
Torque 3D Documentation
Release 3.5.1

GarageGames, LLC

February 04, 2017

Contents

1 Introduction 3

2 World Editor 5

3 GUI Editor 263

4 Artists Guide 275

5 Scripting 285

6 Engine 901

7 License 903

i

ii

Torque 3D Documentation, Release 3.5.1

Torque 3D is a large piece of software. Chances are that most of the applications you have worked on up to this point
have only been a fraction of the size of this SDK. This reference manual exists for the sole purpose of giving you, the
user, a strong foundation to rely on while learning the engine.

The documentation is divided into multiple sections, each of which contains information related to specific subject.
This means of organization allows you to jump to different chapters containing information that is pertinent to what
you wish to work on.

Contents 1

Torque 3D Documentation, Release 3.5.1

2 Contents

CHAPTER 1

Introduction

1.1 What is Torque 3D?

Torque 3D was created by GarageGames to make the development of games easier, faster, and more affordable. It is
a professional Software Development Kit (“SDK”) that will save you the effort required to build a rendering system,
high speed multiplayer networking, real time editors, a scripting system, and much more.

As part of Torque 3D, you receive full access to 100% of our engine source code. This means that you can add to,
alter, or optimize any component of the engine down to the lowest level C++ rendering calls. That being said, you
don’t need to be an experienced C++ programmer to use Torque 3D. In fact, you do not need to know C++ at all.
Using TorqueScript and the collection of tools that are included with Torque 3D, you can build complete games (of
many different genres) without ever touching a single line of C++ code.

To understand the basics of how the engine is setup and the tools available, a short reference is included below. Further
sections in the documentation explain these tools in more depth.

1.1.1 The Engine

The engine handles all of the elements of a game that run in real time on your computer. The Torque 3D engine is
written entirely in C++ and is fully accessible to you as a developer. This means you have access to the inner workings
of the code to customize it for your needs. The end result is that Torque 3D allows developers to add functionality,
increase optimization, and learn how everything works. Alternatively, you can build a game from scratch to release
without delving into the source code. The choice of how to develop your game is up to you.

For example, if you wish to add MYSQL database functionality or integrate the Havok SDK to enhance your game,
those paths are open to you. Another benefit of source code access is the ability to read through the comments and
data structures to gain a better understanding of how the entire system is set up.

Do not be intimidated. This documentation will show you how to create games without touching the source code at
all. There is no need to start working with the engine’s C++ code until you feel comfortable. In the meantime, you
can get going with Torque 3D right away!

1.1.2 TorqueScript

Much of your game play logic, camera controls, and user interface will be written in TorqueScript. It is a powerful
and flexible scripting language with syntax similar to C++. The key benefit of TorqueScript is that you do not need
to be a code guru or know the nitty-gritty specifics of a particular language like C++. If you are already familiar with
basic programming concepts, you will have a head start on building your own game.

3

Torque 3D Documentation, Release 3.5.1

Another benefit of using TorqueScript, as opposed to editing the engine’s underlying C++ source code, is that you do
not have to recompile your executable to see changes in your game. You simply create or modify a script, save, and
then run the game from the Toolbox.

There are several TorqueScript articles for new developers that will help you learn the syntax, functionality, and how
to use the language with the engine and editors.

1.1.3 Editors

Learning to work with Torque 3D editors is a large part of your initial experience. The key is to remember that the
editors work in real-time and are WYSIWYG (What You See Is What You Get). When you use the editors to modify
your level, you will see the changes immediately in the game.

World Editor - The World Editor is a tool that will help you assemble your game levels. With this tool, you will add
and position terrain, game objects, models, environmental effects, lighting, and more.

GUI Editor - GUI stands for Graphical User Interface. Some examples of GUIs include: splash screens, your main
menu, options dialogs and in game Heads Up Displays (“HUDs”). With the GUI Editor, you can design and create
your menus, player inventory system, health bars, loading screens, and so on.

1.1.4 The Asset Pipeline

You would not have much of a game without models, textures, and other art assets. For Torque 3D, the preferred file
format for 3D art assets is COLLADA.

From the COLLADA website: “COLLADA is a COLLAborative Design Activity for establishing an open standard
digital asset schema for interactive 3D applications.” In-other-words, it is a 3D model file format supported by most
major art applications used to make content for games. You can create a model in 3D Studio Max, Maya, Blender, or
any other 3D editor that supports the COLLADA format.

For those of you familiar with previous Torque engines, you can still import DTS (static models) and DSQ (animation
data) files for your 3D objects. This includes static shapes, players, buildings, and props. If you already have a library
of DTS and DSQs, feel free to use them in Torque 3D. From this point on, we recommend you transition to the
COLLADA open standard for new art assets.

1.2 Seting up the SDK

TBD

1.3 The Project Manager

TBD

1.4 A Tour of the SDK

TBD

4 Chapter 1. Introduction

CHAPTER 2

World Editor

2.1 Overview of World Editor

The World Editor is used to build and edit game levels. This includes adding and modifying terrains, buildings,
foliage, cloud layers, vehicles, environmental effects, lighting effects, and much more. Aside from the Toolbox, the
World Editor is the first (and most important) tool a new user should learn.

A sample game level as seen inside the World Editor:

The World Editor is not a tool for creating game objects. Objects must be created using applications appropriate for

5

Torque 3D Documentation, Release 3.5.1

the object type (i.e., 3DS Max to create a 3D model). However, once an object is loaded it can be modified by the
World Editor in a variety of ways. The simplest modification would be a change in scale (size), but more complex
modifications are also possible. For example, the Torque Material Editor can be used to alter (or completely replace)
textures on a 3D object or add shader effects.

A typical World Editor workflow might go as follows (in very simplified terms):

1. Create a 3D model in an application like 3DS Max, Maya, or Blender.

2. Save that model to a sub folder inside your game/art directory.

3. Launch World Editor (which will automatically find that model if step 2 was done correctly).

4. Add the model to your level; position, scale, rotate, and adjust its materials as desired.

5. Test your changes in-game with the push of a single button.

6. Return to the World Editor and continue to tweak your level.

Of course, there is a lot more to the World Editor than positioning 3D models. You will also be working with 2D assets
like grey scale height-maps to create terrains, as well as specialized tools for creating rivers, forests, and roads.

Finally, it is worth noting that Torque 3D includes numerous art assets for you to play with... so you can skip steps 1
and 2 above and start building game levels right away!

2.1.1 Using the World Editor Documentation

The World Editor documentation follows a logical progression. Those who wish may work through it in a methodical
way. Others may choose to skip difficult sections and jump directly to the tutorials at the end or to focus on only the
features of interest.

Everyone learns differently, but we’ve found that a good way for new users to get started quickly is to follow these
three steps:

1. Continue reading this document (“Overview”) in its entirety. It covers: how to launch the World Editor, how to
look and move around in a game level, and it offers a few important tips for new (and experienced) users.

2. With the World Editor open, quickly skim the next document, “Interface”. You should only spend five-to-ten
minutes getting an initial feel for the basic layout of the interface. Do not try to learn any features in detail.

3. Try to add moving clouds to your level by following the Basic Cloud Layer instructions. Whether you are
successful or not, spend no more than five minutes on this task.

Do not be concerned if you have trouble completing Step 3. Its purpose is to give you a specific task that requires direct
interaction with the interface. That small exposure to the interface will go a long way towards making the remainder
of the documentation more meaningful and easy to follow.

Once you’ve completed the three steps above, how you proceed is up to you. For those who prefer to jump around, we
recommend you start by carefully reviewing the Interface document.

2.1.2 How to Launch the World Editor

While your game is running, you can open or close the World Editor at any time using hot key combinations:

• On Windows and Linux, to open or close the World Editor, press the F11 key.

• On Mac OS X, to open or close the World Editor, press CMD+FN+F11.

Note: When you first launch the World Editor, it is likely you will do so from the Toolbox. However, after you
have modified your level, if you decide to test it out by clicking the Play Game button (as described in the “Interface”

6 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

document), you will need to use the F11 hotkey to get back to the World Editor. Otherwise, you would be forced to
quit your game and relaunch the World Editor from the Toolbox.

2.1.3 Looking and Moving Around

While working in the World Editor, you will need to move and look around to inspect your level.

• Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the
WASD keys can also be used). If you have a mouse-wheel, it can be used to move forward or backward.

• Look Left/Right/Up/Down by holding the right mouse button down while moving the mouse.

• Pan Left/Right/Up/Down by holding down the middle mouse button (Mouse 3) while moving the mouse. On
most mice with a scroll wheel, this is achieved by depressing (not scrolling) the mouse wheel.

Note: There are a number of Camera options, discussed further in the Interface document, which in some cases may
alter the behavior of these controls in minor ways.

When play testing your game outside of the World Editor, default control is typical of most First Person Shooters and
can be remapped by pressing Ctrl-O (Windows) to bring up an options dialog. A few important controls are listed
below:

• Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the
WASD key can also be used).

• Look around by moving the mouse.

• Fire/Alt Fire are triggered by the left and right mouse buttons.

• Jump is activated by the Space Bar.

• First/Third person view is toggled by pressing TAB.

• Change weapons by scrolling the mouse wheel (or press Q key).

• Exit vehicles by pressing Control-F.

• Return to World Editor by using the F11 hotkey (as discussed above).

2.1.4 Tips

The following is a general list of knowledge you should keep in mind while editing a level in your game:

• Try to design your levels outside of the editor first. Sometimes it is helpful to have a simple verbal or visual
design ready before you actually start editing. Even if it is a simple blueprint on a napkin, a level editor/artist
with a reference to work from will cover ground much more quickly.

• Prioritize your object placement. It makes sense to polish certain aspects of a level before others. For ex-
ample, try to finish your Sky, Sun, and Terrain before you move on to adding rivers, foliage, and other objects.
Performing major adjustments to a terrain with hundreds of objects already placed could be tedious and coun-
terproductive.

• Play your level regularly. After you reach a major milestone, try actually doing the things in your level as a
player would. There is a big difference between the experience of a player in a game and that of a designer with
a free-floating camera in the World Editor.

2.1. Overview of World Editor 7

Torque 3D Documentation, Release 3.5.1

• Do not forget to optimize. Some specific World Editor objects are more appropriate than others. Use Ground
Cover instead of a 3D model with lots of grass or trees attached. As much as possible, use the Sun rather
than numerous point lights to handle ambient lighting. There are other such optimizations which will become
apparent towards the end of development.

• SAVE AND SAVE OFTEN. This cannot be stressed enough. Computers crash, power goes out, cats jump on
keyboards, and in rare circumstances you may encounter a yet undiscovered issue which causes data corruption.
Any number of accidents can result in hours of work being lost. We recommend you save as often as you can.

2.2 World Editor Interface

The default World Editor view consists of five main sections:

File Menu Found at the very top of the World Editor window, you will find menus that controls the global func-
tionality of the editor, such as opening/saving levels, toggling camera modes, opening settings dialogs, and so
on.

Tools Bar Located just below the File Menu, this bar contains shortcuts to all of the tools, their settings, and some
options found in the File Menu.

Tool Palette The Tool Palette changes based on what Tool you are currently using. For example, when using the
Object Editor you will have icons for moving and rotating an object, wheras the Terrain will have icons for
moving and rotating an object, whereas the Terrain Editor display icons for elevation tools.

Scene Tree Panel While using the Object Editor, one of the floating panels available to you is the Scene Tree. It is
composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. The
Library tab is what you will use to add new objects to your level after which they will appear in the Scene tab.

Inspector Panel While using the Object Editor, a selected object’s properties will be shown in this panel. Most of
your object editing will be performed here.

2.2.1 File Menu

File Menu allows you to: Create, save, open, and close levels; Open, import, and export level data to/from other tools;
Run your level to test it and exit the World Editor.

8 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Edit Menu allows you to: Control editor actions such as undo and redo; Cut, copy, paste, and delete objects you
have selected; Select objects using a name pattern or by type filtering; Access dialogs to control various World Editor
settings.

The View Menu: Opens the Visibility Layers dialog which toggles debug rendering modes; Toggle the visibility of
other aspects of the editor.

2.2. World Editor Interface 9

Torque 3D Documentation, Release 3.5.1

The Object Menu allows you to: Manipulate a selected object’s settings by locking/unlocking it, hiding/showing the
object, resetting its transforms, and so on.

The Drop Location sub-menu selection informs the World Editor where it should place newly created objects.

The Camera Menu allows you to choose your camera type, adjust its speed and motion, and drop it at certain locations.

10 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The World Camera sub-menu allows you to change the way the camera moves.

The Player Camera sub-menu allows you to switch between perspectives while moving around as a player.

The Camera Speed sub-menu allows you to adjust how fast the camera moves.

2.2. World Editor Interface 11

Torque 3D Documentation, Release 3.5.1

The Editors Menu allows you to select which set of editing tools is currently active in the World Editor.

The Lighting Menu allows you to switch between Advanced and Basic lighting modes, as well as perform level
relights.

Contains shortcuts to documentation and forums for Torque 3D.

12 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.2.2 Tools Bar

The Tools Bar is the best way to switch between tools. It is made of two components: Tool Settings (top bar) and
Tools Selector (bottom bar).

Tool Settings is made of up three sub-sections: the editor selector, camera settings, and Object Editor. The editor
selector and camera setting will always be displayed. The Object Editor will display available settings for the currently
selected tool. The Tools Selector will always display the same shortcuts for selecting tools.

This section focuses on the elements of Tool Settings.

The first three icons switch between the editor’s operating modes. Each icon represents a different editing mode and
only one mode can be active at any time. There are three modes: World Editor, GUI Editor, and Game Mode. The
World Editor is represented by the mountain icon. The GUI Editor is represented by the boxes icon. The Game Mode
is represented by the arrow icon.

World Editor mode provides tools for manipulating the “world” of your game including terrain, creatures, and so on.

GUI Editor mode provides tools for manipulating the Graphical User Interface (GUI) of your game such as health
meters, cursors, and so on.

Play Game Mode runs your game and lets you play through it.

Note: When you use this icon to play your game the World Editor actually closes completely. To return to the World
Editor you must press F11 or exit the game and relaunch the World Editor from the Toolbox.

Next to the editor selector, you will find the camera and visibility settings.

The camera icon will let you choose your camera type. The drop-down menu next to it will let you switch between
camera speeds. The eye icon is the visualization settings which toggle debug rendering modes for various graphical
modules, such as normal mapping, wireframe, specular shading, etc. The icon that looks like a camera in a box will
move your camera to whatever object you have selected, filling up your view with its boundaries.

2.2. World Editor Interface 13

Torque 3D Documentation, Release 3.5.1

The World Settings make up the rest of this bar when using the tools. The first icon lets you determine your snapping
options (snapping to terrain, a bounding box of an object, which axis, etc.). The next icon toggles snapping to a grid.
The magnet icon determines soft snapping to other objects. The numeric indicator determines the distance of the snap
option.

The box icon with an arrow is a selection tool that allows you to select an object according to its bounding box. This
makes selecting small, detailed objects much easier. The next icon that looks like a bullseye will change the selection
target from the object center to the bounding box center. The small icon with arrows and mountains will change the
object transform and the world transform.

The next two icons show descriptors in your scene. The first icon that looks like a box in a square will display object
icons for the various objects in your scene. The second icon will show text descriptors for the objects in your scene.

The last two icons in the bar are prefab icons. The first icon lets you group selected items into a “prefab” (or prefabri-
cated collection) of objects. The second icon will ungroup your prefab items.

2.2.3 Tool Selector and Palette

Fig. 2.1: Object Editor

2.2.4 Scene Tree

The Scene Tree panel is available while using the Object Editor tool. It is composed of two tabs: Scene and Library.
The Scene tab contains a list of objects currently in your level. You can select specific objects to modify them.

14 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Fig. 2.2: Terrain Editor

Fig. 2.3: Terrain Painter

Fig. 2.4: Material Editor

2.2. World Editor Interface 15

Torque 3D Documentation, Release 3.5.1

Fig. 2.5: Sketch Tool

Fig. 2.6: Datablock Editor

Fig. 2.7: Decal Editor

16 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Fig. 2.8: Forest Editor

Fig. 2.9: Mesh Road Tool

2.2. World Editor Interface 17

Torque 3D Documentation, Release 3.5.1

Fig. 2.10: Particle Editor

Fig. 2.11: River Tool

18 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Fig. 2.12: Decal Road Tool

Fig. 2.13: Shape Editor

2.2. World Editor Interface 19

Torque 3D Documentation, Release 3.5.1

Each object in the tree has an icon, unique ID, an object type, and a name. Whenever you click on an object in the
tree, it is selected in the level and vice versa. Most of your objects can stand alone in the tree, but you can also use a
SimGroup object to organize related entries.

At first glance, a SimGroup looks like a folder and acts much like one to help organize your tree. It does not physically
exist in your level, but you can reference it by name or ID from script or the engine. This is handy for grouping several
game objects you might need to iterate through and invoke an action on. Even if you do not use that feature, it is still
a good idea to group similar objects under a SimGroup to help organize and better navigate your trees as some levels
can grow to a large number of objects.

2.2.5 Library Tab

The Library tab is what you will use to add objects to your level. Once an object has been added to your level, it will
appear in the Scene tab (described above). There are four sub-categories on the Library tab, which are separated as
sub-tabs: Scripted, Meshes, Level, and Prefabs. Each category contains objects that serve very specific purposes.

20 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Scripted Tab

The first tab, Scripted, is automatically populated with game objects that have been created via script. For example,
let’s say you have a ceiling fan object with an associated script which controls how and when the fan blades rotate. It
would appear in the Scripted tab as follows:

A discussion of scripting and how to associate scripts with an object is beyond the scope of this document. See the
TorqueScript Tutorial for more information.

Meshes Tab

When you simply wish to add a 3D art asset, you will use the Meshes Tab. You can browse the various folders
containing assets in your project’s “art” directory. From here you can add DTS, COLLADA, and DIF files.

2.2. World Editor Interface 21

Torque 3D Documentation, Release 3.5.1

Level Tab

The Level Tab lists all the Torque 3D objects that can be used to populate your level. Objects are further divided into
category folders. To view what is in a folder, double click it. To leave a folder and view the folder list, click the left
pointing arrow icon. To move directly to another folder, select it from the drop down list.

Each sub-category contains objects with similar themes:

22 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

• The Environment sub-category contains most of the objects you will add to your level, such as Terrain, Sun,
Clouds, Waterblocks, and similar objects.

• The ExampleObjects sub-category contains example rendering classes created in C++.

• The Level sub-category contains objects that manage Time of Day, level boundaries, and similar objects.

• The System sub-category contains engine-level objects such as SimGroups.

Prefabs Tab

The prefab system allows you to group multiple objects together and combine them into a single file. This new object
can then be repeatedly placed into your level as a whole, making it easier for you to add complex groups of objects
with only a few mouse clicks. When you create a prefab from multiple selections, you will save it to a *.prefab file
using the group prefab icon. The World Editor will automatically load these files in the Prefabs tab.

2.2. World Editor Interface 23

Torque 3D Documentation, Release 3.5.1

2.2.6 Inspector

Whenever you add an object to a level, you will most likely start modifying them immediately. You can use the
Inspector Panel to change the properties of an object

24 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

While there are a few shared property sections, most object types will have a unique set of properties. Editing is as
simple as selecting an object in the level, locating a field that you want to change, such as “className” or “media”,
then either editing the existing value or entering a value if no default value is given. There are different types of values
such as strings, numbers, check boxes, vectors, and even values that require the use of a file browser or color picker.

2.2.7 Options

The Options dialog is used to change your current session’s audio and video properties as well as mouse and keyboard
control bindings. The Options dialog is accessed from the main menu by selecting Edit > Game Options...

2.2. World Editor Interface 25

Torque 3D Documentation, Release 3.5.1

You will use the Graphics tab to adjust your game resolution, screen mode, detail levels, and so on. The Audio tab
allows you to adjust your current game’s volume, both globally and channel specific.

2.2.8 World Editor Settings

The World Editor Setting dialog is important to editing.

26 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Through this dialog, you can change various aspects of how your tools render and function. The top left section will
control what is rendered on your object, such as its text (name/ID), handle, and selection box. You can also adjust the
rendering of the editing plane in relation to the object.

The bottom left section contains the control settings for your manipulators (Translate, Rotate, and Scale tools). You
can tweak the sensitivity of the manipulators for more precise or dramatic modifications.

Both sections on the right have settings that adjust visibility and selection methods for your gizmos. The Visible
Distance is also an important value, as that adjusts how far into the distance you can see while editing the level.

2.2.9 PostFX Manager

The PostFX Manager GUI allows level editors to control various post-processing effects. Select the Enable PostFX
checkbox to toggle PostFX on and off.

Use the effect tabs to access the effect settings.

2.2. World Editor Interface 27

Torque 3D Documentation, Release 3.5.1

PostFX settings can be saved to file and and loaded automatically with the level. To achieve this, simply save the
settings with the same name as the level file. For example, for Burg.mis, save the PostFX settings in a file called
Burg.postfxpreset.cs in the same folder as the level file.

SSAO

Screen space ambient occlusion (SSAO) is an approximation of true Ambient Occlusion. Enabling the effect will
darken creases and surfaces that are close together. Outdoor areas with brighter ambient light will show the effect
better.

Quality Controls the number of ambient occlusion samples taken; higher quality is more expensive to compute.

Overall Strength Controls the overall intensity/darkness of the effect (applied on top of near/far strength).

Blur (Softness) Blur depth tolerance.

Blur (Normal Maps) Blur normal tolerance.

28 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

SSAO parameters for pixels near to the camera (small depth values).

Radius Occlusion radius.

Strength Occlusion intensity/darkness.

Depth min Minimum screen depth at which to apply effect.

Depth max Maximum screen depth at which to apply effect.

Tolerance Unused

Power Unused

SSAO parameters for pixels far away from the camera (large depth values).

Radius Occlusion radius.

Strength Occlusion intensity/darkness.

Depth min Minimum screen depth at which to apply effect.

2.2. World Editor Interface 29

Torque 3D Documentation, Release 3.5.1

Depth max Maximum screen depth at which to apply effect.

Tolerance Unused

Power Unused

HDR

Control several High Dynamic Range (HDR) effects including Bloom and Tone mapping.

Tone Mapping Contrast Amount of interpolation between the scene and the tone mapped scene.

Key Value The tone mapping middle grey or exposure value used to adjust the overall “balance” of the image.

Minimum Luminence The minimum luninace value to allow when tone mapping the scene. Is particularly useful if
your scene very dark or has a black ambient color in places.

White Cutoff The lowest luminance value which is mapped to white. This is usually set to the highest visible lumi-
nance in your scene. By setting this to smaller values you get a contrast enhancement.

Brightness Adapt Rate The rate of adaptation from the previous and new average scene luminance.

30 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Bright Pass Threshold The threshold luminace value for pixels which are considered “bright” and need to be
bloomed.

Blur multiplier/mean/Std Dev These control the gaussian blur of the bright pass for the bloom effect.

Enable color shift Enables a scene tinting/blue shift based on the selected color, for a cinematic desaturated night
effect.

Light Rays

This effect creates radial light scattering (also known as god rays). It works best when the scene contains a very bright
light, but even in the example above you should be able to see some scattering occuring around the crystal.

2.2. World Editor Interface 31

Torque 3D Documentation, Release 3.5.1

Brightness Intensity of the light ray effect.

DOF

Depth of Field (DOF) simulates a camera lens, and blurs pixels based on depth from the focal point. DOF is commonly
used when zooming in with a weapon.

Enable DOF Enable/disable the DOF effect.

Enable Auto Focus Determines how the focal depth is calculated. When auto-focus is disabled, focal depth is set
manually by calling DOFPostEffect::setFocalDist. When auto-focus is enabled, focal depth is calculated auto-
matically by performing a raycast at the screen-center.

32 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Near/Far Blur Max Sets maximum blur for pixels closer/further than the focal distance.

Focus Range (Min/Max) The min and max range parameters control how much area around the focal distance is
completely in focus.

Blur Curve Near/Far Controls the gradient of the near/far blurring curve. A small number causes bluriness to in-
crease gradually at distances closer/further than the focal distance. A large number causes bluriness to increase
quickly.

Sharpness

2.2. World Editor Interface 33

Torque 3D Documentation, Release 3.5.1

Nightvision

2.2.10 Manipulators

The last World Editor visual we will describe is the gizmo. A gizmo is a three dimensional rendering of an object’s
transforms. While using the Object Editor tool, you can use a gizmo to adjust an object’s location, rotation, and scale
without having to manually input number values in the Inspector Panel.

Each gizmo has a unique appearance to notify you of what you are adjusting based upon the tool that you are using.

Move Tool Gizmo

When you wish to move an object from one place to another, you will use the Move Tool. This is represented by a
gizmo with arrows pointing toward different axes.

34 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

You can grab an arrow to move the object along an axis, or grab a space between two arrows to move it in both
directions.

If you look carefully, you should see letters at the end of each arrow. These correspond to Torque 3D’s world coordinate
system. The engine utilizes the right-handed (or positive) Cartesian coordinate system, where Z is up (top), X is side
(right), and Y is front (forward). This applies to the rest of the gizmos.

Scaling Tool Gizmo

The Scaling Tool is represented by a gizmo that looks similar to the Translate gizmo. Instead of arrows, there are blocks
at the end of the gizmo lines. Dragging one of the boxes in a direction will shrink or grow your object, depending on
which direction you move.

2.2. World Editor Interface 35

Torque 3D Documentation, Release 3.5.1

Rotation Tool Gizmo

While using the Rotation Tool, the orientation gizmo will be rendered. This gizmo looks and acts much differently
than the previous two. Instead of straight lines, multiple circles will surround your object.

36 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Dragging the red circle in a direction will rotate the object along the X-Axis. Green rotates around the Y-Axis. Blue
rotates around the Z-axis. The off color circles allow you to rotate an object along multiple axes.

2.3 Level objects

2.3.1 Meshes

Meshes, referred to as shapes in these tutorials, make up most of the objects in your game. This includes players,
items, weapons, vehicles, props, buildings, and so on. Currently Torque 3D supports two model formats: DTS and
COLLADA.

DTS Short for Dynamix Three Space, this is a proprietary format first developed by a company called Dynamix for its
game named Tribes. This has been the primary format used by Torque Technology for importing and rendering
3D model information. The format is binary, which means it is not in a human readable format.

COLLADA Short for COLLAborative Design Activity. COLLADA is emerging as the format for interchanging
models between DCC (Digital-Content-Creation) applications. The file extension used to identify COLLADA
files is .dae which stand for “digital asset exchange”. The COLLADA format has several key benefits: all
of the geometry and texture information is readily available in a single file; nearly every major 3D modeling
application is able to export directly to the COLLADA format; and the data is stored in an open standard XML
schema, which means it can be read and tweaked manually, if need be, in any text editor rather than requiring a
specific application.

2.3. Level objects 37

Torque 3D Documentation, Release 3.5.1

Adding A DTS Model

Before you can add a DTS model to World Builder so that it can be placed in a game level, it must be created with an
appropriate application. It must then be placed in a folder where the World Builder can find it. When the World Editor
is started it searches the game directories for objects and automatically loads any that it finds into the appropriate
sub-tabs of the Library based upon the folders they were found in. Placing a model into the /game/core/art/shapes
folder of your game project, or any sub-folder that you create, will allow the World Builder to find it and list it in the
Library on start-up.

If you’ve added files or folders after starting World Builder those new entries will not appear until you have navigated
out of a folder, or parent folder, and back in again.

Once a model is listed in the Library it is ready to be added to your game level. To add a model to your game level,
select the Object Editor tool. Click the Library tab in the Scene Tree panel. Finally, select the Meshes sub-tab. Once
the Meshes tab is open, select the entry from the drop down list. This list represents the directory containing your .dts
model.

Click on the entry that contains your DTS model name. Hovering over the entry will display information about the
model. Double-click the shape to automatically add it to your scene. The file should load extremely fast but you may
not be able to see it right away. Where an object is placed in the scene depends upon the current drop location selection
which can be set the menus Object > Drop Location command. Move your camera from its current location until the
shape is in view.

38 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Adding A COLLADA Model

Torque 3D also has the ability to load and render COLLADA models (.dae) . The process of adding a COLLADA
shape is identical to adding a DTS. You will first need to create the COLLADA file and place it where the World Editor
can find it then you may place it in a level.

Open the Library > Meshes tab. Navigate to the directory containing your COLLADA model (.dae). If you hover over
the item, you will get a brief file description.

2.3. Level objects 39

Torque 3D Documentation, Release 3.5.1

Double clicking an object will open the COLLADA import dialog. For the purpose of this example, you can just click
OK to load the mesh.

The file should load extremely fast, but you may not be able to see it right away. Where an object is placed in the scene
depends upon the current drop location selection which can be set the menus Object > Drop Location command. Pull
your camera up and away from its current location until the shape is in view.

40 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Shape Properties

Each shape in a scene has properties which can be set like any other object using the Object Editor. Clicking a shape in
the scene or selecting it from the Scene Tree will update the Inspector pane with information about that object. Shapes
have their own unique set of properties.

Inspector

Name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

Position TypeMatrixPosition. Object world position.

Rotation TypeMatrixRotation. Object world orientation.

Scale TypePoint3F. Object world scale.

2.3. Level objects 41

Torque 3D Documentation, Release 3.5.1

Media

shapeName TypeFilename. Name and path of model file.

Rendering

playAmbient TypeBool. Play the ambient animation. Animation itself must be named ambient.

meshCulling TypeBool. Enables detailed culling of meshes.

originSort TypeBool. Enables sorting by origin rather than bounds.

Collision

collisionType TypeBool. TypeEnum. The type of mesh data to use for collision queries.

decalType TypeEnum. The type of mesh data to return for decal generation.

allowPlayerStep TypeBool. Allow a player to qalk up sloping polygons on collision.

Debug

renderNormals TypeF32. Debug rendering mode which highlights shape normals.

forceDetail TypeS32. For rendering at a particular detail for debugging.

Editing

isRenderEnabled TypeBool. Only render if true (and if class is render-enabled, too).

isSelectionEnabled TypeBool. Disables editor selection of this object.

hidden TypeBool. Toggle visibility of this object.

locked TypeBool. Toggle whether this object can be edited.

Mounting

mountPID TypeBool. TypePID. PersistentID of the object this one is mounted to.

mountNode TypeS32. Node this object is mounted to.

mountPos TypeBool. Position where this object is mounted.

mountRot TypeBool. Rotation of this object in relation to the mount node.

Object

internalName TypeString. Optional name that may be used to lookup this object within a SimSet.

parentGroup TypeSimObjectPtr. Group hierarchy parent of the object.

class TypeString. Script class of this object.

superClass TypeString. Script superClass of this object.

42 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Persistence

canSave TypeBool. Whether this object can be saved.

canSaveDynamicFields TypeBool. True if dynamic fields added at runtime should be saved. Defaults to true.

persistentID TypePID. Unique identifier for this object.

Dynamic Fields

N/A - None by default.

2.3.2 Terrain Block

Terrain simulates a land mass in your game which can be occupied, traversed, or flown over by objects in your game
world. Terrain is represented in a game level by a Terrain Block. There are three methods to add a Terrain Block to a
level: Create a blank terrain, add an existing .ter file or import a heightmap.

Creating Blank Terrain

To create a new blank terrain start from the menu by selecting File>Create Blank Terrain.

After you click the menu entry, a Create New Terrain Dialog will appear.

2.3. Level objects 43

Torque 3D Documentation, Release 3.5.1

The Name field allows you to specify a name for your Terrain Block. This name will appear in the Scene Tree and can
be used to reselect your terrain later for editing. Enter a name for the terrain in the text box, in this example theterrain.

The Material for the terrain, that is the texture that will be displayed to depict the ground cover, is selected using
a drop-down list. This list is populated by the World builder with all the existing materials created specifically for
terrains.

The Resolution that you select from that drop-down list determines the size of the terrain that will be created. The size
of the terrain that you choose is largely dependent on the design of your game. You will have to experiment to find the
right size that works for each game you create and some combinations of options are not very practical. For example,
selecting a terrain size of 256 and using the Noise option will result in a terrain that is so drastically contoured that it
will not be of much use.

The radio buttons to the right of the Resolution dropdown determine the smoothness of the terrain that is generated.
Selecting Flat will create a relatively smooth terrain and selecting Noise will generate a bumpy terrain.

Creating a Flat Terrain

To create a flat terrain: from the main menu select File > Create Blank Terrain; enter a name; select a material; select a
size such as 256; and select the Noise radio button, then click the Create New button. A contoured Terrain Block will
be generated and automatically loaded into the scene.

44 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

A Flat terrain is a great place to start, but is more suitable for terrains that will remain relatively flat. Using a flat terrain
requires you to create all the terrain details yourself using the Terrain Editor.

Creating a Bumpy Terrain

To create a bumpy terrain: from the main menu select File>Create Blank Terrain; enter a name; select a material;
select a larger size such as 1024; and select the Noise radio button, then click the Create New button.

Terrain Block loaded into the scene. A contoured extremely mountainous terrain will be generated and automatically
loaded into your scene. The noise algorithm randomly generated the hills and valleys for you.

2.3. Level objects 45

Torque 3D Documentation, Release 3.5.1

Starting with a contoured terrain this is a decent method of starting from scratch with a little randomness thrown in.

Adding an Existing Terrain File

To add an existing terrain file to a level start by selecting the Object Editor tool. Locate your Library panel and click
it. Click on the Level tab then select the Environment folder. Once that is open, locate the Terrain Block entry, and
double-click it.

46 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The new terrain dialog will open.

The Object Name field allows you to specify a name for your Terrain Block. This name will appear in the Scene Tree
and can be used to reselect your terrain later for editing. Enter a name for the terrain in the text box, in this example
theterrain.

The Terrain file box indicates the information file which holds the data describing the terrain to be loaded. Clicking
the box loads the OS file browser.

Terrain files are named with a .ter extension. The .ter file type is a proprietary format that contains terrain data
understood by Torque 3D. Locating a .ter file then clicking Open/OK will cause it to be selected as the Terrain file to
be loaded.

2.3. Level objects 47

Torque 3D Documentation, Release 3.5.1

Leave the square size in the dialog set to its default value then click OK. The .ter file will be immediately imported
into your scene with both geometry and textures. The sample shown here is a very simple and low detailed terrain file.

48 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Importing a Terrain

The most recommended and effective method to add a Terrain Block to a level is to import the terrain from external
data files. However, this method requires the skill and the third-party tools to create those data files. Very high-quality
and professional-looking terrain can be created with tools such as L3DT and GeoControl. These tools allow you to
generate extremely detailed heightmaps that can be imported by Torque 3D and to generate terrain data.

There are several types of asset required to import and use a terrain in Torque 3D using this method:

• a heightmap

• an opacity map and layers

• texture files.

Heightmaps

The primary asset required is a heightmap. A heightmap is a standard image file which is used to store elevation data
rather than a visible picture. This elevation data is then rendered in 3D by the Torque engine to depict the terrain.
The heightmap itself needs to be in a 16-bit greyscale image format, the size of which is a power of two, and must be
square. The lighter an area of a heightmap is, the higher the elevation will be in that terrain location.

2.3. Level objects 49

http://www.garagegames.com/products/l3dt
http://www.geocontrol2.com/e_index.htm

Torque 3D Documentation, Release 3.5.1

Fig. 2.14: Example Heightmap

Opacity Maps

An opacity map acts as a mask, which is designed to assign opacity layers. Opacity layers need to match the dimensions
of the heightmap. For example, a 512x512 heightmap can only use a 512x512 opacity map.

If the opacity map is a RGBA image, four opacity layers will be used for the detailing (one for each channel). If you
use an 8-bit greyscale image, only a single channel. You can then assign materials to the layers. This allows us to have
up to 255 layers with a single ID texture map, saving memory which we can apply to more painting resolution.

Notice that the following example Opacity Map resembles the original heightmap.

Texture Files

Texture files “paint” the terrain giving it the appearance of real ground materials. When creating a terrain from scratch
textures can be manually applied to it using the Terrain Painter, which is built into the World Editor, but that is a time
and effort intensive method. Instead of hand painting them, the opacity layer will automatically assign textures to the
terrain based upon what channel they are loaded into.

For each type of terrain to be rendered you will want to have three textures: (1) a base texture, also referred to as a
diffuse texture, (2) a normal map, and (3) a detail mask.

The base represents the color and flat detail of the texture. The normal map is used to render the bumpiness or depth
of the texture, even though the image itself is physically flat. Finally, the detail map provides up-close detail, but it
absorbs most of the colors of the base map.

Importing a Heightmap

To import a heightmap for terrain start the World Editor, then from the menu select File > Import Terrain Heightmap:

50 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Fig. 2.15: Example Opacity Map

Fig. 2.16: Diffuse

2.3. Level objects 51

Torque 3D Documentation, Release 3.5.1

Fig. 2.17: Normal

Fig. 2.18: Detail

52 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Import Terrain heightmap dialog will appear.

Name If you specify the name of an existing Terrain Block in the dialog it will update that existing Terrain Block and
its associated .ter file. Otherwise, a new Terrain Block will be created.

Meters Per Pixel What was the Terrain Block SquareSize (meters per pixel of the heightmap), which is a floating
point value. It does not require power of 2 values.

Height Scale The height in meters that you want pure white areas of the heightmap to present.

Height Map Image File path and name of a .png or .bmp file which is the heightmap itself. Remember, this needs to

2.3. Level objects 53

Torque 3D Documentation, Release 3.5.1

be a 16-bit greyscale image, the size of which is a power of two, and it must be square.

Texture Map This list specifies the opacity layers, which need to match the dimensions of the heightmap image.
If you add an RGBA image it will add 4 opacity layers to the list, one for each channel. If you add an 8-bit
greyscale image, it will be added as a single channel.You can then assign materials to the layers. If you do not
add any layers or do not add materials to the layers, the terrain will be created with just the Warning Material
texture.

Click the browse button to the right of the Height Map Image box to open a file browser dialog. Navigate to where
your terrain files are located, select the desired heightmap PNG file, then click Open. The selected heightmap file will
be entered in the Height Map Image box.

Click on the + button next to Texture Map to open another file browser. This is where you add opacity layers. Start by
locating the masks. If you have the right assets, it should resemble something like this:

54 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Do not worry if you do not see the detail. The mask is supposed to be solid white. Repeat the process until you have
imported all your opacity layers.

Now that our opacity layers have been added, you should assign a material to each one. You can do so by clicking on
one of the layers, then clicking the edit button in the bottom right. You will now see the Terrain Materials Editor.

2.3. Level objects 55

Torque 3D Documentation, Release 3.5.1

Click the New button, found at the top next to the garbage bin, to add a new material. Type in a name then click the
Edit button next to the Diffuse preview box. Again, a file browser will pop up allowing you to open the base texture
file for the material. Alternatively, you can click the preview box itself, which is a checkerboard image until you add
a texture.

56 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Once you have added the base texture, the preview box will update to show you what you opened. Set the Diffuse size
which controls the physical size in meters of the base texture.

Click on the Edit button next to the Detail Preview box. Using the file browser, load the detail map.

2.3. Level objects 57

Torque 3D Documentation, Release 3.5.1

Next, click on the Edit button next to the Normal Preview box. Use the file browser to open the normal map.

58 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Your final material properties should look like the following:

2.3. Level objects 59

Torque 3D Documentation, Release 3.5.1

Repeat this process until each opacity layer has a material assigned to it. Back in the Import Terrain Height Map
dialog, click on the import button. It will take a few moments for Torque 3D to generate the terrain data from our
various assets. When the import process is complete, the new Terrain Block will be added to your scene (you might
need to move your camera back to see it).

60 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

If you zoom in close to where materials overlap, you can notice the high quality detail and smooth blending that
occurs.

2.3. Level objects 61

Torque 3D Documentation, Release 3.5.1

Terrain Block Properties

A Terrain Block has properties which can be set like any other object using the Object Editor. Clicking a Terrain
Block in the scene or selecting it from the Scene Tree will update the Inspector pane with information about it. Terrain
Blocks have their own unique set of properties.

Inspector

name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

62 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Media

terrainFile TypeStringFilename. The source terrain data file.

Misc

castShadows TypeBool. Allows the terraint to cast shadows onto itself and other objects.

squareSize TypeF32. Indicates the spacing between points on the XY plane on the terrain.

baseTexSize TypeS32. Size of base texture size per meter.

lightMapSize TypeS32. Lightmap dimensions in pixels.

screenError TypeS32. Not yet implemented.

2.3.3 Ground Cover

The Ground Cover system allows you to spread many objects throughout your entire level. This object makes use of
the Terrain Material system, applying textures or 3D objects on a per-layer basis. The most practical uses of Ground
Cover include:

• Creating large fields of foliage (grass, wheat, etc.)

• Automatic placement of shapes and environmental textures on specific terrain types.

• Providing another layer of environmental realism when combined with Forest Editor and Replicators.

Adding Ground Cover

To add a ground Cover object to a level, select the Library tab in the Scene Tree panel. Click on the Level tab and
double-click the Environment folder. Locate the Ground Cover entry.

2.3. Level objects 63

Torque 3D Documentation, Release 3.5.1

Double-click the Ground Cover entry. The Create Object dialog will appear.

If you already have a material or shape you want to use, you can set them here. Materials are used to paint the ground
with textures which can contain transparency so that the underlying ground shows through. A Shape File is used to
replicate 3D objects on the ground. Enter a name for you Ground Cover object then click the Create New button. A
new Ground Cover object will be added to your level. Without a material, the system will render a pattern on the
ground with the default “No Material” texture:

64 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

To change the No Material indicators to a real Material scroll through the Ground Cover properties until you get to the
Ground Cover General section. In the Material field, click on the globe to open the Material Selector:

Fig. 2.19: Material Field

When the Material Selector appears, you have the option to pick an existing material or create a new one in the Material
Editor.

Assigning Terrain Material

When you first add a Ground Cover object, it will place the material or shape on the entire terrain. To limit the
placement of Ground Cover, you must set the terrain layer. To set the terrain layer with the Ground Cover selected,
scroll down to the Ground Cover General set of fields. Find the Types sub-section.

2.3. Level objects 65

Torque 3D Documentation, Release 3.5.1

Types is an array with each entry controlling a section of the Ground Cover. If this is confusing, think of it like this as
follows. The Ground Cover is a single object that is covering the entire terrain. The object itself is comprised of eight
sections, Types[0] through Types[7]. Each section can be told what, where, and how to render a material or shape.
You can feasibly have the Ground Cover object rendering simultaneously on eight different terrain layers.

With the above information in mind, you can assign the Ground Cover to terrain materials. Scroll through the proper-
ties until you get to Types[0]. Click on the box icon in the layer field. The Material Selector for terrains should appear.
Select a material such as the dirt_grass shown here:

After you click the Select button, the Ground Cover will stop placing billboards on the entire terrain. It should now
only be placing the foliage on the specific terrain layer you chose.

66 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

If you are having a difficult seeing this change, locate the maxElements field and increase the value dramatically:

2.3.4 Basic Sun

Proper global lighting can dramatically change the appearance of a level, as well as aid in certain game play aspects,
such as providing a day and night cycle. The Sun object is used to control the global lighting settings in the level. The
main settings include ambient coloring, azimuth, and elevation. The lighting effects produced by the Sun are 100%
dynamic, which means as soon as you change a setting it is immediately reflected in the level. In short, the Sun lets
you control the day/night cycle of your level.

Adding a Basic Sun

To add a Sun start by opening the Library tab in the Scene Tree dialog. Once the Library tab is active, click on Level
sub-tab, then double-click the Environment subcategory.

2.3. Level objects 67

Torque 3D Documentation, Release 3.5.1

Double-clicking the Basic Sun object will open the Create Object Dialog. From here, you can change a few basic
properties, such as the name, starting color, and location. Enter a name then click the Create New button.

Basic Sun Properties

Additional properties can be changed with the Inspector pane. To change the Sun properties using the Inspector Pane
click the Scene tab, then click the name of your new sun object. The Inspector pane will update to display the current
properties of your new sun.

Inspector

name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

68 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

scale Point3F. Object world scale.

Transform

azimuth TypeF32. The horizontal angle of the sun measured clockwise from the positive Y world axis.

elevation TypeF32. The elevation angle of the sun above or below the horizon.

Lighting

color TypeColorF. Color shading applied to surfaces in direct contact with light source.

ambient TypeColorF. Color shading applied to surfaces not in direct contact with light source, such as in the shadows
or interiors.

brightness TypeF32. Adjust the global Sun contrast/intensity.

castShadows TypeBool. Enables/disables shadows cast by objects due to Sun light.

Corona

coronaEnabled TypeBool. Enable or disable rendering of the corona sprite.

coronaMaterial TypeMaterialName. Material for the corona sprite.

coronaScale TypeF32. Scale the rendered size of the corona (texture size * coronaScale = visible pixel dimensions).

coronaTint TypeColorF. Modulates the corona sprite color (if coronaUseLightColor is false).

coronaUseLightColor TypeBool. Modulate the corona sprite color by the color of the light (overrides coronaTint).

Misc

flareType TypeLightFlareDataPtr. Datablock for the flare and corona produced by the Sun.

flareScale TypeF32. Changes the size and intensity of the flare.

Advanced Lighting

attenuationRatio TypePoint3F. The proportions of constant, linear, and quadratic attenuation to use for the falloff for
point and spot lights.

shadowType TypeEnum. The type of shadow to use on this light.

cookie TypeStringFilename. A custom pattern texture which is projected from the light.

texSize TypeS32. The texture size of the shadow map.

2.3. Level objects 69

Torque 3D Documentation, Release 3.5.1

overDarkFactor TypePoint4F. The ESM shadow darkening factor.

shadowDistance TypeF32. The distance from the camera to extend the PSSM shadow.

shadowSoftness TypeF32. Adjusts shadow edge clarity.

numSplits TypeF32. The logrithmic PSSM split distance factor.

logWeight TypeF32. The logrithmic PSSM split distance factor.

fadeStartDistance TypeF32. Start fading shadows out at this distance. 0 equates to auto calculate this distance.

lastSplitTerrainOnly TypeBool. This toggles only terrain being rendered to the last split of a PSSM shadow map.

Advanced Lighting Lightmap

representedInLightmap TypeBool. This light is represented in lightmaps (static light, default: false).

shadowDarkenColor TypeColorF. The color that should be used to multiply-blend dynamic shadows onto
lightmapped geometry (ignored if representedInLightmap is false).

includeLightmappedGeometryInShadow TypeBool. This light should render lightmapped geometry during its
shadow-map update (ignored if representedInLightmap is false).

Azimuth and Elevation

The Azimuth and Elevation fields are very important to determining the global position of the sun, which affects the
lighting intensity and shadow casting for every object in your level. You cannot think of these two fields as numbers
that simply move your sun or make it higher. Azimuth and Elevation are actually angles:

Fig. 2.20: Azimuth

Elevation (El) is measured between 0 and 180 degrees. It refers to the vertical angle measured from the geometric
horizon (0°) towards the zenith (+90°).

• 0° will place the Sun at one end of the horizon as though it were just about to rise or set.

70 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

• 90° will place the Sun directly over the level, shining straight down.

• 180° will place the Sun at the opposite end of the horizon as though it were just about to rise or set.

Azimuth ranges between 0 and 360 degrees, and refers to a horizontal angle which determines the direction the Sun is
facing in the level.

• 0° is true North.

• 90° is due east.

• 180° is due south.

• 270 is due west.

If you have a completely flat terrain with no objects, it will be difficult for you to visually measure the position of
the Sun. You can use any object you want as a reference, but make sure you have your camera fixed on it to see the
changes that you are making.

Adjusting Elevation

Go ahead and set the Azimuth and Elevation of the Sun to 0, which should give you a very dark level.

2.3. Level objects 71

Torque 3D Documentation, Release 3.5.1

At this point, the angle of the Sun matches the horizon of your level perfectly. By increasing the elevation to 45, and
you will see the objects in your level begin to cast short shadows. If you dont see the shadows changing make sure
that you do not have more than one sun in your scene. The World Builder allows more than one sun in a scene, which
obviously will change the light and shadows within a level.

Thinking back to angles, if 0° is parallel with the horizon, then 90° degrees will be directly overhead. Change the
elevation to 90. You will see all of the shadows for the objects are directly below, just as in real life when the sun is
sitting at zenith (straight overhead).

72 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Setting the elevation to 180 will place the Sun at the opposite end of the horizon, once again resulting in a dark level.
If you really focus, there is a slight change in shadow direction than when the elevation was 0°.

2.3. Level objects 73

Torque 3D Documentation, Release 3.5.1

Adjusting Azimuth

The Azimuth of the Sun is measured clockwise from a fixed overhead perspective. To help you understand this
rotation, we are going to adjust the Aazimuth of the Sun so that shadows of an object rotate like a sun dial or hands on
a clock.

If you set the elevation to 45 and azimuth to 0, it will look like the shadow is pointing at 12 o’clock (if viewed from
overhead).

74 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Now, increase the azimuth by 45. At a sharp 45° angle, the shadow looks like it is pointing at 1 o’clock.

2.3. Level objects 75

Torque 3D Documentation, Release 3.5.1

If you set the azimuth property to 90, you will notice a very familiar angle. The object and its shadow are forming a
perfect right angle.

76 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Half of a full rotation is 180°. After Setting the azimuth to this value, the shadow will now be pointing in the opposite
direction from its original state.

2.3. Level objects 77

Torque 3D Documentation, Release 3.5.1

Now, set the azimuth property to 270 and watch as the shadow points to 9 O’clock. The shadow should be pointing
directly opposite from the 90° setting.

78 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Finally, set the azimuth to 360. We have achieved full rotation. Careful examination will show that even though your
shadows are pointing in the same direction as the 0° setting, they have been flipped.

2.3. Level objects 79

Torque 3D Documentation, Release 3.5.1

Standard Lighting

The last topic we are going to touch on that is specific to the Sun object is standard lighting. Under the Lighting
properties of the sun object there are three variables to adjust. Checking the castShadows box will cause surfaces to
project shadows based on the direction of the sunlight. Removing the check will disable any shadows cast due to the
Sun. If you uncheck that box you’ll see that the shadows you have been observing will not be displayed at all.

In addition to creating shadows, the light from the Sun will also affect the color shading of all surfaces in the level.
There is a subtle, yet important difference between the color and ambient fields. If you want realistic lighting color,
you will need to tweak both values.

The value of the color field will shade all surfaces that are in direct contact with the sunlight. A completely black color
will make it seem like there is no light at all. Using the color picker to choose an orange hue will result in a sunset
appearance for your level.

Ambient light is the available light in a space, whether from natural or mechanical sources. It is applied to everything
in the world and also contributes to the direct lighting of the sun. The ambient field will lighten dark shadows and
brighten well lit surfaces based on the color value.

80 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.3.5 Sky Box

Torque 3D uses a cubemap to produce the appearance of a sky in a level. The cubemap method will allow you to create
realistic looking skies that provide a sense of depth to your mission.

Adding a Sky Box

To add a new Sky Box to a level change to the Library tab in the Scene Tree panel and double-click the Environment
folder, locate the Sky Box entry then double-click it.

The Object Name is what you want your Sky Box to be called and will be displayed in the Scene Tree after it is created.
The Material box allows you to select the starting material to use when creating the object.

2.3. Level objects 81

Torque 3D Documentation, Release 3.5.1

Sky Box Properties

Additional properties can be changed with the Inspector pane. To change the Skybox properties using the Inspector
Pane, click the Scene tab, then click the name of your new Sky Box object. The Inspector pane will update to display
the current properties of your new Sky Box.

Inspector

name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

scale Point3F. Object world scale.

Sky Box

material TypeMaterialName. The name of a cubemap material for the sky box.

drawBottom TypeBool. If false the bottom of the skybox is not rendered.

fogBandHeight TypeF32. The height (0-1) of the fog band from the horizon to the top of the SkyBox.

2.3.6 Scatter Sky

Torque 3D includes an object called a Scatter Sky which uses a dynamic sky coloring system to create more vibrant
varying skies than the simple Skybox object.

As the name implies, the Scatter Sky object produces the sky. Additionally, it includes level lighting, sun positioning,
and a hook for time of day manipulation. This can be used for a fully functioning day/night system.

Adding a Scatter Sky

Every new mission starts with both Sky Box and Sun objects. Since the Scatter Sky object contains the functionality
of those two objects embedded within it they must be removed in order to use a Scatter Sky in the level.

To create a new Scatter Sky, change to the Library tab in the Scene Tree panel. Click on the Level tab and select the
Level folder. Locate the Scatter Sky entry and double-click it.

82 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Create Object dialog will appear. The Object Name is what you want your Scatter Sky to be named. It will appear
in the Mission Group of the Scene Tree. Enter theSky as the name, leave the rest of the values at their defaults, then
click Create New.

A new Scatter Sky object will be created and automatically added to your level. Therefore, it will once again have a
sky. Since the Scatter Sky supplies a sun, the level should now be lit.

2.3. Level objects 83

Torque 3D Documentation, Release 3.5.1

Scatter Sky Properties

Additional properties can be changed with the Inspector pane. To change the Scatter Sky properties using the Inspector
Pane, click the Scene tab. Then click the name of your new Scatter Sky object. The Inspector pane will update to
display the current properties of your new Scatter Sky.

Inspector

name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

scale Point3F. Object world scale.

84 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Scatter Sky

skyBrightness TypeF32. Global brightness and intensity applied to the sky and objects in the level.

sunSize TypeF32. Affects the size of the sun’s disc.

colorizeAmount TypeF32. Controls how much the the alpha component of colorize brigthens the sky. Setting to 0
returns default behavior.

colorize TypeColorF. Tints the sky the color specified, the alpha controls the brigthness. The brightness is multipled
by the value of colorizeAmount.

rayleighScattering TypeF32. Controls how blue the atmosphere is during the day.

sunScale TypeColorF. The color shading applied to objects in direct sun light.

ambientScale TypeColorF. The color shading applied to objects not in direct sun light, such as in the shadows.

fogScale TypeColorF. Modulates the fog color. Note that this overrides the LevelInfo.fogColor property, so you
should not use LevelInfo.fogColor if the level contains a ScatterSky object.

exposure TypeF32. Controls the contrast of the sky and sun.

Orbit

azimuth TypeF32. The horizontal angle of the sun measured clockwise from the positive Y world axis.

elevation TypeF32. The elevation angle of the sun above or below the horizon.

moonAzimuth TypeF32. The horizontal angle of the moon measured clockwise from the positive Y world axis.

moonElevation TypeF32. The elevation angle of the moon above or below the horizon.

Lighting

castShadows TypeBool. Enables/disables shadows cast by objects due to Sun light.

brightness TypeF32. Adjust the global Sun contrast/intensity.

Misc

flareType TypeLightFlareDataPtr. Datablock for the flare and corona produced by the Sun.

flareScale TypeF32. Changes the size and intensity of the flare.

Night

nightColor TypeColorF. The ambient color during night. Also used for the sky color if useNightCubemap is false.

nightFogColor TypeColorF. Color shading of fog present during night scenes.

moonEnabled TypeBool. Toggles rendering of moon image during night.

moonMat TypeMaterialName. Material for the moon sprite.

moonScale TypeF32. Controls size the moon sprite renders, specified as a fractional amount of the screen height.

moonLightColor TypeColorF. Color of light cast by the directional light during night.

2.3. Level objects 85

Torque 3D Documentation, Release 3.5.1

useNightCubemap TypeBool. Toggles rendering of star cubemap during night scenes, similar to Sky Box.

nightCubemap TypeCubemapName. Cube map used to render stars in the sky during night scene.

Advanced Lighting

attenuationRatio TypePoint3F. The proportions of constant, linear, and quadratic attenuation to use for the falloff for
point and spot lights.

shadowType TypeEnum. The type of shadow to use on this light.

cookie TypeStringFilename. A custom pattern texture which is projected from the light.

texSize TypeS32. The texture size of the shadow map.

overDarkFactor TypePoint4F. The ESM shadow darkening factor.

shadowDistance TypeF32. The distance from the camera to extend the PSSM shadow.

shadowSoftness TypeF32. Adjusts shadow edge clarity.

numSplits TypeF32. The logrithmic PSSM split distance factor.

logWeight TypeF32. The logrithmic PSSM split distance factor.

fadeStartDistance TypeF32. Start fading shadows out at this distance. 0 equates to auto calculate this distance.

lastSplitTerrainOnly TypeBool. This toggles only terrain being rendered to the last split of a PSSM shadow map.

Advanced Lighting Lightmap

representedInLightmap TypeBool. This light is represented in lightmaps (static light, default: false).

shadowDarkenColor TypeColorF. The color that should be used to multiply-blend dynamic shadows onto
lightmapped geometry (ignored if representedInLightmap is false).

includeLightmappedGeometryInShadow TypeBool. This light should render lightmapped geometry during its
shadow-map update (ignored if representedInLightmap is false).

Modifying Brightness

Remember to refer back to the properties as you proceed through the rest of this guide. It is time to modify some of
the more important fields of the current ScatterSky object. After each change is demonstrated, you will be reverting
back to the stock values to show how these modifications affect the object.

Now will start with adjusting the brightness of the sky and atmosphere. Under the ScatterSky section of the properties,
look for the skyBrightness field. The default value is 25.

86 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The skyBrightness field acts a global modifier of your brightness in the scene. Changing this value is similar to
adjusting the contrast of a camera or monitor. Reduce the value to 5. This reduction will dramatically change the
appearance of your level.

2.3. Level objects 87

Torque 3D Documentation, Release 3.5.1

Now, greatly increase the value of skyBrightness to around 85. The view of your level should be extremely bright, as
if the scene takes place in a desert at high noon.

88 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

If you have not already done so, revert your default brightness back to 25. You should change each value back to the
default in this manner between each section of the remaining guide to see the effects of the next property.

Modifying Scattering

The scientific concept of scattering and how it affects your level is somewhat complex. The rayleighScattering and
mieScattering values are extremely sensitive, and it is important that you have an understanding of how they work.
The simplest way to explain scattering is to answer a question children often ask: “Why is the sky blue?”

In reality, beyond the atmosphere of the sky is blank space, that is, blackness. When you look up at the night sky, you
can see the black of space and the stars it contains. However, during the day you see a blue sky. The blue color is due
to the light rays from the sun being scattered by the molecules of the atmosphere as it passes through. Light appears to
be white but it is actually composed of many different colors. The sky is usually blue because blue light scatters more
easily than the other colors due to its physical properties.

The sky at the zenith is a darker blue than the sky near the horizon for two reasons. First, the atmosphere at this altitude
is composed of much smaller particles, which is only capable of scattering the darker shades of blue light. Second, the
light has had less opportunity to be scattered since it has not passed through as much atmosphere yet. The more times
the same light is scattered, the paler the blue will become.

However, blue is not the only color that is scattered by the atmosphere, it is just the most common. Other colors, such
as the reds at sunset, are due to how much atmosphere the light has passed through to get to your eyes. In this case,
reds and blues are both being scattered but blue has been dissipated so much that it is no longer visible. The result is a
red sky.

2.3. Level objects 89

Torque 3D Documentation, Release 3.5.1

The scientific term for this light scattering effect is called Rayleigh Scattering, thus the rayleighScattering property of
Torque 3D controls the color and darkness of the ScatterSky object.

The size and composition of particles in the atmosphere, such as dust and water, also has an effect on how light
appears. Larger particles tend to scatter all colors of light approximately the same. This effect makes clouds, which
are made of water vapour, appear to be white or grey. This is because the colors of the light are being scattered the
same so that what you see resembles the original white form.

This type of scattering is also responsible for the clarity of a bright object and how the light rays are projected from it.
The scientific term for this type of scattering is Mie Scattering, thus the mieScattering property of Torque 3D controls
the clarity of light from bright objects such as the sun.

In summary, the scattering properties in Torque 3D are used to emulate the affects of nature. The mieScattering prop-
erty affects the appearance of how light waves are projected from the sun object and the rayleighScattering property
affects the color of the sky including how blue it will be.

Proceed to see the adjustment of these properties in action. Reduce the mieScattering field to a small value, such as
0.0005. You should notice that the scattering of the light around the sun object has been drastically reduced, resulting
in a smaller and smoother sun.

Reset the mieScattering back to the default value (approximately 0.0045). Lower the rayleighScattering field to 0.0006.

The atmosphere of the sky should now be a darker shade of blue. Reducing the rayleighScattering value simulates two
things. First, it simulates an atmosphere which reduces the colors of light that will be scattered limiting it to the darker
blues. Second, it simulates an atmosphere that has had less opportunity to dissipate the light leaving the darker shade
of blue intact:

90 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

At some point, you can reduce the value only so far before you hit a shade of blue that is almost completely black.
This does not mean you are actually seeing the black of space, rather you are seeing the darkest shade of blue light
which has not been dissipated at all.

Go in the opposite direction. Begin increasing the rayleighScattering until you hit a value of 0.008. This simulates
two things. First, it simulates an atmosphere which allows more colors of light to be scattered. Second, it simulates
an atmosphere that has had less opportunity to dissipate the light leaving paler shades of the light. The result in your
level is a broader range of colors in your sky.

2.3. Level objects 91

Torque 3D Documentation, Release 3.5.1

If you go too high with the value, your sky will eventually become black. This is due to the allowance of all wave
lengths to interact with the atmosphere. The effect is known as the subtractive rule of colors: white is the complete
lack of color (light interaction) and black is the presence of all colors. In other words, the atmosphere is absorbing all
colors so you see black.

If you have become confused, there are quite a few resources in your local library and on the Internet you can look up
to learn more. If you have gotten this far, but wish to keep it simple, remember the following:

mieScattering Higher equals bigger and more scattered Sun. Lower equals smaller, smoother Sun.

rayleighScattering Higher equals less blue sky. Too high equals black sky. Lower equals more blue sky. Too low
equals black sky.

Modifying Colors

Move on to simpler concepts and property adjustments. The nightColor is a conditional property, as it only affects the
scene during certain lighting conditions. As explained in the Sun documentation, modifying the azimuth and elevation
will change the “time of day” for your level.

Go ahead and set the Elevation property in the Orbit section to 200, which will place the sun below the horizon. When
the sun is no longer shining on your level, it is night time.

92 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Scroll to the Night section in the Inspector Pane. Instead of manually guessing color values, click on the colored box
next to the nightColor property. This action will open the Color Picker dialog. The dialog allows you to visually adjust
the shade of your night time color. For an intense effect, go with an unnatural color such as red.

2.3. Level objects 93

Torque 3D Documentation, Release 3.5.1

Click the select button when you are ready. Your level should immediately reflect the nightColor change you have
made. Very creepy...

94 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Definitely change the value back to something more suitable, such as deep blue/black color. Change the Elevation
property in the Orbit section back to a number between 0 and 90 such as 45 to bring the sun back above the horizon
and relight your scene.

Modifying Shadows and Light Intensity

There are two fields under the Lighting section that strongly influence how your scene appears. The first property,
castShadows, can be toggled on or off. Clicking on the property to toggle it off will result in a blank box. With
castShadows disabled, nothing in your scene will cast a shadow: objects, terrain, etc.

2.3. Level objects 95

Torque 3D Documentation, Release 3.5.1

You can re-enable the shadows in your scene by clicking the box again, which will produce a check mark informing
you that it has been enabled.

If you are using Advanced Lighting, the objects in your level will immediately begin casting shadows. If you are using
Basic Lighting, you will need to relight the scene. Either way, the shadows will update according to the position of the
sun.

96 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The brightness field under the Lighting section is completely separate from the skyBrightness property in the Scatter-
Sky section. Unlike skyBrightness, which changes the contrast of your entire scene (particularly the sky itself), the
brightness property under Lighting directly affects your objects in the scene.

You can see how this property functions by adjusting the value. Increase the brightness to 1. The lighting in your
scene should be much brighter. Additionally, the shadows in your scene will be much darker and more defined.

2.3. Level objects 97

Torque 3D Documentation, Release 3.5.1

Notice how your atmosphere (sky and sun) did not change. Every other object in your scene should be better lit. You
can remove the additional brightness by setting the value of the property to 0. The result is the additional, global
brightness factor has been completely removed. Your lighting should now be minimal, and your shadows nearly
invisible.

98 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.3.7 Basic Clouds

Once you have decided on your level’s sky, whether it’s a Skybox or ScatterSky, you can continue to customize the
scene with clouds. There are two cloud objects you can choose between: Basic and Advanced Clouds. This guide
covers the Basic Clouds object.

The Basic Cloud system renders up to three textures to separate layers, at varying heights, detail levels, and speeds.
Though basic and less memory intensive, you can build very detailed and realistic clouds for your level.

Adding a Basic Clouds Object

To add a Basic Clouds object: select the Library tab in the Scene Tree panel. Click on the Level tab and then double-
click the Environment folder. Locate the Basic Clouds entry.

2.3. Level objects 99

Torque 3D Documentation, Release 3.5.1

Double-click the Basic Clouds entry and a dialog will appear:

Enter a name for your clouds object then click the Create New button. A Basic Clouds object will be added to your
level. Three separate cloud layers will be rendering and moving across the sky slowly:

100 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Basic Cloud Properties

Additional properties can be changed with the Inspector pane. To change a Basic Clouds properties using the Inspector
Pane click the Scene tab, then click the name of your new Basic Cloud object. The Inspector pane will update to display
the current properties of your new sun.

Inspector

name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

scale Point3F. Object world scale.

2.3. Level objects 101

Torque 3D Documentation, Release 3.5.1

BasicClouds

layerEnabled TypeBool. Enable or disable rendering of this layer.

texture TypeImageFilename. Texture for this layer.

texScale TypeF32. Texture repeat for this layer.

texDirection TypePoint2F. Direction texture scrolls for this layer.

texSpeed TypeF32. Speed texture scrolls for this layer.

texOffset TypePoint2F. UV offset for this layer.

height TypeF32. Abstract number which controls the curvature and height of the dome mesh.

Editing

isRenderEnabled TypeBool. Only render if true (and if class is render-enabled, too

isSelectionEnabled TypeBool. Determine if the object may be selected from within the Tools.

Object

internalName TypeString. Non-unique name used by child objects of a group.

parentGroup TypeString. Group object belongs to.

class TypeString. Links object to script class namespace.

superClass TypeString. Links object to script super class (parent) namespace.

Cloud Layers

While editing your Basic Clouds object, you may discover the need to view and edit individual layers. Open the
BasicClouds section of the Inspector pane. Under the Layers sub-section you will find three layers labeled by an
index. Each index refers to a layer and determines rendering order. The layer[0] will be rendered first, layer[1] next,
and finally layer[2]. In simpler terms:

• layer[0] is drawn on top of the sky

• layer[1] is drawn on top of layer[0]

• layer[2] is drawn on top of layer[1].

You can adjust the visibility of each layer by toggling the layerEnabled property. If all three layers are disabled the
Basic Clouds object will not be visible at all:

Regarding Movement

Unfortunately, static images cannot properly show how the remaining fields affect the Basic Cloud layers, since they
all pertain to the motion of the clouds. Clouds can only move horizontally, they can not move up and down. This
horizontal movement is described in the texDirection property.

The texDirection property takes two values, separated by a space: “X Y”. Each value corresponds to the axis a texture
should scroll on as well as the direction of movement on that axis.. The range of each value is -1.0 to 1.0. For example:
A value of “1 0” will scroll the texture directly along the X axis in the positive direction with no movement along the
Y axis.

102 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Fig. 2.21: Layer 0 Disabled

2.3. Level objects 103

Torque 3D Documentation, Release 3.5.1

Fig. 2.22: Layer 1 Disabled

104 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Fig. 2.23: Layer 2 Disabled

2.3. Level objects 105

Torque 3D Documentation, Release 3.5.1

A single property, texSpeed, controls how fast the cloud layer moves. If the property is set to 0, the cloud layer will
not move. The higher the number, the faster your cloud texture will scroll across the sky.

With the texOffset property you can displace how the multiple textures line up or overlap with each based upon
whatever looks visually best. For example, at the seam where the texture repeats, you might want that to be on the
horizon rather than directly overhead. Adjusting the texOffset helps you visually adjust this. If you have a grasp of
UV animation, this will come naturally.

2.3.8 Cloud Layer

Once you have decided on your level’s sky, whether it’s a Sky Box or Scatter Sky, you can continue to customize the
scene with clouds. There are two cloud objects you can choose between. This guide covers the Cloud Layer object.

The Cloud Layer object uses the material system and procedurally generates clouds in the atmosphere. This cloud
layer is extremely powerful and flexible. For the most realistic simulation of an atmosphere, the Cloud Layer is highly
recommended.

Adding a Cloud Layer

To add a Cloud Layer object, select the Library tab in the Scene Tree panel. Click on the Level tab and double-click
the Environment folder. Locate the Cloud Layer entry:

Double-click the Cloud Layer entry. The Create Object dialog box will appear:

106 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Enter a name for your Cloud Layer object then click the Create New button. A Cloud Layer object will be added
to your level. The three procedural cloud layers generated by the Cloud Layer object will be rendering and moving
across the sky slowly:

At any time you can toggle the visibility of the cloud layer by locating the isRenderEnabled field under the Editing
properties:

When you toggle this property, the clouds will render according to the status of the check box:

2.3. Level objects 107

Torque 3D Documentation, Release 3.5.1

Cloud Layer Properties

Additional properties can be changed with the Inspector pane. To change a Cloud Layers properties using the Inspector
Pane, click the Scene tab, and then click the name of your new Cloud Layer object. The Inspector pane will update to
display the current properties of your new sun.

Inspector

Name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

scale Point3F. Object world scale.

108 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

CloudLayer

texture TypeImageFilename. An RGBA texture which should contain normals and opacity/height.

baseColor TypeColorF. Base cloud color.

exposure Brightness scale so CloudLayer can be overblown if desired.

coverage TypeF32. Fraction of sky covered by clouds 0 to 1.

windSpeed Wind speed.

height TypeF32. Abstract number which controls the curvature and height of the dome mesh.

Editing

isRenderEnabled TypeBool. Toggle whether rendering of this object is enabled.

isSelectionEnabled TypeBool. Toggle whether to allow selection in the editor.

hidden TypeBool. Toggle whether this object is visible.

locked TypeBool. Toggle whether this object can be changed.

Mounting

mountPID Unique identifier of the mount.

mountNode Node where the mount occurs.

mountPos Offset for positioning the node.

mountRot Rotation of this object in relation to the mount node.

Object

internalName TypeString. Non-unique name used by child objects of a group.

parentGroup TypeString. Group object belongs to.

class TypeString. Links object to script class namespace.

superClass TypeString. Links object to script super class (parent) namespace.

Persistence

canSave TypeBool Toggle whether the object can be saved in the editor.

canSaveDynamicFields TypeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.

persistentId Unique ID of this object.

2.3. Level objects 109

Torque 3D Documentation, Release 3.5.1

Cloud Layers

While editing your Cloud Layer object, you may discover the need to edit individual layers. Under the Textures
property section you will find layers labeled by an index. Each index refers to a layer and determines rendering order.
The layer[0] will be rendered first, layer[1] next, and finally layer[2]. In simpler terms:

• layer[0] is drawn on top of the sky.

• layer[1] is drawn on top of layer[0].

• layer[2] is drawn on top of layer[1].

Unlike the Basic Clouds object, you cannot toggle the visibility of each layer. All three work together for procedural
generation.

Editing Cloud Texture

The very first visual modification you can make is selecting a texture. This is the first field under the CloudLayer
properties. The stock Cloud Layer uses the following normal map:

110 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Cloud Layer does not use a diffuse texture. Color is calculated per-pixel based on the normal map using the
sun/ambient/fog colors. It is designed to work with the ScatterSky and TimeOfDay where simple/constant diffuseMap
based color will not work. For the procedural layer to work, the texture needs to be 4-channel. RGB (red blue green)
is a normal map and A (alpha) is the transparency.

Regarding Movement

Unfortunately, static images cannot properly show how the remaining fields affect the Cloud Layer since they all
pertain to the motion of the clouds. Clouds can only move horizontally, they can not move up and down. This
horizontal movement is described in the texDirection property.

The texDirection property takes two values, separated by a space: “X Y”. Each value corresponds to the axis a texture
should scroll on as well as the direction of movement on that axis. The range of each value is -1.0 to 1.0. For example,
a value of “1 0” will scroll the texture directly along the X axis in the positive direction with no movement along the

2.3. Level objects 111

Torque 3D Documentation, Release 3.5.1

Y axis.

Two properties control how fast the cloud layer moves: texSpeed and windSpeed. The windSpeed property is a global
modifier, whereas texSpeed will affect a single layer. The two are added to each other to determine a layer’s final
speed. If either is set to 0, the cloud layer will not move. The higher the number, the faster your cloud texture will
scroll across the sky.

2.3.9 Water Block

The Water Block object can add a lot of realism to your level’s environment. Primarily, you should use a WaterBlock
to simulate isolated bodies of water with a limited size. They do not necessarily need to be small, but a WaterPlane
can simulate a massive/endless body of water.

Adding a Water Block

To add a water block, switch to the Object Editor tool. Locate the Library panel and click it. Click on the Level tab
and then double-click the Environment folder. Locate the Water Block entry.

Double-click on the Water Block entry. A dialog box will appear:

112 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Enter a name for your Water Block then click the Create New button. A square body of water will be added to the
scene. This is your Water Block. Like any other object, you can manipulate its transform using the gizmos.

Water Block Properties

Additional properties can be accessed with the Inspector pane. To change a Water Blocks properties using the Inspector
Pane click the Scene tab, then click the name of your new Water Block object. The Inspector pane will update to display
the current properties of your new sun.

Inspector

Name TypeName. Optional global name of this object.

2.3. Level objects 113

Torque 3D Documentation, Release 3.5.1

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

WaterBlock

gridSize TypeF32. Duplicate of gridElementSize for backwards compatibility.

gridElementSize TypeF32. Spacing between vertices in the WaterBlock.

WaterObject

density TypeF32. Affects buoyancy of an object, thus affecting the Z velocity of a player (jumping, falling, etc).

viscosity TypeF32. Affects drag force applied to an object submerged in this container.

liquidType TypeRealString. Liquid type of WaterBlock, such as water, ocean, lava. Currently only Water is defined
and used.

baseColor TypeColorI. Changes color of water fog, which is what gives the water its color appearance.

fresnelBias TypeF32. Extent of fresnel affecting reflection fogging.

fresnelPower TypeF32. Measures intensity of affect on reflection based on fogging.

specularPower TypeName. Power used for specularity on the water surface (sun only).

specularColor TypeColorF. Color used for specularity on the water surface (sun only).

emissive TypeBool. When true, the water colors do not react to changes in environmental lighting.

Waves (vertex undulation)

overallWaveMagnitude TypeF32. Master variable affecting entire body of water undulation.

rippleTex TypeImageFilename. Normal map used to simulate small surface ripples.

Ripples (texture undulation)

overallRippleMagnitude TypeF32. Master variable affecting the entire surface of the WaterBlock.

foamTex TypeImage Filename. Diffuse texture for foam in shallow water (advanced lighting only).

Foam

overalFoamOpacity TypeF32. Opacity of foam texture.

foamMaxDepth TypeF32. Maximum depth for foam texture display.

foamAmbientLerp TypeF32. Interpolation for foam settings.

foamRippleInfluence TypeF32. Intensity of the ripples.

114 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Reflect

cubemap TypeCubemapName. Cubemap is used instead of reflection texture if fullReflect is off.

fullReflect TypeBool. Enables dynamic reflection rendering.

reflectivity TypeF32. Overall reflectivity of the water surface.

reflectPriority TypeF32. Affects the sort order of reflected objects.

reflectMaxRateMs TypeF32. Affects the sort time of reflected objects.

reflectDetailAdjust TypeF32. Scale up or down the detail level for objects rendered in a reflection.

reflectNormalUp TypeBool. Always use Z up as the reflection normal.

useOcclusionQuery TypeBool. Turn off reflection rendering when occluded (delayed).

reflectTexSize TypeF32. Texure size used for reflections (square).

Underwater Fogging

waterFogDensity TypeF32. Intensity of underwater fogging.

waterFogDensityOffset TypeF32. Delta, or limit, applied to waterFogDensity.

wetDepth TypeF32. The depth in world units at which full darkening will be received giving a wet appearance.

wetDarkening TypeF32. The refract color intensity scaled at wetDepth.

Misc

depthGradientTex TypeImage filename. 1D texture defining the base water color.

depthGradientMax TypeF32. Depth in world units, the max range of the color gradient texture.

Distortion

distortStartDist TypeF32. Determines start of distortion effect where water surface intersects.

distortEndDist TypeF32. Max distance that distortion algorithm is performed.

distortFullDepth TypeF32. Determines the scaling down of distortion in shallow water.

Basic Lighting

clarity TypeF32. Relative opacity or transparency of the water surface.

underwaterColor TypeColor. Changes the color shading of objects beneath the water surface.

Sound

soundAmbience TypeSFXAmbienceName. Ambient sound environment when listener is active.

2.3. Level objects 115

Torque 3D Documentation, Release 3.5.1

Editing

isRenderEnabled TypeBool. Toggles whether the object is rendered.

isSelectionEnabled TypeBool. Toggle whether this object can be selected in the editor.

hidden TypeBool.Toggle visibility in editor.

locked TypeBool. Toggle whether the object can be edited.

Mounting

mountPID TypePID. Unique identifier of the mount.

mountNode TypeS32. Node where the mount occurs.

mountPos TypeS32. Offset for positioning the node.

mountRot TypeS32. Rotation of this object in relation to the mount node.

Object

internalName TypeString. Non-unique name used by child objects of a group.

parentGroup TypeString. Group object belongs to.

class TypeString. Links object to script class namespace.

superClass TypeString. Links object to script super class (parent) namespace.

Persistence

canSave TypeBool. Toggle whether the object can be saved in the editor.

canSaveDynamicFields TypeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.

2.3.10 Water Plane

Like a Water Block, the Water Plane object can add realism to the environment of your level. However, the Water
Plane is an infinite body of water with an adjustable height. The moment you add this object to your scene, everything
below the height of the Water Plane will be submerged, similarly to a Water Block, but the Water Plane has no edges.

Adding a Water Plane

To add a Water Plane, select the Library tab in the Scene Tree Panel. Select the Level tab and double-click the
Environment folder. Locate the WaterPlane object.

116 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Double-click the WaterPlane entry. the Create Object dialog window will appear.

Enter a name for your Water Plane, then click the Create New button. A new Water Plane will be added to your scene.
If your entire screen fills up with a dark blue or black color, this means the WaterPlane was placed above your camera
so that your camera is underwater. Just move your camera up to get out of the water.

2.3. Level objects 117

Torque 3D Documentation, Release 3.5.1

This is typical if your objects are set to drop at or above your camera in the Object > Drop Location sub-menu.

Water Plane Properties

Additional properties can be changed with the Inspector pane and are identical to what you will find in a WaterBlock.
To change a Water Planes properties using the Inspector Pane, click the Scene tab, then click the name of your new
Water Plane object. The Inspector pane will update to display the current properties of your new Water Plane.

Inspector

Name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

118 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

WaterPlane

gridSize TypeF32. Duplicate of gridElementSize for backwards compatibility.

gridElementSize TypeF32. Spacing between vertices in the WaterPlane.

WaterObject

density TypeF32. Affects buoyancy of an object, thus affecting the Z velocity of a player (jumping, falling, etc).

viscosity TypeF32. Affects drag force applied to an object submerged in this container.

liquidType TypeRealString. Liquid type of WaterPlane, such as water, ocean, lava. Currently only Water is defined
and used.

baseColor TypeColorI. Changes color of water fog, which is what gives the water its color appearance.

fresnelBias TypeF32. Extent of fresnel affecting reflection fogging.

fresnelPower TypeF32. Measures intensity of affect on reflection based on fogging.

specularPower TypeName. Power used for specularity on the water surface (sun only).

specularColor TypeColorF. Color used for specularity on the water surface (sun only).

emissive TypeBool. When true, the water colors do not react to changes in environmental lighting.

Waves (vertex undulation)

overallWaveMagnitude TypeF32. Master variable affecting entire body of water undulation.

rippleTex TypeImageFilename. Normal map used to simulate small surface ripples.

Ripples (texture undulation)

overallRippleMagnitude TypeF32. Master variable affecting the entire surface of the waterplane.

foamTex TypeImage Filename. Diffuse texture for foam in shallow water (advanced lighting only).

Foam

overalFoamOpacity TypeF32. Opacity of foam texture.

foamMaxDepth TypeF32. Maximum depth for foam texture display.

foamAmbientLerp TypeF32. Interpolation for foam settings.

foamRippleInfluence TypeF32. Intensity of the ripples.

Reflect

cubemap TypeCubemapName. Cubemap is used instead of reflection texture if fullReflect is off.

fullReflect TypeBool. Enables dynamic reflection rendering.

reflectivity TypeF32. Overall reflectivity of the water surface.

reflectPriority TypeF32. Affects the sort order of reflected objects.

2.3. Level objects 119

Torque 3D Documentation, Release 3.5.1

reflectMaxRateMs TypeF32. Affects the sort time of reflected objects.

reflectDetailAdjust TypeF32. Scale up or down the detail level for objects rendered in a reflection.

reflectNormalUp TypeBool. Always use Z up as the reflection normal.

useOcclusionQuery TypeBool. Turn off reflection rendering when occluded (delayed).

reflectTexSize TypeF32. Texure size used for reflections (square).

Underwater Fogging

waterFogDensity TypeF32. Intensity of underwater fogging.

waterFogDensityOffset TypeF32. Delta, or limit, applied to waterFogDensity.

wetDepth TypeF32. The depth in world units at which full darkening will be received giving a wet appearance.

wetDarkening TypeF32. The refract color intensity scaled at wetDepth.

Misc

depthGradientTex TypeImage filename. 1D texture defining the base water color.

depthGradientMax TypeF32. Depth in world units, the max range of the color gradient texture.

Distortion

distortStartDist TypeF32. Determines start of distortion effect where water surface intersects.

distortEndDist TypeF32. Max distance that distortion algorithm is performed.

distortFullDepth TypeF32. Determines the scaling down of distortion in shallow water.

Basic Lighting

clarity TypeF32. Relative opacity or transparency of the water surface.

underwaterColor TypeColor. Changes the color shading of objects beneath the water surface.

Sound

soundAmbience TypeSFXAmbienceName. Ambient sound environment when listener is active.

Editing

isRenderEnabled TypeBool. Toggles whether the object is rendered.

isSelectionEnabled TypeBool. Toggle whether this object can be selected in the editor.

hidden TypeBool.Toggle visibility in editor.

locked TypeBool. Toggle whether the object can be edited.

120 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Mounting

mountPID TypePID. Unique identifier of the mount.

mountNode TypeS32. Node where the mount occurs.

mountPos TypeS32. Offset for positioning the node.

mountRot TypeS32. Rotation of this object in relation to the mount node.

Object

internalName TypeString. Non-unique name used by child objects of a group.

parentGroup TypeString. Group object belongs to.

class TypeString. Links object to script class namespace.

superClass TypeString. Links object to script super class (parent) namespace.

Persistence

canSave TypeBool. Toggle whether the object can be saved in the editor.

canSaveDynamicFields TypeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.

2.3.11 Precipitation

The Torque 3D World Editor allows you to quickly add different types of precipitation to your level. However,
Precipitation is used as a general term meaning any type of particle moving downward. The ability to quickly add rain,
snow, or even a sandstorm to your level is built into the editor.

Adding Precipitation

To add Precipitation to a level, switch to the Library tab in the Scene Tree panel. Click on the Level tab amd double-
click the Environment folder. Locate the Precipitation entry.

2.3. Level objects 121

Torque 3D Documentation, Release 3.5.1

Double-click the Precipitation entry.The Create Object dialog will appear.

Enter a name for your Precipitation object. The Precipitation data field allows you to choose a datablock to start with
as the basis for your new object. Click the drop down box for a list of available datablocks.

For the Full template, your only choice is HeavyRain so select it then click Create New. Your new Precipitation object
will be added to your level, and rain will start falling automatically. The stock datablock for HeavyRain simulates a

122 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

light shower, so you may not see much rain falling:

The HeavyRain datablock is located in the game/art/datablocks/environment.cs file. Its initial data contains the fol-
lowing:

datablock PrecipitationData(HeavyRain)
{

soundProfile = "HeavyRainSound";

dropTexture = "art/environment/precipitation/rain";
splashTexture = "art/environment/precipitation/water_splash";
dropSize = 0.35;
splashSize = 0.1;
useTrueBillboards = false;
splashMS = 500;

};

We will get into manipulating the datablock later.

Precipitation Properties

Additional properties can be changed with the Inspector pane. To change a Precipitation objects properties using the
Inspector Pane click the Scene tab, then click the name of your new Precipitation object. The Inspector pane will
update to display the current properties of your new sun.

2.3. Level objects 123

Torque 3D Documentation, Release 3.5.1

Inspector

name TypeName. Optional global name of this object.

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Transform

position MatrixPosition. Object world position.

rotation MatrixOrientation. Object world orientation.

scale Point3F. Object world scale.

Precipitation

numDrops TypeS32. Number of drops allowed to exists in the precipitation box at any one time.

boxWidth TypeF32. Width of precipitation box.

boxHeight TypeF32. Height of precipitation box.

Rendering

dropSize TypeF32. Size of each drop of precipitation. This will scale the texture.

splashSize TypeF32. Size of each splash animation for when a drop collides.

splashMS TypeS32. Life of splashes in milliseconds.

animateSplashes TypeS32. Check to enable splash animation on collision.

dropAnimateMS TypeS32. If greater than zero, will animate the drops from the frames in the texture.

fadeDist TypeF32. The distance at which fading of the drops begins.

fadeDistEnd TypeF32. The distance at which fading of the particles ends.

useTrueBillboards TypeBool. Check to make drops true (non axis-aligned) billboards.

useLighting TypeBool. Check to enable shading of the drops and splashes by the sun color.

glowIntensity TypeColorF. Set to 0 to disable the glow or or use it to control the intensity of each channel.

reflect TypeBool. This enables the precipitation to be rendered during reflection passes. This is expensive.

rotateWithCamVel TypeBool. Enables drops to rotate to face camera.

Collision

doCollision TypeBool. Allow collision with world objects.

hitPlayers TypeBool. Allow collision on player objects.

hitVehicles TypeBool. Allow collision on vechiles.

124 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Movement

followCam TypeBool. Enables system to follow the camera or stay where it is placed.

useWind TypeBool. Check to have the Sky property windSpeed affect precipitation.

minSpeed TypeF32. Minimum speed that a drop will fall.

maxSpeed TypeF32. Maximum speed that a drop will fall.

minMass TypeF32. Minimum mass of a drop.

mMaxMass TypeF32. Maximum mass of a drop.

Turbulence

useTurbulence TypeBool. Check to enable turubulence. This causes precipitation drops to spiral while falling.

maxTurbulence TypeF32. Radius at which precipitation drops spiral when turbulence is enabled.

turbulenceSpeed TypeF32. Speed at which precipitation drops spiral when turbulence is enabled.

Game

dataBlock TypeGameBaseData. Script datablock used for game objects.

2.3.12 Lightning

TODO

Adding Lightning

TODO

Lightning Properties

TODO

2.3.13 Wind Emitter

TODO

Adding Wind Emitter

TODO

Wind Emitter Properties

TODO

2.3. Level objects 125

Torque 3D Documentation, Release 3.5.1

2.3.14 Point Light

TODO

Adding Point Light

TODO

Point Light Properties

TODO

2.3.15 Spot Light

TODO

Adding Spot Light

TODO

Spot Light Properties

TODO

2.3.16 Particle Emitter

TODO

Adding Particle Emitter

TODO

Particle Emitter Properties

TODO

2.3.17 Sound Emitter

TODO

Adding Sound Emitter

TODO

126 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Sound Emitter Properties

TODO

2.3.18 Ground Plane

The Ground Plane object provides you with a solid piece of geometry that acts as floor for a level, while avoiding
the use of a terrain object or big plane mesh. You can assign a material to the Ground Plane so that it has a unique
appearance. Unlike terrain, a Ground Plane cannot be manipulated like a normal ground surface raising or lowering
areas of it.

From a practical perspective, the Ground Plane object is most useful for creating prototype missions or experimenting
with models or other objects. An example would be creating a demo to show a model or material, when you do not
care about the surface you are displaying them on. This type of situation only requires a flat surface within the level
to drop them on. A Ground Plane object is a perfect candidate to supply that surface. For actual game play levels, you
will most likely want to use a TerrainBlock.

Adding a Ground Plane

To add a Ground Plane to a level, switch to the Object Editor tool and select the Library tab. Click on the Level tab.
Double-click the Environment folder and locate the Ground Plane entry.

Double-click the GroundPlane entry.

2.3. Level objects 127

Torque 3D Documentation, Release 3.5.1

A new GroundPlane will automatically be added to your scene. A “no material” orange texture will be applied.

Ground Plane Properties

Properties can be changed with the Inspector pane. To change a Ground Planes properties using the Inspector Pane
click the Scene tab, then click the name of your new Ground Plane object. The Inspector pane will update to display
the current properties of your new Ground Plane.

Inspector

Name TypeName. Optional global name of this object.

128 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

id TypeCaseString. SimObjectId of this object. Read Only.

Source Class TypeCaseString. Source code class of this object. Read Only.

Plane

squareSize F32. World units per grid cell edge.

scaleU F32. Scale factor for U texture coordinates.

scaleV F32. Scale factor for V texture coordinates.

Material TypeMaterialName. Instantiated material based on given material name.

Editing

isRenderEnabled TypeBool. Toggles whether the object is rendered.

isSelectionEnabled TypeBool. Toggles whether the object is selectable in the editor.

hidden TypeBool. Toggles whether the object is visible.

locked TypeBool. Toggles whether the object is editable.

Mounting

mountPID TypeName. PersistentID of the object we are mounted to.

mountNode TypeName. Node object is mounted to.

mountPos TypeName. Position in relation to the mounted node.

mountRot TypeName. Rotation in relation to the mounted node.

Object

internalName typeString. Non-unique name used by child objects of a group.

parentGroup typeString. Group object belongs to.

class TypeString. Links object to a script class namepsace.

superClass TypeString. Links object to a script super class (parent) namespace.

Persistence

canSave TypeName. Optional global name of this object.

canSaveDynamicFields typeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.

persistentId TypeName. Optional global name of this object.

2.3. Level objects 129

Torque 3D Documentation, Release 3.5.1

Modifying Scale

The material currently displayed on the object is a general warning texture:

You can change the way this material is tiled across the plane by adjusting the square size and UV scale. Scroll through
the properties until you get to the Plane set.

