaction.

In any case, after abort is called, the data manager is no longer participating in the transaction. If there are
new changes, the data manager must rejoin the transaction.

tpc_begin(transaction)
Begin commit of a transaction, starting the two-phase commit.

transaction is the ITransaction instance associated with the transaction being committed.

commit(transaction)
Commit modifications to registered objects.

Save changes to be made persistent if the transaction commits (if tpc_finish is called later). If tpc_abort is
called later, changes must not persist.

This includes conflict detection and handling. If no conflicts or errors occur, the data manager should be
prepared to make the changes persist when tpc_finish is called.

tpc_vote(transaction)
Verify that a data manager can commit the transaction.

This is the last chance for a data manager to vote ‘no’. A data manager votes ‘no’ by raising an exception.

transaction is the ITransaction instance associated with the transaction being committed.

tpc_finish(transaction)
Indicate confirmation that the transaction is done.

Make all changes to objects modified by this transaction persist.

transaction is the ITransaction instance associated with the transaction being committed.

This should never fail. If this raises an exception, the database is not expected to maintain consistency; it’s
a serious error.

tpc_abort(transaction)
Abort a transaction.

This is called by a transaction manager to end a two-phase commit on the data manager. Abandon all
changes to objects modified by this transaction.

transaction is the ITransaction instance associated with the transaction being committed.

This should never fail.

sortKey()
Return a key to use for ordering registered DataManagers.

In order to guarantee a total ordering, keys must be strings.

ZODB uses a global sort order to prevent deadlock when it commits transactions involving multiple re-
source managers. The resource manager must define a sortKey() method that provides a global ordering
for resource managers.

interface transaction.interfaces.ISavepointDataManager
Extends: transaction.interfaces.IDataManager

savepoint()
Return a data-manager savepoint (IDataManagerSavepoint).

interface transaction.interfaces.IRetryDataManager
Extends: transaction.interfaces.IDataManager

46 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

should_retry(exception)
Return whether a given exception instance should be retried.

A data manager can provide this method to indicate that a a transaction that raised the given error should
be retried. This method may be called by an ITransactionManager when considering whether to retry a
failed transaction.

interface transaction.interfaces.IDataManagerSavepoint
Savepoint for data-manager changes for use in transaction savepoints.

Datamanager savepoints are used by, and only by, transaction savepoints.

Note that data manager savepoints don’t have any notion of, or responsibility for, validity. It isn’t the responsi-
bility of data-manager savepoints to prevent multiple rollbacks or rollbacks after transaction termination. Pre-
venting invalid savepoint rollback is the responsibility of transaction rollbacks. Application code should never
use data-manager savepoints.

rollback()
Rollback any work done since the savepoint.

interface transaction.interfaces.ISavepoint
A transaction savepoint.

rollback()
Rollback any work done since the savepoint.

InvalidSavepointRollbackError is raised if the savepoint isn’t valid.

valid
Boolean indicating whether the savepoint is valid

class transaction.interfaces.InvalidSavepointRollbackError
Attempt to rollback an invalid savepoint.

A savepoint may be invalid because:

•The surrounding transaction has committed or aborted.

•An earlier savepoint in the same transaction has been rolled back.

interface transaction.interfaces.ISynchronizer
Objects that participate in the transaction-boundary notification API.

beforeCompletion(transaction)
Hook that is called by the transaction at the start of a commit.

afterCompletion(transaction)
Hook that is called by the transaction after completing a commit.

newTransaction(transaction)
Hook that is called at the start of a transaction.

This hook is called when, and only when, a transaction manager’s begin() method is called explictly.

class transaction.interfaces.TransactionError
An error occurred due to normal transaction processing.

class transaction.interfaces.TransactionFailedError
Cannot perform an operation on a transaction that previously failed.

An attempt was made to commit a transaction, or to join a transaction, but this transaction previously raised an
exception during an attempt to commit it. The transaction must be explicitly aborted, either by invoking abort()
on the transaction, or begin() on its transaction manager.

7.8. transaction API Reference 47

transaction Documentation, Release 1.2

class transaction.interfaces.DoomedTransaction
A commit was attempted on a transaction that was doomed.

class transaction.interfaces.TransientError
An error has occured when performing a transaction.

It’s possible that retrying the transaction will succeed.

API Objects

class transaction._transaction.Transaction(synchronizers=None, manager=None)

isDoomed()
See ITransaction.

doom()
See ITransaction.

join(resource)
See ITransaction.

savepoint(optimistic=False)
See ITransaction.

register(obj)
See ITransaction.

commit()
See ITransaction.

getBeforeCommitHooks()
See ITransaction.

addBeforeCommitHook(hook, args=(), kws=None)
See ITransaction.

getAfterCommitHooks()
See ITransaction.

addAfterCommitHook(hook, args=(), kws=None)
See ITransaction.

abort()
See ITransaction.

note(text)
See ITransaction.

setUser(user_name, path=u’/’)
See ITransaction.

setExtendedInfo(name, value)
See ITransaction.

class transaction._transaction.Savepoint(transaction, optimistic, *resources)
Transaction savepoint.

Transaction savepoints coordinate savepoints for data managers participating in a transaction.

rollback()
See ISavepoint.

48 Chapter 7. Explicit vs implicit transactions

transaction Documentation, Release 1.2

class transaction._manager.TransactionManager(explicit=False)

__enter__()
Alias for get()

__exit__(t, v, tb)
On error, aborts the current transaction. Otherwise, commits.

begin()
See ITransactionManager.

get()
See ITransactionManager.

registerSynch(synch)
See ITransactionManager.

unregisterSynch(synch)
See ITransactionManager.

clearSynchs()
See ITransactionManager.

registeredSynchs()
See ITransactionManager.

isDoomed()
See ITransactionManager.

doom()
See ITransactionManager.

commit()
See ITransactionManager.

abort()
See ITransactionManager.

savepoint(optimistic=False)
See ITransactionManager.

class transaction._manager.ThreadTransactionManager(explicit=False)
Thread-aware transaction manager.

Each thread is associated with a unique transaction.

7.8. transaction API Reference 49

transaction Documentation, Release 1.2

50 Chapter 7. Explicit vs implicit transactions

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

51

transaction Documentation, Release 1.2

52 Chapter 8. Indices and tables

Python Module Index

t
transaction._manager, 48
transaction._transaction, 48
transaction.interfaces, 42

53

transaction Documentation, Release 1.2

54 Python Module Index

Index

Symbols
__enter__() (transaction._manager.TransactionManager

method), 49
__exit__() (transaction._manager.TransactionManager

method), 49

A
abort() (transaction._manager.TransactionManager

method), 49
abort() (transaction._transaction.Transaction method), 48
abort() (transaction.interfaces.IDataManager method), 45
abort() (transaction.interfaces.ITransaction method), 43
abort() (transaction.interfaces.ITransactionManager

method), 42
addAfterCommitHook() (transac-

tion._transaction.Transaction method), 48
addAfterCommitHook() (transac-

tion.interfaces.ITransaction method), 45
addBeforeCommitHook() (transac-

tion._transaction.Transaction method), 48
addBeforeCommitHook() (transac-

tion.interfaces.ITransaction method), 44
afterCompletion() (transaction.interfaces.ISynchronizer

method), 47

B
beforeCompletion() (transaction.interfaces.ISynchronizer

method), 47
begin() (transaction._manager.TransactionManager

method), 49
begin() (transaction.interfaces.ITransactionManager

method), 42

C
clearSynchs() (transaction._manager.TransactionManager

method), 49
clearSynchs() (transaction.interfaces.ITransactionManager

method), 43

commit() (transaction._manager.TransactionManager
method), 49

commit() (transaction._transaction.Transaction method),
48

commit() (transaction.interfaces.IDataManager method),
46

commit() (transaction.interfaces.ITransaction method),
43

commit() (transaction.interfaces.ITransactionManager
method), 42

D
data() (transaction.interfaces.ITransaction method), 45
description (transaction.interfaces.ITransaction attribute),