Start by observing the squareSize. At 256, you will notice that each tile is large and stretching the material further. We
can push more tiles per meter with tighter UV scaling. Set the squareSize to 128, then set scaleU and scaleV to 2.

The words on the material are much closer and appear to have been shrunken.

130 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Changing Material

The warning material is a bit of an eyesore, so we will change that now. Click on the Material property in the Plane
section of properties to bring up a list of available materials.

2.3. Level objects 131

Torque 3D Documentation, Release 3.5.1

Select a material then click the Select button. Your GroundPlane will automatically be updated to use the new material
you have selected.

132 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

That is the extent of your control over the material displayed on a GroundPlane. If you are using an extremely large
texture, you could increase the squareSize and UV scale to make the tiling less blatant.

2.4 Editors

2.4.1 Terrain Editor

The Terrain Editor is used to modify a TerrainBlock’s surface in real time within the World Editor.

With the Terrain Editor, you can elevate, excavate, smooth, flatten, and randomize sections of your terrain as if you
were painting on the ground with a simple set of brushes. This is a great way to add the final details and polish to your
level before populating it with objects.

The Terrain Editor is a powerful tool and allows for more than just adding hills or holes. You can cut channels for
rivers, generate valleys for a mountainous region, turn a rocky mountain chain into a series of smooth hills, and other
similar advanced operations.

Interface

To switch to the Terrain Editor press the F2 key or from the main menu select Editors > Terrain Editor.

2.4. Editors 133

Torque 3D Documentation, Release 3.5.1

There are three main areas of the interface. On the far left is the tool palette, which is used to select what kind of
modification you wish to make.

Grab Terrain Allows you to manually raise or lower terrain under brush.

Raise Height Adds dirt to terrain beneath brush, thus elevating it.

Lower Height Excavates terrain below brush, thus lowering it and creating holes.

Smooth Smooths jagged terrain beneath brush, creating more rounded elevation.

Smooth Slope Smooth slopes in terrain.

Paint Noise Creates random divots, elevation, and depressions under brush. Used for adding detail.

Flatten Flattens terrain, elevated or excavated, to the level of brush’s starting point.

Set Height Set terrain to fixed height.

Clear Terrain Make holes in terrain.

Restore Terrain Cover holes in terrain made with the Clear Terrain tool.

At the top, the Toolbar has updated to show various brush options. The brush options will change the intensity and
pattern of your terrain modification.

Shape Toggles between a round or square brush.

Size Changes the size of the grid that makes up the brush, increasing or decreasing the amount of terrain being
modified.

134 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Pressure Determines the amount of modification being applied to the terrain.

Softness Determines how much of the brush is affected by the pressure and intensity.

Softness Curve Customize how softness is applied.

Height The brush starting height.

Finally, while moving the mouse over the terrain, you will see a circle drawn around the mouse cursor. This is the
Terrain Editor brush and is controlled by your mouse. You can use this brush to “paint” your terrain adjustments by
left clicking and dragging the cursor.

Brush Settings

Now we will go into deeper explanation of how the brush options can affect your terrain editing, and how the editor
lets you know what you are doing. On the toolbar at the top of the screen, find the Brush Settings section.

Shape

You should see a circular icon and square icon. Toggling between the two will change the shape of your brush.

Size

In the Size section you will find a box with a number in it. When you click on the arrow, a slider will appear. This
slider goes from 0 to 100, and it changes the size of your brush allowing it to modify larger sections of the terrain.

Pressure

The Pressure setting is a decimal number ranging from 0.0 to 100.0, and determines how much change is applied to
the terrain under the brush.

The easiest way to understand brush pressure is to think of using a real paintbrush on a piece of paper. The harder you
press as you stroke, the more paint the brush will leave on the paper. Pressing lightly but going over and over the same
spot again and again will also leave more paint behind.

Since you can not press harder or softer on the terrain with a mouse button the Pressure value lets you simulate how
much affect the brush has when you are “painting” terrain changes. The higher the Pressure setting, the more dramatic
the change will be under the brush over time.

For example: select the Raise Height tool; set the Pressure to 1; place the mouse over the terrain; then quickly press
the mouse button and release it. You will see the terrain slightly rise under the brush. Now change the Pressure to 100
and click elsewhere on the terrain in the same manner. You will see the terrain under the brush rise much more quickly
and higher than during the first operation.

Like a real paintbrush, our terrain brush left more change behind because its pressure was greater. The same change
can be accomplished by clicking the same spot on the terrain multiple times with a lower setting. The lower the setting,
the more control you will have to make accurate changes to the terrain.

You will also notice that the ground rose higher in the center than around the edges of the brush. Again, this mimics
the real world where the pressure around the edges of a paintbrush will be less because there are less bristles, which
makes the edges of the brush softer than the center. Therefore the edges will leave less paint behind than the center.

2.4. Editors 135

Torque 3D Documentation, Release 3.5.1

Softness

The Softness setting directly affects the intensity of the entire brush’s surface. Like the others, it is represented by a
slider. The number is a decimal value ranging between 0.0 and 100.0, with 100.0 being the softest and 0.0 the hardest.

The harder the brush is, the more dramatically the terrain under the brush will change. Think of a paint brush that
has been dipped in paint and allowed to somewhat dry. The entire brush will be harder and thus will leave more paint
behind than the same brush which has not dried and hardened. Since the entire brush has hardened the pattern that
it leaves will be the same, that is more paint in the center and less at the edges, but the overall amount of paint will
increase across the whole surface. If you allow the brush to completely dry then the entire brush will be the same
hardness and thus will leave the same amount of paint across its entire surface.

Because you can not change the softness of a mouse cursor, the Terrain Editor provides the Softness settings to emulate
these characteristics. Setting the softness to 0.0, meaning the brush has no softness at all, will result in the entire brush
being hard. The edges will be just as hard as the center and so the entire brush will leave the same amount of change
behind. The result will be in a sharp rise between the terrain and the brush edges, producing a cliff.

Conversely, if you set the brush to 100.0, meaning maximum softness the brush will exhibit its natural behaviour
returning to very soft edges and a harder center. Setting the Softness to 100.00 (maximum softness) will cause the
change at the edges to be much less dramatic than the change in the center and will result in a gentle rise from the
edges to the center, producing a rolling hill.

136 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Softness Curve

The previous section discussed how changing the Softness affects the brush over its entire surface mimicking the
natural effects of a brush which is harder in the center and softer at the edges due to the distribution of its bristles. The
Brush Softness Curve allows you to customize this behaviour further by changing the way softness and hardness is
distributed within the brush.

Click the curved line next to the brush Softness slider. The Brush Softness Curve dialog box will appear.

2.4. Editors 137

Torque 3D Documentation, Release 3.5.1

The graph contains multiple nodes which can be moved by clicking and dragging them up or down. Modifying the
nodes will determine which parts of your brush are hard or soft. As the graph shows, going from left to right will
determine where in the grid you are changing the hardness.

Left nodes are closer to the center of the brush, and each node moving to the right will move toward the outer edges
of the brush. The higher a node is situated, the harder it is. The following image is a visual of how this system works:

The circular pattern represents the shape of the brush looking straight on at its tip. Hardness of the brush is represented
by red, softness by green, and yellow indicates variations in between. The node in the upper left represents the very
center of the brush, since it is at the far left on the Inside-Outside axis. Because it is also at the very top of the Hard-
Soft axis, it means that the brush is at its hardest at that location. So the combination of these two node positions
indicates that the brush is at its hardest (indicated by red) in the very center.

On the other end of the graph line, the node in the lower right represents the very edge of the brush, since it is at the
far right on the Inside-Outside axis. Because it is also at the very bottom of the Hard-Soft axis it means that the brush
is at its softest at that location. So the combination of these two node positions indicates that the brush is at its softest

138 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

(indicated by green) all around the edge.

If you were to drag each node so that the line is reversed, the brush will be softer toward the center and harder toward
the edges.

To get an unusual setting, you can create a “wavy” version of the curve. Alternating the nodes in extremes from top to
bottom, will result in rings of softness with the brush.

Now that you are familiar with the interface, it is time to edit the terrain.

Grab Terrain Tool

Let’s start by selecting the Grab Terrain tool from the palette. With the Grab Terrain tool, you can move a section of
terrain up or down depending on which direction you are dragging your mouse.

2.4. Editors 139

Torque 3D Documentation, Release 3.5.1

Use the circle brush, size 20, 100 pressure, and 100 softness. Hover your brush over a section of terrain, hold down
the left mouse button, then move your mouse up. The terrain should dynamically adjust to your cursor location.

When you are satisfied with the height, let go of the mouse to see your terrain modification.

140 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Use the mouse to cover part of your new adjustment with the brush. Notice how the brush clamps to the terrain,
maintaining the shape you are using while still selecting a section.

2.4. Editors 141

Torque 3D Documentation, Release 3.5.1

Despite the elevation of your current selection, the section under the hardest part of the brush will still adjust more
dramatically. Using the default Softness Curve, if the center of the brush is just to the edge of a hill, you can adjust
nearby terrain to match elevation. Terrain under the softer part of the brush will still elevate, but not as much.

142 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Before moving on to the next tool, we will experiment with the softness value. Set the softness of your current brush
to 1 (very hard). Move the brush over a flat section of the terrain.

2.4. Editors 143

Torque 3D Documentation, Release 3.5.1

Click on the terrain and drag your mouse up. Instead of an elevated hill with a smooth slope, your brush should have
created a flat plateau with completely vertical sides. With a softness of 1, your brush’s shape will be used to extrude
the terrain in a sharp manner.

144 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Raise Height Tool

The Raise Height tool can only elevate the terrain, but it does so in a very controlled manner. Instead of manually
lifting, you can “paint” the terrain in a sweeping motion by dragging the mouse while holding the left button. The
longer you keep the brush in one location, the higher that section will be and the higher the Pressure setting, which
was reviewed earlier, the faster it will change.

Set your brush size to 20, pressure to 40, and softness to 100. Find a flat section of the terrain and move your mouse
cursor to that location to hover the brush.

2.4. Editors 145

Torque 3D Documentation, Release 3.5.1

When you are ready, click and hold the left mouse button and begin dragging your brush in a direction. The terrain
should elevate wherever your brush passes over. You can use this to create a hill over a long section of terrain.

146 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Using a lower brush pressure results in less dramatic terrain elevation as you “paint”. This allows you to be more exact
in cases where you need to.

Lower Height Tool

The Lower Height tool functions completely opposite of the Raise Height tool. Instead of elevating, you can dig holes
in the terrain with this tool. Again, use a circular brush with 20 size, 40 pressure, and 100 softness. With the Lower
Height tool selected, locate a flat section of the terrain and hover your brush over it.

2.4. Editors 147

Torque 3D Documentation, Release 3.5.1

Click and hold down the left mouse button. As you do so, the terrain will sink down below the brush. If you sweep
your mouse as if you are painting, you will create a path of lowered terrain. The longer you hold the mouse in a single
location, the deeper the hole will be.

148 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Smooth Tool

The Smooth tool erodes jagged terrain sections under the brush to create a smoother surface. This tool will only work
if you sweep the brush across a surface. Simply holding down the left mouse button will have little to no effect.

Keeping the same settings we have been working, locate a jagged section of terrain. If you have to, create one with the
Raise Height tool first. Make sure the elevation difference is significant. Select the Smooth tool then hover the brush
over the applicable terrain.

2.4. Editors 149

Torque 3D Documentation, Release 3.5.1

Click and hold the left mouse button, then make small circles around the peak of the terrain section. The tip should
lower and have a broader surface. The broader your sweep, the more terrain is affected by the smoothing process.

150 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Paint Noise Tool

The Paint Noise tool is used to give your terrain modifications a more randomly defined look. The tool uses a noise
algorithm for sporadic elevation and excavation. Essentially, it causes fluctuation in the amount of terrain it modifies
and how intensely it changes.

Select the Paint Noise tool, then set your brush to size 15, 50 pressure, and 100 softness. Locate a large section of flat
terrain and move your camera to a high elevation.

2.4. Editors 151

Torque 3D Documentation, Release 3.5.1

Click and hold the left mouse button down then begin to “paint” the terrain by dragging it in random patterns. Try
making several concentric circles, varying spirals, zig-zag motions, etc. You should eventually see some definition
forming.

152 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

When you are finished with the tool, fly your camera around the section of the terrain to see how the terrain was
affected. Keep in mind that most of these changes were random, which can add much needed detail to your terrain but
can cause some weird effects. The Smooth tool can be used to go back and blend out any such effects that do not look
natural.

2.4. Editors 153

Torque 3D Documentation, Release 3.5.1

You can use this tool on terrain that has already been modified to remove unrealistic adjustments, such as perfectly
smooth or flat slopes.

Flatten Tool

The Flatten tool is used to make the terrain surrounding the brush’s starting point be equal to that points elevation. In
other words, this either lower or raise your terrain to the same elevation as that starting point.

Use a circular brush with 15 size, 50 pressure, and 100 softness. Find a section of terrain that is elevated. Position
your brush near it, but on a flatter section of the terrain.

154 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Click and hold your left mouse button, then drag it toward and over the elevated terrain until you have swept over
most of it. You should see that the tool has flattened a strip of terrain, based on the brush’s location as it swept. The
flattening process will become weaker the further you take the brush into the higher terrain such that it will not cut
a path that is exactly the elevation of the starting point but rather relative to it and the terrain you are crossing. If
you sweep the Flatten tool slowly across a hilly terrain, you will see that it is well suited for specialized tasks such as
creating road and rail beds or mountain passes. Creating these types of features can be accomplished using the other
tools but this tool in particular makes that job much easier.

If you make several sweeps in the same direction, from the same starting point, your terrain will eventually smooth
out into a flat plateau almost level with your original starting point.

2.4. Editors 155

Torque 3D Documentation, Release 3.5.1

This is generally handy for clearing a smooth path from one elevation to another. However, this is not the optimal
approach for flattening huge sections of terrain. The other tools can perform that process much faster and more
efficiently.

Set Height Tool

The Set Height tool will allow you to determine the exact height for the terrain brush. Use a circular brush with a size
of 15, pressure of 50 and softness of 100, and a height of 520.

156 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Now, when you press the left mouse button, it will create a plateau at exactly that height.

2.4. Editors 157

Torque 3D Documentation, Release 3.5.1

Clear Terrain Tool

The Clear Terrain tool will allow you to remove pieces of the terrain. This is an effective way to carve out entrances
to caves. That way your artist can create a detailed cave level and your level editor can “carve” out an entrance in the
terrain. Using the previous tools, create a small hillside.

158 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Now, set your brush size to 5 and zoom into an area that looks like a promising cave entrance.

2.4. Editors 159

Torque 3D Documentation, Release 3.5.1

When you select the terrain area, it will remove the mesh data from the terrain, creating an opening.

160 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Now you can place your cave model underneath the terrain so that the player can explore the world under your terrain.

Restore Terrain Tool

The Restore Terrain tool complements the Clear Terrain tool. It will restore the mesh data for the terrain. That way,
you can have better control over the transition between your models and terrains. If you select the Restore Terrain
button and then left-click on the previously cleared area, you will see it restore the terrain to its previous state.

2.4. Editors 161

Torque 3D Documentation, Release 3.5.1

2.4.2 Terrain Painter

Just as the name implies, the Terrain Painter is a tool built into Torque 3D’s World Editor which allows you to paint
your terrain with various materials, such as grass, dirt, rocks, and so on.

Like the rest of the editors, the Terrain Painter is a WYSIWYG editor. As you change your terrain materials and paint
the surface, you can see what the changes will look like in real time as if you were playing your game.

You can use the Terrain Painter to make wide-spread modification to a blank terrain, or use finer and more detailed
brushes to touch up imported terrain layers/textures. Let’s get started by setting up your environment.

Interface

To switch to the Terrain Editor press the F3 key or from the main menu select Editors > Terrain Painter.

162 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

There are four main areas of the interface you will focus on while using this tool.

The Brush

Using the Terrain Painter is very similar to painting on a piece of paper with a brush except here you are painting on
the terrain by dragging the mouse across the screen. Your brush is represented as a circle or a square in your scene’s
view. This visual outline allows you to know where your brush is located and what portion of the terrain it will affect
when you move it.

2.4. Editors 163

Torque 3D Documentation, Release 3.5.1

The image shown above is displaying the default brush style when you first open the Terrain Painter. If you wish to
change your brush type, you can modify it via the Brush Settings found in the Tool Settings toolbar at the top of the
screen. Brush Settings are only active while using the Terrain Painter.

The image shown above is displaying the default brush style when you first open the Terrain Painter. If you wish to
change your brush type, you can modify it via the Brush Settings found in the Tool Settings toolbar at the top of the
screen. Brush Settings are only active while using the Terrain Painter.

164 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

You will find the Brush Size slider next to the shape settings. You can move the slider from left (smaller) to right
(larger) to change the size. The stock value is typically small, usually a 9x9 grid. The more you increase the slider
value, the greater the grid will grow. The change will add an equal number of rows and columns, as shown below.

2.4. Editors 165

Torque 3D Documentation, Release 3.5.1

You can find the Terrain Painter palette docked on the right side of the editor. This panel is similar to a traditional
painter’s palette in the real world. Instead of swatches of color, the Terrain Painter’s palette is populated by Terrain-
Materials which you use to paint the terrain.

166 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

A TerrainMaterial is a collection of three textures combined into a single layer. The three textures are the base (also
known as diffuse), detail, and normal map. A preview of which TerrainMaterial (or layer) is shown in the box at the
top of the palette labeled Terrain Painter Material Preview.

Terrain Materials Editor

When you wish to add a new TerrainMaterial, click on the New Layer entry in the palette. Once you click on the entry,
the Terrain Materials Editor window will appear. This tool is completely separate from the basic Material Editor, as
TerrainMaterials are structured and used much differently than other Torque 3D materials which are used on shapes in
the world placed with the World Editor.

2.4. Editors 167

Torque 3D Documentation, Release 3.5.1

Terrain Materials The TerrainMaterials list contains all the currently available textures for creating terrain materials.

New Button Clicking the Page icon in the Terrain materials header creates a new TerrainMaterial entry for editing.

Delete Button Clicking the Trash can icon in the Terrain materials headerdeletes the currently selected TerrainMate-
rial.

Apply & Select Button Clicking this button closes the Terrain Materials Editor and returns to what ever operation
brought you to the dialog, for the purposes of this article it returns you back to the Terrain Painter Material
Selector and adds the selected TerrainMaterial as a new material ready to be used for painting.

Cancel Button Close editor without making a choice.

Clicking on an entry in the Terrain Materials list updates the Material Properties pane on the right to display the current
properties of that material.

The Material Properties pane contains a Name field, which is used as the label assigned to the material and three
sub-sections which describe the textures that define the material.

The Diffuse sub-section shows a preview and the properties of the materials Diffuse texture, which provides the color
and base appearance of the material. The Diffuse texture is also commonly referred to as the Base texture for this
reason.

The Detail sub-section shows a preview and the properties of the materials Detail Map, which gives the material a
more defined, crisp look. If you are familiar with advanced rendering concepts this is accomplished using additive
blending and per-layer fade distance techniques.

The Normal sub-section shows a preview and the properties of the materials Detail Map, which gives the material a
more defined, crisp look. If you are familiar with advanced rendering concepts this is accomplished using additive
blending and per-layer fade distance techniques.

Name Assigns the name of the TerrainMaterial which will appear in the Terrain Materials list.

Edit Button Clicking this button allows you to select the texture to assign to this aspect of the material.

Trash Can Button Clicking this button clears the texture that has been selected for this section.

Use Side Projection Terrain diffuse textures are normally applied top-down, which can result in stretching. This
toggle causes a material to smoothly merge and conform to steep terrain if needed.

168 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Diffuse Size Controls the physical size, in meters, of the base texture.

Detail Size How close the camera must be before the detail map begins rendering in meters.

Detail Distance Determines how bold the detail appears on the base texture.

Parallax Scale Adjusts the intensity of the parallax depth in normal maps.

Painting

Before we begin painting, we will add a second TerrainMaterial to our palette (if the project you have open already
has more than one feel free to skip this step).

To add a new material click the New Layer button in the Terrain Painter Material Selector. The Terrain Materials
Editor will open. Click any TerrainMaterial in the list other than the one that is already in your palette, such as the
“rocktest” material shown here.

Once you have the material selected, click the Apply & Select button. Once you have done this, the new layer will
have been added to your palette and available for painting.

This is a good time to take a look behind the scenes to understand a little of how Torque 3D organizes materials and
how it uses them for other operations to your advantage.What you can not see in the interface is that the system has
associated each of the TerrainMaterials in your palette with a numbered layer. Throughout these documents you will
see, or may have already seen, that material layers are used to control aspects of object placement such as which layer
automatic object placement will occur on.

If you started with a project that was created with the Full template and added the rocktest material in the last step
then the system now considersgrass1 to be layer0 and rocktest to be layer1. This allows you, whenever asked, to select
layers using something meaningful to you rather than remembering some random numbering system. When asked to
select a layer you can simply pick the grass or rocktest layer from a list and the system will use and apply the proper
numbered layer to perform the related operation.

All this becomes very important in reducing the amount of work that is needed to create realistic terrain. The Terrain-
Materials that you apply with the Terrain Painter tool not only give the terrain the appearance of natural materials but
they can be used to automatically generate and restrict foliage and other shapes when used in conjunction with objects
such as GroundCover.

2.4. Editors 169

Torque 3D Documentation, Release 3.5.1

Now, on to learning to paint. Make sure you have the new material selected in the Terrain Painter Material Selector.
So we can more easily see the modifications we are about to make, set your brush size to about 25. Now, find a section
of the terrain you wish to paint. Here, we started in a corner of the TerrainBlock.

170 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Click and hold down the left mouse button, then begin dragging the brush around the screen in a sweeping motion.
The terrain will update in real time to reflect the painting of the new TerrainMaterial. When you let go of the mouse
button, the Terrain Painter will stop laying down the material.

2.4. Editors 171

Torque 3D Documentation, Release 3.5.1

You should have noticed that your brush clamped to the terrain as long as the cursor was over the block. This happens
regardless of any terrain modification or elevation occurring, as shown in the following example. Notice how the brush
distorts to wrap around the elevated terrain.

172 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Even though you just paved a large section of rock material, you can still paint over it. Decrease the Brush Size to
approximately 9, so we can paint a more exact line of terrain. We are going to paint a path over our rocky area. In the
Terrain Painter palette, select the first material (desert_sand_03 in this image).

2.4. Editors 173

Torque 3D Documentation, Release 3.5.1

Now, using your mouse cursor move the brush to the edge of our rocky area. You can start it just before the rocky
area, or even on top of it.

174 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Click and hold down the left mouse button to begin painting then sweep your mouse in a curving motion across the
rocky area. When you are finished, let go of the mouse and examine or your winding path made of grass.

2.4. Editors 175

Torque 3D Documentation, Release 3.5.1

If you were to drop down to the player’s camera view, you can see where the two TerrainMaterials meet each other
after editing.

176 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Take the time to experiment with different brush sizes and shapes to see what kind of patterns you can come up with.
When you are ready, read on to learn how to add a new TerrainMaterial with higher quality and detail.

2.4.3 Material Editor

Torque 3D’s Material Editor allows an artist to quickly create and edit a game object’s materials without ever touching
a line of code. This tool can preview and edit materials mapped to an object in real time from the World Editor.
Materials are categorized for ease of organization, and the editor is designed to be backwards-compatible with any
existing script files. Materials are defined within script files named materials.cs

The Material Editor quickly comes into play when you are building your level by placing objects into the scene. As an
example situation, let us assume you have a light fixture you or another artist has exported for use in Torque 3D. The
creation of this object was a multi-step process.

The object’s geometry had to be created in a 3D modeling app, such as 3DS Max, Maya or Blender. Once the
geometry was finished, a 2D graphical application was used to create the various textures that make up the high
quality appearance: base texture (diffuse map), normal map, detail map, etc.

The rendered view of this object looks fine in the originating application, which leads you to believe it is ready to be
imported into your game’s level. When you drop the lighting fixture into the world, there is a good chance it will fit
right in based on your existing design. The theme and color scheme are likely a match.

However, once your object is in the level you might notice something is off. While the stand alone object viewed in an
external tool looked great, the object now seems out of sync with your level’s lighting, tone, or specific room theme.

2.4. Editors 177

Torque 3D Documentation, Release 3.5.1

This is not the fault of the artist or design. What has happened is the materials for your object have either not been
assigned or need to be tweaked to perfection in specific instances. Instead of going back into the art tool or adjusting
properties in code, you can use the Material Editor to edit the appearance of your object by adjusting the texture maps
and their properties.

Interface

To switch to the Material Editor press the F4 key or from the main menu select Editors -> Material Editor.

Main Editor

Each major section of the Material Editor is separated via a header, such as Lighting Properties or Animation Proper-
ties. The fields found in these sections directly manipulate a materials properties in real time.

Material Preview

Cube Changes the Preview Mesh.

Square Symbols Change Normal Light Color.

Preview in World Show changes made in material editor on selected object in scene view.

Bottom Right Click square to change color of background preview.

178 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Material Properties

Edit Material Select and Edit an Existing Material (E).

Floppy Disk Save material.

Trash Can Delete Material.

Name.dts Name of 3D asset using this material.

First Drop Down Texture associated with material.

Material Name of material.

Square with Ball Swap current material mapped to this mesh for another.

2nd Trash Icon Remove this material from mesh target.

Basic Texture Maps

Diffuse Map Base texture for material.

Normal Map Bump map that provides higher detail to mesh without extra polygons.

Overly Map Texture draw on top of other maps.

Detail Map Texture providing additional detail via lightening and darkening base map using high pass filter.

Light Map Texture using baked lighting info.

Tone Map Map which scales the RGB values of material. Used to calculate HDR.

Advanced Texture Maps

Diffuse Map Base texture for material.

Normal Map Bump map that provides higher detail to mesh without extra polygons.

Overly Map Texture draw on top of other maps.

Detail Map Texture providing additional detail via lightening and darkening base map using high pass filter.

Light Map Texture using baked lighting info.

Tone Map Map which scales the RGB values of material. Used to calculate HDR.

Lighting Properties

Specular Enables the use of Pixel Specular (shininess) for this layer. The slider adjust the strengt, and you can set the
color of the specularity.

Glow Determines if this layer will Glow or not.

Exposure Intensifies glow and emission.

Emissive Causes an object to not be affected by lights. Good for materials from light source objects.

Animation Rotate Properties

Purpose Causes material to rotate along the surfaces of the mesh it is mapped to.

U and V Sliders Determines the direction of U/V coordinate rotation.

Speed Rate of coordinate rotation.

2.4. Editors 179

Torque 3D Documentation, Release 3.5.1

Animation Scroll Properties

Purpose Causes material to scroll along the surfaces of the mesh it is mapped to.

U and V Sliders Determines the direction of U/V coordinate scrolling.

Speed Rate of coordinate scrolling.

Animation Wave Properties

Purpose Causes the material to scroll in a wavy manner along the surfaces of the mesh it is mapped to.

Wave Type Switch between sine, triangle, and sqaure wave patterns.

Amplitude Changes the positive and negative crest of the wave (intensity).

Frequency Adjust wave length, which is the number of waves per time interval.

Animation Sequence Properties

Purpose Animates texture by frames.

Frames per Sec How many frames to display per second.

Frames Number of total frames in the sequence.

Advanced Properties

Purpose Adjusts advanced parameters that affects transparency calculations.

Transparency Blending Sets material to use transparent blending modes.

Transparent Z Write Can be used to help force a proper Z Ordering when Z Ordering issues occur. Only valid on
materials with Transparency.

Alpha Threshold When enabled, causes pixels under a specific alpha threshold to get discarded rather than be com-
puted.

Cast Shadows Material determines whether target mesh is allowed to cast shadows.

Double Sided Determines if this material will be rendered from both sides of a polygon.

Blending Box Determines type of blending and reflection applied on the transparent object.

Material Selector

When you wish to swap the material mapped to an object or create a new material, you will use the Material Selector.
To change the material on an object, it must first be selected. If you do not know how to select an object, refer to the
Object Editor documentation, then switch back to the Material Editor (F4). The Material Properties pane on the right
side of the screen displays the properties that describe the material of the selected object.

At the top-right of the pane there is a value named Material. Click on the globe to the right side of it. This will bring
up the Material Selector window.

180 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The center section of this dialog displays a list of all materials currently loaded in the game. OClicking on any material
selects it which will cause the panes on the right to update and display information about the material. This information
is limited to a preview of the material’s Diffuse texture, the name of the diffuse texture, and a list of filter tags.

On the left is a list of filters. The filter system is used to organize your materials for ease of use, and contains types
and tags. To create a new tag, click the new tag button:

2.4. Editors 181

Torque 3D Documentation, Release 3.5.1

The Create New Tag dialog will pop up. Enter a name for your new the tag then click the Create button. In this
example, you will be grouping all the materials related to cliffs. Whenever a material is selected, the Material Tags
section on the right will be updated to show all the tags that you have created, each with a checkbox. Clicking the box
of a specific tag will associate that tag with the current material. Clicking a checked box will dissociate the tag from
the material.

The list of materials can be filtered using the tags assigned to them. To filter the material list use the tags section on
the far left. When you click on the check box for tag it tells the system to include materials that have that tag in the
list. Any materials that do not have at least one of the checked tags will be filtered out of the list.

Editing an Existing Material

Your game’s levels can potentially contain thousands of different objects with varying purposes: explosive barrels,
ammo crates, static light fixtures, solid walls, etc. Each one will have a material that might need subtle tweaking to fit
in, such as a glowing light bulb.

In this example, you will adjust the properties of this bridge materials.

Remember that you can preview the changes in the scene as well as the preview box in the Material Editor. You will
start by toggling the Specular property of the material used for the metal pipe. Without Specular enabled, an object
will not have a shine and will thus appear flat.

182 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

When the Specular property is enabled, the cube in the preview box will have a shiny appearance. In the scene, the
metal will also be shinier due to the lighting reflection.

2.4. Editors 183

Torque 3D Documentation, Release 3.5.1

Creating a New Material

While developing your game, you will most likely be using your own assets. When you add a model to the scene, it
will be assigned the default “No Material” texture which serves as a warning to the designer that no material has been
assigned to an object. This material is automatically used for all assets before they have a mapped materials.

184 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

If you have already created the textures for your object, creating and assigning a material is a simple process. Start by
clicking the globe symbol next to the Material name box.

The Material Selector dialog will appear. Click the Create New Unmapped Material button found at the top right of
the Material section’s header.

A new material will be added to the list with a name similar to newMaterial_0. Click on the material to view it in the
Diffuse Preview section.

2.4. Editors 185

Torque 3D Documentation, Release 3.5.1

Click the Select button to use that selected material for the object you are editing. After the Material Selector closes,
you will be prompted to save any material changes that you may have made before entering the Material Selector. Do
so if you wish to retain any changes that you made prior to creating the material.

Your new material will have replaced the material selection in the Material Properties pane back in the Material Editor
and should now be displayed in the Material field. Type in the real name you want for your new material to be known
by then press the Enter key. In this example, the name of the material is “boxxy.”

Before editing anything else, click the Save Material button, represented by the floppy disk symbol to save the new
material.

Note: You MUST press the Enter key after typing the material name BEFORE clicking the Save Material button or
the material will not be properly saved.

Now, scroll down to the Texture Maps section of the Material Editor. This is where you will be adding the actual
texture files that define this new material. Click on the Diffuse Map preview or the Edit button in that section to open
a file browser. Navigate to your diffuse texture, or sometimes referred to as the base texture. Select the file that you
want to use as for this new material then click the Open button.

Your preview window and scene should immediately be updated to reflect the addition of your texture.

Repeat the process to add your Normal map. Click on the preview or edit button in the Normal Map section. When the
file browser appears, select your normal map texture. Once again, your scene will be updated to reflect the changes
that have been made to the material. Click the save button to retain these changes.

If you open the Material Selector again, you will notice your new material has been saved in the list. This material is
now available to be assigned to any other meshes within the project without having to go through the whole process
of redefining it again.

186 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.4.4 Sketch Tool

The Sketch Tool is a tool that allows you to quickly generate meshes without going to 3rd party modeling applications,
such as Maya or 3DS Max. It is not meant to create final or game ready art, just rough shapes that are placeholders for
your real art. For example, you can use this tool to sketch the shape of a building you want. The rough design can fit
your needs for a simple design and estimated measurements.

Interface

To switch to the Material Editor press the F4 key or from the main menu select Editors > Material Editor or click on
the orange box icon to get started.

The Tools Palette will populate with basic manipulation icons:

Select Object Select a convex object or individual face

Translate Move an individual face

Rotate Object Rotate an individual face

Scale Object Grow or shrink an individual face

As with the other editors, extremely helpful usage hints will be displayed in the bottom left corner of the editor.
Shortcuts and basic descriptions will appear based on which tool you are using.

2.4. Editors 187

Torque 3D Documentation, Release 3.5.1

Creating a Convex Shape

The very basic interface allows you to quickly sketch out convex shapes. All of your editing can be performed via
mouse actions. To begin creating a convex shape, hold down the Alt key and left mouse button to begin drawing a
base. The base will follow where your mouse cursor is being dragged, shrinking or growing as it goes.

Once you let go of your mouse button, the base will stop growing. From here you can move your mouse cursor up and
down to change the height of your new box. You do not have to hold down the mouse button during this time.

188 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Once you are happy with your convex shape’s height, left click one last time. The box will become a solid object and
automatically be selected. If you make a mistake, hit Ctrl-Z to undo and erase the shape then repeat the process.

When you are ready to begin shaping the box, left click one of its faces. The currently selected face will be highlighted
in bright pink:

2.4. Editors 189

Torque 3D Documentation, Release 3.5.1

At this point, you can start using the Sketch tools to edit the specific face you have selected.

Editing a Convex Shape

Let’s move some surfaces around. Start by selecting a faceof the object by (left clicking on it). Three colored lines will
now extend from the center of that face - these represent the axes for the three dimensions x, y and z. This is called
the axis gizmo. Activate the Move Selection tool by clicking the icon on the Tools Palette on the left of the screen or
press the shortcut key 2:

190 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Once the Move Selection tool is activated, arrows will appear on the ends of the axis gizmo. Click on the X-axis and
drag it outward. Your face will move in the direction you are dragging your mouse. The entire convex shape will
adjust according to where the face as moved. You will be able to move the face in any direction in three-space:

2.4. Editors 191

Torque 3D Documentation, Release 3.5.1

Next, activate the Rotate Selection tool by clicking the icon on the Tools Palette on the left of the screen or press the
shortcut key 3. A spherical gizmo will appear representing the orientation manipulators. The axis gizmo straight lines
will now be displayed as three curved colored lines:

192 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Click and hold one of the colored lines (an axis), and drag it in a direction. The selected face will begin to slope
according to the new orientation:

2.4. Editors 193

Torque 3D Documentation, Release 3.5.1

Finally, activate the Scale Selection tool by clicking the icon on the Tools Palette on the left of the screen or pressing
the shortcut key 4. Click on the top face of the box. A squared like gizmo will appear which will allow you to choose
what parameters to adjust. You can adjust the (width, height, depth, or any combination of the three):

194 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Instead of adjusting one parameter at a time, we are going to adjust width and height. Move your mouse over the
different squares to see how they highlight. Click the bottom square of the gizmo, in between the red X and yellow Y
axis and hold down the mouse button. Drag your mouse in either direction to shrink or grow the face. The more you
shrink, the more like a pyramid it will be come:

2.4. Editors 195

Torque 3D Documentation, Release 3.5.1

The last action this guide will address is extruding. The Sketch Tool extruding feature creates new geometry from
a selected a face. Start by creating a new convex shape - review the section, Creating a Convex Shape, if you don’t
remember how.

196 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Next click on a single face of the shape. Make sure you have a face selected, and not the entire object. The selected
face should be highlighted with a in bright pink. Activate the Move Selection tool. A hint will display at the bottom
of the editor: “Move selection. Shift while beginning a drag extrudes a new convex.”

2.4. Editors 197

Torque 3D Documentation, Release 3.5.1

Perform this action as described. With the face selected, hold down the Shift key, move the mouse over one of
the colored arrows, and click and drag outwards from the object. The exact dimensions of the original face will be
duplicated, constructing a new convex based on those parameters. This may not be apparent until you click on a face
and see that the area of the new face is separate from the original:

198 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

You can now select faces on the new convex object and continue editing it as a new object:

2.4. Editors 199

Torque 3D Documentation, Release 3.5.1

Object Manipulation

When you are finished sculpting a convex shape, you can manipulate it as you would with any other game object using
the Object Editor. This includes selection, translation/rotation/scaling, and editing specific properties.

Unlike the Sketch Tool, selecting a convex shape using the Object Editor it treats the object as a whole. There is no
individual face selection. Switch to the Object Editor by pressing the F1 key then click on one of your objects:

200 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

You may then manipulate the object using the normal Move Selection, Rotate Selection, and Scale Selection tools of
the Object Editor. You can even use the other more complex Object Editor commands such as copying an object. To
copy the object: hold the Shift key; activate the Move Selection tool by pressing the 2 hotkey; press and hold the
Shift key; then drag the mouse to a new position in any direction. When you release the mouse button you will have
a new duplicate copy of the original object:

2.4. Editors 201

Torque 3D Documentation, Release 3.5.1

This can also be used for mass production of objects by copying multiple objects at once. Change back to the Select
Arrow tool by pressing the 1 hotkey. Click one of your objects to select it. Take note of the position of the gizmo that
appears and the little cube at the gizmos origin. Now select the other object. Again take note of the position of the
gizmo and the cube for this object. Now press and hold down the Shift key then click your other object again. You
will notice there are now two small cubes, one over each object, and one gizmo relatively near the center of the two
objects. This indicates that both objects are currently selected. You now have a selection group.

Change to the Move Tool by pressing the 2 hotkey. The cubes will disappear, and large arrows will appear on the
ends of the gizmo. If you mouse over either object, you will see a faint transparent cube pop up. This indicates that
object is a part of the selection group. Clicking any arrow and dragging the mouse will not move all the objects at
once. Likewise, pressing and holding down the Shift key, then clicking and drag will duplicate all the objects in the
selection group:

202 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The new copy of the objects will now be the current selection and they can be moved as a group or immediately copied
again with another Shift-drag operation. The above method combined with rearranging the individual objects after
copying them is a great way to piece together multiple convex shapes to create more complex arrangements. For
example, you might have unique convex objects for a roof, wall, chimney, and so on. You could only create one wall,
then duplicate it four times so that they are all the same size then arrange them into a building with the Move Selection
tool:

2.4. Editors 203

Torque 3D Documentation, Release 3.5.1

Once you get the hang of the Sketch Tool, you can sculpt unique and complex shapes. Entire levels can be prototyped
to use placeholder art, created right inside Torque 3D, while you or your artists work on the final assets using the tools
that they are familiar with.

2.4.5 Datablock Editor

The configuration properties that describe dynamic objects in Torque 3D are stored in information structures called
datablocks. The T3D Datablock Editor is used to quickly and easily change any parameter of any datablock from
within the world Editor.

Interface

To switch to the Datablock Editor press the F6 key or from the main menu select Editors > Datablock Editor. Or
alternately click the Datablock icon from the World Editor toolbar.

204 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Datablock editor has two components: the Datablock Library pane and the Datablock properties pane. These
panes appear at the right of the screen whenever the Datablock Editor is active. The Datablock Library pane is further
divided into two tabs. The first, labelled Existing, contains a categorized list of all the existing datablocks. The second,
labelled New, is used to create new instances of those datablocks.

Clicking any existing datablock will cause the Datablock properties pane to update to display the current properties of
that datablock.

2.4. Editors 205

Torque 3D Documentation, Release 3.5.1

The image below shows the selection of the DefaultCar datablock, under the WheeledVehicleData category. This
datablock contains variables related to vehicle performance.

Creating a new Datablock

Creating a new datablock can be done by creating a copy from an already existing datablock. To do so first select the
New tab in the Datablock Library pane.

Then choose the type of datablock you wish to create from the list. Then press the New icon.

206 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

You will be presented with a new window giving you the option to name the new datablock and to copy values from
one of the existing instances of the datablock type, if you want to. For example, in this scenario the DefaultCar
datablock would be available in the dropdown box because it already exists at the time when creating a new datablock.

After clicking the Create button a new copy of the datablock will be added to the library, under the datablock type
you first selected. In this example, you will create a new WheeledVehicleData datablock and name the new version
“raceCar”. This new version can now be found in the Library, under the Existing tab, in the WheeledVehicleData
section.

Saving a Datablock

After editing the new datablock or any other datablock, you will need to save it. You will see a small “*” in the header
of the properties right after the Datablock label if the datablock needs saving.

Click the small floppy disk icon to save your datablock changes.

2.4. Editors 207

Torque 3D Documentation, Release 3.5.1

Note: Any new datablock which has been saved will be added into the managedDatablocks.cs document which can
be found at the location: projectgameartdatablocksfor your scripters to access later.

Deleting a Datablock

If you no longer need a datablock you can easily delete it by selecting the Delete icon.

After pressing this icon you will get a notification window stating that the datablock has been removed. The World
Builder will need to be restarted to completely remove the file.

2.4.6 Decal Editor

Decals in Torque 3D refer to image textures that are overlaid on objects such as the terrain or players to give the ap-
pearance of surface affects such as leaves, flowers, or litter on the ground, or for dynamic changes to the environment,
such as foot prints, or burn marks from explosions without the need to create and place special terrain materials or

208 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

objects to represent the effects. Torque 3D’s Decal Editor provides you with control over decals of any type, including
placement and other attributes. Decals can be placed via the editor to any visible surface within the world.

As with the other Torque 3D editors this can be easily achieved by using the built-in WYSIWYG (What-You-See-Is-
What-You-Get) editing tools.

Interface

To access the Decal Editor press the F7 key or select it from the drop down menu at the top of the World Editor, by
choosing Editors > Decal Editor. Or select the Decal icon from the World Editor tool bar.

The Decal editor has two main parts, one where you can add and manipulate the size, rotation and position of the
decal, and the other for adjusting the decal properties. On the upper-left hand side of your screen, you’ll see a toolbar
which provides tools for decal placement and manipulation. On the right of the screen, there is the Decal Editor pane
which displays a list of decals, and the Template Properties pane below it, which displays properties of the selected
decal along with a texture preview.

In the Decal Editor pane on the top right, under the Library tab, is a list of the decal datablocks defined in the system,
which are really decal descriptions. In the Instances tab, there is a list of all decals that have been created within the
current project.

2.4. Editors 209

Torque 3D Documentation, Release 3.5.1

Adding a New Decal Datablock to the Library

Before you can paint a decal to your world, the datablock needs to exist in the decal library. To add a new decal,
simply press the New Decal icon at the top of the Decal Editor pane. This will add a new blank decal to the library,
ready for you to select or add a material and set up its properties.

Naming a New Decal Datablock

After creating a new decal you will want to name it. This can be achieved by selecting the name property and entering
a new name, then pressing the Enter key.

Removing Decal Datablock from the Library

To remove an existing decal from the library simply select the decal in the list then click the Delete icon.

If you select Yes all instances of the selected decal will be removed. The datablock will continue to exist until the
World Editor is restarted.

Missing Decals

If a decal exists in the level, but is not rendering, it means the datablock for it has either been deleted, renamed, or
corrupted. The Retarget button allows you to assign an existing datablock to a missing decal.

To open the retarget dialogue, select the decal that you wish to fix then click the Retarget icon at the top of the Decal
Library pane.

The Retarget Decal Instances dialog box will open. From here you can reassign the decal datablock. Select a Decal
Datablock from the drop down list that you wish to use for the selected decal.

210 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Editing Tools

The Decal Editor placement and manipulation tools appear on the toolbar down the left of your screen whenever the
Decal Editor is active. Each tool can be activated by clicking the appropriate icons or by pressing its hotkey. Hotkeys
are assigned 1 through 5 from top to bottom in the toolbar and are visible by hovering the mouse over the icon. These
tools will enable you to quickly place, scale and rotate your decals.

Adding a Decal

Before adding a decal, a datablock for the decal must exist in the Decal Library. Please see the section “Adding a New
Decal Datablock to the Library” above.

To add a decal to a level select a decal from the Library tab of the Decal editor pane, click the Add Decal tool, and
then click on the terrain where you would like to see your decal instance appear. The same decal can be placed in a
level multiple times. Each such copy is referred to as an instance of the decal.

Selecting a Decal

The selection tool enables you to directly select a decal instance that has already been placed in the level by simply
clicking on it. Its datablock properties will then be shown in the Template Properties pane for viewing and/or editing.

Deleting a Decal Instance

There will be times when you need to delete an a decal instance. The decal can be selected by the Selection tool
(see the “Selecting a Decal” section) and then pressing the Delete key. Or you can select the required decal from the
Instances tab in the Decal Editor pane, then press the Delete key or press the Delete button, represented by the trash
can icon.

Note: This will only delete the selected decal instance in the world, not the decalâC™s datablock listed on the Library
tab.

Moving a Decal

To move a decal instance simply select the decal using any method described above then click the Move tool icon.
The normal Object Editor movement gizmo will appear. Click any axis arrow using the left mouse button, then hold
the button down and drag the mouse to move the decal in that direction. Release the mouse button to drop the decal at
the new location.

Scaling a Decal

If you find that the decal is either too small or too large you can use the Scale tool to resize the decal. This uses the
standard world gizmo, but will not scale on the vertical axis due to decals being restricted to two-dimensions. Click
any axis cube using the left mouse button, then hold the button down and drag the mouse to scale the decal in that
direction. Release the mouse button to leave the decal at the new scale.

2.4. Editors 211

Torque 3D Documentation, Release 3.5.1

Rotating a Decal

If for any reason you find that you need to rotate a decal, you can use the Rotate Tool do so. To rotate a decal, select
the decal by any method described above, and then click the Rotate Tool icon. The standard world rotational gizmo
will appear. Click any rotation circle using the left mouse button, then hold the button down and drag the mouse to
rotate the decal in that direction. Release the mouse button to leave the decal at the new location.

Note: Because decals are two-dimensional rotating a decal will never cause the decal to leave the surface upon which
it has been placed. Rather, when a decal is rotated by any axis the decal will rotate in two-dimensions locked to that
surface. This can cause some strange effects if the surface that contains a decal is curved with a radius less than the
size of the decal. As with all the other T3D editors, the more that you experiment and use the tools the more familiar
you will be with them. With practice and time you will find many uses for the Torque 3D decal system.

Properties

A Decal has only a small amount of properties which can be edited using the Template Properties pane:

Size The size of the decal rendered onto the surface.

Material Specifies the Material selected to display as the decal.

Lifespan Time in Ms (milliseconds) that the decal will exist in the world after being placed dynamically.

FadeTime Time for the decal to fade out in Ms (milliseconds).

Frame Index of texture rectangle to use for this decal, if the texture consists of multiple images.

Randomize Randomizes the texture rectangle (frame) used for each instance of the decal. So it essentially uses a
random frame.

TexRows Defines the number of image rows in a multiple image material.

TexCols Defines the number of image columns in a multiple image material.

ScreenStartRadius Distance check for rendering the alpha channel of the decal.Visibility check based on the scale
of the decal

ScreenEndRadius Distance check for rendering the alpha channel of the decal.Visibility check based on the scale of
the decal

Render Priority If more than one decal are on top of each other the decal with the higher priority will rendered first

Clipping Angle The angle in degrees used to display geometry that faces away from the decal projection direction.

212 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.4.7 Forest Editor

The Forest Editor is a tool that allows you to quickly create massive amounts of vegetation for your level including
patches of trees, forests, and fields of smaller elements such as shrubs and plants. Entire forests can be laid down using
simple techniques similar to painting on a canvas, where instead of paint your brushes, lay down 3D models on the
terrain.

Interface

To access the Forest Editor press the F8 key, or select it from the drop down menu at the top of the World Editor, by
choosing Editors > Forest Editor, or click on the leaf icon to get started.

2.4. Editors 213

Torque 3D Documentation, Release 3.5.1

The Tools Palette on the left of the screen will populate with Forest Editor specific tool buttons represented by icons.

Select Item Select an individual object in forest

Translate Item Move the currently selected object

Rotate Item Rotate the currently selected object

Scale Item Grow or shrink the currently selected object

Paint Used for painting objects on terrain

Erase Used for erasing objects from a terrain

Erase Selected Used to delete the currently selected objects

The Forest Editor has two main panels which will appear on the right of the screen whenever the Forest Editor is
active.. On the top is the Forest Editor pane which is divided into two tabs: Brushes and Meshes. The Forest Editor
works in a manner similar to painting on a canvas with a brush, except instead of paint the Forest Editor lays down
shapes onto the terrain of your level. A Brush in the Torque 3D Forest Editor is composed of one or more mesh
elements, which can be alternated between when painting.

The Meshes tab contains a list of all Forest Mesh elements which can be assigned to a brush. A forest mesh is really a
datablock which is an information structure that defines a model and the properties which control it in the forest.

On the bottom of the right side of the screen is the Properties pane. The Properties pane displays information about
the currently selected element in active tab of the Forest Editor pane.

Before we can use these tools and paint a forest, we need to import a forest mesh and set up a brush.

Creating a Forest Mesh

To create a forest mesh tart by clicking on the Meshes tab in the Forest Editor pane. There are two icons in the top
right. The trash bin deletes the currently selected existing mesh, and the leaf icon will adds a new mesh. Click on the
Add New Mesh icon.

A file browser should appear. Locate the sample tree mesh file, defaulttree.DAE, which can be located in the
game/art/shapes/trees/defaulttree folder.

A new mesh will be added to the tab using the same name as the file you selected:

214 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Properties pane will also be populated with fields and values which describe the new mesh.

2.4. Editors 215

Torque 3D Documentation, Release 3.5.1

Switch to the Brushed Tab. You will see that the new mesh has also automatically been added to the list of Brushesallow
you to select it as the element to paint with.Select the new brush by clicking on its name. The Properties pane will be
updated to display the properties of the brush which can be used to randomize the placement and appearance of the
selected mesh.

Using a Brush

Now that you have an available brush you can begin painting a forest. Select the defaulttree brush from the sample
assets. Move the mouse until a blue circle appears on the terrain. This is the outline of your forest brush and shows
where you are going paint. To begin painting, left click the mouse and drag it around on the terrain.

If this is the first time you have painted a forest in a level then no Forest object exists in the level yet. However, a forest
object must exist , so you will be prompted to confirm that you want to add one.

Answering No will abort the forest painting operation. Answering Yes will automatically create a new Forest object,
add it to your level, and return you to the level with the brush still active ready to continue painting. You can examine
the forest object the same way as any other object using the Object Editor but it has no useful properties to edit so lets
skip it for now an continue on with our forest painting operation.

Once again, hold down the left mouse button and drag the mouse over terrain. As you move the brush trees will begin
showing up in the wake of your brush. To change the size of your brush, pull the mouse wheel toward you to increase
the size or push it away to decrease the size. The blue circle will grow or shrink to indicate your new size.

Note that you do not have the ability to move the camera forward and back in the Forest Editor because of the
availability of the brush resizing feature. To move the camera forward and back while using the Forest Editor press

216 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

the Up Arrow to move forward and the Down arrow to move backward.

Keep painting until you have a decent patch of trees:

If you move your camera down to ground level, you can see how your forest will look from a player perspective. Youll
notice that these are full 3D objects that react to collision, sunlight, and external forces.

2.4. Editors 217

Torque 3D Documentation, Release 3.5.1

Adjusting Properties

You can edit the properties of a Mesh to adjust how each tree is placed when painting. To adjust the density of mesh
placement switch to the Meshes tab then select your defaulttree entry. The Properties pane will update to display the
properties of your mesh. Change the radius property from 1 to 2 then press the Enter key.

This radius tells the tool a rough amount of space this item takes up. The value is a decimal value and has no limits,
but remember that if the value is too low your trees may overlap, and if it is too high you may not get any trees to
appear because the spacing might be larger than the brush itself. Now when you paint you should get more spacing
between the placed meshes.

218 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

As mentioned previously, you can use the Forest Editor to paint additional environmental objects such as rocks, shrubs,
or any other 3D model. Since you can paint different types of objects, you might want to organize your brushes and
meshes.

In the Brushes tab, click on the Add New Brush Group icon. This will add a new entry in the brush list, called “Brush”.
Click on the text of the new brush group. This will allow you to edit the text of the brush. Name the brush group “Trees”
then press the enter key. Now, you can click on the defaulttree element and drag it onto the Trees brush group. Switch
to the Meshes tab, and click the Add New Mesh tree icon to add a new one. Select game/art/shapes/rocks/rock1.dts as
your model.

The rock1 mesh will be added to your Meshes list. Unlike trees, the rock1 mesh is fairly large and somewhat spherical.
Spreading out the placement of this mesh will help prevent dense blobs of rocks being placed. In the Mesh properties
tab, increase the rock1 radius to 3.

Switch back to the Brushes tab. Create a new brush group and name it Rocks. Your rock1 mesh element should already
be in the list, so drag it onto the Rocks brush group to keep things organized. Go ahead and paint down some rocks in
your level. You should end up with a patch of huge boulders with fairly even spacing:

2.4. Editors 219

Torque 3D Documentation, Release 3.5.1

You might have noticed all the boulders are the same size. For added realism, you can adjust the brush properties to
randomize its appearance. Select rock1, then decrease the scaleMin and increase the scaleMax. Begin painting a new
set of rocks. Now, you will end up with rocks of varying sizes. Some will be as small as your player, while others
could be twice the size of the original mesh.

220 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Editor Settings

The actions available in the tools palette give you absolute control of your forest placement. The first four tools allow
you to adjust individual elements of your forest, such as a single tree. The Select Item tool allows you to select an
individual element, which is indicated by a colored axis gizmo appearing on top of the item:

2.4. Editors 221

Torque 3D Documentation, Release 3.5.1

Once you have a tree selected, you can change its location without moving the entire forest. With the tree selected,
activate the Move Item tool. The arrows gizmo will appear, allowing you to drag the tree around in the world. The
Rotate tool, represented by a spherical gizmo, allows you to adjust the orientation of the tree in 3D space. You can use
this to make individual trees lean in a specific direction. The Scale tool can be used to shrink or grow an individual
tree. When you need to tidy up a forest, such as removing rogue trees, pressing the delete key when you have a tree
selected will remove it from the scene.

222 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

If you need to delete entire sections of a forest, you may not want to delete each tree individually. Instead, you should
use the Erase tool. The Erase tool is located directly below the Paint tool. When activated, the circle representing your
brush in the world will turn from blue to red when you move your brush over the terrain:

2.4. Editors 223

Torque 3D Documentation, Release 3.5.1

Left click your mouse and drag the brush over a section of trees. Any trees under your brush will be removed from the
forest object. This is much faster than deleting individual trees. If you want to remove a larger amount of trees such
as clearing an area for a road, you can set the width of the brush to a specific width. Locate the Size dropdown on the
Tool Settings bar and click on it. A slider will appear so you can increase the circumference of your brush. Set it to
something fairly large, like 20.

224 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.4.8 Mesh Road Editor

The Mesh Road editor will help you create a solid mesh road structure upon your terrain. A mesh road is actually a
3D model representation of your road and is not solely dependent upon the terrain height. A mesh road can be raised
above the terrain, or suspended between hills unlike a decal road, which painted on the surface of your terrain as a
texture, and must follow the terrain exactly. Decal roads are created with the Decal Road Editor.

Interface

To access the Mesh Road Editor press the F9 key or activate it from the main menu of the World Editor by selecting
Editors>Mesh Road Editor. Alternatively you can click the Mesh Road icon from the World Editor Tool Selector Bar.

2.4. Editors 225

Torque 3D Documentation, Release 3.5.1

Whenever the Mesh Road Editor is active three sections of the screen are updated to contain the editors tool. On the
right side of the screen are the Mesh Roads pane and the Properties pane. At the top is the Mesh Roads pane which
contains a list of all the road meshes currently in the level, if any are present. At the bottom is the Properties Pane
which displays the properties of the currently selected road mesh.

At the left of the screen the Mesh Road placement tools will appear and are used to create and modify road meshes.
At the top of the screen in the World Editor Tool Settings bar, a new set of icons will appear. These icons and their
associated values will enable you to quickly set up the width and depth of the control points and modify the editor to
show and hide some visual aids which can be used to guide your road placement.

Adding a Mesh Road

A road mesh is created by placing a number of control points across the terrain. Each point can be edited for Road
height, Road width and Road depth. By adjusting these points we have full control over how our road will look. The
default width and depth of control points can be set using the Default Width and Default Height properties on the
Tool Settings Bar at the top of the editor window. Any new road meshes will be created using these settings until you
change their values again.

To create a new road mesh select the Create Road icon from the tool bar then click on the terrain with the left mouse
button where you would like to start your road. Move the mouse away from the clicked location to see the results.
Each time you click the terrain you will see three things:

1. a green square which represents the road location that you just placed

2. a blue square which represents the next location that will be placed the road if you press mouse button again

3. the surface of the road that will be placed the next time you click the button

Move the mouse to the next point on the terrain that you wish your road to travel to and then click again. Continue
moving and clicking until you are finished with the initial placement of your road.

To complete the road placement process press the Esc key. This action will exit the Create Road tool leaving your
new road selected and ready for adjustments.

To abort a road creation operation without placing a road at all press the Esc key before selecting a second road point.
Once a second road point has been placed the only way to remove the road completely is to delete it, as explained
later.

The new road will also show up in the Roads Mesh pane above the road Properties pane.

226 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Editing a Mesh Road

The Road Mesh Editor provides several tools for modifying roads after they have been created. If at any time you
make a mistake with any tool, you can press CTRL+Z to undo it.

Selection Tool

Once you have created your initial road you may need to edit some or all of the control points. This tool will allow you
to directly select any created point for further editing. To activate the Selection Tool click its icon on the Tool Selector
bar. Note that the Road Mesh Editor will automatically select this tool when you have finished creating a new road.

An entire road mesh can be selected by clicking anywhere on a road mesh other than one of its control points. This
type of selection will result in the road being highlighted with a “spline”, which is a curved line that runs along the
center line of the road, and a series of green squares which represent the roads control points. There are no operations
that can be performed on a road as a whole within the Mesh Road Editor. Selecting a road allows you to see its
centerline and it control points for individual selection and manipulation. To perform operations on the entire road
such as moving it to a new location use the Object Editors tools as with any other shape in your level.

Control points can be selected individually to adjust each point as necessary. To select a control point left click on one
of the colored squares that represent a roads control points. The selected control point will turn blue.

Selecting a control point also causes the Properties pane on the right of the screen to be updated to display the current
property values of the control point. The Node Properties section will display the position, rotation, width and depth
of the selected control point. Values can be directly entered into these fields to modify the point or the Move Tool can
be used to manipulate the point using the mouse.

Moving a Road

If at any time you are unhappy with the placement of a selected Road Mesh control point you can use the Move Tool
to adjust its position. To activate the Move Tool click its icon in the Tool Selector bar. The move gizmo will appear.
The move gizmo is used to move the road point to a new location. Left mouse click on any arrowhead then drag the
mouse to move the point along that arrows axis. Release the mouse button to relocate the control point to that new
location. Left mouse click on the colored square at the origin of the axes then drag the mouse to freely move the point
to without regard to any axis.

Scaling a Road

The width and depth of a road can be directly adjusted at a selected control point by using the Scale tool. To activate
the Scale Tool click on its icon on the Tool Selector. The scaling gizmo will appear. Left mouse click on the colored
cube at the end of any axis then drag the mouse while holding the button down to increase or decrease the size of the
road along that axis. Note that if you drag the blue cube to adjust the depth of the road you may not visibly see the
adjustment take place because the road depth may be increasing down into the terrain. To adjust the width and depth
at the same time left mouse click on the colored cube at the origin of the axes then drag the mouse while holding down
the button. Release the mouse button to change the road to that new width and depth.

Rotate a Road

The Rotate Tool can be used to rotate a road at any selected control point. To activate the Rotate Tool click its icon on
the Tool Selector. The rotate gizmo will appear. Left click on any colored circle then drag the mouse while holding
the button down to rotate the roads surface around that axis at the control point.

2.4. Editors 227

Torque 3D Documentation, Release 3.5.1

Inserting Extra Points

The Insert Point tool can be used to add extra points in a road to create a smoother curve. In order to insert a new point
into a road the road must first be selected. See the Selection Tool above for details on how to select a road. To activate
the Insert Point tool once a road has been selected click its icon on the Tool Selector bar. To place a new point on the
selected road click on the road where you would like the new point to be placed. A new point will be added to the road
mesh and will immediately the currently selected point as indicated by the blue square.

Removing Points

The Remove Point tool can be used to delete a control from a road mesh. In order to remove a new point from a road
the road must first be selected. See the Selection Tool above for details on how to select a road. To activate the Remove
Point tool click its icon on the Tool Selector bar. To remove a control from the selected road point click on the control
point. This will remove only the selected point leaving all the others in place. No adjustments will be performed on
the other existing control points.

Properties

The Properties pane on the right side of the screen can be used to configure a Mesh Road.

Transform

The transform section contains properties which control the placement, rotation and scale of the Road Mesh as a
whole.

Position The transform section contains properties which control the placement, rotation and scale of the Road Mesh
as a whole.

Rotation Indicates the rotation of the entire Road Mesh in the level.

Scale Indicates the scale of the entire Road Mesh in the level.

Mesh Road

The Mesh Road section contains properties which determine and control the textures used to display the Road Mesh.
To change any of the textures for the Road mesh click the globe icon to its right. Clicking one of these icons you will
open up the Material Selection window.

Click on the material you want to use for the road mesh property then click the Select button. The material will be
entered in the propertys field and will be used as the material for that portion of the Road Mesh.

Top Material Indicates the Material to use for the top surface of the road mesh.

Bottom Material Indicates the Material to use for the underside surface of the road mesh.

Side Material Indicates the Material to use for the sides of the road mesh.

Texture Length Indicates the size in meters of the texture measured along the road center.

Break Angle Indicates the angle in degrees that the mesh roads spline will be subdivided into if its curve becomes
greater than this threshold.

Width Subdivisions Subdivide segments width-wise this many times when generating vertices.

228 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

2.4.9 Particle Editor

Torque 3D provides a full featured particle system with many parameters which can be manipulated to fine tune your
particle effects. Particle effects are things such as fire balls, smoke, and water splashes that you create and place into
your levels. The Torque 3D Particle Editor is the tool of choice for full control over the look and feel of your effects.

2.4. Editors 229

Torque 3D Documentation, Release 3.5.1

At its most basic level a particle effect consists of: an emitter, a particle to be emitted from the emitter, and an image
rendered to represent that particle.

The emitter controls: the creation of the particles; their movement; which directions the particles will travel, also
referred to as the spread pattern and: how each particle blends into the world.

The particle controls its own life span, what image will be shown; how big the image is; what it’s color over time is;
and some basic force settings.

Interface

The Particle Editor can be activated from the dmain menu by selecting Editors -> Particle Editor. Or alternately, click
the Particle Icon from the Tool Selector bar.Whenever the Particle Editor is active the Particle Editor – Emitters pane
will be present on the right side of the screen. This pane is further divided into two tabs:

1. The Emitter tab contains properties about the currently selected emitter

2. The Particles tab contains properties about the currently selected particle.

230 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Select either the Emitter tab or particle tab depending upon which object you wish to work with. In adition to the tabs
there are also two buttons within the header of the Particle Editor.

One Shot Effect Types

There are two types of particle effect:

1. continuous effects, which constantly emit particles

2. one-shot effects, which only produce particles for a short time and then stop

Continuous effects run constantly so your changes can be seen in real-time as you adjust the properties of the emitter
and its particles. In order to see your changes for one-shot emitters you need to replay the emission. To replay a
one-shot emitter click the arrow icon to the right of the tabs.

The Temporary Emitter

When you open the Particle Editor you may have noticed it creates a temporary particle emitter in your current view.
This temporary emitter is very useful for quickly trying out different particle editor settings.If your view is changed
and you no longer see temporary emitter, press the little camera icon to the right of the tabs to place it back into view.
It will always be placed in the center of your current view. The temporary particle emitter can be moved, rotated, and
scaled like any other shape using the Object Editor.

New Emitter / Particle

To create a new blank emitter or particle that is ready to be configured, press the new icon on the Emitter or Particle
tab as appropriate.

Save Emitter / Particle

After editing an emitter or particle save the new settings by pressing the save icon on the Emitter or Particle tab as
appropriate. Particle emitters are updated in real-time. Any changes to a particle or emitter will be reflected through
out your level when changes are saved. Any instances of the emitter or particle that you are editing will also be
changed. As with a lot of Torque 3D Editors the Particle Editor writes the resulting data to script files which the
engine runs to create the particle emitter when you game is being played.

• Emitters can be found in a file named: projectName/game/art/levels/levelName.mis

• Particles can be found in a file named: projectName/game/art/shapes/particles/managedParticleData.cs

Emitter Properties

The Emitter tab contains the properties that define an Emitter. Properties are grouped into sections:

2.4. Editors 231

Torque 3D Documentation, Release 3.5.1

Basic

Basic properties affect the base emitter:

Life The time duration in ms that the effect will emit particles.

Life (Random) Substitutes a random value for the life property.

Infinite Loop When enabled this emitter will continuously produce particles. This setting effectively causes the Life
and Random Life properties to have no affect on the emitter.

Amount The time in ms between each individual particle released from the emitter.

Amount Random Random Variation amount to be applied to the amount setting.

Motion

These settings will affect the emitter spread pattern, speed, and particle image orientation:

Speed The velocity the particle will leave the emitter in the defined spread pattern.

Speed Random A random setting for varying the speed.

Orient to Movement Direction Enabling this option fixes the particles image to the velocity direction of the particle.
Note this will over ride any particle spin settings.

232 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Align to a Direction Enabling this option aligns the particles to a predefined vector set up in Align Direction option.

Align Direction The vector used for particle alignment if the Align to a Direction option is checked.

Spread

These setting affect how the spread pattern will be dispersed:

Angle Min The minimum angle for the emitter spread pattern.

Angle Max The maximum angle for the emitter spread pattern.

Depth The depth of the released pattern. A setting of 360 will create a spherical spread pattern when Angle Max is
set to 360.

Offset The distance from the emitter that particles will be released. Effectively the distance that the particle will be
visible to the viewer.

2.4. Editors 233

Torque 3D Documentation, Release 3.5.1

Particles

This affect assigns which particle(s) will be emitted from this emitter:

Particle 1 - 4 Select the particle from the drop down list to be used with this emitter. If at any time you need to remove
a particle press the clear icon. Particle 1 can not be removed.

Blending

These setting affect how the particle(s) are rendered.

Blend Type The types of blending available to be applied to the particles.

Softness Distance The particle edge blending distance. Removes the hard edges where the particle meets an object.

234 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Ambient Factor Adjusts the alpha blend (level of the particles which affects how transparent they are).

Sort Particles The order in which particles are rendered.

Reverse Order When enabled, reverses the render order set in the Sort Particles setting

Particle Properties

The Particle tab contains the properties that define a Particle. Properties are grouped into sections:

2.4. Editors 235

Torque 3D Documentation, Release 3.5.1

Basic

Particle basic settings.

Texture Map The image that will be used on the emitted particle. The Edit button will open a file browser to locate
and select a particle image.

Inverse Alpha Invert the alpha channel on the partice image (if one exists).

Life The time in ms (milliseconds) after its creation that the particle will exist for.

Life Random Random variation to the particle life span.

Motion

These settings affect the velocity of the particle.

Initial Speed The initial velocity, that the particle will travel at after being emitted. (Not to be confused with emitter
spread speed.)

Acceleration The rate at which the particle’s velocity with increase or decrease. Positive values cause a particle to
speed up over time after being emitted. Negative values cause a particle to slow down over time after being
emitted.

Gravity The gravitational force to be applied to particle. Positive values cause the particle to fall to the ground.
Negative values cause the particle to rise from the ground.

Drag The amount of force working against the particle velocity. Drag will slow a particle’s movement.

236 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Spin

These settings affect if, and how, a particle rotates in degrees.

Spin Min The minimum rotation to be applied to the particle.

Spin Max The maximum rotation to be applied to the particle.

Spin Speed The speed of particle’s rotation.

Overtime

These settings affect the particle based upon how long it has been in existence for. Each particle can have up to four
color and size settings, which can be set to change over time.

Colors Four color swatches indicate the color phases which a particle can pass through. To set any color click that
swatch. To set a color value you may: enter R (red), G (green), and B (blue) color values; click anywhere within
the gradient on the left or; click anywhere in the vertical “rainbow” strip. Red, green and blue color values range
from 0 to 255 and indicate the amount of that color present in the overall particle color. The alpha value which
represents the transparency of the particle color can be set by entering a decimal number between 0.0 and 1.0
in the Alpha field or by moving the slider with the mouse. The higher the number the less transparent the color
will be.

Size 1-4 Each slider sets the size for the particle during each time stage.

Time 1-4 Each slider sets the time for that stage.

2.4.10 River Editor

The Torque 3D World Editor has a complete system for creating rivers and other small bodies of water. The River Ed-
itor is built-in WYSIWYG (What-You-See-Is-What-You-Get) editor with real-time feedback, giving you full control
over how you would like to your river to appear.

2.4. Editors 237

Torque 3D Documentation, Release 3.5.1

Interface

To access the River Editor you can either activate it from the main menu by selecting Editors > River Editor. Alterna-
tively you can click the River icon from the World Editor Tools Selector Bar.

The editor has two main parts, one where you can add and manipulate the river nodes (control points) for creation, the
other for adjusting the river properties to create the river style (depth, width, flow, ripples etc). Whenever the River
Editor is active three sections of the screen are updated to contain the editors tool. On the right side of the screen are
three panes. At the top is the Rivers pane which contains a list of all the rivers currently in the level, if any are present.
In the middle is the River Nodes pane which displays the properties of the currently selected river control point. At
the bottom is the Properties Pane which displays the properties of the currently selected river. At the left of the screen
the River placement tools will appear and are used to create and modify rivers and their control points. At the top of
the screen in the World Editor Tool Settings Bar, a new set of icons will appear when the River Editor is active. These
icons and their associated values will enable you to quickly set up the width and depth of the river and modify the
editor to show and hide some visual aids which can be used to guide your river placement.

Adding a River

The river is created by placing a series of control points across the terrain which defines the path you would like your
river to follow. Each control point, also called a “node”, will give you control of how the river will look at any given
point. By adjusting each of these points we can have full control of where our river will go, its size, and its orientation.

The default width and depth of control points can be set using the Default Width and Default Height properties on the
Tool Settings Bar at the top of the editor window. Any new rivers will be created using these settings until you change
their values again.

To create a new river select the Create River icon from the tool bar then click on the terrain with the left mouse button
where you would like to start your river. Move the mouse away from the clicked location to see the results. Each time
you click the terrain you will see three things:

238 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

1. a green square which represents the river location that you just placed

2. a blue square which represents the next location that will be placed the river if you press mouse button again

3. the surface of the river that will be placed the next time you click the button

Move the mouse to the next point on the terrain that you wish your river to travel to and then click again. Continue
moving and clicking until you are finished with the initial placement of your river.

To complete the river placement process press the Esc key. This action will exit the Create River tool leaving your
new river selected and ready for adjustments.

To abort a river creation operation without placing a river at all press the Esc key before selecting a second river point.
Once a second river point has been placed the only way to remove the river completely is to delete it, as explained
later.

The new River will also show up in the Rivers list at the right top of the screen. You will notice that the river itself is
color-coded. These visual aids will be of help in adjusting your river.

RED The red lines at the edges of the river represent the river bounds. These lines need to be moved so that they are
hidden by the terrain river bank to avoid gaps between the edge of the water and the surrounding terrain.

GREEN The green surface represents the depth of the river. This surface needs to be adjusted to be just below the
terrain at every point in order for underwater views to be correct. Whenever this surface is above the terrain it
will cause an “air bubble” between the bottom of the water and the terrain.

2.4. Editors 239

Torque 3D Documentation, Release 3.5.1

The new River may not look correct but with the following set of tools you will be able to adjust the width, depth and
path.

Editing a River

The River Editor provides several tools for modifying rivers after they have been created. If at any time you make a
mistake with any tool, you can press CTRL+Z to undo it.

Selection Tool

Once you have created your initial river you may need to edit some or all of the control points. This tool will allow
you to directly select any created point for further editing. To activate the Selection Tool click its icon on the Tool
Selector bar. Note that the River Editor will automatically select this tool when you have finished creating a new river.

An entire river can be selected by clicking anywhere on a river other than one of its control points. This type of
selection will result in the river being highlighted with a “spline”, which is a curved line that runs along the center line
of the river, and a series of green squares which represent the rivers control points. There are no operations that can be
performed on a river as a whole within the River Editor. Selecting a river allows you to see its centerline and it control
points for individual selection and manipulation. To perform operations on the entire river such as moving it to a new
location use the Object Editors tools as with any other shape in your level.

Control points can be selected individually to adjust each point as necessary. To select a control point left click on one
of the colored squares that represent a rivers control points. A selected control point will turn blue.

Selecting a control point also causes the Properties pane on the right of the screen to be updated to display the current
property values of the control point. The Node Properties section will display the position, rotation, width and depth
of the selected control point. Values can be directly entered into these fields to modify the point or the Move Tool can
be used to manipulate the point using the mouse. A selected control point will turn blue.

Moving a River

If at any time you are unhappy with the placement of a selected River control point you can use the Move Point tool to
adjust its position. To activate the Move Point tool click its icon in the Tool Selector bar. The move gizmo will appear.
The move gizmo is used to move the river point to a new location. Left mouse click on any arrowhead then drag the
mouse to move the point along that arrows axis. Release the mouse button to relocate the control point to that new

240 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

location. Left mouse click on the colored square at the origin of the axes then drag the mouse to freely move the point
to without regard to any axis.

Scaling a River

The width and depth of a river can be directly adjusted at a selected control point by using the Scale Point tool. To
activate the Scale Point tool click on its icon on the Tool Selector. The scaling gizmo will appear.

Left mouse click on the colored cube at the end of any axis then drag the mouse while holding the button down to
increase or decrease the size of the road along that axis. To adjust the width and depth at the same time left mouse click
on the colored cube at the origin of the axes then drag the mouse while holding down the button. Release the mouse
button to change the river to that new width and depth. Changing the width and depth of the river in this manner is the
main method to make sure that the red edges and the green surface, mentioned above, are concealed by the terrain.

The Scale point tool will allow you to quickly create very wide river sections, even as wide as a small lake, without
having to use a WaterBlock.

Rotating a river

The Rotate Tool can be used to rotate a river at any selected control point. To activate the Rotate Tool click its icon on
the Tool Selector. The rotate gizmo will appear. Rotating a river at each control in along the path of a river can make
a river appear to be flowing downhill as opposed to a flat surface as is created by default.

Adding extra Points

The Insert Point tool can be used to add extra points in a river to create a smoother curve. In order to insert a new
point into a river the river must first be selected. See the Selection Tool above for details on how to select a river. To
activate the Insert Point tool once a river has been selected click its icon on the Tool Selector bar. To place a new point
on the selected river click on the river where you would like the new point to be placed. A new point will be added to
the river and will immediately the currently selected point as indicated by the blue square.

2.4. Editors 241

Torque 3D Documentation, Release 3.5.1

Removing Points

The Remove Point tool can be used to delete a control from a river. In order to remove a new point from a river the
river must first be selected. See the Selection Tool above for details on how to select a river. To activate the Remove
Point tool click its icon on the Tool Selector bar. To remove a control from the selected road point click on the control
point. This will remove only the selected point leaving all the others in place. No adjustments will be performed on
the other existing control points.

Properties

The Properties pane on the right side of the screen can be used to configure or modify various facets of the river object,
such as its flow, colors, underwater effects, etc.

Transform

This section contains properties which control the placement, rotation and scale of the River as a whole.

Position Indicates the position of entire River in the level.

Rotation Indicates the rotation of the entire River in the level.

Scale Indicates the scale of the entire River in the level.

River

This section contains properties which control how the River is rendered which in turn will have an effect on the wave
settings.

Segment Length The river will be divided into segments of this length, in meters.

Subdivide Length River segments will be subdivided in a way that each quad (four-sided polygon) is not any wider
or longer than this distance in meters.

Flow Magnitude The magnitude of the force vector applied to dynamic objects that are within the River. This will
affect how thing floating or suspended in the water are driven by the flow of the river.

Low LOD Distance Segments of the river at this distance in meters or more will be rendered as a single un-subdivided
area without any undulation wave effects.

Water Object

This section contains properties that control the look and action of the water and contains several sub-sections.

Density Affects the buoyancy of an object entering the water.

Viscosity Affects a submerged object’s drag force.

Liquid Type Type of datablock used to represent the type of liquid contained in the river (i.e. water, lava, etc.)

Base Color Changes the color of the underwater fog which has the effect of coloring the water surface.

Fresnel Bias Extent of Fresnel (reflection level based on viewing angle) affecting reflection fogging

Fresnel Power Measures the intensity of the effect on the reflection, based on fogging.

Specular Power Power used for secularity (lighting reflection) on the water surface (sun only)

Specular Color Specular color used for the water surface (sun only)

242 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Waves

This sub-section contains properties that control the undulations on the water. Note: This effect actually moves the
vertices of the mesh. This section has further sub-sections for controlling three wave sets, each sub-section is composed
of the following properties that define the wave set.

Wave Dir A vector describing the direction the waves flow towards the river banks.

Wave Speed Speed of the wave undulation.

Wave Magnitude Height of the wave.

Overall Wave Magnitude This master parameter affects the depth of all the wave subsets, like a global wave height
parameter.

Ripple Texture The Normal map used for simulating the surface ripples.

Ripples

This sub-section contains properties that control the animation that simulates the effect of ripples bouncing off the river
bank. This animation is performed using normal map to represent the ripples. This section has further sub-sections for
controlling three ripple sets, each sub-section is composed of the following properties that define the ripple set.

Ripple Dir A vector that modifies the surface ripple direction.

Ripple Speed Controls the ripple speed.

Ripple Tex Scale Intensifies the affect of the surface ripples by scaling the texture.

Ripple Magnitude Intensifies the ripple effect.

Overall Ripple Magnitude This parameter affects the depth of all the ripple subsets, like a global ripple intensity
variable.

Foam Tex The texture used to render the ripple effect.

Reflect

This section contains properties that control the rendering of surface reflections:

CubeMap Cubemap to use instead of the default reflection texture, which is the current sky, if Full Reflect is turned
off. Handy if you have not yet set up a sky for your project.

FullReflect Enables dynamic reflection rendering, which causes the water surface to reflect the current sky, if avail-
able.

Reflect Priority Affects the sort order of reflected objects.

2.4. Editors 243

Torque 3D Documentation, Release 3.5.1

Reflect Max Rate Ms Affects the sort time of reflected objects.

Reflect Detail Adjust Scale up or down the detail level for objects rendered in a reflection.

Reflect Normal Up The reflection normal.

Use Occlusion Query Turn off reflection rendering when occluded.

Reflect Text Size Texture size used for the reflections.

Underwater Fogging

This section contains properties that control how the underwater view appears.

Water Fog Density The intensity of the underwater fogging.

Water Fog Density Offset The offset distance before the fogging occurs.

Wet Depth The depth in world units at which full darkening will occur, giving a wet look to objects underwater.

Wet Darkening The refract color intensity scaled to the depth of the player (wetDepth). The deeper under the water
you go, the darker it will get.

Misc

Other uncategorized properties.

Depth Gradient Tex Texture for the gradient as the players moves deeper.

Depth Gradient Max Maximum depth for the gradient texture.

244 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Foam

Foam Opacity Overall foam opacity.

Foam Max Depth The depth that the foam will be visible from underwater.

Foam Ambient Lerp An RGB color value that interpolates linearly between the base foam color and ambient color.
This prevents bright white colors be viewable during situations such as Night.

Foam Ripple Influence Intensity of the foam effect on ripples.

Distortion

This section contains properties that control how the water distorts the under water terrain when viewed from above.

Distort Start Dist Determines the start of the distortion effect from the camera.

Distort End Dist Max Distance that the distortion algorithm is performed. Lower values will show more of the
distortion effect.

Distort Full Depth Sets the scaling down value for the distortion in shallow water. The lower the value the more the
distortion will be applied to the shallow area.

Basic Lighting

This section contains properties that control the basic lighting effects on and in the water:

Clarity Opacity or transparency of the water surface.

Underwater Color Changes the color shading of objects beneath the water surface

Sound

This section contains properties that control sound under the water.

Sound Ambience Ambient sound environment for when the listener is submerged.

Editing

This section contains properties that control whether the river can be edited.

isRenderEnabled Toggles whether the object is rendered on the client.

isSelectionEnabled Toggles whether the object can be selected in the tools.

hidden Toggles whether the object is visible.

locked Toggles whether the object can be edited.

2.4. Editors 245

Torque 3D Documentation, Release 3.5.1

Mounting

This section contains properties that control whether the river can be mounted to another world object, for example a
sewer pipe or a cave.

mountPID PersistentID of object we are mounted to.

mountNode Node we are mounted to.

mountPos Position where object is mounted.

mountRot Rotation where object is mounted.

Object

This section contains properties that control whether the river object is persistent in the world.

internalName Internal name of this object.

parentGroup Group to which this object belongs.

class Class to which this object belongs.

superClass SuperClass to which this object belongs.

Persistence

This section contains properties that control whether the river object is persistent in the world.

canSave Whether the object can be saved to the mission file.

canSaveDynamicField Whether dynamic properties are saved at runtime.

persistentID Unique ID of this object.

2.4.11 Decal Road Editor

246 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Road and Path Editor is used to create decal-based roads on your terrain. A decal-based road follows every
contour of the terrain, unlike a Mesh Road which is a solid 3D object. By using the Road and Path Editor and a few
choice materials, you can easily create dirt tracks, trails, paths, and simple roads. To create more complicate roads that
rise above the terrain, span hills, or contain bridges use the Mesh Road Editor. The Road and Path Editor is a built-in
WYSIWYG (What-You-See-Is-What-You-Get) editing tool which provides near real-time feedback so that you can
see the changes and additions as you make them.

Interface

To access the Road and Path Editor activate it from the main menu of the World Editor by selecting Editors > Road
and Path Editor. Alternatively, you can click the Road and Path icon from the World Editor Tool Selector Bar.

Whenever the Road and Path Editor is active three sections of the screen are updated to contain the editors tools. On
the right side of the screen are the Roads and Paths pane and the Properties pane. At the top is the Roads and Paths
pane which contains a list of all the decal-based roads currently in the level, if any are present. At the bottom is the
Properties Pane which displays the properties of the currently selected road. At the left of the screen the Road and
Path placement tools will appear which are used to create and modify your roads. At the top of the screen in the world
editor tool bar, a new set of icons will appear after selecting the Road Editor. These icons and their associated values
will enable you to quickly set up the width of the control points and modify the editor to show and hide some visual
aids which can be used to guide your road placement.

There is no depth parameter for decal-roads as there is for Mesh based Roads. As mentioned earlier decal-based roads
sit right on the terrain surface and follow the terrain exactly. They do not have their own geometry.

Adding a Decal Road

A decal-based road is created by placing a number of control points across the terrain. Each point can be edited for
width at any time. By adjusting these points we have full control over how our road will look. The default width of

2.4. Editors 247

Torque 3D Documentation, Release 3.5.1

control points can be set using the Default Width property on the Tool Settings Bar at the top of the editor window.
Any new roads will be created using these settings until you change their values again.

To create a new road select the Create Road icon from the tool bar then click on the terrain with the left mouse button
where you would like to start your road. Move the mouse away from the clicked location to see the results. Each time
you click the terrain you will see three things:

1. a green square which represents the road location that you just placed

2. a blue square which represents the next location that the road will be if you press mouse button again

3. the road decals that were just placed

Depending upon the power of your computer there may be a delay between when you click the terrain and when the
decals appear. Move the mouse to the next point on the terrain that you wish your road to travel to and then click
again. Continue moving and clicking until you are finished with the initial placement of your road.

To complete the road placement process press the Esc key. This action will exit the Create Road tool leaving your
new road selected and ready for adjustments.

To abort a road creation operation without placing a road at all press the Esc key before selecting a second road point.
Once a second road point has been placed the only way to remove the road completely is to delete it, as explained
later.

Editing a Decal Road

The Road and Path Editor provides several tools for modifying roads after they have been created. If at any time you
make a mistake with any tool, you can press CTRL+Z to undo it. As with road placement, depending upon the power
of your computer there may be a delay between when you perform and editing action and when the change appears in
the scene.

Selection Tool

Once you have created your initial road you may need to edit some or all of the control points. This tool will allow you
to directly select any created point for further editing. To activate the Selection Tool click its icon on the Tool Selector
bar. Note that the Road and Path Editor will automatically select this tool when you have finished creating a new road.

The selection tool allows two types of selection relating to roads:

• An entire road can be selected by clicking anywhere on a road other than one of its control points. This type
of selection will result in the road being highlighted with a “spline”, which is a curved line that runs along
the center line of the road, and a series of green squares which represent the roads control points. The only
operations that can be performed on a road as a whole is deleting it. To delete an entire road press the Del key
and confirm the operation using the dialog box that will pop up. Unlike a Mesh Road you can not move a decal
road as a whole using either the Road and Path Editor or the Object Editor. Selecting a road allows you to see
its centerline and it control points for individual selection and manipulation.

• Selecting a control point also causes the Properties pane on the right of the screen to be updated to display the
current property values of the control point. The Node Properties section will display the position and width of
the selected control point. Values can be directly entered into these fields to modify the point or the Move Point
Tool and Scale Point Tool can be used to manipulate the point using the mouse.

Moving a Road

If at any time you are unhappy with the placement of a selected Road Mesh control point you can use the Move Tool
to adjust its position. To activate the Move Tool click its icon in the Tool Selector bar.

248 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

This editor’s move mode works a little bit different than the other editors as there is no gizmo over the selected control
point when tool is active. To move the selected control point: click the left mouse button on the control point; hold
down the button; and drag it to a new position. The road decal will always follow the contour of the terrain. There
may be a small delay as the editor updates the decal road.

Scaling a Road

If you feel that the road is not the correct width, or you just want to make some variations in a dirt track, you can use
the Scale Point tool to change the width. This tool works in a similar fashion to the Move Point tool as there is no
gizmo over the selected control point when the tool is active. To activate the Scale Point tool click its icon on the Tool
Selector.

To change the width of the road select the control point you would like to scale; click the control point using the left
mouse button; hold the button down; and drag the point to the left to reduce the width, or drag it to the right to increase
the width. As with the Move tool there may be a small delay as the editor updates the decal road. Release the button
to leave the road at that width at any time.

Adding Extra Points

The Insert Point tool can be used to add extra points in a road to create a smoother curve. In order to insert a new point
into a road the road must first be selected. See the Selection Tool above for details on how to select a road. To activate
the Insert Point tool once a road has been selected click its icon on the Tool Selector bar. To place a new point on the
selected road click on the road where you would like the new point to be placed. A new point will be added to the road
and will immediately be the currently selected point as indicated by the blue square.

Removing Points

The Remove Point tool can be used to delete a control from a road. In order to remove a new point from a road the
road must first be selected. See the Selection Tool above for details on how to select a road. To activate the Remove
Point tool click its icon on the Tool Selector bar. To remove a control from the selected road point click on the control
point. This will remove only the selected point leaving all the others in place. No adjustments will be performed on
the other existing control points.

Properties

The Properties pane on the right side of the screen can be used to configure a decal-based Road.

Decal Road

This section contains properties that control the roads appearance.

Material The texture assigned to this property will be used as the decal that displays on the terrain to represent the
roads surface. Clicking the small round icon to it right will open the Torque 3D Material Selector window. From
this window you can select a new material to assign to the Material property. For full details on how to use the
Material Selector and how to create new materials see the Material Editor article.

Texture Length The length the texture will be rendered at in meters, measured along the centerline of the road.

Break Angle Indicates the angle in degrees that the mesh roads spline will be subdivided into if its curve becomes
greater than this threshold.

Render Priority Decal roads are rendered in descending order.

2.4. Editors 249

Torque 3D Documentation, Release 3.5.1

2.4.12 Shape Editor

The Shape Editor is used to view and edit the shapes that can be placed into your levels using the Object Editor. The
Shape Editor can view and manipulate files in both the DTS (.dts) and COLLADA (.dae) formats. It can be used to
quickly preview shapes before they are added to a level, and provides an easy way to add, edit and delete animation
sequences, skeleton nodes, and rendering detail levels.

Interface

The Shape Editor can be activated from the main menu by selecting Editors > Shape Editor.

250 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The Shape Editor interface consists of five primary sections whenever it is active.

Shape Selector The Shape Selector panel is used to choose a shape file for viewing and editing. It is composed of 3
tabs: Scene, Library and Hints. The Scene tab allows you to select a shape that has been placed in the current
level. The Library tab allows you to browse and select any DTS or COLLADA shape from your project’s art
folder. Finally, the Hints tab displays information about which nodes and sequences are expected by Torque for
a given type of shape object.

Shape View Window The main window shows a 3D view of the selected shape, and includes animation playback
controls to play and single-step the selected sequence.

Properties Window The Properties panel is used to view and edit the sequences, nodes, details and materials in the
shape.

Advanced Properties Window The Advanced Properties window displays Level-of-Detail information, and provides
the ability to mount objects to other objects and animation thread control.

Toolbar and Palette The Shape Editor adds several buttons to the standard World Editor toolbar to control the 3D
shape view, and uses the familiar select/move/rotate palette for node transform manipulation.

Shape Selection

To start using the Shape Editor, first you need to select a shape. There are three ways to do this:

2.4. Editors 251

Torque 3D Documentation, Release 3.5.1

1. Select an object in the World Editor, then activate the Shape Editor from the menu bar or the toolbar. If the
object uses a DTS or COLLADA file, it will automatically be selected in the Shape Editor.

2. Select an object using the Scene tree in the Shape Editor. This view is the same as that used in the World Editor,
and provides a convenient way to select objects that have already been placed in the level. Note that the Shape
Editor only allows selection of objects that use DTS or COLLADA files; selection of Interior or ConvexShape
objects will be ignored.

3. Select a shape file using the Library tab. This view is the same as that used in the World Editor Meshes tab, and
allows you to browse the DTS and COLLADA assets in your project’s art folder. This method allows you to
view and edit shape files that have not yet been placed in the level.