43
doom() (transaction._manager.TransactionManager

method), 49
doom() (transaction._transaction.Transaction method), 48
doom() (transaction.interfaces.ITransaction method), 43
doom() (transaction.interfaces.ITransactionManager

method), 42
DoomedTransaction (class in transaction.interfaces), 47

E
explicit (transaction.interfaces.ITransactionManager at-

tribute), 42
extension (transaction.interfaces.ITransaction attribute),

43

G
get() (transaction._manager.TransactionManager

method), 49
get() (transaction.interfaces.ITransactionManager

method), 42
getAfterCommitHooks() (transac-

tion._transaction.Transaction method), 48
getAfterCommitHooks() (transac-

tion.interfaces.ITransaction method), 45
getBeforeCommitHooks() (transac-

tion._transaction.Transaction method), 48

55

transaction Documentation, Release 1.2

getBeforeCommitHooks() (transac-
tion.interfaces.ITransaction method), 44

I
IDataManager (interface in transaction.interfaces), 45
IDataManagerSavepoint (interface in transac-

tion.interfaces), 47
InvalidSavepointRollbackError (class in transac-

tion.interfaces), 47
IRetryDataManager (interface in transaction.interfaces),

46
ISavepoint (interface in transaction.interfaces), 47
ISavepointDataManager (interface in transac-

tion.interfaces), 46
isDoomed() (transaction._manager.TransactionManager

method), 49
isDoomed() (transaction._transaction.Transaction

method), 48
isDoomed() (transaction.interfaces.ITransactionManager

method), 42
ISynchronizer (interface in transaction.interfaces), 47
ITransaction (interface in transaction.interfaces), 43
ITransactionManager (interface in transaction.interfaces),

42

J
join() (transaction._transaction.Transaction method), 48
join() (transaction.interfaces.ITransaction method), 44

N
newTransaction() (transaction.interfaces.ISynchronizer

method), 47
note() (transaction._transaction.Transaction method), 48
note() (transaction.interfaces.ITransaction method), 44

R
register() (transaction._transaction.Transaction method),

48
registeredSynchs() (transac-

tion._manager.TransactionManager method),
49

registeredSynchs() (transac-
tion.interfaces.ITransactionManager method),
43

registerSynch() (transac-
tion._manager.TransactionManager method),
49

registerSynch() (transac-
tion.interfaces.ITransactionManager method),
42

rollback() (transaction._transaction.Savepoint method),
48

rollback() (transaction.interfaces.IDataManagerSavepoint
method), 47

rollback() (transaction.interfaces.ISavepoint method), 47

S
Savepoint (class in transaction._transaction), 48
savepoint() (transaction._manager.TransactionManager

method), 49
savepoint() (transaction._transaction.Transaction

method), 48
savepoint() (transaction.interfaces.ISavepointDataManager

method), 46
savepoint() (transaction.interfaces.ITransaction method),

44
savepoint() (transaction.interfaces.ITransactionManager

method), 42
set_data() (transaction.interfaces.ITransaction method),

45
setExtendedInfo() (transaction._transaction.Transaction

method), 48
setExtendedInfo() (transaction.interfaces.ITransaction

method), 44
setUser() (transaction._transaction.Transaction method),

48
should_retry() (transac-

tion.interfaces.IRetryDataManager method),
46

sortKey() (transaction.interfaces.IDataManager method),
46

T
ThreadTransactionManager (class in transac-

tion._manager), 49
tpc_abort() (transaction.interfaces.IDataManager

method), 46
tpc_begin() (transaction.interfaces.IDataManager

method), 46
tpc_finish() (transaction.interfaces.IDataManager

method), 46
tpc_vote() (transaction.interfaces.IDataManager method),

46
Transaction (class in transaction._transaction), 48
transaction._manager (module), 48
transaction._transaction (module), 48
transaction.interfaces (module), 42
transaction_manager (transac-

tion.interfaces.IDataManager attribute),
45

TransactionError (class in transaction.interfaces), 47
TransactionFailedError (class in transaction.interfaces),

47
TransactionManager (class in transaction._manager), 48
TransientError (class in transaction.interfaces), 48

U
unregisterSynch() (transac-

56 Index

transaction Documentation, Release 1.2

tion._manager.TransactionManager method),
49

unregisterSynch() (transac-
tion.interfaces.ITransactionManager method),
43

user (transaction.interfaces.ITransaction attribute), 43

V
valid (transaction.interfaces.ISavepoint attribute), 47

Index 57

	Compatibility issues
	Two-phase commit
	Before-commit hook
	After-commit hook
	Error handling
	Synchronization
	Explicit vs implicit transactions
	Transaction convenience support
	Dooming Transactions
	Savepoints
	Hooking the Transaction Machinery
	Writing a Data Manager
	Writing a Resource Manager
	Transaction integrations / Data Manager Implentations
	transaction API Reference

	Indices and tables
	Python Module Index