The Force DAE option checkbox at the top of the Shapes panel forces Torque to load the COLLADA file, even if an
up-to-date cached.dts file is present. Note that if the model is already present in the scene (and thus already loaded into
the Torque Resource Manager), the Force DAE option will have no effect, as the shape will be opened from memory
instead of from disk. This option is also available in the Editor Settings panel when working in the World Editor.

You will be prompted to save if there are unsaved changes in the current shape when a new shape is selected. The
selected shape will appear in the View window, and listings of its sequences, nodes and materials will be displayed in
the Properties window.

Shape Hints

The Hints tab in the Shape Selection window shows you which nodes and sequences are required for a particular type
of shape to work with Torque.

Simply select the desired object type from the dropdown menu and the list of required nodes and sequences will be
displayed underneath. Items that are present in the selected shape will be marked with a tick mark. Hovering the
mouse cursor over an item will display a short description of the item. Double-click the item to add it to the current
shape.

Most items are optional - the shape will still load and run without a particular node or sequence, but the object may not
perform correctly in-game. A Player object for example uses a node called cam as the 3rd person camera position. If
this node does not exist, the shape origin is used instead, which will probably not be correct for most character shapes.

It is easy to extend the Shape Editor hints for custom object types by adding to the list in:
tools/shapeEditor/scripts/shapeEditorHints.ed.cs.

Shape View

The Shape View window displays the shape as it would be seen in-game, and also provides helpful rendering modes
such as transparent, wireframe and visible nodes.

252 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

The camera can be rotated by dragging the right mouse button, translated by dragging the middle mouse button (drag
left+right buttons if your mouse does not have a middle button), and zoomed using the mouse wheel. Use the Camera-
>View menu (or the dropdown list in the bottom right corner) to switch between the Standard/Perspective view and
the orthographic views (Top, Bottom, Left, Right, Front, Back).

Hovering the mouse over a shape node will display the node name, and left clicking a node in the view will select it in
the Node Properties panel (and vice versa). Once a node is selected, its transform can be modified by dragging the 3D
gizmo similar to how objects are positioned in the World Editor.

Animation Controls

At the bottom of the Shape View window are the animation playback controls:

As well as allowing the selected sequence to be scrubbed with the slider, stepped one frame at a time, or played
normally, the start and end frames of the sequence can be easily modified to facilitate sequence splitting or to correct
off-by-one-frame looping errors. Sequence triggers appear as thin, vertical bars at the appropriate frame (as shown in
the image above).

Pressing the in or out button, or modifying the text box directly (remember to hit Return to apply the change), will set
the start or end frame of the sequence to the current slider position.

Properties Window

The Properties window is where you can view and edit the sequences, nodes, detail levels and materials in the shape.
The top right corner has three buttons, which do the following:

• Save the shape

• Add a new sequence, node or detail; and

2.4. Editors 253

Torque 3D Documentation, Release 3.5.1

• Delete the selected sequence, node or detail

Sequences Tab

The Sequences tab (displayed as “Seq” onscreen) lists the sequences available in the shape, as well as a number of
different properties about the selected sequence. In addition, the ‘root’ (non-animated) pose can be selected for display
in the Shape View window. The sequence properties available to view and edit are:

Name The name of the sequence. To rename a sequence, simply edit the value and press Enter.

Source The source animation data for the sequence, for example, the path to an external DSQ file, or the name of
another sequence in the shape.

Priority The priority of the sequence. This determines which sequence will take precedence when more than one
sequence is attempting to control the same node.

in The first frame in the source sequence used for this sequence. Change this value to clip the start of the source
sequence. This sequence will then start on the specified frame of the source regardless of what other frames
may be before it in the source sequence.

out The last frame in the source sequence used for this sequence. Change this value to clip the end of the source
sequence. This sequence will then end on the specified frame of the source regardless of what other frames may
be after it in the source sequence.

Loop Flag indicating whether this sequence loops around when it reaches the last frame.

Blend sequence Name of the sequence to use as a reference for generating blend transforms.

Blend flag Flag indicating whether this sequence is a blend, that is, whether it can be played over top of another
sequence.

Blend frame Frame in the Blend sequence to use as a reference.

Triggers The list of triggers in the sequence. Select a trigger and edit the values to modify the trigger.

Adding a sequence An important feature of the Shape Editor is the ability to add new sequences to a shape from
external animation files (DSQ or DAE). This allows animations to be shared by shapes that have a common skeleton
(such as character models).

To add a new sequence click the New Sequence button. If a sequence is currently selected when the button is clicked,
the new sequence will use that selected sequence as its initial source for animation keyframes. You can change the
Source using the dropdown menu to select a different sequence, or to Browse for an external DSQ or DAE file. If the
<rootpose is selected, pressing the New Sequence button will open the Browse window automatically.

Once the sequence has been created, you can edit its properties - including the start and end frames - using the Sequence
Properties panel.

COLLADA <animation_clips Currently, very few 3D modeling packages support the COLLADA <animation_clip
element, which means a model with several animations will appear to have only a single sequence (or ‘clip’) when
loaded into Torque. The Shape Editor allows you to split this single animation into multiple sequences by specifying
different start and end frames for each sequence. The procedure for splitting animations is as follows:

1. Select the combined animation sequence (usually called ambient).

2. Press the New Sequence button to make a copy of this sequence, then rename the new sequence as desired.

3. Use the animation slider in the 3D view to find the desired keyframe that you want the new split sequence to
start at. Press the In button to set the start frame.

254 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

4. Use the animation slider in the 3D view to find the desired keyframe that you want the new split sequence to
stop at. Press the Out button to set the start frame.

Blend Animations A blend animation is special in that it stores node transforms relative to a reference keyframe,
instead of absolute transforms like other animations. This allows the sequence to be played on top of another sequence
without forcing the animated nodes to a particular position.

The Shape Editor allows you to set and clear the blend flag for a sequence, as well as change the reference keyframe
if desired. Each of these operations requires that a valid reference sequence and reference frame number is specified.

For example, most Player characters will have a blended look animation. The animation is a blend so that the charac-
ter’s head can be made to look around while also doing something else (like running or swimming). To make the look
animation a blend, first we set the reference sequence (e.g. root) and frame (e.g. 0), then we can set the blend flag.

Nodes Tab

The nodes tab shows the node hierarchy and various properties of the selected node. The node properties available to
view and edit are:

Name The name of the node. To rename, simply edit the value and press Enter.

Parent The parent of the node in the hierarchy. A new parent can be selected from the dropdown menu if desired.

Transform The position and orientation of the node. Node transforms can be edited in either World mode (where the
transform is relative to the shape origin), or Object mode (where the transform is relative to the node’s parent).
Node transforms can also be edited visually in the Shape View window by selecting the node and dragging the
axis gizmo, similar to how object transforms are edited in the World Editor. In World mode, the gizmo uses the
global X,Y,Z axes, while in Object mode, the gizmo uses the node relative X,Y,Z axes (useful for seeing which
way the node points for eye or cam nodes)

Editing Nodes The Shape Editor allows shape nodes to be added, moved, renamed and deleted.

To add a node, simply press the New Node button in the top right corner of the Properties panel. If a node is currently
selected, it will automatically be used as the initial parent for the new node. A new parent node can be selected using
the dropdown menu. Renaming the node is as simple as typing a new name in the edit box and pressing Enter to apply
the change.

There are two ways to edit node transforms: The first way is to manually edit the position and rotation values in the
Node Property panel. This method is most useful when trying to set an explicit value. For example, you may require
that a node be offset by exactly 2 units in the X direction from its parent node. Node transforms can be specified as
either relative-to-parent (Object mode) or relative-to-origin (World mode).

The second way to edit node transforms is in the 3D Shape View. Simply select the desired node in the 3D view or in
the node tree then drag the axis gizmo to the correct position and orientation.

2.4. Editors 255

Torque 3D Documentation, Release 3.5.1

It should be noted that the Shape Editor tool is not intended as a replacement for a fully-functional 3D modeling
application, and as such, it only allows the non-animated transforms of the shape nodes to be edited. That is, the
node transforms when the shape is in the root pose. You cannot use the Shape Editor tool to define new animation
keyframes. For this reason, it is recommended to edit node transforms only when the <rootpose is selected in the
Sequence Properties list. Node transforms can be edited when any sequence is selected, but the results may not be as
expected, since animated parent nodes will affect the node transform as seen in the Shape View.

To delete a node, simply select it in the 3D Shape View or the node tree and press the Delete button in the top right
corner of the Properties panel. Note that deleting a node will also delete all of its children.

Detail Tab

The Detail tab of the Properties pane lists the detail levels and associated geometry (meshes) in the shape, as well as
allowing certain properties to be edited.

If the Levels checkbox is checked on the Details tab in the Advanced Properties window, then selecting a mesh or
detail level in the tree will switch to that detail level in the 3D view. The bounding box for the selected object can
be displayed using the Toggle Bounding Box button on the toolbar. To view all collision geometry (as wireframe) no
matter which detail level is selected, use the Toggle Collision Mesh button on the toolbar.

Name (top-left field in Detail/Object Properties section) The name of the mesh or detail level. Note that an object
may contain multiple level-of-detail meshes. Changing the object name will change the name of all meshes for
that object.

256 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Size (top-right field in Detail/Object Properties section) The pixel size of the mesh or detail level. Changing the
size for a mesh will move it from one detail level to another (creating a new detail level if required). Changing
the size of a detail level will change the size for all meshes in that detail.

Billboarding Allows a mesh to be set as a billboard.

Object Node The name of the node this object is attached to. Changing this value will change the node for all
level-of-detail meshes of the object.

Import Shape into... Import geometry from another shape file. See Importing Geometry for more details.

Re-compute bounds Recalculate the shape bounding box using the current pose and detail level.

The Shape Editor also allows meshes to be hidden inside the 3D view (equivalent to the ShapeBase::setMeshHidden
script method). Simply right-click a mesh in the detail tree to toggle the hidden state. Note that all detail-level meshes
for that object share the same hidden state, so hiding the Head 2 mesh will also hide any other meshes for the Head
object.

Importing Geometry The Shape Editor allows you to import geometry from another DAE or DTS file into the
current shape via the “Import Shape into...” button. Geometry in the external file may be added to the currently
selected detail level or to a new, automatically created detail level. The size of the new detail level can be edited after
the geometry has been added.

The dropdown to the right of the “Import Shape into. . . ” button has two options:

1. The current detail option is useful when combining separate files that you want to be rendered at the same detail
level. For example, if a player character was split into body part models as follows:

player_torso.dts
player_head.dts
player_left_arm.dts
player_right_arm.dts
player_left_leg.dts
player_right_leg.dts

To combine the models, open player_torso.dts in the Shape Editor, switch to the Details tab then Import each of the
other files into the current detail. When the shape is rendered, all body parts will be rendered together.

+-base01
+-start01

+-Torso Object Torso with details: 2
+-Head Object Head with details: 2
+-LeftArm Object LeftArm with details: 2
+-RightArm Object RightArm with details: 2
+-LeftLeg Object LeftLeg with details: 2
+-RightLeg Object RightLeg with details: 2

2. The new detail option is useful when combining separate files that represent different detail levels of the same
shape. For example, a vehicle model may have the following detail level files:

truck_lod400.dts
truck_lod200.dts
truck_lod60.dts
truck_col_lod-1.dts

To combine the models, open truck_lod400.dts in the Shape Editor, switch to the Details tab then Import each of the
other files into new detail levels. The single truck object now has 3 visible detail levels (at pixel sizes 400, 200 and
60), and a single, invisible collision detail level (size -1).

2.4. Editors 257

Torque 3D Documentation, Release 3.5.1

+-base01
+-start01
+-Truck Object Truck with details: 400 200 60
+-Collision Object Collision with details: -1

Note that when the new detail option is selected, the Shape Editor examines the filename of the imported model to
determine the detail size. If the filename ends in “_LODX” (where X is a number), the new detail level will be created
with size X. The detail level size can be changed after import if needed.

Materials Tab

The Materials tab (labelled as “Mat” in the window) shows the materials specified in the shape, as well as the Material
each one is mapped to.

Selecting a material while the Highlight selected Material option is set will highlight all of the primitives that use the
material in the shape view. Pressing Edit the selected Material will open the Material Editor dialog, allowing you to
modify the Material properties and view the results in real-time in the Shape Editor view window. Hit the Back to
Previous Editor button in the upper-left corner of the Material Properties pane to return to the Shape Editor. Do not
forget to save any changes you make before returning to the Shape Editor.

Advanced Properties Window

The Advanced Properties Window allows you to further change the settings of the model loaded in the shape editor.

Details Tab

The detail size and mesh characteristics for each LOD need to be carefully determined in order to reduce the visual
artifacts associated with switching and rendering detail levels. The Details Tab of the Advanced Properties window
provides a convenient way to view and edit detail levels without having to re-export the model. It also allows non-
rendered collision and LOS-collision detail levels to be visualised. The detail level properties available to view and
edit are:

Levels When set, the current detail level is selected by moving the slider. When unset, the current detail level is
selected based on the camera distance, in the same way as LOD is handled in-game.

Current DL The index of the currently selected detail level is shown to the right of the slider track.

Polys The number of polygons (triangles) in the current detail level.

Size The size (in pixels) above which the current detail level will be selected. This value can be edited to change the
size of the current detail level (remember to press Return after editing the value to apply the change).

Pixels The current size (in pixels) of the shape. This value is an approximation based on the shape bounding box,
viewport height, and camera distance.

Distance The distance from the shape origin to the camera.

Materials The number of different materials used by all meshes at the current detail level.

Bones The number of bones used by all skinned meshes at the current detail level. Non-skinned meshes will display
0 for this value.

Primitives The total number of primitives (triangle lists, strips or fans) in all meshes at the current detail level. This
is the minimum number of draw calls that will be executed for this detail level.

Weights The number of vertex weights used by all skinned meshes at the current detail level. Non-skinned meshes
will display 0 for this value.

258 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Col Meshes The total number of collision meshes in this shape.

Col Polys The total number of polygons (triangles) in all collision meshes in this shape.

The Details Tab of the Advanced Properties window allows imposter detail levels to be added and edited. Imposters
are a series of snapshots of the object from various camera angles which are rendered instead of the object when this
detail level is selected. An imposter detail level is usually the last visible detail level (smallest positive size value).

Mounting Tab

The Mounting Tab of the Advanced Properties window allows you to attach other models to the main shape to visualise
how they would look in-game, or to fine tune the position and rotation of mount nodes. When a model is mounted,
it inherits the position and rotation of the node it is mounted to and will animate along with it. Press the Mount New
Shape or Delete Mounted Shape buttons to add or remove mounted models respectively. The following properties of
the selected mount can be modified:

Shape DTS or DAE model file to mount.

Node Node (on the main shape) to mount to. Only nodes that follow the mountX and hubX naming conventions will
appear here.

Type

• Object: Mount the model as a SceneObject. The model’s origin is attached to the selected mount node.
This is equivalent to mounting the object using the following script call:

%obj.mountObject(%obj2, 0);

• Image: Mount the model as a ShapeBaseImage. The model’s mountPoint node (or origin if not present) is
attached to the selected mount node. This is equivalent to mounting the object using the following script
call:>

%obj.mountImage(%image, 0);

• Wheel: Mount the model as a WheeledVehicle tire. The mounted shape’s origin is attached to the selected
mount node, and it is rotated to face the right way (whether on the left or right side of the vehicle). This is
equivalent to mounting the object using the following script call:

%car.setWheelTire(0, %tire);

Sequence Select a sequence for the mounted shape to play. Playback can be controlled using the slider and play/pause
button to the right of the sequence dropdown box.

Threads Tab

The Threads Tab of the Advanced Properties window allows you to set up threads to play multiple sequences simul-
taneously, and to view transitions between sequences. A set of animation sequence playback controls that mirror the
main animation controls are provided as a convenience so you don’t have to mouse too far to test out a new thread.
The mini-timeline slider is also used to indicate sequence transition information.

Thread The index of the thread. Press the Add New Thread or Delete Selected Thread buttons to add or remove
threads respectively. If the shape contains any sequences, there will always be at least one thread (index 0)
defined.

Sequence Select the sequence for this thread to play. Changing the selected sequence while the thread is playing (and
transitions are enabled) will cause a transition to the new sequence.

2.4. Editors 259

Torque 3D Documentation, Release 3.5.1

Transition flag If enabled, changing the selected sequence for the thread will cause a transition from the current pose
to the target pose. During the transition period, node transforms are smoothly interpolated towards the target
pose. If transitions are disabled, changing the selected sequence for the thread will switch node transforms to
the new sequence immediately.

Transition lasts Transition duration in seconds. The default for Torque 3D is 0.5.

Transition to Selects the start frame in the target sequence; the target sequence begins playing from this point. When
slider position is selected the target sequence will play from wherever the mini-timeline slider has been set.
Torque 3D defaults to having the new sequence start at position 0.0 so it is likely that you’ll want to keep the
mini-timeline slider all the way to the left when in this mode. When synched position is selected, the new
sequence will start playing at the same position along the timeline as the currently playing sequence. While in
this mode, the mini-timeline slider will change from yellow to red during the transition period.

Target anim Controls whether the target sequence plays during the transition period. When plays during transition
is selected the target sequence will play during the transition; node transforms will be interpolated towards the
changing target pose. When pauses during transition is selected the target sequence will not play during the
transition, but will start once the transition has ended. Node transforms will be interpolated towards the initial
target sequence frame.

Collision Tab

The Shape Editor can auto-fit geometry to a part or the whole of the shape for use in collision checking. Each time the
settings are changed, the geometry in detail size -1 is replaced with the new auto-fit geometry. The node Col-1 (and
any child nodes) may also be modified.

Fit Type The type of mesh to auto-fit for this collision detail (see table below for details).

Fit Target The geometry used to generate the auto-fit mesh. The target is either ‘Bounds’ (fit to the whole shape) or
one of the shape sub-objects.

Max Depth For convex hull auto-fit meshes, this specifies the maximum decomposition recursion depth. Increase
this value to increase the number of potential hulls generated.

Merge % For convex hull auto-fit meshes, this specifies the volume percentage used to merge hulls together. Increase
this value to make merging less likely, and thus increase the number of final hulls.

Concavity % For convex hull auto-fit meshes, this specifies the volume percentage used to detect concavity. Decrease
this value to be more sensitive to concavity (and thus more likely to split a mesh).

Max Verts For convex hull auto-fit meshes, this specifies the maximum number of vertices per hull. Increase this
value to produce more complex (and CPU expensive) hulls.

Box % For convex hull auto-fit meshes, this specifies the maximum volume error below which a hull may be con-
verted to a box. Increase this value to allow more hulls to be converted to boxes.

Sphere % For convex hull auto-fit meshes, this specifies the maximum volume error below which a hull may be
converted to a sphere. Increase this value to allow more hulls to be converted to spheres.

Capsule % For convex hull auto-fit meshes, this specifies the maximum volume error below which a hull may be
converted to a capsule. Increase this value to allow more hulls to be converted to capsules.

Update Hulls Re-compute convex hulls using the current parameters.

Revert Changes Revert convex hull parameters to the values used for the most recent hull update.

The following types of geometry can be generated. The Box, Sphere and Capsule types are generally the most CPU
efficient, and are converted to true collision primitives when the shape is loaded. The other types are treated as convex
triangular meshes - the more triangles, the more expensive it is to test for collision against the mesh.

260 Chapter 2. World Editor

Torque 3D Documentation, Release 3.5.1

Type Desciption
Box Minimum extent object aligned box
Sphere Minimum radius sphere that encloses the target
Capsule Minimum radius/height capsule that encloses the target
10-DOP Axis-aligned box with four edges bevelled; you can choose X, Y or Z aligned edges
18-DOP Axis-aligned box with all edges bevelled
26-DOP Axis-aligned box with all edges and corners bevelled
Convex Hull Set of convex hulls

The k-DOP (K Discrete Oriented Polytope) types push ‘k’ axis-aligned planes as close to the mesh as possible, then
form a convex hull from the resulting points as shown below.

The Convex Hull fit type performs a convex decomposition of the target geometry to generate a set of convex hulls.
The basic algorithm is described here. For each hull that is produced, the hull volume is compared to the volume of
a box, sphere and capsule that would enclose the hull. The hull is replaced with the primitive type that is closest in
volume to the hull with volume % difference less than Box, Sphere or Capsule % respectively. If none of the primitive
volumes are less than their respective error setting, the hull will be retained as a triangular mesh.

Shape Editor Settings

The Shape Editor settings dialog can be accessed from the main menu by selecting Edit Editor Settings, and allows the
appearance of the editor to be customized. These settings are persistent and will be automatically saved and restored
between sessions.

Saving Changes

The Shape Editor does not modify the DTS or COLLADA asset file directly. Instead, changes made in the editor are
saved to a TSShapeConstructor object in a separate TorqueScript file. This file is automatically read by Torque before
the asset is loaded, meaning you can safely re-export the DTS or COLLADA model without overwriting changes made
in the Shape Editor tool. The change set will be re-applied to the shape when it is next loaded by Torque.

If needed, you can also re-edit the generated TSShapeConstructor object, either manually with a text editor, or by
using the Shape Editor tool again.

To save changes to the current shape, simply press the save button in the top right corner of the Properties window.
The script filename is the same as the DTS or COLLADA asset filename, only with a .cs extension. For example,
saving changes to ForgeSoldier.dts would save to the file ForgeSoldier.cs in the same folder.

The Shape Editor TSShapeConstructor object may also be accessed directly from the console. For example:

2.4. Editors 261

Torque 3D Documentation, Release 3.5.1

• Dump the shape hierarchy to the console (handy for debugging shape issues):

ShapeEditor.shape.dumpShape();

• Save the modified shape to DTS (instead of saving the change-set to a TSShapeConstructor script):

ShapeEditor.shape.saveShape("myShape.dts");

• Set ground transform information (not yet available in Shape Editor UI):

ShapeEditor.shape.setSequenceGroundSpeed("run", "0 4 0", "0 0 0");

262 Chapter 2. World Editor

CHAPTER 3

GUI Editor

3.1 Overview of GUI Editor

“GUI” stands for Graphical User Interface. It is the summation of all the controls (windows, buttons, text fields, etc.)
that are used to interact with a game and its settings. Most interfaces in games consist of buttons to launch or join a
game session, editing devices to change user preferences, options to change screen resolutions and rendering options,
and elements which display game data to the user as they are playing.

GUI creation and design is extremely important to game development. Many decent games have been crippled by

263

Torque 3D Documentation, Release 3.5.1

inaccessible GUIs, which is why having a built in GUI editor can be a blessing. The Torque 3D editor provides drag
and drop functionality, with minimal fill in the blank requirements.

Torque 3D features a WYSIWYG GUI Editor, which allows you to create, edit, and test your GUI in game with max-
imum fidelity. 90% of your GUI creation can be done in the editor, leaving 10% for scripting advanced functionality.

GUIs are saved as a script (.gui), which allows you to further tweak values using your favorite text editor. Addition-
ally, you can declare variables and define functions at the end of a GUI script, which will not be written over when
modifying the GUI using Torques editor.

Multiple controls which can be combined to make up a single interface. Each control is contained in a single structure,
which can be embedded into other GUI elements to form a tree. The following is an example of a GUI control which
displays a picture:

// Bitmap GUI control
new GuiBitmapCtrl() {

profile = "GuiDefaultProfile";
horizSizing = "width";
vertSizing = "height";
position = "8 8";
extent = "384 24";
minExtent = "8 8";
visible = "1";
helpTag = "0";
bitmap = "art/gui/images/swarmer.png";
wrap = "0";

};

Once the above GUI is active in your interface, it will display the following:

3.2 GUI Editor Interface

The main GUI Editor view consists of 5 primary sections:

File Menu Found at the very top, this is where you will find various menus that controls global functionality of the
editor, such as creating/saving GUI files, manually locking, selecting, and aligning controls, toggle snapping,
and so on.

The Toolbar Located just below the File Menu, this bar contains shortcuts to the GUI Selector, resolution adjuster,
and common positioning actions (nudge, align, etc).

Control Palette The Control Palette contains all of the controls you can add to your current GUI. You can click a
control in the list or manually drag it to a position in the view to add it to the scene.

GUI Tree Panel This panel, located on the far right, contains all of the controls that make up your current GUI. They
are listed in hierarchical tree, which is sorted by oldest to most recent (top to bottom) and parenting (described

264 Chapter 3. GUI Editor

Torque 3D Documentation, Release 3.5.1

later).

GUI Inspector Panel This panel, found directly below the GUI Tree Panel, is populated with all the properties that
make up the currently selected GUI control. Most of your field editing will be performed here.

3.2.1 File Menu

File Menu allows you to create, save, and open GUI files. You can also revert GUIs or load from file.

The Edit Menu controls various editor actions, such as undo and redo. The second function allows you to
cut/copy/paste/delete objects you have selected. Finally, this is the menu that allows you to perform selection and
group actions, such as toggling visibility and locking.

3.2. GUI Editor Interface 265

Torque 3D Documentation, Release 3.5.1

The Layout Menu contains actions that makes it easy for you align your GUI controls for a clean and neat appearance.
This is very useful for a complex interface with multiple controls that stack vertically or horizontally.

266 Chapter 3. GUI Editor

Torque 3D Documentation, Release 3.5.1

When you need to perform very subtle and precise movements on a GUI control, you can use the actions listed in the
Move Menu. Each nudge is assigned a shortcut, so using this menu is optional.

When dragging GUI controls with your mouse, using the Snap Menu toggles will cause your mouse to immediately
jump to specific points (depending on the toggle).

3.2. GUI Editor Interface 267

Torque 3D Documentation, Release 3.5.1

Contains shortcuts to documentation and forums for Torque 3D.

3.2.2 Tool Bar

The most useful and preferred shortcuts for quick edits can be found in the Tool Bar. While most of your control
properties will be edited in the Inspector, you can use the Tool Bar to perform quick positioning actions and testing.

The first three icons toggle the editors, and are always available. The left most icon (looks like a mountain) toggles
the World Editor. The next one (boxes) toggles the GUI Editor. The Play icon will exit the editors and let you play
through the game.

Next to the editor toggles, you will find three extremely important settings. The first two are drop down lists and the
last one is a button toggle. These determine what you are editing and at what resolution. The first drop down is a
list of every single GUI available to edit, including new ones you just created. You can jump to an individual GUI at
anytime, which can be useful if you are editing multiple GUIs that which work together. The second drop down list
contains three different resolutions you can build your GUI in.

The button toggles the Control Palette, which is explained in the next section. The next set of icons allow you to toggle
the most commonly used and important settings for snapping. After the snapping icons, several shortcuts are available
toggle the alignment of controls. The next two icons, which look like multiple boxes attached to lines, are used when
you have multiple GUI controls selected. These distribution toggles will equally space the GUIs you currently have
selected. The final two icons in the the Tool Bar can move the currently selected GUI between layers. The first button
will move the selected GUI ahead in a layer, bringing it closer to view. The second button will start shoving your GUI
behind others, obscuring it from view.

3.2.3 Control Palette

The Control Palette contains all of the controls you can add to your current GUI. You can click a control in the list or
manually drag it to a position in the view to add it to the scene. There are ways to view the list of available controls,

268 Chapter 3. GUI Editor

Torque 3D Documentation, Release 3.5.1

depending on which tab you are using.

When you first toggle the Control Palette, you will see a list of the most commonly used controls. There are quite a
few controls hidden, which are mainly used to create the Torque 3D editors. These controls are not typically used in
games, so they have been hidden. You can click the All button to see every GUI control the engine contains. When
you click on the Categorized tab, you can get list of all the GUI controls based on their functionality. The categories
are straight forward and should be an excellent way to get to the exact controls you need to build your interface. To
see what a category contains, just click on one of the arrows or text to expand it:

To add a control, locate it in the Palette’s list. Next, click on the control and drag it to your main view using a mouse.
When you let go of your mouse button, you new control will anchor to the view and become your current selection.

3.2.4 GUI Tree View

Every control added to your current GUI is kept in a sorted list. To view this list, go to the panel on the far right and
click the “GUI” tab. This will list all of your controls in the order they were added, the most recent at the bottom of
the list. Each control has a unique ID, and can be given a name.

3.2. GUI Editor Interface 269

Torque 3D Documentation, Release 3.5.1

3.2.5 Profile Editor

In the same panel as the GUI Tree View, there is a tab called “Profiles.” Clicking this tab will present you with a list
of all the GUI profiles currently loaded by your game. GUI profiles contain data that personalizes your controls. This
will allow you tailor an interface unique to your game.

270 Chapter 3. GUI Editor

Torque 3D Documentation, Release 3.5.1

3.2.6 GUI Inspector

When you have a control or profile selected, the GUI inspector will be populated with the properties that make up the
selection. These are the values that play an important role in assigning functionality to your GUI. Most of your editing
will occur here.

3.2. GUI Editor Interface 271

Torque 3D Documentation, Release 3.5.1

3.2.7 Selection and Parenting

The last portion of the interface is how controls are selected. The following image shows the stock options GUI that
ships with Torque 3D. This consists of dozens of controls working together to make up the audio and video options:

272 Chapter 3. GUI Editor

Torque 3D Documentation, Release 3.5.1

In the above image, I have selected the list box control that shows the display driver for a video card. The current
selection is marked by six boxes surrounding the corners of the control, and several subtle lines. However, you should
notice there is a large blue box surrounding multiple controls.

The large blue box shows the Parent control. When a control is the “parent”, it can contain multiple sub-controls. The
“children” controls will now adhere to the same behaviors as the parent control. For example, if the parent control is
set to invisible, the children controls will become invisible as well. If the parent is moved, all the children controls
will move with it.

3.2. GUI Editor Interface 273

Torque 3D Documentation, Release 3.5.1

274 Chapter 3. GUI Editor

CHAPTER 4

Artists Guide

4.1 Overview of Content Pipeline

The main tool for importing and manage content in Torque 3D is the World Editor. However the World Editor is not a
tool for creating game objects. Objects must be created using applications appropriate for the object type.

4.1.1 Importing 3D Models

Torque 3D uses two different formats for 3D geometry and animation data: Collada and DTS.

Collada is intended to be the primary model format during development of a Torque 3D game, as there are Collada
importers and exporters for almost every 3D modeling application around. Collada is a format for interchanging
models between digital content creation applications. Torque 3D can load geometry, material and animation data
directly from Collada DAE files and is based on version 1.4.1 of the Collada specification. Collada is an XML based
file format, meaning DAE files may be opened, viewed and edited in any text editor.

The Torque 3D supports all of the Collada polygonal geometry elements: <triangles>, <tristrips>, <trifans>, <poly-
gons> and <polylist>, with non-triangular polygons automatically converted to triangles during loading. Note that if
polygons are non-planar, this may introduce seams on the model, so the best option is to triangulate in the modeling
application prior to exporting.

Many 3D modeling applications come with built-in Collada import and export functionality, but third party plugins are
also available that may be more stable, updated more frequently and give better results. In particular, OpenCOLLADA
is recommended for both Autodesk 3ds Max and Maya.

While DTS is a format internal engine format intended for the models that ship with the released version of a game.
It is an optimized, binary format that loads much faster than Collada and also provides a small measure of protection
for art assets.

4.1.2 Shipping 3D Models

The normal workflow is to use Collada during development, then make sure all models are converted to DTS for a
shipping release build. There are several different approaches available to achieve that.

It can be accomplished by either use the cached DTS files that Torque 3D saves in the same folder as the Collada file
during import. Every time the DAE file would be loaded, Torque 3D first checks if there is a newer cached.dts file in
the same folder and if so, loads that instead. For simple models, this means you can simply strip the DAEs from the
released version of the game, leaving only the cached.dts files. All datablocks and mission files still refer to the DAE
model, but Torque will automatically load the cached.dts in its place.

275

Torque 3D Documentation, Release 3.5.1

Note: The cached.dts file represents the converted DAE model only - changes applied using a TSShapeConstructor
script are only made to the in-memory shape and are not included in this file.

Anther way is to use the dae2dts tool as a part of the build process to convert Collada files into DTS. If using this
approach, datablocks and mission files should refer to the coverted DTS output file, not the original DAE file. The
dae2dts tool bakes any model transformations made using TSShapeConstructor into the final DTS model, so make
sure that the TSShapeConstructor script used with dae2dts is not run when loading the DTS output file into Torque 3D
(by making the filenames different, or keeping the output DTS file in a different folder) or the changes will be applied
twice!

Of course, there is no reason you could not use one TSShapeConstructor script with dae2dts to bake changes, then use
another TSShapeConstructor script when loading the baked DTS file into Torque 3D to apply dynamic changes (like
auto-loading all sequence files within a folder for example).

There also exist some modeling applications with DTS file export support. However, those are no longer recommended
as they place limitations on the exported files while the Torque 3D Collada importer is much more flexible.

4.1.3 Coordinate System

Torque uses the same coordinate system as 3ds Max where characters and vehicles should are facing the +Y axis.

Fig. 4.1: The Torque 3D coordinate system.

Thus the coordinate system is equivalent to Z_UP in Collada and the importer will automatically convert models using
X_UP or Y_UP to this coordinate system. However, some Collada exporters may generate models with a wrong or
missing <up_axis> element (Z_UP is assumed if <up_axis> is not specified). In this case, the Collada import dialog
can be used to override the value.

4.1.4 Units

When exporting to Collada, you are free to work in whatever units you like. They will be scaled appropriately when
importing the model into Torque 3D.

When creating a model, it makes sense to work in units appropriate to the type of object being modeled. For example,
it may be convenient to model a building in meters (or feet), but a small object like a pen would be better modeled in
cm (or inches). Normally the modeler would be forced to choose a single unit for both objects, and one object would
end up having awkward measurements; like a building that is 2000 units high, or a pen that is only 0.14 units long.

276 Chapter 4. Artists Guide

Torque 3D Documentation, Release 3.5.1

Collada provides a mechanism to specify the units used when modeling the object. This is very important, since it
allows a set of objects modeled in completely different units to be imported into Torque 3D with the correct scale
relative to each other. This is done using the Collada <unit> element, which appears near the top of the .dae file and
specifies the units-per-meter used for all positional values in the file such as vertex and node positions, translation
animations etc. Torque 3D uses this value as a global scale factor which is applied to the entire model on import.

Many modeling applications allow the user to specify the units to be used, or alternatively, the option may be available
when exporting the model to Collada.

It is up to the modeler to ensure that models are created with appropriate units in mind. For example, if a chair was
modeled at 5 units high in the modeling application (simply because that was a convenient value for the modeler), then
exported to DAE with units set to feet, then the chair would appear to be the equivalent of 5 feet high in Torque 3D!
The Torque 3D Collada import dialog allows you to override the <unit> scale specified in the DAE file, for cases like
this when the modeler has not taken units into account.

4.1.5 Texture Files

Torque 3D supports several texture file formats: BMP, GIF, JEPG, JPG, JNG, MNG, PNG, TGA, DDS. Note that
texture dimensions should be powers of 2 wherever possible such as 16, 32, 64, 128, 256, so forth, although they need
not be square. Some older hardware is unable to process non-power-of-2 textures at all, and even modern hardware
will pad such textures up to the next largest power of 2 when loaded which wastes VRAM.

4.1.6 Normal/Bump Maps

Torque 3D uses DirectX style normal maps, where the green (Y) channel contains the DOWN vector. This is opposite
to the system OpenGL uses which has the UP vector in the green channel. If your normal maps appear backwards in
Torque 3D, you may need to invert the green channel manually.

4.2 Rigging a Player Character

The purpose of this guide is to show how to rig and export a character for use in Torque 3D. This guide assumes
that you are creating a new rig and animations from scratch and are not reusing any already existing rig or library of
animations.

Already created animations will only work when applied to the rig they where created for. If you for example want to
reuse the animation sequences that ships with the Torque 3D demo character, then you need to set up the rig for your
new character exactly the same. However, this guide will not cover that specific case.

Deciding what rigs are necessary and setting them up should typically be done during technical pre-production of your
game. Once it is done they should not be changed as that would mean re-targeting or in worst case re-creating all your
animations.

How many and what type of rigs you need depend on your project. Are all your characters bipedal? Or do you also
need to do quadrupedal animation as well? Will you use the same bipedal rig for all characters, player as well as all
non-player characters? In some games you want a rig of higher fidelity for the hero player character, simpler rigs for
the non-player characters and possibly a couple of special biped rigs for some monsters.

However, each rig you decide to create need its own library of animation sequences. Thus you can not share animations
between say the hero rig and the non-player rig unless you set them up very carefully. For example you can set up
the hero rig to be the exact same rig as the non-player but with some additional joints for any separate and additional
animation.

With sharing animations in mind you should carefully name the rig and its components so that they apear logical in all
skinned mesh files as well as sequence animation files.

4.2. Rigging a Player Character 277

Torque 3D Documentation, Release 3.5.1

4.2.1 Assets

Your game shapes should live in a directory somewhere under the art/shapes directory. You should create a new
directory for each character. It will normaly hold the following files:

materials.cs All the material definitions for the character.

character.cs The TSShapeConstructor definition for the character.

character.dae Collada file with the characters rigged and skinned mesh.

character_d.dds The diffuse texture map for the character.

character_n.dds The normal map for the character.

character_s.dds The specular map for the character.

The exact naming convention of the mesh and texture files are entierly up to you as you export them from your 3D and
2D applications. While the script files are automatically generated by the Shape Editor upon importing the character
mesh.

It is also recommended that you create a directory for all the animation sequences somewhere under the art directory.
Each animation sequence should be stored in a separate DAE file. It’s important to note that the characters skinned
mesh need to use the same rig as the animation sequence files to be able to play them back.

4.2.2 Hierarchy

Torque expects for each type of shape a number of specific nodes to be present depending on the shape class. The
Player class require thus the following nodes acting as mount points:

cam Used as 3rd person camera position.

eye Used as 1st person camera position.

ear Where the SFX listener is mounted.

mount0-31 You can have up to 32 mount nodes that is used to mount objects to the character.

Further the Player class expects a number of nodes acting as bones in an armature. The following nodes are used by
the Player class for look, aim and recoil animations if no special sequences has specified by you for those actions (see
Sequences). The naming convention for those nodes were taken from 3ds Max Biped and are therefore already present
if the character is rigged in 3ds Max:

Bip01_Pelvis Hierarchial node (usually a bone) that act as the root.

Bip01_Spine Hierarchial node (usually a bone) whose parent is Bip01_Pelvis.

Bip01_Spine1 Hierarchial node (usually a bone) whose parent is Bip01_Spine.

Bip01_Spine2 Hierarchial node (usually a bone) whose parent is Bip01_Spine1.

Bip01_Neck Hierarchial node (usually a bone) whose parent is Bip01_Spine2.

Bip01_Head Hierarchial node (usually a bone) whose parent is Bip01_Neck.

The hierarchy should also contain axis-aligned bounding box mesh named bounds that fits around the shape at the root
level that is used to define the shapes origin, determine which shape level to render and define the speed that the shape
is intended to be moving at.

Lastly the hierarchy should contain one or more skinned meshes of the actual character shape. The number of meshes
depend on the number of detail levels used. How to name the meshes is up to you, as long as you put the detail size as
a number at the end of the mesh name.

278 Chapter 4. Artists Guide

Torque 3D Documentation, Release 3.5.1

While most nodes are optional, the shape will still load and run without a particular node or sequence, the object may
not perform correctly in-game. However, a minimal rig for the Player class could look like this:

+ Bip01
| + Bip01_Pelvis
| | + Bip01_Spine
| | + Bip01_Spine1
| | + Bip01_Spine2
| | + Bip01_Neck
| | + Bip01_Head
| + cam
| + eye
| + ear
| + mesh0
+ bounds

Nodes for arms should normally be connected to the Bip01_Neck node and legs to the Bip01_Spine node. It is also
recommended to add meshes of several detail levels, depending on the complexity of your mesh.

4.2.3 Level of detail

Level-of-Detail (LOD) is an extremely important concept to master in order to produce a great looking game that plays
smoothly on low/mid-range hardware. Essentially, it involves rendering successively less complex versions of a shape
in order to improve performance.

The metric used to control LOD is the estimated size in pixels of the shapes bounding box on screen. As the shape
gets further from the camera it will become smaller on screen, and a simpler version of the mesh may be rendered
without loss of fidelity. Before rendering the shape, Torque estimates how large it would appear on-screen and selects
the mesh, or meshes, of the appropriate detail level to be rendered.

Only a mesh with a detail level equal or higher to the estimated size will be considered. Note that detail levels with
negative sizes will never be chosen for rendering. Once the estimated size is less than the smallest positive detail size,
no geometry will be rendered for the shape. You can force a shape to always render something by making the smallest
positive detail level have a size of zero.

The level of detail size is expressed as a number put at the end of the mesh name. The LOD type should be set to
“TrailingNumber” in the Shape Editor when you import the shape.

4.2.4 Bounding box

Every shape includes an axis-aligned bounding box. This box appears around the shape when it is selected in the
World Editor, and can be used for simple collision detection or mouse-hit picking. The bounding box is also used to
determine which shape detail level to render and optionally to define the speed that the shape is intended to be moving
at. The size of the bounding box is not fixed to the shape geometry. The modeler is free to define a custom bounding
box extent for an object. This is done prior to export from the 3D application by creating a cube mesh called bounds
with the appropriate dimensions.

If the exported DAE file does not contain a root level node called bounds with geometry attached to it, the Collada
importer will automatically calculate a bounding box that encloses all of the geometry in the scene. For animated
models, only the root (non-animated) pose is considered, but a walking character animation may move the feet or arms
of the model outside the box containing the shape in its root pose, so use a custom bounding box to explicitly specify
the bounding box extents.

4.2. Rigging a Player Character 279

Torque 3D Documentation, Release 3.5.1

4.2.5 Ground transform

Animation sequences that move the character should also include a ground transform. This tells the engine how fast
the character would move along the ground when the animation is played back at normal speed. In the case of a
Player object, this allows Torque to scale the animation playback speed to match the in-game speed that the Player is
moving. For example, if the model was animated such that it would normally move at 3 units per second, but in-game
was moving at 6 units per second, then the animation can be played back at double speed so the feet do not look like
they are skating along the ground. Another use for ground transforms is to automatically switch between walking and
running animations based on the in-game velocity of the Player.

The exact details of how to export ground transforms will depend on the 3D application. In general, the animation
should be created so the character moves through space, rather than running or walking in-place. Animate the bounds
node to move with the character so there is no translation relative to the bounds node. On export, the ground transform
is determined by subtracting the movement of the bounds node from the walking or running animation so that it will
play in-place in Torque 3D.

The ground transform information can also be set in the shapes script file (not yet available in Shape Editor UI) by
using the setSequenceGroundSpeed member method on the shape object.

4.2.6 Mounts

Objects in Torque may be mounted to other objects, such as a Player riding a WheeledVehicle or a weapon placed in
the player’s hands. Usually the object to be mounted has a node named mountPoint. A weapon will be mounted in
the player model’s hand at node mount0. The mountPoint node is not essential however, if not present the mounted
object’s origin is used as the mount point.

4.2.7 Hitboxes

Currently, the player’s hitbox defined by their bounding box. In order to get damage locations we have cut the player’s
world box up into pieces as defined by the following sections in the Player’s datablock:

• boundingBox

• boxHeadPercentage

• boxTorsoPercentage

• boxHeadLeftPercentage

• boxHeadRightPercentage

• boxHeadBackPercentage

• boxHeadFrontPercentage

The player’s boundingBox determines the length in each dimension the bounding box should encompass. From the
standard player datablock, its sections would look like the following:

280 Chapter 4. Artists Guide

Torque 3D Documentation, Release 3.5.1

It may be easiest to come up with these numbers by taking a render of the player, and using an imaging program to
determine what percentage of the player makes up their legs/head/torso.

4.2.8 Sequences

Player characters can be setup to use different weapon animations and share those animations between different
skinned meshes with the same skeleton hierarchy. A character can have Collada files for the character’s skinned
mesh and skinned skeleton as well as for the character’s animations with just the skeleton for each weapon pose. The
animations can either be exported individually or combined in one DAE file that is split up through the Shape Editor.

Just as like with nodes the Player class also make use of a number of animation sequences to work properly in the
game:

head Vertical head movement blend animation, start frame is fully up and end frame is fully down. Usually imple-
mentd as a 9 frame animation that only affects the neck and head nodes.

headside Horizontal head movement blend animation, start frame is full left and end frame is full right. Usually
implemented as a 9 frame animation that only affects the neck and head nodes.

look Vertical arm movement blend animation, start frame is fully up and end frame is fully down. Usually imple-
mented as a 9 frame animation that only affects the spine.

light_recoil Player has been hit lightly.

4.2. Rigging a Player Character 281

Torque 3D Documentation, Release 3.5.1

medium_recoil Player has been hit moderately hard.

heavy_recoil Player has been hit hard.

root Looped idle animation, just the character standing and breathing.

run Looped running forward animation.

back Looped runing backward animation.

side Character side stepping to the right. This looped animation will be played in reverse when moving to the left.

crouch_root Looped crouched idle animation.

crouch_forward Looped crouched forward walk animation.

crouch_backward Looped crouched backward walk animation.

crouch_side Looped crouched right movement animation. Will be played in reverse when moving to the left.

prone_root Looped idle animation of player lying down and not moving.

prone_forward Looped animation of player lying down and moving forward.

prone_backward Looped animation of player lying down and moving backward.

prone_side Looped animation of player lying down and moving to the right. Will be played in reverse when moving
to the left.

swim_root Looped treading water animation.

swim_forward Looped animation of swimming forward.

swim_backward Looped animation of swimming backward.

swim_right Looped swiming right animation.

swim_left Looped swiming left animation.

fall Looped falling animation.

jump Character jump up from a moving start animation.

standjump Character jump up from a standing start animation.

land Character landing animation after falling or jumping.

jet Looped jetting animation.

reload Reloading the weapon blend animation.

sitting Looped animation of character sitting in a vehicle.

death# Where # is can be a number for multiple death sequences that will be picked randomly.

A number of these animation sequences are optional.

You add the animations through the Shape Editor by going to sequence tab labeled Seq and click on the new sequence
icon and a file browsing dialog will open. Select the sequence Collada file you want. Now define the time range that
you want by changing the numbers at the beginning and end of the timeline. Complete this process for each sequence
that you wish to add.

4.2.9 Blends

Blend animations allow additive animation on the node structure of the shape. These will not conflict with other
threads, and can be played on top of the node animation contained in other threads; such animations are relative.
Blends only store the changes that occur over the course of the animation and not the absolute position of the nodes.

282 Chapter 4. Artists Guide

Torque 3D Documentation, Release 3.5.1

This means that if a node is transformed by a blend animation, it includes only the transform information for that
node, and it will add that transformation on top of the existing position in the base shape. Common uses for blend
animations are facial expressions, head turning or nodding, and arm aiming.

Bear in mind that a blend can be played as a normal sequence, or it can be played on top of other sequences. When
another sequence is playing, it will alter the root position, and the blend will be applied on top of that.

If you try to do a blend sequence where the root position is different than the ‘normal’ root (in the default root
animation), you might expect that the blend will blend it to the new root (the position the character is positioned in
during the blend animation). However, it does not work this way. Since nothing would actually be animating, it doesn’t
move the bones to the new position. What is contained in the blend sequence is only transform offsets from the blend
sequence root position. Thus it is not a good idea to have a different root position in your ‘normal’ animations and
your blends, as they can easily get out of sync!

The values added from the blend animation are based on the root position in the Collada file. This root position does
not have to be the beginning of the animation. You can pick any position for the blend animation to reference. This
is useful, because you can have a blend animation that can have a reference position that is the ‘root’ position. For
animation like hip twists and arm movements (as in the ‘look’ animation), the character can be in a natural default
state. In this way, you can have one animation control the character through the base pose to an extreme in either
direction while referencing the default ‘base’ state, which will exist somewhere in the middle of the blend animation.

4.2.10 Threads

Animation threads allow multiple sequences to play at the same time on a single shape. For example, a “headside”
animation could rotate the player’s head to look at something at the same time as a running animation is playing.
Each animation sequence is played using a thread. Threads for non-blend sequences are applied first (in order of
increasing priority), then blend sequence threads are applied on top (in order of increasing priority). The following
rules determine what happens when more than one thread controls the same node in the shape:

1. If two non-blend sequences control the same node, the sequence with higher priority will animate it.

2. If two non-blend sequences with the same priority control the same node, the thread that was created last will
animate it.

3. Blend sequences are applied on top of any previous thread, so if two blend sequences control the same node,
both will animate it (applied in order of increasing priority, or thread creation order if priority is the same).

4.2.11 Triggers

Triggers are arbitrary markers that can be used to call events on specific frames in a sequence. For example, a trigger
can be responsible for generating footstep sounds and footprints when the feet hit the ground during walk and run
animations. There can be up to 30 independent trigger states each with their respective on (1 to 30) and off (-1 to -30)
states. You decide what each of those trigger states means. You should work with your programmer to define what the
trigger states mean and how you should use them.

For example, you could have one trigger for each foot of a character that creates a footprint when the foot is down on
the ground. Let’s say that a triggerState of 1 is the left foot down and a triggerState of 2 is the right foot down. When
the sequence plays the frame during which the left foot touches the ground, you could have a trigger on that frame that
has a triggerState of 1 to create a footprint. You would then create another trigger with a triggerState of 2 for the right
foot. You don’t necessarily need to turn off the footprints (let’s assume that the programmer will turn them off when it
is necessary), but you could by creating two more triggers with triggerStates -1 and -2.

4.2. Rigging a Player Character 283

Torque 3D Documentation, Release 3.5.1

284 Chapter 4. Artists Guide

CHAPTER 5

Scripting

5.1 What is TorqueScript?

TorqueScript (TS) is a proprietary scripting language developed specifically for Torque technology. The language
itself is derived from the scripting used for Tribes 2, which was the base tech Torque evolved from. Scripts are written
and stored in .cs files, which are compiled and executed by a binary compiled via the C++ engine (.exe for Windows
or .app OS X).

The CS extension stands for “C Script,” meaning the language resembles C programming. Though there is a connec-
tion, TorqueScript is a much higher level language and is easier to learn than standard C or C++.

5.1.1 Basic Usage

Like most other scripting languages, such as Python or Java Script, TorqueScript is a high-level programming language
interpreted by Torque 3D at run time. Unlike C++, you can write your code in script and run it without recompiling
your game.

All of your interfaces can be built using the GUI Editor, which saves the data out to TorqueScript. The same goes for
data saved by the World Editor or Material Editor. Most of the editors themselves are C++ components exposed and
constructed via TorqueScript.

More importantly, nearly all of your game play programming will be written in TorqueScript: inventory systems,
win/lose scenarios, AI, weapon functionality, collision response, and game flow. All of these can be written in Torque-
Script. The language will allow you to rapidly prototype your game without having to be a programming expert or
perform lengthy engine recompilation.

5.1.2 Scripting vs Engine Programming

As mentioned above, TorqueScript is comprised of the core C++ objects needed to make your game. For example,
you will use the PlayerData structure to create player objects for your game. This structure was written in C++:

struct PlayerData: public ShapeBaseData {
typedef ShapeBaseData Parent;
bool renderFirstPerson; ///< Render the player shape in first person

mass = 9.0f; // from ShapeBase
drag = 0.3f; // from ShapeBase
density = 1.1f; // from ShapeBase

285

Torque 3D Documentation, Release 3.5.1

Instead of having to go into C++ and create new PlayerData objects or edit certain fields (such as mass), PlayerData
was exposed to TorqueScript:

datablock PlayerData(DefaultPlayerData)
{

renderFirstPerson = true;

className = Armor;
shapeFile = "art/shapes/actors/gideon/base.dts";

mass = 100;
drag = 1.3;
maxdrag = 0.4;

// Allowable Inventory Items
maxInv[Pistol] = 1;
maxInv[PistolAmmo] = 50;

};

If you want to change the name of the object, the mass, the inventory, or anything else, just open the script, make the
change, and save the file. When you run your game, the changes will immediately take effect. Of course, for this
example you could have used the in-game Datablock Editor, but you should get the point. TorqueScript is the first
place you should go to write your game play code.

5.2 Language Reference

5.2.1 Basic Syntax

Like other languages, TorqueScript has certain syntactical rules you need to follow. The language is very forgiving,
easy to debug, and is not as strict as a low level language like C++. Observe the following line in a script:

// Create test variable with a temporary variable
%testVariable = 3;

The three most simple rules obeyed in the above code are:

1. Ending a line with a semi-colon ;

2. Proper use of white space.

3. Commenting.

The engine will parse code line by line, stopping whenever it reaches a semi-colon. This is referred to as a statement
terminator, common to other programming languages such as C++, JavaScript, etc. The following code will produce
an error that may cause your entire script to fail:

%testVariable = 3
%anotherVariable = 4;

To the human eye, you are able to discern two separate lines of code with different actions. Here is how the script
compiler will read it:

%testVariable = 3%anotherVariable = 4;

This is obviously not what the original code was meant to do. There are exemptions to this rule, but they come into
play when multiple lines of code are supposed to work together for a single action:

286 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

if(%testVariable == 4)
echo("Variable equals 4");

We have not covered conditional operators or echo commands yet, but you should notice that the first line does not
have a semi-colon. The easiest explanation is that the code is telling the compiler: “Read the first line, do the second
line if we meet the requirements.” In other words, perform operations between semi-colons. Complex operations
require multiple lines of code working together.

The second rule, proper use of whitespace, is just as easy to remember. Whitespace refers to how your script code is
separated between operations. Let’s look at the first example again:

%testVariable = 3;

The code is storing a value 3 in a local variable %testVariable. It is doing so by using a common mathematical
operator, the equal sign. TorqueScript recognizes the equal sign and performs the action just as expected. It does not
care if there are spaces in the operation:

%testVariable=3;

The above code works just as well, even without the spaces between the variable, the equal sign, and the 3. The
whitespace rule makes a lot more sense when combined with the semi-colon rule and multiple lines of code working
together. The following will compile and run without error:

if(%testVariable == 4) echo("Variable equals 4");

Comments

The last rule is optional, but should be used as often as possible if you want to create clean code. Whenever you write
code, you should try to use comments. Comments are a way for you to leave notes in code which are not compiled
into the game. The compiler will essentially skip over these lines.

There are two different comment syntax styles. The first one uses the two slashes, //. This is used for single line
comments:

// This comment line will be ignored
// This second line will also be ignored
%testVariable = 3;
// This third line will also be ignored

In the last example, the only line of code that will be executed has to do with %testVariable. If you need to
comment large chunks of code, or leave a very detailed message, you can use the /*comment*/ syntax. The /*
starts the commenting, the */ ends the commenting, and anything in between will be considered a comment:

/*
While attending school, an instructor taught a mantra I still use:

"Read. Read Code. Code."

Applying this to Torque 3D development is easy:

READ the documentation first.

READ CODE written by other Torque developers.

CODE your own prototypes based on what you have learned.

*/

5.2. Language Reference 287

Torque 3D Documentation, Release 3.5.1

As you can see, the comment makes full use of whitespace and multiple lines. While it is important to comment what
the code does, you can also use this to temporarily remove unwanted code until a better solution is found:

// Why are you using multiple if statements. Why not use a switch$?
/*
if(%testVariable == "Mich")

echo("User name: ", %testVariable);

if(%testVariable == "Heather")
echo("User Name: ", %testVariable);

if(%testVariable == "Nikki")
echo("User Name: ", %testVariable);

*/

5.2.2 Variables

A variable is a letter, word, or phrase linked to a value stored in your game’s memory and used during operations.
Creating a variable is a one line process. The following code creates a variable by naming it and assigning a value:

%localVariable = 3;

You can assign any type value to the variable you want. This is referred to as a language being type-insensitive.
TorqueScript does not care (insensitive) what you put in a variable, even after you have created it. The following code
is completely valid:

%localVariable = 27;
%localVariable = "Heather";
%localVariable = "7 7 7";

The main purpose of the code is to show that TorqueScript treats all data types the same way. It will interpret and
convert the values internally, so you do not have to worry about typecasting. That may seem a little confusing. After
all, when would you want a variable that can store a number, a string, or a vector?

You will rarely need to, which is why you want to start practicing good programming habits. An important practice is
proper variable naming. The following code will make a lot more sense, considering how the variables are named:

%userName = "Heather";
%userAge = 27;
%userScores = "7 7 7";

TorqueScript is more forgiving than low level programming languages. While it expects you to obey the basic syntax
rules, it will allow you to get away with small mistakes or inconsistency. The best example is variable case sensitivity.
With variables, TorqueScript is not case sensitive. You can create a variable and refer to it during operations without
adhering to case rules:

%userName = "Heather";
echo(%Username);

In the above code, %userName and %Username are the same variable, even though they are using different capital-
ization. You should still try to remain consistent in your variable naming and usage, but you will not be punished if
you slip up occasionally.

There are two types of variables you can declare and use in TorqueScript: local and global. Both are created and
referenced similarly:

%localVariable = 1;
$globalVariable = 2;

288 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

As you can see, local variable names are preceded by the percent sign %. Global variables are preceded by the dollar
sign $. Both types can be used in the same manner: operations, functions, equations, etc. The main difference has to
do with how they are scoped.

In programming, scoping refers to where in memory a variable exists during its life. A local variable is meant to only
exist in specific blocks of code, and its value is discarded when you leave that block. Global variables are meant to
exist and hold their value during your entire programs execution. Look at the following code to see an example of a
local variable:

function test()
{

%userName = "Heather";
echo(%userName);

}

We will cover functions a little later, but you should know that functions are blocks of code that only execute when
you call them by name. This means the variable, %userName, does not exist until the test() function is called.
When the function has finished all of its logic, the %userName variable will no longer exist. If you were to try to
access the %userName variable outside of the function, you will get nothing.

Most variables you will work with are local, but you will eventually want a variables that last for your entire game.
These are extremely important values used throughout the project. This is when global variables become useful. For
the most part, you can declare global variables whenever you want:

$PlayerName = "Heather";

function printPlayerName()
{

echo($PlayerName);
}

function setPlayerName()
{

$PlayerName = "Nikki";
}

The above code makes full use of a global variable that holds a player’s name. The first declaration of the variable
happens outside of the functions, written anywhere in your script. Because it is global, you can reference it in other
locations, including separate script files. Once declared, your game will hold on to the variable until shutdown.

5.2.3 Types

TorqueScript implicitly supports several variable data-types: numbers, strings, booleans, arrays and vectors. If you
wish to test the various data types, you can use the echo(...) command. For example:

%meaningOfLife = 42;
echo(%meaningOfLife);

$name = "Heather";
echo($name);

The echo will post the results in the console, which can be accessed by pressing the tilde key ~ while in game.

Numbers

TorqueScript handles standard numeric types:

5.2. Language Reference 289

Torque 3D Documentation, Release 3.5.1

123 (Integer)
1.234 (floating point)
1234e-3 (scientific notation)
0xc001 (hexadecimal)

Strings

Text, such as names or phrases, are supported as strings. Numbers can also be stored in string format. Standard strings
are stored in double-quotes:

"abcd" (string)

Example:

$UserName = "Heather";

Strings with single quotes are called “tagged strings”:

'abcd' (tagged string)

Tagged strings are special in that they contain string data, but also have a special numeric tag associated with them.
Tagged strings are used for sending string data across a network. The value of a tagged string is only sent once,
regardless of how many times you actually do the sending.

On subsequent sends, only the tag value is sent. Tagged values must be de-tagged when printing. You will not need to
use a tagged string often unless you are in need of sending strings across a network often, like a chat system:

$a = 'This is a tagged string';
echo(" Tagged string: ", $a);
echo("Detagged string: ", detag($a));

The output will be similar to this:

Tagged string: 24
Detagged string:

The second echo will be blank unless the string has been passed to you over a network.

Booleans

Like most programming languages, TorqueScript also supports booleans. Boolean numbers have only two values- true
or false:

true (1)
false (0)

Again, as in many programming languages the constant “true” evaluates to the number 1 in TorqueScript, and the
constant “false” evaluates to the number zero. However, non-zero values are also considered true. Think of booleans
as “on/off” switches, often used in conditional statements:

$lightsOn = true;

if($lightsOn)
echo("Lights are turned on");

290 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Arrays

Arrays are data structures used to store consecutive values of the same data type:

$TestArray[n] (Single-dimension)
$TestArray[m,n] (Multidimensional)
$TestArray[m_n] (Multidimensional)

If you have a list of similar variables you wish to store together, try using an array to save time and create cleaner
code. The syntax displayed above uses the letters n and m to represent where you will input the number of elements in
an array. The following example shows code that could benefit from an array:

$firstUser = "Heather";
$secondUser = "Nikki";
$thirdUser = "Mich";

echo($firstUser);
echo($secondUser);
echo($thirdUser);

Instead of using a global variable for each user name, we can put those values into a single array:

$userNames[0] = "Heather";
$userNames[1] = "Nikki";
$userNames[2] = "Mich";

echo($userNames[0]);
echo($userNames[1]);
echo($userNames[2]);

Now, let’s break the code down. Like any other variable declaration, you can create an array by giving it a name and
value:

$userNames[0] = "Heather";

What separates an array declaration from a standard variable is the use of brackets []. The number you put between the
brackets is called the index. The index will access a specific element in an array, allowing you to view or manipulate
the data. All the array values are stored in consecutive order.

If you were able to see an array on paper, it would look something like this:

[0] [1] [2]

In our example, the data looks like this:

["Heather"] ["Nikki"] ["Mich"]

Like other programming languages, the index is always a numerical value and the starting index is always 0. Just
remember, index 0 is always the first element in an array. As you can see in the above example, we create the array by
assigning the first index (0) a string value (“Heather”).

The next two lines continue filling out the array, progressing through the index consecutively:

$userNames[1] = "Nikki";
$userNames[2] = "Mich";

The second array element (index 1) is assigned a different string value (“Nikki”), as is the third (index 2). At this point,
we still have a single array structure, but it is holding three separate values we can access. Excellent for organization.

The last section of code shows how you can access the data that has been stored in the array. Again, you use a
numerical index to point to an element in the array. If you want to access the first element, use 0:

5.2. Language Reference 291

Torque 3D Documentation, Release 3.5.1

echo($userNames[0]);

In a later section, you will learn about looping structures that make using arrays a lot simpler. Before moving on,
you should know that an array does not have to be a single, ordered list. TorqueScript also support multidimensional
arrays.

An single-dimensional array contains a single row of values. A multidimensional array is essentially an array of arrays,
which introduces columns as well. The following is a visual of what a multidimensional looks like with three rows
and three columns:

[x] [x] [x]
[x] [x] [x]
[x] [x] [x]

Defining this kind of array in TorqueScript is simple. The following creates an array with 3 rows and 3 columns:

$testArray[0,0] = "a";
$testArray[0,1] = "b";
$testArray[0,2] = "c";

$testArray[1,0] = "d";
$testArray[1,1] = "e";
$testArray[1,2] = "f";

$testArray[2,0] = "g";
$testArray[2,1] = "h";
$testArray[2,2] = "i";

Notice that we are are now using two indices, both starting at 0 and stopping at 2. We can use these as coordinates to
determine which array element we are accessing:

[0,0] [0,1] [0,2]
[1,0] [1,1] [1,2]
[2,0] [2,1] [2,2]

In our example, which progresses through the alphabet, you can visualize the data in the same way:

[a] [b] [c]
[d] [e] [f]
[g] [h] [i]

The first element [0,0] points to the letter ‘a’. The last element [2,2] points to the letter ‘i’.

Vectors

Vectors are a helpful data-type which are used throughout Torque 3D. For example, many fields in the World Editor
take numeric values in sets of 3 or 4. These are stored as strings and interpreted as “vectors”:

"1.0 1.0 1.0" (3 element vector)

The most common example of a vector would be a world position. Like most 3D coordinate systems, an object’s
position is stored as (X Y Z). You can use a three element vector to hold this data:

%position = "25.0 32 42.5";

You can separate the values using spaces or tabs (both are acceptable whitespace). Another example is storing color
data in a four element vector. The values that make up a color are “Red Blue Green Alpha,” which are all numbers.
You can create a vector for color using hard numbers, or variables:

292 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%firstColor = "100 100 100 255";
echo(%firstColor);

%red = 128;
%blue = 255;
%green = 64;
%alpha = 255;

%secondColor = %red SPC %blue SPC %green SPC %alpha;
echo(%secondColor);

5.2.4 Operators

Operators in TorqueScript behave very similarly to operators in real world math and other programming languages.
You should recognize quite a few of these from math classes you took in school, but with small syntactical changes.
The rest of this section will explain the syntax and show a brief example, but we will cover these in depth in later
guides.

Arithmetic Operators

These are your basic math ops.

Operator Name Example Explanation
* multiplication $a * $b Multiply $a and $b.
/ division $a / $b Divide $a by $b.
% modulo $a % $b Remainder of $a divided

by $b.
+ addition $a + $b Add $a and $b.
- subtraction $a - $b Subtract $b from $a.
++ auto-increment

(post-fix only)
$a++ Increment $a.

-- auto-decrement
(post-fix only)

$b-- Decrement $b.

Note: ++$a is illegal. The value of $a++ is that of the incremented variable: auto-increment is post-fix in syntax, but
pre-increment in sematics (the variable is incremented, before the return value is calculated). This behavior is unlike
that of C and C++.

Note: --$b is illegal. The value of $a-- is that of the decremented variable: auto-decrement is post-fix in syntax,
but pre-decrement in sematics (the variable is decremented, before the return value is calculated). This behavior is
unlike that of C and C++.

Relational Operators

Used in comparing values and variables against each other.

5.2. Language Reference 293

Torque 3D Documentation, Release 3.5.1

Operator Name Example Explanation
< Less than $a < $b 1 if $a is less than $b
> More than $a > $b 1 if $a is greater than $b
<= Less than or Equal to $a <= $b 1 if $a is less than or equal to $b
>= More than or Equal to $a >= $b 1 if $a is greater than or equal to $b
== Equal to $a == $b 1 if $a is equal to $b
!= Not equal to $a != $b 1 if $a is not equal to $b
! Logical NOT !$a 1 if $a is 0
&& Logical AND $a && $b 1 if $a and $b are both non-zero
|| Logical OR $a || $b 1 if either $a or $b is non-zero
$= String equal to $c $= $d 1 if $c equal to $d.
!$= String not equal to $c !$= $d 1 if $c not equal to $d.

Bitwise Operators

Used for comparing and shifting bits.

Operator Name Example Explanation
~ Bitwise

complement
~$a flip bits 1 to 0 and 0 to 1

& Bitwise AND $a &
$b

composite of elements where bits in same position are 1

| Bitwise OR $a |
$b

composite of elements where bits 1 in either of the two
elements

^ Bitwise XOR $a ^
$b

composite of elements where bits in same position are opposite

<< Left Shift $a <<
3

element shifted left by 3 and padded with zeros

>> Right Shift $a >>
3

element shifted right by 3 and padded with zeros

Assignment Operators

Used for setting the value of variables.

Opera-
tor

Name Example Explanation

= Assignment $a = $b; Assign value of $b to $a
op= Assignment

Operators
$a op=
$b;

Equivalent to $a = $a op $b, where op can be any of: * / %
+ - & | ^ << >>

Note: The value of an assignment is the value being assigned, so $a = $b = $c is legal.

String Operators

There are special values you can use to concatenate strings and variables. Concatenation refers to the joining of
multiple values into a single variable. The following is the basic syntax:

"string 1" operation "string 2"

You can use string operators similarly to how you use mathematical operators (=, +, -, *). You have four operators at
your disposal:

294 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Oper-
ator

Name Exam-
ple

Explanation

@ String con-
catenation

$c @
$d

Concatenates strings $c and $d into a single string. Numeric literals/variables
convert to strings.

NL New Line $c NL
$d

Concatenates strings $c and $d into a single string separated by new-line.
Such a string can be decomposed with getRecord()

TAB Tab $c
TAB
$d

Concatenates strings $c and $d into a single string separated by tab. Such a
string can be decomposed with getField()

SPC Space $c
SPC
$d

Concatenates strings $c and $d into a single string separated by space. Such
a string can be decomposed with getWord()

Miscellaneous Operators

General programming operators.

Operator Name Example Explanation
? : Conditional x ? y : z Evaluates to y if x equal to

1, else evaluates to z
[] Array element $a[5] Synonymous with $a5
() Delimiting, Grouping t2dGetMin(%a, %b)

if ($a == $b)
($a+$b)*($c-$d)

Argument list for function
call
Used with if, for, while,
switch keywords
Control associativity in ex-
pressions

{} Compound statement if (1) {$a = 1; $b
= 2;}
function foo() {$a
= 1;}

Delimit multiple state-
ments, optional for if, else,
for, while
Required for switch, dat-
ablock, new, function

, Listing t2dGetMin(%a, %b)
%M[1,2]

Delimiter for arguments

:: Namespace Item::onCollision() This definition of the
onCollision() func-
tion is in the Item
namespace

. Field/Method selection %obj.field
%obj.method()

Select a console method or
field

// Single-line comment // This is a
comment

Used to comment out a sin-
gle line of code

/* */ Multi-line comment /*This is a a
multi-line
comment*/

Used to comment out multi-
ple consecutive lines
/* opens the comment, and
*/ closes it

Note: There is no “comma operator”, as defined in C/C++; $a = 1, $b = 2; is a parse error.

5.2. Language Reference 295

Torque 3D Documentation, Release 3.5.1

5.2.5 Control Structures

TorqueScript provides basic branching structures that will be familiar to programmers that have used other languages.
If you are completely new to programming, you use branching structures to control your game’s flow and logic. This
section builds on everything you have learned about TorqueScript so far.

if, else

This type of structure is used to test a condition, then perform certain actions if the condition passes or fails. You do
not always have to use the full structure, but the following syntax shows the extent of the conditional:

if(<boolean expression>)
{

pass logic
}
else
{

alternative logic
}

Remember how boolean values work? Essentially, a bool can either be true (1) or false (0). The condition (boolean) is
always typed into the parenthesis after the “if” syntax. Your logic will be typed within the brackets {}. The following
example uses specific variable names and conditions to show how this can be used:

// Global variable that controls lighting
$lightsShouldBeOn = true;

// Check to see if lights should be on or off
if($lightsShouldBeOn)
{

// True. Call turn on lights function
turnOnLights();

echo("Lights have been turned on");
}
else
{

// False. Turn off the lights
turnOffLights();

echo("Lights have been turned off");
}

Brackets for single line statements are optional. If you are thinking about adding additional logic to the code, then you
should use the brackets anyway. If you know you will only use one logic statement, you can use the following syntax:

// Global variable that controls lighting
$lightsShouldBeOn = true;

// Check to see if lights should be on or off
if($lightsShouldBeOn)

turnOnLights(); // True. Call turn on lights function
else

turnOffLights(); // False. Turn off the lights

296 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

switch, switch$

If your code is using several cascading if-then-else statements based on a single value, you might want to use a switch
statement instead. Switch statements are easier to manage and read. There are two types of switch statements, based
on data type: numeric (switch) and string (switch$):

switch(<numeric expression>)
{

case value0:
statements;

case value1:
statements;

case value3:
statements;

default:
statements;

}

As the above code demonstrates, start by declaring the switch statement by passing in a value to the switch(...)
line. Inside of the brackets {}, you will list out all the possible cases that will execute based on what value being
tested. It is wise to always use the default case, anticipating rogue values being passed in:

switch($ammoCount)
{

case 0:
echo("Out of ammo, time to reload");
reloadWeapon();

case 1:
echo("Almost out of ammo, warn user");
lowAmmoWarning();

case 100:
echo("Full ammo count");
playFullAmmoSound();

default:
doNothing();

}

switch only properly evaluates numerical values. If you need a switch statement to handle a string value, you will
want to use switch$. The switch$ syntax is similar to what you just learned:

switch$ (<string expression>)
{

case "string value 0":
statements;

case "string value 1":
statements;

case "string value N":
statements;

default:
statements;

}

Appending the $ sign to switch will immediately cause the parameter passed in to be parsed as a string. The following
code applies this logic:

// Print out specialties
switch($userName)
{

case "Heather":

5.2. Language Reference 297

Torque 3D Documentation, Release 3.5.1

echo("Sniper");
case "Nikki":

echo("Demolition");
case Mich:

echo("Meat shield");
default:

echo("Unknown user");
}

for

As the name implies, this structure type is used to repeat logic in a loop based on an expression. The expression is
usually a set of variables that increase by count, or a constant variable changed once a loop has hit a specific point:

for(expression0; expression1; expression2)
{

statement(s);
}

One way to label the expressions in this syntax are (startExpression; testExpression; countExpression). Each expres-
sion is separated by a semi-colon:

for(%count = 0; %count < 3; %count++)
{

echo(%count);
}

OUTPUT:
0
1
2

The first expression creates the local variable %count and initializing it to 0. In the second expression determines
when to stop looping, which is when the %count is no longer less than 3. Finally, the third expression increases the
count the loop relies on.

foreach

Simplify the iteration over sets of objects and string vectors. To loop over each object in a SimSet, use the foreach
statement:

foreach(%obj in %set)
/* do something with %obj */;

To loop over each element in a string vector, use the foreach$ statement:

foreach$(%str in "a b c")
/* do something with %str */;

while

A while loop is a much simpler looping structure compared to a for loop.

298 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

while(expression)
{

statements;
}

As soon as the expression is met, the while loop will terminate:

%countLimit = 0;

while(%countLimit <= 5)
{

echo("Still in loop");
%count++;

}

echo("Loop was terminated");

5.2.6 Functions

Much of your TorqueScript experience will come down to calling existing Console Functions and writing your own.
Functions are a blocks of code that only execute when you call them by name. Basic functions in TorqueScript are
defined as follows:

// function - Is a keyword telling TorqueScript we are defining a new function.
// function_name - Is the name of the function we are creating.
// ... - Is any number of additional arguments.
// statements - Your custom logic executed when function is called
// return val - The value the function will give back after it has completed. Optional.

function function_name([arg0],...,[argn])
{

statements;
[return val;]

}

The function keyword, like other TorqueScript keywords, is case sensitive. You must type it exactly as shown above.
The following is an example of a custom function that takes in two parameters, then executes code based on those
arguments.

TorqueScript can take any number of arguments, as long as they are comma separated. If you call a function and pass
fewer parameters than the function’s definition specifies, the un-passed parameters will be given an empty string as
their default value:

function echoRepeat (%echoString, %repeatCount)
{

for (%count = 0; %count < %repeatCount; %count++)
{

echo(%echoString);
}

}

You can cause this function to execute by calling it in the console, or in another function:

echoRepeat("hello!", 5);

OUTPUT:
"hello!"
"hello!"

5.2. Language Reference 299

Torque 3D Documentation, Release 3.5.1

"hello!"
"hello!"
"hello!"

If you define a function and give it the same name as a previously defined function, TorqueScript will completely
override the old function. This still applies even if you change the number of parameters used; the older function will
still be overridden.

Torque 3D also contain Console Functions written in C++, then exposed to TorqueScript. These are global functions
you can call at any time, and are usually very helpful or important. E.g. throughout this document, we have been using
the Console Function echo(...).

5.2.7 Objects

The most complex aspect of TorqueScript involves dealing with game objects. Much of your object creation will be
performed in the World Editor, but you should still know how to manipulate objects at a script level. One thing to
remember is that everything in TorqueScript is an object: players, vehicles, items, etc.

Every object added in the level is saved to a mission file, which is written entirely in TorqueScript. This also means
every game object is accessible from script.

Syntax

Even though objects are originally created in C++, they are exposed to script in a way that allows them to be declared
using the following syntax:

%objectID = new ObjectType(Name : CopySource, arg0, ..., argn)
{

<datablock = DatablockIdentifier;>

[existing_field0 = InitialValue0;]
...
[existing_fieldN = InitialValueN;]

[dynamic_field0 = InitialValue0;]
...
[dynamic_fieldN = InitialValueN;]

};

%objectID Is the variable where the object’s handle will be stored.

new Is a key word telling the engine to create an instance of the following ObjectType.

ObjectType Is any class declared in the engine or in script that has been derived from SimObject or a subclass of
SimObject. SimObject-derived objects are what we were calling “game world objects” above.

Name (optional) Is any expression evaluating to a string, which will be used as the object’s name.

CopySource (optional) The name of an object which is previously defined somewhere in script. Existing field values
will be copied from CopySource to the new object being created. Any dynamic fields defined in CopySource
will also be defined in the new object, and their values will be copied. Note: If CopySource is of a different
ObjectType than the object being created, only CopySource’s dynamic fields will be copied.

arg0, ..., argn (optional) Is a comma separated list of arguments to the class constructor (if it takes any).

datablock Many objects (those derived from GameBase, or children of GameBase) require datablocks to initialize
specific attributes of the new object. Datablocks are discussed below.

300 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

existing_fieldN In addition to initializing values with a datablock, you may also initialize existing class members
(fields) here. In order to modify a member of a C++-defined class, the member must be exposed to the Console.

dynamic_fieldN Lastly, you may create new fields (which will exist only in Script) for your new object. These will
show up as dynamic fields in the World Editor Inspector.

The main object variants you can create are SimObjects without a datablock, and game objects which require a dat-
ablock. The most basic SimObject can be created in a single line of code:

// Create a SimObject without any name, argument, or fields.
$exampleSimObject = new SimObject();

The $exampleSimObject variable now has access to all the properties and functions of a basic SimObject. Usu-
ally, when you are creating a SimObject you will want custom fields to define features:

// Create a SimObject with a custom field
$exampleSimObject = new SimObject()
{

catchPhrase = "Hello world!";
};

As with the previous example, the above code creates a SimObject without a name which can be referenced by the
global variable $exampleSimObject. This time, we have added a user defined field called “catchPhrase.” There
is not a single stock Torque 3D object that has a field called “catchPhrase.” However, by adding this field to the
SimObject it is now stored as long as that object exists.

The other game object variant mentioned previously involves the usage of datablocks. Datablocks contain static
information used by a game object with a similar purpose. Datablocks are transmitted from a server to client, which
means they cannot be modified while the game is running.

We will cover datablocks in more detail later, but the following syntax shows how to create a game object using a
datablock:

// create a StaticShape using a datablock
datablock StaticShapeData(ceiling_fan)
{

category = "Misc";
shapeFile = "art/shapes/undercity/cfan.dts";
isInvincible = true;

};

new StaticShape(CistFan)
{

dataBlock = "ceiling_fan";
position = "12.5693 35.5857 59.5747";
rotation = "1 0 0 0";
scale = "1 1 1";

};

Once you have learned about datablocks, the process is quite simple:

1. Create a datablock in script, or using the datablock editor

2. Add a shape to the scene from script or using the World Editor

3. Assign the new object a datablock

Handles vs Names

Every game object added to a level can be accessed by two parameters:

5.2. Language Reference 301

Torque 3D Documentation, Release 3.5.1

Handle A unique numeric ID generated when the object is created

Name This is an optional parameter given to an object when it is created. You can assign a name to an object from
the World Editor, or do so in TorqueScript.

Example:

// In this example, CistFan is the name of the object
new StaticShape(CistFan)
{

dataBlock = "ceiling_fan";
position = "12.5693 35.5857 59.5747";
rotation = "1 0 0 0";
scale = "1 1 1";

};

While in the World Editor, you will not be allowed to assign the same name to multiple, separate objects. The editor
will ignore the attempt. If you manually name two objects the same thing in script, the game will only load the first
object and ignore the second.

Singletons

If you need a global script object with only a single instance, you can use the singleton keyword. Singletons, in
TorqueScript, are mostly used for unique shaders, materials, and other client-side only objects.

For example, SSAO (screen space ambient occlusion) is a post-processing effect. The game will only ever need a
single instance of the shader, but it needs to be globally accessible on the client. The declaration of the SSAO shader
in TorqueScript can be shown below:

singleton ShaderData(SSAOShader)
{

DXVertexShaderFile = "shaders/common/postFx/postFxV.hlsl";
DXPixelShaderFile = "shaders/common/postFx/ssao/SSAO_P.hlsl";
pixVersion = 3.0;

};

Fields

Objects instantiated via script may have data members, referred to as Fields.

Methods

In addition to the creation of stand-alone functions, TorqueScript allows you to create and call methods attached to
objects. Some of the more important Console Methods are already written in C++, then exposed to script. You can
call these methods by using the dot . notation:

objHandle.function_name();

objName.function_name();

Example:

new StaticShape(CistFan)
{

dataBlock = "ceiling_fan";
position = "12.5693 35.5857 59.5747";

302 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

rotation = "1 0 0 0";
scale = "1 1 1";

};

// Write all the objects methods to the console log
CistFan.dump();

// Get the ID of an object, using the object's name
$objID = CistFan.getID();

// Print the ID to the console
echo("Object ID: ", $objID);

// Get the object's position, using the object's handle
%position = $objID.getPosition();

// Print the position to the console
echo("Object Position: ", %position);

The above example shows how you can call an object’s method by using its name or a variable containing its han-
dle (unique ID number). Additionally, TorqueScript supports the creation of methods that have no associated C++
counterpart:

// function - Is a keyword telling TorqueScript we are defining a new function.
// ClassName::- Is the class type this function is supposed to work with.
// function_name - Is the name of the function we are creating.
// ... - Is any number of additional arguments.
// statements - Your custom logic executed when function is called
// %this- Is a variable that will contain the handle of the 'calling object'.
// return val - The value the function will give back after it has completed. Optional.

function Classname::func_name(%this, [arg0],...,[argn])
{

statements;
[return val;]

}

At a minimum, Console Methods require that you pass them an object handle. You will often see the first argument
named %this. People use this as a hint, but you can name it anything you want. As with Console Functions any number
of additional arguments can be specified separated by commas.

As a simple example, let’s say there is an object called Samurai, derived from the Player class. It is likely that a specific
appearance and play style will be given to the samurai, so custom ConsoleMethods can be written. Here is a sample:

function Samurai::sheatheSword(%this)
{

echo("Katana sheathed");
}

When you add a Samurai object to your level via the World Editor, it will be given an ID. Let’s pretend the handle (ID
number) is 1042. We can call its ConsoleMethod once it is defined, using the period syntax:

1042.sheatheSword();

OUTPUT: "Katana sheathed"

Notice that no parameters were passed into the function. The %this parameter is inherent, and the original function
did not require any other parameters.

5.2. Language Reference 303

Torque 3D Documentation, Release 3.5.1

5.2.8 Packages

The package keyword tells the console that the subsequent block of code is to be declared but not loaded. Packages
provide dynamic function-polymorphism in TorqueScript. In short, a function defined in a package will over-ride the
prior definition of a same named function when the is activated. When the package is subsequently de-activated, the
previous definition of any overridden functions will be re-asserted.

A package has the following syntax:

package package_name
{

function function_definition0()
{

// code
}
function function_definitionN()
{

// code
}

};

Some things to know:

• The same function can be defined in multiple packages.

• Only functions can be packaged.

• Datablocks cannot be packaged.

• Packages ‘stack’ meaning that deactivating packages activated prior to the currently active (s) will deactivate all
packages activated prior to the being deactivated (see example below).

• Functions in a package may activate and deactivate packages.

In order to use the functions in a package, the package must be activated:

activatePackage(package_name);

Subsequently a package can be deactivated:

deactivatePackage(package_name);

First, define a function and two packages, each of which provides an alternative definition by the same name:

function testFunction()
{

echo("testFunction() - unpackaged.");
}
package MyPackage0
{

function testFunction()
{

echo("testFunction() - MyPackage0.");
}

};
package MyPackage1
{

function testFunction()
{

echo("testFunction() - MyPackage1.");
}

};

304 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Now invoke the testFunction() function from the console under three different conditions:

==> testFunction();
testFunction() - unpackaged.
==> activatePackage(MyPackage0);
==> testFunction();
testFunction() - MyPackage0.
==> activatePackage(MyPackage1);
==> testFunction();
testFunction() - MyPackage1.
==> deactivatePackage(MyPackage0); // MyPackage1 is automatically deactivated.
==> testFunction();
testFunction() - unpackaged.

5.3 Console Reference

5.3.1 Core

Basic engine and language functionality for TorqueScript.

Console

The basis of the TorqueScript system and command execution.

Functions

void cls()
Clears the console output.

void debugEnumInstances(string className, string functionName)
Call the given function for each instance of the given class.

Parameters

• className – Name of the class for which to enumerate instances.

• functionName – Name of function to call and pass each instance of the given class.

bool dumpEngineDocs(string outputFile)
Dumps the engine scripting documentation to the specified file overwriting any existing content.

Parameters outputFile – The relative or absolute output file path and name.

Returns Returns true if successful.

SimXMLDocument exportEngineAPIToXML()
Create a XML document containing a dump of the entire exported engine API.

Returns containing a dump of the engine’s export information or NULL if the operation failed.

string getCategoryOfClass(string className)
Returns the category of the given class.

Parameters className – The name of the class.

string getDescriptionOfClass(string className)
Returns the description string for the named class.

5.3. Console Reference 305

Torque 3D Documentation, Release 3.5.1

Parameters className – The name of the class.

Returns The class description in string format.

bool isClass(string identifier)
Returns true if the passed identifier is the name of a declared class.

bool isMemberOfClass(string className, string superClassName)
Returns true if the class is derived from the super class. If either class doesn’t exist this returns false.

Parameters

• className – The class name.

• superClassName – The super class to look for.

bool isValidObjectName(string name)
Return true if the given name makes for a valid object name.

Parameters name – Name of object

Returns True if name is allowed, false if denied (usually because it starts with a number, _, or invalid
character

SimObject loadObject(string filename)
Loads a serialized object from a file.

Parameters Name – and path to text file containing the object

bool saveObject(SimObject object, string filename)
Serialize the object to a file.

Parameters

• object – The object to serialize.

• filename – The file name and path.

void unitTest_runTests()
Run unit tests, or just the tests that prefix match against the searchString.

Variables

string $instantGroup
The group that objects will be added to when they are created.

bool $Con::alwaysUseDebugOutput
Determines whether to send output to the platform’s “debug” system.

bool $Con::logBufferEnabled
If true, the log buffer will be enabled.

int $Con::objectCopyFailures
If greater than zero then it counts the number of object creation failures based on a missing copy object and does
not report an error..

int $Con::printLevel
This is deprecated. It is no longer in use and does nothing.

bool $Con::useTimestamp
If true a timestamp is prepended to every console message.

bool $Con::warnUndefinedVariables
If true, a warning will be displayed in the console whenever a undefined variable is used in script.

306 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Debugging

Functionality to help spot program errors. Also provides profiler functions, helpful in determining performance bot-
tlenecks.

Functions
void backtrace()

Prints the scripting call stack to the console log. Used to trace functions called from within functions. Can help
discover what functions were called (and not yet exited) before the current point in scripts.

void debug()
Drops the engine into the native C++ debugger. This function triggers a debug break and drops the process into
the IDE’s debugger. If the process is not running with a debugger attached it will generate a runtime error on
most platforms.

void debugDumpAllObjects()
Dumps all current EngineObject instances to the console.

void debugv(string variableName)
Logs the value of the given variable to the console. Prints a string of the form ” lt variableName gt = lt variable
value gt ” to the console.

Parameters variableName – Name of the local or global variable to print.

Example:

%var = 1;
debugv("%var"); // Prints "%var = 1"

void dumpAlloc(int allocNum)
Dumps information about the given allocated memory block.

Parameters allocNum – Memory block to dump information about.

void dumpMemSnapshot(string fileName)
Dumps a snapshot of current memory to a file. The total memory used will also be output to the console. This
function will attempt to create the file if it does not already exist.

Parameters fileName – Name and path of file to save profiling stats to. Must use forward slashes
(/)

Example:

dumpMemSnapshot("C:/Torque/ProfilerLogs/profilerlog1.txt");

void dumpUnflaggedAllocs(string fileName)
Dumps all unflagged memory allocations. Dumps all memory allocations that were made after a call to flagCur-
rentAllocs() . Helpful when used with flagCurrentAllocs() for detecting memory leaks and analyzing general
memory usage.

Parameters fileName – Optional file path and location to dump all memory allocations not
flagged by flagCurrentAllocs(). If left blank, data will be dumped to the console.

Example:

dumpMemSnapshot(); // dumps info to console
dumpMemSnapshot("C:/Torque/profilerlog1.txt"); // dumps info to file

void flagCurrentAllocs()
Flags all current memory allocations. Flags all current memory allocations for exclusion in subsequent calls to
dumpUnflaggedAllocs() . Helpful in detecting memory leaks and analyzing memory usage.

5.3. Console Reference 307

Torque 3D Documentation, Release 3.5.1

void freeMemoryDump()
Dumps some useful statistics regarding free memory. Dumps an analysis of ‘free chunks’ of memory. Does not
print how much memory is free.

void profilerDump()
Dumps current profiling stats to the console window.

void profilerDumpToFile(string fileName)
Dumps current profiling stats to a file.

Parameters fileName – Name and path of file to save profiling stats to. Must use forward slashes
(/). Will attempt to create the file if it does not already exist.

Example:

profilerDumpToFile("C:/Torque/log1.txt");

void profilerEnable(bool enable)
Enables or disables the profiler. Data is only gathered while the profiler is enabled.

void profilerMarkerEnable(string markerName, bool enable)
Enable or disable a specific profile.

Parameters

• enable – Optional paramater to enable or disable the profile.

• markerName – Name of a specific marker to enable or disable.

void profilerReset()
Resets the profiler, clearing it of all its data. If the profiler is currently running, it will first be disabled. All
markers will retain their current enabled/disabled status.

int sizeof(string objectOrClass)
Determines the memory consumption of a class or object.

Parameters objectOrClass – The object or class being measured.

Returns Returns the total size of an object in bytes.

void telnetSetParameters(int port, string consolePass, string listenPass, bool remoteEcho)
Initializes and open the telnet console.

Parameters

• port – Port to listen on for console connections (0 will shut down listening).

• consolePass – Password for read/write access to console.

• listenPass – Password for read access to console.

• remoteEcho – [optional] Enable echoing back to the client, off by default.

void trace(bool enable)
Enable or disable tracing in the script code VM. When enabled, the script code runtime will trace the invocation
and returns from all functions that are called and log them to the console. This is helpful in observing the flow
of the script program.

Parameters enable – New setting for script trace execution, on by default.

void validateMemory()
Used to validate memory space for the game.

308 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Variables
int getAppVersionNumber

Get the version of the application build, as a string.
string getAppVersionString

Get the version of the aplication, as a human readable string.

string getBuildString
Get the type of build, “Debug” or “Release”.

string getCompileTimeString
Get the time of compilation.

string getEngineName
Get the name of the engine product that this is running from, as a string.

int getVersionNumber
Get the version of the engine build, as a string.

string getVersionString
Get the version of the engine build, as a human readable string.

Logging

Functions for logging messages, warnings, and errors to the console.

Classes

ConsoleLogger

Inherit: SimObject

Description A class designed to be used as a console consumer and log the data it receives to a file.

Methods
bool ConsoleLogger::attach()

Attaches the logger to the console and begins writing to file.

Example:

// Create the logger
// Will automatically start writing to testLogging.txt with normal priority
newConsoleLogger(logger, "testLogging.txt", false);

// Send something to the console, with the logger consumes and writes file
echo("This is logged to the file");

// Stop logging, but do not delete the logger
logger.detach();

echo("This is not logged to the file");

// Attach the logger to the console again
logger.attach();

// Logging has resumedecho("Logging has resumed");

5.3. Console Reference 309

Torque 3D Documentation, Release 3.5.1

bool ConsoleLogger::detach()
Detaches the logger from the console and stops writing to file.

Example:

// Create the logger
// Will automatically start writing to testLogging.txt with normal priority
newConsoleLogger(logger, "testLogging.txt", false);

// Send something to the console, with the logger consumes and writes to file
echo("This is logged to the file");

// Stop logging, but do not delete the logger
logger.detach();

echo("This is not logged to the file");

// Attach the logger to the console again
logger.attach();

// Logging has resumedecho("Logging has resumed");

Fields
LogLevel ConsoleLogger::level

Determines the priority level and attention the logged entry gets when recorded.

Enumeration
enum LogLevel

Priority levels for logging entries.

Parameters

• normal – Lowest priority level, no highlighting.

• warning – Mid level priority, tags and highlights possible issues in blue.

• error – Highest priority level, extreme emphasis on this entry. Highlighted in red.

Functions
void dumpConsoleClasses(bool dumpScript, bool dumpEngine)

Dumps all declared console classes to the console.

Parameters

• dumpScript – Optional parameter specifying whether or not classes defined in script
should be dumped.

• dumpEngine – Optional parameter specifying whether or not classes defined in the engine
should be dumped.

void dumpConsoleFunctions(bool dumpScript, bool dumpEngine)
Dumps all declared console functions to the console.

Parameters

• dumpScript – Optional parameter specifying whether or not functions defined in script
should be dumped.

• dumpEngine – Optional parameter specitying whether or not functions defined in the
engine should be dumped.

310 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void echo(string message, ...)
Logs a message to the console. Concatenates all given arguments to a single string and prints the string to the
console. A newline is added automatically after the text.

Parameters message – Any number of string arguments.

void error(string message, ...)
Logs an error message to the console. Concatenates all given arguments to a single string and prints the string
to the console as an error message (in the in-game console, these will show up using a red font by default). A
newline is added automatically after the text.

Parameters message – Any number of string arguments.

void log(string message)
Logs a message to the console.

Parameters message – The message text.

void logError(string message)
Logs an error message to the console.

Parameters message – The message text.

void logWarning(string message)
Logs a warning message to the console.

Parameters message – The message text.

void setLogMode(int mode)
Determines how log files are written. Sets the operational mode of the console logging system. Additionally,
when changing the log mode and thus opening a new log file, either of the two mode values may be combined by
binary OR with 0x4 to cause the logging system to flush all console log messages that had already been issued
to the console system into the newly created log file.

Parameters mode – Parameter specifying the logging mode. This can be:1: Open and close the
console log file for each seperate string of output. This will ensure that all parts get written out
to disk and that no parts remain in intermediate buffers even if the process crashes.2: Keep the
log file open and write to it continuously. This will make the system operate faster but if the
process crashes, parts of the output may not have been written to disk yet and will be missing
from the log.

void warn(string message, ...)
Logs a warning message to the console. Concatenates all given arguments to a single string and prints the string
to the console as a warning message (in the in-game console, these will show up using a turquoise font by
default). A newline is added automatically after the text.

Parameters message – Any number of string arguments.

Messaging

Script classes and functions used for passing messages and events between classes.

Classes

EventManager The EventManager class is a wrapper for the standard messaging system.

Inherit: SimObject

5.3. Console Reference 311

Torque 3D Documentation, Release 3.5.1

Description It provides functionality for management of event queues, events, and subscriptions. Creating an Event-
Manager is as simple as calling new EventManager and specifying a queue name.

Example:

// Create the EventManager.
$MyEventManager = newEventManager() { queue = "MyEventManager"; };

// Create an event.
$MyEventManager.registerEvent("SomeCoolEvent");

// Create a listener and subscribe.
$MyListener = newScriptMsgListener() { class = MyListener; };
$MyEventManager.subscribe($MyListener, "SomeCoolEvent");

function MyListener::onSomeCoolEvent(%this, %data)
{

echo("onSomeCoolEvent Triggered");
}

// Trigger the event.
$MyEventManager.postEvent("SomeCoolEvent", "Data");

Methods
void EventManager::dumpEvents()

Print all registered events to the console.
void EventManager::dumpSubscribers(String event)

Print all subscribers to an event to the console.

Parameters event – The event whose subscribers are to be printed. If this parameter isn’t speci-
fied, all events will be dumped.

bool EventManager::isRegisteredEvent(String event)
Check if an event is registered or not.

Parameters event – The event to check.

Returns Whether or not the event exists.

bool EventManager::postEvent(String event, String data)
~Trigger an event.

Parameters

• event – The event to trigger.

• data – The data associated with the event.

Returns Whether or not the event was dispatched successfully.

bool EventManager::registerEvent(String event)
Register an event with the event manager.

Parameters event – The event to register.

Returns Whether or not the event was registered successfully.

void EventManager::remove(SimObject listener, String event)
Remove a listener from an event.

Parameters

• listener – The listener to remove.

312 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• event – The event to be removed from.

void EventManager::removeAll(SimObject listener)
Remove a listener from all events.

Parameters listener – The listener to remove.

bool EventManager::subscribe(SimObject listener, String event, String callback)
Subscribe a listener to an event.

Parameters

• listener – The listener to subscribe.

• event – The event to subscribe to.

• callback – Optional method name to receive the event notification. If this is not specified,
“on[event]” will be used.

Returns Whether or not the subscription was successful.

void EventManager::unregisterEvent(String event)
Remove an event from the EventManager .

Parameters event – The event to remove.

Fields
string EventManager::queue

List of events currently waiting.

Message Base class for messages.

Inherit: SimObject

Description Message is the base class for C++ defined messages, and may also be used in script for script defined
messages if no C++ subclass is appropriate.

Messages are reference counted and will be automatically deleted when their reference count reaches zero. When
you dispatch a message, a reference will be added before the dispatch and freed after the dispatch. This allows for
temporary messages with no additional code. If you want to keep the message around, for example to dispatch it
to multiple queues, call addReference() before dispatching it and freeReference() when you are done with it. Never
delete a Message object directly unless addReference() has not been called or the message has not been dispatched.

Message IDs are pooled similarly to datablocks, with the exception that IDs are reused. If you keep a message for
longer than a single dispatch, then you should ensure that you clear any script variables that refer to it after the last
freeReference(). If you don’t, then it is probable that the object ID will become valid again in the future and could
cause hard to track down bugs.

Messages have a unique type to simplify message handling code. For object messages, the type is defined as either
the script defined class name or the C++ class name if no script class was defined. The message type may be obtained
through the getType() method.

By convention, any data for the message is held in script accessible fields. Messages that need to be handled in C++ as
well as script provide the relevant data through persistent fields in a subclass of Message to provide best performance
on the C++ side. Script defined messages usually their through dynamic fields, and may be accessed in C++ using the
SimObject::getDataField() method.

5.3. Console Reference 313

Torque 3D Documentation, Release 3.5.1

Methods
void Message::addReference()

Increment the reference count for this message.
void Message::freeReference()

Decrement the reference count for this message.

string Message::getType()
Get message type (script class name or C++ class name if no script defined class).

void Message::onAdd()
Script callback when a message is first created and registered.

Example:

function Message::onAdd(%this)
{

// Perform on add code here
}

void Message::onRemove()
Script callback when a message is deleted.

Example:

function Message::onRemove(%this)
{

// Perform on remove code here
}

MessageForwarder Forward messages from one queue to another.

Inherit: ScriptMsgListener

Description MessageForwarder is a script class that can be used to forward messages from one queue to another.

Example:

%fwd = newMessageForwarder()
{

toQueue = "QueueToSendTo";
};

registerMessageListener("FromQueue", %fwd);

Where “QueueToSendTo” is the queue you want to forward to, and “FromQueue” is the queue you want to forward
from.

Fields
caseString MessageForwarder::toQueue

Name of queue to forward to.

ScriptMsgListener Script accessible version of Dispatcher::IMessageListener. Often used in conjunction with
EventManager.

Inherit: SimObject

314 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description The main use of ScriptMsgListener is to allow script to listen formessages. You can subclass ScriptMs-
gListener in script to receivethe Dispatcher::IMessageListener callbacks.

Alternatively, you can derive from it in C++ instead of SimObject toget an object that implements Dis-
patcher::IMessageListener with scriptcallbacks. If you need to derive from something other then SimObject,then
you will need to implement the Dispatcher::IMessageListenerinterface yourself.

Example:

// Create the EventManager.
$MyEventManager = newEventManager() { queue = "MyEventManager"; };

// Create an event.
$MyEventManager.registerEvent("SomeCoolEvent");

// Create a listener and subscribe.
$MyListener = newScriptMsgListener() { class = MyListener; };
$MyEventManager.subscribe($MyListener, "SomeCoolEvent");

function MyListener::onSomeCoolEvent(%this, %data)
{

echo("onSomeCoolEvent Triggered");
}

// Trigger the event.
$MyEventManager.postEvent("SomeCoolEvent", "Data");

Methods
void ScriptMsgListener::onAdd()

Script callback when a listener is first created and registered.

Example:

function ScriptMsgListener::onAdd(%this)
{

// Perform on add code here
}

void ScriptMsgListener::onAddToQueue(string queue)
Callback for when the listener is added to a queue. The default implementation of onAddToQueue() and on-
RemoveFromQueue() provide tracking of the queues this listener is added to through the mQueues member.
Overrides of onAddToQueue() or onRemoveFromQueue() should ensure they call the parent implementation in
any overrides.

Parameters queue – The name of the queue that the listener added to

bool ScriptMsgListener::onMessageObjectReceived(string queue, Message msg)
Called when a message object (not just the message data) is passed to a listener.

Parameters

• queue – The name of the queue the message was dispatched to

• msg – The message object

Returns false to prevent other listeners receiving this message, true otherwise

bool ScriptMsgListener::onMessageReceived(string queue, string event, string data)
Called when the listener has received a message.

Parameters

5.3. Console Reference 315

Torque 3D Documentation, Release 3.5.1

• queue – The name of the queue the message was dispatched to

• event – The name of the event (function) that was triggered

• data – The data (parameters) for the message

Returns false to prevent other listeners receiving this message, true otherwise

void ScriptMsgListener::onRemove()
Script callback when a listener is deleted.

Example:

function ScriptMsgListener::onRemove(%this)
{

// Perform on remove code here
}

void ScriptMsgListener::onRemoveFromQueue(string queue)
Callback for when the listener is removed from a queue. The default implementation of onAddToQueue() and
onRemoveFromQueue() provide tracking of the queues this listener is added to through the mQueues member.
Overrides of onAddToQueue() or onRemoveFromQueue() should ensure they call the parent implementation in
any overrides.

Parameters queue – The name of the queue that the listener was removed from

Functions
bool dispatchMessage(string queueName, string message, string data)

Dispatch a message to a queue.

Parameters

• queueName – Queue to dispatch the message to

• message – Message to dispatch

• data – Data for message

Returns True for success, false for failure
bool dispatchMessageObject(string queueName, string message)

Dispatch a message object to a queue.

Parameters

• queueName – Queue to dispatch the message to

• message – Message to dispatch

Returns true for success, false for failure

bool isQueueRegistered(string queueName)
Determines if a dispatcher queue exists.

Parameters queueName – String containing the name of queue

bool registerMessageListener(string queueName, string listener)
Registers an event message.

Parameters

• queueName – String containing the name of queue to attach listener to

• listener – Name of event messenger

316 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void registerMessageQueue(string queueName)
Registeres a dispatcher queue.

Parameters queueName – String containing the name of queue

void unregisterMessageListener(string queueName, string listener)
Unregisters an event message.

Parameters

• queueName – String containing the name of queue

• listener – Name of event messenger

void unregisterMessageQueue(string queueName)
Unregisters a dispatcher queue.

Parameters queueName – String containing the name of queue

Packages

Functions relating to the control of packages.

Functions
void activatePackage(string packageName)

Activates an existing package. The activation occurs by updating the namespace linkage of existing functions
and methods. If the package is already activated the function does nothing.

void deactivatePackage(string packageName)
Deactivates a previously activated package. The package is deactivated by removing its namespace linkages to
any function or method. If there are any packages above this one in the stack they are deactivated as well. If the
package is not on the stack this function does nothing.

string getFunctionPackage(string funcName)
Provides the name of the package the function belongs to.

Parameters funcName – String containing name of the function

Returns The name of the function’s package

string getMethodPackage(string, string method)
Provides the name of the package the method belongs to.

Parameters

• namespace – Class or namespace, such as Player

• method – Name of the funciton to search for

Returns The name of the method’s package

string getPackageList()
Returns a space delimited list of the active packages in stack order.

bool isPackage(string identifier)
Returns true if the identifier is the name of a declared package.

Scripting

Functions for working with script code.

5.3. Console Reference 317

Torque 3D Documentation, Release 3.5.1

Classes

ArrayObject Data structure for storing indexed sequences of key/value pairs.

Inherit: SimObject

Description This is a powerful array class providing PHP style arrays in TorqueScript.

The following features are supported:

• array pointers: this allows you to move forwards or backwards through the array as if it was a list, including
jumping to the start or end.

• sorting: the array can be sorted in either alphabetic or numeric mode, on the key or the value, and in ascending
or descending order

• add/remove elements: elements can be pushed/popped from the start or end of the array, or can be inserted/erased
from anywhere in the middle

• removal of duplicates: remove duplicate keys or duplicate values

• searching: search the array and return the index of a particular key or value

• counting: count the number of instaces of a particular value or key in the array, as well as the total number of
elements

• advanced features: array append, array crop and array duplicate

Array element keys and values can be strings or numbers.

Methods
void ArrayObject::add(string key, string value)

Adds a new element to the end of an array (same as push_back()).

Parameters

• key – Key for the new element

• value – Value for the new element
bool ArrayObject::append(ArrayObject target)

Appends the target array to the array object.

Parameters target – ArrayObject to append to the end of this array

int ArrayObject::count()
Get the number of elements in the array.

int ArrayObject::countKey(string key)
Get the number of times a particular key is found in the array.

Parameters key – Key value to count

int ArrayObject::countValue(string value)
Get the number of times a particular value is found in the array.

Parameters value – Array element value to count

bool ArrayObject::crop(ArrayObject target)
Removes elements with matching keys from array.

Parameters target – ArrayObject containing keys to remove from this array

318 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool ArrayObject::duplicate(ArrayObject target)
Alters array into an exact duplicate of the target array.

Parameters target – ArrayObject to duplicate

void ArrayObject::echo()
Echos the array contents to the console.

void ArrayObject::empty()
Emptys all elements from an array.

void ArrayObject::erase(int index)
Removes an element at a specific position from the array.

Parameters index – 0-based index of the element to remove

int ArrayObject::getCurrent()
Gets the current pointer index.

int ArrayObject::getIndexFromKey(string key)
Search the array from the current position for the key.

Parameters value – Array key to search for

Returns Index of the first element found, or -1 if none

int ArrayObject::getIndexFromValue(string value)
Search the array from the current position for the element.

Parameters value – Array value to search for

Returns Index of the first element found, or -1 if none

string ArrayObject::getKey(int index)
Get the key of the array element at the submitted index.

Parameters index – 0-based index of the array element to get

Returns The key associated with the array element at the specified index, or “” if the index is out of
range

string ArrayObject::getValue(int index)
Get the value of the array element at the submitted index.

Parameters index – 0-based index of the array element to get

Returns The value of the array element at the specified index, or “” if the index is out of range

void ArrayObject::insert(string key, string value, int index)
Adds a new element to a specified position in the array.

•index = 0 will insert an element at the start of the array (same as push_front())

•index = array. count() will insert an element at the end of the array (same as push_back())

Parameters

• key – Key for the new element

• value – Value for the new element

• index – 0-based index at which to insert the new element

int ArrayObject::moveFirst()
Moves array pointer to start of array.

5.3. Console Reference 319

Torque 3D Documentation, Release 3.5.1

Returns Returns the new array pointer

int ArrayObject::moveLast()
Moves array pointer to end of array.

Returns Returns the new array pointer

int ArrayObject::moveNext()
Moves array pointer to next position.

Returns Returns the new array pointer, or -1 if already at the end

int ArrayObject::movePrev()
Moves array pointer to prev position.

Returns Returns the new array pointer, or -1 if already at the start

void ArrayObject::pop_back()
Removes the last element from the array.

void ArrayObject::pop_front()
Removes the first element from the array.

void ArrayObject::push_back(string key, string value)
Adds a new element to the end of an array.

Parameters

• key – Key for the new element

• value – Value for the new element

void ArrayObject::push_front(string key, string value)
Adds a new element to the front of an array.

void ArrayObject::setCurrent(int index)
Sets the current pointer index.

Parameters index – New 0-based pointer index

void ArrayObject::setKey(string key, int index)
Set the key at the given index.

Parameters

• key – New key value

• index – 0-based index of the array element to update

void ArrayObject::setValue(string value, int index)
Set the value at the given index.

Parameters

• value – New array element value

• index – 0-based index of the array element to update

void ArrayObject::sort(bool ascending)
Alpha sorts the array by value.

Parameters ascending – [optional] True for ascending sort, false for descending sort

void ArrayObject::sorta()
Alpha sorts the array by value in ascending order.

320 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void ArrayObject::sortd()
Alpha sorts the array by value in descending order.

void ArrayObject::sortf(string functionName)
Sorts the array by value in ascending order using the given callback function.

Parameters functionName – Name of a function that takes two arguments A and B and returns
-1 if A is less, 1 if B is less, and 0 if both are equal.

Example:

function mySortCallback(%a, %b)
{

returnstrcmp(%a.name, %b.name);
}

%array.sortf("mySortCallback");

void ArrayObject::sortfd(string functionName)
Sorts the array by value in descending order using the given callback function.

Parameters functionName – Name of a function that takes two arguments A and B and returns
-1 if A is less, 1 if B is less, and 0 if both are equal.

void ArrayObject::sortfk(string functionName)
Sorts the array by key in ascending order using the given callback function.

Parameters functionName – Name of a function that takes two arguments A and B and returns
-1 if A is less, 1 if B is less, and 0 if both are equal.

void ArrayObject::sortfkd(string functionName)
Sorts the array by key in descending order using the given callback function.

Parameters functionName – Name of a function that takes two arguments A and B and returns
-1 if A is less, 1 if B is less, and 0 if both are equal.

void ArrayObject::sortk(bool ascending)
Alpha sorts the array by key.

Parameters ascending – [optional] True for ascending sort, false for descending sort

void ArrayObject::sortka()
Alpha sorts the array by key in ascending order.

void ArrayObject::sortkd()
Alpha sorts the array by key in descending order.

void ArrayObject::sortn(bool ascending)
Numerically sorts the array by value.

Parameters ascending – [optional] True for ascending sort, false for descending sort

void ArrayObject::sortna()
Numerically sorts the array by value in ascending order.

void ArrayObject::sortnd()
Numerically sorts the array by value in descending order.

void ArrayObject::sortnk(bool ascending)
Numerically sorts the array by key.

Parameters ascending – [optional] True for ascending sort, false for descending sort

5.3. Console Reference 321

Torque 3D Documentation, Release 3.5.1

void ArrayObject::sortnka()
Numerical sorts the array by key in ascending order.

void ArrayObject::sortnkd()
Numerical sorts the array by key in descending order.

void ArrayObject::uniqueKey()
Removes any elements that have duplicated keys (leaving the first instance).

void ArrayObject::uniqueValue()
Removes any elements that have duplicated values (leaving the first instance).

Fields
bool ArrayObject::caseSensitive

Makes the keys and values case-sensitive. By default, comparison of key and value strings will be case-
insensitive.

caseString ArrayObject::key
Helper field which allows you to add new key[’keyname’] = value pairs.

ScriptGroup Essentially a SimGroup, but with onAdd and onRemove script callbacks.

Inherit: SimGroup

Description Essentially a SimGroup, but with onAdd and onRemove script callbacks.

Example:

// First container, SimGroup containing a ScriptGroupnewSimGroup(Scenes)
{

// Subcontainer, ScriptGroup containing variables
// related to a cut scene and a starting
WayPointnewScriptGroup(WelcomeScene)
{

class = "Scene";
pathName = "Pathx";
description = "A small orc village set in the Hardesty mountains. This town and its surroundings will be used to illustrate some the Torque Game Engines features.";
pathTime = "0";
title = "Welcome to Orc Town";

newWayPoint(start)
{

position = "163.873 -103.82 208.354";
rotation = "0.136165 -0.0544916 0.989186 44.0527";
scale = "1 1 1";
dataBlock = "WayPointMarker";
team = "0";

};
};

};

Methods
void ScriptGroup::onAdd(SimObjectId ID)

Called when this ScriptGroup is added to the system.

Parameters ID – Unique object ID assigned when created (this in script).

322 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void ScriptGroup::onRemove(SimObjectId ID)
Called when this ScriptObject is removed from the system.

Parameters ID – Unique object ID assigned when created (this in script).

ScriptObject A script-level OOP object which allows binding of a class, superClass and arguments along with
declaration of methods.

Inherit: SimObject

Description ScriptObjects are extrodinarily powerful objects that allow defining of any type of data required. They
can optionally have a class and a superclass defined for added control of multiple ScriptObjects through a simple class
definition.

Example:

newScriptObject(Game)
{

class = "DeathMatchGame";
superClass = GameCore;
genre = "Action FPS"; // Note the new, non-Torque variable

};

Methods
void ScriptObject::onAdd(SimObjectId ID)

Called when this ScriptObject is added to the system.

Parameters ID – Unique object ID assigned when created (this in script).
void ScriptObject::onRemove(SimObjectId ID)

Called when this ScriptObject is removed from the system.

Parameters ID – Unique object ID assigned when created (this in script).

ScriptTickObject A ScriptObject that responds to tick and frame events.

Inherit: ScriptObject

Description ScriptTickObject is a ScriptObject that adds callbacks for tick and frame events. Use setProcessTicks()
to enable or disable the onInterpolateTick() and onProcessTick() callbacks. The callOnAdvanceTime property deter-
mines if the onAdvanceTime() callback is called.

Methods
bool ScriptTickObject::isProcessingTicks()

Is this object wanting to receive tick notifications. If this object is set to receive tick notifications then its
onInterpolateTick() and onProcessTick() callbacks are called.

Returns True if object wants tick notifications
void ScriptTickObject::onAdvanceTime(float timeDelta)

This is called every frame regardless if the object is set to process ticks, but only if the callOnAdvanceTime
property is set to true.

Parameters timeDelta – The time delta for this frame.

void ScriptTickObject::onInterpolateTick(float delta)
This is called every frame, but only if the object is set to process ticks.

5.3. Console Reference 323

Torque 3D Documentation, Release 3.5.1

Parameters delta – The time delta for this frame.

void ScriptTickObject::onProcessTick()
Called once every 32ms if this object is set to process ticks.

void ScriptTickObject::setProcessTicks(bool tick)
Sets this object as either tick processing or not.

Parameters tick – This object’s onInterpolateTick() and onProcessTick() callbacks are called if
set to true.

Fields
bool ScriptTickObject::callOnAdvanceTime

Call the onAdvaceTime() callback.

Functions
string call(string functionName, string args, ...)

Apply the given arguments to the specified global function and return the result of the call.

Parameters functionName – The name of the function to call. This function must be in the
global namespace, i.e. you cannot call a function in a namespace through call. Use eval() for
that.

Returns The result of the function call.

Example:

function myFunction(%arg)
{
return (%arg SPC "World!");

}

echo(call("myFunction", "Hello"));
// Prints "Hello World!" to the console.

bool compile(string fileName, bool overrideNoDSO)
Compile a file to bytecode. This function will read the TorqueScript code in the specified file, compile it to
internal bytecode, and, if DSO generation is enabled or overrideNoDDSO is true, will store the compiled code
in a .dso file in the current DSO path mirrorring the path of fileName .

Parameters

• fileName – Path to the file to compile to bytecode.

• overrideNoDSO – If true, force generation of DSOs even if the engine is compiled to not
generate write compiled code to DSO files.

Returns True if the file was successfully compiled, false if not.

void deleteVariables(string pattern)
Undefine all global variables matching the given name pattern .

Parameters pattern – A global variable name pattern. Must begin with ‘$’.

Example:

// Define a global variable in the "My" namespace.
$My::Variable = "value";

// Undefine all variable in the "My" namespace.
deleteVariables("$My::*");

324 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool exec(string fileName, bool noCalls, bool journalScript)
Execute the given script file.

Parameters

• fileName – Path to the file to execute

• noCalls – Deprecated

• journalScript – Deprecated

Returns True if the script was successfully executed, false if not.

Example:

// Execute the init.cs script file found in the
// same directory as the current script file.
exec("./init.cs");

bool execPrefs(string relativeFileName, bool noCalls, bool journalScript)
Manually execute a special script file that contains game or editor preferences.

Parameters

• relativeFileName – Name and path to file from project folder

• noCalls – Deprecated

• journalScript – Deprecated

Returns True if script was successfully executed

void export(string pattern, string filename, bool append)
Write out the definitions of all global variables matching the given name pattern . If fileName is not “”, the
variable definitions are written to the specified file. Otherwise the definitions will be printed to the console. The
output are valid TorqueScript statements that can be executed to restore the global variable values.

Parameters

• pattern – A global variable name pattern. Must begin with ‘$’.

• filename – Path of the file to which to write the definitions or “” to write the definitions
to the console.

• append – If true and fileName is not “”, then the definitions are appended to the specified
file. Otherwise existing contents of the file (if any) will be overwritten.

Example:

// Write out all preference variables to a prefs.cs file.
export("$prefs::*", "prefs.cs");

string getDSOPath(string scriptFileName)
Get the absolute path to the file in which the compiled code for the given script file will be stored.

Parameters scriptFileName – Path to the .cs script file.

Returns The absolute path to the .dso file for the given script file.

string getVariable(string varName)
Returns the value of the named variable or an empty string if not found. Name of the variable to search for

Returns Value contained by varName, “” if the variable does not exist

bool isDefined(string varName)
Determines if a variable exists and contains a value.

5.3. Console Reference 325

Torque 3D Documentation, Release 3.5.1

Parameters varName – Name of the variable to search for

Returns True if the variable was defined in script, false if not

Example:

isDefined("$myVar");

bool isFunction(string funcName)
Determines if a function exists or not.

Parameters funcName – String containing name of the function

Returns True if the function exists, false if not

bool isMethod(string, string method)
Determines if a class/namespace method exists.

Parameters

• namespace – Class or namespace, such as Player

• method – Name of the function to search for

Returns True if the method exists, false if not

void setVariable(string varName, string value)
Sets the value of the named variable.

Parameters

• varName – Name of the variable to locate

• value – New value of the variable

Returns True if variable was successfully found and set

File I/O

Functions allowing you to search for files, read them, write them, and access their properties.

Classes

FileDialog Base class responsible for displaying an OS file browser.

Inherit: SimObject

Description FileDialog is a platform agnostic dialog interface for querying the user for file locations. It is designed
to be used through the exposed scripting interface.

FileDialog is the base class for Native File Dialog controls in Torque. It provides these basic areas of functionality:

FileDialog is not intended to be used directly in script and is only exposed to script to expose generic file dialog
attributes.

This base class is usable in TorqueScript, but is does not specify what functionality is intended (open or save?).
Its children, OpenFileDialog and SaveFileDialog, do make use of DialogStyle flags and do make use of specific
funcationality. These are the preferred classes to use

However, the FileDialog base class does contain the key properties and important method for file browing. The most
important function is Execute(). This is used by both SaveFileDialog and OpenFileDialog to initiate the browser.

326 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// NOTE: This is not he preferred class to use, but this still works
// Create the file dialog
%baseFileDialog = newFileDialog()
{

// Allow browsing of all file typesfilters = "*.*";

// No default filedefaultFile = ;

// Set default path relative to projectdefaultPath = "./";

// Set the titletitle = "Durpa";

// Allow changing of path you are browsingchangePath = true;
};

// Launch the file dialog
%baseFileDialog.Execute();

// Dont forget to cleanup
%baseFileDialog.delete();

Methods
bool FileDialog::Execute()

Launches the OS file browser. After an Execute() call, the chosen file name and path is available in one of two
areas. If only a single file selection is permitted, the results will be stored in the fileName attribute. If multiple
file selection is permitted, the results will be stored in the files array. The total number of files in the array will
be stored in the fileCount attribute.

Returns True if the file was selected was successfully found (opened) or declared (saved).

Example:

// NOTE: This is not he preferred class to use, but this still works
// Create the file dialog
%baseFileDialog = newFileDialog()
{

// Allow browsing of all file typesfilters = "*.*";

// No default filedefaultFile = ;

// Set default path relative to projectdefaultPath = "./";

// Set the titletitle = "Durpa";

// Allow changing of path you are browsingchangePath = true;
};

// Launch the file dialog
%baseFileDialog.Execute();

// Dont forget to cleanup
%baseFileDialog.delete();

// A better alternative is to use the
// derived classes which are specific to file open and save

5.3. Console Reference 327

Torque 3D Documentation, Release 3.5.1

// Create a dialog dedicated to opening files
%openFileDlg = newOpenFileDialog()
{

// Look for jpg image files
// First part is the descriptor|second part is the extension
Filters = "Jepg Files|*.jpg";
// Allow browsing through other folders
ChangePath = true;

// Only allow opening of one file at a time
MultipleFiles = false;

};

// Launch the open file dialog
%result = %openFileDlg.Execute();

// Obtain the chosen file name and pathif (%result)
{

%seletedFile = %openFileDlg.file;
}
else
{

%selectedFile = "";
}
// Cleanup
%openFileDlg.delete();

// Create a dialog dedicated to saving a file
%saveFileDlg = newSaveFileDialog()
{

// Only allow for saving of COLLADA files
Filters = "COLLADA Files (*.dae)|*.dae|";

// Default save path to where the WorldEditor last saved
DefaultPath = $pref::WorldEditor::LastPath;

// No default file specified
DefaultFile = "";

// Do not allow the user to change to a new directory
ChangePath = false;

// Prompt the user if they are going to overwrite an existing file
OverwritePrompt = true;

};

// Launch the save file dialog
%result = %saveFileDlg.Execute();

// Obtain the file name
%selectedFile = "";
if (%result)

%selectedFile = %saveFileDlg.file;

// Cleanup
%saveFileDlg.delete();

328 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
bool FileDialog::changePath

True/False whether to set the working directory to the directory returned by the dialog.
string FileDialog::defaultFile

The default file path when the dialog is shown.

string FileDialog::defaultPath
The default directory path when the dialog is shown.

string FileDialog::fileName
The default file name when the dialog is shown.

string FileDialog::filters
The filter string for limiting the types of files visible in the dialog. It makes use of the pipe symbol ‘|’ as a
delimiter. For example: ‘All Files|*.*’ ‘Image Files|*.png;*.jpg|Png Files|*.png|Jepg Files|*.jpg’

string FileDialog::title
The title for the dialog.

FileObject This class is responsible opening, reading, creating, and saving file contents.

Inherit: SimObject

Description FileObject acts as the interface with OS level files. You create a new FileObject and pass into it a file’s
path and name. The FileObject class supports three distinct operations for working with files:

Before you may work with a file you need to use one of the three above methods on the FileObject.

Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%result = %fileWrite.OpenForWrite("./test.txt");

if (%result)
{

// Write a line to the text files
%fileWrite.writeLine("READ. READ CODE. CODE");

}

// Close the file when finished
%fileWrite.close();

// Cleanup the file object
%fileWrite.delete();

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%result = %fileRead.OpenForRead("./test.txt");

if (%result)
{

// Read in the first line
%line = %fileRead.readline();

5.3. Console Reference 329

Torque 3D Documentation, Release 3.5.1

// Print the line we just readecho(%line);
}

// Close the file when finished
%fileRead.close();

// Cleanup the file object
%fileRead.delete();

Methods
void FileObject::close()

Close the file. It is EXTREMELY important that you call this function when you are finished reading or writing
to a file. Failing to do so is not only a bad programming practice, but could result in bad data or corrupt files.
Remember: Open, Read/Write, Close, Delete...in that order!

Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Peek the first line
%line = %fileRead.peekLine();

// Print the line we just peekedecho(%line);
// If we peek again...
%line = %fileRead.peekLine();

// We will get the same output as the first time
// since the stream did not move forwardecho(%line);

// Close the file when finished
%fileWrite.close();

// Cleanup the file object
%fileWrite.delete();

bool FileObject::isEOF()
Determines if the parser for this FileObject has reached the end of the file.

Returns True if the parser has reached the end of the file, false otherwise

Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Keep reading until we reach the end of the file
while(!%fileRead.isEOF())
{

%line = %fileRead.readline();
echo(%line);

}

330 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Made it to the endecho("Finished reading file");

bool FileObject::openForAppend(string filename)
Open a specified file for writing, adding data to the end of the file. There is no limit as to what kind of file you
can write. Any format and data is allowable, not just text. Unlike openForWrite() , which will erase an existing
file if it is opened, openForAppend() preserves data in an existing file and adds to it.

Parameters filename – Path, name, and extension of file to append to

Returns True if file was successfully opened, false otherwise

Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
// If it does exist, whatever we write will be added to the end
%result = %fileWrite.OpenForAppend("./test.txt");

bool FileObject::openForRead(string filename)
Open a specified file for reading. There is no limit as to what kind of file you can read. Any format and data
contained within is accessible, not just text

Parameters filename – Path, name, and extension of file to be read

Returns True if file was successfully opened, false otherwise

Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%result = %fileRead.OpenForRead("./test.txt");

bool FileObject::openForWrite(string filename)
Open a specified file for writing. There is no limit as to what kind of file you can write. Any format and data is
allowable, not just text

Parameters filename – Path, name, and extension of file to write to

Returns True if file was successfully opened, false otherwise

Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%result = %fileWrite.OpenForWrite("./test.txt");

string FileObject::peekLine()
Read a line from the file without moving the stream position. Emphasis on line, as in you cannot parse individual
characters or chunks of data. There is no limitation as to what kind of data you can read. Unlike readLine, the
parser does not move forward after reading.

Parameters filename – Path, name, and extension of file to be read

Returns String containing the line of data that was just peeked

Example:

5.3. Console Reference 331

Torque 3D Documentation, Release 3.5.1

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Peek the first line
%line = %fileRead.peekLine();

// Print the line we just peekedecho(%line);
// If we peek again...
%line = %fileRead.peekLine();

// We will get the same output as the first time
// since the stream did not move forward
echo(%line);

string FileObject::readLine()
Read a line from file. Emphasis on line, as in you cannot parse individual characters or chunks of data. There is
no limitation as to what kind of data you can read.

Returns String containing the line of data that was just read

Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Read in the first line
%line = %fileRead.readline();

// Print the line we just read
echo(%line);

void FileObject::writeLine(string text)
Write a line to the file, if it was opened for writing. There is no limit as to what kind of text you can write.
Any format and data is allowable, not just text. Be careful of what you write, as whitespace, current values, and
literals will be preserved.

Parameters text – The data we are writing out to file.

Returns True if file was successfully opened, false otherwise

Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%fileWrite.OpenForWrite("./test.txt");

// Write a line to the text files
%fileWrite.writeLine("READ. READ CODE. CODE");

void FileObject::writeObject(SimObject object)
Write an object to a text file. Unlike a simple writeLine using specified strings, this function writes an entire ob-
ject to file, preserving its type, name, and properties. This is similar to the save() functionality of the SimObject

332 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

class, but with a bit more control.

Parameters object – The SimObject being written to file, properties, name, and all.

Example:

// Lets assume this SpawnSphere was created and currently
// exists in the running level
newSpawnSphere(TestSphere)
{

spawnClass = "Player";
spawnDatablock = "DefaultPlayerData";
autoSpawn = "1";
radius = "5";
sphereWeight = "1";
indoorWeight = "1";
outdoorWeight = "1";
dataBlock = "SpawnSphereMarker";
position = "-42.222 1.4845 4.80334";
rotation = "0 0 -1 108";
scale = "1 1 1";
canSaveDynamicFields = "1";

};

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%fileWrite.OpenForWrite("./spawnSphers.txt");

// Write out the TestSphere
%fileWrite.writeObject(TestSphere);

// Close the text file
%fileWrite.close();

// Cleanup
%fileWrite.delete();

void FileObject::writeObject(SimObject object, string prepend)
Write an object to a text file, with some data added first. Unlike a simple writeLine using specified strings, this
function writes an entire object to file, preserving its type, name, and properties. This is similar to the save()
functionality of the SimObject class, but with a bit more control.

Parameters

• object – The SimObject being written to file, properties, name, and all.

• prepend – Data or text that is written out before the SimObject.

Example:

// Lets assume this SpawnSphere was created and currently
// exists in the running level
newSpawnSphere(TestSphere)
{

spawnClass = "Player";
spawnDatablock = "DefaultPlayerData";
autoSpawn = "1";
radius = "5";
sphereWeight = "1";

5.3. Console Reference 333

Torque 3D Documentation, Release 3.5.1

indoorWeight = "1";
outdoorWeight = "1";
dataBlock = "SpawnSphereMarker";
position = "-42.222 1.4845 4.80334";
rotation = "0 0 -1 108";
scale = "1 1 1";
canSaveDynamicFields = "1";

};

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%fileWrite.OpenForWrite("./spawnSphers.txt");

// Write out the TestSphere, with a prefix
%fileWrite.writeObject(TestSphere, "$mySphere = ");

// Close the text file
%fileWrite.close();

// Cleanup
%fileWrite.delete();

FileStreamObject A wrapper around StreamObject for parsing text and data from files.

Inherit: StreamObject

Description FileStreamObject inherits from StreamObject and provides some unique methods for working with
strings. If you’re looking for general file handling, you may want to use FileObject.

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Get the status and print it
%status = %fsObject.getStatus();
echo(%status);

// Always remember to close a file stream when finished
%fsObject.close();

Methods
void FileStreamObject::close()

Close the file. You can no longer read or write to it unless you open it again.

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading

334 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%fsObject.open("./test.txt", "read");

// Always remember to close a file stream when finished
%fsObject.close();

bool FileStreamObject::open(string filename, string openMode)
Open a file for reading, writing, reading and writing, or appending. Using “Read” for the open mode allows you
to parse the contents of file, but not making modifications. “Write” will create a new file if it does not exist,
or erase the contents of an existing file when opened. Write also allows you to modify the contents of the file.
“ReadWrite” will provide the ability to parse data (read it in) and manipulate data (write it out) interchangeably.
Keep in mind the stream can move during each operation. Finally, “WriteAppend” will open a file if it exists,
but will not clear the contents. You can write new data starting at the end of the files existing contents.

Parameters

• filename – Name of file to open

• openMode – One of “Read”, “Write”, “ReadWrite” or “WriteAppend”

Returns True if the file was successfully opened, false if something went wrong

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Get the status and print it
%status = %fsObject.getStatus();
echo(%status);

// Always remember to close a file stream when finished
%fsObject.close();

OpenFileDialog Derived from FileDialog, this class is responsible for opening a file browser with the intention of
opening a file.

Inherit: FileDialog

Description The core usage of this dialog is to locate a file in the OS and return the path and name. This does not
handle the actual file parsing or data manipulation. That functionality is left up to the FileObject class.

Example:

// Create a dialog dedicated to opening files
%openFileDlg = newOpenFileDialog()
{

// Look for jpg image files
// First part is the descriptor|second part is the extension
Filters = "Jepg Files|*.jpg";
// Allow browsing through other folders
ChangePath = true;

// Only allow opening of one file at a time
MultipleFiles = false;

};

5.3. Console Reference 335

Torque 3D Documentation, Release 3.5.1

// Launch the open file dialog
%result = %openFileDlg.Execute();

// Obtain the chosen file name and pathif (%result)
{

%seletedFile = %openFileDlg.file;
}
else
{

%selectedFile = "";
}

// Cleanup
%openFileDlg.delete();

Fields
bool OpenFileDialog::MultipleFiles

True/False whether multiple files may be selected and returned or not.
bool OpenFileDialog::MustExist

True/False whether the file returned must exist or not.

OpenFolderDialog OS level dialog used for browsing folder structures.

Inherit: OpenFileDialog

Description This is essentially an OpenFileDialog, but only used for returning directory paths, not files.

Fields
filename OpenFolderDialog::fileMustExist

File that must be in selected folder for it to be valid.

SaveFileDialog Derived from FileDialog, this class is responsible for opening a file browser with the intention of
saving a file.

Inherit: FileDialog

Description The core usage of this dialog is to locate a file in the OS and return the path and name. This does not
handle the actual file writing or data manipulation. That functionality is left up to the FileObject class.

Example:

// Create a dialog dedicated to opening file
%saveFileDlg = newSaveFileDialog()
{

// Only allow for saving of COLLADA files
Filters = "COLLADA Files (*.dae)|*.dae|";

// Default save path to where the WorldEditor last saved
DefaultPath = $pref::WorldEditor::LastPath;

// No default file specified
DefaultFile = "";

336 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Do not allow the user to change to a new directory
ChangePath = false;

// Prompt the user if they are going to overwrite an existing file
OverwritePrompt = true;

};

// Launch the save file dialog
%saveFileDlg.Execute();

if (%result)
{

%seletedFile = %openFileDlg.file;
}
else
{

%selectedFile = "";
}

// Cleanup
%saveFileDlg.delete();

Fields
bool SaveFileDialog::OverwritePrompt

True/False whether the dialog should prompt before accepting an existing file name.

SimXMLDocument File I/O object used for creating, reading, and writing XML documents.

Inherit: SimObject

Description A SimXMLDocument is a container of various XML nodes. The Document level may contain a header
(sometimes called a declaration), comments and child Elements. Elements may contain attributes, data (or text) and
child Elements.

You build new Elements using addNewElement(). This makes the new Element the current one you’re working with.
You then use setAttribute() to add attributes to the Element. You use addData() or addText() to write to the text area
of an Element.

Example:

// Thanks to Rex Hiebert for this example
// Given the following XML
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <DataTables>
// <table tableName="2DShapes">
// <rec id="1">Triangle</rec>
// <rec id="2">Square</rec><rec id="3">Circle</rec>
// </table>
// <table tableName="3DShapes">
// <rec id="1">Pyramid</rec>
// <rec id="2">Cube</rec>
// <rec id="3">Sphere</rec>
// </table>
// </DataTables>

// Using SimXMLDocument by itself

5.3. Console Reference 337

Torque 3D Documentation, Release 3.5.1

function readXmlExample(%filename)
{

%xml = newSimXMLDocument() {};
%xml.loadFile(%filename);

%xml.pushChildElement("DataTables");
%xml.pushFirstChildElement("table");
while(true)
{

echo("TABLE:" SPC %xml.attribute("tableName"));
%xml.pushFirstChildElement("rec");
while (true)
{

%id = %xml.attribute("id");
%desc = %xml.getData();
echo(" Shape" SPC %id SPC %desc);
if (!%xml.nextSiblingElement("rec")) break;

}
%xml.popElement();
if (!%xml.nextSiblingElement("table")) break;

}
}

// Thanks to Scott Peal for this example
// Using FileObject in conjunction with SimXMLDocument
// This example uses an XML file with a format of:
// <Models>
// <Model category="" name="" path="" />
// </Models>
function getModelsInCatagory()
{

%file = "./Catalog.xml";
%fo = newFileObject();
%text = "";

if(%fo.openForRead(%file))
{

while(!%fo.isEOF())
{

%text = %text @ %fo.readLine();
if (!%fo.isEOF()) %text = %text @ "\n";

}
}
else
{

echo("Unable to locate the file: " @ %file);
}

%fo.delete();

%xml = newSimXMLDocument() {};
%xml.parse(%text);
// "Get" inside of the root element, "Models".
%xml.pushChildElement(0);

// "Get" into the first child element
if (%xml.pushFirstChildElement("Model"))
{

338 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

while (true)
{

// Here, i read the elements attributes.
// You might want to save these values in an array or call the %xml.getElementValue()
// if you have a different XML structure.

%catagory = %xml.attribute("catagory");
%name = %xml.attribute("name");
%path = %xml.attribute("path");

// now, read the next "Model"
if (!%xml.nextSiblingElement("Model")) break;

}
}

}

Methods
void SimXMLDocument::addComment(string comment)

Add the given comment as a child of the document.

Parameters comment – String containing the comment.

Example:

// Create a new XML document with a header, a comment and single element.
%x = newSimXMLDocument();
%x.addHeader();
%x.addComment("This is a test comment");
%x.addNewElement("NewElement");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <!--This is a test comment-->
// <NewElement />

void SimXMLDocument::addData(string text)
Add the given text as a child of current Element. Use getData() to retrieve any text from the current Element.
addData() and addText() may be used interchangeably. As there is no difference between data and text, you may
also use removeText() to clear any data from the current Element.

Parameters text – String containing the text.

Example:

// Create a new XML document with a header and single element// with some added data.
%x = newSimXMLDocument();
%x.addHeader();
%x.addNewElement("NewElement");
%x.addData("Some text");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>

void SimXMLDocument::addHeader()
Add a XML header to a document. Sometimes called a declaration, you typically add a standard header to

5.3. Console Reference 339

Torque 3D Documentation, Release 3.5.1

the document before adding any elements. SimXMLDocument always produces the following header: lt ?xml
version=”1.0” encoding=”utf-8” standalone=”yes” ? gt

Example:

// Create a new XML document with just a header and single element.
%x = newSimXMLDocument();
%x.addHeader();
%x.addNewElement("NewElement");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement />

void SimXMLDocument::addNewElement(string name)
Create a new element with the given name as child of current Element’s parent and push it onto the Element
stack making it the current one.

Parameters name – XML tag for the new Element.

void SimXMLDocument::addText(string text)
Add the given text as a child of current Element. Use getText() to retrieve any text from the current Element and
removeText() to clear any text. addText() and addData() may be used interchangeably.

Parameters text – String containing the text.

Example:

// Create a new XML document with a header and single element// with some added text.
%x = newSimXMLDocument();
%x.addHeader();
%x.addNewElement("NewElement");
%x.addText("Some text");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>

string SimXMLDocument::attribute(string attributeName)
Get a string attribute from the current Element on the stack.

Parameters attributeName – Name of attribute to retrieve.

Returns The attribute string if found. Otherwise returns an empty string.

bool SimXMLDocument::attributeExists(string attributeName)
Tests if the requested attribute exists.

Parameters attributeName – Name of attribute being queried for.

Returns True if the attribute exists.

float SimXMLDocument::attributeF32(string attributeName)
Get float attribute from the current Element on the stack.

Parameters attributeName – Name of attribute to retrieve.

Returns The value of the given attribute in the form of a float.

int SimXMLDocument::attributeS32(string attributeName)
Get int attribute from the current Element on the stack.

340 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters attributeName – Name of attribute to retrieve.

Returns The value of the given attribute in the form of an integer.

void SimXMLDocument::clear()
Set this document to its default state. Clears all Elements from the documents. Equivalent to using reset()

void SimXMLDocument::clearError()
Clear the last error description.

string SimXMLDocument::elementValue()
Get the Element’s value if it exists. Usually returns the text from the Element.

Returns The value from the Element, or an empty string if none is found.

string SimXMLDocument::firstAttribute()
Obtain the name of the current Element’s first attribute.

Returns String containing the first attribute’s name, or an empty string if none is found.

string SimXMLDocument::getData()
Gets the text from the current Element. Use addData() to add text to the current Element. getData() and getText()
may be used interchangeably. As there is no difference between data and text, you may also use removeText()
to clear any data from the current Element.

Returns String containing the text in the current Element.

Example:

// Using the following test.xml file as an example:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some data</NewElement>
// Load in the file
%x = newSimXMLDocument();
%x.loadFile("test.xml");

// Make the first Element the current one
%x.pushFirstChildElement("NewElement");

// Store the current Elements data (Some data in this example)
// into result
%result = %x.getData();
echo(%result);

string SimXMLDocument::getErrorDesc()
Get last error description.

Returns A string of the last error message.

string SimXMLDocument::getText()
Gets the text from the current Element. Use addText() to add text to the current Element and removeText() to
clear any text. getText() and getData() may be used interchangeably.

Returns String containing the text in the current Element.

Example:

// Using the following test.xml file as an example:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>
// Load in the file
%x = newSimXMLDocument();
%x.loadFile("test.xml");

5.3. Console Reference 341

Torque 3D Documentation, Release 3.5.1

// Make the first Element the current one
%x.pushFirstChildElement("NewElement");

// Store the current Elements text (Some text in this example)
// into result
%result = %x.getText();
echo(%result);

string SimXMLDocument::lastAttribute()
Obtain the name of the current Element’s last attribute.

Returns String containing the last attribute’s name, or an empty string if none is found.

bool SimXMLDocument::loadFile(string fileName)
Load in given filename and prepare it for use.

Parameters fileName – Name and path of XML document

Returns True if the file was loaded successfully.

string SimXMLDocument::nextAttribute()
Get the name of the next attribute for the current Element after a call to firstAttribute() .

Returns String containing the next attribute’s name, or an empty string if none is found.

bool SimXMLDocument::nextSiblingElement(string name)
Put the next sibling Element with the given name on the stack, making it the current one.

Parameters name – String containing name of the next sibling.

Returns True if the Element was found and made the current one.

void SimXMLDocument::parse(string xmlString)
Create a document from a XML string.

Parameters xmlString – Valid XML to parse and store as a document.

void SimXMLDocument::popElement()
Pop the last Element off the stack.

string SimXMLDocument::prevAttribute()
Get the name of the previous attribute for the current Element after a call to lastAttribute() .

Returns String containing the previous attribute’s name, or an empty string if none is found.

bool SimXMLDocument::pushChildElement(int index)
Push the child Element at the given index onto the stack, making it the current one.

Parameters index – Numerical index of Element being pushed.

Returns True if the Element was found and made the current one.

bool SimXMLDocument::pushFirstChildElement(string name)
Push the first child Element with the given name onto the stack, making it the current Element.

Parameters name – String containing name of the child Element.

Returns True if the Element was found and made the current one.

Example:

// Using the following test.xml file as an example:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>
// Load in the file

342 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%x = newSimXMLDocument();
%x.loadFile("test.xml");

// Make the first Element the current one
%x.pushFirstChildElement("NewElement");

// Store the current Elements text (Some text in this example)
// into result
%result = %x.getText();
echo(%result);

void SimXMLDocument::pushNewElement(string name)
Create a new element with the given name as child of current Element and push it onto the Element stack making
it the current one.

Parameters name – XML tag for the new Element.

string SimXMLDocument::readComment(int index)
Gives the comment at the specified index, if any. Unlike addComment() that only works at the document
level, readComment() may read comments from the document or any child Element. The current Element (or
document if no Elements have been pushed to the stack) is the parent for any comments, and the provided index
is the number of comments in to read back.

Parameters index – Comment index number to query from the current Element stack

Returns String containing the comment, or an empty string if no comment is found.

void SimXMLDocument::removeText()
Remove any text on the current Element. Use getText() to retrieve any text from the current Element and ad-
dText() to add text to the current Element. As getData() and addData() are equivalent to getText() and addText()
, removeText() will also remove any data from the current Element.

void SimXMLDocument::reset()
Set this document to its default state. Clears all Elements from the documents. Equivalent to using clear()

bool SimXMLDocument::saveFile(string fileName)
Save document to the given file name.

Parameters fileName – Path and name of XML file to save to.

Returns True if the file was successfully saved.

void SimXMLDocument::setAttribute(string attributeName, string value)
Set the attribute of the current Element on the stack to the given value.

Parameters

• attributeName – Name of attribute being changed

• value – New value to assign to the attribute

void SimXMLDocument::setObjectAttributes(string objectID)
Add the given SimObject’s fields as attributes of the current Element on the stack.

Parameters objectID – ID of SimObject being copied.

StreamObject Base class for working with streams.

Inherit: SimObject

5.3. Console Reference 343

Torque 3D Documentation, Release 3.5.1

Description You do not instantiate a StreamObject directly. Instead, it is used as part of a FileStreamObject and
ZipObject to support working with uncompressed and compressed files respectively.

Example:

// You cannot actually declare a StreamObject
// Instead, use the derived class "FileStreamObject"
%fsObject = FileStreamObject();

Methods
bool StreamObject::copyFrom(SimObject other)

Copy from another StreamObject into this StreamObject .

Parameters other – The StreamObject to copy from.

Returns True if the copy was successful.
int StreamObject::getPosition()

Gets the position in the stream. The easiest way to visualize this is to think of a cursor in a text file. If you
have moved the cursor by five characters, the current position is 5. If you move ahead 10 more characters, the
position is now 15. For StreamObject , when you read in the line the position is increased by the number of
characters parsed, the null terminator, and a newline.

Returns Number of bytes which stream has parsed so far, null terminators and newlines are included

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
// This file contains two lines of text repeated:
// Hello World
// Hello World
%fsObject.open("./test.txt", "read");

// Read in the first line
%line = %fsObject.readLine();

// Get the position of the stream
%position = %fsObject.getPosition();

// Print the current position
// Should be 13, 10 for the words, 1 for the space,
// 1 for the null terminator, and 1 for the newline
echo(%position);

// Always remember to close a file stream when finished
%fsObject.close();

string StreamObject::getStatus()
Gets a printable string form of the stream’s status. OK - Stream is active and no file errors IOError - Something
went wrong during read or writing the stream EOS - End of Stream reached (mostly for reads) IllegalCall -
An unsupported operation used. Always w/ accompanied by AssertWarn Closed - Tried to operate on a closed
stream (or detached filter) UnknownError - Catch all for an error of some kind Invalid - Entire stream is invalid

Returns String containing status constant, one of the following:

Example:

344 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Get the status and print it
%status = %fsObject.getStatus();
echo(%status);

// Always remember to close a file stream when finished
%fsObject.close();

int StreamObject::getStreamSize()
Gets the size of the stream. The size is dependent on the type of stream being used. If it is a file stream, returned
value will be the size of the file. If it is a memory stream, it will be the size of the allocated buffer.

Returns Size of stream, in bytes

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
// This file contains the following two lines:
// HelloWorld
// HelloWorld
%fsObject.open("./test.txt", "read");

// Found out how large the file stream is
// Then print it to the console
// Should be 22
%streamSize = %fsObject.getStreamSize();
echo(%streamSize);

// Always remember to close a file stream when finished
%fsObject.close();

bool StreamObject::isEOF()
Tests if the stream has reached the end of the file. This is an alternative name for isEOS. Both functions are
interchangeable. This simply exists for those familiar with some C++ file I/O standards.

Returns True if the parser has reached the end of the file, false otherwise

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Keep reading until we reach the end of the file
while(!%fsObject.isEOF())
{

%line = %fsObject.readLine();
echo(%line);

}
// Made it to the end

5.3. Console Reference 345

Torque 3D Documentation, Release 3.5.1

echo("Finished reading file");

// Always remember to close a file stream when finished
%fsObject.close();

bool StreamObject::isEOS()
Tests if the stream has reached the end of the file. This is an alternative name for isEOF. Both functions are
interchangeable. This simply exists for those familiar with some C++ file I/O standards.

Returns True if the parser has reached the end of the file, false otherwise

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Keep reading until we reach the end of the file
while(!%fsObject.isEOS())
{

%line = %fsObject.readLine();
echo(%line);

}
// Made it to the end
echo("Finished reading file");

// Always remember to close a file stream when finished
%fsObject.close();

string StreamObject::readLine()
Read a line from the stream. Emphasis on line, as in you cannot parse individual characters or chunks of data.
There is no limitation as to what kind of data you can read.

Returns String containing the line of data that was just read

Example:

// Create a file stream object for reading
// This file contains the following two lines:
// HelloWorld
// HelloWorld
%fsObject = newFileStreamObject();

%fsObject.open("./test.txt", "read");

// Read in the first line
%line = %fsObject.readLine();

// Print the line we just read
echo(%line);

// Always remember to close a file stream when finished
%fsObject.close();

String StreamObject::readLongString(int maxLength)
Read in a string up to the given maximum number of characters.

Parameters maxLength – The maximum number of characters to read in.

346 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns The string that was read from the stream.

String StreamObject::readString()
Read a string up to a maximum of 256 characters.

Returns The string that was read from the stream.

String StreamObject::readSTString(bool caseSensitive)
Read in a string and place it on the string table.

Parameters caseSensitive – If false then case will not be taken into account when attempting
to match the read in string with what is already in the string table.

Returns The string that was read from the stream.

bool StreamObject::setPosition(int newPosition)
Gets the position in the stream. The easiest way to visualize this is to think of a cursor in a text file. If you
have moved the cursor by five characters, the current position is 5. If you move ahead 10 more characters, the
position is now 15. For StreamObject , when you read in the line the position is increased by the number of
characters parsed, the null terminator, and a newline. Using setPosition allows you to skip to specific points of
the file.

Returns Number of bytes which stream has parsed so far, null terminators and newlines are included

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
// This file contains the following two lines:
// 11111111111
// Hello World
%fsObject.open("./test.txt", "read");

// Skip ahead by 12, which will bypass the first line entirely
%fsObject.setPosition(12);

// Read in the next line
%line = %fsObject.readLine();

// Print the line just read in, should be "Hello World"
echo(%line);

// Always remember to close a file stream when finished
%fsObject.close();

void StreamObject::writeLine(string line)
Write a line to the stream, if it was opened for writing. There is no limit as to what kind of data you can write.
Any format and data is allowable, not just text. Be careful of what you write, as whitespace, current values, and
literals will be preserved.

Parameters line – The data we are writing out to file.

Example:

// Create a file stream
%fsObject = newFileStreamObject();

// Open the file for writing
// If it does not exist, it is created.
// If it does exist, the file is cleared

5.3. Console Reference 347

Torque 3D Documentation, Release 3.5.1

%fsObject.open("./test.txt", "write");

// Write a line to the file
%fsObject.writeLine("Hello World");

// Write another line to the file
%fsObject.writeLine("Documentation Rocks!");

// Always remember to close a file stream when finished
%fsObject.close();

void StreamObject::writeLongString(int maxLength, string string)
Write out a string up to the maximum number of characters.

Parameters

• maxLength – The maximum number of characters that will be written.

• string – The string to write out to the stream.

void StreamObject::writeString(string string, int maxLength)
Write out a string with a default maximum length of 256 characters.

Parameters

• string – The string to write out to the stream

• maxLength – The maximum string length to write out with a default of 256 characters.
This value should not be larger than 256 as it is written to the stream as a single byte.

ZipObject Provides access to a zip file.

Inherit: SimObject

Description A ZipObject add, delete and extract files that are within a zip archive. You may also read and write
directly to the files within the archive by obtaining a StreamObject for the file.

Example:

// Open a zip archive, creating it if it doesn't exist
%archive = newZipObject();
%archive.openArchive("testArchive.zip", Write);

// Add a file to the archive with the given name
%archive.addFile("./water.png", "water.png");

// Close the archive to save the changes
%archive.closeArchive();

Methods
bool ZipObject::addFile(string filename, string pathInZip, bool replace)

Add a file to the zip archive.

Parameters

• filename – The path and name of the file to add to the zip archive.

• pathInZip – The path and name to be given to the file within the zip archive.

348 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• replace – If a file already exists within the zip archive at the same location as this new
file, this parameter indicates if it should be replaced. By default, it will be replaced.

Returns True if the file was successfully added to the zip archive.
void ZipObject::closeArchive()

Close an already opened zip archive.

void ZipObject::closeFile(SimObject stream)
Close a previously opened file within the zip archive.

Parameters stream – The StreamObject of a previously opened file within the zip archive.

bool ZipObject::deleteFile(string pathInZip)
Deleted the given file from the zip archive.

Parameters pathInZip – The path and name of the file to be deleted from the zip archive.

Returns True of the file was successfully deleted.

bool ZipObject::extractFile(string pathInZip, string filename)
Extact a file from the zip archive and save it to the requested location.

Parameters

• pathInZip – The path and name of the file to be extracted within the zip archive.

• filename – The path and name to give the extracted file.

Returns True if the file was successfully extracted.

String ZipObject::getFileEntry(int index)
Get information on the requested file within the zip archive. This methods provides five different pieces of
information for the requested file:

•filename - The path and name of the file within the zip archive

•uncompressed size

•compressed size

•compression method

•CRC32

Use getFileEntryCount() to obtain the total number of files within the archive.

Parameters index – The index of the file within the zip archive. Use getFileEntryCount() to
determine the number of files.

Returns A tab delimited list of information on the requested file, or an empty string if the file could
not be found.

int ZipObject::getFileEntryCount()
Get the number of files within the zip archive. Use getFileEntry() to retrive information on each file within the
archive.

Returns The number of files within the zip archive.

bool ZipObject::openArchive(string filename, string accessMode)
Open a zip archive for manipulation. Once a zip archive is opened use the various ZipObject methods for
working with the files within the archive. Be sure to close the archive when you are done with it.

Parameters

• filename – The path and file name of the zip archive to open.

• accessMode – One of read, write or readwrite

5.3. Console Reference 349

Torque 3D Documentation, Release 3.5.1

Returns True is the archive was successfully opened.

SimObject ZipObject::openFileForRead(string filename)
Open a file within the zip archive for reading. Be sure to close the file when you are done with it.

Parameters filename – The path and name of the file to open within the zip archive.

Returns is returned for working with the file.

SimObject ZipObject::openFileForWrite(string filename)
Open a file within the zip archive for writing to. Be sure to close the file when you are done with it.

Parameters filename – The path and name of the file to open within the zip archive.

Returns is returned for working with the file.

Functions

bool createPath(string path)
Create the given directory or the path leading to the given filename. If path ends in a trailing slash, then all
components in the given path will be created as directories (if not already in place). If path , does not end in a
trailing slash, then the last component of the path is taken to be a file name and only the directory components
of the path will be created.

Parameters path – The path to create.

string expandFilename(string filename)
Grabs the full path of a specified file.

Parameters filename – Name of the local file to locate

Returns String containing the full filepath on disk

string expandOldFilename(string filename)
Retrofits a filepath that uses old Torque style.

Returns String containing filepath with new formatting

String fileBase(string fileName)
Get the base of a file name (removes extension).

Parameters fileName – Name and path of file to check

Returns String containing the file name, minus extension

String fileCreatedTime(string fileName)
Returns a platform specific formatted string with the creation time for the file.

Parameters fileName – Name and path of file to check

Returns Formatted string (OS specific) containing created time, “9/3/2010 12:33:47 PM” for exam-
ple

bool fileDelete(string path)
Delete a file from the hard drive.

Parameters path – Name and path of the file to delete

Returns True if file was successfully deleted

String fileExt(string fileName)
Get the extension of a file.

Parameters fileName – Name and path of file

350 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns String containing the extension, such as ”.exe” or ”.cs”

String fileModifiedTime(string fileName)
Returns a platform specific formatted string with the last modified time for the file.

Parameters fileName – Name and path of file to check

Returns Formatted string (OS specific) containing modified time, “9/3/2010 12:33:47 PM” for ex-
ample

String fileName(string fileName)
Get the file name of a file (removes extension and path).

Parameters fileName – Name and path of file to check

Returns String containing the file name, minus extension and path

String filePath(string fileName)
Get the path of a file (removes name and extension).

Parameters fileName – Name and path of file to check

Returns String containing the path, minus name and extension

int fileSize(string fileName)
Determines the size of a file on disk.

Parameters fileName – Name and path of the file to check

Returns Returns filesize in KB, or -1 if no file

String getCurrentDirectory()
Return the current working directory.

Returns The absolute path of the current working directory.

String getDirectoryList(string path, int depth)
Gathers a list of directories starting at the given path.

Parameters

• path – String containing the path of the directory

• depth – Depth of search, as in how many subdirectories to parse through

Returns Tab delimited string containing list of directories found during search, “” if no files were
found

String getExecutableName()
Gets the name of the game’s executable.

Returns String containing this game’s executable name

int getFileCRC(string fileName)
Provides the CRC checksum of the given file.

Parameters fileName – The path to the file.

Returns The calculated CRC checksum of the file, or -1 if the file could not be found.

String getMainDotCsDir()
Get the absolute path to the directory that contains the main.cs script from which the engine was started. This
directory will usually contain all the game assets and, in a user-side game installation, will usually be read-only.

Returns The path to the main game assets.

5.3. Console Reference 351

Torque 3D Documentation, Release 3.5.1

String getWorkingDirectory()
Reports the current directory.

Returns String containing full file path of working directory

bool IsDirectory(string directory)
Determines if a specified directory exists or not.

Parameters directory – String containing path in the form of “foo/bar”

Returns Returns true if the directory was found.

bool isFile(string fileName)
Determines if the specified file exists or not.

Parameters fileName – The path to the file.

Returns Returns true if the file was found.

bool isWriteableFileName(string fileName)
Determines if a file name can be written to using File I/O.

Parameters fileName – Name and path of file to check

Returns Returns true if the file can be written to.

String makeFullPath(string path, string cwd)
Converts a relative file path to a full path. For example, ”./console.log” becomes “C:/Torque/t3d/examples/FPS
Example/game/console.log”

Parameters

• path – Name of file or path to check

• cwd – Optional current working directory from which to build the full path.

Returns String containing non-relative directory of path

String makeRelativePath(string path, string to)
Turns a full or local path to a relative one. For example, ”./game/art” becomes “game/art”

Parameters

• path – Full path (may include a file) to convert

• to – Optional base path used for the conversion. If not supplied the current working direc-
tory is used.

Returns String containing relative path

void openFile(string file)
Open the given file through the system. This will usually open the file in its associated application.

Parameters file – Path of the file to open.

void openFolder(string path)
Open the given folder in the system’s file manager.

Parameters path – full path to a directory.

String pathConcat(string path, string file)
Combines two separate strings containing a file path and file name together into a single string.

Parameters

• path – String containing file path

• file – String containing file name

352 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns String containing concatenated file name and path

bool pathCopy(string fromFile, string toFile, bool noOverwrite)
Copy a file to a new location.

Parameters

• fromFile – Path of the file to copy.

• toFile – Path where to copy fromFile to.

• noOverwrite – If true, then fromFile will not overwrite a file that may already exist at
toFile.

Returns True if the file was successfully copied, false otherwise.

bool setCurrentDirectory(string path)
Set the current working directory.

Parameters path – The absolute or relative (to the current working directory) path of the directory
which should be made the new working directory.

Returns , false otherwise.

void startFileChangeNotifications()
Start watching resources for file changes. Typically this is called during initializeCore().

void stopFileChangeNotifications()
Stop watching resources for file changes. Typically this is called during shutdownCore().

Variables

string $Con::File
The currently executing script file.

string $Con::Root
The mod folder for the currently executing script file.

File Searching

Functions for searching files by name patterns.

Functions
String findFirstFile(string pattern, bool recurse)

Returns the first file in the directory system matching the given pattern. Use the corresponding findNextFile()
to step through the results. If you’re only interested in the number of files returned by the pattern match, use
getFileCount() . This function differs from findFirstFileMultiExpr() in that it supports a single search pattern
being passed in.

Parameters

• pattern – The path and file name pattern to match against.

• recurse – If true, the search will exhaustively recurse into subdirectories of the given path
and match the given filename pattern.

Returns The path of the first file matched by the search or an empty string if no matching file could
be found.

Example:

5.3. Console Reference 353

Torque 3D Documentation, Release 3.5.1

// Execute all .cs files in a subdirectory and its subdirectories.
for(%file = findFirstFile("subdirectory/*.cs"); %file !$= ""; %file = findNextFile())

exec(%file);

String findFirstFileMultiExpr(string pattern, bool recurse)
Returns the first file in the directory system matching the given patterns. Use the corresponding findNextFile-
MultiExpr() to step through the results. If you’re only interested in the number of files returned by the pattern
match, use getFileCountMultiExpr() . This function differs from findFirstFile() in that it supports multiple
search patterns to be passed in.

Parameters

• pattern – The path and file name pattern to match against, such as .cs. Separate multiple
patterns with TABs. For example: ”.cs” TAB ”.dso”

• recurse – If true, the search will exhaustively recurse into subdirectories of the given path
and match the given filename patterns.

Returns String of the first matching file path, or an empty string if no matching files were found.

Example:

// Find all DTS or Collada models
%filePatterns = "*.dts" TAB "*.dae";
%fullPath = findFirstFileMultiExpr(%filePatterns);
while (%fullPath !$= "")
{

echo(%fullPath);
%fullPath = findNextFileMultiExpr(%filePatterns);

}

String findNextFile(string pattern)
Returns the next file matching a search begun in findFirstFile() .

Parameters pattern – The path and file name pattern to match against. This is optional and may
be left out as it is not used by the code. It is here for legacy reasons.

Returns The path of the next filename matched by the search or an empty string if no more files
match.

Example:

// Execute all .cs files in a subdirectory and its subdirectories.
for(%file = findFirstFile("subdirectory/*.cs"); %file !$= ""; %file = findNextFile())

exec(%file);

String findNextFileMultiExpr(string pattern)
Returns the next file matching a search begun in findFirstFileMultiExpr() .

Parameters pattern – The path and file name pattern to match against. This is optional and may
be left out as it is not used by the code. It is here for legacy reasons.

Returns String of the next matching file path, or an empty string if no matching files were found.

Example:

// Find all DTS or Collada models
%filePatterns = "*.dts" TAB "*.dae";
%fullPath = findFirstFileMultiExpr(%filePatterns);
while (%fullPath !$= "")
{

echo(%fullPath);

354 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%fullPath = findNextFileMultiExpr(%filePatterns);
}

int getFileCount(string pattern, bool recurse)
Returns the number of files in the directory tree that match the given patterns. This function differs from
getFileCountMultiExpr() in that it supports a single search pattern being passed in. If you’re interested in a list
of files that match the given pattern and not just the number of files, use findFirstFile() and findNextFile() .

Parameters

• pattern – The path and file name pattern to match against.

• recurse – If true, the search will exhaustively recurse into subdirectories of the given path
and match the given filename pattern counting files in subdirectories.

Returns Number of files located using the pattern

Example:

// Count the number of .cs files in a subdirectory and its subdirectories.
getFileCount("subdirectory/*.cs");

int getFileCountMultiExpr(string pattern, bool recurse)
Returns the number of files in the directory tree that match the given patterns. If you’re interested in a list of files
that match the given patterns and not just the number of files, use findFirstFileMultiExpr() and findNextFile-
MultiExpr() .

Parameters

• pattern – The path and file name pattern to match against, such as .cs. Separate multiple
patterns with TABs. For example: ”.cs” TAB ”.dso”

• recurse – If true, the search will exhaustively recurse into subdirectories of the given path
and match the given filename pattern.

Returns Number of files located using the patterns

Example:

// Count all DTS or Collada models
%filePatterns = "*.dts" TAB "*.dae";
echo("Nunmer of shape files:" SPC getFileCountMultiExpr(%filePatterns));

Math

Functions for dealing with vectors and matrices etc.

Functions

Point3F getBoxCenter(Box3F box)
Get the center point of an axis-aligned box.

Parameters b – A Box3F, in string format using “minExtentX minExtentY minExtentZ maxEx-
tentX maxExtentY maxExtentZ”

Returns Center of the box.

float getMax(float v1, float v2)
Calculate the greater of two specified numbers.

5.3. Console Reference 355

Torque 3D Documentation, Release 3.5.1

Parameters

• v1 – Input value.

• v2 – Input value.

Returns The greater value of the two specified values.

float getMin(float v1, float v2)
Calculate the lesser of two specified numbers.

Parameters

• v1 – Input value.

• v2 – Input value.

Returns The lesser value of the two specified values.

float m2Pi()
Return the value of 2*PI (full-circle in radians).

Returns The value of 2*PI.

float mAbs(float v)
Calculate absolute value of specified value.

Parameters v – Input Value.

Returns Absolute value of specified value.

float mAcos(float v)
Calculate the arc-cosine of v.

Parameters v – Input Value (in radians).

Returns The arc-cosine of the input value.

float mAsin(float v)
Calculate the arc-sine of v.

Parameters v – Input Value (in radians).

Returns The arc-sine of the input value.

float mAtan(float rise, float run)
Calculate the arc-tangent (slope) of a line defined by rise and run.

Parameters

• rise – of line.

• run – of line.

Returns The arc-tangent (slope) of a line defined by rise and run.

void mathInit(...)
Install the math library with specified extensions. Possible parameters are:

•‘DETECT’ Autodetect math lib settings.

•‘C’ Enable the C math routines. C routines are always enabled.

•‘FPU’ Enable floating point unit routines.

•‘MMX’ Enable MMX math routines.

•‘3DNOW’ Enable 3dNow! math routines.

356 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

•‘SSE’ Enable SSE math routines.

int mCeil(float v)
Round v up to the nearest integer.

Parameters v – Number to convert to integer.

Returns Number converted to integer.

float mClamp(float v, float min, float max)
Clamp the specified value between two bounds.

Parameters

• v – Input value.

• min – Minimum Bound.

• max – Maximum Bound.

Returns The specified value clamped to the specified bounds.

float mCos(float v)
Calculate the cosine of v.

Parameters v – Input Value (in radians).

Returns The cosine of the input value.

float mDegToRad(float degrees)
Convert specified degrees into radians.

Parameters degrees – Input Value (in degrees).

Returns The specified degrees value converted to radians.

string mFloatLength(float v, int precision)
Formats the specified number to the given number of decimal places.

Parameters

• v – Number to format.

• precision – Number of decimal places to format to (1-9).

Returns Number formatted to the specified number of decimal places.

int mFloor(float v)
Round v down to the nearest integer.

Parameters v – Number to convert to integer.

Returns Number converted to integer.

float mFMod(float v, float d)
Calculate the remainder of v/d.

Parameters

• v – Input Value.

• d – Divisor Value.

Returns The remainder of v/d.

bool mIsPow2(int v)
Returns whether the value is an exact power of two.

Parameters v – Input value.

5.3. Console Reference 357

Torque 3D Documentation, Release 3.5.1

Returns Whether the specified value is an exact power of two.

float mLerp(float v1, float v2, float time)
Calculate linearly interpolated value between two specified numbers using specified normalized time.

Parameters

• v1 – Interpolate From Input value.

• v2 – Interpolate To Input value.

• time – Normalized time used to interpolate values (0-1).

Returns The interpolated value between the two specified values at normalized time t.

float mLog(float v)
Calculate the natural logarithm of v.

Parameters v – Input Value.

Returns The natural logarithm of the input value.

float mPi()
Return the value of PI (half-circle in radians).

Returns The value of PI.

float mPow(float v, float p)
Calculate b raised to the p-th power.

Parameters

• v – Input Value.

• p – Power to raise value by.

Returns v raised to the p-th power.

float mRadToDeg(float radians)
Convert specified radians into degrees.

Parameters radians – Input Value (in radians).

Returns The specified radians value converted to degrees.

int mRound(float v)
Round v to the nearest integer.

Parameters v – Number to convert to integer.

Returns Number converted to integer.

float mSaturate(float v)
Clamp the specified value between 0 and 1 (inclusive).

Parameters v – Input value.

Returns The specified value clamped between 0 and 1 (inclusive).

float mSin(float v)
Calculate the sine of v.

Parameters v – Input Value (in radians).

Returns The sine of the input value.

string mSolveCubic(float a, float b, float c, float d)
Solve a cubic equation (3rd degree polynomial) of form a*x^3 + b*x^2 + c*x + d = 0.

358 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• a – First Coefficient.

• b – Second Coefficient.

• c – Third Coefficient.

• d – Fourth Coefficient.

Returns A 4-tuple, containing: (sol x0 x1 x2). (sol) is the number of solutions(being 0, 1, 2 or 3),
and (x0), (x1) and (x2) are the solutions, if any.

string mSolveQuadratic(float a, float b, float c)
Solve a quadratic equation (2nd degree polynomial) of form a*x^2 + b*x + c = 0.

Parameters

• a – First Coefficient.

• b – Second Coefficient.

• c – Third Coefficient.

Returns A triple, containing: (sol x0 x1). (sol) is the number of solutions(being 0, 1, or 2), and (x0)
and (x1) are the solutions, if any.

string mSolveQuartic(float a, float b, float c, float d, float e)
Solve a quartic equation (4th degree polynomial) of form a*x^4 + b*x^3 + c*x^2 + d*x + e = 0.

Parameters

• a – First Coefficient.

• b – Second Coefficient.

• c – Third Coefficient.

• d – Fourth Coefficient.

• e – Fifth Coefficient.

Returns A 5-tuple, containing: (sol x0 x1 x2 c3). (sol) is the number of solutions(being 0, 1, 2, 3 or
4), and (x0), (x1), (x2) and (x3) are the solutions, if any.

float mSqrt(float v)
Calculate the square-root of v.

Parameters v – Input Value.

Returns The square-root of the input value.

float mTan(float v)
Calculate the tangent of v.

Parameters v – Input Value (in radians).

Returns The tangent of the input value.

Vector Math

Functions for working with three-dimensional vectors (VectorF/Point3F).

5.3. Console Reference 359

Torque 3D Documentation, Release 3.5.1

Functions
VectorF VectorAdd(VectorF a, VectorF b)

Add two vectors.

Parameters

• a – The first vector.

• b – The second vector.

Returns

.

Example:

// VectorAdd(%a, %b);
// The sum of vector a, (ax, ay, az), and vector b, (bx, by, bz) is:
// a + b = (ax + bx, ay + by, az + bz)

%a = "1 0 0";
%b = "0 1 0";

// %r = "(1 + 0, 0 + 1, 0 + 0)";// %r = "1 1 0";
%r = VectorAdd(%a, %b);

VectorF VectorCross(VectorF a, VectorF b)
Calculcate the cross product of two vectors.

Parameters

• a – The first vector.

• b – The second vector.

Returns

.

Example:

// VectorCross(%a, %b);
// The cross product of vector a, (ax, ay, az), and vector b, (bx, by, bz), is
// a x b = ((ay * bz) - (az * by), (az * bx) - (ax * bz), (ax * by) - (ay * bx))

%a = "1 1 0";
%b = "2 0 1";

// %r = "((1 * 1) - (0 * 0), (0 * 2) - (1 * 1), (1 * 0) - (1 * 2))";
// %r = "1 -1 -2";
%r = VectorCross(%a, %b);

float VectorDist(VectorF a, VectorF b)
Compute the distance between two vectors.

Parameters

• a – The first vector.

• b – The second vector.

Returns).

Example:

360 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// VectorDist(%a, %b);
// The distance between vector a, (ax, ay, az), and vector b, (bx, by, bz), is
// a -> b = ||(b - a)||
// = ||(bx - ax, by - ay, bz - az)||
// = mSqrt((bx - ax) * (bx - ax) + (by - ay) * (by - ay) + (bz - az) * (bz - az))

%a = "1 1 0";
%b = "2 0 1";

// %r = mSqrt((2 - 1) * (2 - 1) + (0 - 1) * (0 - 1) + (1 - 0) * (1 - 0));
// %r = mSqrt(3);
%r = VectorDist(%a, %b);

float VectorDot(VectorF a, VectorF b)
Compute the dot product of two vectors.

Parameters

• a – The first vector.

• b – The second vector.

Returns

.

Example:

// VectorDot(%a, %b);
// The dot product between vector a, (ax, ay, az), and vector b, (bx, by, bz), is:
// a . b = (ax * bx + ay * by + az * bz)

%a = "1 1 0";
%b = "2 0 1";

// %r = "(1 * 2 + 1 * 0 + 0 * 1)";
// %r = 2;
%r = VectorDot(%a, %b);

float VectorLen(VectorF v)
Calculate the magnitude of the given vector.

Parameters v – A vector.

Returns

.

Example:

// VectorLen(%a);
// The length or magnitude of vector a, (ax, ay, az), is:
// ||a|| = Sqrt(ax * ax + ay * ay + az * az)

%a = "1 1 0";

// %r = mSqrt(1 * 1 + 1 * 1 + 0 * 0);
// %r = mSqrt(2);
// %r = 1.414;
%r = VectorLen(%a);

VectorF VectorLerp(VectorF a, VectorF b, float t)
Linearly interpolate between two vectors by t .

5.3. Console Reference 361

Torque 3D Documentation, Release 3.5.1

Parameters

• a – Vector to start interpolation from.

• b – Vector to interpolate to.

• t – Interpolation factor (0-1). At zero, a is returned and at one, b is returned. In between,
an interpolated vector between a and b is returned.

Returns

.

Example:

// VectorLerp(%a, %b);
// The point between vector a, (ax, ay, az), and vector b, (bx, by, bz), which is
// weighted by the interpolation factor, t, is
// r = a + t * (b - a)
// = (ax + t * (bx - ax), ay + t * (by - ay), az + t * (bz - az))

%a = "1 1 0";
%b = "2 0 1";
%v = "0.25";

// %r = "(1 + 0.25 * (2 - 1), 1 + 0.25 * (0 - 1), 0 + 0.25 * (1 - 0))";
// %r = "1.25 0.75 0.25";
%r = VectorLerp(%a, %b);

VectorF VectorNormalize(VectorF v)
Brings a vector into its unit form, i.e. such that it has the magnitute 1.

Parameters v – The vector to normalize.

Returns scaled to length 1.

Example:

// VectorNormalize(%a);
// The normalized vector a, (ax, ay, az), is:
// a^ = a / ||a||
// = (ax / ||a||, ay / ||a||, az / ||a||)

%a = "1 1 0";
%l = 1.414;

// %r = "(1 / 1.141, 1 / 1.141, 0 / 1.141)";
// %r = "0.707 0.707 0";
%r = VectorNormalize(%a);

MatrixF VectorOrthoBasis(AngAxisF aa)
Create an orthogonal basis from the given vector.

Parameters aaf – The vector to create the orthogonal basis from.

Returns A matrix representing the orthogonal basis.

VectorF VectorScale(VectorF a, float scalar)
Scales a vector by a scalar.

Parameters

• a – The vector to scale.

362 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• scalar – The scale factor.

Returns

.

Example:

// VectorScale(%a, %v);
// Scaling vector a, (ax, ay, az), but the scalar, v, is:
// a * v = (ax * v, ay * v, az * v)

%a = "1 1 0";
%v = "2";

// %r = "(1 * 2, 1 * 2, 0 * 2)";
// %r = "2 2 0";
%r = VectorScale(%a, %v);

VectorF VectorSub(VectorF a, VectorF b)
Subtract two vectors.

Parameters

• a – The first vector.

• b – The second vector.

Returns

.

Example:

// VectorSub(%a, %b);
// The difference of vector a, (ax, ay, az), and vector b, (bx, by, bz) is:
// a - b = (ax - bx, ay - by, az - bz)

%a = "1 0 0";
%b = "0 1 0";

// %r = "(1 - 0, 0 - 1, 0 - 0)";
// %r = "1 -1 0";
%r = VectorSub(%a, %b);

Matrix Math

Functions for working with matrices (MatrixF, AngAxisF, MatrixRotation, MatrixPosition).

Functions
TransformF MatrixCreate(VectorF position, AngAxisF orientation)

Create a transform from the given translation and orientation.

Parameters

• position – The translation vector for the transform.

• orientation – The axis and rotation that orients the transform.

Returns A transform based on the given position and orientation.

5.3. Console Reference 363

Torque 3D Documentation, Release 3.5.1

TransformF MatrixCreateFromEuler(Point3F angles)
a matrix from the given rotations.

Parameters Vector3F – X, Y, and Z rotation in radians.

Returns A transform based on the given orientation.

Point3F MatrixMulPoint(TransformF transform, Point3F point)
Multiply the given point by the given transform assuming that w=1. This function will multiply the given vector
such that translation with take effect.

Parameters

• transform – A transform.

• point – A vector.

Returns The transformed vector.

TransformF MatrixMultiply(TransformF left, TransformF right)
Multiply the two matrices.

Parameters

• left – First transform.

• right – Right transform.

Returns Concatenation of the two transforms.

VectorF MatrixMulVector(TransformF transform, VectorF vector)
Multiply the vector by the transform assuming that w=0. This function will multiply the given vector by the
given transform such that translation will not affect the vector.

Parameters

• transform – A transform.

• vector – A vector.

Returns The transformed vector.

Random Numbers

Functions for generating random numbers. Based on a seed, the random number generator produces a sequence of
numbers. As a given seed will always produce the same sequence of numbers this can be used to generate re-producible
sequences of apparently random numbers. To set the seed, call setRandomSeed().

Functions
float getRandom(int a, int b)

Returns a random number based on parameters passed in.. If no parameters are passed in, getRandom() will
return a float between 0.0 and 1.0. If one parameter is passed an integer between 0 and the passed in value will
be returned. Two parameters will return an integer between the specified numbers.

Parameters

• a – If this is the only parameter, a number between 0 and a is returned. Elsewise represents
the lower bound.

• b – Upper bound on the random number. The random number will be <= b.

Returns , between 0 and a, or a float between 0.0 and 1.1 depending on usage.

364 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int getRandomSeed()
Get the current seed used by the random number generator.

Returns The current random number generator seed value.

void setRandomSeed(int seed)
Set the current seed for the random number generator. Based on this seed, a repeatable sequence of numbers
will be produced by getRandom() .

Parameters seed – The seed with which to initialize the randon number generator with. The
same seed will always leed tothe same sequence of pseudo-random numbers. If -1, the current
timestamp will be used as the seed which is a good basis for randomization.

Strings

Functions for dealing with string values. Since in TorqueScript any value is implicitly also a string, these functions
can be used with all values.

Functions

string collapseEscape(string text)
Replace all escape sequences in text with their respective character codes. This function replaces all escape
sequences (n, t, etc) in the given string with the respective characters they represent. The primary use of this
function is for converting strings from their literal form into their compiled/translated form, as is normally done
by the TorqueScript compiler.

Parameters text – A string.

Returns with all escape sequences replaced by their respective character codes.

Example:

// Print:
// str
// ing
// to the console. Note how the backslash in the string must be escaped here
// in order to prevent the TorqueScript compiler from collapsing the escape
// sequence in the resulting string.
echo(collapseEscape("str\ning"));

void dumpStringMemStats()
Dumps information about String memory usage.

bool endsWith(string str, string suffix, bool caseSensitive)
Test whether the given string ends with the given suffix.

Parameters

• str – The string to test.

• suffix – The potential suffix of str.

• caseSensitive – If true, the comparison will be case-sensitive; if false, differences in
casing will not be taken into account.

Returns True if the last characters in str match the complete contents of suffix; false otherwise.

Example:

5.3. Console Reference 365

Torque 3D Documentation, Release 3.5.1

startsWith("TEST123", "123") // Returns true.

string expandEscape(string text)
Replace all characters in text that need to be escaped for the string to be a valid string literal with their respective
escape sequences. All characters in text that cannot appear in a string literal will be replaced by an escape
sequence (n, t, etc). The primary use of this function is for converting strings suitable for being passed as string
literals to the TorqueScript compiler. expandEscape(“str” NL “ing”) // Returns “strning”.

Parameters text – A string

Returns A duplicate of the text parameter with all unescaped characters that cannot appear in string
literals replaced by their respective escape sequences.

string getSubStr(string str, int start, int numChars)
Return a substring of str starting at start and continuing either through to the end of str (if numChars is -1) or for
numChars characters (except if this would exceed the actual source string length).

Parameters

• str – The string from which to extract a substring.

• start – The offset at which to start copying out characters.

• numChars – Optional argument to specify the number of characters to copy. If this is -1,
all characters up the end of the input string are copied.

Returns A string that contains the given portion of the input string.

Example:

getSubStr("foobar", 1, 2) // Returns "oo".

int getTrailingNumber(string str)
Get the numeric suffix of the given input string.

Parameters str – The string from which to read out the numeric suffix.

Returns The numeric value of the number suffix of str or -1 if str has no such suffix.

Example:

getTrailingNumber("test123") // Returns 123.

bool isalnum(string str, int index)
Test whether the character at the given position is an alpha-numeric character. Alpha-numeric characters are
characters that are either alphabetic (a-z, A-Z) or numbers (0-9).

Parameters

• str – The string to test.

• index – The index of a character in str.

Returns True if the character at the given index in str is an alpha-numeric character; false otherwise.

bool isspace(string str, int index)
Test whether the character at the given position is a whitespace character. Characters such as tab, space, or
newline are considered whitespace.

Parameters

• str – The string to test.

• index – The index of a character in str.

366 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns True if the character at the given index in str is a whitespace character; false otherwise.

string ltrim(string str)
Remove leading whitespace from the string.

Parameters str – A string.

Returns A string that is the same as str but with any leading (i.e. leftmost) whitespace removed.

Example:

ltrim(" string "); // Returns "string ".

string nextToken(string str, string token, string delimiters)
Tokenize a string using a set of delimiting characters. This function first skips all leading charaters in str that
are contained in delimiters . From that position, it then scans for the next character in str that is contained in
delimiters and stores all characters from the starting position up to the first delimiter in a variable in the current
scope called token . Finally, it skips all characters in delimiters after the token and then returns the remaining
string contents in str . To scan out all tokens in a string, call this function repeatedly by passing the result it
returns each time as the new str until the function returns “”.

Parameters

• str – A string.

• token – The name of the variable in which to store the current token. This variable is set
in the scope in which nextToken is called.

• delimiters – A string of characters. Each character is considered a delimiter.

Returns The remainder of str after the token has been parsed out or “” if no more tokens were found
in str.

Example:

// Prints:
// a
// b
// c
%str = "a b c";
while (%str !$= "")
{

// First time, stores "a" in the variable %token and sets %str to "b c".
%str = nextToken(%str, "token", "");
echo(%token);

}

string rtrim(string str)
Remove trailing whitespace from the string.

Parameters str – A string.

Returns A string that is the same as str but with any trailing (i.e. rightmost) whitespace removed.

Example:

rtrim(" string "); // Returns " string".

bool startsWith(string str, string prefix, bool caseSensitive)
Test whether the given string begins with the given prefix.

Parameters

• str – The string to test.

5.3. Console Reference 367

Torque 3D Documentation, Release 3.5.1

• prefix – The potential prefix of str.

• caseSensitive – If true, the comparison will be case-sensitive; if false, differences in
casing will not be taken into account.

Returns True if the first characters in str match the complete contents of prefix; false otherwise.

Example:

startsWith("TEST123", "test") // Returns true.

int strasc(string chr)
Return the integer character code value corresponding to the first character in the given string.

Parameters chr – a (one-character) string.

Returns The UTF32 code value for the first character in the given string.

string strchr(string str, string chr)
Find the first occurrence of the given character in str .

Parameters

• str – The string to search.

• chr – The character to search for. Only the first character from the string is taken.

Returns The remainder of the input string starting with the given character or the empty string if the
character could not be found.

int strchrpos(string str, string chr, int start)
Find the first occurrence of the given character in the given string.

Parameters

• str – The string to search.

• chr – The character to look for. Only the first character of this string will be searched for.

• start – The index into str at which to start searching for the given character.

Returns The index of the first occurrence of chr in str or -1 if str does not contain the given character.

Example:

strchrpos("test", "s") // Returns 2.

int strcmp(string str1, string str2)
Compares two strings using case- sensitive comparison.

Parameters

• str1 – The first string.

• str2 – The second string.

Returns 0 if both strings are equal, a value <0 if the first character different in str1 has a smaller
character code value than the character at the same position in str2, and a value >1 otherwise.

Example:

if(strcmp(%var, "foobar") == 0)
echo("%var is equal to foobar");

string strformat(string format, string value)
Format the given value as a string using printf-style formatting.

368 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• format – A printf-style format string.

• value – The value argument matching the given format string.

Example:

// Convert the given integer value to a string in a hex notation.
%hex = strformat("%x", %value);

int stricmp(string str1, string str2)
Compares two strings using case- insensitive comparison.

Parameters

• str1 – The first string.

• str2 – The second string.

Returns 0 if both strings are equal, a value <0 if the first character different in str1 has a smaller
character code value than the character at the same position in str2, and a value >0 otherwise.

Example:

if(stricmp("FOObar", "foobar") == 0)
echo("this is always true");

int strinatcmp(string str1, string str2)
Compares two strings using “natural order” case-insensitive comparison. Natural order means that rather than
solely comparing single character code values, strings are ordered in a natural way. For example, the string
“hello10” is considered greater than the string “hello2” even though the first numeric character in “hello10”
actually has a smaller character value than the corresponding character in “hello2”. However, since 10 is greater
than 2, strnatcmp will put “hello10” after “hello2”.

Parameters

• str1 – The first string.

• str2 – The second string.

Returns 0 if the strings are equal, a value >0 if str1 comes after str2 in a natural order, and a value
<0 if str1 comes before str2 in a natural order.

Example:

// Bubble sort 10 elements of %array using natural orderdo
{

%swapped = false;
for(%i = 0; %i < 10 - 1; %i ++)

if(strnatcmp(%array[%i], %array[%i + 1]) > 0)
{

%temp = %array[%i];
%array[%i] = %array[%i + 1];
%array[%i + 1] = %temp;
%swapped = true;

}
}
while(%swapped);

string stripChars(string str, string chars)
Remove all occurrences of characters contained in chars from str .

Parameters

5.3. Console Reference 369

Torque 3D Documentation, Release 3.5.1

• str – The string to filter characters out from.

• chars – A string of characters to filter out from str.

Returns A version of str with all occurrences of characters contained in chars filtered out.

Example:

stripChars("teststring", "se"); // Returns "tttring".

String stripTrailingNumber(string str)
Strip a numeric suffix from the given string.

Parameters str – The string from which to strip its numeric suffix.

Returns The string str without its number suffix or the original string str if it has no such suffix.

Example:

stripTrailingNumber("test123") // Returns "test".

bool strIsMatchExpr(string pattern, string str, bool caseSensitive)
Match a pattern against a string.

Parameters

• pattern – The wildcard pattern to match against. The pattern can include characters, ‘*’
to match any number of characters and ‘?’ to match a single character.

• str – The string which should be matched against pattern.

• caseSensitive – If true, characters in the pattern are matched in case-sensitive fashion
against this string. If false, differences in casing are ignored.

Returns True if str matches the given pattern.

Example:

strIsMatchExpr("f?o*R", "foobar") // Returns true.

bool strIsMatchMultipleExpr(string patterns, string str, bool caseSensitive)
Match a multiple patterns against a single string.

Parameters

• patterns – A tab-separated list of patterns. Each pattern can include charaters, ‘*’ to
match any number of characters and ‘?’ to match a single character. Each of the patterns is
tried in turn.

• str – The string which should be matched against patterns.

• caseSensitive – If true, characters in the pattern are matched in case-sensitive fashion
against this string. If false, differences in casing are ignored.

Returns True if str matches any of the given patterns.

Example:

strIsMatchMultipleExpr("*.cs *.gui *.mis", "mymission.mis") // Returns true.

int strlen(string str)
Get the length of the given string in bytes.

Parameters str – A string.

Returns The length of the given string in bytes.

370 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string strlwr(string str)
Return an all lower-case version of the given string.

Parameters str – A string.

Returns A version of str with all characters converted to lower-case.

Example:

strlwr("TesT1") // Returns "test1"

int strnatcmp(string str1, string str2)
Compares two strings using “natural order” case-sensitive comparison. Natural order means that rather than
solely comparing single character code values, strings are ordered in a natural way. For example, the string
“hello10” is considered greater than the string “hello2” even though the first numeric character in “hello10”
actually has a smaller character value than the corresponding character in “hello2”. However, since 10 is greater
than 2, strnatcmp will put “hello10” after “hello2”.

Parameters

• str1 – The first string.

• str2 – The second string.

Returns 0 if the strings are equal, a value >0 if str1 comes after str2 in a natural order, and a value
<0 if str1 comes before str2 in a natural order.

Example:

// Bubble sort 10 elements of %array using natural orderdo
{

%swapped = false;
for(%i = 0; %i < 10 - 1; %i ++)

if(strnatcmp(%array[%i], %array[%i + 1]) > 0)
{

%temp = %array[%i];
%array[%i] = %array[%i + 1];
%array[%i + 1] = %temp;
%swapped = true;

}
}
while(%swapped);

int strpos(string haystack, string needle, int offset)
Find the start of needle in haystack searching from left to right beginning at the given offset.

Parameters

• haystack – The string to search.

• needle – The string to search for.

Returns The index at which the first occurrence of needle was found in haystack or -1 if no match
was found.

Example:

strpos("b ab", "b", 1) // Returns 3.

string strrchr(string str, string chr)
Find the last occurrence of the given character in str .

Parameters

5.3. Console Reference 371

Torque 3D Documentation, Release 3.5.1

• str – The string to search.

• chr – The character to search for. Only the first character from the string is taken.

Returns The remainder of the input string starting with the given character or the empty string if the
character could not be found.

int strrchrpos(string str, string chr, int start)
Find the last occurrence of the given character in the given string.

Parameters

• str – The string to search.

• chr – The character to look for. Only the first character of this string will be searched for.

• start – The index into str at which to start searching for the given character.

Returns The index of the last occurrence of chr in str or -1 if str does not contain the given character.

Example:

strrchrpos("test", "t") // Returns 3.

string strrepeat(string str, int numTimes, string delimiter)
Return a string that repeats str numTimes number of times delimiting each occurrence with delimiter .

Parameters

• str – The string to repeat multiple times.

• numTimes – The number of times to repeat str in the result string.

• delimiter – The string to put between each repetition of str.

Returns A string containing str repeated numTimes times.

Example:

strrepeat("a", 5, "b") // Returns "ababababa".

string strreplace(string source, string from, string to)
Replace all occurrences of from in source with to .

Parameters

• source – The string in which to replace the occurrences of from.

• from – The string to replace in source.

• to – The string with which to replace occurrences of .

Returns A string with all occurrences of from in source replaced by to.

Example:

strreplace("aabbccbb", "bb", "ee") // Returns "aaeeccee".

int strstr(string string, string substring)
Find the start of substring in the given string searching from left to right.

Parameters

• string – The string to search.

• substring – The string to search for.

372 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns The index into string at which the first occurrence of substring was found or -1 if substring
could not be found.

Example:

strstr("abcd", "c") // Returns 2.

string strupr(string str)
Return an all upper-case version of the given string.

Parameters str – A string.

Returns A version of str with all characters converted to upper-case.

Example:

strupr("TesT1") // Returns "TEST1"

string trim(string str)
Remove leading and trailing whitespace from the string.

Parameters str – A string.

Returns A string that is the same as str but with any leading (i.e. leftmost) and trailing (i.e. right-
most) whitespace removed.

Example:

trim(" string "); // Returns "string".

Field Manipulators

Functions to deal with whitespace-separated lists of values in strings. TorqueScript extensively uses strings to represent
lists of values. The functions in this group simplify working with these lists and allow to easily extract individual values
from their strings.

The list strings are segregated into three groups according to the delimiters used to separate invididual values in the
strings:

• Strings of words: Elements are separated by newlines (n), spaces, or tabs (t).

• Strings of fields: Elements are sepaerated by newlines (n) or tabs (t).

• Strings of records: Elements are separated by newlines (n).

Aside from the functions here, another useful means to work with strings of words is TorqueScript’s foreach$ state-
ment.

Functions
string firstWord(string text)

Return the first word in text .

Parameters text – A list of words separated by newlines, spaces, and/or tabs.

Returns The word at index 0 in text or “” if text is empty.
string getField(string text, int index)

Extract the field at the given index in the newline and/or tab separated list in text . Fields in text must be
separated by newlines and/or tabs.

Parameters

• text – A list of fields separated by newlines and/or tabs.

5.3. Console Reference 373

Torque 3D Documentation, Release 3.5.1

• index – The zero-based index of the field to extract.

Returns The field at the given index or “” if the index is out of range.

Example:

getField("a b" TAB "c d" TAB "e f", 1) // Returns "c d"

int getFieldCount(string text)
Return the number of newline and/or tab separated fields in text .

Parameters text – A list of fields separated by newlines and/or tabs.

Returns

.

Example:

getFieldCount("a b" TAB "c d" TAB "e f") // Returns 3

string getFields(string text, int startIndex, int endIndex)
Extract a range of fields from the given startIndex onwards thru endIndex . Fields in text must be separated by
newlines and/or tabs.

Parameters

• text – A list of fields separated by newlines and/or tabs.

• startIndex – The zero-based index of the first field to extract from text.

• endIndex – The zero-based index of the last field to extract from text. If this is -1, all
fields beginning with startIndex are extracted from text.

Returns The number of newline and/or tab sepearated elements in text.

Example:

getFields("a b" TAB "c d" TAB "e f", 1) // Returns "c d" TAB "e f"

string getRecord(string text, int index)
Extract the record at the given index in the newline-separated list in text . Records in text must be separated by
newlines.

Parameters

• text – A list of records separated by newlines.

• index – The zero-based index of the record to extract.

Returns The record at the given index or “” if index is out of range.

Example:

getRecord("a b" NL "c d" NL "e f", 1) // Returns "c d"

int getRecordCount(string text)
Return the number of newline-separated records in text .

Parameters text – A list of records separated by newlines.

Returns The number of newline-sepearated elements in text.

Example:

374 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

getRecordCount("a b" NL "c d" NL "e f") // Returns 3

string getRecords(string text, int startIndex, int endIndex)
Extract a range of records from the given startIndex onwards thru endIndex . Records in text must be separated
by newlines.

Parameters

• text – A list of records separated by newlines.

• startIndex – The zero-based index of the first record to extract from text.

• endIndex – The zero-based index of the last record to extract from text. If this is -1, all
records beginning with startIndex are extracted from text.

Returns A string containing the specified range of records from text or “” if startIndex is out of
range or greater than endIndex.

Example:

getRecords("a b" NL "c d" NL "e f", 1) // Returns "c d" NL "e f"

string getWord(string text, int index)
Extract the word at the given index in the whitespace-separated list in text . Words in text must be separated by
newlines, spaces, and/or tabs.

Parameters

• text – A whitespace-separated list of words.

• index – The zero-based index of the word to extract.

Returns The word at the given index or “” if the index is out of range.

Example:

getWord("a b c", 1) // Returns "b"

int getWordCount(string text)
Return the number of whitespace-separated words in text . Words in text must be separated by newlines, spaces,
and/or tabs.

Parameters text – A whitespace-separated list of words.

Returns

.

Example:

getWordCount("a b c d e") // Returns 5

string getWords(string text, int startIndex, int endIndex)
Extract a range of words from the given startIndex onwards thru endIndex . Words in text must be separated by
newlines, spaces, and/or tabs.

Parameters

• text – A whitespace-separated list of words.

• startIndex – The zero-based index of the first word to extract from text.

• endIndex – The zero-based index of the last word to extract from text. If this is -1, all
words beginning with startIndex are extracted from text.

5.3. Console Reference 375

Torque 3D Documentation, Release 3.5.1

Returns A string containing the specified range of words from text or “” if startIndex is out of range
or greater than endIndex.

Example:

getWords("a b c d", 1, 2,) // Returns "b c"

string removeField(string text, int index)
Remove the field in text at the given index . Fields in text must be separated by newlines and/or tabs.

Parameters

• text – A list of fields separated by newlines and/or tabs.

• index – The zero-based index of the field in text.

Returns A new string with the field at the given index removed or the original string if index is out
of range.

Example:

removeField("a b" TAB "c d" TAB "e f", 1) // Returns "a b" TAB "e f"

string removeRecord(string text, int index)
Remove the record in text at the given index . Records in text must be separated by newlines.

Parameters

• text – A list of records separated by newlines.

• index – The zero-based index of the record in text.

Returns is out of range.

Example:

removeRecord("a b" NL "c d" NL "e f", 1) // Returns "a b" NL "e f"

string removeWord(string text, int index)
Remove the word in text at the given index . Words in text must be separated by newlines, spaces, and/or tabs.

Parameters

• text – A whitespace-separated list of words.

• index – The zero-based index of the word in text.

Returns A new string with the record at the given index removed or the original string if index is
out of range.

Example:

removeWord("a b c d", 2) // Returns "a b d"

string restWords(string text)
Return all but the first word in text .

Parameters text – A list of words separated by newlines, spaces, and/or tabs.

Returns Text with the first word removed.

string setField(string text, int index, string replacement)
Replace the field in text at the given index with replacement . Fields in text must be separated by newlines
and/or tabs.

Parameters

376 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• text – A list of fields separated by newlines and/or tabs.

• index – The zero-based index of the field to replace.

• replacement – The string with which to replace the field.

Returns is out of range.

Example:

setField("a b" TAB "c d" TAB "e f", 1, "g h") // Returns "a b" TAB "g h" TAB "e f"

string setRecord(string text, int index, string replacement)
Replace the record in text at the given index with replacement . Records in text must be separated by newlines.

Parameters

• text – A list of records separated by newlines.

• index – The zero-based index of the record to replace.

• replacement – The string with which to replace the record.

Returns A new string with the field at the given index replaced by replacement or the original string
if index is out of range.

Example:

setRecord("a b" NL "c d" NL "e f", 1, "g h") // Returns "a b" NL "g h" NL "e f"

string setWord(string text, int index, string replacement)
Replace the word in text at the given index with replacement . Words in text must be separated by newlines,
spaces, and/or tabs.

Parameters

• text – A whitespace-separated list of words.

• index – The zero-based index of the word to replace.

• replacement – The string with which to replace the word.

Returns A new string with the record at the given index replaced by replacement or the original
string if index is out of range.

Example:

setWord("a b c d", 2, "f") // Returns "a b f d"

Utilities

Miscellaneous utility functions.

Functions

int countBits(int v)
Count the number of bits that are set in the given 32 bit integer.

Parameters v – An integer value.

Returns

.

5.3. Console Reference 377

Torque 3D Documentation, Release 3.5.1

Torque::UUID generateUUID()
Generate a new universally unique identifier (UUID).

Returns A newly generated UUID.

5.3.2 GUI

Subsystem to display user interface elements and handle high-level rendering control flow.

3D Controls

Controls to render 3D elements.

Classes

GameTSCtrl The main 3D viewport for a Torque 3D game.

Inherit: GuiTSCtrl

Description The main 3D viewport for a Torque 3D game.

With the exception of a few very niche genres, the bulk of your 3D game viewing will occur in a GameTSCtrl. You
typically only need a single GameTSCtrl, unless you are implementing a very complex interface system. In the demos,
you can find our example named “PlayGui”.

It is recommended that any game GUIs that are not pushed and popped constantly, be contained within your Ga-
meTSCtrl. Examples include targeting reticle, standard healthbar, ammo count, etc. This is mostly a design decision,
but the way Torque 3D’s GUI system works somewhat encourages you to group the controls in this manner:

// Example of a GameTSCtrl
// PlayGui is the main TSControl through which the game is viewed
// Also contains a Guis for:
// - A lag icon
// - Showing other shape names
// - Crossahir
%guiContent = new GameTSCtrl(PlayGui)
{

cameraZRot = "0";
forceFOV = "0";
reflectPriority = "1";
Profile = "GuiContentProfile";
HorizSizing = "right";
VertSizing = "bottom";
position = "0 0";
Extent = "1024 768";

new GuiBitmapCtrl(LagIcon)
{

bitmap = "art/gui/lagIcon.png";
// Note: Rest of fields hidden for this example

};

new GuiShapeNameHud()
{

fillColor = "0 0 0 0.25";

378 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

frameColor = "0 1 0 1";
textColor = "0 1 0 1";
showFill = "0";
showFrame = "0";

// Note: Rest of fields hidden for this example
};

new GuiCrossHairHud(Reticle)
{

damageFillColor = "0 1 0 1";
damageFrameColor = "1 0.6 0 1";
damageRect = "50 4";
damageOffset = "0 10";
bitmap = "art/gui/weaponHud/blank.png";
// Note: Rest of fields hidden for this example

};
};

GuiObjectView GUI control which displays a 3D model.

Inherit: GuiTSCtrl

Description GUI control which displays a 3D model.

Model displayed in the control can have other objects mounted onto it, and the light settings can be adjusted.

Example:

newGuiObjectView(ObjectPreview)
{

shapeFile = "art/shapes/items/kit/healthkit.dts";
mountedNode = "mount0";
lightColor = "1 1 1 1";
lightAmbient = "0.5 0.5 0.5 1";
lightDirection = "0 0.707 -0.707";
orbitDiststance = "2";
minOrbitDiststance = "0.917688";
maxOrbitDiststance = "5";
cameraSpeed = "0.01";
cameraZRot = "0";
forceFOV = "0";
reflectPriority = "0";

};

Methods
float GuiObjectView::getCameraSpeed()

Return the current multiplier for camera zooming and rotation.

Returns zooming / rotation multiplier value.

Example:

// Request the current camera zooming and rotation multiplier value
%multiplier = %thisGuiObjectView.getCameraSpeed();

string GuiObjectView::getModel()
Return the model displayed in this view.

5.3. Console Reference 379

Torque 3D Documentation, Release 3.5.1

Returns Name of the displayed model.

Example:

// Request the displayed model name from the GuiObjectView object.
%modelName = %thisGuiObjectView.getModel();

string GuiObjectView::getMountedModel()
Return the name of the mounted model.

Returns Name of the mounted model.

Example:

// Request the name of the mounted model from the GuiObjectView object
%mountedModelName = %thisGuiObjectView.getMountedModel();

string GuiObjectView::getMountSkin(int param1, int param2)
Return the name of skin used on the mounted model.

Returns Name of the skin used on the mounted model.

Example:

// Request the skin name from the model mounted on to the main model in the control
%mountModelSkin = %thisGuiObjectView.getMountSkin();

float GuiObjectView::getOrbitDistance()
Return the current distance at which the camera orbits the object.

Returns The distance at which the camera orbits the object.

Example:

// Request the current orbit distance
%orbitDistance = %thisGuiObjectView.getOrbitDistance();

string GuiObjectView::getSkin()
Return the name of skin used on the primary model.

Returns Name of the skin used on the primary model.

Example:

// Request the name of the skin used on the primary model in the control
%skinName = %thisGuiObjectView.getSkin();

void GuiObjectView::onMouseEnter()
Called whenever the mouse enters the control.

Example:

// The mouse has entered the control, causing the callback to occurGuiObjectView::onMouseEnter(%this)
{

// Code to run when the mouse enters this control
}

void GuiObjectView::onMouseLeave()
Called whenever the mouse leaves the control.

Example:

380 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// The mouse has left the control, causing the callback to occurGuiObjectView::onMouseLeave(%this)
{

// Code to run when the mouse leaves this control
}

void GuiObjectView::setCameraSpeed(float factor)
Sets the multiplier for the camera rotation and zoom speed.

Parameters factor – Multiplier for camera rotation and zoom speed.

Example:

// Set the factor value
%factor = "0.75";

// Inform the GuiObjectView object to set the camera speed.
%thisGuiObjectView.setCameraSpeed(%factor);

void GuiObjectView::setLightAmbient(ColorF color)
Set the light ambient color on the sun object used to render the model.

Parameters color – Ambient color of sunlight.

Example:

// Define the sun ambient color value
%color = "1.0 0.4 0.6";

// Inform the GuiObjectView object to set the sun ambient color to the requested value
%thisGuiObjectView.setLightAmbient(%color);

void GuiObjectView::setLightColor(ColorF color)
Set the light color on the sun object used to render the model.

Parameters color – Color of sunlight.

Example:

// Set the color value for the sun
%color = "1.0 0.4 0.5";

// Inform the GuiObjectView object to change the sun color to the defined value
%thisGuiObjectView.setLightColor(%color);

void GuiObjectView::setLightDirection(Point3F direction)
Set the light direction from which to light the model.

Parameters direction – XYZ direction from which the light will shine on the model

Example:

// Set the light direction
%direction = "1.0 0.2 0.4"// Inform the GuiObjectView object to change the light direction to the defined value
%thisGuiObjectView.setLightDirection(%direction);

void GuiObjectView::setModel(string shapeName)
Sets the model to be displayed in this control.

Parameters shapeName – Name of the model to display.

Example:

5.3. Console Reference 381

Torque 3D Documentation, Release 3.5.1

// Define the model we want to display
%shapeName = "gideon.dts";

// Tell the GuiObjectView object to display the defined model
%thisGuiObjectView.setModel(%shapeName);

void GuiObjectView::setMount(string shapeName, string mountNodeIndexOrName)
Mounts the given model to the specified mount point of the primary model displayed in this control. Detailed
description

Parameters

• shapeName – Name of the model to mount.

• mountNodeIndexOrName – Index or name of the mount point to be mounted to. If
index, corresponds to “mountN” in your shape where N is the number passed here.

Example:

// Set the shapeName to mount
%shapeName = "GideonGlasses.dts"// Set the mount node of the primary model in the control to mount the new shape at
%mountNodeIndexOrName = "3";
//OR:
%mountNodeIndexOrName = "Face";

// Inform the GuiObjectView object to mount the shape at the specified node.
%thisGuiObjectView.setMount(%shapeName,%mountNodeIndexOrName);

void GuiObjectView::setMountedModel(string shapeName)
Sets the model to be mounted on the primary model.

Parameters shapeName – Name of the model to mount.

Example:

// Define the model name to mount
%modelToMount = "GideonGlasses.dts";

// Inform the GuiObjectView object to mount the defined model to the existing model in the control
%thisGuiObjectView.setMountedModel(%modelToMount);

void GuiObjectView::setMountSkin(string skinName)
Sets the skin to use on the mounted model.

Parameters skinName – Name of the skin to set on the model mounted to the main model in the
control

Example:

// Define the name of the skin
%skinName = "BronzeGlasses";

// Inform the GuiObjectView Control of the skin to use on the mounted model
%thisGuiObjectViewCtrl.setMountSkin(%skinName);

void GuiObjectView::setOrbitDistance(float distance)
Sets the distance at which the camera orbits the object. Clamped to the acceptable range defined in the class by
min and max orbit distances. Detailed description

Parameters distance – The distance to set the orbit to (will be clamped).

Example:

382 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Define the orbit distance value
%orbitDistance = "1.5";

// Inform the GuiObjectView object to set the orbit distance to the defined value
%thisGuiObjectView.setOrbitDistance(%orbitDistance);

void GuiObjectView::setSeq(string indexOrName)
Sets the animation to play for the viewed object.

Parameters indexOrName – The index or name of the animation to play.

Example:

// Set the animation index value, or animation sequence name.
%indexVal = "3";
//OR:
%indexVal = "idle";

// Inform the GuiObjectView object to set the animation sequence of the object in the control.
%thisGuiObjectVew.setSeq(%indexVal);

void GuiObjectView::setSkin(string skinName)
Sets the skin to use on the model being displayed.

Parameters skinName – Name of the skin to use.

Example:

// Define the skin we want to apply to the main model in the control
%skinName = "disco_gideon";

// Inform the GuiObjectView control to update the skin the to defined skin
%thisGuiObjectView.setSkin(%skinName);

Fields
string GuiObjectView::animSequence

The animation sequence to play on the model.
Point3F GuiObjectView::cameraRotation

Set the camera rotation.

float GuiObjectView::cameraSpeed
Multiplier for mouse camera operations.

ColorF GuiObjectView::lightAmbient
Ambient color of the sunlight used to render the model.

ColorF GuiObjectView::lightColor
Diffuse color of the sunlight used to render the model.

Point3F GuiObjectView::lightDirection
Direction from which the model is illuminated.

float GuiObjectView::maxOrbitDiststance
Minimum distance below which the camera will not zoom in further.

float GuiObjectView::minOrbitDiststance
Maxiumum distance to which the camera can be zoomed out.

string GuiObjectView::mountedNode
Name of node on primary model to which to mount the secondary shape.

5.3. Console Reference 383

Torque 3D Documentation, Release 3.5.1

filename GuiObjectView::mountedShapeFile
Optional shape file to mount on the primary model (e.g. weapon).

string GuiObjectView::mountedSkin
Skin name used on mounted shape file.

float GuiObjectView::orbitDiststance
Distance from which to render the model.

filename GuiObjectView::shapeFile
The object model shape file to show in the view.

string GuiObjectView::skin
The skin to use on the object model.

GuiTSCtrl Abstract base class for controls that render 3D scenes.

Inherit: GuiContainer

Description GuiTSCtrl is the base class for controls that render 3D camera views in Torque. The class itself does
not implement a concrete scene rendering. Use GuiObjectView to display invidiual shapes in the Gui and GameTSCtrl
to render full scenes.

Methods
float GuiTSCtrl::calculateViewDistance(float radius)

Given the camera’s current FOV, get the distance from the camera’s viewpoint at which the given radius will fit
in the render area.

Parameters radius – Radius in world-space units which should fit in the view.

Returns The distance from the viewpoint at which the given radius would be fully visible.
Point2F GuiTSCtrl::getWorldToScreenScale()

Get the ratio between world-space units and pixels.

Returns The amount of world-space units covered by the extent of a single pixel.

Point3F GuiTSCtrl::project(Point3F worldPosition)
Transform world-space coordinates to screen-space (x, y, depth) coordinates.

Parameters worldPosition – The world-space position to transform to screen-space.

Returns The

Point3F GuiTSCtrl::unproject(Point3F screenPosition)
Transform 3D screen-space coordinates (x, y, depth) to world space. This method can be, for example, used to
find the world-space position relating to the current mouse cursor position.

Parameters screenPosition – The x/y position on the screen plus the depth from the screen-
plane outwards.

Returns The world-space position corresponding to the given screen-space coordinates.

Fields
float GuiTSCtrl::cameraZRot

Z rotation angle of camera.
float GuiTSCtrl::forceFOV

The vertical field of view in degrees or zero to use the normal camera FOV.

384 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float GuiTSCtrl::reflectPriority
The share of the per-frame reflection update work this control’s rendering should run. The reflect update priori-
ties of all visible GuiTSCtrls are added together and each control is assigned a share of the per-frame reflection
update time according to its percentage of the total priority value.

GuiTSRenderStyles GuiTSCtrl::renderStyle
Indicates how this control should render its contents.

Enumeration

enum GuiTSRenderStyles
Style of rendering for a GuiTSCtrl .

Parameters

• standard –

• side –

Core Controls

Core parts of the Gui System.

Classes

GuiCanvas A canvas on which rendering occurs.

Inherit: GuiControl

Description A canvas on which rendering occurs.

What a GUICanvas Can Contain... A content control is the top level GuiControl for a screen. This GuiControl
will be the parent control for all other GuiControls on that particular screen.

A dialog is essentially another screen, only it gets overlaid on top of the current content control, and all input goes to
the dialog. This is most akin to the “Open File” dialog box found in most operating systems. When you choose to
open a file, and the “Open File” dialog pops up, you can no longer send input to the application, and must complete or
cancel the open file request. Torque keeps track of layers of dialogs. The dialog with the highest layer is on top and
will get all the input, unless the dialog is modeless, which is a profile option.

Dirty Rectangles The GuiCanvas is based on dirty regions. Every frame the canvas paints only the areas of the
canvas that are ‘dirty’ or need updating. In most cases, this only is the area under the mouse cursor. This is why if
you look in guiCanvas.cc the call to glClear is commented out. What you will see is a black screen, except in the dirty
regions, where the screen will be painted normally. If you are making an animated GuiControl you need to add your
control to the dirty areas of the canvas.

Methods
Point2I GuiCanvas::clientToScreen(Point2I coordinate)

Translate a coordinate from canvas window-space to screen-space.

Parameters coordinate – The coordinate in window-space.

Returns The given coordinate translated to screen-space.

5.3. Console Reference 385

Torque 3D Documentation, Release 3.5.1

void GuiCanvas::cursorOff()
Turns on the mouse off.

Example:

Canvas.cursorOff();

void GuiCanvas::cursorOn()
Turns on the mouse cursor.

Example:

Canvas.cursorOn();

int GuiCanvas::findFirstMatchingMonitor(string name)
Find the first monitor index that matches the given name. The actual match algorithm depends on the imple-
mentation.

Parameters name – The name to search for.

Returns The number of monitors attached to the system, including the default monoitor.

int GuiCanvas::getContent()
Get the GuiControl which is being used as the content.

Returns ID of current content control

Example:

Canvas.getContent();

Point2I GuiCanvas::getCursorPos()
Get the current position of the cursor.

Parameters param – Description

Returns Screen coordinates of mouse cursor, in format “X Y”

Example:

%cursorPos = Canvas.getCursorPos();

Point2I GuiCanvas::getExtent()
Returns the dimensions of the canvas. Reimplemented from GuiControl .

Returns Width and height of canvas. Formatted as numerical values in a single string “# #”

Example:

%extent = Canvas.getExtent();

string GuiCanvas::getMode(int modeId)
Gets information on the specified mode of this device.

Parameters modeId – Index of the mode to get data from.

Returns A video mode string given an adapter and mode index.

int GuiCanvas::getModeCount()
Gets the number of modes available on this device.

Parameters param – Description

Returns The number of video modes supported by the device

Example:

386 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%modeCount = Canvas.getModeCount()

int GuiCanvas::getMonitorCount()
Gets the number of monitors attached to the system.

Returns The number of monitors attached to the system, including the default monoitor.

string GuiCanvas::getMonitorName(int index)
Gets the name of the requested monitor.

Parameters index – The monitor index.

Returns The name of the requested monitor.

RectI GuiCanvas::getMonitorRect(int index)
Gets the region of the requested monitor.

Parameters index – The monitor index.

Returns The rectangular region of the requested monitor.

int GuiCanvas::getMouseControl()
Gets the gui control under the mouse.

Returns ID of the gui control, if one was found. NULL otherwise

Example:

%underMouse = Canvas.getMouseControl();

string GuiCanvas::getVideoMode()
Gets the current screen mode as a string. The return string will contain 5 values (width, height, fullscreen,
bitdepth, refreshRate). You will need to parse out each one for individual use.

Returns String formatted with screen width, screen height, screen mode, bit depth, and refresh rate.

Example:

%screenWidth = getWord(Canvas.getVideoMode(), 0);
%screenHeight = getWord(Canvas.getVideoMode(), 1);
%isFullscreen = getWord(Canvas.getVideoMode(), 2);
%bitdepth = getWord(Canvas.getVideoMode(), 3);
%refreshRate = getWord(Canvas.getVideoMode(), 4);

Point2I GuiCanvas::getWindowPosition()
Get the current position of the platform window associated with the canvas.

Returns The window position of the canvas in screen-space.

void GuiCanvas::hideCursor()
Disable rendering of the cursor.

Example:

Canvas.hideCursor();

bool GuiCanvas::isCursorOn()
Determines if mouse cursor is enabled.

Returns Returns true if the cursor is on.

Example:

// Is cursor on?if(Canvas.isCursorOn())
echo("Canvas cursor is on");

5.3. Console Reference 387

Torque 3D Documentation, Release 3.5.1

bool GuiCanvas::isCursorShown()
Determines if mouse cursor is rendering.

Returns Returns true if the cursor is rendering.

Example:

// Is cursor rendering?if(Canvas.isCursorShown())
echo("Canvas cursor is rendering");

bool GuiCanvas::isFullscreen()
Is this canvas currently fullscreen?

bool GuiCanvas::isMaximized()

bool GuiCanvas::isMinimized()

void GuiCanvas::maximizeWindow()
maximize this canvas’ window.

void GuiCanvas::minimizeWindow()
minimize this canvas’ window.

void GuiCanvas::popDialog(GuiControl ctrl)
Removes a specific dialog control.

Parameters ctrl – Dialog to pop

Example:

Canvas.popDialog(RecordingsDlg);

void GuiCanvas::popDialog()
Removes a dialog at the front most layer.

Example:

// Pops whatever is on layer 0
Canvas.popDialog();

void GuiCanvas::popLayer()
Removes the top most layer of dialogs.

Example:

Canvas.popLayer();

void GuiCanvas::popLayer(S32 layer)
Removes a specified layer of dialogs.

Parameters layer – Number of the layer to pop

Example:

Canvas.popLayer(1);

void GuiCanvas::pushDialog(GuiControl ctrl, int layer, bool center)
Adds a dialog control onto the stack of dialogs.

Parameters

• ctrl – Dialog to add

• layer – Layer to put dialog on (optional)

• center – True to center dialog on canvas (optional)

388 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

Canvas.pushDialog(RecordingsDlg);

void GuiCanvas::renderFront(bool enable)
This turns on/off front-buffer rendering.

Parameters enable – True if all rendering should be done to the front buffer

Example:

Canvas.renderFront(false);

void GuiCanvas::repaint(int elapsedMS)
Force canvas to redraw. If the elapsed time is greater than the time since the last paint then the repaint will be
skipped.

Parameters elapsedMS – The optional elapsed time in milliseconds.

Example:

Canvas.repaint();

void GuiCanvas::reset()
Reset the update regions for the canvas.

Example:

Canvas.reset();

void GuiCanvas::restoreWindow()
restore this canvas’ window.

Point2I GuiCanvas::screenToClient(Point2I coordinate)
Translate a coordinate from screen-space to canvas window-space.

Parameters coordinate – The coordinate in screen-space.

Returns The given coordinate translated to window-space.

void GuiCanvas::setContent(GuiControl ctrl)
Set the content of the canvas to a specified control.

Parameters ctrl – ID or name of GuiControl to set content to

Example:

Canvas.setContent(PlayGui);

void GuiCanvas::setCursor(GuiCursor cursor)
Sets the cursor for the canvas.

Parameters cursor – Name of the GuiCursor to use

Example:

Canvas.setCursor("DefaultCursor");

bool GuiCanvas::setCursorPos(Point2I pos)
Sets the position of the cursor.

Parameters pos – Point, in screenspace for the cursor. Formatted as (“x y”)

Example:

5.3. Console Reference 389

Torque 3D Documentation, Release 3.5.1

Canvas.setCursorPos("0 0");

bool GuiCanvas::setCursorPos(F32 posX, F32 posY)
Sets the position of the cursor.

Parameters

• posX – X-coordinate, in screenspace for the cursor.

• posY – Y-coordinate, in screenspace for the cursor.

Example:

Canvas.setCursorPos(0,0);

void GuiCanvas::setFocus()
Claim OS input focus for this canvas’ window.

void GuiCanvas::setVideoMode(int width, int height, bool fullscreen)
Change the video mode of this canvas. This method has the side effect of setting the $pref::Video::mode to the
new values.

Parameters

• width – The screen width to set.

• height – The screen height to set.

• fullscreen – Specify true to run fullscreen or false to run in a window

• bitDepth – [optional] The desired bit-depth. Defaults to the current setting. This param-
eter is ignored if you are running in a window.

• refreshRate – [optional] The desired refresh rate. Defaults to the current setting. This
parameter is ignored if you are running in a window

• antialiasLevel – [optional] The level of anti-aliasing to apply 0 = none

void GuiCanvas::setWindowPosition(Point2I position)
Set the position of the platform window associated with the canvas.

Parameters position – The new position of the window in screen-space.

void GuiCanvas::setWindowTitle(string newTitle)
Change the title of the OS window.

Parameters newTitle – String containing the new name

Example:

Canvas.setWindowTitle("Documentation Rocks!");

void GuiCanvas::showCursor()
Enable rendering of the cursor.

Example:

Canvas.showCursor();

void GuiCanvas::toggleFullscreen()
toggle canvas from fullscreen to windowed mode or back.

Example:

390 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// If we are in windowed mode, the following will put is in fullscreen
Canvas.toggleFullscreen();

Fields
bool GuiCanvas::alwaysHandleMouseButtons

Deal with mouse buttons, even if the cursor is hidden.
int GuiCanvas::numFences

The number of GFX fences to use.

GuiConsole The on-screen, in-game console.

Inherit: GuiArrayCtrl

Description Calls getLog() to get the on-screen console entries, then renders them as needed.

Example:

newGuiConsole()
{

//Properties not specific to this control have been omitted from this example.
};

Methods
void GuiConsole::onMessageSelected(ConsoleLogEntry::Level level, string message)

Called when a message in the log is clicked.

Parameters

• level – Diagnostic level of the message.

• message – Message text.

GuiConsoleEditCtrl

Inherit: GuiTextEditCtrl

Description Text entry element of a GuiConsole.

Example:

newGuiConsoleEditCtrl(ConsoleEntry)
{

profile = "ConsoleTextEditProfile";
horizSizing = "width";
vertSizing = "top";
position = "0 462";
extent = "640 18";
minExtent = "8 8";
visible = "1";
altCommand = "ConsoleEntry::eval();";
helpTag = "0";
maxLength = "255";
historySize = "40";
password = "0";
tabComplete = "0";

5.3. Console Reference 391

Torque 3D Documentation, Release 3.5.1

sinkAllKeyEvents = "1";
useSiblingScroller = "1";

};

Fields
bool GuiConsoleEditCtrl::useSiblingScroller

GuiControl Base class for all Gui control objects.

Inherit: SimGroup

Description GuiControl is the basis for the Gui system. It represents an individual control that can be placed on the
canvas and with which the mouse and keyboard can potentially interact with.

Control Hierarchies GuiControls are arranged in a hierarchy. All children of a control are placed in their parent’s
coordinate space, i.e. their coordinates are relative to the upper left corner of their immediate parent. When a control
is moved, all its child controls are moved along with it.

Since GuiControl’s are SimGroups, hierarchy also implies ownership. This means that if a control is destroyed, all
its children are destroyed along with it. It also means that a given control can only be part of a single GuiControl
hierarchy. When adding a control to another control, it will automatically be reparented from another control it may
have previously been parented to.

Layout System GuiControls have a two-dimensional position and are rectangular in shape.

Event System

Control Profiles Common data accessed by GuiControls is stored in so-called “Control Profiles.” This includes
font, color, and texture information. By pooling this data in shared objects, the appearance of any number of controls
can be changed quickly and easily by modifying only the shared profile object.

If not explicitly assigned a profile, a control will by default look for a profile object that matches its class name. This
means that the class GuiMyCtrl, for example, will look for a profile called ‘GuiMyProfile’. If this profile cannot be
found, the control will fall back to GuiDefaultProfile which must be defined in any case for the Gui system to work.

In addition to its primary profile, a control may be assigned a second profile called ‘tooltipProfile’ that will be used to
render tooltip popups for the control.

Triggered Actions

First Responders At any time, a single control can be what is called the “first responder” on the GuiCanvas is placed
on. This control will be the first control to receive keyboard events not bound in the global ActionMap. If the first
responder choses to handle a particular keyboard event,

Waking and Sleeping

Visibility and Activeness By default, a GuiControl is active which means that it

392 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Methods
void GuiControl::addGuiControl(GuiControl control)

Add the given control as a child to this control. This is synonymous to calling SimGroup::addObject.

Parameters control – The control to add as a child.
void GuiControl::clearFirstResponder(bool ignored)

Clear this control from being the first responder in its hierarchy chain.

Parameters ignored – Ignored. Supported for backwards-compatibility.

bool GuiControl::controlIsChild(GuiControl control)
Test whether the given control is a direct or indirect child to this control.

Parameters control – The potential child control.

Returns True if the given control is a direct or indirect child to this control.

GuiControl GuiControl::findHitControl(int x, int y)
Find the topmost child control located at the given coordinates.

Parameters

• x – The X coordinate in the control’s own coordinate space.

• y – The Y coordinate in the control’s own coordinate space.

Returns The topmost child control at the given coordintes or the control on which the method was
called if no matching child could be found.

string GuiControl::findHitControls(int x, int y, int width, int height)
Find all visible child controls that intersect with the given rectangle.

Parameters

• x – The X coordinate of the rectangle’s upper left corner in the control’s own coordinate
space.

• y – The Y coordinate of the rectangle’s upper left corner in the control’s own coordinate
space.

• width – The width of the search rectangle in pixels.

• height – The height of the search rectangle in pixels.

Returns A space-separated list of the IDs of all visible control objects intersecting the given rectan-
gle.

Example:

// Lock all controls in the rectangle at x=10 and y=10 and the extent width=100 and height=100.foreach$(%ctrl in %this.findHitControls(10, 10, 100, 100))
%ctrl.setLocked(true);

float GuiControl::getAspect()
Get the aspect ratio of the control’s extents.

Returns The width of the control divided by its height.

Point2I GuiControl::getCenter()
Get the coordinate of the control’s center point relative to its parent.

Returns The coordinate of the control’s center point in parent-relative coordinates.

Point2I GuiControl::getExtent()
Get the width and height of the control. Reimplemented in GuiCanvas .

Returns A point structure containing the width of the control in x and the height in y.

5.3. Console Reference 393

Torque 3D Documentation, Release 3.5.1

GuiControl GuiControl::getFirstResponder()
Get the first responder set on this GuiControl tree.

Returns The first responder set on the control’s subtree.

Point2I GuiControl::getGlobalCenter()
Get the coordinate of the control’s center point in coordinates relative to the root control in its control hierarchy.
the center coordinate of the control in root-relative coordinates.

Point2I GuiControl::getGlobalPosition()
Get the position of the control relative to the root of the GuiControl hierarchy it is contained in.

Returns The control’s current position in root-relative coordinates.

Point2I GuiControl::getMinExtent()
Get the minimum allowed size of the control.

Returns The minimum size to which the control can be shrunk.

GuiControl GuiControl::getParent()
Get the immediate parent control of the control.

Returns

.

Point2I GuiControl::getPosition()
Get the control’s current position relative to its parent.

Returns The coordinate of the control in its parent’s coordinate space.

GuiCanvas GuiControl::getRoot()
Get the canvas on which the control is placed.

Returns

.

bool GuiControl::isAwake()
Test whether the control is currently awake. If a control is awake it means that it is part of the GuiControl
hierarchy of a GuiCanvas .

Returns Waking and Sleeping

bool GuiControl::isFirstResponder()
Test whether the control is the current first responder.

Returns True if the control is the current first responder.

bool GuiControl::isMouseLocked()
Indicates if the mouse is locked in this control.

Returns True if the mouse is currently locked.

bool GuiControl::isVisible()
Test whether the control is currently set to be visible. Visibility and Activeness

Returns True if the control is currently set to be visible.

void GuiControl::makeFirstResponder(bool isFirst)

void GuiControl::onAction()
Called when the control’s associated action is triggered and no ‘command’ is defined for the control. Triggered
Actions

394 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GuiControl::onActive(bool state)
Called when the control changes its activeness state, i.e. when going from active to inactive or vice versa.

Parameters stat – The new activeness state.

void GuiControl::onAdd()
Called when the control object is registered with the system after the control has been created.

void GuiControl::onControlDragEnter(GuiControl control, Point2I dropPoint)
Called when a drag amp drop operation through GuiDragAndDropControl has entered the control. This is only
called for topmost visible controls as the GuiDragAndDropControl moves over them.

Parameters

• control – The payload of the drag operation.

• dropPoint – The point at which the payload would be dropped if it were released now.
Relative to the canvas.

void GuiControl::onControlDragExit(GuiControl control, Point2I dropPoint)
Called when a drag amp drop operation through GuiDragAndDropControl has exited the control and moved
over a different control. This is only called for topmost visible controls as the GuiDragAndDropControl moves
off of them.

Parameters

• control – The payload of the drag operation.

• dropPoint – The point at which the payload would be dropped if it were released now.
Relative to the canvas.

void GuiControl::onControlDragged(GuiControl control, Point2I dropPoint)
Called when a drag amp drop operation through GuiDragAndDropControl is moving across the control after it
has entered it. This is only called for topmost visible controls as the GuiDragAndDropControl moves across
them.

Parameters

• control – The payload of the drag operation.

• dropPoint – The point at which the payload would be dropped if it were released now.
Relative to the canvas.

void GuiControl::onControlDropped(GuiControl control, Point2I dropPoint)
Called when a drag amp drop operation through GuiDragAndDropControl has completed and is dropping its
payload onto the control. This is only called for topmost visible controls as the GuiDragAndDropControl drops
its payload on them.

Parameters

• control – The control that is being dropped onto this control.

• dropPoint – The point at which the control is being dropped. Relative to the canvas.

void GuiControl::onDialogPop()
Called when the control is removed as a dialog from the canvas.

void GuiControl::onDialogPush()
Called when the control is pushed as a dialog onto the canvas.

void GuiControl::onGainFirstResponder()
Called when the control gains first responder status on the GuiCanvas .

void GuiControl::onLoseFirstResponder()
Called when the control loses first responder status on the GuiCanvas .

5.3. Console Reference 395

Torque 3D Documentation, Release 3.5.1

void GuiControl::onRemove()
Called when the control object is removed from the system before it is deleted.

void GuiControl::onSleep()
Called when the control is put to sleep. Waking and Sleeping

void GuiControl::onVisible(bool state)
Called when the control changes its visibility state, i.e. when going from visible to invisible or vice versa.

Parameters state – The new visibility state.

void GuiControl::onWake()
Called when the control is woken up. Waking and Sleeping

bool GuiControl::pointInControl(int x, int y)
Test whether the given point lies within the rectangle of the control.

Parameters

• x – X coordinate of the point in parent-relative coordinates.

• y – Y coordinate of the point in parent-relative coordinates.

Returns True if the point is within the control, false if not.

void GuiControl::resize(int x, int y, int width, int height)
Resize and reposition the control using the give coordinates and dimensions. Child controls will resize according
to their layout behaviors.

Parameters

• x – The new X coordinate of the control in its parent’s coordinate space.

• y – The new Y coordinate of the control in its parent’s coordinate space.

• width – The new width to which the control should be resized.

• height – The new height to which the control should be resized.

void GuiControl::setActive(bool state)

void GuiControl::setCenter(int x, int y)
Set the control’s position by its center point.

Parameters

• x – The X coordinate of the new center point of the control relative to the control’s parent.

• y – The Y coordinate of the new center point of the control relative to the control’s parent.

void GuiControl::setExtent(S32 width, S32 height)
Resize the control to the given dimensions. Child controls will resize according to their layout settings.

Parameters

• width – The new width of the control in pixels.

• height – The new height of the control in pixels.

void GuiControl::setExtent(Point2I p)
Resize the control to the given dimensions. Child controls with resize according to their layout settings.

Parameters p – The new (width, height) extents of the control.

void GuiControl::setFirstResponder()
Make this control the current first responder.

396 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GuiControl::setPosition(int x, int y)
Position the control in the local space of the parent control.

Parameters

• x – The new X coordinate of the control relative to its parent’s upper left corner.

• y – The new Y coordinate of the control relative to its parent’s upper left corner.

void GuiControl::setPositionGlobal(int x, int y)
Set position of the control relative to the root of the GuiControl hierarchy it is contained in.

Parameters

• x – The new X coordinate of the control relative to the root’s upper left corner.

• y – The new Y coordinate of the control relative to the root’s upper left corner.

void GuiControl::setProfile(GuiControlProfile profile)
Set the control profile for the control to use. The profile used by a control determines a great part of its behavior
and appearance.

Parameters profile – The new profile the control should use. Control Profiles

void GuiControl::setValue(string value)
Set the value associated with the control.

Parameters value – The new value for the control.

void GuiControl::setVisible(bool state)
Set whether the control is visible or not.

Parameters state – The new visiblity flag state for the control. Visibility and Activeness

Fields
string GuiControl::accelerator

Key combination that triggers the control’s primary action when the control is on the canvas.
bool GuiControl::active

Whether the control is enabled for user interaction.

string GuiControl::altCommand
Command to execute on the secondary action of the control.

string GuiControl::command
Command to execute on the primary action of the control.

Point2I GuiControl::extent
The width and height of the control.

string GuiControl::getValue

GuiHorizontalSizing GuiControl::horizSizing
The horizontal resizing behavior.

int GuiControl::hovertime
Time for mouse to hover over control until tooltip is shown (in milliseconds).

bool GuiControl::isActive

bool GuiControl::isContainer
If true, the control may contain child controls.

string GuiControl::langTableMod
Name of string table to use for lookup of internationalized text.

5.3. Console Reference 397

Torque 3D Documentation, Release 3.5.1

Point2I GuiControl::minExtent
The minimum width and height of the control. The control will not be resized smaller than this.

deprecated GuiControl::modal

Point2I GuiControl::position
The position relative to the parent control.

GuiControlProfile GuiControl::profile
The control profile that determines fill styles, font settings, etc.

deprecated GuiControl::setFirstResponder

string GuiControl::tooltip
String to show in tooltip for this control.

GuiControlProfile GuiControl::tooltipProfile
Control profile to use when rendering tooltips for this control.

string GuiControl::variable
Name of the variable to which the value of this control will be synchronized.

GuiVerticalSizing GuiControl::vertSizing
The vertical resizing behavior.

bool GuiControl::visible
Whether the control is visible or hidden.

GuiControlProfile

Inherit: SimObject

Description A collection of properties that determine control behavior and rendering.

Methods
int GuiControlProfile::getStringWidth()

Fields
bool GuiControlProfile::autoSizeHeight

Automatically adjust height of control to fit contents.
bool GuiControlProfile::autoSizeWidth

Automatically adjust width of control to fit contents.

ColorI GuiControlProfile::bevelColorHL

ColorI GuiControlProfile::bevelColorLL

filename GuiControlProfile::bitmap
Texture to use for rendering control.

int GuiControlProfile::border
Border type (0=no border).

ColorI GuiControlProfile::borderColor
Color to draw border with.

ColorI GuiControlProfile::borderColorHL

ColorI GuiControlProfile::borderColorNA

398 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int GuiControlProfile::borderThickness
Thickness of border in pixels.

bool GuiControlProfile::canKeyFocus
Whether the control can have the keyboard focus.

string GuiControlProfile::category
Category under which the profile will appear in the editor.

ColorI GuiControlProfile::cursorColor
Color to use for the text cursor.

ColorI GuiControlProfile::fillColor

ColorI GuiControlProfile::fillColorHL

ColorI GuiControlProfile::fillColorNA

ColorI GuiControlProfile::fillColorSEL

GuiFontCharset GuiControlProfile::fontCharset

ColorI GuiControlProfile::fontColor
Font color for normal text (same as fontColors[0]).

ColorI GuiControlProfile::fontColorHL
Font color for highlighted text (same as fontColors[1]).

ColorI GuiControlProfile::fontColorLink
Font color for links in text (same as fontColors[4]).

ColorI GuiControlProfile::fontColorLinkHL
Font color for highlighted links in text (same as fontColors[5]).

ColorI GuiControlProfile::fontColorNA
Font color when control is not active/disabled (same as fontColors[2]).

ColorI GuiControlProfile::fontColors[10]
Font colors to use for different text types/states.

ColorI GuiControlProfile::fontColorSEL
Font color for selected text (same as fontColors[3]).

int GuiControlProfile::fontSize
Font size in points.

string GuiControlProfile::fontType
Name of font family and typeface (e.g. “Arial Bold”).

bool GuiControlProfile::hasBitmapArray
If true, ‘bitmap’ is an array of images.

GuiAlignmentType GuiControlProfile::justify
Horizontal alignment for text.

bool GuiControlProfile::modal

bool GuiControlProfile::mouseOverSelected

bool GuiControlProfile::numbersOnly
Whether control should only accept numerical data (GuiTextEditCtrl).

bool GuiControlProfile::opaque

string GuiControlProfile::profileForChildren

5.3. Console Reference 399

Torque 3D Documentation, Release 3.5.1

bool GuiControlProfile::returnTab
Whether to add automatic tab event when return is pressed so focus moves on to next control (GuiTextEditCtrl
).

SFXTrack GuiControlProfile::soundButtonDown
Sound to play when mouse has been pressed on control.

SFXTrack GuiControlProfile::soundButtonOver
Sound to play when mouse is hovering over control.

bool GuiControlProfile::tab

Point2I GuiControlProfile::textOffset

GuiCursor Acts as a skin for the cursor, where each GuiCursor object can have its own look and click-zone.

Inherit: SimObject

Description GuiCursors act as skins for the cursor in the game, where each individual GuiCursor can have its own
defined imagemap, click zone and render offset. This allows a game to easily support a wide range of cursors. The
active cursor can de changed for each Canvas using canvasObj.setCursor(GuiCursor);.

Example:

newGuiCursor(DefaultCursor)
{

hotSpot = "1 1";
renderOffset = "0 0";
bitmapName = "~/art/gui/images/defaultCursor";

};

Fields
filename GuiCursor::bitmapName

File name of the bitmap for the cursor.
Point2I GuiCursor::hotSpot

The location of the cursor’s hot spot (which pixel carries the click).

Point2F GuiCursor::renderOffset
Offset of the bitmap, where 0 signifies left edge of the bitmap, 1, the right. Similarly for the Y-component.

GuiFadeinBitmapCtrl A GUI control which renders a black square over a bitmap image. The black square will
fade out, then fade back in after a determined time. This control is especially useful for transitions and splash screens.

Inherit: GuiBitmapCtrl

Description A GUI control which renders a black square over a bitmap image. The black square will fade out, then
fade back in after a determined time. This control is especially useful for transitions and splash screens.

Example:

newGuiFadeinBitmapCtrl()
{

fadeinTime = "1000";
waitTime = "2000";
fadeoutTime = "1000";
done = "1";

400 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Additional GUI properties that are not specific to GuiFadeinBitmapCtrl have been omitted from this example.
};

Methods
void GuiFadeinBitmapCtrl::click()

Informs the script level that this object received a Click event from the cursor or keyboard.

Example:

GuiFadeInBitmapCtrl::click(%this)
{

// Code to run when click occurs
}

void GuiFadeinBitmapCtrl::onDone()
Informs the script level that this object has completed is fade cycle.

Example:

GuiFadeInBitmapCtrl::onDone(%this)
{

// Code to run when the fade cycle completes
}

Fields
bool GuiFadeinBitmapCtrl::done

Whether the fade cycle has finished running.
ColorF GuiFadeinBitmapCtrl::fadeColor

Color to fade in from and fade out to.

EaseF GuiFadeinBitmapCtrl::fadeInEase
Easing curve for fade-in.

int GuiFadeinBitmapCtrl::fadeInTime
Milliseconds for the bitmap to fade in.

EaseF GuiFadeinBitmapCtrl::fadeOutEase
Easing curve for fade-out.

int GuiFadeinBitmapCtrl::fadeOutTime
Milliseconds for the bitmap to fade out.

int GuiFadeinBitmapCtrl::waitTime
Milliseconds to wait after fading in before fading out the bitmap.

GuiIconButtonCtrl Draws the bitmap within a special button control. Only a single bitmap is used and the button
will be drawn in a highlighted mode when the mouse hovers over it or when it has been clicked.

Inherit: GuiButtonCtrl

Description Draws the bitmap within a special button control. Only a single bitmap is used and the button will be
drawn in a highlighted mode when the mouse hovers over it or when it has been clicked.

Example:

5.3. Console Reference 401

Torque 3D Documentation, Release 3.5.1

newGuiIconButtonCtrl(TestIconButton)
{

buttonMargin = "4 4";
iconBitmap = "art/gui/lagIcon.png";
iconLocation = "Center";
sizeIconToButton = "0";
makeIconSquare = "1";
textLocation = "Bottom";
textMargin = "-2";
autoSize = "0";
text = "Lag Icon";
textID = ""STR_LAG"";
buttonType = "PushButton";
profile = "GuiIconButtonProfile";

};

Methods
void GuiIconButtonCtrl::setBitmap(string buttonFilename)

Set the bitmap to use for the button portion of this control.

Parameters buttonFilename – Filename for the image

Example:

// Define the button filename
%buttonFilename = "pearlButton";

// Inform the GuiIconButtonCtrl control to update its main button graphic to the defined bitmap
%thisGuiIconButtonCtrl.setBitmap(%buttonFilename);

Fields
bool GuiIconButtonCtrl::autoSize

If true, the text and icon will be automatically sized to the size of the control.
Point2I GuiIconButtonCtrl::buttonMargin

Margin area around the button.

filename GuiIconButtonCtrl::iconBitmap
Bitmap file for the icon to display on the button.

GuiIconButtonIconLocation GuiIconButtonCtrl::iconLocation
Where to place the icon on the control. Options are 0 (None), 1 (Left), 2 (Right), 3 (Center).

bool GuiIconButtonCtrl::makeIconSquare
If true, will make sure the icon is square.

bool GuiIconButtonCtrl::sizeIconToButton
If true, the icon will be scaled to be the same size as the button.

GuiIconButtonTextLocation GuiIconButtonCtrl::textLocation
Where to place the text on the control. Options are 0 (None), 1 (Bottom), 2 (Right), 3 (Top), 4 (Left), 5 (Center).

int GuiIconButtonCtrl::textMargin
Margin between the icon and the text.

GuiListBoxCtrl A list of text items.

Inherit: GuiControl

402 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description A list of text items where each individual entry can have its own text value, text color and associated
SimObject.

Example:

newGuiListBoxCtrl(GuiMusicPlayerMusicList)
{

allowMultipleSelections = "true";
fitParentWidth = "true";
mirrorSet = "AnotherGuiListBoxCtrl";
makeNameCallback = "";
colorBullet = "1";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiListBoxCtrl::addFilteredItem(string newItem)

Checks if there is an item with the exact text of what is passed in, and if so the item is removed from the list and
adds that item’s data to the filtered list.

Parameters itemName – Name of the item that we wish to add to the filtered item list of the
GuiListBoxCtrl.

Example:

// Define the itemName that we wish to add to the filtered item list.
%itemName = "This Item Name";

// Add the item name to the filtered item list.
%thisGuiListBoxCtrl.addFilteredItem(%filteredItemName);

void GuiListBoxCtrl::clearItemColor(int index)
Removes any custom coloring from an item at the defined index id in the list.

Parameters index – Index id for the item to clear any custom color from.

Example:

// Define the index id
%index = "4";

// Request the GuiListBoxCtrl object to remove any custom coloring from the defined index entry
%thisGuiListBoxCtrl.clearItemColor(%index);

void GuiListBoxCtrl::clearItems()
Clears all the items in the listbox.

Example:

// Inform the GuiListBoxCtrl object to clear all items from its list.
%thisGuiListBoxCtrl.clearItems();

void GuiListBoxCtrl::clearSelection()
Sets all currently selected items to unselected. Detailed description

Example:

// Inform the GuiListBoxCtrl object to set all of its items to unselected./n%thisGuiListBoxCtrl.clearSelection();

void GuiListBoxCtrl::deleteItem(int itemIndex)
Removes the list entry at the requested index id from the control and clears the memory associated with it.

5.3. Console Reference 403

Torque 3D Documentation, Release 3.5.1

Parameters itemIndex – Index id location to remove the item from.

Example:

// Define the index id we want to remove from the list
%itemIndex = "8";

// Inform the GuiListBoxCtrl object to remove the item at the defined index id.
%thisGuiListBoxCtrl.deleteItem(%itemIndex);

void GuiListBoxCtrl::doMirror()
Informs the GuiListBoxCtrl object to mirror the contents of the GuiListBoxCtrl stored in the mirrorSet field.

Example:

\ Inform the object to mirror the object located at %thisGuiListBox.mirrorSet
%thisGuiListBox.doMirror();

int GuiListBoxCtrl::findItemText(string findText, bool bCaseSensitive)
Returns index of item with matching text or -1 if none found.

Parameters

• findText – Text in the list to find.

• isCaseSensitive – If true, the search will be case sensitive.

Returns Index id of item with matching text or -1 if none found.

Example:

// Define the text we wish to find in the list.
%findText = "Hickory Smoked Gideon"/n/n// Define if this is a case sensitive search or not.
%isCaseSensitive = "false";

// Ask the GuiListBoxCtrl object what item id in the list matches the requested text.
%matchingId = %thisGuiListBoxCtrl.findItemText(%findText,%isCaseSensitive);

int GuiListBoxCtrl::getItemCount()
Returns the number of items in the list.

Returns The number of items in the list.

Example:

// Request the number of items in the list of the GuiListBoxCtrl object.
%listItemCount = %thisGuiListBoxCtrl.getItemCount();

string GuiListBoxCtrl::getItemObject(int index)
Returns the object associated with an item. This only makes sense if you are mirroring a simset.

Parameters index – Index id to request the associated item from.

Returns The object associated with the item in the list.

Example:

// Define the index id
%index = "12";

// Request the item from the GuiListBoxCtrl object
%object = %thisGuiListBoxCtrl.getItemObject(%index);

404 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string GuiListBoxCtrl::getItemText(int index)
Returns the text of the item at the specified index.

Parameters index – Index id to return the item text from.

Returns The text of the requested index id.

Example:

// Define the index id entry to request the text from
%index = "12";

// Request the item id text from the GuiListBoxCtrl object.
%text = %thisGuiListBoxCtrl.getItemText(%index);

int GuiListBoxCtrl::getLastClickItem()
Request the item index for the item that was last clicked.

Returns Index id for the last clicked item in the list.

Example:

// Request the item index for the last clicked item in the list
%lastClickedIndex = %thisGuiListBoxCtrl.getLastClickItem();

int GuiListBoxCtrl::getSelCount()
Returns the number of items currently selected.

Returns Number of currently selected items.

Example:

// Request the number of currently selected items
%selectedItemCount = %thisGuiListBoxCtrl.getSelCount();

int GuiListBoxCtrl::getSelectedItem()
Returns the selected items index or -1 if none selected. If multiple selections exist it returns the first selected
item.

Returns The selected items index or -1 if none selected.

Example:

// Request the index id of the currently selected item
%selectedItemId = %thisGuiListBoxCtrl.getSelectedItem();

string GuiListBoxCtrl::getSelectedItems()
Returns a space delimited list of the selected items indexes in the list.

Returns Space delimited list of the selected items indexes in the list

Example:

// Request a space delimited list of the items in the GuiListBoxCtrl object.
%selectionList = %thisGuiListBoxCtrl.getSelectedItems();

void GuiListBoxCtrl::insertItem(string text, int index)
Inserts an item into the list at the specified index and returns the index assigned or -1 on error.

Parameters

• text – Text item to add.

• index – Index id to insert the list item text at.

5.3. Console Reference 405

Torque 3D Documentation, Release 3.5.1

Returns If successful will return the index id assigned. If unsuccessful, will return -1.

Example:

// Define the text to insert
%text = "Secret Agent Gideon";

// Define the index entry to insert the text at
%index = "14";

// In form the GuiListBoxCtrl object to insert the text at the defined index.
%assignedId = %thisGuiListBoxCtrl.insertItem(%text,%index);

bool GuiListBoxCtrl::isObjectMirrored(string indexIdString)
Checks if a list item at a defined index id is mirrored, and returns the result.

Parameters indexIdString – Index id of the list to check.

Returns A boolean value on if the list item is mirrored or not.

Example:

// Engine has requested of the script level to determine if a list entry is mirrored or not.GuiListBoxCtrl::isObjectMirrored(%this, %indexIdString)
{

// Perform code required to check and see if the list item at the index id is mirrored or not.return %isMirrored;
}

void GuiListBoxCtrl::onClearSelection()
Called whenever a selected item in the list is cleared.

Example:

// A selected item is cleared, causing the callback to occur.GuiListBoxCtrl::onClearSelection(%this)
{

// Code to run whenever a selected item is cleared
}

void GuiListBoxCtrl::onDeleteKey()
Called whenever the Delete key on the keyboard has been pressed while in this control.

Example:

// The delete key on the keyboard has been pressed while this control is in focus, causing the callback to occur.GuiListBoxCtrl::onDeleteKey(%this)
{

// Code to call whenever the delete key is pressed
}

void GuiListBoxCtrl::onDoubleClick()
Called whenever an item in the list has been double clicked.

Example:

// An item in the list is double clicked, causing the callback to occur.GuiListBoxCtrl::onDoubleClick(%this)
{

// Code to run whenever an item in the control has been double clicked
}

void GuiListBoxCtrl::onMouseDragged()
Called whenever the mouse is dragged across the control.

Example:

406 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Mouse is dragged across the control, causing the callback to occur.GuiListBoxCtrl::onMouseDragged(%this)
{

// Code to run whenever the mouse is dragged across the control
}

void GuiListBoxCtrl::onMouseUp(string itemHit, string mouseClickCount)
Called whenever the mouse has previously been clicked down (onMouseDown) and has now been raised on the
control. If an item in the list was hit during the click cycle, then the index id of the clicked object along with
how many clicks occured are passed into the callback. Detailed description

Parameters

• itemHit – Index id for the list item that was hit

• mouseClickCount – How many mouse clicks occured on this list item

Example:

// Mouse was previously clicked down, and now has been released, causing the callback to occur.GuiListBoxCtrl::onMouseUp(%this, %itemHit, %mouseClickCount)
{

// Code to call whenever the mouse has been clicked and released on the control
}

void GuiListBoxCtrl::onSelect(string index, string itemText)
Called whenever an item in the list is selected.

Parameters

• index – Index id for the item in the list that was selected.

• itemText – Text for the list item at the index that was selected.

Example:

// An item in the list is selected, causing the callback to occurGuiListBoxCtrl::onSelect(%this, %index, %itemText)
{

// Code to run whenever an item in the list is selected
}

void GuiListBoxCtrl::onUnselect(string index, string itemText)
Called whenever a selected item in the list has been unselected.

Parameters

• index – Index id of the item that was unselected

• itemText – Text for the list entry at the index id that was unselected

Example:

// A selected item is unselected, causing the callback to occur
GuiListBoxCtrl::onUnSelect(%this, %indexId, %itemText)

{
// Code to run whenever a selected list item is unselected

}

void GuiListBoxCtrl::removeFilteredItem(string itemName)
Removes an item of the entered name from the filtered items list.

Parameters itemName – Name of the item to remove from the filtered list.

Example:

5.3. Console Reference 407

Torque 3D Documentation, Release 3.5.1

// Define the itemName that you wish to remove.
%itemName = "This Item Name";

// Remove the itemName from the GuiListBoxCtrl
%thisGuiListBoxCtrl.removeFilteredItem(%itemName);

void GuiListBoxCtrl::setCurSel(int indexId)
Sets the currently selected item at the specified index.

Parameters indexId – Index Id to set selected.

Example:

// Define the index id that we wish to select.
%selectId = "4";

// Inform the GuiListBoxCtrl object to set the requested index as selected.
%thisGuiListBoxCtrl.setCurSel(%selectId);

void GuiListBoxCtrl::setCurSelRange(int indexStart, int indexStop)
Sets the current selection range from index start to stop. If no stop is specified it sets from start index to the end
of the list.

Parameters

• indexStart – Index Id to start selection.

• indexStop – Index Id to end selection.

Example:

// Set start id
%indexStart = "3";

// Set end id
%indexEnd = "6";

// Request the GuiListBoxCtrl object to select the defined range.
%thisGuiListBoxCtrl.setCurSelRange(%indexStart,%indexEnd);

void GuiListBoxCtrl::setItemColor(int index, ColorF color)
Sets the color of a single list entry at the specified index id.

Parameters

• index – Index id to modify the color of in the list.

• color – Color value to set the list entry to.

Example:

// Define the index id value
%index = "5";

// Define the color value
%color = "1.0 0.0 0.0";

// Inform the GuiListBoxCtrl object to change the color of the requested index
%thisGuiListBoxCtrl.setItemColor(%index,%color);

void GuiListBoxCtrl::setItemText(int index, string newtext)
Sets the items text at the specified index.

408 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• index – Index id to set the item text at.

• newtext – Text to change the list item at index id to.

Example:

// Define the index id/n%index = "12";// Define the text to set the list item to
%newtext = "Gideons Fancy Goggles";

// Inform the GuiListBoxCtrl object to change the text at the requested index
%thisGuiListBoxCtrl.setItemText(%index,%newText);

void GuiListBoxCtrl::setItemTooltip(int index, string text)
Set the tooltip text to display for the given list item.

Parameters

• index – Index id to change the tooltip text

• text – Text for the tooltip.

Example:

// Define the index id
%index = "12";

// Define the tooltip text
%tooltip = "Gideons goggles can see through space and time."// Inform the GuiListBoxCtrl object to set the tooltop for the item at the defined index id
%thisGuiListBoxCtrl.setItemToolTip(%index,%tooltip);

void GuiListBoxCtrl::setMultipleSelection(bool allowMultSelections)
Enable or disable multiple selections for this GuiListBoxCtrl object.

Parameters allowMultSelections – Boolean variable to set the use of multiple selections or
not.

Example:

// Define the multiple selection use state.
%allowMultSelections = "true";

// Set the allow multiple selection state on the GuiListBoxCtrl object.
%thisGuiListBoxCtrl.setMultipleSelection(%allowMultSelections);

void GuiListBoxCtrl::setSelected(int index, bool setSelected)
Sets the item at the index specified to selected or not. Detailed description

Parameters

• index – Item index to set selected or unselected.

• setSelected – Boolean selection state to set the requested item index.

Example:

// Define the index
%index = "5";

// Define the selection state
%selected = "true"// Inform the GuiListBoxCtrl object of the new selection state for the requested index entry.
%thisGuiListBoxCtrl.setSelected(%index,%selected);

5.3. Console Reference 409

Torque 3D Documentation, Release 3.5.1

Fields
bool GuiListBoxCtrl::allowMultipleSelections

If true, will allow the selection of multiple items in the listbox.
bool GuiListBoxCtrl::colorBullet

If true, colored items will render a colored rectangular bullet next to the item text.

bool GuiListBoxCtrl::fitParentWidth
If true, the width of the listbox will match the width of its parent control.

string GuiListBoxCtrl::makeNameCallback
A script snippet to control what is displayed in the list for a SimObject . Within this snippet, $ThisControl is
bound to the guiListBoxCtrl and $ThisObject to the contained object in question.

string GuiListBoxCtrl::mirrorSet
If populated with the name of another GuiListBoxCtrl , then this list box will mirror the contents of the mirrorSet
listbox.

GuiMenuBar GUI Control which displays a horizontal bar with individual drop-down menu items. Each menu item
may also have submenu items.

Inherit: GuiTickCtrl

Description GUI Control which displays a horizontal bar with individual drop-down menu items. Each menu item
may also have submenu items.

Example:

newGuiMenuBar(newMenuBar)
{

Padding = "0";
//Properties not specific to this control have been omitted from this example.

};

// Add a menu to the menu bar
newMenuBar.addMenu(0,"New Menu");

// Add a menu item to the New Menu
newMenuBar.addMenuItem(0,"New Menu Item",0,"n",-1);

// Add a submenu item to the New Menu Item
newMenuBar.addSubmenuItem(0,1,"New Submenu Item",0,"s",-1);

Methods
void GuiMenuBar::addMenu(string menuText, int menuId)

Adds a new menu to the menu bar.

Parameters

• menuText – Text to display for the new menu item.

• menuId – ID for the new menu item.

Example:

// Define the menu text
%menuText = "New Menu";

// Define the menu ID.

410 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%menuId = "2";

// Inform the GuiMenuBar control to add the new menu
%thisGuiMenuBar.addMenu(%menuText,%menuId);

void GuiMenuBar::addMenuItem(string targetMenu, string menuItemText, int menuItemId, string accel-
erator, int checkGroup)

Adds a menu item to the specified menu. The menu argument can be either the text of a menu or its id.

Parameters

• menu – Menu name or menu Id to add the new item to.

• menuItemText – Text for the new menu item.

• menuItemId – Id for the new menu item.

• accelerator – Accelerator key for the new menu item.

• checkGroup – Check group to include this menu item in.

Example:

// Define the menu we wish to add the item to
%targetMenu = "New Menu"; or %menu = "4";

// Define the text for the new menu item
%menuItemText = "Menu Item";

// Define the id for the new menu item
%menuItemId = "3";

// Set the accelerator key to toggle this menu item with
%accelerator = "n";

// Define the Check Group that this menu item will be in, if we want it to be in a check group. -1 sets it in no check group.
%checkGroup = "4";

// Inform the GuiMenuBar control to add the new menu item with the defined fields
%thisGuiMenuBar.addMenuItem(%menu,%menuItemText,%menuItemId,%accelerator,%checkGroup);

void GuiMenuBar::addSubmenuItem(string menuTarget, string menuItem, string submenuItemText, int
submenuItemId, string accelerator, int checkGroup)

Adds a menu item to the specified menu. The menu argument can be either the text of a menu or its id.

Parameters

• menuTarget – Menu to affect a submenu in

• menuItem – Menu item to affect

• submenuItemText – Text to show for the new submenu

• submenuItemId – Id for the new submenu

• accelerator – Accelerator key for the new submenu

• checkGroup – Which check group the new submenu should be in, or -1 for none.

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem

5.3. Console Reference 411

Torque 3D Documentation, Release 3.5.1

%menuItem = "New Menu Item"; or %menuItem = "5";

// Define the text for the new submenu
%submenuItemText = "New Submenu Item";

// Define the id for the new submenu
%submenuItemId = "4";

// Define the accelerator key for the new submenu
%accelerator = "n";

// Define the checkgroup for the new submenu
%checkgroup = "7";

// Request the GuiMenuBar control to add the new submenu with the defined information
%thisGuiMenuBar.addSubmenuItem(%menuTarget,%menuItem,%submenuItemText,%submenuItemId,%accelerator,%checkgroup);

void GuiMenuBar::clearMenuItems(string menuTarget)
Removes all the menu items from the specified menu.

Parameters menuTarget – Menu to remove all items from

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Inform the GuiMenuBar control to clear all menu items from the defined menu
%thisGuiMenuBar.clearMenuItems(%menuTarget);

void GuiMenuBar::clearMenus(int param1, int param2)
Clears all the menus from the menu bar.

Example:

// Inform the GuiMenuBar control to clear all menus from itself.
%thisGuiMenuBar.clearMenus();

void GuiMenuBar::clearSubmenuItems(string menuTarget, string menuItem)
Removes all the menu items from the specified submenu.

Parameters

• menuTarget – Menu to affect a submenu in

• menuItem – Menu item to affect

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item"; or %menuItem = "5";

// Inform the GuiMenuBar to remove all submenu items from the defined menu item
%thisGuiMenuBar.clearSubmenuItems(%menuTarget,%menuItem);

void GuiMenuBar::onMenuItemSelect(string menuId, string menuText, string menuItemId, string me-
nuItemText)

Called whenever an item in a menu is selected.

412 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• menuId – Index id of the menu which contains the selected menu item

• menuText – Text of the menu which contains the selected menu item

• menuItemId – Index id of the selected menu item

• menuItemText – Text of the selected menu item

Example:

// A menu item has been selected, causing the callback to occur.GuiMenuBar::onMenuItemSelect(%this,%menuId,%menuText,%menuItemId,%menuItemText)
{

// Code to run when the callback occurs
}

void GuiMenuBar::onMenuSelect(string menuId, string menuText)
Called whenever a menu is selected.

Parameters

• menuId – Index id of the clicked menu

• menuText – Text of the clicked menu

Example:

// A menu has been selected, causing the callback to occur.GuiMenuBar::onMenuSelect(%this,%menuId,%menuText)
{

// Code to run when the callback occurs
}

void GuiMenuBar::onMouseInMenu(bool isInMenu)
Called whenever the mouse enters, or persists is in the menu.

Parameters isInMenu – True if the mouse has entered the menu, otherwise is false.

Example:

// Mouse enters or persists within the menu, causing the callback to occur.GuiMenuBar::onMouseInMenu(%this,%hasLeftMenu)
{

// Code to run when the callback occurs
}

void GuiMenuBar::onSubmenuSelect(string submenuId, string submenuText)
Called whenever a submenu is selected.

Parameters

• submenuId – Id of the selected submenu

• submenuText – Text of the selected submenu

Example:

GuiMenuBar::onSubmenuSelect(%this,%submenuId,%submenuText)
{

// Code to run when the callback occurs
}

void GuiMenuBar::removeMenu(string menuTarget)
Removes the specified menu from the menu bar.

Parameters menuTarget – Menu to remove from the menu bar

5.3. Console Reference 413

Torque 3D Documentation, Release 3.5.1

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Inform the GuiMenuBar to remove the defined menu from the menu bar
%thisGuiMenuBar.removeMenu(%menuTarget);

void GuiMenuBar::removeMenuItem(string menuTarget, string menuItemTarget)
Removes the specified menu item from the menu.

Parameters

• menuTarget – Menu to affect the menu item in

• menuItem – Menu item to affect

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item"; or %menuItem = "5";

// Request the GuiMenuBar control to remove the define menu item
%thisGuiMenuBar.removeMenuItem(%menuTarget,%menuItem);

void GuiMenuBar::setCheckmarkBitmapIndex(int bitmapindex)
Sets the menu bitmap index for the check mark image.

Parameters bitmapIndex – Bitmap index for the check mark image.

Example:

// Define the bitmap index
%bitmapIndex = "2";

// Inform the GuiMenuBar control of the proper bitmap index for the check mark image
%thisGuiMenuBar.setCheckmarkBitmapIndex(%bitmapIndex);

void GuiMenuBar::setMenuBitmapIndex(string menuTarget, int bitmapindex, bool bitmaponly, bool
drawborder)

Sets the bitmap index for the menu and toggles rendering only the bitmap.

Parameters

• menuTarget – Menu to affect

• bitmapindex – Bitmap index to set for the menu

• bitmaponly – If true, only the bitmap will be rendered

• drawborder – If true, a border will be drawn around the menu.

Example:

// Define the menuTarget to affect
%menuTarget = "New Menu"; or %menuTarget = "3";

// Set the bitmap index
%bitmapIndex = "5";

// Set if we are only to render the bitmap or not

414 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%bitmaponly = "true";

// Set if we are rendering a border or not
%drawborder = "true";

// Inform the GuiMenuBar of the bitmap and rendering changes
%thisGuiMenuBar.setMenuBitmapIndex(%menuTarget,%bitmapIndex,%bitmapOnly,%drawBorder);

void GuiMenuBar::setMenuItemBitmap(string menuTarget, string menuItemTarget, int bitmapIndex)
Sets the specified menu item bitmap index in the bitmap array. Setting the item’s index to -1 will remove any
bitmap.

Parameters

• menuTarget – Menu to affect the menuItem in

• menuItem – Menu item to affect

• bitmapIndex – Bitmap index to set the menu item to

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem"
%menuItem = "New Menu Item"; or %menuItem = "2";

// Define the bitmapIndex
%bitmapIndex = "6";

// Inform the GuiMenuBar control to set the menu item to the defined bitmap
%thisGuiMenuBar.setMenuItemBitmap(%menuTarget,%menuItem,%bitmapIndex);

void GuiMenuBar::setMenuItemChecked(string menuTarget, string menuItemTarget, bool checked)
Sets the menu item bitmap to a check mark, which by default is the first element in the bitmap array (although
this may be changed with setCheckmarkBitmapIndex()). Any other menu items in the menu with the same
check group become unchecked if they are checked.

Parameters

• menuTarget – Menu to work in

• menuItem – Menu item to affect

• checked – Whether we are setting it to checked or not

Returns If not void, return value and description

void GuiMenuBar::setMenuItemEnable(string menuTarget, string menuItemTarget, bool enabled)
sets the menu item to enabled or disabled based on the enable parameter. The specified menu and menu item
can either be text or ids. Detailed description

Parameters

• menuTarget – Menu to work in

• menuItemTarget – The menu item inside of the menu to enable or disable

• enabled – Boolean enable / disable value.

Example:

5.3. Console Reference 415

Torque 3D Documentation, Release 3.5.1

// Define the menu
%menu = "New Menu"; or %menu = "4";

// Define the menu item
%menuItem = "New Menu Item"; or %menuItem = "2";

// Define the enabled state
%enabled = "true";

// Inform the GuiMenuBar control to set the enabled state of the requested menu item
%thisGuiMenuBar.setMenuItemEnable(%menu,%menuItme,%enabled);

void GuiMenuBar::setMenuItemSubmenuState(string menuTarget, string menuItem, bool isSub-
menu)

Sets the given menu item to be a submenu.

Parameters

• menuTarget – Menu to affect a submenu in

• menuItem – Menu item to affect

• isSubmenu – Whether or not the menuItem will become a subMenu or not

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item"; or %menuItem = "5";

// Define whether or not the Menu Item is a sub menu or not
%isSubmenu = "true";

// Inform the GuiMenuBar control to set the defined menu item to be a submenu or not.
%thisGuiMenuBar.setMenuItemSubmenuState(%menuTarget,%menuItem,%isSubmenu);

void GuiMenuBar::setMenuItemText(string menuTarget, string menuItemTarget, string newMenuItem-
Text)

Sets the text of the specified menu item to the new string.

Parameters

• menuTarget – Menu to affect

• menuItem – Menu item in the menu to change the text at

• newMenuItemText – New menu text

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "4";

// Define the menuItem
%menuItem = "New Menu Item"; or %menuItem = "2";

// Define the new text for the menu item
%newMenuItemText = "Very New Menu Item";

// Inform the GuiMenuBar control to change the defined menu item with the new text
%thisGuiMenuBar.setMenuItemText(%menuTarget,%menuItem,%newMenuItemText);

416 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GuiMenuBar::setMenuItemVisible(string menuTarget, string menuItemTarget, bool isVisible)
Brief Description. Detailed description

Parameters

• menuTarget – Menu to affect the menu item in

• menuItem – Menu item to affect

• isVisible – Visible state to set the menu item to.

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item"; or %menuItem = "2";

// Define the visibility state
%isVisible = "true";

// Inform the GuiMenuBarControl of the visibility state of the defined menu item
%thisGuiMenuBar.setMenuItemVisible(%menuTarget,%menuItem,%isVisible);

void GuiMenuBar::setMenuMargins(int horizontalMargin, int verticalMargin, int bitmapToTextSpac-
ing)

Sets the menu rendering margins: horizontal, vertical, bitmap spacing. Detailed description

Parameters

• horizontalMargin – Number of pixels on the left and right side of a menu’s text.

• verticalMargin – Number of pixels on the top and bottom of a menu’s text.

• bitmapToTextSpacing – Number of pixels between a menu’s bitmap and text.

Example:

// Define the horizontalMargin
%horizontalMargin = "5";

// Define the verticalMargin
%verticalMargin = "5";

// Define the bitmapToTextSpacing
%bitmapToTextSpacing = "12";

// Inform the GuiMenuBar control to set its margins based on the defined values.
%thisGuiMenuBar.setMenuMargins(%horizontalMargin,%verticalMargin,%bitmapToTextSpacing);

void GuiMenuBar::setMenuText(string menuTarget, string newMenuText)
Sets the text of the specified menu to the new string.

Parameters

• menuTarget – Menu to affect

• newMenuText – New menu text

Example:

// Define the menu to affect%menu = "New Menu"; or %menu = "3";// Define the text to change the menu to
%newMenuText = "Still a New Menu";

5.3. Console Reference 417

Torque 3D Documentation, Release 3.5.1

// Inform the GuiMenuBar control to change the defined menu to the defined text
%thisGuiMenuBar.setMenuText(%menu,%newMenuText);

void GuiMenuBar::setMenuVisible(string menuTarget, bool visible)
Sets the whether or not to display the specified menu.

Parameters

• menuTarget – Menu item to affect

• visible – Whether the menu item will be visible or not

Example:

// Define the menu to work with
%menuTarget = "New Menu"; or %menuTarget = "4";

// Define if the menu should be visible or not
%visible = "true";

// Inform the GuiMenuBar control of the new visibility state for the defined menu
%thisGuiMenuBar.setMenuVisible(%menuTarget,%visible);

void GuiMenuBar::setSubmenuItemChecked(string menuTarget, string menuItemTarget, string sub-
menuItemText, bool checked)

Sets the menu item bitmap to a check mark, which by default is the first element in the bitmap array (although
this may be changed with setCheckmarkBitmapIndex()). Any other menu items in the menu with the same
check group become unchecked if they are checked.

Parameters

• menuTarget – Menu to affect a submenu in

• menuItem – Menu item to affect

• submenuItemText – Text to show for submenu

• checked – Whether or not this submenu item will be checked.

Returns If not void, return value and description

Example:

// Define the menuTarget
%menuTarget = "New Menu"; or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item"; or %menuItem = "5";

// Define the text for the new submenu
%submenuItemText = "Submenu Item";

// Define if this submenu item should be checked or not
%checked = "true";

// Inform the GuiMenuBar control to set the checked state of the defined submenu item
%thisGuiMenuBar.setSubmenuItemChecked(%menuTarget,%menuItem,%submenuItemText,%checked);

Fields
int GuiMenuBar::padding

Extra padding to add to the bounds of the control.

418 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

GuiMLTextCtrl A text control that uses the Gui Markup Language (‘ML’) tags to dynamically change the text.

Inherit: GuiControl

Description Example of dynamic changes include colors, styles, and/or hyperlinks. These changes can occur with-
out having to use separate text controls with separate text profiles.

Example:

newGuiMLTextCtrl(CenterPrintText)
{

lineSpacing = "2";
allowColorChars = "0";
maxChars = "-1";
deniedSound = "DeniedSoundProfile";
text = "The Text for This Control.";
useURLMouseCursor = "true";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiMLTextCtrl::addText(string text, bool reformat)

Appends the text in the control with additional text. Also .

Parameters

• text – New text to append to the existing text.

• reformat – If true, the control will also be visually reset (defaults to true).

Example:

// Define new text to add
%text = "New Text to Add";

// Set reformat boolean
%reformat = "true";

// Inform the control to add the new text
%thisGuiMLTextCtrl.addText(%text,%reformat);

void GuiMLTextCtrl::forceReflow()
Forces the text control to reflow the text after new text is added, possibly resizing the control.

Example:

// Define new text to add
%newText = "BACON!";

// Add the new text to the control
%thisGuiMLTextCtrl.addText(%newText);

// Inform the GuiMLTextCtrl object to force a reflow to ensure the added text fits properly.
%thisGuiMLTextCtrl.forceReflow();

string GuiMLTextCtrl::getText()
Returns the text from the control, including TorqueML characters.

Returns Text string displayed in the control, including any TorqueML characters.

Example:

5.3. Console Reference 419

Torque 3D Documentation, Release 3.5.1

// Get the text displayed in the control
%controlText = %thisGuiMLTextCtrl.getText();

void GuiMLTextCtrl::onResize(string width, string maxY)
Called whenever the control size changes.

Parameters

• width – The new width value for the control

• maxY – The current maximum allowed Y value for the control

Example:

// Control size changed, causing the callback to occur.GuiMLTextCtrl::onResize(%this,%width,%maxY)
{

// Code to call when the control size changes
}

void GuiMLTextCtrl::onURL(string url)
Called whenever a URL was clicked on within the control.

Parameters url – The URL address that was clicked on.

Example:

// A URL address was clicked on in the control, causing the callback to occur.
GuiMLTextCtrl::onUrl(%this,%url)

{
// Code to run whenever a URL was clicked on

}

void GuiMLTextCtrl::scrollToBottom()
Scroll to the bottom of the text.

Example:

// Inform GuiMLTextCtrl object to scroll to its bottom
%thisGuiMLTextCtrl.scrollToBottom();

void GuiMLTextCtrl::scrollToTag(int tagID)
Scroll down to a specified tag. Detailed description

Parameters tagID – TagID to scroll the control to

Example:

// Define the TagID we want to scroll the control to
%tagId = "4";

// Inform the GuiMLTextCtrl to scroll to the defined TagID
%thisGuiMLTextCtrl.scrollToTag(%tagId);

void GuiMLTextCtrl::scrollToTop(int param1, int param2)
Scroll to the top of the text.

Example:

// Inform GuiMLTextCtrl object to scroll to its top
%thisGuiMLTextCtrl.scrollToTop();

void GuiMLTextCtrl::setAlpha(float alphaVal)
Sets the alpha value of the control.

420 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters alphaVal – n - 1.0 floating value for the alpha

Example:

// Define the alphe value
%alphaVal = "0.5";

// Inform the control to update its alpha value.
%thisGuiMLTextCtrl.setAlpha(%alphaVal);

bool GuiMLTextCtrl::setCursorPosition(int newPos)
Change the text cursor’s position to a new defined offset within the text in the control.

Parameters newPos – Offset to place cursor.

Returns Returns true if the cursor position moved, or false if the position was not changed.

Example:

// Define cursor offset position
%position = "23";

// Inform the GuiMLTextCtrl object to move the cursor to the new position.
%thisGuiMLTextCtrl.setCursorPosition(%position);

void GuiMLTextCtrl::setText(string text)
Set the text contained in the control.

Parameters text – The text to display in the control.

Example:

// Define the text to display
%text = "Nifty Control Text";

// Set the text displayed within the control
%thisGuiMLTextCtrl.setText(%text);

Fields
bool GuiMLTextCtrl::allowColorChars

If true, the control will allow characters to have unique colors.
SFXTrack GuiMLTextCtrl::deniedSound

If the text will not fit in the control, the deniedSound is played.

int GuiMLTextCtrl::lineSpacing
The number of blank pixels to place between each line.

int GuiMLTextCtrl::maxChars
Maximum number of characters that the control will display.

caseString GuiMLTextCtrl::text
Text to display in this control.

bool GuiMLTextCtrl::useURLMouseCursor
If true, the mouse cursor will turn into a hand cursor while over a link in the text. This is dependant on the
markup language used by the GuiMLTextCtrl

GuiMouseEventCtrl Used to overlaps a ‘hot region’ where you want to catch inputs with and have specific events
occur based on individual callbacks.

Inherit: GuiControl

5.3. Console Reference 421

Torque 3D Documentation, Release 3.5.1

Description Mouse event callbacks supported by this control are: onMouseUp, onMouseDown, onMouseMove, on-
MouseDragged, onMouseEnter, onMouseLeave, onRightMouseDown, onRightMouseUp and onRightMouseDragged.

Example:

newGuiMouseEventCtrl()
{

lockMouse = "0";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiMouseEventCtrl::onMouseDown(U8 modifier, Point2I mousePoint, U8 mouseClickCount)

Callback that occurs whenever the mouse is pressed down while in this control. $EventModifier::RSHIFT
$EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $Event-
Modifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Mouse was pressed down in this control, causing the callback
GuiMouseEventCtrl::onMouseDown(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onMouseDragged(U8 modifier, Point2I mousePoint, U8 mouseClick-
Count)

Callback that occurs whenever the mouse is dragged while in this control. $EventModifier::RSHIFT
$EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $Event-
Modifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Mouse was dragged in this control, causing the callback
GuiMouseEventCtrl::onMouseDragged(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onMouseEnter(U8 modifier, Point2I mousePoint, U8 mouseClickCount)
Callback that occurs whenever the mouse enters this control. $EventModifier::RSHIFT $EventModifier::SHIFT
$EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $Event-
Modifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

422 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Mouse entered this control, causing the callback
GuiMouseEventCtrl::onMouseEnter(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onMouseLeave(U8 modifier, Point2I mousePoint, U8 mouseClickCount)
Callback that occurs whenever the mouse leaves this control. $EventModifier::RSHIFT $EventModi-
fier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL
$EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Mouse left this control, causing the callback
GuiMouseEventCtrl::onMouseLeave(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onMouseMove(U8 modifier, Point2I mousePoint, U8 mouseClickCount)
Callback that occurs whenever the mouse is moved (without dragging) while in this control. $Event-
Modifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModi-
fier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Mouse was moved in this control, causing the callback
GuiMouseEventCtrl::onMouseMove(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onMouseUp(U8 modifier, Point2I mousePoint, U8 mouseClickCount)
Callback that occurs whenever the mouse is released while in this control. $EventModifier::RSHIFT
$EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $Event-
Modifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

5.3. Console Reference 423

Torque 3D Documentation, Release 3.5.1

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Mouse was released in this control, causing the callback
GuiMouseEventCtrl::onMouseUp(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onRightMouseDown(U8 modifier, Point2I mousePoint, U8 mouseClick-
Count)

Callback that occurs whenever the right mouse button is pressed while in this control. $EventModifier::RSHIFT
$EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $Event-
Modifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Right mouse button was pressed in this control, causing the callback
GuiMouseEventCtrl::onRightMouseDown(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onRightMouseDragged(U8 modifier, Point2I mousePoint, U8
mouseClickCount)

Callback that occurs whenever the mouse is dragged in this control while the right mouse button is pressed.
$EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $Event-
Modifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Right mouse button was dragged in this control, causing the callback
GuiMouseEventCtrl::onRightMouseDragged(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

void GuiMouseEventCtrl::onRightMouseUp(U8 modifier, Point2I mousePoint, U8 mouseClick-
Count)

Callback that occurs whenever the right mouse button is released while in this control. $EventModifier::RSHIFT
$EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $Event-
Modifier::CTRL $EventModifier::RALT $EventModifier::ALT

Parameters

• modifier – Key that was pressed during this callback. Values are:

• mousePoint – X/Y location of the mouse point

424 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• mouseClickCount – How many mouse clicks have occured for this event

Example:

// Right mouse button was released in this control, causing the callback
GuiMouseEventCtrl::onRightMouseUp(%this,%modifier,%mousePoint,%mouseClickCount)
{

// Code to call when a mouse event occurs.
}

Fields
bool GuiMouseEventCtrl::lockMouse

Whether the control should lock the mouse between up and down button events.

GuiTextCtrl GUI control object this displays a single line of text, without TorqueML.

Inherit: GuiContainer

Description GUI control object this displays a single line of text, without TorqueML.

Example:

newGuiTextCtrl()
{

text = "Hello World";
textID = ""STR_HELLO"";
maxlength = "1024";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiTextCtrl::setText(string text)

Sets the text in the control. Reimplemented in GuiTextEditCtrl , and GuiPopUpMenuCtrlEx .

Parameters text – Text to display in the control.

Example:

// Set the text to show in the control
%text = "Gideon - Destroyer of World";

// Inform the GuiTextCtrl control to change its text to the defined value
%thisGuiTextCtrl.setText(%text);

void GuiTextCtrl::setTextID(string textID)
Maps the text ctrl to a variable used in localization, rather than raw text.

Parameters textID – Name of variable text should be mapped to

Example:

// Inform the GuiTextCtrl control of the textID to use
%thisGuiTextCtrl.setTextID("STR_QUIT");

Fields
int GuiTextCtrl::maxLength

Defines the maximum length of the text. The default is 1024.

5.3. Console Reference 425

Torque 3D Documentation, Release 3.5.1

caseString GuiTextCtrl::text
The text to show on the control.

string GuiTextCtrl::textID
Maps the text of this control to a variable used in localization, rather than raw text.

GuiTextEditSliderBitmapCtrl GUI Control which displays a numerical value which can be increased or decreased
using a pair of bitmap up/down buttons.

Inherit: GuiTextEditCtrl

Description This control uses the bitmap specified in it’s profile (GuiControlProfile::bitmapName). It takes this
image and breaks up aspects of it to render the up and down arrows. It is also important to set GuiControlPro-
file::hasBitmapArray to true on the profile as well.

The bitmap referenced should be broken up into a 1 x 4 grid (using the top left color pixel as a border color between
each of the images) in which it will map to the following places:

Example:

singleton GuiControlProfile (SliderBitmapGUIProfile)
{

bitmap = "core/art/gui/images/sliderArray";
hasBitmapArray = true;
opaque = false;

};

newGuiTextEditSliderBitmapCtrl()
{

profile = "SliderBitmapGUIProfile";
format = "%3.2f";
range = "-1e+03 1e+03";
increment = "0.1";
focusOnMouseWheel = "0";
bitmap = "";
//Properties not specific to this control have been omitted from this example.

};

Fields
filename GuiTextEditSliderBitmapCtrl::bitmap

Unused.
bool GuiTextEditSliderBitmapCtrl::focusOnMouseWheel

If true, the control will accept giving focus to the user when the mouse wheel is used.

string GuiTextEditSliderBitmapCtrl::format
Character format type to place in the control.

float GuiTextEditSliderBitmapCtrl::increment
How far to increment the slider on each step.

Point2F GuiTextEditSliderBitmapCtrl::range
Maximum vertical and horizontal range to allow in the control.

GuiTextEditSliderCtrl GUI Control which displays a numerical value which can be increased or decreased using
a pair of arrows.

Inherit: GuiTextEditCtrl

426 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description GUI Control which displays a numerical value which can be increased or decreased using a pair of
arrows.

Example:

newGuiTextEditSliderCtrl()
{

format = "%3.2f";
range = "-1e+03 1e+03";
increment = "0.1";
focusOnMouseWheel = "0";
//Properties not specific to this control have been omitted from this example.

};

Fields
bool GuiTextEditSliderCtrl::focusOnMouseWheel

If true, the control will accept giving focus to the user when the mouse wheel is used.
string GuiTextEditSliderCtrl::format

Character format type to place in the control.

float GuiTextEditSliderCtrl::increment
How far to increment the slider on each step.

Point2F GuiTextEditSliderCtrl::range
Maximum vertical and horizontal range to allow in the control.

Enumeration

enum GuiAlignmentType

Parameters

• Left –

• Center –

• Right –

• Top –

• Bottom –

enum GuiFontCharset

Parameters

• ANSI –

• SYMBOL –

• SHIFTJIS –

• HANGEUL –

• HANGUL –

• GB2312 –

• CHINESEBIG5 –

• OEM –

• JOHAB –

5.3. Console Reference 427

Torque 3D Documentation, Release 3.5.1

• HEBREW –

• ARABIC –

• GREEK –

• TURKISH –

• VIETNAMESE –

• THAI –

• EASTEUROPE –

• RUSSIAN –

• MAC –

• BALTIC –

enum GuiHorizontalSizing
Horizontal sizing behavior of a GuiControl .

Parameters

• right –

• width –

• left –

• center –

• relative –

• windowRelative –

enum GuiVerticalSizing
Vertical sizing behavior of a GuiControl .

Parameters

• bottom –

• height –

• top –

• center –

• relative –

• windowRelative –

Functions

bool excludeOtherInstance(string appIdentifer)
Used to exclude/prevent all other instances using the same identifier specified.

Parameters appIdentifier – Name of the app set up for exclusive use.

Returns False if another app is running that specified the same appIdentifier

string StripMLControlChars(string inString)
Strip TorqueML control characters from the specified string, returning a ‘clean’ version.

Parameters inString – String to strip TorqueML control characters from.

428 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns Version of the inputted string with all TorqueML characters removed.

Example:

// Define the string to strip TorqueML control characters from
%string = "<font:Arial:24>How Now <color:c43c12>Brown <color:000000>Cow";

// Request the stripped version of the string
%strippedString = StripMLControlChars(%string);

Variables

GuiControl $ThisControl
The control for which a command is currently being evaluated. Only set during ‘command’ and altCommand
callbacks to the control for which the command or altCommand is invoked.

Button Controls

A collection of various buttons (push buttons, radio buttons, check boxes, etc).

Classes

GuiBitmapButtonCtrl A button that renders its various states (mouse over, pushed, etc.) from separate bitmaps.

Inherit: GuiButtonCtrl

Description A bitmapped button is a push button that uses one or more texture images for rendering its individual
states.

To find the individual textures associated with the button, a naming scheme is used. For each state a suffix is appended
to the texture file name given in the GuiBitmapButtonCtrl::bitmap field:

If a bitmap for a particular state cannot be found, the default bitmap will be used. To disable all state-based bitmap
functionality, set useStates to false which will make the control solely render from the bitmap specified in the bitmap
field.

Per-Modifier Button Actions If GuiBitmapButtonCtrl::useModifiers is set to true, per-modifier button actions and
textures are enabled. This functionality allows to associate different images and different actions with a button de-
pending on which modifiers are pressed on the keyboard by the user.

When enabled, this functionality alters the texture lookup above by prepending the following strings to the suffixes
listed above:

When this functionality is enabled, a new set of callbacks is used:

GuiControl::command or GuiControl::onAction() still work as before when per-modifier functionality is enabled.

Note that modifiers cannot be mixed. If two or more modifiers are pressed, a single one will take precedence over the
remaining modifiers. The order of precedence corresponds to the order listed above.

Example:

5.3. Console Reference 429

Torque 3D Documentation, Release 3.5.1

// Create an OK button that will trigger an onOk() call on its parent when clicked:
%okButton = newGuiBitmapButtonCtrl()
{

bitmap = "art/gui/okButton";
autoFitExtents = true;
command = "$ThisControl.getParent().onOk();";

};

Methods
void GuiBitmapButtonCtrl::onAltClick()

Called when per-modifier functionality is enabled and the user clicks on the button with the ALT key pressed.
Per-Modifier Button Actions

void GuiBitmapButtonCtrl::onCtrlClick()
Called when per-modifier functionality is enabled and the user clicks on the button with the CTRL key pressed.
Per-Modifier Button Actions

void GuiBitmapButtonCtrl::onDefaultClick()
Called when per-modifier functionality is enabled and the user clicks on the button without any modifier pressed.
Per-Modifier Button Actions

void GuiBitmapButtonCtrl::onShiftClick()
Called when per-modifier functionality is enabled and the user clicks on the button with the SHIFT key pressed.
Per-Modifier Button Actions

void GuiBitmapButtonCtrl::setBitmap(string path)
Set the bitmap to show on the button.

Parameters path – Path to the texture file in any of the supported formats.

Fields
bool GuiBitmapButtonCtrl::autoFitExtents

If true, the control’s extents will be set to match the bitmap’s extents when setting the bitmap. The bitmap
extents will always be taken from the default/normal bitmap (in case the extents of the various bitmaps do not
match up.)

filename GuiBitmapButtonCtrl::bitmap
Texture file to display on this button. If useStates is false, this will be the file that renders on the control. Other-
wise, this will specify the default texture name to which the various state and modifier suffixes are appended to
find the per-state and per-modifier (if enabled) textures.

GuiBitmapMode GuiBitmapButtonCtrl::bitmapMode
Behavior for fitting the bitmap to the control extents. If set to ‘Stretched’, the bitmap will be stretched both
verticall and horizontally to fit inside the control’s extents. If set to ‘Centered’, the bitmap will stay at its
original resolution centered in the control’s rectangle (getting clipped if the control is smaller than the texture).

bool GuiBitmapButtonCtrl::useModifiers
If true, per-modifier button functionality is enabled. Per-Modifier Button Actions

bool GuiBitmapButtonCtrl::useStates
If true, per-mouse state button functionality is enabled. Defaults to true. If you do not use per-state images on
this button set this to false to speed up the loading process by inhibiting searches for the individual images.

GuiBitmapButtonTextCtrl An extension of GuiBitmapButtonCtrl that additionally renders a text label on the
bitmapped button.

Inherit: GuiBitmapButtonCtrl

430 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description The text for the label is taken from the GuiButtonBaseCtrl::text property.

For rendering, the label is placed, relative to the control’s upper left corner, at the text offset specified in the control’s
profile (GuiControlProfile::textOffset) and justified according to the profile’s setting (GuiControlProfile::justify).

GuiBorderButtonCtrl A push button that renders only a border.

Inherit: GuiButtonBaseCtrl

Description A border button consists of a border rendered along its extents according to the border thickness defined
in its profile (GuiControlProfile::border). For the border color, a color is selected from the profile according to current
button state:

GuiButtonBaseCtrl The base class for the various button controls.

Inherit: GuiControl

Description This is the base class for the various types of button controls. If no more specific functionality is
required than offered by this class, then it can be instantiated and used directly. Otherwise, its subclasses should be
used:

Methods
string GuiButtonBaseCtrl::getText()

Get the text display on the button’s label (if any).

Returns The button’s label.
void GuiButtonBaseCtrl::onClick()

Called when the primary action of the button is triggered (e.g. by a left mouse click).

void GuiButtonBaseCtrl::onDoubleClick()
Called when the left mouse button is double-clicked on the button.

void GuiButtonBaseCtrl::onMouseDown()
If useMouseEvents is true, this is called when the left mouse button is pressed on an (active) button.

void GuiButtonBaseCtrl::onMouseDragged()
If useMouseEvents is true, this is called when a left mouse button drag is detected, i.e. when the user pressed
the left mouse button on the control and then moves the mouse over a certain distance threshold with the mouse
button still pressed.

void GuiButtonBaseCtrl::onMouseEnter()
If useMouseEvents is true, this is called when the mouse cursor moves over the button (only if the button is the
front-most visible control, though).

void GuiButtonBaseCtrl::onMouseLeave()
If useMouseEvents is true, this is called when the mouse cursor moves off the button (only if the button had
previously received an onMouseEvent() event).

void GuiButtonBaseCtrl::onMouseUp()
If useMouseEvents is true, this is called when the left mouse button is release over an (active) button.

void GuiButtonBaseCtrl::onRightClick()
Called when the right mouse button is clicked on the button.

void GuiButtonBaseCtrl::performClick()
Simulate a click on the button. This method will trigger the button’s action just as if the button had been pressed
by the user.

5.3. Console Reference 431

Torque 3D Documentation, Release 3.5.1

void GuiButtonBaseCtrl::resetState()
Reset the mousing state of the button. This method should not generally be called.

void GuiButtonBaseCtrl::setStateOn(bool isOn)
For toggle or radio buttons, set whether the button is currently activated or not. For radio buttons, toggling a
button on will toggle all other radio buttons in its group to off. Reimplemented in GuiCheckBoxCtrl .

Parameters isOn – If true, the button will be toggled on (if not already); if false, it will be toggled
off.

void GuiButtonBaseCtrl::setText(string text)
Set the text displayed on the button’s label.

Parameters text – The text to display as the button’s text label.

void GuiButtonBaseCtrl::setTextID(string id)
Set the text displayed on the button’s label using a string from the string table assigned to the control. Interna-
tionalization

Parameters id – Name of the variable that contains the integer string ID. Used to look up string in
table.

Fields
GuiButtonType GuiButtonBaseCtrl::buttonType

Button behavior type.
int GuiButtonBaseCtrl::groupNum

Radio button toggle group number. All radio buttons that are assigned the same groupNum and that are parented
to the same control will synchronize their toggle state, i.e. if one radio button is toggled on all other radio
buttons in its group will be toggled off. The default group is -1.

caseString GuiButtonBaseCtrl::text
Text label to display on button (if button class supports text labels).

string GuiButtonBaseCtrl::textID
ID of string in string table to use for text label on button.

bool GuiButtonBaseCtrl::useMouseEvents
If true, mouse events will be passed on to script. Default is false.

GuiButtonCtrl The most widely used button class.

Inherit: GuiButtonBaseCtrl

Description GuiButtonCtrl renders seperately of, but utilizes all of the functionality of GuiBaseButtonCtrl. This
grants GuiButtonCtrl the versatility to be either of the 3 button types.

Example:

// Create a PushButton GuiButtonCtrl that calls randomFunction when clicked
%button = newGuiButtonCtrl()
{

profile = "GuiButtonProfile";
buttonType = "PushButton";
command = "randomFunction();";

};

432 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

GuiCheckBoxCtrl A named checkbox that can be toggled on and off.

Inherit: GuiButtonBaseCtrl

Description A GuiCheckBoxCtrl displays a text label next to a checkbox that can be toggled on and off by the user.
Checkboxes are usually used to present boolean choices like, for example, a switch to toggle fullscreen video on and
off.

Example:

// Create a checkbox that allows to toggle fullscreen on and off.
newGuiCheckBoxCtrl(FullscreenToggle)
{

text = "Fullscreen";
};

// Set the initial state to match the current fullscreen setting.
FullscreenToggle.setStateOn(Canvas.isFullscreen());

// Define function to be called when checkbox state is toggled.
function FullscreenToggle::onClick(%this)
{

Canvas.toggleFullscreen();
}

Methods
bool GuiCheckBoxCtrl::isStateOn()

Test whether the checkbox is currently checked.

Returns True if the checkbox is currently ticked, false otherwise.
void GuiCheckBoxCtrl::setStateOn(bool newState)

Set whether the checkbox is ticked or not. Reimplemented from GuiButtonBaseCtrl .

Parameters newState – If true the box will be checked, if false, it will be unchecked.

GuiRadioCtrl A button based around the radio concept.

Inherit: GuiCheckBoxCtrl

Description GuiRadioCtrl’s functionality is based around GuiButtonBaseCtrl’s ButtonTypeRadio type.

A button control with a radio box and a text label. This control is used in groups where multiple radio buttons present
a range of options out of which one can be chosen. A radio button automatically signals its siblings when it is toggled
on.

Example:

// Create a GuiCheckBoxCtrl that calls randomFunction with its current value when clicked.
%radio = newGuiRadioCtrl()
{

profile = "GuiRadioProfile";
};

GuiSwatchButtonCtrl A button that is used to represent color; often used in correlation with a color picker.

Inherit: GuiButtonBaseCtrl

5.3. Console Reference 433

Torque 3D Documentation, Release 3.5.1

Description A swatch button is a push button that uses its color field to designate the color drawn over an image, on
top of a button.

The color itself is a float value stored inside the GuiSwatchButtonCtrl::color field. The texture path that represents the
image underlying the color is stored inside the GuiSwatchButtonCtrl::gridBitmap field. The default value assigned
toGuiSwatchButtonCtrl::color is “1 1 1 1”(White). The default/fallback image assigned to GuiSwatchButtonC-
trl::gridBitmap is “tools/gui/images/transp_grid”.

Example:

// Create a GuiSwatchButtonCtrl that calls randomFunction with its current color when clicked
%swatchButton = newGuiSwatchButtonCtrl()
{

profile = "GuiInspectorSwatchButtonProfile";
command = "randomFunction($ThisControl.color);";

};

Methods
void GuiSwatchButtonCtrl::setColor(string newColor)

Set the color of the swatch control.

Parameters newColor – The new color string given to the swatch control in float format “r g b a”.

Fields
ColorF GuiSwatchButtonCtrl::color

The foreground color of GuiSwatchButtonCtrl .
string GuiSwatchButtonCtrl::gridBitmap

The bitmap used for the transparent grid.

Enumeration

enum GuiButtonType
Type of button control.

Parameters

• PushButton – A button that triggers an action when clicked.

• ToggleButton – A button that is toggled between on and off state.

• RadioButton – A button placed in groups for presenting choices.

General Controls

A collection of general controls (bitmap, text, popup, etc).

Classes

GuiBitmapCtrl A gui control that is used to display an image.

Inherit: GuiControl

434 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description The image is stretched to the constraints of the control by default. However, the control can also tile
the image as well.

The image itself is stored inside the GuiBitmapCtrl::bitmap field. The boolean value that decides whether the image
is stretched or tiled is stored inside the GuiBitmapCtrl::wrap field.

Example:

// Create a tiling GuiBitmapCtrl that displays "myImage.png"
%bitmapCtrl = newGuiBitmapCtrl()
{

bitmap = "myImage.png";
wrap = "true";

};

Methods
void GuiBitmapCtrl::setBitmap(String filename, bool resize)

Assign an image to the control. Child controls with resize according to their layout settings.

Parameters

• filename – The filename of the image.

• resize – Optional parameter. If true, the GUI will resize to fit the image.
void GuiBitmapCtrl::setBitmap(String filename)

Assign an image to the control. Child controls will resize according to their layout settings.

Parameters

• filename – The filename of the image.

• resize – A boolean value that decides whether the ctrl refreshes or not.

void GuiBitmapCtrl::setValue(int x, int y)
Set the offset of the bitmap within the control.

Parameters

• x – The x-axis offset of the image.

• y – The y-axis offset of the image.

Fields
filename GuiBitmapCtrl::bitmap

The bitmap file to display in the control.
bool GuiBitmapCtrl::wrap

If true, the bitmap is tiled inside the control rather than stretched to fit.

GuiBubbleTextCtrl A single-line text control that displays its text in a multi-line popup when clicked.

Inherit: GuiTextCtrl

Description This control acts like a GuiTextCtrl (and inherits from it), when clicked it creates a GuiMLTextCtrl
roughly where you clicked with the same text in it. This allows you to have a single line text control which upon
clicking will display the entire text contained in a multi-line format.

Example:

5.3. Console Reference 435

Torque 3D Documentation, Release 3.5.1

newGuiBubbleTextCtrl(BubbleTextGUI)
{

text = "This is the first sentence. This second sentence can be sized outside of the default single line view, upon clicking this will be displayed in a multi-line format.";
};

GuiDirectoryFileListCtrl A control that displays a list of files from within a single directory in the game file system.

Inherit: GuiListBoxCtrl

Description A control that displays a list of files from within a single directory in the game file system.

Example:

newGuiDirectoryFileListCtrl()
{

filePath = "art/shapes";
fileFilter = "*.dts" TAB "*.dae";
//Properties not specific to this control have been omitted from this example.

};

Methods
string GuiDirectoryFileListCtrl::getSelectedFile()

Get the currently selected filename.

Returns The filename of the currently selected file
string GuiDirectoryFileListCtrl::getSelectedFiles()

Get the list of selected files.

Returns A space separated list of selected files

void GuiDirectoryFileListCtrl::reload()
Update the file list.

void GuiDirectoryFileListCtrl::setFilter(string filter)
Set the file filter.

Parameters filter – Tab-delimited list of file name patterns. Only matched files will be dis-
played.

bool GuiDirectoryFileListCtrl::setPath(string path, string filter)
Set the search path and file filter.

Parameters

• path – Path in game directory from which to list files.

• filter – Tab-delimited list of file name patterns. Only matched files will be displayed.

Fields
string GuiDirectoryFileListCtrl::fileFilter

Tab-delimited list of file name patterns. Only matched files will be displayed.
string GuiDirectoryFileListCtrl::filePath

Path in game directory from which to list files.

GuiMLTextEditCtrl A text entry control that accepts the Gui Markup Language (‘ML’) tags and multiple lines.

Inherit: GuiMLTextCtrl

436 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description A text entry control that accepts the Gui Markup Language (‘ML’) tags and multiple lines.

Example:

newGuiMLTextEditCtrl()
{

lineSpacing = "2";
allowColorChars = "0";
maxChars = "-1";
deniedSound = "DeniedSoundProfile";
text = "";
escapeCommand = "onEscapeScriptFunction();";

//Properties not specific to this control have been omitted from this example.
};

Fields
string GuiMLTextEditCtrl::escapeCommand

Script function to run whenever the ‘escape’ key is pressed when this control is in focus.

GuiPopUpMenuCtrl A control that allows to select a value from a drop-down list.

Inherit: GuiTextCtrl

Description For a nearly identical GUI with additional features, use GuiPopUpMenuCtrlEx.

Example:

newGuiPopUpMenuCtrl()
{

maxPopupHeight = "200";
sbUsesNAColor = "0";
reverseTextList = "0";
bitmapBounds = "16 16";
maxLength = "1024";
position = "56 31";
extent = "64 64";
minExtent = "8 2";
profile = "GuiPopUpMenuProfile";
tooltipProfile = "GuiToolTipProfile";

};

Methods
void GuiPopUpMenuCtrl::add(string name, int idNum, int scheme)
void GuiPopUpMenuCtrl::addScheme(int id, ColorI fontColor, ColorI fontColorHL, ColorI fontCol-

orSEL)
void GuiPopUpMenuCtrl::changeTextById(int id, string text)

void GuiPopUpMenuCtrl::clearEntry(S32 entry)

int GuiPopUpMenuCtrl::findText(string text)
Returns the position of the first entry containing the specified text.

string GuiPopUpMenuCtrl::getTextById(int id)

void GuiPopUpMenuCtrl::replaceText(bool doReplaceText)

5.3. Console Reference 437

Torque 3D Documentation, Release 3.5.1

void GuiPopUpMenuCtrl::setEnumContent(string, string)
This fills the popup with a classrep’s field enumeration type info. More of a helper function than anything. If
console access to the field list is added, at least for the enumerated types, then this should go away..

void GuiPopUpMenuCtrl::setFirstSelected()

void GuiPopUpMenuCtrl::setSelected(int id)

Fields
filename GuiPopUpMenuCtrl::bitmap
Point2I GuiPopUpMenuCtrl::bitmapBounds

void GuiPopUpMenuCtrl::clear
Clear the popup list.

void GuiPopUpMenuCtrl::forceClose

void GuiPopUpMenuCtrl::forceOnAction

int GuiPopUpMenuCtrl::getSelected

string GuiPopUpMenuCtrl::getText

int GuiPopUpMenuCtrl::maxPopupHeight

bool GuiPopUpMenuCtrl::reverseTextList

bool GuiPopUpMenuCtrl::sbUsesNAColor

void GuiPopUpMenuCtrl::setNoneSelected

int GuiPopUpMenuCtrl::size
Get the size of the menu - the number of entries in it.

void GuiPopUpMenuCtrl::sort
Sort the list alphabetically.

void GuiPopUpMenuCtrl::sortID
Sort the list by ID.

GuiPopUpMenuCtrlEx A control that allows to select a value from a drop-down list.

Inherit: GuiTextCtrl

Description This is essentially a GuiPopUpMenuCtrl, but with quite a few more features.

Example:

newGuiPopUpMenuCtrlEx()
{

maxPopupHeight = "200";
sbUsesNAColor = "0";
reverseTextList = "0";
bitmapBounds = "16 16";
hotTrackCallback = "0";
extent = "64 64";
profile = "GuiDefaultProfile";
tooltipProfile = "GuiToolTipProfile";

};

438 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Methods
void GuiPopUpMenuCtrlEx::add(string name, int idNum, int scheme)
void GuiPopUpMenuCtrlEx::add(string name, S32 idNum, S32 scheme)

Adds an entry to the list.

Parameters

• name – String containing the name of the entry

• idNum – Numerical value assigned to the name

• scheme – Optional ID associated with a scheme for font coloring, highlight coloring, and
selection coloring

void GuiPopUpMenuCtrlEx::addCategory(string text)
Add a category to the list. Acts as a separator between entries, allowing for sub-lists

Parameters text – Name of the new category

void GuiPopUpMenuCtrlEx::addScheme(int id, ColorI fontColor, ColorI fontColorHL, ColorI fontCol-
orSEL)

Create a new scheme and add it to the list of choices for when a new text entry is added.

Parameters

• id – Numerical id associated with this scheme

• fontColor – The base text font color. Formatted as “Red Green Blue”, each a numerical
between 0 and 255.

• fontColorHL – Color of text when being highlighted. Formatted as “Red Green Blue”,
each a numerical between 0 and 255.

• fontColorSel – Color of text when being selected. Formatted as “Red Green Blue”,
each a numerical between 0 and 255.

void GuiPopUpMenuCtrlEx::clear()
Clear the popup list. Reimplemented from SimSet .

void GuiPopUpMenuCtrlEx::clearEntry(S32 entry)

int GuiPopUpMenuCtrlEx::findText(string text)
Returns the id of the first entry containing the specified text or -1 if not found.

Parameters text – String value used for the query

Returns Numerical ID of entry containing the text.

void GuiPopUpMenuCtrlEx::forceClose()
Manually force this control to collapse and close.

void GuiPopUpMenuCtrlEx::forceOnAction()
Manually for the onAction function, which updates everything in this control.

int GuiPopUpMenuCtrlEx::getSelected()
Get the current selection of the menu.

Returns Returns the ID of the currently selected entry

string GuiPopUpMenuCtrlEx::getText()
Get the. Detailed description

Parameters param – Description

Returns Returns current text in string format

5.3. Console Reference 439

Torque 3D Documentation, Release 3.5.1

Example:

// Comment
code();

string GuiPopUpMenuCtrlEx::getTextById(int id)
Get the text of an entry based on an ID.

Parameters id – The ID assigned to the entry being queried

Returns String contained by the specified entry, NULL if empty or bad ID

void GuiPopUpMenuCtrlEx::setNoneSelected(int param)
Clears selection in the menu.

GuiPopUpMenuCtrlEx::setSelected(int id, bool scriptCallback)
brief Manually set an entry as selected int his control

Parameters

• id – The ID of the entry to select

• scripCallback – Optional boolean that forces the script callback if true

GuiPopUpMenuCtrlEx::setSelected(bool scriptCallback)
brief Manually set the selection to the first entry

Parameters scripCallback – Optional boolean that forces the script callback if true

void GuiPopUpMenuCtrlEx::setText(string text)
Set the current text to a specified value. Reimplemented from GuiTextCtrl .

Parameters text – String containing new text to set

void GuiPopUpMenuCtrlEx::sort()
Sort the list alphabetically.

void GuiPopUpMenuCtrlEx::sortID()
Sort the list by ID.

Fields
filename GuiPopUpMenuCtrlEx::bitmap

File name of bitmap to use.
Point2I GuiPopUpMenuCtrlEx::bitmapBounds

Boundaries of bitmap displayed.

string GuiPopUpMenuCtrlEx::getColorById
Get color of an entry’s box.

Parameters id – ID number of entry to query

Returns ColorI in the format of “Red Green Blue Alpha”, each of with is a value between 0 - 255

bool GuiPopUpMenuCtrlEx::hotTrackCallback
Whether to provide a ‘onHotTrackItem’ callback when a list item is hovered over.

int GuiPopUpMenuCtrlEx::maxPopupHeight
Length of menu when it extends.

void GuiPopUpMenuCtrlEx::replaceText
Flag that causes each new text addition to replace the current entry.

Parameters True – to turn on replacing, false to disable it

440 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool GuiPopUpMenuCtrlEx::reverseTextList
Reverses text list if popup extends up, instead of down.

bool GuiPopUpMenuCtrlEx::sbUsesNAColor
Deprecated.

void GuiPopUpMenuCtrlEx::setEnumContent
This fills the popup with a classrep’s field enumeration type info. More of a helper function than anything. If
console access to the field list is added, at least for the enumerated types, then this should go away.

Parameters

• class – Name of the class containing the enum

• enum – Name of the enum value to acces

int GuiPopUpMenuCtrlEx::size
Get the size of the menu.

Returns Number of entries in the menu

GuiSeparatorCtrl

Inherit: GuiControl

Description A control that renders a horizontal or vertical separator with an optional text label (horizontal only).

Example:

newGuiSeparatorCtrl()
{

profile = "GuiDefaultProfile";
position = "505 0";
extent = "10 17";
minExtent = "10 17";
canSave = "1";
visible = "1";
horizSizing = "left";

};

Fields
int GuiSeparatorCtrl::borderMargin
string GuiSeparatorCtrl::caption

Optional text label to display.

bool GuiSeparatorCtrl::invisible

int GuiSeparatorCtrl::leftMargin
Left margin of text label.

GuiSeparatorType GuiSeparatorCtrl::type
Orientation of separator.

GuiTextEditCtrl A component that places a text entry box on the screen.

Inherit: GuiTextCtrl

5.3. Console Reference 441

Torque 3D Documentation, Release 3.5.1

Description A component that places a text entry box on the screen.

Fonts and sizes are changed using profiles. The text value can be set or entered by a user.

Example:

newGuiTextEditCtrl(MessageHud_Edit)
{

text = "Hello World";
validate = "validateCommand();"escapeCommand = "escapeCommand();";
historySize = "5";
tabComplete = "true";
deniedSound = "DeniedSoundProfile";
sinkAllKeyEvents = "true";
password = "true";
passwordMask = "*";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiTextEditCtrl::clearSelectedText()

Unselects all selected text in the control.

Example:

// Inform the control to unselect all of its selected text
%thisGuiTextEditCtrl.clearSelectedText();

void GuiTextEditCtrl::forceValidateText()
Force a validation to occur.

Example:

// Inform the control to force a validation of its text.
%thisGuiTextEditCtrl.forceValidateText();

int GuiTextEditCtrl::getCursorPos()
Returns the current position of the text cursor in the control.

Returns Text cursor position within the control.

Example:

// Acquire the cursor position in the control
%position = %thisGuiTextEditCtrl.getCursorPost();

string GuiTextEditCtrl::getText()
Acquires the current text displayed in this control.

Returns The current text within the control.

Example:

// Acquire the value of the text control.
%text = %thisGuiTextEditCtrl.getText();

bool GuiTextEditCtrl::isAllTextSelected()
Checks to see if all text in the control has been selected.

Returns True if all text in the control is selected, otherwise false.

Example:

442 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Check to see if all text has been selected or not.
%allSelected = %thisGuiTextEditCtrl.isAllTextSelected();

void GuiTextEditCtrl::onReturn()
Called when the ‘Return’ or ‘Enter’ key is pressed.

Example:

// Return or Enter key was pressed, causing the callback to occur.GuiTextEditCtrl::onReturn(%this)
{

// Code to run when the onReturn callback occurs
}

void GuiTextEditCtrl::onTabComplete(string val)
Called if tabComplete is true, and the ‘tab’ key is pressed.

Parameters val – Input to mimick the ‘1’ sent by the actual tab key button press.

Example:

// Tab key has been pressed, causing the callback to occur.GuiTextEditCtrl::onTabComplete(%this,%val)
{

//Code to run when the onTabComplete callback occurs
}

void GuiTextEditCtrl::onValidate()
Called whenever the control is validated.

Example:

// The control gets validated, causing the callback to occur
GuiTextEditCtrl::onValidated(%this)

{
// Code to run when the control is validated

}

void GuiTextEditCtrl::selectAllText()
Selects all text within the control.

Example:

// Inform the control to select all of its text.
%thisGuiTextEditCtrl.selectAllText();

void GuiTextEditCtrl::setCursorPos(int position)
Sets the text cursor at the defined position within the control.

Parameters position – Text position to set the text cursor.

Example:

// Define the cursor position
%position = "12";

// Inform the GuiTextEditCtrl control to place the text cursor at the defined position
%thisGuiTextEditCtrl.setCursorPos(%position);

void GuiTextEditCtrl::setText(string text)
Sets the text in the control. Reimplemented from GuiTextCtrl .

Parameters text – Text to place in the control.

Example:

5.3. Console Reference 443

Torque 3D Documentation, Release 3.5.1

// Define the text to display
%text = "Text!"// Inform the GuiTextEditCtrl to display the defined text
%thisGuiTextEditCtrl.setText(%text);

Fields
SFXTrack GuiTextEditCtrl::deniedSound

If the attempted text cannot be entered, this sound effect will be played.
string GuiTextEditCtrl::escapeCommand

Script command to be called when the Escape key is pressed.

int GuiTextEditCtrl::historySize
How large of a history buffer to maintain.

bool GuiTextEditCtrl::password
If true, all characters entered will be stored in the control, however will display as the character stored in
passwordMask.

string GuiTextEditCtrl::passwordMask
If ‘password’ is true, this is the character that will be used to mask the characters in the control.

bool GuiTextEditCtrl::sinkAllKeyEvents
If true, every key event will act as if the Enter key was pressed.

bool GuiTextEditCtrl::tabComplete
If true, when the ‘tab’ key is pressed, it will act as if the Enter key was pressed on the control.

string GuiTextEditCtrl::validate
Script command to be called when the first validater is lost.

GuiTextListCtrl GUI control that displays a list of text. Text items in the list can be individually selected.

Inherit: GuiArrayCtrl

Description GUI control that displays a list of text. Text items in the list can be individually selected.

Example:

newGuiTextListCtrl(EndGameGuiList)
{

columns = "0 256";
fitParentWidth = "1";

clipColumnText = "0";
//Properties not specific to this control have been omitted from this example.

};

Methods
int GuiTextListCtrl::addRow(int id, string text, int index)

Adds a new row at end of the list with the defined id and text. If index is used, then the new row is inserted at
the row location of ‘index’.

Parameters

• id – Id of the new row.

• text – Text to display at the new row.

• index – Index to insert the new row at. If not used, new row will be placed at the end of
the list.

444 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns Returns the row index of the new row. If ‘index’ was defined, then this just returns the
number of rows in the list.

Example:

// Define the id
%id = "4";

// Define the text to display
%text = "Display Text"// Define the index (optional)
%index = "2"// Inform the GuiTextListCtrl control to add the new row with the defined information.
%rowIndex = %thisGuiTextListCtrl.addRow(%id,%text,%index);

void GuiTextListCtrl::clear()
Clear the list.

Example:

// Inform the GuiTextListCtrl control to clear its contents
%thisGuiTextListCtrl.clear();

void GuiTextListCtrl::clearSelection()
Set the selection to nothing.

Example:

// Deselect anything that is currently selected
%thisGuiTextListCtrl.clearSelection();

int GuiTextListCtrl::findTextIndex(string needle)
Find needle in the list, and return the row number it was found in.

Parameters needle – Text to find in the list.

Returns Row number that the defined text was found in,

Example:

// Define the text to find in the list
%needle = "Text To Find";

// Request the row number that contains the defined text to find

%rowNumber = %thisGuiTextListCtrl.findTextIndex(%needle);

int GuiTextListCtrl::getRowId(int index)
Get the row ID for an index.

Parameters index – Index to get the RowID at

Returns RowId at the defined index.

Example:

// Define the index
%index = "3";

// Request the row ID at the defined index
%rowId = %thisGuiTextListCtrl.getRowId(%index);

int GuiTextListCtrl::getRowNumById(int id)
Get the row number for a specified id.

Parameters id – Id to get the row number at

5.3. Console Reference 445

Torque 3D Documentation, Release 3.5.1

Example:

// Define the id
%id = "4";

// Request the row number from the GuiTextListCtrl control at the defined id.
%rowNumber = %thisGuiTextListCtrl.getRowNumById(%id);

string GuiTextListCtrl::getRowText(int index)
Get the text of the row with the specified index.

Parameters index – Row index to acquire the text at.

Returns Text at the defined row index.

Example:

// Define the row index
%index = "5";

// Request the text from the row at the defined index
%rowText = %thisGuiTextListCtrl.getRowText(%index);

string GuiTextListCtrl::getRowTextById(int id)
Get the text of a row with the specified id.

Returns Row text at the requested row id.

Example:

// Define the id
%id = "4";

// Inform the GuiTextListCtrl control to return the text at the defined row id
%rowText = %thisGuiTextListCtrl.getRowTextById(%id);

int GuiTextListCtrl::getSelectedId()
Get the ID of the currently selected item.

Returns The id of the selected item in the list.

Example:

// Acquire the ID of the selected item in the list.
%id = %thisGuiTextListCtrl.getSelectedId();

int GuiTextListCtrl::getSelectedRow()
Returns the selected row index (not the row ID).

Returns Index of the selected row

Example:

// Acquire the selected row index
%rowIndex = %thisGuiTextListCtrl.getSelectedRow();

bool GuiTextListCtrl::isRowActive(int rowNum)
Check if the specified row is currently active or not.

Parameters rowNum – Row number to check the active state.

Returns Active state of the defined row number.

Example:

446 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Define the row number
%rowNum = "5";

// Request the active state of the defined row number from the GuiTextListCtrl control.
%rowActiveState = %thisGuiTextListCtrl.isRowActive(%rowNum);

void GuiTextListCtrl::onDeleteKey(string id)
Called when the delete key has been pressed.

Parameters id – Id of the selected item in the list

Example:

// The delete key was pressed while the GuiTextListCtrl was in focus, causing the callback to occur.GuiTextListCtrl::onDeleteKey(%this,%id)
{

// Code to run when the delete key is pressed
}

void GuiTextListCtrl::onSelect(string cellid, string text)
Called whenever an item in the list is selected.

Parameters

• cellid – The ID of the cell that was selected

• text – The text in the selected cel

Example:

// A cel in the control was selected, causing the callback to occurGuiTextListCtrl::onSelect(%this,%callid,%text)
{

// Code to run when a cel item is selected
}

void GuiTextListCtrl::removeRow(int index)
Remove a row from the table, based on its index.

Parameters index – Row index to remove from the list.

Example:

// Define the row index
%index = "4";

// Inform the GuiTextListCtrl control to remove the row at the defined row index
%thisGuiTextListCtrl.removeRow(%index);

void GuiTextListCtrl::removeRowById(int id)
Remove row with the specified id.

Parameters id – Id to remove the row entry at

Example:

// Define the id
%id = "4";

// Inform the GuiTextListCtrl control to remove the row at the defined id
%thisGuiTextListCtrl.removeRowById(%id);

int GuiTextListCtrl::rowCount()
Get the number of rows.

5.3. Console Reference 447

Torque 3D Documentation, Release 3.5.1

Returns Number of rows in the list.

Example:

// Get the number of rows in the list
%rowCount = %thisGuiTextListCtrl.rowCount();

void GuiTextListCtrl::scrollVisible(int rowNum)
Scroll so the specified row is visible.

Parameters rowNum – Row number to make visible

Example:

// Define the row number to make visible
%rowNum = "4";

// Inform the GuiTextListCtrl control to scroll the list so the defined rowNum is visible.
%thisGuiTextListCtrl.scrollVisible(%rowNum);

void GuiTextListCtrl::setRowActive(int rowNum, bool active)
Mark a specified row as active/not.

Parameters

• rowNum – Row number to change the active state.

• active – Boolean active state to set the row number.

Example:

// Define the row number
%rowNum = "4";

// Define the boolean active state
%active = "true";

// Informthe GuiTextListCtrl control to set the defined active state at the defined row number.
%thisGuiTextListCtrl.setRowActive(%rowNum,%active);

void GuiTextListCtrl::setRowById(int id, string text)
Sets the text at the defined id.

Parameters

• id – Id to change.

• text – Text to use at the Id.

Example:

// Define the id
%id = "4";

// Define the text
%text = "Text To Display";

// Inform the GuiTextListCtrl control to display the defined text at the defined id
%thisGuiTextListCtrl.setRowById(%id,%text);

void GuiTextListCtrl::setSelectedById(int id)
Finds the specified entry by id, then marks its row as selected.

Parameters id – Entry within the text list to make selected.

448 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// Define the id
%id = "5";

// Inform the GuiTextListCtrl control to set the defined id entry as selected
%thisGuiTextListCtrl.setSelectedById(%id);

void GuiTextListCtrl::setSelectedRow(int rowNum)
the specified row.

Parameters rowNum – Row number to set selected.

Example:

// Define the row number to set selected
%rowNum = "4";

%guiTextListCtrl.setSelectedRow(%rowNum);

void GuiTextListCtrl::sort(int columnId, bool increasing)
Performs a standard (alphabetical) sort on the values in the specified column.

Parameters

• columnId – Column ID to perform the sort on.

• increasing – If false, sort will be performed in reverse.

Example:

// Define the columnId
%id = "1";

// Define if we are increasing or not
%increasing = "false";

// Inform the GuiTextListCtrl to perform the sort operation
%thisGuiTextListCtrl.sort(%id,%increasing);

void GuiTextListCtrl::sortNumerical(int columnID, bool increasing)
Perform a numerical sort on the values in the specified column. Detailed description

Parameters

• columnId – Column ID to perform the sort on.

• increasing – If false, sort will be performed in reverse.

Example:

// Define the columnId
%id = "1";

// Define if we are increasing or not
%increasing = "false";

// Inform the GuiTextListCtrl to perform the sort operation
%thisGuiTextListCtrl.sortNumerical(%id,%increasing);

Fields

5.3. Console Reference 449

Torque 3D Documentation, Release 3.5.1

bool GuiTextListCtrl::clipColumnText
If true, text exceeding a column’s given width will get clipped.

intList GuiTextListCtrl::columns
A vector of column offsets. The number of values determines the number of columns in the table.

bool GuiTextListCtrl::fitParentWidth
If true, the width of this control will match the width of its parent.

GuiArrayCtrl

Enumeration

enum GuiSeparatorType
GuiSeparatorCtrl orientations.

Parameters

• Vertical –

• Horizontal –

Container Controls

A collection of various containers (container, window, scroll, etc).

Classes

GuiAutoScrollCtrl

Inherit: GuiTickCtrl

Description A container that scrolls its child control up over time.

This container can be used to scroll a single child control in either of the four directions.

Example:

// Create a GuiAutoScrollCtrl that scrolls a long text of credits.newGuiAutoScrollCtrl(CreditsScroller)
{

position = "0 0";
extent = Canvas.extent.x SPC Canvas.extent.y;

scrollDirection = "Up"; // Scroll upwards.startDelay = 4; // Wait 4 seconds before starting to scroll.isLooping = false; // Dont loop the credits.scrollOutOfSight = true; // Scroll up fully.newGuiMLTextCtrl()
{

text = $CREDITS;
};

};

function CreditsScroller::onComplete(%this)
{

// Switch back to main menu after credits have rolled.
Canvas.setContent(MainMenu);

}

450 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Start rolling credits.
Canvas.setContent(CreditsScroller);

Methods
void GuiAutoScrollCtrl::onComplete()

Called when the child control has been scrolled in entirety.
void GuiAutoScrollCtrl::onReset()

Called when the child control is reset to its initial position and the cycle starts again.

void GuiAutoScrollCtrl::onStart()
Called when the control starts to scroll.

void GuiAutoScrollCtrl::onTick()
Called every 32ms on the control.

void GuiAutoScrollCtrl::reset()
Reset scrolling.

Fields
int GuiAutoScrollCtrl::childBorder

Padding to put around child control (in pixels).
bool GuiAutoScrollCtrl::isLooping

If true, the scrolling will reset to the beginning once completing a cycle.

float GuiAutoScrollCtrl::resetDelay
Seconds to wait after scrolling completes before resetting and starting over.

GuiAutoScrollDirection GuiAutoScrollCtrl::scrollDirection
Direction in which the child control is moved.

bool GuiAutoScrollCtrl::scrollOutOfSight
If true, the child control will be completely scrolled out of sight; otherwise it will only scroll until the other end
becomes visible.

float GuiAutoScrollCtrl::scrollSpeed
Scrolling speed in pixels per second.

float GuiAutoScrollCtrl::startDelay
Seconds to wait before starting to scroll.

GuiContainer Brief Desc.

Inherit: GuiControl

Description Brief Desc.

Example:

// Comment:
%okButton = new ClassObject()
instantiation

Fields
bool GuiContainer::anchorBottom
bool GuiContainer::anchorLeft

5.3. Console Reference 451

Torque 3D Documentation, Release 3.5.1

bool GuiContainer::anchorRight

bool GuiContainer::anchorTop

GuiDockingType GuiContainer::docking

RectSpacingI GuiContainer::margin

RectSpacingI GuiContainer::padding

GuiControlArrayControl Brief Desc.

Inherit: GuiControl

Description Brief Desc.

Example:

// Comment:
%okButton = new ClassObject()
instantiation

Fields
int GuiControlArrayControl::colCount

Number of colums in the array.
intList GuiControlArrayControl::colSizes

Size of each individual column.

int GuiControlArrayControl::colSpacing
Padding to put between columns.

int GuiControlArrayControl::rowSize
Heigth of a row in the array.

int GuiControlArrayControl::rowSpacing
Padding to put between rows.

GuiDynamicCtrlArrayControl A container that arranges children into a grid.

Inherit: GuiControl

Description This container maintains a 2D grid of GUI controls. If one is added, deleted, or resized, then the grid is
updated. The insertion order into the grid is determined by the internal order of the children (ie. the order of addition).
Children are added to the grid by row or column until they fill the assocated GuiDynamicCtrlArrayControl extent
(width or height). For example, a GuiDynamicCtrlArrayControl with 15 children, and fillRowFirst set to true may be
arranged as follows:

If dynamicSize were set to true in this case, the GuiDynamicCtrlArrayControl height would be calculated to fit the 3
rows of child controls.

Example:

newGuiDynamicCtrlArrayControl()
{

colSize = "128";
rowSize = "18";
colSpacing = "2";
rowSpacing = "2";

452 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

frozen = "0";
autoCellSize = "1";
fillRowFirst = "1";
dynamicSize = "1";
padding = "0 0 0 0";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiDynamicCtrlArrayControl::refresh()

Recalculates the position and size of this control and all its children.

Fields
bool GuiDynamicCtrlArrayControl::autoCellSize

When true, the cell size is set to the widest/tallest child control.
int GuiDynamicCtrlArrayControl::colCount

Number of columns the child controls have been arranged into. This value is calculated automatically when
children are added, removed or resized; writing it directly has no effect.

int GuiDynamicCtrlArrayControl::colSize
Width of each column. If autoCellSize is set, this will be calculated automatically from the widest child control.

int GuiDynamicCtrlArrayControl::colSpacing
Spacing between columns.

bool GuiDynamicCtrlArrayControl::dynamicSize
If true, the width or height of this control will be automatically calculated based on the number of child controls
(width if fillRowFirst is false, height if fillRowFirst is true).

bool GuiDynamicCtrlArrayControl::fillRowFirst
Controls whether rows or columns are filled first. If true, controls are added to the grid left-to-right (to fill a
row); then rows are added top-to-bottom as shown below: If false, controls are added to the grid top-to-bottom
(to fill a column); then columns are added left-to-right as shown below:

bool GuiDynamicCtrlArrayControl::frozen
When true, the array will not update when new children are added or in response to child resize events. This is
useful to prevent unnecessary resizing when adding, removing or resizing a number of child controls.

RectSpacingI GuiDynamicCtrlArrayControl::padding
Padding around the top, bottom, left, and right of this control. This reduces the area available for child controls.

int GuiDynamicCtrlArrayControl::rowCount
Number of rows the child controls have been arranged into. This value is calculated automatically when children
are added, removed or resized; writing it directly has no effect.

int GuiDynamicCtrlArrayControl::rowSize
Height of each row. If autoCellSize is set, this will be calculated automatically from the tallest child control.

int GuiDynamicCtrlArrayControl::rowSpacing
Spacing between rows.

GuiFrameSetCtrl A gui control allowing a window to be subdivided into panes, each of which displays a gui control
child of the GuiFrameSetCtrl.

Inherit: GuiContainer

5.3. Console Reference 453

Torque 3D Documentation, Release 3.5.1

Description Each gui control child will have an associated FrameDetail through which frame-specific details can be
assigned. Frame-specific values override the values specified for the entire frameset.

Note that it is possible to have more children than frames, or more frames than children. In the former case, the extra
children will not be visible (they are moved beyond the visible extent of the frameset). In the latter case, frames will
be empty. For example, if a frameset had two columns and two rows but only three gui control children they would be
assigned to frames as follows:

The last frame would be blank.

Example:

newGuiFrameSetCtrl()
{

columns = "3";
rows = "2";
borderWidth = "1";
borderColor = "128 128 128";
borderEnable = "dynamic";
borderMovable = "dynamic";
autoBalance = "1";
fudgeFactor = "0";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiFrameSetCtrl::addColumn()

Add a new column.
void GuiFrameSetCtrl::addRow()

Add a new row.

void GuiFrameSetCtrl::frameBorder(int index, string state)
Override the borderEnable setting for this frame.

Parameters

• index – Index of the frame to modify

• state – New borderEnable state: “on”, “off” or “dynamic”

void GuiFrameSetCtrl::frameMinExtent(int index, int width, int height)
Set the minimum width and height for the frame. It will not be possible for the user to resize the frame smaller
than this.

Parameters

• index – Index of the frame to modify

• width – Minimum width in pixels

• height – Minimum height in pixels

void GuiFrameSetCtrl::frameMovable(int index, string state)
Override the borderMovable setting for this frame.

Parameters

• index – Index of the frame to modify

• state – New borderEnable state: “on”, “off” or “dynamic”

void GuiFrameSetCtrl::framePadding(int index, RectSpacingI padding)
Set the padding for this frame. Padding introduces blank space on the inside edge of the frame.

454 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• index – Index of the frame to modify

• padding – Frame top, bottom, left, and right padding

int GuiFrameSetCtrl::getColumnCount()
Get the number of columns.

Returns The number of columns

int GuiFrameSetCtrl::getColumnOffset(int index)
Get the horizontal offset of a column.

Parameters index – Index of the column to query

Returns Column offset in pixels

RectSpacingI GuiFrameSetCtrl::getFramePadding(int index)
Get the padding for this frame.

Parameters index – Index of the frame to query

int GuiFrameSetCtrl::getRowCount()
Get the number of rows.

Returns The number of rows

int GuiFrameSetCtrl::getRowOffset(int index)
Get the vertical offset of a row.

Parameters index – Index of the row to query

Returns Row offset in pixels

void GuiFrameSetCtrl::removeColumn()
Remove the last (rightmost) column.

void GuiFrameSetCtrl::removeRow()
Remove the last (bottom) row.

void GuiFrameSetCtrl::setColumnOffset(int index, int offset)
Set the horizontal offset of a column. Note that column offsets must always be in increasing order, and therefore
this offset must be between the offsets of the colunns either side.

Parameters

• index – Index of the column to modify

• offset – New column offset

void GuiFrameSetCtrl::setRowOffset(int index, int offset)
Set the vertical offset of a row. Note that row offsets must always be in increasing order, and therefore this offset
must be between the offsets of the rows either side.

Parameters

• index – Index of the row to modify

• offset – New row offset

void GuiFrameSetCtrl::updateSizes()
Recalculates child control sizes.

5.3. Console Reference 455

Torque 3D Documentation, Release 3.5.1

Fields
bool GuiFrameSetCtrl::autoBalance

If true, row and column offsets are automatically scaled to match the new extents when the control is resized.
ColorI GuiFrameSetCtrl::borderColor

Color of interior borders between cells.

GuiFrameState GuiFrameSetCtrl::borderEnable
Controls whether frame borders are enabled. Frames use this value unless overridden for that frame using
ctrl.frameBorder(index)

GuiFrameState GuiFrameSetCtrl::borderMovable
Controls whether borders can be dynamically repositioned with the mouse by the user. Frames use this value
unless overridden for that frame using ctrl.frameMovable(index)

int GuiFrameSetCtrl::borderWidth
Width of interior borders between cells in pixels.

intList GuiFrameSetCtrl::columns
A vector of column offsets (determines the width of each column).

int GuiFrameSetCtrl::fudgeFactor
Offset for row and column dividers in pixels.

intList GuiFrameSetCtrl::rows
A vector of row offsets (determines the height of each row).

GuiPaneControl A collapsable pane control.

Inherit: GuiControl

Description This class wraps a single child control and displays a header with caption above it. If you click the
header it will collapse or expand (if collapsable is enabled). The control resizes itself based on its collapsed/expanded
size. In the GUI editor, if you just want the header you can make collapsable false. The caption field lets you set the
caption; it expects a bitmap (from the GuiControlProfile) that contains two images - the first is displayed when the
control is expanded and the second is displayed when it is collapsed. The header is sized based on the first image.

Example:

newGuiPaneControl()
{

caption = "Example Pane";
collapsable = "1";
barBehindText = "1";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiPaneControl::setCollapsed(bool collapse)

Collapse or un-collapse the control.

Parameters collapse – True to collapse the control, false to un-collapse it

Fields
bool GuiPaneControl::barBehindText

Whether to draw the bitmapped pane bar behind the header text, too.
string GuiPaneControl::caption

Text label to display as the pane header.

456 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string GuiPaneControl::captionID
String table text ID to use as caption string (overrides ‘caption’).

bool GuiPaneControl::collapsable
Whether the pane can be collapsed by clicking its header.

GuiPanel The GuiPanel panel is a container that when opaque will draw a left to right gradient using its profile fill
and fill highlight colors.

Inherit: GuiContainer

Description The GuiPanel panel is a container that when opaque will draw a left to right gradient using its profile
fill and fill highlight colors.

Example:

// Mandatory GuiDefaultProfile// Contains the fill color information required by a GuiPanel// Some values left out for sake of this examplenewGuiControlProfile (GuiDefaultProfile)
{

// fill color
opaque = false;
fillColor = "242 241 240";
fillColorHL ="228 228 235";
fillColorSEL = "98 100 137";
fillColorNA = "255 255 255 ";

};

newGuiPanel(TestPanel)
{

position = "45 33";
extent = "342 379";
minExtent = "16 16";
horizSizing = "right";
vertSizing = "bottom";
profile = "GuiDefaultProfile"; // Color fill info is in this profileisContainer = "1";

};

GuiRolloutCtrl A container that shows a single child with an optional header bar that can be used to collapse and
expand the rollout.

Inherit: GuiControl

Description A rollout is a container that can be collapsed and expanded using smooth animation. By default, rollouts
will display a header with a caption along the top edge of the control which can be clicked by the user to toggle the
collapse state of the rollout.

Rollouts will automatically size themselves to exactly fit around their child control. They will also automatically
position their child control in their upper left corner below the header (if present).

Methods
void GuiRolloutCtrl::collapse()

Collapse the rollout if it is currently expanded. This will make the rollout’s child control invisible.
void GuiRolloutCtrl::expand()

Expand the rollout if it is currently collapsed. This will make the rollout’s child control visible.

5.3. Console Reference 457

Torque 3D Documentation, Release 3.5.1

void GuiRolloutCtrl::instantCollapse()
Instantly collapse the rollout without animation. To smoothly slide the rollout to collapsed state, use collapse() .

void GuiRolloutCtrl::instantExpand()
Instantly expand the rollout without animation. To smoothly slide the rollout to expanded state, use expand() .

bool GuiRolloutCtrl::isExpanded()
Determine whether the rollout is currently expanded, i.e. whether the child control is visible. Reimplemented
from SimObject .

Returns True if the rollout is expanded, false if not.

void GuiRolloutCtrl::onCollapsed()
Called when the rollout is collapsed.

void GuiRolloutCtrl::onExpanded()
Called when the rollout is expanded.

void GuiRolloutCtrl::onHeaderRightClick()
Called when the user right-clicks on the rollout’s header. This is useful for implementing context menus for
rollouts.

void GuiRolloutCtrl::sizeToContents()
Resize the rollout to exactly fit around its child control. This can be used to manually trigger a recomputation
of the rollout size.

void GuiRolloutCtrl::toggleCollapse()
Toggle the current collapse state of the rollout. If it is currently expanded, then collapse it. If it is currently
collapsed, then expand it.

void GuiRolloutCtrl::toggleExpanded(bool instantly)
Toggle the current expansion state of the rollout If it is currently expanded, then collapse it. If it is currently
collapsed, then expand it.

Parameters instant – If true, the rollout will toggle its state without animation. Otherwise, the
rollout will smoothly slide into the opposite state.

Fields
bool GuiRolloutCtrl::autoCollapseSiblings

Whether to automatically collapse sibling rollouts. If this is true, the rollout will automatically collapse all
sibling rollout controls when it is expanded. If this is false, the auto-collapse behavior can be triggered by
CTRL (CMD on MAC) clicking the rollout header. CTRL/CMD clicking also works if this is false, in which
case the auto-collapsing of sibling controls will be temporarily deactivated.

string GuiRolloutCtrl::caption
Text label to display on the rollout header.

bool GuiRolloutCtrl::clickCollapse
Whether the rollout can be collapsed by clicking its header.

int GuiRolloutCtrl::defaultHeight
Default height of the client area. This is used when no child control has been added to the rollout.

bool GuiRolloutCtrl::expanded
The current rollout expansion state.

bool GuiRolloutCtrl::hideHeader
Whether to render the rollout header.

RectI GuiRolloutCtrl::margin
Margin to put around child control.

458 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

GuiScrollCtrl A container that allows to view one or more possibly larger controls inside its area by providing
horizontal and/or vertical scroll bars.

Inherit: GuiContainer

Description A container that allows to view one or more possibly larger controls inside its area by providing hori-
zontal and/or vertical scroll bars.

Methods
void GuiScrollCtrl::computeSizes()

Refresh sizing and positioning of child controls.
Point2I GuiScrollCtrl::getScrollPosition()

Get the current coordinates of the scrolled content.

Returns The current position of the scrolled content.

int GuiScrollCtrl::getScrollPositionX()
Get the current X coordinate of the scrolled content.

Returns The current X coordinate of the scrolled content.

int GuiScrollCtrl::getScrollPositionY()
Get the current Y coordinate of the scrolled content.

Returns The current Y coordinate of the scrolled content.

void GuiScrollCtrl::onScroll()
Called each time the child controls are scrolled by some amount.

void GuiScrollCtrl::scrollToBottom()
Scroll all the way to the bottom of the vertical scrollbar and the left of the horizontal bar.

void GuiScrollCtrl::scrollToObject(GuiControl control)
Scroll the control so that the given child control is visible.

Parameters control – A child control.

void GuiScrollCtrl::scrollToTop()
Scroll all the way to the top of the vertical and left of the horizontal scrollbar.

void GuiScrollCtrl::setScrollPosition(int x, int y)
Set the position of the scrolled content.

Parameters

• x – Position on X axis.

• y – Position on y axis.

Fields
Point2I GuiScrollCtrl::childMargin

Padding region to put around child contents.
bool GuiScrollCtrl::constantThumbHeight

GuiScrollBarBehavior GuiScrollCtrl::hScrollBar
When to display the horizontal scrollbar.

bool GuiScrollCtrl::lockHorizScroll
Horizontal scrolling not allowed if set.

5.3. Console Reference 459

Torque 3D Documentation, Release 3.5.1

bool GuiScrollCtrl::lockVertScroll
Vertical scrolling not allowed if set.

int GuiScrollCtrl::mouseWheelScrollSpeed
Pixels/Tick - if not positive then mousewheel scrolling occurs instantly (like other scrolling).

GuiScrollBarBehavior GuiScrollCtrl::vScrollBar
When to display the vertical scrollbar.

bool GuiScrollCtrl::willFirstRespond

GuiSpeedometerHud Displays the speed of the current Vehicle based control object.

Inherit: GuiBitmapCtrl

Description This control only works if a server connection exists, and its control object is a Vehicle derived class.
If either of these requirements is false, the control is not rendered. The control renders the speedometer needle as
a colored quad, rotated to indicate the Vehicle speed as determined by the minAngle, maxAngle, and maxSpeed
properties. This control is normally placed on top of a GuiBitmapCtrl representing the speedometer dial.

Example:

newGuiSpeedometerHud()
{

maxSpeed = "100";
minAngle = "215";
maxAngle = "0";
color = "1 0.3 0.3 1";
center = "130 123";
length = "100";
width = "2";
tail = "0";
//Properties not specific to this control have been omitted from this example.

};

Fields
Point2F GuiSpeedometerHud::center

Center of the needle, offset from the GuiSpeedometerHud control top left corner.
ColorF GuiSpeedometerHud::color

Color of the needle.

float GuiSpeedometerHud::length
Length of the needle from center to end.

float GuiSpeedometerHud::maxAngle
Angle (in radians) of the needle when the Vehicle speed is gt = maxSpeed. An angle of 0 points right, 90 points
up etc).

float GuiSpeedometerHud::maxSpeed
Maximum Vehicle speed (in Torque units per second) to represent on the speedo (Vehicle speeds greater than
this are clamped to maxSpeed).

float GuiSpeedometerHud::minAngle
Angle (in radians) of the needle when the Vehicle speed is 0. An angle of 0 points right, 90 points up etc).

float GuiSpeedometerHud::tail
Length of the needle from center to tail.

460 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float GuiSpeedometerHud::width
Width of the needle.

GuiSplitContainer A container that splits its area between two child controls.

Inherit: GuiContainer

Description A GuiSplitContainer can be used to dynamically subdivide an area between two child controls. A
splitter bar is placed between the two controls and allows to dynamically adjust the sizing ratio between the two sides.
Splitting can be either horizontal (subdividing top and bottom) or vertical (subdividing left and right) depending on
orientation.

By using fixedPanel, one of the panels can be chosen to remain at a fixed size (fixedSize).

Example:

// Create a vertical splitter with a fixed-size left panel.
%splitter = newGuiSplitContainer()
{

orientation = "Vertical";
fixedPanel = "FirstPanel";
fixedSize = 100;

newGuiScrollCtrl()
{

newGuiMLTextCtrl()
{

text = %longText;
};

};

newGuiScrollCtrl()
{

newGuiMLTextCtrl()
{

text = %moreLongText;
};

};
};

Fields
GuiSplitFixedPanel GuiSplitContainer::fixedPanel

Which (if any) side of the splitter to keep at a fixed size.
int GuiSplitContainer::fixedSize

Width of the fixed panel specified by fixedPanel (if any).

GuiSplitOrientation GuiSplitContainer::orientation
Whether to split between top and bottom (horizontal) or between left and right (vertical).

Point2I GuiSplitContainer::splitPoint
Point on control through which the splitter goes. Changed relatively if size of control changes.

int GuiSplitContainer::splitterSize
Width of the splitter bar between the two sides. Default is 2.

5.3. Console Reference 461

Torque 3D Documentation, Release 3.5.1

GuiStackControl A container that stacks its children horizontally or vertically.

Inherit: GuiControl

Description This container maintains a horizontal or vertical stack of GUI controls. If one is added, deleted, or
resized, then the stack is resized to fit. The order of the stack is determined by the internal order of the children (ie.
the order of addition).

Example:

newGuiStackControl()
{

stackingType = "Dynamic";
horizStacking = "Left to Right";
vertStacking = "Top to Bottom";
padding = "4";
dynamicSize = "1";
dynamicNonStackExtent = "0";
dynamicPos = "0";
changeChildSizeToFit = "1";
changeChildPosition = "1";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiStackControl::freeze(bool freeze)

Prevents control from restacking - useful when adding or removing child controls.

Parameters freeze – True to freeze the control, false to unfreeze it

Example:

%stackCtrl.freeze(true);
// add controls to stack
%stackCtrl.freeze(false);

bool GuiStackControl::isFrozen()
Return whether or not this control is frozen.

void GuiStackControl::updateStack()
Restack the child controls.

Fields
bool GuiStackControl::changeChildPosition

Determines whether to reposition child controls. If true, horizontally stacked children are aligned along the top
edge of the stack control. Vertically stacked children are aligned along the left edge of the stack control. If false,
horizontally stacked children retain their Y position, and vertically stacked children retain their X position.

bool GuiStackControl::changeChildSizeToFit
Determines whether to resize child controls. If true, horizontally stacked children keep their width, but have
their height set to the stack control height. Vertically stacked children keep their height, but have their width set
to the stack control width. If false, child controls are not resized.

bool GuiStackControl::dynamicNonStackExtent
Determines whether to resize the stack control along the non-stack axis (change height for horizontal stacking,
change width for vertical stacking). No effect if dynamicSize is false. If true, the stack will be resized to the
maximum of the child control widths/heights. If false, the stack will not be resized.

462 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool GuiStackControl::dynamicPos
Determines whether to reposition the stack along the stack axis when it is auto-resized. No effect if dynamicSize
is false. If true, the stack will grow left for horizontal stacking, and grow up for vertical stacking. If false, the
stack will grow right for horizontal stacking, and grow down for vertical stacking.

bool GuiStackControl::dynamicSize
Determines whether to resize the stack control along the stack axis (change width for horizontal stacking, change
height for vertical stacking). If true, the stack width/height will be resized to the sum of the child control
widths/heights. If false, the stack will not be resized.

GuiHorizontalStackingType GuiStackControl::horizStacking
Controls the type of horizontal stacking to use (Left to Right or Right to Left).

int GuiStackControl::padding
Distance (in pixels) between stacked child controls.

GuiStackingType GuiStackControl::stackingType
Determines the method used to position the child controls.

GuiVerticalStackingType GuiStackControl::vertStacking
Controls the type of vertical stacking to use (Top to Bottom or Bottom to Top).

GuiTabBookCtrl A container.

Inherit: GuiContainer

Description A container.

Example:

// Create

Methods
void GuiTabBookCtrl::addPage(string title)

Add a new tab page to the control.

Parameters title – Title text for the tab page header.
int GuiTabBookCtrl::getSelectedPage()

Get the index of the currently selected tab page.

Returns Index of the selected tab page or -1 if no tab page is selected.

void GuiTabBookCtrl::onTabRightClick(String text, int index)
Called when the user right-clicks on a tab page header.

Parameters

• text – Text of the page header for the tab that is being selected.

• index – Index of the tab page being selected.

void GuiTabBookCtrl::onTabSelected(String text, int index)
Called when a new tab page is selected.

Parameters

• text – Text of the page header for the tab that is being selected.

• index – Index of the tab page being selected.

5.3. Console Reference 463

Torque 3D Documentation, Release 3.5.1

void GuiTabBookCtrl::selectPage(int index)
Set the selected tab page.

Parameters index – Index of the tab page.

Fields
bool GuiTabBookCtrl::allowReorder

Whether reordering tabs with the mouse is allowed.
int GuiTabBookCtrl::defaultPage

Index of page to select on first onWake() call (-1 to disable).

int GuiTabBookCtrl::frontTabPadding
X offset of first tab page header.

int GuiTabBookCtrl::minTabWidth
Minimum width allocated to a tab page header.

int GuiTabBookCtrl::selectedPage
Index of currently selected page.

int GuiTabBookCtrl::tabHeight
Height of tab page headers.

int GuiTabBookCtrl::tabMargin
Spacing to put between individual tab page headers.

GuiTabPosition GuiTabBookCtrl::tabPosition
Where to place the tab page headers.

GuiTabPageCtrl A single page in a GuiTabBookCtrl.

Inherit: GuiTextCtrl

Description A single page in a GuiTabBookCtrl.

Example:

newGuiTabPageCtrl()
{

fitBook = "1";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiTabPageCtrl::select()

Select this page in its tab book.

Fields
bool GuiTabPageCtrl::fitBook

Determines whether to resize this page when it is added to the tab book. If true, the page will be resized
according to the tab book extents and tabPosition property.

GuiTreeViewCtrl Hierarchical list of text items with optional icons.

Inherit: GuiArrayCtrl

464 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description Can also be used to inspect SimObject hierarchies, primarily within editors.

GuiTreeViewCtrls can either display arbitrary user-defined trees or can be used to display SimObject hierarchies where
each parent node in the tree is a SimSet or SimGroup and each leaf node is a SimObject.

Each item in the tree has a text and a value. For trees that display SimObject hierarchies, the text for each item is
automatically derived from objects while the value for each item is the ID of the respective SimObject. For trees that
are not tied to SimObjects, both text and value of each item are set by the user.

Additionally, items in the tree can have icons.

Each item in the tree has a distinct numeric ID that is unique within its tree. The ID of the root item, which is always
present on a tree, is 0.

Example:

newGuiTreeViewCtrl(DatablockEditorTree)
{

tabSize = "16";
textOffset = "2";
fullRowSelect = "0";
itemHeight = "21";
destroyTreeOnSleep = "0";
MouseDragging = "0";
MultipleSelections = "1";
DeleteObjectAllowed = "1";
DragToItemAllowed = "0";
ClearAllOnSingleSelection = "1";
showRoot = "1";
internalNamesOnly = "0";
objectNamesOnly = "0";
compareToObjectID = "0";
Profile = "GuiTreeViewProfile";
tooltipprofile = "GuiToolTipProfile";
hovertime = "1000";

};

Methods
void GuiTreeViewCtrl::addSelection(int id, bool isLastSelection)

Add an item/object to the current selection.

Parameters

• id – ID of item/object to add to the selection.

• isLastSelection – Whether there are more pending items/objects to be added to the
selection. If false, the control will defer refreshing the tree and wait until addSelection() is
called with this parameter set to true.

bool GuiTreeViewCtrl::buildIconTable()
Builds an icon table.

bool GuiTreeViewCtrl::canRenameObject(SimObject object)

void GuiTreeViewCtrl::clear()
Empty tree.

void GuiTreeViewCtrl::clearFilterText()
Clear the current item filtering pattern.

void GuiTreeViewCtrl::clearSelection()
Unselect all currently selected items.

5.3. Console Reference 465

Torque 3D Documentation, Release 3.5.1

void GuiTreeViewCtrl::deleteSelection()
Delete all items/objects in the current selection.

bool GuiTreeViewCtrl::editItem(TreeItemId item, string newText, string newValue)

bool GuiTreeViewCtrl::expandItem(TreeItemId item, bool expand)

int GuiTreeViewCtrl::findChildItemByName(int parentId, string childName)
Get the child item of the given parent item whose text matches childName .

Parameters

• parentId – Item ID of the parent in which to look for the child.

• childName – Text of the child item to find.

Returns

.

int GuiTreeViewCtrl::findItemByName(string text)
Get the ID of the item whose text matches the given text .

Parameters text – Item text to match.

Returns ID of the item or -1 if no item matches the given text.

int GuiTreeViewCtrl::findItemByObjectId(int id)
Find item by object id and returns the mId

int GuiTreeViewCtrl::findItemByValue(string value)
Get the ID of the item whose value matches value .

Parameters value – Value text to match.

Returns ID of the item or -1 if no item has the given value.

int GuiTreeViewCtrl::getChild(TreeItemId item)

string GuiTreeViewCtrl::getFilterText()
Get the current filter expression. Only tree items whose text matches this expression are displayed. By default,
the expression is empty and all items are shown.

Returns The current filter pattern or an empty string if no filter pattern is currently active.

string GuiTreeViewCtrl::getItemText(TreeItemId item)

string GuiTreeViewCtrl::getItemValue(TreeItemId item)

int GuiTreeViewCtrl::getNextSibling(TreeItemId item)

int GuiTreeViewCtrl::getParent(TreeItemId item)

int GuiTreeViewCtrl::getPrevSibling(TreeItemId item)

int GuiTreeViewCtrl::getSelectedItem(int index)
Return the selected item at the given index.

int GuiTreeViewCtrl::getSelectedObject(int index)
Return the currently selected SimObject at the given index in inspector mode or -1.

string GuiTreeViewCtrl::getTextToRoot(TreeItemId item, Delimiter = , none)
gets the text from the current node to the root, concatenating at each branch upward, with a specified delimiter
optionally

bool GuiTreeViewCtrl::handleRenameObject(string newName, SimObject object)

466 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GuiTreeViewCtrl::hideSelection(bool state)
Call SimObject::setHidden (state) on all objects in the current selection.

Parameters state – Visibility state to set objects in selection to.

int GuiTreeViewCtrl::insertItem(int parentId, string text, string value, string icon, int normalImage,
int expandedImage)

Add a new item to the tree.

Parameters

• parentId – Item ID of parent to which to add the item as a child. 0 is root item.

• text – Text to display on the item in the tree.

• value – Behind-the-scenes value of the item.

• icon –

• normalImage –

• expandedImage –

Returns The ID of the newly added item.

bool GuiTreeViewCtrl::isItemSelected(int id)
Check whether the given item is currently selected in the tree.

Parameters id – Item/object ID.

Returns True if the given item/object is currently selected in the tree.

bool GuiTreeViewCtrl::isParentItem(int id)
Returns true if the given item contains child items.

bool GuiTreeViewCtrl::isValidDragTarget(int id, string value)

void GuiTreeViewCtrl::lockSelection(bool lock)
Set whether the current selection can be changed by the user or not.

Parameters lock – If true, the current selection is frozen and cannot be changed. If false, the
selection may be modified.

bool GuiTreeViewCtrl::markItem(TreeItemId item, bool mark)

void GuiTreeViewCtrl::moveItemDown(TreeItemId item)

void GuiTreeViewCtrl::moveItemUp(TreeItemId item)

void GuiTreeViewCtrl::onAddGroupSelected(SimGroup group)

void GuiTreeViewCtrl::onAddMultipleSelectionBegin()

void GuiTreeViewCtrl::onAddMultipleSelectionEnd()

void GuiTreeViewCtrl::onAddSelection(int itemOrObjectId, bool isLastSelection)

void GuiTreeViewCtrl::onBeginReparenting()

void GuiTreeViewCtrl::onClearSelection()

void GuiTreeViewCtrl::onDefineIcons()

bool GuiTreeViewCtrl::onDeleteObject(SimObject object)

void GuiTreeViewCtrl::onDeleteSelection()

void GuiTreeViewCtrl::onDragDropped()

void GuiTreeViewCtrl::onEndReparenting()

5.3. Console Reference 467

Torque 3D Documentation, Release 3.5.1

void GuiTreeViewCtrl::onInspect(int itemOrObjectId)

void GuiTreeViewCtrl::onKeyDown(int modifier, int keyCode)

void GuiTreeViewCtrl::onMouseDragged()

void GuiTreeViewCtrl::onMouseUp(int hitItemId, int mouseClickCount)

void GuiTreeViewCtrl::onObjectDeleteCompleted()

void GuiTreeViewCtrl::onRemoveSelection(int itemOrObjectId)

void GuiTreeViewCtrl::onReparent(int itemOrObjectId, int oldParentItemOrObjectId, int newParen-
tItemOrObjectId)

void GuiTreeViewCtrl::onRightMouseDown(int itemId, Point2I mousePos, SimObject object)

void GuiTreeViewCtrl::onRightMouseUp(int itemId, Point2I mousePos, SimObject object)

void GuiTreeViewCtrl::onSelect(int itemOrObjectId)

void GuiTreeViewCtrl::onUnselect(int itemOrObjectId)

void GuiTreeViewCtrl::open(SimSet obj, bool okToEdit)
Set the root of the tree view to the specified object, or to the root set.

bool GuiTreeViewCtrl::removeItem(TreeItemId item)

void GuiTreeViewCtrl::removeSelection()
Deselects an item.

void GuiTreeViewCtrl::scrollVisible(TreeItemId item)

int GuiTreeViewCtrl::scrollVisibleByObjectId(int id)
Show item by object id.returns true if sucessful.

bool GuiTreeViewCtrl::selectItem(TreeItemId item, bool select)

void GuiTreeViewCtrl::setDebug(bool value)
Enable/disable debug output.

void GuiTreeViewCtrl::setFilterText(string pattern)
Set the pattern by which to filter items in the tree. Only items in the tree whose text matches this pattern are
displayed.

Parameters pattern – New pattern based on which visible items in the tree should be filtered. If
empty, all items become visible.

void GuiTreeViewCtrl::setItemImages(int id, int normalImage, int expandedImage)
Sets the normal and expanded images to show for the given item.

void GuiTreeViewCtrl::setItemTooltip(int id, string text)
Set the tooltip to show for the given item.

void GuiTreeViewCtrl::showItemRenameCtrl(TreeItemId id)
Show the rename text field for the given item (only one at a time).

void GuiTreeViewCtrl::sort(int parent, bool traverseHierarchy, bool parentsFirst, bool caseSensitive)
Sorts all items of the given parent (or root). With ‘hierarchy’, traverses hierarchy.

void GuiTreeViewCtrl::toggleHideSelection()
Toggle the hidden state of all objects in the current selection.

void GuiTreeViewCtrl::toggleLockSelection()
Toggle the locked state of all objects in the current selection.

468 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
void GuiTreeViewCtrl::addChildSelectionByValue

addChildSelectionByValue(TreeItemId parent, value)
void GuiTreeViewCtrl::buildVisibleTree

Build the visible tree.

void GuiTreeViewCtrl::cancelRename
For internal use.

bool GuiTreeViewCtrl::canRenameObjects
If true clicking on a selected item (that is an object and not the root) will allow you to rename it.

bool GuiTreeViewCtrl::clearAllOnSingleSelection

bool GuiTreeViewCtrl::compareToObjectID

bool GuiTreeViewCtrl::deleteObjectAllowed

bool GuiTreeViewCtrl::destroyTreeOnSleep
If true, the entire tree item hierarchy is deleted when the control goes to sleep.

bool GuiTreeViewCtrl::dragToItemAllowed

bool GuiTreeViewCtrl::fullRowSelect

int GuiTreeViewCtrl::getFirstRootItem
Get id for root item.

int GuiTreeViewCtrl::getItemCount

string GuiTreeViewCtrl::getSelectedItemList
returns a space seperated list of mulitple item ids

int GuiTreeViewCtrl::getSelectedItemsCount

string GuiTreeViewCtrl::getSelectedObjectList
Returns a space sperated list of all selected object ids.

int GuiTreeViewCtrl::itemHeight

bool GuiTreeViewCtrl::mouseDragging

bool GuiTreeViewCtrl::multipleSelections
If true, multiple items can be selected concurrently.

void GuiTreeViewCtrl::onRenameValidate
For internal use.

void GuiTreeViewCtrl::removeAllChildren
removeAllChildren(TreeItemId parent)

void GuiTreeViewCtrl::removeChildSelectionByValue
removeChildSelectionByValue(TreeItemId parent, value)

bool GuiTreeViewCtrl::renameInternal
If true then object renaming operates on the internalName rather than the object name.

bool GuiTreeViewCtrl::showClassNameForUnnamedObjects
If true, class names will be used as object names for unnamed objects.

bool GuiTreeViewCtrl::showClassNames
If true, item text labels for objects will include class names.

bool GuiTreeViewCtrl::showInternalNames
If true, item text labels for obje ts will include internal names.

5.3. Console Reference 469

Torque 3D Documentation, Release 3.5.1

bool GuiTreeViewCtrl::showObjectIds
If true, item text labels for objects will include object IDs.

bool GuiTreeViewCtrl::showObjectNames
If true, item text labels for objects will include object names.

bool GuiTreeViewCtrl::showRoot
If true, the root item is shown in the tree.

int GuiTreeViewCtrl::tabSize

int GuiTreeViewCtrl::textOffset

bool GuiTreeViewCtrl::tooltipOnWidthOnly

bool GuiTreeViewCtrl::useInspectorTooltips

GuiWindowCtrl A window with a title bar and an optional set of buttons.

Inherit: GuiContainer

Description The GuiWindowCtrl class implements windows that can be freely placed within the render window.
Additionally, the windows can be resized and maximized/minimized.

Example:

newGuiWindowCtrl(MyWindow)
{

text = "My Window"; // The text that is displayed on the title bar.
resizeWidth = true; // Allow horizontal resizing by user via mouse.
resizeHeight = true; // Allow vertical resizing by user via mouse.
canClose = true; // Display a close button in the title bar.
canMinimize = true; // Display a minimize button in the title bar.
canMaximize = true; // Display a maximize button in the title bar.

};

Methods
static void GuiWindowCtrl::attach(GuiWindowCtrl bottomWindow, GuiWindowCtrl topWindow)

Attach bottomWindow to so that bottomWindow moves along with topWindow when it is dragged.

Parameters

• bottomWindow –

• topWindow –
void GuiWindowCtrl::attachTo(GuiWindowCtrl window)

void GuiWindowCtrl::onClose()
Called when the close button has been pressed.

void GuiWindowCtrl::onCollapse()
Called when the window is collapsed by clicking its title bar.

void GuiWindowCtrl::onMaximize()
Called when the window has been maximized.

void GuiWindowCtrl::onMinimize()
Called when the window has been minimized.

void GuiWindowCtrl::onRestore()
Called when the window is restored from minimized, maximized, or collapsed state.

470 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GuiWindowCtrl::selectWindow()
Bring the window to the front.

void GuiWindowCtrl::setCollapseGroup(bool state)
Set the window’s collapsing state.

void GuiWindowCtrl::toggleCollapseGroup()
Toggle the window collapsing.

Fields
bool GuiWindowCtrl::canClose

Whether the window has a close button.
bool GuiWindowCtrl::canCollapse

Whether the window can be collapsed by clicking its title bar.

bool GuiWindowCtrl::canMaximize
Whether the window has a maximize button.

bool GuiWindowCtrl::canMinimize
Whether the window has a minimize button.

bool GuiWindowCtrl::canMove
Whether the window can be moved by dragging its titlebar.

string GuiWindowCtrl::closeCommand
Script code to execute when the window is closed.

bool GuiWindowCtrl::edgeSnap
If true, the window will snap to the edges of other windows when moved close to them.

bool GuiWindowCtrl::resizeHeight
Whether the window can be resized vertically.

bool GuiWindowCtrl::resizeWidth
Whether the window can be resized horizontally.

string GuiWindowCtrl::text
Text label to display in titlebar.

Enumeration

enum GuiAutoScrollDirection
Direction in which to scroll the child control.

Parameters

• Up – Scroll from bottom towards top.

• Down – Scroll from top towards bottom.

• Left – Scroll from right towards left.

• Right – Scroll from left towards right.

enum GuiDockingType

Parameters

• None –

• Client –

5.3. Console Reference 471

Torque 3D Documentation, Release 3.5.1

• Top –

• Bottom –

• Left –

• Right –

enum GuiFrameState

Parameters

• alwaysOn –

• alwaysOff –

• dynamic –

enum GuiHorizontalStackingType
Determines how child controls are stacked horizontally.

Parameters

• Right – Child controls are positioned in order from left to right (left-most control is first).

• Left – Child controls are positioned in order from right to left (right-most control is first).

enum GuiScrollBarBehavior
Display behavior of a scroll bar. Determines when a scrollbar will be visible.

Parameters

• alwaysOn – Always visible.

• alwaysOff – Never visible.

• dynamic – Only visible when actually needed, i.e. when the child control(s) exceed the
visible space on the given axis.

enum GuiSplitFixedPanel
Which side of the splitter to keep at a fixed size (if any).

Parameters

• None – Allow both childs to resize (default).

• FirstPanel – Keep.

• SecondPanel –

enum GuiSplitOrientation
Axis along which to divide the container’s space.

Parameters

• Vertical – Divide vertically placing one child left and one child right.

• Horizontal – Divide horizontally placing one child on top and one child below.

enum GuiStackingType
Stacking method used to position child controls.

Parameters

• Vertical – Stack children vertically by setting their Y position.

• Horizontal – Stack children horizontall by setting their X position.

472 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• Dynamic – Automatically switch between Vertical and Horizontal stacking. Vertical stack-
ing is chosen when the stack control is taller than it is wide, horizontal stacking is chosen
when the stack control is wider than it is tall.

enum GuiTabPosition
Where the control should put the tab headers for selecting individual pages.

Parameters

• Top – Tab headers on top edge.

• Bottom – Tab headers on bottom edge.

enum GuiVerticalStackingType
Determines how child controls are stacked vertically.

Parameters

• Bottom – Child controls are positioned in order from top to bottom (top-most control is
first).

• Top – Child controls are positioned in order from bottom to top (bottom-most control is
first).

Image and Video Controls

Controls that display images or videos.

Classes

GuiBitmapBorderCtrl A control that renders a skinned border specified in its profile.

Inherit: GuiControl

Description This control uses the bitmap specified in it’s profile (GuiControlProfile::bitmapName). It takes this
image and breaks up aspects of it to skin the border of this control with. It is also important to set GuiControlPro-
file::hasBitmapArray to true on the profile as well.

The bitmap referenced should be broken up into a 3 x 3 grid (using the top left color pixel as a border color between
each of the images) in which it will map to the following places: 1 = Top Left Corner 2 = Top Right Corner 3 = Top
Center 4 = Left Center 5 = Right Center 6 = Bottom Left Corner 7 = Bottom Center 8 = Bottom Right Corner 0 =
Nothing

1 2 3 4 5 0 6 7 8

Example:

singleton GuiControlProfile (BorderGUIProfile)
{

bitmap = "core/art/gui/images/borderArray";
hasBitmapArray = true;
opaque = false;

};

newGuiBitmapBorderCtrl(BitmapBorderGUI)
{

profile = "BorderGUIProfile";
position = "0 0";
extent = "400 40";

5.3. Console Reference 473

Torque 3D Documentation, Release 3.5.1

visible = "1";
};

GuiChunkedBitmapCtrl This is a control that will render a specified bitmap or a bitmap specified in a referenced
variable.

Inherit: GuiControl

Description This control allows you to either set a bitmap with the “bitmap” field or with the setBitmap method.
You can also choose to reference a variable in the “variable” field such as “$image” and then set “useVariable” to true.
This will cause it to synchronize the variable with the bitmap displayed (if the variable holds a valid image). You can
then change the variable and effectively changed the displayed image.

Example:

$image = "anotherbackground.png";
newGuiChunkedBitmapCtrl(ChunkedBitmap)
{

bitmap = "background.png";
variable = "$image";
useVariable = false;

}

// This will result in the control rendering "background.png"// If we now set the useVariable to true it will now render "anotherbackground.png"
ChunkedBitmap.useVariable = true;

Methods
void GuiChunkedBitmapCtrl::setBitmap(string filename)

Set the image rendered in this control.

Parameters filename – The image name you want to set

Example:

ChunkedBitmap.setBitmap("images/background.png");

Fields
filename GuiChunkedBitmapCtrl::bitmap

This is the bitmap to render to the control.
bool GuiChunkedBitmapCtrl::tile

This is no longer in use.

bool GuiChunkedBitmapCtrl::useVariable
This decides whether to use the “bitmap” file or a bitmap stored in “variable”.

GuiTheoraCtrl A control to playing Theora videos.

Inherit: GuiControl

Description This control can be used to play videos in the Theora video format. The videos may include audio in
Vorbis format. The codecs for both formats are integrated with the engine and no codecs must be present on the user’s
machine.

Example:

474 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%video = newGuiTheoraCtrl()
{

theoraFile = "videos/intro.ogv";
playOnWake = false;
stopOnSleep = true;

}

Canvas.setContent(%video);
%video.play();

Methods
float GuiTheoraCtrl::getCurrentTime()

Get the current playback time.

Returns The elapsed playback time in seconds.
bool GuiTheoraCtrl::isPlaybackDone()

Test whether the video has finished playing.

Returns True if the video has finished playing, false otherwise.

void GuiTheoraCtrl::pause()
Pause playback of the video. If the video is not currently playing, the call is ignored. While stopped, the control
displays the last frame.

void GuiTheoraCtrl::play()
Start playing the video. If the video is already playing, the call is ignored.

void GuiTheoraCtrl::setFile(string filename)
Set the video file to play. If a video is already playing, playback is stopped and the new video file is loaded.

Parameters filename – The video file to load.

void GuiTheoraCtrl::stop()
Stop playback of the video. The next call to play() will then start playback from the beginning of the video.
While stopped, the control renders empty with just the background color.

Fields
ColorI GuiTheoraCtrl::backgroundColor

Fill color when video is not playing.
bool GuiTheoraCtrl::matchVideoSize

Whether to automatically match control extents to the video size.

bool GuiTheoraCtrl::playOnWake
Whether to start playing video when control is woken up.

bool GuiTheoraCtrl::renderDebugInfo
If true, displays an overlay on top of the video with useful debugging information.

bool GuiTheoraCtrl::stopOnSleep
Whether to stop video when control is set to sleep. If this is not set to true, the video will be paused when
the control is put to sleep. This is because there is no support for seeking in the video stream in the player
backend and letting the time source used to synchronize video (either audio or a raw timer) get far ahead of
frame decoding will cause possibly very long delays when the control is woken up again.

filename GuiTheoraCtrl::theoraFile
Theora video file to play.

GuiTheoraTranscoder GuiTheoraCtrl::transcoder
The routine to use for Y’CbCr to RGB conversion.

5.3. Console Reference 475

Torque 3D Documentation, Release 3.5.1

Enumeration

enum GuiBitmapMode
Rendering behavior when placing bitmaps in controls.

Parameters

• Stretched – Stretch bitmap to fit control extents.

• Centered – Center bitmap in control.

enum GuiIconButtonIconLocation

Parameters

• None –

• Left –

• Right –

• Center –

enum GuiIconButtonTextLocation

Parameters

• None –

• Bottom –

• Right –

• Top –

• Left –

• Center –

enum GuiTheoraTranscoder
Routine to use for converting Theora’s Y’CbCr pixel format to RGB color space.

Parameters

• Auto – Automatically detect most appropriate setting.

• Generic – Slower but beneric transcoder that can convert all Y’CbCr input formats to
RGB or RGBA output.

• SSE2420RGBA – Fast SSE2-based transcoder with fixed conversion from 4:2:0 Y’CbCr to
RGBA.

Value Controls

Controls that display values and optionally allow to edit them.

Classes

GuiGraphCtrl A control that plots one or more curves in a chart.

Inherit: GuiControl

476 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description Up to 6 individual curves can be plotted in the graph. Each plotted curve can have its own
display style including its own charting style (plotType) and color (plotColor).

The data points on each curve can be added in one of two ways:

Example:

// Create a graph that plots a red polyline graph of the FPS counter in a 1 second (1000 milliseconds) interval.newGuiGraphCtrl(FPSGraph)
{

plotType[0] = "PolyLine";
plotColor[0] = "1 0 0";
plotVariable[0] = "fps::real";
plotInterval[0] = 1000;

};

Methods
void GuiGraphCtrl::addAutoPlot(int plotId, string variable, int updateFrequency)

Sets up the given plotting curve to automatically plot the value of the variable with a frequency of
updateFrequency .

Parameters

• plotId – Index of the plotting curve. Must be 0<=plotId<6.

• variable – Name of the global variable.

• updateFrequency – Frequency with which to add new data points to the plotting
curve (in milliseconds).

Example:

// Plot FPS counter at 1 second intervals.
%graph.addAutoPlot(0, "fps::real", 1000);

void GuiGraphCtrl::addDatum(int plotId, float value)
Add a data point to the plot’s curve.

Parameters

• plotId – Index of the plotting curve to which to add the data point. Must be
0<=plotId<6.

• value – Value of the data point to add to the curve.

float GuiGraphCtrl::getDatum(int plotId, int index)
Get a data point on the given plotting curve.

Parameters

• plotId – Index of the plotting curve from which to fetch the data point. Must be
0<=plotId<6.

• index – Index of the data point on the curve.

Returns are out of range.

void GuiGraphCtrl::matchScale(int plotID1, int plotID2, ...)
Set the scale of all specified plots to the maximum scale among them.

Parameters

• plotID1 – Index of plotting curve.

• plotID2 – Index of plotting curve.

5.3. Console Reference 477

Torque 3D Documentation, Release 3.5.1

void GuiGraphCtrl::removeAutoPlot(int plotId)
Stop automatic variable plotting for the given curve.

Parameters plotId – Index of the plotting curve. Must be 0<=plotId<6.

void GuiGraphCtrl::setGraphType(int plotId, GuiGraphType graphType)
Change the charting type of the given plotting curve.

Parameters

• plotId – Index of the plotting curve. Must be 0<=plotId<6.

• graphType – Charting type to use for the curve.

Fields
float GuiGraphCtrl::centerY

Ratio of where to place the center coordinate of the graph on the Y axis. 0.5=middle height of
control. This allows to account for graphs that have only positive or only negative data points, for
example.

ColorF GuiGraphCtrl::plotColor[6]
Color to use for the plotting curves in the graph.

int GuiGraphCtrl::plotInterval[6]
Interval between auto-plots of plotVariable for the respective curve (in milliseconds).

GuiGraphType GuiGraphCtrl::plotType[6]
Charting type of the plotting curves.

string GuiGraphCtrl::plotVariable[6]
Name of the variable to automatically plot on the curves. If empty, auto-plotting is disabled for the
respective curve.

GuiProgressBitmapCtrl A horizontal progress bar rendered from a repeating image.

Inherit: GuiTextCtrl

Description This class is used give progress feedback to the user. Unlike GuiProgressCtrl which simply
renders a filled rectangle, GuiProgressBitmapCtrl renders the bar using a bitmap.

This bitmap can either be simple, plain image which is then stretched into the current extents of the bar
as it fills up or it can be a bitmap array with three entries. In the case of a bitmap array, the first entry in
the array is used to render the left cap of the bar and the third entry in the array is used to render the right
cap of the bar. The second entry is streched in-between the two caps.

Example:

// This example shows one way to break down a long-running computation into phases// and incrementally update a progress bar between the phases.newGuiProgressBitmapCtrl(Progress)
{

bitmap = "core/art/gui/images/loading";
extent = "300 50";
position = "100 100";

};

// Put the control on the canvas.
%wrapper = newGuiControl();
%wrapper.addObject(Progress);
Canvas.pushDialog(%wrapper);

// Start the computation.schedule(1, 0, "phase1");

478 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

function phase1()
{

Progress.setValue(0);

// Perform some computation.//...// Update progress.
Progress.setValue(0.25);

// Schedule next phase. Dont call directly so engine gets a change to run refresh.schedule(1, 0, "phase2");
}

function phase2()
{

// Perform some computation.//...// Update progress.
Progress.setValue(0.7);

// Schedule next phase. Dont call directly so engine gets a change to run refresh.schedule(1, 0, "phase3");
}

function phase3()
{

// Perform some computation.//...// Update progress.
Progress.setValue(0.9);

// Schedule next phase. Dont call directly so engine gets a change to run refresh.schedule(1, 0, "phase4");
}

function phase4()
{

// Perform some computation.//...// Final update of progress.
Progress.setValue(1.0);

}

Methods
void GuiProgressBitmapCtrl::setBitmap(string filename)

Set the bitmap to use for rendering the progress bar.

Parameters filename – ~Path to the bitmap file.

Fields
filename GuiProgressBitmapCtrl::bitmap

~Path to the bitmap file to use for rendering the progress bar. If the profile assigned to the control
already has a bitmap assigned, this property need not be set in which case the bitmap from the profile
is used.

GuiProgressCtrl GUI Control which displays a horizontal bar which increases as the progress value of
0.0 - 1.0 increases.

Inherit: GuiTextCtrl

Description GUI Control which displays a horizontal bar which increases as the progress value of 0.0 -
1.0 increases.

Example:

5.3. Console Reference 479

Torque 3D Documentation, Release 3.5.1

newGuiProgressCtrl(JS_statusBar)
{

//Properties not specific to this control have been omitted from this example.
};

// Define the value to set the progress bar%value = "0.5f"// Set the value of the progress bar, from 0.0 - 1.0
%thisGuiProgressCtrl.setValue(%value);
// Get the value of the progress bar.
%progress = %thisGuiProgressCtrl.getValue();

GuiSliderCtrl A control that displays a value between its minimal and maximal bounds using a slider
placed on a vertical or horizontal axis.

Inherit: GuiControl

Description A control that displays a value between its minimal and maximal bounds using a slider
placed on a vertical or horizontal axis.

A slider displays a value and allows that value to be changed by dragging a thumb control along the axis
of the slider. In this way, the value is changed between its allowed minimum and maximum.

To hook up script code to the value changes of a slider, use the command and altCommand properties.
command is executed once the thumb is released by the user whereas altCommand is called any time the
slider value changes. When changing the slider value from script, however, trigger of altCommand is
suppressed by default.

The orientation of a slider is automatically determined from the ratio of its width to its height. If a slider
is taller than it is wide, it will be rendered with a vertical orientation. If it is wider than it is tall, it will be
rendered with a horizontal orientation.

The rendering of a slider depends on the bitmap in the slider’s profile. This bitmap must be a bitmap array
comprised of at least five bitmap rectangles. The rectangles are used such that:

Example:

// Create a sound source and a slider that changes the volume of the source.

%source = sfxPlayOnce("art/sound/testing", AudioLoop2D);

new GuiSlider()
{

// Update the sound source volume when the slider is being dragged and released.command = %source @ ".setVolume($ThisControl.value);";

// Limit the range to 0..1 since that is the allowable range for sound volumes.range = "0 1";
};

Methods
float GuiSliderCtrl::getValue()

Get the current value of the slider based on the position of the thumb.

Returns Slider position (from range.x to range.y).
bool GuiSliderCtrl::isThumbBeingDragged()

Returns true if the thumb is currently being dragged by the user. This method is mainly useful for
scrubbing type sliders where the slider position is sync’d to a changing value. When the user is
dragging the thumb, however, the sync’ing should pause and not get in the way of the user.

480 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GuiSliderCtrl::onMouseDragged()
Called when the left mouse button is dragged across the slider.

void GuiSliderCtrl::setValue(float pos, bool doCallback)
Set position of the thumb on the slider.

Parameters

• pos – New slider position (from range.x to range.y)

• doCallback – If true, the altCommand callback will be invoked

Fields
Point2F GuiSliderCtrl::range

Min and max values corresponding to left and right slider position.
bool GuiSliderCtrl::snap

Whether to snap the slider to tick marks.

int GuiSliderCtrl::ticks
Spacing between tick marks in pixels. 0=off.

float GuiSliderCtrl::value
The value corresponding to the current slider position.

Enumeration

enum GuiGraphType
The charting style of a single plotting curve in a GuiGraphCtrl .

Parameters

• Bar – Plot the curve as a bar chart.

• Filled – Plot a filled poly graph that connects the data points on the curve.

• Point – Plot each data point on the curve as a single dot.

• PolyLine – Plot straight lines through the data points of the curve.

Utility Controls

A collection of utility classes that support other GUI controls.

Classes

GuiDragAndDropControl A container control that can be used to implement drag&drop behav-
ior.

Inherit: GuiControl

Description GuiDragAndDropControl is a special control that can be used to allow drag&drop behav-
ior to be implemented where GuiControls may be dragged across the canvas and the dropped on other
GuiControls.

To start a drag operation, construct a GuiDragAndDropControl and add the control that should be
drag&dropped as a child to it. Note that this must be a single child control. To drag multiple controls,
wrap them in a new GuiControl object as a temporary container.

5.3. Console Reference 481

Torque 3D Documentation, Release 3.5.1

Then, to initiate the drag, add the GuiDragAndDropControl to the canvas and call startDragging(). You
can optionally supply an offset to better position the GuiDragAndDropControl on the mouse cursor.

As the GuiDragAndDropControl is then moved across the canvas, it will call the onControlDragEnter(),
onControlDragExit(), onControlDragged(), and finally onControlDropped() callbacks on the visible top-
most controls that it moves across. onControlDropped() is called when the mouse button is released and
the drag operation thus finished.

Example:

// The following example implements drag&drop behavior for GuiSwatchButtonCtrl so that// one color swatch may be dragged over the other to quickly copy its color.//// This code is taken from the stock scripts.//---// With this method, we start the operation when the mouse is click-dragged away from a color swatch.
function GuiSwatchButtonCtrl::onMouseDragged(%this)
{

// First we construct a new temporary swatch button that becomes the payload for our// drag operation and give it the properties of the swatch button we want to copy.

%payload = newGuiSwatchButtonCtrl();
%payload.assignFieldsFrom(%this);
%payload.position = "0 0";
%payload.dragSourceControl = %this; // Remember where the drag originated from so that we dont copy a color swatch onto itself.// Calculate the offset of the GuiDragAndDropControl from the mouse cursor. Here we center// it on the cursor.

%xOffset = getWord(%payload.extent, 0) / 2;
%yOffset = getWord(%payload.extent, 1) / 2;

// Compute the initial position of the GuiDragAndDrop control on the cavas based on the current// mouse cursor position.

%cursorpos = Canvas.getCursorPos();
%xPos = getWord(%cursorpos, 0) - %xOffset;
%yPos = getWord(%cursorpos, 1) - %yOffset;

// Create the drag control.

%ctrl = newGuiDragAndDropControl()
{

canSaveDynamicFields = "0";
Profile = "GuiSolidDefaultProfile";
HorizSizing = "right";
VertSizing = "bottom";
Position = %xPos SPC %yPos;
extent = %payload.extent;
MinExtent = "4 4";
canSave = "1";
Visible = "1";
hovertime = "1000";

// Let the GuiDragAndDropControl delete itself on mouse-up. When the drag is aborted,// this not only deletes the drag control but also our payload.
deleteOnMouseUp = true;

// To differentiate drags, use the namespace hierarchy to classify them.// This will allow a color swatch drag to tell itself apart from a file drag, for example.class = "GuiDragAndDropControlType_ColorSwatch";
};

// Add the temporary color swatch to the drag control as the payload.
%ctrl.add(%payload);

// Start drag by adding the drag control to the canvas and then calling startDragging().

Canvas.getContent().add(%ctrl);
%ctrl.startDragging(%xOffset, %yOffset);

}

482 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

//---// This method receives the drop when the mouse button is released over a color swatch control// during a drag operation.
function GuiSwatchButtonCtrl::onControlDropped(%this, %payload, %position)
{

// Make sure this is a color swatch drag operation.if(!%payload.parentGroup.isInNamespaceHierarchy("GuiDragAndDropControlType_ColorSwatch"))
return;

// If dropped on same button whence we came from,// do nothing.if(%payload.dragSourceControl == %this)
return;

// If a swatch button control is dropped onto this control,// copy its color.if(%payload.isMemberOfClass("GuiSwatchButtonCtrl"))
{

// If the swatch button is part of a color-type inspector field,// remember the inspector field so we can later set the color// through it.if(%this.parentGroup.isMemberOfClass("GuiInspectorTypeColorI"))
%this.parentGroup.apply(ColorFloatToInt(%payload.color));

elseif(%this.parentGroup.isMemberOfClass("GuiInspectorTypeColorF"))
%this.parentGroup.apply(%payload.color);

else
%this.setColor(%payload.color);

}
}

Methods
void GuiDragAndDropControl::startDragging(int x, int y)

Start the drag operation.

Parameters

• x – X coordinate for the mouse pointer offset which the drag control should position
itself.

• y – Y coordinate for the mouse pointer offset which the drag control should position
itself.

Fields
bool GuiDragAndDropControl::deleteOnMouseUp

If true, the control deletes itself when the left mouse button is released. If at this point, the drag amp
drop control still contains its payload, it will be deleted along with the control.

GuiInputCtrl A control that locks the mouse and reports all keyboard input events to script.

Inherit: GuiMouseEventCtrl

Description This is useful for implementing custom keyboard handling code, and most commonly used
in Torque for a menu that allows a user to remap their in-game controls

Example:

newGuiInputCtrl(OptRemapInputCtrl)
{

lockMouse = "0";
position = "0 0";
extent = "64 64";
minExtent = "8 8";
horizSizing = "center";
vertSizing = "bottom";
profile = "GuiInputCtrlProfile";
visible = "1";

5.3. Console Reference 483

Torque 3D Documentation, Release 3.5.1

active = "1";
tooltipProfile = "GuiToolTipProfile";
hovertime = "1000";
isContainer = "0";
canSave = "1";
canSaveDynamicFields = "0";

};

Methods
void GuiInputCtrl::onInputEvent(string device, string action, bool state)

Callback that occurs when an input is triggered on this control.

Parameters

• device – The device type triggering the input, such as keyboard, mouse, etc

• action – The actual event occuring, such as a key or button

• state – True if the action is being pressed, false if it is being release

GuiMessageVectorCtrl A chat HUD control that displays messages from a MessageVector.

Inherit: GuiControl

Description A chat HUD control that displays messages from a MessageVector.

This renders messages from a MessageVector; the important thing here is that the MessageVector holds
all the messages we care about, while we can destroy and create these GUI controls as needed.

Example:

// Declare ChatHud, which is what will display the actual chat from a MessageVectornewGuiMessageVectorCtrl(ChatHud) {
profile = "ChatHudMessageProfile";
horizSizing = "width";
vertSizing = "height";
position = "1 1";
extent = "252 16";
minExtent = "8 8";
visible = "1";
helpTag = "0";
lineSpacing = "0";
lineContinuedIndex = "10";
matchColor = "0 0 255 255";
maxColorIndex = "5";

};

// All messages are stored in this HudMessageVector, the actual// MainChatHud only displays the contents of this vector.newMessageVector(HudMessageVector);

// Attach the MessageVector to the chat control
chatHud.attach(HudMessageVector);

Methods
bool GuiMessageVectorCtrl::attach(MessageVector item)

Push a line onto the back of the list.

Parameters item – The GUI element being pushed into the control

484 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns Value

Example:

// All messages are stored in this HudMessageVector, the actual
// MainChatHud only displays the contents of this vector.
newMessageVector(HudMessageVector);

// Attach the MessageVector to the chat control
chatHud.attach(HudMessageVector);

void GuiMessageVectorCtrl::detach()
Stop listing messages from the MessageVector previously attached to, if any. Detailed description

Parameters param – Description

Example:

// Deatch the MessageVector from HudMessageVector
// HudMessageVector will no longer render the text
chatHud.detach();

Fields
string GuiMessageVectorCtrl::allowedMatches[16]
int GuiMessageVectorCtrl::lineContinuedIndex

int GuiMessageVectorCtrl::lineSpacing

ColorI GuiMessageVectorCtrl::matchColor

int GuiMessageVectorCtrl::maxColorIndex

GuiScriptNotifyCtrl A control which adds several reactions to other GUIs via callbacks.

Inherit: GuiControl

Description GuiScriptNotifyCtrl does not exist to render anything. When parented or made a child of
other controls, you can toggle flags on or off to make use of its specialized callbacks. Normally these
callbacks are used as utility functions by the GUI Editor, or other container classes. However, for very
fancy GUI work where controls interact with each other constantly, this is a handy utility to make use of.

Example:

// Common member fields left out for sake of examplenewGuiScriptNotifyCtrl()
{

onChildAdded = "0";
onChildRemoved = "0";
onChildResized = "0";
onParentResized = "0";

};

Methods
void GuiScriptNotifyCtrl::onChildAdded(SimObjectId ID, SimObjectId childID)

Called when a child is added to this GUI.

Parameters

• ID – Unique object ID assigned when created (this in script).

5.3. Console Reference 485

Torque 3D Documentation, Release 3.5.1

• childID – Unique object ID of child being added.
void GuiScriptNotifyCtrl::onChildRemoved(SimObjectId ID, SimObjectId childID)

Called when a child is removed from this GUI.

Parameters

• ID – Unique object ID assigned when created (this in script).

• childID – Unique object ID of child being removed.

void GuiScriptNotifyCtrl::onChildResized(SimObjectId ID, SimObjectId childID)
Called when a child is of this GUI is being resized.

Parameters

• ID – Unique object ID assigned when created (this in script).

• childID – Unique object ID of child being resized.

void GuiScriptNotifyCtrl::onGainFirstResponder(SimObjectId ID)
Called when this GUI gains focus.

Parameters ID – Unique object ID assigned when created (this in script).

void GuiScriptNotifyCtrl::onLoseFirstResponder(SimObjectId ID)
Called when this GUI loses focus.

Parameters ID – Unique object ID assigned when created (this in script).

void GuiScriptNotifyCtrl::onParentResized(SimObjectId ID)
Called when this GUI’s parent is resized.

Parameters ID – Unique object ID assigned when created (this in script).

void GuiScriptNotifyCtrl::onResize(SimObjectId ID)
Called when this GUI is resized.

Parameters ID – Unique object ID assigned when created (this in script).

Fields
bool GuiScriptNotifyCtrl::onChildAdded

Enables/disables onChildAdded callback.
bool GuiScriptNotifyCtrl::onChildRemoved

Enables/disables onChildRemoved callback.

bool GuiScriptNotifyCtrl::onChildResized
Enables/disables onChildResized callback.

bool GuiScriptNotifyCtrl::onGainFirstResponder
Enables/disables onGainFirstResponder callback.

bool GuiScriptNotifyCtrl::onLoseFirstResponder
Enables/disables onLoseFirstResponder callback.

bool GuiScriptNotifyCtrl::onParentResized
Enables/disables onParentResized callback.

bool GuiScriptNotifyCtrl::onResize
Enables/disables onResize callback.

GuiTickCtrl Brief Description.

Inherit: GuiControl

486 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description This Gui Control is designed to be subclassed to let people create controls which want to
receive update ticks at a constant interval. This class was created to be the Parent class of a control which
used a DynamicTexture along with a VectorField to create warping effects much like the ones found in
visualization displays for iTunes or Winamp. Those displays are updated at the framerate frequency. This
works fine for those effects, however for an application of the same type of effects for things like Gui
transitions the framerate-driven update frequency is not desirable because it does not allow the developer
to be able to have any idea of a consistent user-experience.

Enter the ITickable interface. This lets the Gui control, in this case, update the dynamic texture at a con-
stant rate of once per tick, even though it gets rendered every frame, thus creating a framerate-independent
update frequency so that the effects are at a consistent speed regardless of the specifics of the system the
user is on. This means that the screen-transitions will occur in the same time on a machine getting 300fps
in the Gui shell as a machine which gets 150fps in the Gui shell.

Methods
void GuiTickCtrl::setProcessTicks(bool tick)

This will set this object to either be processing ticks or not. This will set this object to either be
processing ticks or not.

Parameters tick – (optional) True or nothing to enable ticking, false otherwise.

Example:

// Turn off ticking for a control, like a MenuBar (declared previously)
%sampleMenuBar.setProcessTicks(false);

MessageVector Store a list of chat messages.

Inherit: SimObject

Description This is responsible for managing messages which appear in the chat HUD, not the actual
control rendered to the screen

Example:

// Declare ChatHud, which is what will display the actual chat from a MessageVectornewGuiMessageVectorCtrl(ChatHud) {
profile = "ChatHudMessageProfile";
horizSizing = "width";
vertSizing = "height";
position = "1 1";
extent = "252 16";
minExtent = "8 8";
visible = "1";
helpTag = "0";
lineSpacing = "0";
lineContinuedIndex = "10";
matchColor = "0 0 255 255";
maxColorIndex = "5";

};

// All messages are stored in this HudMessageVector, the actual// MainChatHud only displays the contents of this vector.newMessageVector(HudMessageVector);

// Attach the MessageVector to the chat control
chatHud.attach(HudMessageVector);

5.3. Console Reference 487

Torque 3D Documentation, Release 3.5.1

Methods
void MessageVector::clear()

Clear all messages in the vector.

Example:

HudMessageVector.clear();

bool MessageVector::deleteLine(int deletePos)
Delete the line at the specified position.

Parameters deletePos – Position in the vector containing the line to be deleted

Returns False if deletePos is greater than the number of lines in the current vector

Example:

// Delete the first line (index 0) in the vector...
HudMessageVector.deleteLine(0);

void MessageVector::dump(string filename)
Dump the message vector to a file without a header.

Parameters filename – Name and path of file to dump text to.

Example:

// Dump the entire chat log to a text file
HudMessageVector.dump("./chatLog.txt");

void MessageVector::dump(string filename, string header)
Dump the message vector to a file with a header.

Parameters

• filename – Name and path of file to dump text to.

• header – Prefix information for write out

Example:

// Arbitrary header data
%headerInfo = "Ars Moriendi Chat Log";

// Dump the entire chat log to a text file
HudMessageVector.dump("./chatLog.txt", %headerInfo);

int MessageVector::getLineIndexByTag(int tag)
Scan through the vector, returning the line number of the first line that matches the specified tag;
else returns -1 if no match was found.

Parameters tag – Numerical value assigned to a message when it was added or inserted

Returns Line with matching tag, other wise -1

Example:

// Locate a line of text tagged with the value "1", then delete it.
%taggedLine = HudMessageVector.getLineIndexByTag(1);
HudMessageVector.deleteLine(%taggedLine);

int MessageVector::getLineTag(int pos)
Get the tag of a specified line.

Parameters pos – Position in vector to grab tag from

488 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns Tag value of a given line, if the position is greater than the number of lines return
0

Example:

// Remove all lines that do not have a tag value of 1.while(HudMessageVector.getNumLines())
{

%tag = HudMessageVector.getLineTag(1);
if(%tag != 1)

%tag.delete();
HudMessageVector.popFrontLine();

}

string MessageVector::getLineText(int pos)
Get the text at a specified line.

Parameters pos – Position in vector to grab text from

Returns Text at specified line, if the position is greater than the number of lines return “”

Example:

// Print a line of text at position 1.
%text = HudMessageVector.getLineText(1);
echo(%text);

string MessageVector::getLineTextByTag(int tag)
Scan through the lines in the vector, returning the first line that has a matching tag.

Parameters tag – Numerical value assigned to a message when it was added or inserted

Returns Text from a line with matching tag, other wise “”

Example:

// Locate text in the vector tagged with the value "1", then print it
%taggedText = HudMessageVector.getLineTextByTag(1);
echo(%taggedText);

int MessageVector::getNumLines()
Get the number of lines in the vector.

Example:

// Find out how many lines have been stored in HudMessageVector
%chatLines = HudMessageVector.getNumLines();
echo(%chatLines);

bool MessageVector::insertLine(int insertPos, string msg, int tag)
Push a line onto the back of the list.

Parameters

• msg – Text that makes up the message

• tag – Numerical value associated with this message, useful for searching.

Returns False if insertPos is greater than the number of lines in the current vector

Example:

// Add the message...
HudMessageVector.insertLine(1, "Hello World", 0);

5.3. Console Reference 489

Torque 3D Documentation, Release 3.5.1

bool MessageVector::popBackLine()
Pop a line from the back of the list; destroys the line.

Returns False if there are no lines to pop (underflow), true otherwise

Example:

HudMessageVector.popBackLine();

bool MessageVector::popFrontLine()
Pop a line from the front of the vector, destroying the line.

Returns False if there are no lines to pop (underflow), true otherwise

Example:

HudMessageVector.popFrontLine();

void MessageVector::pushBackLine(string msg, int tag)
Push a line onto the back of the list.

Parameters

• msg – Text that makes up the message

• tag – Numerical value associated with this message, useful for searching.

Example:

// Add the message...
HudMessageVector.pushBackLine("Hello World", 0);

void MessageVector::pushFrontLine(string msg, int tag)
Push a line onto the front of the vector.

Parameters

• msg – Text that makes up the message

• tag – Numerical value associated with this message, useful for searching.

Example:

// Add the message...
HudMessageVector.pushFrontLine("Hello World", 0);

Game Controls

GUI controls dedicated to game play systems, such as heads up displays.

Classes

GuiClockHud Basic HUD clock. Displays the current simulation time offset from some base.

Inherit: GuiControl

Description Basic HUD clock. Displays the current simulation time offset from some base.

Example:

490 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

newGuiClockHud(){
fillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colortextColor = "1.0 1.0 1.0 1.0"; // Solid white text ColorshowFill = "true";
showFrame = "true";

};

Methods
float GuiClockHud::getTime()

Returns the current time, in seconds.

Returns timeInseconds Current time, in seconds

Example:

// Get the current time from the GuiClockHud control
%timeInSeconds = %guiClockHud.getTime();

void GuiClockHud::setReverseTime(float timeInSeconds)
Sets a time for a countdown clock. Setting the time like this will cause the clock to count backwards from the
specified time.

Parameters timeInSeconds – Time to set the clock, in seconds (IE: 00:02 would be 120)

void GuiClockHud::setTime(float timeInSeconds)
Sets the current base time for the clock.

Parameters timeInSeconds – Time to set the clock, in seconds (IE: 00:02 would be 120)

Example:

// Define the time, in seconds
%timeInSeconds = 120;

// Change the time on the GuiClockHud control
%guiClockHud.setTime(%timeInSeconds);

Fields
ColorF GuiClockHud::fillColor

Standard color for the background of the control.
ColorF GuiClockHud::frameColor

Color for the control’s frame.

bool GuiClockHud::showFill
If true, draws a background color behind the control.

bool GuiClockHud::showFrame
If true, draws a frame around the control.

ColorF GuiClockHud::textColor
Color for the text on this control.

GuiCrossHairHud Basic cross hair hud. Reacts to state of control object. Also displays health bar for named
objects under the cross hair.

Inherit: GuiBitmapCtrl

5.3. Console Reference 491

Torque 3D Documentation, Release 3.5.1

Description Basic cross hair hud. Reacts to state of control object. Also displays health bar for named objects under
the cross hair.

Uses the base bitmap control to render a bitmap, and decides whether to draw or not depending on the current control
object and it’s state. If there is ShapeBase object under the cross hair and it’s named, then a small health bar is
displayed.

Example:

newGuiCrossHairHud(){
damageFillColor = "1.0 0.0 0.0 1.0"; // Fills with a solid red colordamageFrameColor = "1.0 1.0 1.0 1.0"; // Solid white frame colordamageRect = "15 5";
damageOffset = "0 -10";

};

Fields
ColorF GuiCrossHairHud::damageFillColor

As the health bar depletes, this color will represent the health loss amount.
ColorF GuiCrossHairHud::damageFrameColor

Color for the health bar’s frame.

Point2I GuiCrossHairHud::damageOffset
Offset for drawing the damage portion of the health control.

Point2I GuiCrossHairHud::damageRect
Size for the health bar portion of the control.

GuiGameListMenuCtrl A base class for cross platform menu controls that are gamepad friendly.

Inherit: GuiControl

Description A base class for cross platform menu controls that are gamepad friendly.

This class is used to build row-based menu GUIs that can be easily navigated using the keyboard, mouse or gamepad.
The desired row can be selected using the mouse, or by navigating using the Up and Down buttons.

Example:

newGuiGameListMenuCtrl()
{

debugRender = "0";
callbackOnA = "applyOptions();";
callbackOnB = "Canvas.setContent(MainMenuGui);";
callbackOnX = "";
callbackOnY = "revertOptions();";
//Properties not specific to this control have been omitted from this example.

};

Methods
void GuiGameListMenuCtrl::activateRow()

Activates the current row. The script callback of the current row will be called (if it has one).
void GuiGameListMenuCtrl::addRow(string label, string callback, int icon, int yPad, bool useHigh-

lightIcon, bool enabled)
Add a row to the list control.

Parameters

• label – The text to display on the row as a label.

492 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• callback – Name of a script function to use as a callback when this row is activated.

• icon – [optional] Index of the icon to use as a marker.

• yPad – [optional] An extra amount of height padding before the row. Does nothing on the
first row.

• useHighlightIcon – [optional] Does this row use the highlight icon?.

• enabled – [optional] If this row is initially enabled.

int GuiGameListMenuCtrl::getRowCount()
Gets the number of rows on the control.

Returns (int) The number of rows on the control.

string GuiGameListMenuCtrl::getRowLabel(int row)
Gets the label displayed on the specified row.

Parameters row – Index of the row to get the label of.

Returns The label for the row.

int GuiGameListMenuCtrl::getSelectedRow()
Gets the index of the currently selected row.

Returns Index of the selected row.

bool GuiGameListMenuCtrl::isRowEnabled(int row)
Determines if the specified row is enabled or disabled.

Parameters row – The row to set the enabled status of.

Returns True if the specified row is enabled. False if the row is not enabled or the given index was
not valid.

void GuiGameListMenuCtrl::onChange()
Called when the selected row changes.

void GuiGameListMenuCtrl::setRowEnabled(int row, bool enabled)
Sets a row’s enabled status according to the given parameters.

Parameters

• row – The index to check for validity.

• enabled – Indicate true to enable the row or false to disable it.

void GuiGameListMenuCtrl::setRowLabel(int row, string label)
Sets the label on the given row.

Parameters

• row – Index of the row to set the label on.

• label – Text to set as the label of the row.

void GuiGameListMenuCtrl::setSelected(int row)
Sets the selected row. Only rows that are enabled can be selected.

Parameters row – Index of the row to set as selected.

Fields
string GuiGameListMenuCtrl::callbackOnA

Script callback when the ‘A’ button is pressed. ‘A’ inputs are Keyboard: A, Return, Space; Gamepad: A, Start.

5.3. Console Reference 493

Torque 3D Documentation, Release 3.5.1

string GuiGameListMenuCtrl::callbackOnB
Script callback when the ‘B’ button is pressed. ‘B’ inputs are Keyboard: B, Esc, Backspace, Delete; Gamepad:
B, Back.

string GuiGameListMenuCtrl::callbackOnX
Script callback when the ‘X’ button is pressed. ‘X’ inputs are Keyboard: X; Gamepad: X.

string GuiGameListMenuCtrl::callbackOnY
Script callback when the ‘Y’ button is pressed. ‘Y’ inputs are Keyboard: Y; Gamepad: Y.

bool GuiGameListMenuCtrl::debugRender
Enable debug rendering.

GuiGameListMenuProfile A GuiControlProfile with additional fields specific to GuiGameListMenuCtrl.

Inherit: GuiControlProfile

Description A GuiControlProfile with additional fields specific to GuiGameListMenuCtrl.

Example:

newGuiGameListMenuProfile()
{

hitAreaUpperLeft = "10 2";
hitAreaLowerRight = "190 18";
iconOffset = "10 2";
rowSize = "200 20";
//Properties not specific to this control have been omitted from this example.

};

Fields
Point2I GuiGameListMenuProfile::hitAreaLowerRight

Position of the lower right corner of the row hit area (relative to row’s top left corner).
Point2I GuiGameListMenuProfile::hitAreaUpperLeft

Position of the upper left corner of the row hit area (relative to row’s top left corner).

Point2I GuiGameListMenuProfile::iconOffset
Offset from the row’s top left corner at which to render the row icon.

Point2I GuiGameListMenuProfile::rowSize
The base size (“width height”) of a row.

GuiGameListOptionsCtrl A control for showing pages of options that are gamepad friendly.

Inherit: GuiGameListMenuCtrl

Description Each row in this control allows the selection of one value from a set of options using the keyboard,
gamepad or mouse. The row is rendered as 2 columns: the first column contains the row label, the second column
contains left and right arrows (for mouse picking) and the currently selected value.

Methods
void GuiGameListOptionsCtrl::addRow(string label, string options, bool wrapOptions, string call-

back, int icon, int yPad, bool enabled)
Add a row to the list control.

494 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• label – The text to display on the row as a label.

• options – A tab separated list of options.

• wrapOptions – Specify true to allow options to wrap at each end or false to prevent
wrapping.

• callback – Name of a script function to use as a callback when this row is activated.

• icon – [optional] Index of the icon to use as a marker.

• yPad – [optional] An extra amount of height padding before the row. Does nothing on the
first row.

• enabled – [optional] If this row is initially enabled.
string GuiGameListOptionsCtrl::getCurrentOption(int row)

Gets the text for the currently selected option of the given row.

Parameters row – Index of the row to get the option from.

Returns A string representing the text currently displayed as the selected option on the given row.
If there is no such displayed text then the empty string is returned.

bool GuiGameListOptionsCtrl::selectOption(int row, string option)
Set the row’s current option to the one specified.

Parameters

• row – Index of the row to set an option on.

• option – The option to be made active.

Returns True if the row contained the option and was set, false otherwise.

void GuiGameListOptionsCtrl::setOptions(int row, string optionsList)
Sets the list of options on the given row.

Parameters

• row – Index of the row to set options on.

• optionsList – A tab separated list of options for the control.

GuiGameListOptionsProfile A GuiControlProfile with additional fields specific to GuiGameListOptionsCtrl.

Inherit: GuiGameListMenuProfile

Description A GuiControlProfile with additional fields specific to GuiGameListOptionsCtrl.

Example:

newGuiGameListOptionsProfile()
{

columnSplit = "100";
rightPad = "4";
//Properties not specific to this control have been omitted from this example.

};

5.3. Console Reference 495

Torque 3D Documentation, Release 3.5.1

Fields
int GuiGameListOptionsProfile::columnSplit

Padding between the leftmost edge of the control, and the row’s left arrow.
int GuiGameListOptionsProfile::rightPad

Padding between the rightmost edge of the control and the row’s right arrow.

GuiHealthBarHud A basic health bar. Shows the damage value of the current PlayerObjectType control object.

Inherit: GuiControl

Description A basic health bar. Shows the damage value of the current PlayerObjectType control object.

This gui displays the damage value of the current PlayerObjectType control object. The gui can be set to pulse if the
health value drops below a set value. This control only works if a server connection exists and it’s control object is a
PlayerObjectType. If either of these requirements is false, the control is not rendered.

Example:

newGuiHealthBarHud(){
fillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colordamageFillColor = "1.0 0.0 0.0 1.0"; // Fills with a solid red colorpulseRate = "500";
pulseThreshold = "0.25";
showFill = "true";
showFrame = "true";
displayEnergy = "false";

};

Fields
ColorF GuiHealthBarHud::damageFillColor

As the health bar depletes, this color will represent the health loss amount.
bool GuiHealthBarHud::displayEnergy

If true, display the energy value rather than the damage value.

ColorF GuiHealthBarHud::fillColor
Standard color for the background of the control.

ColorF GuiHealthBarHud::frameColor
Color for the control’s frame.

int GuiHealthBarHud::pulseRate
Speed at which the control will pulse.

float GuiHealthBarHud::pulseThreshold
Health level the control must be under before the control will pulse.

bool GuiHealthBarHud::showFill
If true, we draw the background color of the control.

bool GuiHealthBarHud::showFrame
If true, we draw the frame of the control.

GuiHealthTextHud Shows the health or energy value of the current PlayerObjectType control object.

Inherit: GuiControl

496 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description Shows the health or energy value of the current PlayerObjectType control object.

This gui can be configured to display either the health or energy value of the current Player Object. It can use an
alternate display color if the health or drops below a set value. It can also be set to pulse if the health or energy drops
below a set value. This control only works if a server connection exists and it’s control object is a PlayerObjectType.
If either of these requirements is false, the control is not rendered.

Example:

newGuiHealthTextHud(){
fillColor = "0.0 0.0 0.0 0.5"; // Fills with a transparent black colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colortextColor = "0.0 1.0 0.0 1.0"// Solid green text colorwarningColor = "1.0 0.0 0.0 1.0"; // Solid red color, used when damagedshowFill = "true";
showFrame = "true";
showTrueValue = "false";
showEnergy = "false";
warnThreshold = "50";
pulseThreshold = "25";
pulseRate = "500";
profile = "GuiBigTextProfile";

};

Fields
ColorF GuiHealthTextHud::fillColor

Color for the background of the control.
ColorF GuiHealthTextHud::frameColor

Color for the control’s frame.

int GuiHealthTextHud::pulseRate
Speed at which the control will pulse.

float GuiHealthTextHud::pulseThreshold
Health level at which to begin pulsing.

bool GuiHealthTextHud::showEnergy
If true, display the energy value rather than the damage value.

bool GuiHealthTextHud::showFill
If true, draw the background.

bool GuiHealthTextHud::showFrame
If true, draw the frame.

bool GuiHealthTextHud::showTrueValue
If true, we don’t hardcode maxHealth to 100.

ColorF GuiHealthTextHud::textColor
Color for the text on this control.

ColorF GuiHealthTextHud::warningColor
Color for the text when health is low.

float GuiHealthTextHud::warnThreshold
The health level at which to use the warningColor.

GuiShapeNameHud Displays name and damage of ShapeBase objects in its bounds. Must be a child of a GuiTSCtrl
and a server connection must be present.

Inherit: GuiControl

5.3. Console Reference 497

Torque 3D Documentation, Release 3.5.1

Description This control displays the name and damage value of all named ShapeBase objects on the client. The
name and damage of objects within the control’s display area are overlayed above the object.

This GUI control must be a child of a TSControl, and a server connection and control object must be present. This is
a stand-alone control and relies only on the standard base GuiControl.

Example:

newGuiShapeNameHud(){
fillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colortextColor = "1.0 1.0 1.0 1.0"; // Solid white text ColorshowFill = "true";
showFrame = "true";
labelFillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorlabelFrameColor = "1.0 1.0 1.0 1.0"; // Solid white frame colorshowLabelFill = "true";
showLabelFrame = "true";
verticalOffset = "0.15";
distanceFade = "15.0";

};

Fields
float GuiShapeNameHud::distanceFade

Visibility distance (how far the player must be from the ShapeBase object in focus) for this control to render.
ColorF GuiShapeNameHud::fillColor

Standard color for the background of the control.

ColorF GuiShapeNameHud::frameColor
Color for the control’s frame.

ColorF GuiShapeNameHud::labelFillColor
Color for the background of each shape name label.

ColorF GuiShapeNameHud::labelFrameColor
Color for the frames around each shape name label.

Point2I GuiShapeNameHud::labelPadding
The padding (in pixels) between the label text and the frame.

bool GuiShapeNameHud::showFill
If true, we draw the background color of the control.

bool GuiShapeNameHud::showFrame
If true, we draw the frame of the control.

bool GuiShapeNameHud::showLabelFill
If true, we draw a background for each shape name label.

bool GuiShapeNameHud::showLabelFrame
If true, we draw a frame around each shape name label.

ColorF GuiShapeNameHud::textColor
Color for the text on this control.

float GuiShapeNameHud::verticalOffset
Amount to vertically offset the control in relation to the ShapeBase object in focus.

Functions

void snapToggle()
Prevents mouse movement from being processed. In the source, whenever a mouse move event occurs Ga-
meTSCtrl::onMouseMove() is called. Whenever snapToggle() is called, it will flag a variable that can prevent

498 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

this from happening: gSnapLine. This variable is not exposed to script, so you need to call this function to
trigger it.

Example:

// Snapping is off by default, so we will toggle
// it on first:
PlayGui.snapToggle();

// Mouse movement should be disabled
// Lets turn it back on
PlayGui.snapToggle();

5.3.3 Game

Objects, functions, and variables related to game play elements.

Game

Classes

SimObject Base class for almost all objects involved in the simulation.

Description SimObject is a base class for most of the classes you’ll encounter working in Torque. It provides
fundamental services allowing “smart” object referencing, creation, destruction, organization, and location. Along
with SimEvent, it gives you a flexible event-scheduling system, as well as laying the foundation for the in-game
editors, GUI system, and other vital subsystems.

Subclassing You will spend a lot of your time in Torque subclassing, or working with subclasses of, SimObject.
SimObject is designed to be easy to subclass.

You should not need to override anything in a subclass except:

• the constructor/destructor

• processArguments()

• onAdd()/onRemove()

• onGroupAdd()/onGroupRemove()

• onNameChange()

• onStaticModified()

• onDeleteNotify()

• onEditorEnable()/onEditorDisable()

• inspectPreApply()/inspectPostApply()

• things from ConsoleObject (see ConsoleObject docs for specifics)

Of course, if you know what you’re doing, go nuts! But in most cases, you shouldn’t need to touch things not on that
list.

When you subclass, you should define a typedef in the class, called Parent, that references the class you’re inheriting
from:

5.3. Console Reference 499

Torque 3D Documentation, Release 3.5.1

class mySubClass : public SimObject {
typedef SimObject Parent;
...

Then, when you override a method, put in:

bool mySubClass::onAdd()
{

if(!Parent::onAdd())
return false;

// ... do other things ...
}

Of course, you want to replace onAdd with the appropriate method call.

A SimObject’s Life Cycle SimObjects do not live apart. One of the primary benefits of using a SimObject is that you
can uniquely identify it and easily find it (using its ID). Torque does this by keeping a global hierarchy of SimGroups
- a tree - containing every registered SimObject. You can then query for a given object using Sim::findObject() (or
SimSet::findObject() if you want to search only a specific set):

// Three examples of registering an object.

// Method 1:
AIClient *aiPlayer = new AIClient();
aiPlayer->registerObject();

// Method 2:
ActionMap* globalMap = new ActionMap;
globalMap->registerObject("GlobalActionMap");

// Method 3:
bool reg = mObj->registerObject(id);

Registering a SimObject performs these tasks:

• Marks the object as not cleared and not removed.

• Assigns the object a unique SimObjectID if it does not have one already.

• Adds the object to the global name and ID dictionaries so it can be found again.

• Calls the object’s onAdd() method. Note: SimObject::onAdd() performs some important initialization steps.
See here for details” on how to properly subclass SimObject.

• If onAdd() fails (returns false), it calls unregisterObject().

• Checks to make sure that the SimObject was properly initialized (and asserts if not).

Calling registerObject() and passing an ID or a name will cause the object to be assigned that name and/or ID before
it is registered.

Congratulations, you have now registered your object! What now?

Well, hopefully, the SimObject will have a long, useful life. But eventually, it must die.

There are a two ways a SimObject can die.

• First, the game can be shut down. This causes the root SimGroup to be unregistered and deleted. When a
SimGroup is unregistered, it unregisters all of its member SimObjects; this results in everything that has been
registered with Sim being unregistered, as everything registered with Sim is in the root group.

500 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• Second, you can manually kill it off, either by calling unregisterObject() or by calling deleteObject().

When you unregister a SimObject, the following tasks are performed:

• The object is flagged as removed.

• Notifications are cleaned up.

• If the object is in a group, then it removes itself from the group.

• Delete notifications are sent out.

• Finally, the object removes itself from the Sim globals, and tells Sim to get rid of any pending events for it.

If you call deleteObject(), all of the above tasks are performed, in addition to some sanity checking to make sure the
object was previously added properly, and isn’t in the process of being deleted. After the object is unregistered, it
deallocates itself.

Torque Editors SimObjects are one of the building blocks for the in-game editors. They provide a basic interface
for the editor to be able to list the fields of the object, update them safely and reliably, and inform the object things
have changed.

This interface is implemented in the following areas:

• onNameChange() is called when the object is renamed.

• onStaticModified() is called whenever a static field is modified.

• inspectPreApply() is called before the object’s fields are updated, when changes are being applied.

• inspectPostApply() is called after the object’s fields are updated.

• onEditorEnable() is called whenever an editor is enabled (for instance, when you hit F11 to bring up the world
editor).

• onEditorDisable() is called whenever the editor is disabled (for instance, when you hit F11 again to close the
world editor).

(Note: you can check the variable gEditingMission to see if the mission editor is running; if so, you may want to
render special indicators. For instance, the fxFoliageReplicator renders inner and outer radii when the mission editor
is runnning.)

The Console SimObject extends ConsoleObject by allowing you to to set arbitrary dynamic fields on the object, as
well as statically defined fields. This is done through two methods, setDataField and getDataField, which deal with
the complexities of allowing access to two different types of object fields.

Static fields take priority over dynamic fields. This is to be expected, as the role of dynamic fields is to allow data to
be stored in addition to the predefined fields.

The fields in a SimObject are like properties (or fields) in a class.

Some fields may be arrays, which is what the array parameter is for; if it’s non-null, then it is parsed with dAtoI and
used as an index into the array. If you access something as an array which isn’t, then you get an empty string.

You don’t need to read any further than this. Right now, set/getDataField are called a total of 6 times through the entire
Torque codebase. Therefore, you probably don’t need to be familiar with the details of accessing them. You may want
to look at Con::setData instead. Most of the time you will probably be accessing fields directly, or using the scripting
language, which in either case means you don’t need to do anything special.

The functions to get/set these fields are very straightforward:

5.3. Console Reference 501

Torque 3D Documentation, Release 3.5.1

setDataField(StringTable->insert("locked", false), NULL, b ? "true" : "false");
curObject->setDataField(curField, curFieldArray, STR.getStringValue());
setDataField(slotName, array, value);

For advanced users: There are two flags which control the behavior of these functions. The first is ModStaticFields,
which controls whether or not the DataField functions look through the static fields (defined with addField; see Con-
soleObject for details) of the class. The second is ModDynamicFields, which controls dynamically defined fields.
They are set automatically by the console constructor code.

Methods
void SimObject::assignFieldsFrom(SimObject fromObject)

Copy fields from another object onto this one. The objects must be of same type. Everything from the object
will overwrite what’s in this object; extra fields in this object will remain. This includes dynamic fields.

Parameters fromObject – The object from which to copy fields.
void SimObject::assignPersistentId()

Assign a persistent ID to the object if it does not already have one.

string SimObject::call(string method, string args, ...)
Dynamically call a method on an object.

Parameters

• method – Name of method to call.

• args – Zero or more arguments for the method.

Returns The result of the method call.

SimObject SimObject::clone()
Create a copy of this object.

Returns An exact duplicate of this object.

SimObject SimObject::deepClone()
Create a copy of this object and all its subobjects.

Returns An exact duplicate of this object and all objects it references.

void SimObject::delete()
Delete and remove the object.

void SimObject::dump(bool detailed)
Dump a description of all fields and methods defined on this object to the console.

Parameters detailed – Whether to print detailed information about members.

void SimObject::dumpClassHierarchy()
Dump the native C++ class hierarchy of this object’s C++ class to the console.

void SimObject::dumpGroupHierarchy()
Dump the hierarchy of this object up to RootGroup to the console.

ArrayObject SimObject::dumpMethods()
List the methods defined on this object. Each description is a newline-separated vector with the following
elements:

•Minimum number of arguments.

•Maximum number of arguments.

•Prototype string.

502 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

•Full script file path (if script method).

•Line number of method definition in script (if script method).

•Documentation string (not including prototype). This takes up the remainder of the vector.

Returns populated with (name,description) pairs of all methods defined on the object.

bool SimObject::getCanSave()
Get whether the object will be included in saves.

Returns True if the object will be saved; false otherwise.

string SimObject::getClassName()
Get the name of the C++ class which the object is an instance of.

Returns The name of the C++ class of the object.

string SimObject::getClassNamespace()
Get the name of the class namespace assigned to this object.

Returns The name of the ‘class’ namespace.

ArrayObject SimObject::getDebugInfo()
Return some behind-the-scenes information on the object.

Returns filled with internal information about the object.

int SimObject::getDeclarationLine()
Get the line number at which the object is defined in its file.

Returns The line number of the object’s definition in script.

string SimObject::getDynamicField(int index)
Get a value of a dynamic field by index.

Parameters index – The index of the dynamic field.

Returns The value of the dynamic field at the given index or “”.

int SimObject::getDynamicFieldCount()
Get the number of dynamic fields defined on the object.

Returns The number of dynamic fields defined on the object.

string SimObject::getField(int index)
Retrieve the value of a static field by index.

Parameters index – The index of the static field.

Returns The value of the static field with the given index or “”.

int SimObject::getFieldCount()
Get the number of static fields on the object.

Returns The number of static fields defined on the object.

string SimObject::getFieldType(string fieldName)
Get the console type code of the given field.

Returns The numeric type code for the underlying console type of the given field.

string SimObject::getFieldValue(string fieldName, int index)
Return the value of the given field on this object.

Parameters

5.3. Console Reference 503

Torque 3D Documentation, Release 3.5.1

• fieldName – The name of the field. If it includes a field index, the index is parsed out.

• index – Optional parameter to specify the index of an array field separately.

Returns The value of the given field or “” if undefined.

string SimObject::getFilename()
Returns the filename the object is attached to. Reimplemented in CubemapData .

Returns The name of the file the object is associated with; usually the file the object was loaded
from.

SimGroup SimObject::getGroup()
Get the group that this object is contained in.

Returns object to which the object belongs.

int SimObject::getId()
Get the underlying unique numeric ID of the object.

Returns The unique numeric ID of the object.

string SimObject::getInternalName()
Get the internal name of the object.

Returns The internal name of the object.

string SimObject::getName()
Get the global name of the object.

Returns The global name assigned to the object.

string SimObject::getSuperClassNamespace()
Get the name of the superclass namespace assigned to this object.

Returns The name of the ‘superClass’ namespace.

bool SimObject::isChildOfGroup(SimGroup group)
Test whether the object belongs directly or indirectly to the given group.

Parameters group – The SimGroup object.

Returns True if the object is a child of the given group or a child of a group that the given group is
directly or indirectly a child to.

bool SimObject::isEditorOnly()
Return true if the object is only used by the editor.

Returns True if this object exists only for the sake of editing.

bool SimObject::isExpanded()
Get whether the object has been marked as expanded. (in editor). Reimplemented in GuiRolloutCtrl .

Returns True if the object is marked expanded.

bool SimObject::isField(string fieldName)
Test whether the given field is defined on this object.

Parameters fieldName – The name of the field.

Returns True if the object implements the given field.

bool SimObject::isInNamespaceHierarchy(string name)
Test whether the namespace of this object is a direct or indirect child to the given namespace.

Parameters name – The name of a namespace.

504 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns True if the given namespace name is within the namespace hierarchy of this object.

bool SimObject::isMemberOfClass(string className)
Test whether this object is a member of the specified class.

Parameters className – Name of a native C++ class.

Returns True if this object is an instance of the given C++ class or any of its super classes.

bool SimObject::isMethod(string methodName)
Test whether the given method is defined on this object.

Parameters The – name of the method.

Returns True if the object implements the given method.

bool SimObject::isNameChangeAllowed()
Get whether this object may be renamed.

Returns True if this object can be renamed; false otherwise.

bool SimObject::isSelected()
Get whether the object has been marked as selected. (in editor).

Returns True if the object is currently selected.

bool SimObject::save(string fileName, bool selectedOnly, string preAppendString)
Save out the object to the given file.

Parameters

• fileName – The name of the file to save to.

• selectedOnly – If true, only objects marked as selected will be saved out.

• preAppendString – Text which will be preprended directly to the object serialization.

• True – on success, false on failure.

int SimObject::schedule(float time, string method, string args, ...)
Delay an invocation of a method.

Parameters

• time – The number of milliseconds after which to invoke the method. This is a soft limit.

• method – The method to call.

• args – The arguments with which to call the method.

Returns The numeric ID of the created schedule. Can be used to cancel the call.

void SimObject::setCanSave(bool value)
Set whether the object will be included in saves.

Parameters value – If true, the object will be included in saves; if false, it will be excluded.

void SimObject::setClassNamespace(string name)
Assign a class namespace to this object.

Parameters name – The name of the ‘class’ namespace for this object.

void SimObject::setEditorOnly(bool value)
Set/clear the editor-only flag on this object.

Parameters value – If true, the object is marked as existing only for the editor.

5.3. Console Reference 505

Torque 3D Documentation, Release 3.5.1

void SimObject::setFieldType(string fieldName, string type)
Set the console type code for the given field.

Parameters

• fieldName – The name of the dynamic field to change to type for.

• type – The name of the console type.

bool SimObject::setFieldValue(string fieldName, string value, int index)
Set the value of the given field on this object.

Parameters

• fieldName – The name of the field to assign to. If it includes an array index, the index
will be parsed out.

• value – The new value to assign to the field.

• index – Optional argument to specify an index for an array field.

Returns True.

void SimObject::setFilename(string fileName)
Sets the object’s file name and path.

Parameters fileName – The name of the file to associate this object with.

void SimObject::setHidden(bool value)
Hide/unhide the object. Reimplemented in ShapeBase .

Parameters value – If true, the object will be hidden; if false, the object will be unhidden.

void SimObject::setInternalName(string newInternalName)
Set the internal name of the object.

Parameters newInternalName – The new internal name for the object.

void SimObject::setIsExpanded(bool state)
Set whether the object has been marked as expanded. (in editor).

Parameters state – True if the object is to be marked expanded; false if not.

void SimObject::setIsSelected(bool state)
Set whether the object has been marked as selected. (in editor).

Parameters state – True if object is to be marked selected; false if not.

void SimObject::setLocked(bool value)
Lock/unlock the object in the editor.

Parameters value – If true, the object will be locked; if false, the object will be unlocked.

void SimObject::setName(string newName)
Set the global name of the object.

Parameters newName – The new global name to assign to the object.

void SimObject::setNameChangeAllowed(bool value)
Set whether this object can be renamed from its first name.

Parameters value – If true, renaming is allowed for this object; if false, trying to change the name
of the object will generate a console error.

void SimObject::setSuperClassNamespace(string name)
Assign a superclass namespace to this object.

506 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters name – The name of the ‘superClass’ namespace for this object.

Fields
bool SimObject::canSave

Whether the object can be saved out. If false, the object is purely transient in nature.
bool SimObject::canSaveDynamicFields

True if dynamic fields (added at runtime) should be saved. Defaults to true.

string SimObject::class
Script class of object.

string SimObject::className
Script class of object.

bool SimObject::hidden
Whether the object is visible.

string SimObject::internalName
Optional name that may be used to lookup this object within a SimSet .

bool SimObject::locked
Whether the object can be edited.

string SimObject::name
Optional global name of this object.

SimObject SimObject::parentGroup
Group hierarchy parent of the object.

pid SimObject::persistentId
The universally unique identifier for the object.

string SimObject::superClass
Script super-class of object.

SimSet A collection of SimObjects.

Inherit: SimObject

Description It is often necessary to keep track of an arbitrary set of SimObjects. For instance, Torque’s networking
code needs to not only keep track of the set of objects which need to be ghosted, but also the set of objects which must
always be ghosted. It does this by working with two sets. The first of these is the RootGroup (which is actually a
SimGroup) and the second is the GhostAlwaysSet, which contains objects which must always be ghosted to the client.

Some general notes on SimSets:

• Membership is not exclusive. A SimObject may be a member of multiple SimSets.

• A SimSet does not destroy subobjects when it is destroyed.

• A SimSet may hold an arbitrary number of objects.

Methods
bool SimSet::acceptsAsChild(SimObject obj)

Test whether the given object may be added to the set.

Parameters obj – The object to test for potential membership.

Returns True if the object may be added to the set, false otherwise.

5.3. Console Reference 507

Torque 3D Documentation, Release 3.5.1

void SimSet::add(SimObject objects, ...)
Add the given objects to the set.

Parameters objects – The objects to add to the set.

void SimSet::bringToFront(SimObject obj)
Make the given object the first object in the set.

Parameters obj – The object to bring to the frontmost position. Must be contained in the set.

void SimSet::callOnChildren(string method, string args, ...)
Call a method on all objects contained in the set.

Parameters

• method – The name of the method to call.

• args – The arguments to the method.

void SimSet::callOnChildrenNoRecurse(string method, string args, ...)
Call a method on all objects contained in the set.

Parameters

• method – The name of the method to call.

• args – The arguments to the method.

void SimSet::clear()
Remove all objects from the set. Reimplemented in GuiPopUpMenuCtrlEx .

void SimSet::deleteAllObjects()
Delete all objects in the set.

SimObject SimSet::findObjectByInternalName(string internalName, bool searchChildren)
Find an object in the set by its internal name.

Parameters

• internalName – The internal name of the object to look for.

• searchChildren – If true, SimSets contained in the set will be recursively searched for
the object.

Returns The object with the given internal name or 0 if no match was found.

int SimSet::getCount()
Get the number of objects contained in the set.

Returns The number of objects contained in the set.

int SimSet::getFullCount()
Get the number of direct and indirect child objects contained in the set.

Returns The number of objects contained in the set as well as in other sets contained directly or
indirectly in the set.

SimObject SimSet::getObject(int index)
Get the object at the given index.

Parameters index – The object index.

Returns The object at the given index or -1 if index is out of range.

int SimSet::getObjectIndex(SimObject obj)
Return the index of the given object in this set.

508 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters obj – The object for which to return the index. Must be contained in the set.

Returns The index of the object or -1 if the object is not contained in the set.

SimObject SimSet::getRandom()
Return a random object from the set.

Returns A randomly selected object from the set or -1 if the set is empty.

bool SimSet::isMember(SimObject obj)
Test whether the given object belongs to the set.

Parameters obj – The object.

Returns True if the object is contained in the set; false otherwise.

void SimSet::listObjects()
Dump a list of all objects contained in the set to the console.

void SimSet::onObjectAdded(SimObject object)
Called when an object is added to the set.

Parameters object – The object that was added.

void SimSet::onObjectRemoved(SimObject object)
Called when an object is removed from the set.

Parameters object – The object that was removed.

void SimSet::pushToBack(SimObject obj)
Make the given object the last object in the set.

Parameters obj – The object to bring to the last position. Must be contained in the set.

void SimSet::remove(SimObject objects, ...)
Remove the given objects from the set.

Parameters objects – The objects to remove from the set.

void SimSet::reorderChild(SimObject child1, SimObject child2)
Make sure child1 is ordered right before child2 in the set.

Parameters

• child1 – The first child. The object must already be contained in the set.

• child2 – The second child. The object must already be contained in the set.

void SimSet::sort(string callbackFunction)
Sort the objects in the set using the given comparison function.

Parameters callbackFunction – Name of a function that takes two object arguments A and B
and returns -1 if A is less, 1 if B is less, and 0 if both are equal.

SimGroup A collection of SimObjects that are owned by the group.

Inherit: SimSet

Description A SimGroup is a stricter form of SimSet. SimObjects may only be a member of a single SimGroup at a
time. The SimGroup will automatically enforce the single-group-membership rule (ie. adding an object to a SimGroup
will cause it to be removed from its current SimGroup, if any).

Deleting a SimGroup will also delete all SimObjects in the SimGroup.

Example:

5.3. Console Reference 509

Torque 3D Documentation, Release 3.5.1

// Create a SimGroup for particle emittersnewSimGroup(Emitters)
{

canSaveDynamicFields = "1";

newParticleEmitterNode(CrystalEmmiter) {
active = "1";
emitter = "dustEmitter";
velocity = "1";
dataBlock = "GenericSmokeEmitterNode";
position = "-61.6276 2.1142 4.45027";
rotation = "1 0 0 0";
scale = "1 1 1";
canSaveDynamicFields = "1";

};

newParticleEmitterNode(Steam1) {
active = "1";
emitter = "SlowSteamEmitter";
velocity = "1";
dataBlock = "GenericSmokeEmitterNode";
position = "-25.0458 1.55289 2.51308";
rotation = "1 0 0 0";
scale = "1 1 1";
canSaveDynamicFields = "1";

};
};

SimDataBlock

Inherit: SimObject

Description

Datablocks and Networking

Client-Side Datablocks

Methods
void SimDataBlock::reloadOnLocalClient()

Reload the datablock. This can only be used with a local client configuration.

Functions

bool addBadWord(string badWord)
Add a string to the bad word filter. The bad word filter is a table containing words which will not be displayed
in chat windows. Instead, a designated replacement string will be displayed. There are already a number of bad
words automatically defined.

Parameters badWord – Exact text of the word to restrict.

Returns True if word was successfully added, false if the word or a subset of it already exists in the
table

510 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// In this game, "Foobar" is banned
%badWord = "Foobar";

// Returns true, word was successfully added
addBadWord(%badWord);

// Returns false, word has already been added
addBadWord("Foobar");

bool containerBoxEmpty(int mask, Point3F center, float xRadius, float yRadius, float zRadius, bool use-
ClientContainer)

See if any objects of the given types are present in box of given extent.

Parameters

• mask – Indicates the type of objects we are checking against.

• center – Center of box.

• xRadius – Search radius in the x-axis. See note above.

• yRadius – Search radius in the y-axis. See note above.

• zRadius – Search radius in the z-axis. See note above.

• useClientContainer – Optionally indicates the search should be within the client
container.

Returns true if the box is empty, false if any object is found.

string containerFindFirst(int mask, Point3F point, float x, float y, float z)
Find objects matching the bitmask type within a box centered at point, with extents x, y, z.

Returns

.

string containerFindNext()
Get more results from a previous call to containerFindFirst() .

Returns The next object found, or an empty string if nothing else was found.

string containerRayCast(Point3F start, Point3F end, int mask, SceneObject pExempt, bool useClientCon-
tainer)

Cast a ray from start to end, checking for collision against items matching mask. If pExempt is specified, then it
is temporarily excluded from collision checks (For instance, you might want to exclude the player if said player
was firing a weapon.)

Parameters

• start – An XYZ vector containing the tail position of the ray.

• end – An XYZ vector containing the head position of the ray

• mask – A bitmask corresponding to the type of objects to check for

• pExempt – An optional ID for a single object that ignored for this raycast

• useClientContainer – Optionally indicates the search should be within the client
container.

Returns The distance between the start point and the position we hit.

float containerSearchCurrDist(bool useClientContainer)
Get distance of the center of the current item from the center of the current initContainerRadiusSearch.

5.3. Console Reference 511

Torque 3D Documentation, Release 3.5.1

Parameters useClientContainer – Optionally indicates the search should be within the client
container.

Returns distance from the center of the current object to the center of the search

float containerSearchCurrRadiusDist(bool useClientContainer)
Get the distance of the closest point of the current item from the center of the current initContainerRadiusSearch.

Parameters useClientContainer – Optionally indicates the search should be within the client
container.

Returns distance from the closest point of the current object to the center of the search

SceneObject containerSearchNext(bool useClientContainer)
Get next item from a search started with initContainerRadiusSearch() or initContainerTypeSearch() .

Parameters useClientContainer – Optionally indicates the search should be within the client
container.

Returns the next object found in the search, or null if no more

Example:

// print the names of all nearby ShapeBase derived objects
%position = %obj.getPosition;
%radius = 20;
%mask = $TypeMasks::ShapeBaseObjectType;
initContainerRadiusSearch(%position, %radius, %mask);
while ((%targetObject = containerSearchNext()) != 0)
{

echo("Found: " @ %targetObject.getName());
}

bool containsBadWords(string text)
Checks to see if text is a bad word. The text is considered to be a bad word if it has been added to the bad word
filter.

Parameters text – Text to scan for bad words

Returns True if the text has bad word(s), false if it is clean

Example:

// In this game, "Foobar" is banned
%badWord = "Foobar";

// Add a banned word to the bad word filteraddBadWord(%badWord);

// Create the base string, can come from anywhere like user chat
%userText = "Foobar";

// Create a string of random letters
%replacementChars = "knqwrtlzs";

// If the text contains a bad word, filter it before printing
// Otherwise print the original text
if(containsBadWords(%userText))
{

// Filter the string
%filteredText = filterString(%userText, %replacementChars);

// Print filtered text

512 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

echo(%filteredText);
}
elseecho(%userText);

string filterString(string baseString, string replacementChars)
Replaces the characters in a string with designated text. Uses the bad word filter to determine which characters
within the string will be replaced.

Parameters

• baseString – The original string to filter.

• replacementChars – A string containing letters you wish to swap in the baseString.

Returns The new scrambled string

Example:

// Create the base string, can come from anywhere
%baseString = "Foobar";

// Create a string of random letters
%replacementChars = "knqwrtlzs";

// Filter the string
%newString = filterString(%baseString, %replacementChars);

// Print the new string to consoleecho(%newString);

String getOVRHMDChromaticAbCorrection(int index)
Provides the OVR HMD chromatic aberration correction values.

Parameters index – The HMD index.

Returns A four component string with the chromatic aberration correction values.

int getOVRHMDCount()
Get the number of HMD devices that are currently connected.

Returns The number of Oculus VR HMD devices that are currently connected.

float getOVRHMDCurrentIPD(int index)
Physical distance between the user’s eye centers.

Parameters index – The HMD index.

Returns The current IPD.

Point2I getOVRHMDDisplayDesktopPos(int index)
Desktop coordinate position of the screen (can be negative; may not be present on all platforms).

Parameters index – The HMD index.

Returns Position of the screen.

int getOVRHMDDisplayDeviceId(int index)
MacOS display ID.

Parameters index – The HMD index.

Returns The ID of the HMD display device, if any.

string getOVRHMDDisplayDeviceName(int index)
Windows display device name used in EnumDisplaySettings/CreateDC.

5.3. Console Reference 513

Torque 3D Documentation, Release 3.5.1

Parameters index – The HMD index.

Returns The name of the HMD display device, if any.

String getOVRHMDDistortionCoefficients(int index)
Provides the OVR HMD distortion coefficients.

Parameters index – The HMD index.

Returns A four component string with the distortion coefficients.

float getOVRHMDDistortionScale(int index)
Provides the OVR HMD calculated distortion scale.

Parameters index – The HMD index.

Returns The calculated distortion scale.

Point2F getOVRHMDEyeXOffsets(int index)
Provides the OVR HMD eye x offsets in uv coordinates.

Parameters index – The HMD index.

Returns A two component string with the left and right eye x offsets.

string getOVRHMDManufacturer(int index)
Retrieves the HMD manufacturer name.

Parameters index – The HMD index.

Returns The manufacturer of the HMD product.

string getOVRHMDProductName(int index)
Retrieves the HMD product name.

Parameters index – The HMD index.

Returns The name of the HMD product.

float getOVRHMDProfileIPD(int index)
Physical distance between the user’s eye centers as defined by the current profile.

Parameters index – The HMD index.

Returns The profile IPD.

Point2I getOVRHMDResolution(int index)
Provides the OVR HMD screen resolution.

Parameters index – The HMD index.

Returns A two component string with the screen’s resolution.

int getOVRHMDVersion(int index)
Retrieves the HMD version number.

Parameters index – The HMD index.

Returns The version number of the HMD product.

float getOVRHMDXCenterOffset(int index)
Provides the OVR HMD calculated XCenterOffset.

Parameters index – The HMD index.

Returns The calculated XCenterOffset.

514 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float getOVRHMDYFOV(int index)
Provides the OVR HMD calculated Y FOV.

Parameters index – The HMD index.

Returns The calculated Y FOV.

Point3F getOVRSensorAcceleration(int index)
Get the acceleration values for the given sensor index.

Parameters index – The sensor index.

Returns The acceleration values of the Oculus VR sensor, in m/s^2.

Point3F getOVRSensorAngVelocity(int index)
Get the angular velocity values for the given sensor index.

Parameters index – The sensor index.

Returns The angular velocity values of the Oculus VR sensor, in degrees/s.

int getOVRSensorCount()
Get the number of sensor devices that are currently connected.

Returns The number of Oculus VR sensor devices that are currently connected.

Point3F getOVRSensorEulerRotation(int index)
Get the Euler rotation values for the given sensor index.

Parameters index – The sensor index.

Returns The Euler rotation values of the Oculus VR sensor, in degrees.

bool getOVRSensorGravityCorrection(int index)
Get the gravity correction state for the given sensor index.

Parameters index – The sensor index.

Returns True if gravity correction (for pitch and roll) is active.

Point3F getOVRSensorMagnetometer(int index)
Get the magnetometer reading (direction and field strength) for the given sensor index.

Parameters index – The sensor index.

Returns The magnetometer reading (direction and field strength) of the Oculus VR sensor, in Gauss.

bool getOVRSensorMagnetometerCalibrated(int index)
Get the magnetometer calibrated data state for the given sensor index.

Parameters index – The sensor index.

Returns True if magnetometer calibration data is available.

float getOVRSensorPredictionTime(int index)
Get the prediction time set for the given sensor index.

Parameters index – The sensor index.

Returns The prediction time of the Oculus VR sensor, given in seconds.

bool getOVRSensorYawCorrection(int index)
Get the yaw correction state for the given sensor index.

Parameters index – The sensor index.

Returns True if yaw correction (using magnetometer calibration data) is active.

5.3. Console Reference 515

Torque 3D Documentation, Release 3.5.1

Point3F getRazerHydraControllerPos(int controller)
Get the given Razer Hydra controller’s last position.

Parameters controller – Controller number to check.

Returns A Point3F containing the last known position.

AngAxisF getRazerHydraControllerRot(int controller)
Get the given Razer Hydra controller’s last rotation.

Parameters controller – Controller number to check.

Returns A AngAxisF containing the last known rotation.

TransformF getRazerHydraControllerTransform(int controller)
Get the given Razer Hydra controller’s last transform.

Parameters controller – Controller number to check.

Returns A TransformF containing the last known transform.

void initContainerRadiusSearch(Point3F pos, float radius, int mask, bool useClientContainer)
Start a search for items at the given position and within the given radius, filtering by mask.

Parameters

• pos – Center position for the search

• radius – Search radius

• mask – Bitmask of object types to include in the search

• useClientContainer – Optionally indicates the search should be within the client
container.

void initContainerTypeSearch(int mask, bool useClientContainer)
Start a search for all items of the types specified by the bitset mask.

Parameters

• mask – Bitmask of object types to include in the search

• useClientContainer – Optionally indicates the search should be within the client
container.

bool isLeapMotionActive()
Used to determine if the Leap Motion input device is active. The Leap Motion input device is considered active
when the support library has been loaded and the device has been found.

Returns True if the Leap Motion input device is active.

bool isOculusVRDeviceActive()
Used to determine if the Oculus VR input device is active. The Oculus VR device is considered active when the
library has been initialized and either a real of simulated HMD is present.

Returns True if the Oculus VR input device is active.

bool isOVRHMDSimulated(int index)
Determines if the requested OVR HMD is simulated or real.

Parameters index – The HMD index.

Returns True if the HMD is simulated.

bool isRazerHydraActive()
Used to determine if the Razer Hydra input device active. The Razer Hydra input device is considered active
when the support library has been loaded and the controller has been found.

516 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns True if the Razer Hydra input device is active.

bool isRazerHydraControllerDocked(int controller)
Used to determine if the given Razer Hydra controller is docked.

Parameters controller – Controller number to check.

Returns True if the given Razer Hydra controller is docked. Also returns true if the input device is
not found or active.

void ovrResetAllSensors()
Resets all Oculus VR sensors. This resets all sensor orientations such that their ‘normal’ rotation is defined
when this function is called. This defines an HMD’s forwards and up direction, for example.

void resetFPSTracker()
Reset FPS stats (fps::).

void sceneDumpZoneStates(bool updateFirst)
Dump the current zoning states of all zone spaces in the scene to the console.

Parameters updateFirst – If true, zoning states are brought up to date first; if false, the zoning
states are dumped as is.

SceneObject sceneGetZoneOwner(int zoneId)
Return the SceneObject that contains the given zone.

Parameters zoneId – ID of zone.

Returns is invalid.

void setAllSensorPredictionTime(float dt)
Set the prediction time set for all sensors.

Parameters dt – The prediction time to set given in seconds. Setting to 0 disables prediction.

bool setOVRHMDAsGameConnectionDisplayDevice(GameConnection conn)
Sets the first HMD to be a GameConnection’s display device.

Parameters conn – The GameConnection to set.

Returns display device was set.

void setOVRHMDCurrentIPD(int index, float ipd)
Set the physical distance between the user’s eye centers.

Parameters

• index – The HMD index.

• ipd – The IPD to use.

void setOVRSensorGravityCorrection(int index, bool state)
Set the gravity correction state for the given sensor index.

Parameters

• index – The sensor index.

• state – The gravity correction state to change to.

void setOVRSensorYawCorrection(int index, bool state)
Set the yaw correction state for the given sensor index.

Parameters

• index – The sensor index.

5.3. Console Reference 517

Torque 3D Documentation, Release 3.5.1

• state – The yaw correction state to change to.

void setSensorPredictionTime(int index, float dt)
Set the prediction time set for the given sensor index.

Parameters

• index – The sensor index.

• dt – The prediction time to set given in seconds. Setting to 0 disables prediction.

bool spawnObject(class [, dataBlock, name, properties, script])
Global function used for spawning any type of object. Note: This is separate from SpawnSphere::spawnObject()
. This function is not called off any other class and uses different parameters than the SpawnSphere’s function.
In the source, SpawnSphere::spawnObject() actually calls this function and passes its properties (spawnClass,
spawnDatablock, etc).

Parameters

• class – Mandatory field specifying the object class, such as Player or TSStatic.

• datablock – Field specifying the object’s datablock, optional for objects such as
TSStatic, mandatory for game objects like Player.

• name – Optional field specifying a name for this instance of the object.

• properties – Optional set of parameters applied to the spawn object during creation.

• script – Optional command(s) to execute when spawning an object.

Example:

// Set the parameters for the spawn function
%objectClass = "Player";
%objectDatablock = "DefaultPlayerData";
%objectName = "PlayerName";
%additionalProperties = "health = \"0\";"; // Note the escape sequence \ in front of quotes
%spawnScript = "echo(\"Player Spawned\");"// Note the escape sequence \ in front of quotes// Spawn with the engines Sim::spawnObject() function
%player = spawnObject(%objectClass, %objectDatablock, %objectName, %additionalProperties, %spawnScript);

Variables

float $cameraFov
The camera’s Field of View.

float $mvBackwardAction
Backwards movement speed for the active player.

bool $mvDeviceIsKeyboardMouse
Boolean state for it the system is using a keyboard and mouse or not.

float $mvDownAction
Downwards movement speed for the active player.

float $mvForwardAction
Forwards movement speed for the active player.

bool $mvFreeLook
Boolean state for if freelook is active or not.

float $mvLeftAction
Left movement speed for the active player.

518 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float $mvPitch
Current pitch value, typically applied through input devices, such as a mouse.

float $mvPitchDownSpeed
Downwards pitch speed.

float $mvPitchUpSpeed
Upwards pitch speed.

float $mvRightAction
Right movement speed for the active player.

float $mvRoll
Current roll value, typically applied through input devices, such as a mouse.

float $mvRollLeftSpeed
Left roll speed.

float $mvRollRightSpeed
Right roll speed.

int $mvTriggerCount0
Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons
firing.

int $mvTriggerCount1
Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons
firing.

int $mvTriggerCount2
Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons
firing.

int $mvTriggerCount3
Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons
firing.

int $mvTriggerCount4
Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons
firing.

int $mvTriggerCount5
Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons
firing.

float $mvUpAction
Upwards movement speed for the active player.

float $mvXAxis_L
Left thumbstick X axis position on a dual-analog gamepad.

float $mvXAxis_R
Right thumbstick X axis position on a dual-analog gamepad.

float $mvYaw
Current yaw value, typically applied through input devices, such as a mouse.

float $mvYawLeftSpeed
Left Yaw speed.

float $mvYawRightSpeed
Right Yaw speed.

5.3. Console Reference 519

Torque 3D Documentation, Release 3.5.1

float $mvYAxis_L
Left thumbstick Y axis position on a dual-analog gamepad.

float $mvYAxis_R
Right thumbstick Y axis position on a dual-analog gamepad.

int $Ease::Back
Backwards ease for curve movement.

int $Ease::Bounce
Bounce ease for curve movement.

int $Ease::Circular
Circular ease for curve movement.

bool $RazerHydra::CombinedPositionEvents
If true, one position event will be sent that includes one component per argument.

int $Ease::Cubic
Cubic ease for curve movement.

float $pref::Camera::distanceScale
A scale to apply to the normal visible distance, typically used for tuning performance.

int $Ease::Elastic
Elastic ease for curve movement.

bool $pref::enableBadWordFilter
If true, the bad word filter will be enabled.

bool $pref::LeapMotion::EnableDevice
If true, the Leap Motion device will be enabled, if present.

bool $pref::OculusVR::EnableDevice
If true, the Oculus VR device will be enabled, if present.

bool $pref::RazerHydra::EnableDevice
If true, the Razer Hydra device will be enabled, if present.

bool $pref::enablePostEffects
If true, post effects will be eanbled.

int $Ease::Exponential
Exponential ease for curve movement.

bool $OculusVR::GenerateAngleAxisRotationEvents
If true, broadcast sensor rotation events as angled axis.

bool $OculusVR::GenerateEulerRotationEvents
If true, broadcast sensor rotation events as Euler angles about the X, Y and Z axis.

bool $LeapMotion::GenerateIndividualEvents
Indicates that events for each hand and pointable will be created.

bool $OculusVR::GenerateRotationAsAxisEvents
If true, broadcast sensor rotation as axis events.

bool $OculusVR::GenerateSensorRawEvents
If ture, broadcast sensor raw data: acceleration, angular velocity, magnetometer reading.

bool $LeapMotion::GenerateSingleHandRotationAsAxisEvents
If true, broadcast single hand rotation as axis events.

520 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool $LeapMotion::GenerateWholeFrameEvents
Indicates that a whole frame event should be generated and frames should be buffered.

bool $OculusVR::GenerateWholeFrameEvents
Indicates that a whole frame event should be generated and frames should be buffered.

bool $RazerHydra::GenerateWholeFrameEvents
Indicates that a whole frame event should be generated and frames should be buffered.

int $Ease::In
In ease for curve movement.

int $Ease::InOut
InOut ease for curve movement.

bool $pref::Input::JoystickEnabled
If true, the joystick is currently enabled.

bool $LeapMotion::KeepHandIndexPersistent
Indicates that we track hand IDs and will ensure that the same hand will remain at the same index between
frames.

bool $LeapMotion::KeepPointableIndexPersistent
Indicates that we track pointable IDs and will ensure that the same pointable will remain at the same index
between frames.

int $Ease::Linear
Linear ease for curve movement.

float $OculusVR::MaximumAxisAngle
The maximum sensor angle when used as an axis event as measured from a vector pointing straight up (in
degrees). Should range from 0 to 90 degrees.

float $RazerHydra::MaximumAxisAngle
The maximum controller angle when used as an axis event as measured from a vector pointing straight up (in
degrees). Shoud range from 0 to 90 degrees.

int $LeapMotion::MaximumFramesStored
The maximum number of frames to keep when $LeapMotion::GenerateWholeFrameEvents is true.

int $RazerHydra::MaximumFramesStored
The maximum number of frames to keep when $RazerHydra::GenerateWholeFrameEvents is true.

float $LeapMotion::MaximumHandAxisAngle
The maximum hand angle when used as an axis event as measured from a vector pointing straight up (in degrees).
Shoud range from 0 to 90 degrees.

int $Ease::Out
Out ease for curve movement.

bool $RazerHydra::ProcessWhenDocked
If true, events will still be sent when a controller is docked.

int $Ease::Quadratic
Quadratic ease for curve movement.

int $Ease::Quartic
Quartic ease for curve movement.

int $Ease::Quintic
Quintic ease for curve movement.

5.3. Console Reference 521

Torque 3D Documentation, Release 3.5.1

bool $RazerHydra::RotationAsAxisEvents
If true, broadcast controller rotation as axis events.

bool $RazerHydra::SeparatePositionEvents
If true, separate position events will be sent for each component.

int $Ease::Sinusoidal
Sinusoidal ease for curve movement.

bool $pref::OculusVR::UseChromaticAberrationCorrection
If true, Use the chromatic aberration correction version of the Oculus VR barrel distortion shader.

Objects

Objects which can be controlled or directly interact with a user, such as Player, Projectile, Item, etc. Does not include
vehicles as they have their own section.

Classes

AIPlayer A Player object not controlled by conventional input, but by an AI engine.

Inherit: Player

Description The AIPlayer provides a Player object that may be controlled from script. You control where the player
moves and how fast. You may also set where the AIPlayer is aiming at – either a location or another game object.

The AIPlayer class does not have a datablock of its own. It makes use of the PlayerData datablock to define how it
looks, etc. As the AIPlayer is an extension of the Player class it can mount objects and fire weapons, or mount vehicles
and drive them.

While the PlayerData datablock is used, there are a number of additional callbacks that are implemented by AIPlayer
on the datablock. These are listed here:

void onReachDestination(AIPlayer obj) Called when the player has reached its set destination using the set-
MoveDestination() method. The actual point at which this callback is called is when the AIPlayer is within
the mMoveTolerance of the defined destination.

void onMoveStuck(AIPlayer obj) While in motion, if an AIPlayer has moved less than moveStuckTolerance within
a single tick, this callback is called. From here you could choose an alternate destination to get the AIPlayer
moving again.

void onTargetEnterLOS(AIPlayer obj) When an object is being aimed at (following a call to setAimObject()) and
the targeted object enters the AIPlayer’s line of sight, this callback is called. The LOS test is a ray from the
AIPlayer’s eye position to the center of the target’s bounding box. The LOS ray test only checks against interiors,
statis shapes, and terrain.

void onTargetExitLOS(AIPlayer obj) When an object is being aimed at (following a call to setAimObject()) and
the targeted object leaves the AIPlayer’s line of sight, this callback is called. The LOS test is a ray from the
AIPlayer’s eye position to the center of the target’s bounding box. The LOS ray test only checks against interiors,
statis shapes, and terrain.

Example:

// Create the demo player object
%player = new AiPlayer()
{

dataBlock = DemoPlayer;

522 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

path = "";
};

Methods
void AIPlayer::clearAim()

Use this to stop aiming at an object or a point.
Point3F AIPlayer::getAimLocation()

Returns the point the AIPlayer is aiming at. This will reflect the position set by setAimLocation() , or the
position of the object that the bot is now aiming at. If the bot is not aiming at anything, this value will change to
whatever point the bot’s current line-of-sight intercepts.

Returns World space coordinates of the object AI is aiming at. Formatted as “X Y Z”.

int AIPlayer::getAimObject()
Gets the object the AIPlayer is targeting.

Returns is aiming at.

Point3F AIPlayer::getMoveDestination()
Get the AIPlayer’s current destination.

Returns Returns a point containing the “x y z” position of the AIPlayer’s current move destination.
If no move destination has yet been set, this returns “0 0 0”.

float AIPlayer::getMoveSpeed()
Gets the move speed of an AI object.

Returns A speed multiplier between 0.0 and 1.0.

void AIPlayer::setAimLocation(Point3F target)
Tells the AIPlayer to aim at the location provided.

Parameters target – An “x y z” position in the game world to target.

void AIPlayer::setAimObject(GameBase targetObject, Point3F offset)
Sets the AIPlayer’s target object. May optionally set an offset from target location.

Parameters

• targetObject – The object to target

• offset – Optional three-element offset vector which will be added to the position of the
aim object.

Example:

// Without an offset
%ai.setAimObject(%target);

// With an offset
// Cause our AI object to aim at the target
// offset (0, 0, 1) so you dont aim at the targets feet
%ai.setAimObject(%target, "0 0 1");

void AIPlayer::setMoveDestination(Point3F goal, bool slowDown)
Tells the AI to move to the location provided.

Parameters

• goal – Coordinates in world space representing location to move to.

5.3. Console Reference 523

Torque 3D Documentation, Release 3.5.1

• slowDown – A boolean value. If set to true, the bot will slow down when it gets within
5-meters of its move destination. If false, the bot will stop abruptly when it reaches the
move destination. By default, this is true.

void AIPlayer::setMoveSpeed(float speed)
Sets the move speed for an AI object.

Parameters speed – A speed multiplier between 0.0 and 1.0. This is multiplied by the AIPlayer’s
base movement rates (as defined in its PlayerData datablock)

void AIPlayer::stop()
Tells the AIPlayer to stop moving.

Fields
float AIPlayer::mMoveTolerance

Distance from destination before stopping. When the AIPlayer is moving to a given destination it will move
to within this distance of the destination and then stop. By providing this tolerance it helps the AIPlayer from
never reaching its destination due to minor obstacles, rounding errors on its position calculation, etc. By default
it is set to 0.25.

int AIPlayer::moveStuckTestDelay
The number of ticks to wait before testing if the AIPlayer is stuck. When the AIPlayer is asked to move, this
property is the number of ticks to wait before the AIPlayer starts to check if it is stuck. This delay allows the
AIPlayer to accelerate to full speed without its initial slow start being considered as stuck.

float AIPlayer::moveStuckTolerance
Distance tolerance on stuck check. When the AIPlayer is moving to a given destination, if it ever moves less than
this tolerance during a single tick, the AIPlayer is considered stuck. At this point the onMoveStuck() callback
is called on the datablock.

AITurretShape Provides an AI controlled turret.

Inherit: TurretShape

Description Provides an AI controlled turret.

Uses the AITurretShapeData datablock, which is based on the TurretShapeData datablock for common properties.

AITurretShape builds an AI controlled turret. It uses a state machine and properties as defined in AITurretShapeData
to decide how to find targets and what to do with them. As with TurretShape (which AITurretShape derives from) the
AITurretShape class provides the base on which ShapeBaseImageData weapons may be mounted.

Overview The AITurretShape functions through the use of a state machine as defined in its AITurretShapeData
datablock. It is very similar to how ShapeBaseImageData works. This allows you to customize exactly how the turret
behaves while it searches for a target, and what it does once it has a target. But in general, the AI turret goes through
a number of stages:

The AI turret usually starts off by scanning for a suitable target. This is done by checking for targets within a pie
wedge shaped volume in front of the turret based on where the scanPoint node is placed. The turret takes cover into
account when searching for a target so that it doesn’t “cheat”.

Once a target is acquired the turret attempts to follow it. Usually at this point the turret activates its weapon. If a target
is lost due to it going behind cover, the turret will attempt to follow and reacquire the target using its last known position
and velocity. The amount of time allowed for this attempt is defined by AITurretShapeData::trackLostTargetTime.

If the target is lost (either by going behind cover or it is dead) the turret returns to its scanning mode to find another
victim.

524 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

If the AI turret is destroyed then it can go into a special state to show the user that it has been destroyed. As
with TurretShape turrets a AITurretShape may respawn after a set amount of time (see TurretShape and Turret-
Shape::doRespawn()).

In addition to AI turrets being placed within a mission, it is also possible for a player to deploy a turret such as throwing
one from their inventory. When a turret has been tossed it will be in a Thrown state and usually in an inactive mode.
Once the turret comes to rest on the ground it moves into a Deploy state where it may unfold to get ready. Once
ready the turret begins the scanning process. As the AI turret’s state machine may be customized for your specific
circumstances, the way in which turrets are deployed by a player is up to you. An AI turret could be thrown in a fully
working state, ready to take out targets before the turret even hits the ground.

Example State Machine Here is an example AITurretShapeData datablock with a defined state machine and the
script to support the state machine. This is just one possible example.

Example:

//---// AI Turret//---

datablock AITurretShapeData(AITurret)
{

category = "Turrets";
shapeFile = "art/shapes/weapons/Turret/Turret_Legs.DAE";

maxDamage = 70;
destroyedLevel = 70;
explosion = GrenadeExplosion;

simpleServerCollision = false;

zRotOnly = false;

// Rotation settings
minPitch = 15;
maxPitch = 80;
maxHeading = 90;
headingRate = 50;
pitchRate = 50;

// Scan settings
maxScanPitch = 10;
maxScanHeading = 30;
maxScanDistance = 20;
trackLostTargetTime = 2;

maxWeaponRange = 30;

weaponLeadVelocity = 0;

// Weapon mounting
numWeaponMountPoints = 1;

weapon[0] = AITurretHead;
weaponAmmo[0] = AITurretAmmo;
weaponAmmoAmount[0] = 10000;

maxInv[AITurretHead] = 1;
maxInv[AITurretAmmo] = 10000;

5.3. Console Reference 525

Torque 3D Documentation, Release 3.5.1

// Initial start up state
stateName[0] = "Preactivate";
stateTransitionOnAtRest[0] = "Scanning";
stateTransitionOnNotAtRest[0] = "Thrown";

// Scan for targets
stateName[1] = "Scanning";
stateScan[1] = true;
stateTransitionOnTarget[1] = "Target";
stateSequence[1] = "scan";
stateScript[1] = "OnScanning";

// Have a target
stateName[2] = "Target";
stateTransitionOnNoTarget[2] = "NoTarget";
stateTransitionOnTimeout[2] = "Firing";
stateTimeoutValue[2] = 2.0;
stateScript[2] = "OnTarget";

// Fire at target
stateName[3] = "Firing";
stateFire[3] = true;
stateTransitionOnNoTarget[3] = "NoTarget";
stateScript[3] = "OnFiring";

// Lost target
stateName[4] = "NoTarget";
stateTransitionOnTimeout[4] = "Scanning";
stateTimeoutValue[4] = 2.0;
stateScript[4] = "OnNoTarget";

// Player thrown turret
stateName[5] = "Thrown";
stateTransitionOnAtRest[5] = "Deploy";
stateSequence[5] = "throw";
stateScript[5] = "OnThrown";

// Player thrown turret is deploying
stateName[6] = "Deploy";
stateTransitionOnTimeout[6] = "Scanning";
stateTimeoutValue[6] = 2.5;
stateSequence[6] = "deploy";
stateScaleAnimation[6] = true;
stateScript[6] = "OnDeploy";

// Special state that is set when the turret is destroyed.// This state is set in the onDestroyed() callback.
stateName[7] = "Destroyed";
stateSequence[7] = "destroyed";

};

//---// Deployable AI Turret//---
datablock AITurretShapeData(DeployableTurret : AITurret)
{

// Mission editor category
category = "Weapon";

className = "DeployableTurretWeapon";

526 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

startLoaded = false;

// Basic Item properties
mass = 1.5;
elasticity = 0.1;
friction = 0.6;
simpleServerCollision = false;

// Dynamic properties defined by the scripts
PreviewImage = turret.png;
pickUpName = "a deployable turret";
description = "Deployable Turret";
image = DeployableTurretImage;
reticle = "blank";
zoomReticle = blank;

};

// --// AITurretShapeData// --

function AITurretShapeData::onAdd(%this, %obj)
{

Parent::onAdd(%this, %obj);

%obj.mountable = false;
}

// Player has thrown a deployable turret. This copies from ItemData::onThrow()
function AITurretShapeData::onThrow(%this, %user, %amount)
{

// Remove the object from the inventoryif (%amount $= "")
%amount = 1;

if (%this.maxInventory !$= "")
if (%amount > %this.maxInventory)

%amount = %this.maxInventory;
if (!%amount)

return 0;
%user.decInventory(%this,%amount);

// Construct the actual object in the world, and add it to// the mission group so its cleaned up when the mission is// done. The turrets rotation matches the players.
%rot = %user.getEulerRotation();
%obj = newAITurretShape()
{

datablock = %this;
rotation = "0 0 1 " @ getWord(%rot, 2);
count = 1;
sourceObject = %user;
client = %user.client;
isAiControlled = true;

};
MissionGroup.add(%obj);

// Let the turret know that were a firend
%obj.addToIgnoreList(%user);

// We need to add this turret to a list on the client so that if we die,// the turret will still ignore our player.
%client = %user.client;
if (%client)
{

5.3. Console Reference 527

Torque 3D Documentation, Release 3.5.1

if (!%client.ownedTurrets)
{

%client.ownedTurrets = newSimSet();
}

// Go through the clients owned turret list. Make sure were// a friend of every turret and every turret is a friend of ours.// Commence hugging!for (%i=0; %i<%client.ownedTurrets.getCount(); %i++)
{

%turret = %client.ownedTurrets.getObject(%i);
%turret.addToIgnoreList(%obj);
%obj.addToIgnoreList(%turret);

}

// Add ourselves to the clients owned list.
%client.ownedTurrets.add(%obj);

}

return %obj;
}

function AITurretShapeData::onDestroyed(%this, %turret, %lastState)
{

// This method is invoked by the ShapeBase code whenever the// objects damage state changes.

%turret.playAudio(0, TurretDestroyed);
%turret.setAllGunsFiring(false);
%turret.resetTarget();
%turret.setTurretState("Destroyed", true);

// Set the weapons to destoryedfor(%i = 0; %i < %this.numWeaponMountPoints; %i++)
{

%turret.setImageGenericTrigger(%i, 0, true);
}

Parent::onDestroyed(%this, %turret, %lastState);
}

function AITurretShapeData::OnScanning(%this, %turret)
{

//echo("AITurretShapeData::OnScanning: " SPC %this SPC %turret);

%turret.startScanForTargets();
%turret.playAudio(0, TurretScanningSound);

}

function AITurretShapeData::OnTarget(%this, %turret)
{

//echo("AITurretShapeData::OnTarget: " SPC %this SPC %turret);

%turret.startTrackingTarget();
%turret.playAudio(0, TargetAquiredSound);

}

function AITurretShapeData::OnNoTarget(%this, %turret)
{

//echo("AITurretShapeData::OnNoTarget: " SPC %this SPC %turret);

%turret.setAllGunsFiring(false);
%turret.recenterTurret();

528 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%turret.playAudio(0, TargetLostSound);
}

function AITurretShapeData::OnFiring(%this, %turret)
{

//echo("AITurretShapeData::OnFiring: " SPC %this SPC %turret);

%turret.setAllGunsFiring(true);
}

function AITurretShapeData::OnThrown(%this, %turret)
{

//echo("AITurretShapeData::OnThrown: " SPC %this SPC %turret);

%turret.playAudio(0, TurretThrown);
}

function AITurretShapeData::OnDeploy(%this, %turret)
{

//echo("AITurretShapeData::OnDeploy: " SPC %this SPC %turret);// Set the weapons to loadedfor(%i = 0; %i < %this.numWeaponMountPoints; %i++)
{

%turret.setImageLoaded(%i, true);
}

%turret.playAudio(0, TurretActivatedSound);
}

And here is the above example state machine’s flow:

Shape File Nodes In addition to the required TurretBase nodes, AITurretShape makes use of additional nodes within
the shape file to allow the AI to do its work. The first is the ‘scanPoint’ node. This is used by the AI to project a pie
wedge shaped scanning volume in which to detect possible targets. The scanPoint node is at the apex of the scanning
wedge. If the scanPoint node is not present within the shape file then the turret’s world transform is used.

The second is the ‘aimPoint’ node. Once the AI turret has obtained a target the aimPoint is used to point the turret at
the target. Specifically, the turret rotates in both pitch and heading such that the aimPoint points at the target. If you’re
using a weapon that doesn’t have its muzzle point on the same plane as its mount point (known as an off-axis weapon)
then be sure to place the aimPoint at a z position equivalent to the weapon’s muzzle point. This allows for the correct
pitch calculation. If the aimPoint is not found on the turret’s shape, then the pitch node will be used.

Ignore List AI turrets keep track of an ignore list. This is used by default to stop a player deployed turret from
targeting its owner, even when that owner is killed and respawns. But this ignore list could also be used to have the
turret ignore team mates, squad members, invisible players, etc. Use AITurretShape::addToIgnoreList() and AITur-
retShape::removeFromIgnoreList() to manipulate this list. You should also look in scripts/server/turret.cs at AITurret-
ShapeData::onThrow() to see how the ignore list is handled and deployed turrets are kept track of on a per connected
client basis.

Methods
void AITurretShape::activateTurret()

Activate a turret from a deactive state.
void AITurretShape::addToIgnoreList(ShapeBase obj)

Adds object to the turret’s ignore list. All objects in this list will be ignored by the turret’s targeting.

Parameters obj – The ShapeBase object to ignore.

5.3. Console Reference 529

Torque 3D Documentation, Release 3.5.1

void AITurretShape::deactivateTurret()
Deactivate a turret from an active state.

SimObject AITurretShape::getTarget()
Get the turret’s current target.

Returns The object that is the target’s current target, or 0 if no target.

float AITurretShape::getWeaponLeadVelocity()
Get the turret’s defined projectile velocity that helps with target leading.

Returns The defined weapon projectile speed, or 0 if leading is disabled.

bool AITurretShape::hasTarget()
Indicates if the turret has a target.

Returns True if the turret has a target.

void AITurretShape::recenterTurret()
Recenter the turret’s weapon.

void AITurretShape::removeFromIgnoreList(ShapeBase obj)
Removes object from the turret’s ignore list. All objects in this list will be ignored by the turret’s targeting.

Parameters obj – The ShapeBase object to once again allow for targeting.

void AITurretShape::resetTarget()
Resets the turret’s target tracking. Only resets the internal target tracking. Does not modify the turret’s facing.

void AITurretShape::setAllGunsFiring(bool fire)
Set the firing state of the turret’s guns.

Parameters fire – Set to true to activate all guns. False to deactivate them.

void AITurretShape::setGunSlotFiring(int slot, bool fire)
Set the firing state of the given gun slot.

Parameters

• slot – The gun to modify. Valid range is 0-3 that corresponds to the weapon mount point.

• fire – Set to true to activate the gun. False to deactivate it.

void AITurretShape::setTurretState(string newState, bool force)
Set the turret’s current state. Normally the turret’s state comes from updating the state machine but this method
allows you to override this and jump to the requested state immediately.

Parameters

• newState – The name of the new state.

• force – Is true then force the full processing of the new state even if it is the same as the
current state. If false then only the time out value is reset and the state’s script method is
called, if any.

void AITurretShape::setWeaponLeadVelocity(float velocity)
Set the turret’s projectile velocity to help lead the target. This value normally comes from AITurretShape-
Data::weaponLeadVelocity but this method allows you to override the datablock value. This can be useful if the
turret changes ammunition, uses a different weapon than the default, is damaged, etc.

void AITurretShape::startScanForTargets()
Begin scanning for a target.

void AITurretShape::startTrackingTarget()
Have the turret track the current target.

530 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void AITurretShape::stopScanForTargets()
Stop scanning for targets.

void AITurretShape::stopTrackingTarget()
Stop the turret from tracking the current target.

AITurretShapeData object.

Inherit: TurretShapeData

Description Defines properties for an AITurretShape object.

Fields
float AITurretShapeData::maxScanDistance

Maximum distance to scan. When combined with maxScanHeading and maxScanPitch this forms a 3D scanning
wedge used to initially locate a target.

float AITurretShapeData::maxScanHeading
Maximum number of degrees to scan left and right.

float AITurretShapeData::maxScanPitch
Maximum number of degrees to scan up and down.

float AITurretShapeData::maxWeaponRange
Maximum distance that the weapon will fire upon a target.

int AITurretShapeData::scanTickFrequency
How often should we perform a full scan when looking for a target. Expressed as the number of ticks between
full scans, but no less than 1.

int AITurretShapeData::scanTickFrequencyVariance
Random amount that should be added to the scan tick frequency each scan period. Expressed as the number of
ticks to randomly add, but no less than zero.

bool AITurretShapeData::stateDirection[31]
Direction of the animation to play in this state. True is forward, false is backward.

bool AITurretShapeData::stateFire[31]
The first state with this set to true is the state entered by the client when it receives the ‘fire’ event.

caseString AITurretShapeData::stateName[31]
Name of this state.

bool AITurretShapeData::stateScaleAnimation[31]
If true, the timeScale of the stateSequence animation will be adjusted such that the sequence plays for state-
TimeoutValue seconds.

bool AITurretShapeData::stateScan[31]
Indicates the turret should perform a continuous scan looking for targets.

caseString AITurretShapeData::stateScript[31]
Method to execute on entering this state. Scoped to AITurretShapeData .

string AITurretShapeData::stateSequence[31]
Name of the sequence to play on entry to this state.

float AITurretShapeData::stateTimeoutValue[31]
Time in seconds to wait before transitioning to stateTransitionOnTimeout.

5.3. Console Reference 531

Torque 3D Documentation, Release 3.5.1

string AITurretShapeData::stateTransitionOnActivated[31]
Name of the state to transition to when the turret goes from deactivated to activated.

string AITurretShapeData::stateTransitionOnAtRest[31]
Name of the state to transition to when the turret is at rest (static).

string AITurretShapeData::stateTransitionOnDeactivated[31]
Name of the state to transition to when the turret goes from activated to deactivated.

string AITurretShapeData::stateTransitionOnNoTarget[31]
Name of the state to transition to when the turret loses a target.

string AITurretShapeData::stateTransitionOnNotAtRest[31]
Name of the state to transition to when the turret is not at rest (not static).

string AITurretShapeData::stateTransitionOnTarget[31]
Name of the state to transition to when the turret gains a target.

string AITurretShapeData::stateTransitionOnTimeout[31]
Name of the state to transition to when we have been in this state for stateTimeoutValue seconds.

bool AITurretShapeData::stateWaitForTimeout[31]
If false, this state ignores stateTimeoutValue and transitions immediately if other transition conditions are met.

float AITurretShapeData::trackLostTargetTime
How long after the turret has lost the target should it still track it. Expressed in seconds.

float AITurretShapeData::weaponLeadVelocity
Velocity used to lead target. If value lt = 0, don’t lead target.

GameBase Base class for game objects which use datablocks, networking, are editable, and need to process ticks.

Inherit: SceneObject

Description Base class for game objects which use datablocks, networking, are editable, and need to process ticks.

Methods
bool GameBase::applyImpulse(Point3F pos, VectorF vel)

Apply an impulse to this object as defined by a world position and velocity vector.

Parameters

• pos – impulse world position

• vel – impulse velocity (impulse force F = m * v)

Returns Always true
void GameBase::applyRadialImpulse(Point3F origin, float radius, float magnitude)

Applies a radial impulse to the object using the given origin and force.

Parameters

• origin – World point of origin of the radial impulse.

• radius – The radius of the impulse area.

• magnitude – The strength of the impulse.

int GameBase::getDataBlock()
Get the datablock used by this object.

Returns is using.

532 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GameBase::setControl(bool controlled)
Called when the client controlling the object changes.

Parameters controlled – true if a client now controls this object, false if no client controls this
object.

bool GameBase::setDataBlock(GameBaseData data)
Assign this GameBase to use the specified datablock.

Parameters data – new datablock to use

Returns true if successful, false if failed.

Fields
bool GameBase::boundingBox[static]

Toggles on the rendering of the bounding boxes for certain types of objects in scene.
GameBaseData GameBase::dataBlock

Script datablock used for game objects.

GameBaseData objects.

Inherit: SimDataBlock

Description Scriptable, demo-able datablock. Used by GameBase objects.

Methods
void GameBaseData::onAdd(GameBase obj)

Called when the object is added to the scene.

Parameters obj – the GameBase object

Example:

datablock GameBaseData(MyObjectData)
{

category = "Misc";
};

function MyObjectData::onAdd(%this, %obj)
{

echo("Added " @ %obj.getName() @ " to the scene.");
}

function MyObjectData::onNewDataBlock(%this, %obj)
{

echo("Assign " @ %this.getName() @ " datablock to " %obj.getName());
}

function MyObjectData::onRemove(%this, %obj)
{

echo("Removed " @ %obj.getName() @ " to the scene.");
}

function MyObjectData::onMount(%this, %obj, %mountObj, %node)
{

echo(%obj.getName() @ " mounted to " @ %mountObj.getName());
}

5.3. Console Reference 533

Torque 3D Documentation, Release 3.5.1

function MyObjectData::onUnmount(%this, %obj, %mountObj, %node)
{

echo(%obj.getName() @ " unmounted from " @ %mountObj.getName());
}

void GameBaseData::onMount(GameBase obj, SceneObject mountObj, int node)
Called when the object is mounted to another object in the scene.

Parameters

• obj – the GameBase object being mounted

• mountObj – the object we are mounted to

• node – the mountObj node we are mounted to

void GameBaseData::onNewDataBlock(GameBase obj)
Called when the object has a new datablock assigned.

Parameters obj – the GameBase object

void GameBaseData::onRemove(GameBase obj)
Called when the object is removed from the scene.

Parameters obj – the GameBase object

void GameBaseData::onUnmount(GameBase obj, SceneObject mountObj, int node)
Called when the object is unmounted from another object in the scene.

Parameters

• obj – the GameBase object being unmounted

• mountObj – the object we are unmounted from

• node – the mountObj node we are unmounted from

Fields
caseString GameBaseData::category

The group that this datablock will show up in under the “Scripted” tab in the World Editor Library.

Item datablock for common properties.

Inherit: ShapeBase

Description Base Item class. Uses the ItemData datablock for common properties.

Items represent an object in the world, usually one that the player will interact with. One example is a health kit on
the group that is automatically picked up when the player comes into contact with it.

Example:

// This is the "health patch" dropped by a dying player.
datablock ItemData(HealthKitPatch)
{

// Mission editor category, this datablock will show up in the// specified category under the "shapes" root category.
category = "Health";

className = "HealthPatch";

// Basic Item properties

534 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

shapeFile = "art/shapes/items/patch/healthpatch.dts";
mass = 2;
friction = 1;
elasticity = 0.3;
emap = true;

// Dynamic properties used by the scripts
pickupName = "a health patch";
repairAmount = 50;

};

%obj = newItem()
{

dataBlock = HealthKitSmall;
parentGroup = EWCreatorWindow.objectGroup;
static = true;
rotate = true;

};

Methods
string Item::getLastStickyNormal()

Get the normal of the surface on which the object is stuck.

Returns is stuck.

Example:

// Acquire the position where this Item is currently stuck
%stuckPosition = %item.getLastStickPos();

string Item::getLastStickyPos()
Get the position on the surface on which this Item is stuck.

Returns is stuck.

Example:

// Acquire the position where this Item is currently stuck
%stuckPosition = %item.getLastStickPos();

bool Item::isAtRest()
Is the object at rest (ie, no longer moving)?

Returns True if the object is at rest, false if it is not.

Example:

// Query the item on if it is or is not at rest.
%isAtRest = %item.isAtRest();

bool Item::isRotating()
Is the object still rotating?

Returns True if the object is still rotating, false if it is not.

Example:

// Query the item on if it is or is not rotating.
%isRotating = %itemData.isRotating();

bool Item::isStatic()
Is the object static (ie, non-movable)?

5.3. Console Reference 535

Torque 3D Documentation, Release 3.5.1

Returns True if the object is static, false if it is not.

Example:

// Query the item on if it is or is not static.
%isStatic = %itemData.isStatic();

void Item::onEnterLiquid(string objID, string waterCoverage, string liquidType)
Informs an Item object that it has entered liquid, along with information about the liquid type.

Parameters

• objID – Object ID for this Item object.

• waterCoverage – How much coverage of water this Item object has.

• liquidType – The type of liquid that this Item object has entered.

void Item::onLeaveLiquid(string objID, string liquidType)
Informs an Item object that it has left a liquid, along with information about the liquid type.

Parameters

• objID – Object ID for this Item object.

• liquidType – The type of liquid that this Item object has left.

void Item::onStickyCollision(string objID)
Informs the Item object that it is now sticking to another object. This callback is only called if the Item-
Data::sticky property for this Item is true.

Parameters objID – Object ID this Item object.

bool Item::setCollisionTimeout(int ignoreColObj)
Temporarily disable collisions against a specific ShapeBase object. This is useful to prevent a player from
immediately picking up an Item they have just thrown. Only one object may be on the timeout list at a time.
The timeout is defined as 15 ticks.

Parameters objectID – ShapeBase object ID to disable collisions against.

Returns object requested could be found, false if it could not.

Example:

// Set the ShapeBase Object ID to disable collisions against
%ignoreColObj = %player.getID();

// Inform this Item object to ignore collisions temproarily against the %ignoreColObj.
%item.setCollisionTimeout(%ignoreColObj);

Fields
int Item::maxWarpTicks[static]

When a warp needs to occur due to the client being too far off from the server, this is the maximum number of
ticks we’ll allow the client to warp to catch up.

float Item::minWarpTicks[static]
Fraction of tick at which instant warp occures on the client.

bool Item::rotate
If true, the object will automatically rotate around its Z axis.

bool Item::static
If true, the object is not moving in the world.

536 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

ItemData type.

Inherit: ShapeBaseData

Description Stores properties for an individual Item type.

Items represent an object in the world, usually one that the player will interact with. One example is a health kit on
the group that is automatically picked up when the player comes into contact with it.

ItemData provides the common properties for a set of Items. These properties include a DTS or DAE model used to
render the Item in the world, its physical properties for when the Item interacts with the world (such as being tossed
by the player), and any lights that emit from the Item.

Example:

datablock ItemData(HealthKitSmall)
{

category ="Health";
className = "HealthPatch";
shapeFile = "art/shapes/items/kit/healthkit.dts";
gravityMod = "1.0";
mass = 2;
friction = 1;
elasticity = 0.3;
density = 2;
drag = 0.5;
maxVelocity = "10.0";
emap = true;
sticky = false;
dynamicType = "0"

; lightOnlyStatic = false;
lightType = "NoLight";
lightColor = "1.0 1.0 1.0 1.0";
lightTime = 1000;
lightRadius = 10.0;
simpleServerCollision = true; // Dynamic properties used by the scripts

pickupName = "a small health kit";
repairAmount = 50;

};

Fields
float ItemData::elasticity

A floating-point value specifying how ‘bouncy’ this ItemData is.
float ItemData::friction

A floating-point value specifying how much velocity is lost to impact and sliding friction.

float ItemData::gravityMod
Floating point value to multiply the existing gravity with, just for this ItemData .

ColorF ItemData::lightColor
Color value to make this light. Example: “1.0,1.0,1.0”.

bool ItemData::lightOnlyStatic
If true, this ItemData will only cast a light if the Item for this ItemData has a static value of true.

float ItemData::lightRadius
Distance from the center point of this ItemData for the light to affect.

5.3. Console Reference 537

Torque 3D Documentation, Release 3.5.1

int ItemData::lightTime
Time value for the light of this ItemData , used to control the pulse speed of the PulsingLight LightType.

ItemLightType ItemData::lightType
Type of light to apply to this ItemData . Options are NoLight, ConstantLight, PulsingLight. Default is NoLight.

float ItemData::maxVelocity
Maximum velocity that this ItemData is able to move.

bool ItemData::simpleServerCollision
Determines if only simple server-side collision will be used (for pick ups). If set to true then only simple, server-
side collision detection will be used. This is often the case if the item is used for a pick up object, such as ammo.
If set to false then a full collision volume will be used as defined by the shape. The default is true.

bool ItemData::sticky
If true, ItemData will ‘stick’ to any surface it collides with. When an item does stick to a surface, the
Item::onStickyCollision() callback is called. The Item has methods to retrieve the world position and normal
the Item is stuck to.

Player A client-controlled player character.

Inherit: ShapeBase

Description A client-controlled player character.

The Player object is the main client-controlled object in an FPS, or indeed, any game where the user is in control of a
single character. This class (and the associated datablock, PlayerData) allows you to fine-tune the movement, collision
detection, animation, and SFX properties of the character. Player derives from ShapeBase, so it is recommended to
have a good understanding of that class (and it’s parent classes) as well.

Movement The Player class supports the following modes of movement, known as poses:

The acceleration, maximum speed, and bounding box for each mode can be set independently using the PlayerData
datablock. The player will automatically switch between swimming and one of the other 4 ‘dry’ modes when en-
tering/exiting the water, but transitions between the non-swimming modes are handled by controller input (such as
holding down a key to begin crouching). $mvTriggerCount3 activates crouching, while $mvTriggerCount4 activates
being prone.

It is important to set the bounding box correctly for each mode so that collisions with the player remain accurate:

When the player changes pose a new PlayerData callback onPoseChange() is called. This is being used as Ar-
mor::onPoseChange() to modify an animation prefix used by ShapeBaseImageData to allow the 1st person arms to
change their animation based on pose.

Example:

function Armor::onPoseChange(%this, %obj, %oldPose, %newPose)
{

// Set the script anim prefix to be that of the current pose
%obj.setImageScriptAnimPrefix($WeaponSlot, addTaggedString(%newPose));

}

Another feature is being able to lock out poses for the Player at any time. This is done with allowCrouch(), al-
lowSprinting() etc. (there is even allowJumping() and allowJetJumping() which aren’t actually poses but states). So if
for some game play reason the player should not be allowed to crouch right now, that may be disabled. All poses may
be allowed with allowAllPoses() on the Player class.

538 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

The pose lock out mechanism is being used by the weapon script system – see Weapon::onUse(). With this system,
weapons can prevent the player from going into certain poses. This is used by the deployable turret to lock out sprinting
while the turret is the current weapon.

Example:

function Weapon::onUse(%data, %obj)
{

// Default behavior for all weapons is to mount it into the objects weapon// slot, which is currently assumed to be slot 0if (%obj.getMountedImage($WeaponSlot) != %data.image.getId())
{

serverPlay3D(WeaponUseSound, %obj.getTransform());

%obj.mountImage(%data.image, $WeaponSlot);
if (%obj.client)
{

if (%data.description !$= "")
messageClient(%obj.client, MsgWeaponUsed, \c0%1 selected., %data.description);

else
messageClient(%obj.client, MsgWeaponUsed, \c0Weapon selected);

}

// If this is a Player class object then allow the weapon to modify allowed posesif (%obj.isInNamespaceHierarchy("Player"))
{

// Start by allowing everything
%obj.allowAllPoses();

// Now see what isnt allowed by the weapon

%image = %data.image;

if (%image.jumpingDisallowed)
%obj.allowJumping(false);

if (%image.jetJumpingDisallowed)
%obj.allowJetJumping(false);

if (%image.sprintDisallowed)
%obj.allowSprinting(false);

if (%image.crouchDisallowed)
%obj.allowCrouching(false);

if (%image.proneDisallowed)
%obj.allowProne(false);

if (%image.swimmingDisallowed)
%obj.allowSwimming(false);

}
}

}

Sprinting As mentioned above, sprinting is another pose for the Player class. It defines its own force and max speed
in the three directions in PlayerData just like most poses, such as crouch. It is activated using $mvTriggerCount5 by
default which is often connected to Left Shift. When used this way you could treat it just like a standard run – perhaps
with the standard pose used for a walk in a RPG.

But sprinting is special in that you can control if a player’s movement while sprinting should be constrained. You can
place scale factors on strafing, yaw and pitch. These force the player to move mostly in a straight line (or completely if

5.3. Console Reference 539

Torque 3D Documentation, Release 3.5.1

you set them to 0) while sprinting by limiting their motion. You can also choose if the player can jump while sprinting.
This is all set up in PlayerData.

Just like other poses, you can define which sequences should be played on the player while sprinting. These sequences
are:

However, if any of these sequences are not defined for the player, then the standard root, run, back, side and side_right
sequences will be used. The idea here is that the ground transform for these sequences will force them to play faster
to give the appearance of sprinting. But if you want the player to do something different than just look like they’re
running faster – such as holding their weapon against their body – then you’ll want to make use of the sprint specific
sequences.

Sprint also provides two PlayerData callbacks: onStartSprintMotion() and onStopSprintMotion(). The start callback is
called when the player is in a sprint pose and starts to move (i.e. presses the W key). The stop callback is called when
either the player stops moving, or they stop sprinting. These could be used for anything, but by default they are tied
into the ShapeBaseImageData system. See Armor::onStartSprintMotion() and Armor::onStopSprintMotion(). With
ShapeBaseImageData supporting four generic triggers that may be used by a weapon’s state machine to do something,
the first one is triggered to allow weapons to enter a special sprint state that plays a sprint animation sequence and
locks out firing. However, you may choose to do something different.

Jumping The Player class supports jumping. While the player is in contact with a surface (and optionally has enough
energy as defined by the PlayerData), $mvTriggerCount2 will cause the player to jump.

Jetting The Player class includes a simple jetpack behaviour allowing characters to ‘jet’ upwards while jumping.
The jetting behaviour can be linked to the player’s energy level using datablock properties as shown below:

Example:

datablock PlayerData(JetPlayer)
{

...

jetJumpForce = 16.0 * 90;
jetJumpEnergyDrain = 10;
jetMinJumpEnergy = 25;
jetMinJumpSpeed = 20;
jetMaxJumpSpeed = 100;
jetJumpSurfaceAngle = 78;

}

This player will not be able to jet if he has less than 25 units of energy, and 10 units will be subtracted each tick.

If PlayerData::jetJumpFore is greater than zero then $mvTriggerCount1 will activate jetting.

Falling and Landing When the player is falling they transition into the “fall” sequence. This transition doesn’t
occur until the player has reached a particular speed – you don’t want the fall sequence to kick in if they’ve just gone
over a small bump. This speed threshold is set by the PlayerData fallingSpeedThreshold field. By default it is set to
-10.0.

When the player lands there are two possible outcomes depending on how the player is set up. With the traditional
method the “land” sequence has the player start from a standing position and animates into a crouch. The playback
speed of this sequence is scaled based on how hard the player hits the ground. Once the land sequence finishes playing
the player does a smooth transition back into the root pose (making them effectively stand up).

Starting with 1.2 there is a new method of handling landing. Here the “land” sequence starts with the player crouching
on the ground and animates getting back up. This has a look of the player hitting the ground from a fall and slowly
standing back up. This new method is used when the PlayerData landSequenceTime field is given a value greater

540 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

than zero. This is the amount of time taken for the player to recover form the landing, and is also how long the land
sequence will play for. As this has game play ramifications (the player may have movement constraints when landing)
this timing is controlled by the datablock field rather than just the length of time of the land sequence.

Also when using the new land sequence the PlayerData transitionToLand flag indicates if the player should smoothly
transition between the fall sequence and the land sequence. If set to false (the default) then there is no transition and
the player appears to immediately go from falling to landing, which is usually the case when mirroring real life.

Air Control The player may optionally move itself through the air while jumping or falling. This allows the player
to adjust their trajectory while in the air, and is known as air control. The PlayerData::airControl property determines
what fraction of the player’s normal speed they may move while in the air. By default, air control is disabled (set to 0).

Hard Impacts When the player hits something hard it is possible to trigger an impact (such as handled by Ar-
mor::onImpact()). The PlayerData minImpactSpeed is the threshold at which falling damage will be considered an
impact. Any speed over this parameter will trigger an onImpact() call on the datablock. This allows for small falls to
not cause any damage.

The PlayerData minLateralImpactSpeed is the threshold at which non-falling damage impacts will trigger the callback.
This is separate from falling as you may not want a sprinting player that hits a wall to get hurt, but being thrown into
a wall by an explosion will.

Dismounting It is possible to have the player mount another object, such as a vehicle, just like any other SceneOb-
ject. While mounted, $mvTriggerCount2 will cause the player to dismount.

Triggering a Mounted Object A Player may have other objects mounted to it, with each mounted object assigned
to a slot. These Player mounted objects are known as images. See ShapeBase::mountImage(). If there is an image
mounted to slot 0, $mvTriggerCount0 will trigger it. If the player dies this trigger is automatically released.

If there is an image mounted to slot 1, $mvTriggerCount1 will trigger it. Otherwise $mvTriggerCount1 will be passed
along to the image in slot 0 as an alternate fire state.

Character model The following sequences are used by the Player object to animate the character. Not all of them
are required, but a model should have at least the root, run, back and side animations. And please see the section on
Sprinting above for how they are handled when not present.

Looping sequence played when player is running sideways right.

Looping sequence played when the player is sprinting and moving sideways. If not present then the side_right sequence
is used.

Looping sequence played when player is crouched and moving sideways.

Looping sequence played when player is prone (lying down) and moving backward.

Looping sequence played when player is swimming and moving right.

Looping sequence played when player is jetting.

Sequence to control vertical arm movement (for looking) (start=full up, end=full down).

Sequence played when player is firing a heavy weapon (Based on ShapeBaseImageData).

5.3. Console Reference 541

Torque 3D Documentation, Release 3.5.1

Mounted Image Controlled 3rd Person Animation A player’s 3rd person action animation sequence selection
may be modified based on what images are mounted on the player. When mounting a ShapeBaseImageData, the
image’s imageAnimPrefix field is used to control this. If this is left blank (the default) then nothing happens to the 3rd
person player – all of the sequences play as defined. If it is filled with some text (best to keep it to letters and numbers,
with no spaces) then that text is added to the action animation sequence name and looked up on the player shape. For
example:

A rifle ShapeBaseImageData is mounted to the player in slot 0. The rifle’s datablock doesn’t have an imageAnimPrefix
defined, so the 3rd person player will use the standard action animation sequence names. i.e. “root”, “run”, “back”,
“crouch_root”, etc.

Now a pistol ShapeBaseImageData is mounted to the player in slot 0. The pistol’s datablock has imageAnimPrefix
= “pistol”. Now the “pistol_” (underscore is added by the system) prefix is added to each of the action animation
sequence names when looking up what to play on the player’s shape. So the Player class will look for “pistol_root”,
“pistol_run”, “pistol_back”, “pistol_crouch_root”, etc. If any of these new prefixed names are not found on the player’s
shape, then we fall back to the standard action animation sequence names, such as “root”, “run”, etc.

In all of our T3D examples the player only mounts a single image. But Torque allows up to four images to be mounted
at a time. When more than one image is mounted then the engine adds all of the prefixes together when searching
for the action animation sequence name. If that combined name is not found then the engine starts removing prefixes
starting with the highest slot down to the lowest slot. For example, if a player is holding a sword (slot 0) and a
shield (slot 1) in each hand that are mounted as separate images (and with imageAnimPrefix’s of “sword” and “shield”
respectively), then the engine will search for the following names while the player is just standing there:

The first one that is found in the above order will be used.

Another example: If the player has a jet pack (slot 3 with a prefix of “jetpack”) and two pistols being used akimbo
style (slots 1 and 0, both with a prefix of “laserpistol”) with slot 2 left open for a helmet (which is skipped as it doesn’t
have a prefix), then the following search order would be used:

Again, the first one that is found is used.

A player’s 3rd person animation may also be modified by the weapon being used. In T3D 1.1 there are the three recoil
sequences that may be triggered on the 3rd person player by the weapon’s state. Starting with T3D 1.2 this becomes
more generic (while still supporting the existing recoil sequence). When a ShapeBaseImageData state defines a state-
ShapeSequence, that sequence may be played on the player’s shape (the new PlayerData allowImageStateAnimation
field must be set to “true” as well). The new ShapeBaseImageData state stateScaleShapeSequence flag may also be
used to indicate if this player animation sequence should have its playback rate scaled to the length of the image’s
state.

What exactly happens on the player depends on what else has been defined. First, there is the sequence name as passed
in from the image. Then there is also the imageAnimPrefix as defined by the image. Finally, there is the generic script
defined prefix that may be added with ShapeBase::setImageScriptAnimPrefix() – we’re using this to pass along the
current pose, but it could be used for anything. Time for an example. We want to throw a grenade that we’re holding
(mounted in slot 0). The weapon’s state that does this has stateShapeSequence set to “throw”. The grenade image
itself has an imageAnimPrefix defined as “fraggrenade”. Finally, the player is crouching, so Armor::onPoseChange()
sets the script prefix to “crouch”. The final search order goes like this:

The first of those sequences that is found is played as a new thread on the 3rd person player. As with recoil, only one
of these 3rd person animation threads may be active at a time. If an image in another slot also asks to play a 3rd person
sequence, the most recent request is what will play.

1st Person Arms Games that have the player hold a weapon in a 1st person view often let you see the player’s arms
and hands holding that weapon. Rather than requiring you to build the art for all possible combinations of character
arms and weapons, T3D allows you to mix and match shapes and animation sequences.

1st person arms are an optional client-side only effect and are not used on the server. The arms are a separate shape
from the normal 3rd person player shape. You reference the arms using the PlayerData “shapeNameFP” array. It is

542 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

an array as we support up to four mounted images therefore we support up to four arm shapes. However, for T3D 1.2
our examples only make use of a single set of arms for the first mounting slot as our example soldier holds a single
weapon at a time.

As the arms are just regular DAE/DTS files they may get their animation sequences from anywhere. For the included
1.2 art path (see the soldier in the template projects) we decided that their sequences should come from the weapons
themselves. This means that the weapons include all of the bones/nodes needed to animate the arms, but none of the
arm geometry. If you take a look at art/shapes/actors/Soldier/FP/FP_SoldierArms.cs you’ll see the external animation
sequence references for each of the possible weapons.

As each weapon may require its own set of animation sequences (i.e. a different idle sequence for a pistol vs. a
rifle) starting with T3D 1.2 a new ShapeBaseImageData field now exists: imagePrefixFP. If this field is defined for
the mounted image then it is added to the sequence name as given in the current weapon state in the form of “pre-
fix_sequence” (the underscore is added by the system). For example, the Lurker rifle has an imagePrefixFP of “Rifle”.
The Lurker’s Ready state calls the idle sequence, so the arms will attempt to play the “Rifle_idle” sequence and if not
found, they will play the “idle” sequence.

The advantage of having the prefix defined within the datablock and not making it part of the sequence names refer-
enced directly in the weapon state machine is that you can do something like this:

Example:

datablock ShapeBaseImageData(Pistol1Image)
{

imageAnimPrefixFP = "Pistol1";
...other data here...
...weapon state machine here...

};

datablock ShapeBaseImageData(Pistol2Image : Pistol1Image)
{

imageAnimPrefixFP = "Pistol2";
};

You could define a new pistol (Pistol2Image) that uses the exact same state machine as Pistol1Image, but could use a
slightly different set of animation sequences with a prefix of “Pistol2”.

As was previously discussed with 3rd person animation above, a script-based modifier may also be added when looking
up the sequence name for the arms. This is currently used to pass along the player’s pose so the arm’s idle sequence
could have a swimming motion when in the swim pose, for example. And as with images, the arms sequence name
look up uses the following order to find a sequence to play, with the first one found being used:

Finally, the arms support an “ambient” sequence that may be used for anything and will always play, if it is defined in
the arm’s shape.

Example PlayerData Datablock An example of a player datablock appears below:

Example:

datablock PlayerData(DefaultPlayerData)
{

renderFirstPerson = false;

computeCRC = false;

// Third person shape
shapeFile = "art/shapes/actors/Soldier/soldier_rigged.dae";
cameraMaxDist = 3;
allowImageStateAnimation = true;

5.3. Console Reference 543

Torque 3D Documentation, Release 3.5.1

// First person arms
imageAnimPrefixFP = "soldier";
shapeNameFP[0] = "art/shapes/actors/Soldier/FP/FP_SoldierArms.DAE";

canObserve = 1;
cmdCategory = "Clients";

cameraDefaultFov = 55.0;
cameraMinFov = 5.0;
cameraMaxFov = 65.0;

debrisShapeName = "art/shapes/actors/common/debris_player.dts";
debris = playerDebris;

throwForce = 30;

aiAvoidThis = 1;

minLookAngle = "-1.2";
maxLookAngle = "1.2";
maxFreelookAngle = 3.0;

mass = 120;
drag = 1.3;
maxdrag = 0.4;
density = 1.1;
maxDamage = 100;
maxEnergy = 60;
repairRate = 0.33;
energyPerDamagePoint = 75;

rechargeRate = 0.256;

runForce = 4320;
runEnergyDrain = 0;
minRunEnergy = 0;
maxForwardSpeed = 8;
maxBackwardSpeed = 6;
maxSideSpeed = 6;

sprintForce = 4320;
sprintEnergyDrain = 0;
minSprintEnergy = 0;
maxSprintForwardSpeed = 14;
maxSprintBackwardSpeed = 8;
maxSprintSideSpeed = 6;
sprintStrafeScale = 0.25;
sprintYawScale = 0.05;
sprintPitchScale = 0.05;
sprintCanJump = true;

crouchForce = 405;
maxCrouchForwardSpeed = 4.0;
maxCrouchBackwardSpeed = 2.0;
maxCrouchSideSpeed = 2.0;

maxUnderwaterForwardSpeed = 8.4;
maxUnderwaterBackwardSpeed = 7.8;

544 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

maxUnderwaterSideSpeed = 7.8;

jumpForce = "747";
jumpEnergyDrain = 0;
minJumpEnergy = 0;
jumpDelay = "15";
airControl = 0.3;

fallingSpeedThreshold = -6.0;

landSequenceTime = 0.33;
transitionToLand = false;
recoverDelay = 0;
recoverRunForceScale = 0;

minImpactSpeed = 10;
minLateralImpactSpeed = 20;
speedDamageScale = 0.4;

boundingBox = "0.65 0.75 1.85";
crouchBoundingBox = "0.65 0.75 1.3";
swimBoundingBox = "1 2 2";
pickupRadius = 1;

// Damage location details
boxHeadPercentage = 0.83;
boxTorsoPercentage = 0.49;
boxHeadLeftPercentage = 0.30;
boxHeadRightPercentage = 0.60;
boxHeadBackPercentage = 0.30;
boxHeadFrontPercentage = 0.60;

// Foot Prints
decalOffset = 0.25;

footPuffEmitter = "LightPuffEmitter";
footPuffNumParts = 10;
footPuffRadius = "0.25";

dustEmitter = "LightPuffEmitter";

splash = PlayerSplash;
splashVelocity = 4.0;
splashAngle = 67.0;
splashFreqMod = 300.0;
splashVelEpsilon = 0.60;
bubbleEmitTime = 0.4;
splashEmitter[0] = PlayerWakeEmitter;
splashEmitter[1] = PlayerFoamEmitter;
splashEmitter[2] = PlayerBubbleEmitter;
mediumSplashSoundVelocity = 10.0;
hardSplashSoundVelocity = 20.0;
exitSplashSoundVelocity = 5.0;

// Controls over slope of runnable/jumpable surfaces
runSurfaceAngle = 38;
jumpSurfaceAngle = 80;
maxStepHeight = 0.35; //two meters

5.3. Console Reference 545

Torque 3D Documentation, Release 3.5.1

minJumpSpeed = 20;
maxJumpSpeed = 30;

horizMaxSpeed = 68;
horizResistSpeed = 33;
horizResistFactor = 0.35;

upMaxSpeed = 80;
upResistSpeed = 25;
upResistFactor = 0.3;

footstepSplashHeight = 0.35;

// Footstep Sounds
FootSoftSound = FootLightSoftSound;
FootHardSound = FootLightHardSound;
FootMetalSound = FootLightMetalSound;
FootSnowSound = FootLightSnowSound;
FootShallowSound = FootLightShallowSplashSound;
FootWadingSound = FootLightWadingSound;
FootUnderwaterSound = FootLightUnderwaterSound;

FootBubblesSound = FootLightBubblesSound;
movingBubblesSound = ArmorMoveBubblesSound;
waterBreathSound = WaterBreathMaleSound;

impactSoftSound = ImpactLightSoftSound;
impactHardSound = ImpactLightHardSound;
impactMetalSound = ImpactLightMetalSound;
impactSnowSound = ImpactLightSnowSound;

impactWaterEasy = ImpactLightWaterEasySound;
impactWaterMedium = ImpactLightWaterMediumSound;
impactWaterHard = ImpactLightWaterHardSound;

groundImpactMinSpeed = "45";
groundImpactShakeFreq = "4.0 4.0 4.0";
groundImpactShakeAmp = "1.0 1.0 1.0";
groundImpactShakeDuration = 0.8;
groundImpactShakeFalloff = 10.0;

exitingWater = ExitingWaterLightSound;

observeParameters = "0.5 4.5 4.5";
class = "armor";

cameraMinDist = "0";
DecalData = "PlayerFootprint";

// Allowable Inventory Items
mainWeapon = Lurker;

maxInv[Lurker] = 1;
maxInv[LurkerClip] = 20;

maxInv[LurkerGrenadeLauncher] = 1;
maxInv[LurkerGrenadeAmmo] = 20;

546 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

maxInv[Ryder] = 1;
maxInv[RyderClip] = 10;

maxInv[ProxMine] = 5;

maxInv[DeployableTurret] = 5;

// available skins (see materials.cs in model folder)
availableSkins = "base DarkBlue DarkGreen LightGreen Orange Red Teal Violet Yellow";

};

Methods
void Player::allowAllPoses()

Allow all poses a chance to occur. This method resets any poses that have manually been blocked from occuring.
This includes the regular pose states such as sprinting, crouch, being prone and swimming. It also includes being
able to jump and jet jump. While this is allowing these poses to occur it doesn’t mean that they all can due to
other conditions. We’re just not manually blocking them from being allowed.

void Player::allowCrouching(bool state)
Set if the Player is allowed to crouch. The default is to allow crouching unless there are other environmental
concerns that prevent it. This method is mainly used to explicitly disallow crouching at any time.

Parameters state – Set to true to allow crouching, false to disable it.

void Player::allowJetJumping(bool state)
Set if the Player is allowed to jet jump. The default is to allow jet jumping unless there are other environmental
concerns that prevent it. This method is mainly used to explicitly disallow jet jumping at any time.

Parameters state – Set to true to allow jet jumping, false to disable it.

void Player::allowJumping(bool state)
Set if the Player is allowed to jump. The default is to allow jumping unless there are other environmental
concerns that prevent it. This method is mainly used to explicitly disallow jumping at any time.

Parameters state – Set to true to allow jumping, false to disable it.

void Player::allowProne(bool state)
Set if the Player is allowed to go prone. The default is to allow being prone unless there are other environmental
concerns that prevent it. This method is mainly used to explicitly disallow going prone at any time.

Parameters state – Set to true to allow being prone, false to disable it.

void Player::allowSprinting(bool state)
Set if the Player is allowed to sprint. The default is to allow sprinting unless there are other environmental
concerns that prevent it. This method is mainly used to explicitly disallow sprinting at any time.

Parameters state – Set to true to allow sprinting, false to disable it.

void Player::allowSwimming(bool state)
Set if the Player is allowed to swim. The default is to allow swimming unless there are other environmental
concerns that prevent it. This method is mainly used to explicitly disallow swimming at any time.

Parameters state – Set to true to allow swimming, false to disable it.

bool Player::checkDismountPoint(Point3F oldPos, Point3F pos)
Check if it is safe to dismount at this position. Internally this method casts a ray from oldPos to pos to determine
if it hits the terrain, an interior object, a water object, another player, a static shape, a vehicle (exluding the one
currently mounted), or physical zone. If this ray is in the clear, then the player’s bounding box is also checked
for a collision at the pos position. If this displaced bounding box is also in the clear, then checkDismountPoint()
returns true.

5.3. Console Reference 547

Torque 3D Documentation, Release 3.5.1

Parameters

• oldPos – The player’s current position

• pos – The dismount position to check

Returns True if the dismount position is clear, false if not

void Player::clearControlObject()
Clears the player’s current control object. Returns control to the player. This internally calls
Player::setControlObject(0).

Example:

%player.clearControlObject();
echo(%player.getControlObject()); //<-- Returns 0, player assumes control
%player.setControlObject(%vehicle);
echo(%player.getControlObject()); //<-- Returns %vehicle, player controls the vehicle now.

int Player::getControlObject()
Get the current object we are controlling.

Returns object we control, or 0 if not controlling an object.

string Player::getDamageLocation(Point3F pos)
Get the named damage location and modifier for a given world position. the Player object can simulate different
hit locations based on a pre-defined set of PlayerData defined percentages. These hit percentages divide up
the Player’s bounding box into different regions. The diagram below demonstrates how the various PlayerData
properties split up the bounding volume:

Returns a string containing two words (space separated strings), where the first is a location and the
second is a modifier.

int Player::getNumDeathAnimations()
Get the number of death animations available to this player. Death animations are assumed to be named death1-
N using consecutive indices.

string Player::getPose()
Get the name of the player’s current pose. The pose is one of the following:

•Stand - Standard movement pose.

•Sprint - Sprinting pose.

•Crouch - Crouch pose.

•Prone - Prone pose.

•Swim - Swimming pose.

Returns The current pose; one of: “Stand”, “Sprint”, “Crouch”, “Prone”, “Swim”

string Player::getState()
Get the name of the player’s current state. The state is one of the following:

•Dead - The Player is dead.

•Mounted - The Player is mounted to an object such as a vehicle.

•Move - The Player is free to move. The usual state.

•Recover - The Player is recovering from a fall. See PlayerData::recoverDelay

Returns The current state; one of: “Dead”, “Mounted”, “Move”, “Recover”

548 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool Player::setActionThread(string name, bool hold, bool fsp)
Set the main action sequence to play for this player.

The spine nodes for the Player’s shape are named as follows:

•Bip01 Pelvis

•Bip01 Spine

•Bip01 Spine1

•Bip01 Spine2

•Bip01 Neck

•Bip01 Head

You cannot use setActionThread() to have the Player play one of the motion determined action animation se-
quences. These sequences are chosen based on how the Player moves and the Player’s current pose. The names
of these sequences are:

•root

•run

•side

•side_right

•crouch_root

•crouch_forward

•crouch_backward

•crouch_side

•crouch_right

•prone_root

•prone_forward

•prone_backward

•swim_root

•swim_forward

•swim_backward

•swim_left

•swim_right

•fall

•jump

•standjump

•land

•jet

If the player moves in any direction then the animation sequence set using this method will be cancelled and the
chosen mation-based sequence will take over. This makes great for times when the Player cannot move, such as
when mounted, or when it doesn’t matter if the action sequence changes, such as waving and saluting.

Parameters

5.3. Console Reference 549

Torque 3D Documentation, Release 3.5.1

• name – Name of the action sequence to set

• hold – Set to false to get a callback on the datablock when the sequence ends (Player-
Data::animationDone()). When set to true no callback is made.

• fsp – True if first person and none of the spine nodes in the shape should animate. False
will allow the shape’s spine nodes to animate.

Returns True if succesful, false if failed

Example:

// Place the player in a sitting position after being mounted
%player.setActionThread("sitting", true, true);

bool Player::setArmThread(string name)
Set the sequence that controls the player’s arms (dynamically adjusted to match look direction).

Parameters name – Name of the sequence to play on the player’s arms.

Returns true if successful, false if failed.

bool Player::setControlObject(ShapeBase obj)
Set the object to be controlled by this player. It is possible to have the moves sent to the Player object from the
GameConnection to be passed along to another object. This happens, for example when a player is mounted to a
vehicle. The move commands pass through the Player and on to the vehicle (while the player remains stationary
within the vehicle). With setControlObject() you can have the Player pass along its moves to any object. One
possible use is for a player to move a remote controlled vehicle. In this case the player does not mount the
vehicle directly, but still wants to be able to control it.

Parameters obj – Object to control with this player

Returns True if the object is valid, false if not

Fields
int Player::crouchTrigger[static]

The move trigger index used for player crouching.
int Player::extendedMoveHeadPosRotIndex[static]

The ExtendedMove position/rotation index used for head movements.

int Player::imageTrigger0[static]
The move trigger index used to trigger mounted image 0.

int Player::imageTrigger1[static]
The move trigger index used to trigger mounted image 1 or alternate fire on mounted image 0.

int Player::jumpJetTrigger[static]
The move trigger index used for player jump jetting.

int Player::jumpTrigger[static]
The move trigger index used for player jumping.

float Player::maxImpulseVelocity[static]
The maximum velocity allowed due to a single impulse.

int Player::maxPredictionTicks[static]
Maximum number of ticks to predict on the client from the last known move obtained from the server.

int Player::maxWarpTicks[static]
When a warp needs to occur due to the client being too far off from the server, this is the maximum number of
ticks we’ll allow the client to warp to catch up.

550 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float Player::minWarpTicks[static]
Fraction of tick at which instant warp occures on the client.

int Player::proneTrigger[static]
The move trigger index used for player prone pose.

bool Player::renderCollision[static]
Determines if the player’s collision mesh should be rendered. This is mainly used for the tools and debugging.

bool Player::renderMyItems[static]
Determines if mounted shapes are rendered or not. Used on the client side to disable the rendering of all Player
mounted objects. This is mainly used for the tools or debugging.

bool Player::renderMyPlayer[static]
Determines if the player is rendered or not. Used on the client side to disable the rendering of all Player objects.
This is mainly for the tools or debugging.

int Player::sprintTrigger[static]
The move trigger index used for player sprinting.

int Player::vehicleDismountTrigger[static]
The move trigger index used to dismount player.

PlayerData object.

Inherit: ShapeBaseData

Description Defines properties for a Player object.

Methods
void PlayerData::animationDone(Player obj)

Called on the server when a scripted animation completes.

Parameters obj – The Player object
void PlayerData::doDismount(Player obj)

Called when attempting to dismount the player from a vehicle. It is up to the doDismount() method to actually
perform the dismount. Often there are some conditions that prevent this, such as the vehicle moving too fast.

Parameters obj – The Player object

void PlayerData::onEnterLiquid(Player obj, float coverage, string type)
Called when the player enters a liquid.

Parameters

• obj – The Player object

• coverage – Percentage of the player’s bounding box covered by the liquid

• type – The type of liquid the player has entered

void PlayerData::onEnterMissionArea(Player obj)
Called when the player enters the mission area.

Parameters obj – The Player object

void PlayerData::onLeaveLiquid(Player obj, string type)
Called when the player leaves a liquid.

Parameters

5.3. Console Reference 551

Torque 3D Documentation, Release 3.5.1

• obj – The Player object

• type – The type of liquid the player has left

void PlayerData::onLeaveMissionArea(Player obj)
Called when the player leaves the mission area.

Parameters obj – The Player object

void PlayerData::onPoseChange(Player obj, string oldPose, string newPose)
Called when the player changes poses.

Parameters

• obj – The Player object

• oldPose – The pose the player is switching from.

• newPose – The pose the player is switching to.

void PlayerData::onStartSprintMotion(Player obj)
Called when the player starts moving while in a Sprint pose.

Parameters obj – The Player object

void PlayerData::onStartSwim(Player obj)
Called when the player starts swimming.

Parameters obj – The Player object

void PlayerData::onStopSprintMotion(Player obj)
Called when the player stops moving while in a Sprint pose.

Parameters obj – The Player object

void PlayerData::onStopSwim(Player obj)
Called when the player stops swimming.

Parameters obj – The Player object

Fields
float PlayerData::airControl

Amount of movement control the player has when in the air. This is applied as a multiplier to the player’s x and
y motion.

bool PlayerData::allowImageStateAnimation
Allow mounted images to request a sequence be played on the Player . When true a new thread is added to
the player to allow for mounted images to request a sequence be played on the player through the image’s state
machine. It is only optional so that we don’t create a TSThread on the player if we don’t need to.

Point3F PlayerData::boundingBox
Size of the bounding box used by the player for collision. Dimensions are given as “width depth height”.

float PlayerData::boxHeadBackPercentage
Percentage of the player’s bounding box depth that represents the back side of the head. Used when computing
the damage location.

float PlayerData::boxHeadFrontPercentage
Percentage of the player’s bounding box depth that represents the front side of the head. Used when computing
the damage location.

float PlayerData::boxHeadLeftPercentage
Percentage of the player’s bounding box width that represents the left side of the head. Used when computing
the damage location.

552 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float PlayerData::boxHeadPercentage
Percentage of the player’s bounding box height that represents the head. Used when computing the damage
location.

float PlayerData::boxHeadRightPercentage
Percentage of the player’s bounding box width that represents the right side of the head. Used when computing
the damage location.

float PlayerData::boxTorsoPercentage
Percentage of the player’s bounding box height that represents the torso. Used when computing the damage
location.

float PlayerData::bubbleEmitTime
Time in seconds to generate bubble particles after entering the water.

Point3F PlayerData::crouchBoundingBox
Collision bounding box used when the player is crouching.

float PlayerData::crouchForce
Force used to accelerate the player when crouching.

DecalData PlayerData::DecalData
Decal to place on the ground for player footsteps.

float PlayerData::decalOffset
Distance from the center of the model to the right foot. While this defines the distance to the right foot, it is also
used to place the left foot decal as well. Just on the opposite side of the player.

ParticleEmitterData PlayerData::dustEmitter
Emitter used to generate dust particles.

SFXTrack PlayerData::exitingWater
Sound to play when exiting the water with velocity gt = exitSplashSoundVelocity.

float PlayerData::exitSplashSoundVelocity
Minimum velocity when leaving the water for the exitingWater sound to play.

float PlayerData::fallingSpeedThreshold
Downward speed at which we consider the player falling.

bool PlayerData::firstPersonShadows
Forces shadows to be rendered in first person when renderFirstPerson is disabled. Defaults to false.

SFXTrack PlayerData::FootBubblesSound
Sound to play when walking in water and coverage equals 1.0 (fully underwater).

SFXTrack PlayerData::FootHardSound
Sound to play when walking on a surface with Material footstepSoundId 1.

SFXTrack PlayerData::FootMetalSound
Sound to play when walking on a surface with Material footstepSoundId 2.

ParticleEmitterData PlayerData::footPuffEmitter
Particle emitter used to generate footpuffs (particles created as the player walks along the ground).

int PlayerData::footPuffNumParts
Number of footpuff particles to generate each step. Each foot puff is randomly placed within the defined foot
puff radius. This includes having footPuffNumParts set to one.

float PlayerData::footPuffRadius
Particle creation radius for footpuff particles. This is applied to each foot puff particle, even if footPuffNumParts
is set to one. So set this value to zero if you want a single foot puff placed at exactly the same location under
the player each time.

5.3. Console Reference 553

Torque 3D Documentation, Release 3.5.1

SFXTrack PlayerData::FootShallowSound
Sound to play when walking in water and coverage is less than footSplashHeight.

SFXTrack PlayerData::FootSnowSound
Sound to play when walking on a surface with Material footstepSoundId 3.

SFXTrack PlayerData::FootSoftSound
Sound to play when walking on a surface with Material footstepSoundId 0.

float PlayerData::footstepSplashHeight
Water coverage level to choose between FootShallowSound and FootWadingSound.

SFXTrack PlayerData::FootUnderwaterSound
Sound to play when walking in water and coverage equals 1.0 (fully underwater).

SFXTrack PlayerData::FootWadingSound
Sound to play when walking in water and coverage is less than 1, but gt footSplashHeight.

float PlayerData::groundImpactMinSpeed
Minimum falling impact speed to apply damage and initiate the camera shaking effect.

Point3F PlayerData::groundImpactShakeAmp
Amplitude of the camera shake effect after falling. This is how much to shake the camera.

float PlayerData::groundImpactShakeDuration
Duration (in seconds) of the camera shake effect after falling. This is how long to shake the camera.

float PlayerData::groundImpactShakeFalloff
Falloff factor of the camera shake effect after falling. This is how to fade the camera shake over the duration.

Point3F PlayerData::groundImpactShakeFreq
Frequency of the camera shake effect after falling. This is how fast to shake the camera.

float PlayerData::hardSplashSoundVelocity
Minimum velocity when entering the water for choosing between the impactWaterMedium and impactWater-
Hard sound to play.

float PlayerData::horizMaxSpeed
Maximum horizontal speed.

float PlayerData::horizResistFactor
Factor of resistence once horizResistSpeed has been reached.

float PlayerData::horizResistSpeed
Horizontal speed at which resistence will take place.

caseString PlayerData::imageAnimPrefix
Optional prefix to all mounted image animation sequences in third person. This defines a prefix that will be
added when looking up mounted image animation sequences while in third person. It allows for the customiza-
tion of a third person image based on the type of player.

caseString PlayerData::imageAnimPrefixFP
Optional prefix to all mounted image animation sequences in first person. This defines a prefix that will be added
when looking up mounted image animation sequences while in first person. It allows for the customization of a
first person image based on the type of player.

SFXTrack PlayerData::impactHardSound
Sound to play after falling on a surface with Material footstepSoundId 1.

SFXTrack PlayerData::impactMetalSound
Sound to play after falling on a surface with Material footstepSoundId 2.

554 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

SFXTrack PlayerData::impactSnowSound
Sound to play after falling on a surface with Material footstepSoundId 3.

SFXTrack PlayerData::impactSoftSound
Sound to play after falling on a surface with Material footstepSoundId 0.

SFXTrack PlayerData::impactWaterEasy
Sound to play when entering the water with velocity lt mediumSplashSoundVelocity.

SFXTrack PlayerData::impactWaterHard
Sound to play when entering the water with velocity gt = hardSplashSoundVelocity.

SFXTrack PlayerData::impactWaterMedium
Sound to play when entering the water with velocity gt = mediumSplashSoundVelocity and lt hardSplashSound-
Velocity.

float PlayerData::jetJumpEnergyDrain
Energy level drained each time the player jet jumps.

float PlayerData::jetJumpForce
Force used to accelerate the player when a jet jump is initiated.

float PlayerData::jetJumpSurfaceAngle
Angle from vertical (in degrees) where the player can jet jump.

float PlayerData::jetMaxJumpSpeed
Maximum vertical speed before the player can no longer jet jump.

float PlayerData::jetMinJumpEnergy
Minimum energy level required to jet jump.

float PlayerData::jetMinJumpSpeed
Minimum speed needed to jet jump. If the player’s own z velocity is greater than this, then it is used to scale the
jet jump speed, up to jetMaxJumpSpeed.

int PlayerData::jumpDelay
Delay time in number of ticks ticks between jumps.

float PlayerData::jumpEnergyDrain
Energy level drained each time the player jumps.

float PlayerData::jumpForce
Force used to accelerate the player when a jump is initiated.

float PlayerData::jumpSurfaceAngle
Angle from vertical (in degrees) where the player can jump.

bool PlayerData::jumpTowardsNormal
Controls the direction of the jump impulse. When false, jumps are always in the vertical (+Z) direction. When
true jumps are in the direction of the ground normal so long as the player is not directly facing the surface. If
the player is directly facing the surface, then they will jump straight up.

float PlayerData::landSequenceTime
Time of land sequence play back when using new recover system. If greater than 0 then the legacy fall recovery
system will be bypassed in favour of just playing the player’s land sequence. The time to recover from a fall
then becomes this parameter’s time and the land sequence’s playback will be scaled to match.

float PlayerData::maxBackwardSpeed
Maximum backward speed when running.

float PlayerData::maxCrouchBackwardSpeed
Maximum backward speed when crouching.

5.3. Console Reference 555

Torque 3D Documentation, Release 3.5.1

float PlayerData::maxCrouchForwardSpeed
Maximum forward speed when crouching.

float PlayerData::maxCrouchSideSpeed
Maximum sideways speed when crouching.

float PlayerData::maxForwardSpeed
Maximum forward speed when running.

float PlayerData::maxFreelookAngle
Defines the maximum left and right angles (in radians) the player can look in freelook mode.

float PlayerData::maxJumpSpeed
Maximum vertical speed before the player can no longer jump.

float PlayerData::maxLookAngle
Highest angle (in radians) the player can look.

float PlayerData::maxProneBackwardSpeed
Maximum backward speed when prone (laying down).

float PlayerData::maxProneForwardSpeed
Maximum forward speed when prone (laying down).

float PlayerData::maxProneSideSpeed
Maximum sideways speed when prone (laying down).

float PlayerData::maxSideSpeed
Maximum sideways speed when running.

float PlayerData::maxSprintBackwardSpeed
Maximum backward speed when sprinting.

float PlayerData::maxSprintForwardSpeed
Maximum forward speed when sprinting.

float PlayerData::maxSprintSideSpeed
Maximum sideways speed when sprinting.

float PlayerData::maxStepHeight
Maximum height the player can step up. The player will automatically step onto changes in ground height less
than maxStepHeight. The player will collide with ground height changes greater than this.

float PlayerData::maxTimeScale
Maximum time scale for action animations. If an action animation has a defined ground frame, it is automatically
scaled to match the player’s ground velocity. This field limits the maximum time scale used even if the player’s
velocity exceeds it.

float PlayerData::maxUnderwaterBackwardSpeed
Maximum backward speed when underwater.

float PlayerData::maxUnderwaterForwardSpeed
Maximum forward speed when underwater.

float PlayerData::maxUnderwaterSideSpeed
Maximum sideways speed when underwater.

float PlayerData::mediumSplashSoundVelocity
Minimum velocity when entering the water for choosing between the impactWaterEasy and impactWater-
Medium sounds to play.

556 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float PlayerData::minImpactSpeed
Minimum impact speed to apply falling damage. This field also sets the minimum speed for the onImpact
callback to be invoked.

float PlayerData::minJumpEnergy
Minimum energy level required to jump.

float PlayerData::minJumpSpeed
Minimum speed needed to jump. If the player’s own z velocity is greater than this, then it is used to scale the
jump speed, up to maxJumpSpeed.

float PlayerData::minLateralImpactSpeed
Minimum impact speed to apply non-falling damage. This field also sets the minimum speed for the onLater-
alImpact callback to be invoked.

float PlayerData::minLookAngle
Lowest angle (in radians) the player can look.

float PlayerData::minRunEnergy
Minimum energy level required to run or swim.

float PlayerData::minSprintEnergy
Minimum energy level required to sprint.

SFXTrack PlayerData::movingBubblesSound
Sound to play when in water and coverage equals 1.0 (fully underwater). Note that unlike FootUnderwater-
Sound, this sound plays even if the player is not moving around in the water.

string PlayerData::physicsPlayerType
Specifies the type of physics used by the player. This depends on the physics module used. An example is
‘Capsule’.

float PlayerData::pickupRadius
Radius around the player to collide with Items in the scene (on server). Internally the pickupRadius is added
to the larger side of the initial bounding box to determine the actual distance, to a maximum of 2 times the
bounding box size. The initial bounding box is that used for the root pose, and therefore doesn’t take into
account the change in pose.

Point3F PlayerData::proneBoundingBox
Collision bounding box used when the player is prone (laying down).

float PlayerData::proneForce
Force used to accelerate the player when prone (laying down).

int PlayerData::recoverDelay
Number of ticks for the player to recover from falling.

float PlayerData::recoverRunForceScale
Scale factor applied to runForce while in the recover state. This can be used to temporarily slow the player’s
movement after a fall, or prevent the player from moving at all if set to zero.

bool PlayerData::renderFirstPerson
Flag controlling whether to render the player shape in first person view.

float PlayerData::runEnergyDrain
Energy value drained each tick that the player is moving. The player will not be able to move when his energy
falls below minRunEnergy.

float PlayerData::runForce
Force used to accelerate the player when running.

5.3. Console Reference 557

Torque 3D Documentation, Release 3.5.1

float PlayerData::runSurfaceAngle
Maximum angle from vertical (in degrees) the player can run up.

filename PlayerData::shapeNameFP[4]
File name of this player’s shape that will be used in conjunction with the corresponding mounted image. These
optional parameters correspond to each mounted image slot to indicate a shape that is rendered in addition to
the mounted image shape. Typically these are a player’s arms (or arm) that is animated along with the mounted
image’s state animation sequences.

SplashData PlayerData::Splash
SplashData datablock used to create splashes when the player moves through water.

float PlayerData::splashAngle
Maximum angle (in degrees) from pure vertical movement in water to generate splashes.

ParticleEmitterData PlayerData::splashEmitter[3]
Particle emitters used to generate splash particles.

float PlayerData::splashFreqMod
Multipled by speed to determine the number of splash particles to generate.

float PlayerData::splashVelEpsilon
Minimum speed to generate splash particles.

float PlayerData::splashVelocity
Minimum velocity when moving through water to generate splashes.

bool PlayerData::sprintCanJump
Can the player jump while sprinting.

float PlayerData::sprintEnergyDrain
Energy value drained each tick that the player is sprinting. The player will not be able to move when his energy
falls below sprintEnergyDrain.

float PlayerData::sprintForce
Force used to accelerate the player when sprinting.

float PlayerData::sprintPitchScale
Amount to scale pitch motion while sprinting.

float PlayerData::sprintStrafeScale
Amount to scale strafing motion vector while sprinting.

float PlayerData::sprintYawScale
Amount to scale yaw motion while sprinting.

Point3F PlayerData::swimBoundingBox
Collision bounding box used when the player is swimming.

float PlayerData::swimForce
Force used to accelerate the player when swimming.

bool PlayerData::transitionToLand
When going from a fall to a land, should we transition between the two.

float PlayerData::upMaxSpeed
Maximum upwards speed.

float PlayerData::upResistFactor
Factor of resistence once upResistSpeed has been reached.

float PlayerData::upResistSpeed
Upwards speed at which resistence will take place.

558 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

SFXTrack PlayerData::waterBreathSound
Sound to play when in water and coverage equals 1.0 (fully underwater). Note that unlike FootUnderwater-
Sound, this sound plays even if the player is not moving around in the water.

Projectile class for properties of individual projectiles.

Inherit: GameBase

Description Base projectile class. Uses the ProjectileData class for properties of individual projectiles.

Methods
void Projectile::presimulate(float seconds)

Updates the projectile’s positional and collision information. This function will first delete the projectile if it is
a server object and is outside it’s ProjectileData::lifetime . Also responsible for applying gravity, determining
collisions, triggering explosions, emitting trail particles, and calculating bounces if necessary.

Parameters seconds – Amount of time, in seconds since the simulation’s start, to advance.

Example:

// Tell the projectile to process a simulation event, and provide the amount of time// that has passed since the simulation began.
%seconds = 2.0;
%projectile.presimulate(%seconds);

Fields
Point3F Projectile::initialPosition

Starting position for the projectile.
Point3F Projectile::initialVelocity

Starting velocity for the projectile.

int Projectile::sourceObject
ID number of the object that fired the projectile.

int Projectile::sourceSlot
The sourceObject’s weapon slot that the projectile originates from.

ProjectileData Stores properties for an individual projectile type.

Inherit: GameBaseData

Description Stores properties for an individual projectile type.

Example:

datablock ProjectileData(GrenadeLauncherProjectile)
{
projectileShapeName = "art/shapes/weapons/SwarmGun/rocket.dts";

directDamage = 30;
radiusDamage = 30;
damageRadius = 5;
areaImpulse = 2000;
explosion = GrenadeLauncherExplosion;
waterExplosion = GrenadeLauncherWaterExplosion;
decal = ScorchRXDecal;
splash = GrenadeSplash;

5.3. Console Reference 559

Torque 3D Documentation, Release 3.5.1

particleEmitter = GrenadeProjSmokeTrailEmitter;
particleWaterEmitter = GrenadeTrailWaterEmitter;
muzzleVelocity = 30;
velInheritFactor = 0.3;
armingDelay = 2000;
lifetime = 10000;
fadeDelay = 4500;
bounceElasticity = 0.4;
bounceFriction = 0.3;
isBallistic = true;
gravityMod = 0.9;
lightDesc = GrenadeLauncherLightDesc;
damageType = "GrenadeDamage";
};

Methods
void ProjectileData::onCollision(Projectile proj, SceneObject col, float fade, Point3F pos, Point3F

normal)
Called when a projectile collides with another object. This function is only called on server objects.

Parameters

• proj – The projectile colliding with SceneObject col.

• col – The SceneObject hit by the projectile.

• fade – The current fadeValue of the projectile, affects its visibility.

• pos – The position of the collision.

• normal – The normal of the collision.
void ProjectileData::onExplode(Projectile proj, Point3F pos, float fade)

Called when a projectile explodes. This function is only called on server objects.

Parameters

• proj – The exploding projectile.

• pos – The position of the explosion.

• fade – The current fadeValue of the projectile, affects its visibility.

Fields
int ProjectileData::armingDelay

Amount of time, in milliseconds, before the projectile will cause damage or explode on impact. This value must
be equal to or less than the projectile’s lifetime.

float ProjectileData::bounceElasticity
Influences post-bounce velocity of a projectile that does not explode on contact. Scales the velocity from a
bounce after friction is taken into account. A value of 1.0 will leave it’s velocity unchanged while values greater
than 1.0 will increase it.

float ProjectileData::bounceFriction
Factor to reduce post-bounce velocity of a projectile that does not explode on contact. Reduces bounce velocity
by this factor and a multiple of the tangent to impact. Used to simulate surface friction.

DecalData ProjectileData::decal
Decal datablock used for decals placed at projectile explosion points.

ExplosionData ProjectileData::Explosion
Explosion datablock used when the projectile explodes outside of water.

560 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int ProjectileData::fadeDelay
Amount of time, in milliseconds, before the projectile begins to fade out. This value must be smaller than the
projectile’s lifetime to have an affect.

float ProjectileData::gravityMod
Scales the influence of gravity on the projectile. The larger this value is, the more that gravity will affect the
projectile. A value of 1.0 will assume “normal” influence upon it. The magnitude of gravity is assumed to be
9.81 m/s/s

float ProjectileData::impactForce

bool ProjectileData::isBallistic
Detetmines if the projectile should be affected by gravity and whether or not it bounces before exploding.

int ProjectileData::lifetime
Amount of time, in milliseconds, before the projectile is removed from the simulation. Used with fadeDelay
to determine the transparency of the projectile at a given time. A projectile may exist up to a maximum of
131040ms (or 4095 ticks) as defined by Projectile::MaxLivingTicks in the source code.

LightDescription ProjectileData::lightDesc
LightDescription datablock used for lights attached to the projectile.

float ProjectileData::muzzleVelocity
Amount of velocity the projectile recieves from the “muzzle” of the gun. Used with velInheritFactor to determine
the initial velocity of the projectile. This value is never modified by the engine.

ParticleEmitterData ProjectileData::ParticleEmitter
Particle emitter datablock used to generate particles while the projectile is outside of water.

ParticleEmitterData ProjectileData::particleWaterEmitter
Particle emitter datablock used to generate particles while the projectile is submerged in water.

filename ProjectileData::projectileShapeName
File path to the model of the projectile.

Point3F ProjectileData::scale
Scale to apply to the projectile’s size.

SFXTrack ProjectileData::sound
SFXTrack datablock used to play sounds while in flight.

SplashData ProjectileData::Splash
Splash datablock used to create splash effects as the projectile enters or leaves water.

float ProjectileData::velInheritFactor
Amount of velocity the projectile recieves from the source that created it. Use an amount between 0 and 1 for
the best effect. This value is never modified by the engine.

ExplosionData ProjectileData::waterExplosion
Explosion datablock used when the projectile explodes underwater.

ProximityMine A simple proximity mine.

Inherit: Item

Description A simple proximity mine.

Proximity mines can be deployed using the world editor or thrown by an in-game object. Once armed, any Player or
Vehicle object that moves within the mine’s trigger area will cause it to explode.

Internally, the ProximityMine object transitions through the following states:

5.3. Console Reference 561

Torque 3D Documentation, Release 3.5.1

The shape used for the mine may optionally define the following sequences:

Example:

datablock ProximityMineData(SimpleMine)
{

// ShapeBaseData fields
category = "Weapon";
shapeFile = "art/shapes/weapons/misc/proximityMine.dts";

// ItemData fields
sticky = true;

// ProximityMineData fields
armingDelay = 0.5;
armingSound = MineArmedSound;

autoTriggerDelay = 0;
triggerOnOwner = true;
triggerRadius = 5.0;
triggerSpeed = 1.0;
triggerDelay = 0.5;
triggerSound = MineTriggeredSound;
explosion = RocketLauncherExplosion;

// dynamic fields
pickUpName = "Proximity Mines";
maxInventory = 20;

damageType = "MineDamage"; // type of damage applied to objects in radius
radiusDamage = 30; // amount of damage to apply to objects in radius
damageRadius = 8; // search radius to damage objects when exploding
areaImpulse = 2000; // magnitude of impulse to apply to objects in radius

};

function ProximityMineData::onTriggered(%this, %obj, %target)
{

echo(%this.name SPC "triggered by " @ %target.getClassName());
}

function ProximityMineData::onExplode(%this, %obj, %position)
{

// Damage objects within the mines damage radiusif (%this.damageRadius > 0)
radiusDamage(%obj.sourceObject, %position, %this.damageRadius, %this.radiusDamage, %this.damageType, %this.areaImpulse);

}

function ProximityMineData::damage(%this, %obj, %position, %source, %amount, %damageType)
{

// Explode if any damage is applied to the mine
%obj.schedule(50 + getRandom(50), explode);

}

%obj = newProximityMine()
{

dataBlock = SimpleMine;
};

Methods

562 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void ProximityMine::explode()
Manually cause the mine to explode.

ProximityMineData .

Inherit: ItemData

Description Stores common properties for a ProximityMine.

Methods
void ProximityMineData::onExplode(ProximityMine obj, Point3F pos)

Callback invoked when a ProximityMine is about to explode.

Parameters

• obj – The ProximityMine object

• pos – The position of the mine explosion
void ProximityMineData::onTriggered(ProximityMine obj, SceneObject target)

Callback invoked when an object triggers the ProximityMine .

Parameters

• obj – The ProximityMine object

• target – The object that triggered the mine

Fields
float ProximityMineData::armingDelay

Delay (in seconds) from when the mine is placed to when it becomes active.
SFXTrack ProximityMineData::armingSound

Sound to play when the mine is armed (starts at the same time as the armed sequence if defined).

float ProximityMineData::autoTriggerDelay
Delay (in seconds) from arming until the mine automatically triggers and explodes, even if no object has entered
the trigger area. Set to 0 to disable.

float ProximityMineData::explosionOffset
Offset from the mine’s origin where the explosion emanates from.Sometimes a thrown mine may be slightly
sunk into the ground. This can be just enough to cause the explosion to occur under the ground, especially on
flat ground, which can end up blocking the explosion. This offset along the mine’s ‘up’ normal allows you to
raise the explosion origin to a better height.

float ProximityMineData::triggerDelay
Delay (in seconds) from when the mine is triggered until it explodes.

bool ProximityMineData::triggerOnOwner
Controls whether the mine can be triggered by the object that owns it. For example, a player could deploy mines
that are only dangerous to other players and not himself.

float ProximityMineData::triggerRadius
Distance at which an activated mine will detect other objects and explode.

SFXTrack ProximityMineData::triggerSound
Sound to play when the mine is triggered (starts at the same time as the triggered sequence if defined).

float ProximityMineData::triggerSpeed
Speed above which moving objects within the trigger radius will trigger the mine.

5.3. Console Reference 563

Torque 3D Documentation, Release 3.5.1

SceneObject A networkable object that exists in the 3D world.

Inherit: NetObject

Description A networkable object that exists in the 3D world.

The SceneObject class provides the foundation for 3D objects in the Engine. It exposes the functionality for:

You do not typically work with SceneObjects themselves. The SceneObject provides a reference within the game
world (the scene), but does not render to the client on its own. The same is true of collision detection beyond that of
the bounding box. Instead you use one of the many classes that derrive from SceneObject, such as TSStatic.

Difference Between setHidden() and isRenderEnabled When it comes time to decide if a SceneObject should
render or not, there are two methods that can stop the SceneObject from rendering at all. You need to be aware of the
differences between these two methods as they impact how the SceneObject is networked from the server to the client.

The first method of manually controlling if a SceneObject is rendered is through its SceneObject::isRenderEnabled
property. When set to false the SceneObject is considered invisible but still present within the scene. This means it
still takes part in collisions and continues to be networked.

The second method is using the setHidden() method. This will actually remove a SceneObject from the scene and it
will no longer be networked from the server to the cleint. Any client-side ghost of the object will be deleted as the
server no longer considers the object to be in scope.

Methods
Point3F SceneObject::getEulerRotation()

Get Euler rotation of this object.

Returns the orientation of the object in the form of rotations around the X, Y and Z axes in degrees.
VectorF SceneObject::getForwardVector()

Get the direction this object is facing.

Returns a vector indicating the direction this object is facing.

TransformF SceneObject::getInverseTransform()
Get the object’s inverse transform.

Returns the inverse transform of the object

int SceneObject::getMountedObject(int slot)
Get the object mounted at a particular slot.

Parameters slot – mount slot index to query

Returns ID of the object mounted in the slot, or 0 if no object.

int SceneObject::getMountedObjectCount()
Get the number of objects mounted to us.

Returns the number of mounted objects.

int SceneObject::getMountedObjectNode(int slot)
Get the mount node index of the object mounted at our given slot.

Parameters slot – mount slot index to query

Returns index of the mount node used by the object mounted in this slot.

int SceneObject::getMountNodeObject(int node)
Get the object mounted at our given node index.

564 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters node – mount node index to query

Returns ID of the first object mounted at the node, or 0 if none found.

Box3F SceneObject::getObjectBox()
Get the object’s bounding box (relative to the object’s origin).

Returns six fields, two Point3Fs, containing the min and max points of the objectbox.

int SceneObject::getObjectMount()
Get the object we are mounted to.

Returns the SimObjectID of the object we’re mounted to, or 0 if not mounted.

Point3F SceneObject::getPosition()
Get the object’s world position. Reimplemented in Camera .

Returns the current world position of the object

VectorF SceneObject::getRightVector()
Get the right vector of the object.

Returns a vector indicating the right direction of this object.

Point3F SceneObject::getScale()
Get the object’s scale.

Returns object scale as a Point3F

TransformF SceneObject::getTransform()
Get the object’s transform.

Returns the current transform of the object

int SceneObject::getType()
Return the type mask for this object.

Returns The numeric type mask for the object.

VectorF SceneObject::getUpVector()
Get the up vector of the object.

Returns a vector indicating the up direction of this object.

Box3F SceneObject::getWorldBox()
Get the object’s world bounding box.

Returns six fields, two Point3Fs, containing the min and max points of the worldbox.

Point3F SceneObject::getWorldBoxCenter()
Get the center of the object’s world bounding box.

Returns the center of the world bounding box for this object.

bool SceneObject::isGlobalBounds()
Check if this object has a global bounds set. If global bounds are set to be true, then the object is assumed to
have an infinitely large bounding box for collision and rendering purposes.

Returns true if the object has a global bounds.

bool SceneObject::isMounted()
Check if we are mounted to another object.

Returns true if mounted to another object, false if not mounted.

bool SceneObject::mountObject(SceneObject objB, int slot, TransformF txfm)
Mount objB to this object at the desired slot with optional transform.

5.3. Console Reference 565

Torque 3D Documentation, Release 3.5.1

Parameters

• objB – Object to mount onto us

• slot – Mount slot ID

• txfm – (optional) mount offset transform

Returns true if successful, false if failed (objB is not valid)

void SceneObject::setScale(Point3F scale)
Set the object’s scale.

Parameters scale – object scale to set

void SceneObject::setTransform(TransformF txfm)
Set the object’s transform (orientation and position).

Parameters txfm – object transform to set

void SceneObject::unmount()
Unmount us from the currently mounted object if any.

bool SceneObject::unmountObject(SceneObject target)
Unmount an object from ourselves.

Parameters target – object to unmount

Returns true if successful, false if failed

Fields
bool SceneObject::isRenderEnabled

Controls client-side rendering of the object.
bool SceneObject::isSelectionEnabled

Determines if the object may be selected from wihin the Tools.

int SceneObject::mountNode
Node we are mounted to.

pid SceneObject::mountPID
PersistentID of object we are mounted to. Unlike the SimObjectID that is determined at run time, the Persisten-
tID of an object is saved with the level/mission and may be used to form a link between objects.

MatrixPosition SceneObject::mountPos
Position we are mounted at (object space of our mount object).

MatrixRotation SceneObject::mountRot
Rotation we are mounted at (object space of our mount object).

MatrixPosition SceneObject::position
Object world position.

MatrixRotation SceneObject::rotation
Object world orientation.

Point3F SceneObject::scale
Object world scale.

ShapeBase A scriptable, renderable shape.

Inherit: GameBase

566 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description A scriptable, renderable shape.

ShapeBase is the renderable shape from which most of the scriptable, game objects are derived, including the Player,
Vehicle and Item classes. ShapeBase provides collision detection, audio channels, and animation as well as damage
(and damage states), energy, and the ability to mount Images and objects.

ShapeBase objects are not normally instantiated in the scene; derived classes such as Player, WheeledVehicle, and,
StaticShape are used instead. But ShapeBase (and the associated datablock, ShapeBaseData) may be used to provide
functionality common to all derived objects.

A ShapeBase object consists of a DTS or DAE shape file. This file has the following requirements:

Nodes

Sequences Indicating Condition

Detail Levels

Control Object Generally in a Torque game, each client is in control of a single game object (such as a Player in an
FPS game, or a WheeledVehicle in a racing game). In a game where the client has control over multiple objects (such
as units in an RTS), the control object may be the Camera that determines the client’s view of the world (although in
general, the client’s camera object does not need to be the same as the control object).

The object controlled by the client is important for several reasons:

Energy/Damage ShapeBase includes basic enery and damage systems that may be used by derived classes as re-
quired. For example, the Player class uses energy to determine whether the character is capabable of running and
jumping, which can be used to mimic the character getting tired and having to rest before continuing. The Player
class also uses the damage system PlayerData::onDestroyed callback to trigger a death animation. The Vehicle classes
use the current damage level to trigger particle emitters, so a vehicle could progressively generate more smoke as it
becomes more damaged.

ShapeBase also includes parameters to ‘blow up’ the object when it is Destroyed (damage level above ShapeBase-
Data::destroyedLevel). Blowing up an object can generate an explosion and debris, as well as exclude the object from
rendering.

Parameters to control the object’s energy and damage functionality can be found in the ShapeBaseData datablock.

Methods
void ShapeBase::applyDamage(float amount)

Increment the current damage level by the specified amount.

Parameters amount – value to add to current damage level
bool ShapeBase::applyImpulse(Point3F pos, Point3F vec)

Apply an impulse to the object.

Parameters

• pos – world position of the impulse

• vec – impulse momentum (velocity * mass)

Returns true

void ShapeBase::applyRepair(float amount)
Repair damage by the specified amount. Note that the damage level is only reduced by repairRate per tick, so it
may take several ticks for the total repair to complete.

Parameters amount – total repair value (subtracted from damage level over time)

5.3. Console Reference 567

Torque 3D Documentation, Release 3.5.1

void ShapeBase::blowUp()
Explodes an object into pieces.

bool ShapeBase::canCloak()
Check if this object can cloak.

Returns true

void ShapeBase::changeMaterial(string mapTo, Material oldMat, Material newMat)
Change one of the materials on the shape. This method changes materials per mapTo with others. The material
that is being replaced is mapped to unmapped_mat as a part of this transition.

Parameters

• mapTo – the name of the material target to remap (from getTargetName)

• oldMat – the old Material that was mapped

• newMat – the new Material to map

Example:

// remap the first material in the shape
%mapTo = %obj.getTargetName(0);
%obj.changeMaterial(%mapTo, 0, MyMaterial);

bool ShapeBase::destroyThread(int slot)
Destroy an animation thread, which prevents it from playing.

Parameters slot – thread slot to destroy

Returns true if successful, false if failed

void ShapeBase::dumpMeshVisibility()
Print a list of visible and hidden meshes in the shape to the console for debugging purposes.

Point3F ShapeBase::getAIRepairPoint()
Get the position at which the AI should stand to repair things. If the shape defines a node called “AIRepairNode”,
this method will return the current world position of that node, otherwise “0 0 0”.

Returns the AI repair position

float ShapeBase::getCameraFov()
Returns the vertical field of view in degrees for this object if used as a camera.

Returns ShapeBaseData::cameraDefaultFov

int ShapeBase::getControllingClient()
Get the client (if any) that controls this object. The controlling client is the one that will send moves to us to act
on.

Returns , or 0 if this object is not controlled by any client.

int ShapeBase::getControllingObject()
Get the object (if any) that controls this object.

Returns object, or 0 if this object is not controlled by another object.

float ShapeBase::getDamageFlash()
Get the damage flash level.

Returns flash level

float ShapeBase::getDamageLevel()
Get the object’s current damage level.

568 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns damage level

float ShapeBase::getDamagePercent()
Get the object’s current damage level as a percentage of maxDamage.

Returns damageLevel / datablock.maxDamage

string ShapeBase::getDamageState()
Get the object’s damage state.

Returns the damage state; one of “Enabled”, “Disabled”, “Destroyed”

float ShapeBase::getDefaultCameraFov()
Returns the default vertical field of view in degrees for this object if used as a camera.

Returns Default FOV

float ShapeBase::getEnergyLevel()
Get the object’s current energy level.

Returns energy level

float ShapeBase::getEnergyPercent()
Get the object’s current energy level as a percentage of maxEnergy.

Returns energyLevel / datablock.maxEnergy

Point3F ShapeBase::getEyePoint()
Get the position of the ‘eye’ for this object. If the object model has a node called ‘eye’, this method will return
that node’s current world position, otherwise it will return the object’s current world position.

Returns the eye position for this object

TransformF ShapeBase::getEyeTransform()
Get the ‘eye’ transform for this object. If the object model has a node called ‘eye’, this method will return that
node’s current transform, otherwise it will return the object’s current transform.

Returns the eye transform for this object

VectorF ShapeBase::getEyeVector()
Get the forward direction of the ‘eye’ for this object. If the object model has a node called ‘eye’, this method will
return that node’s current forward direction vector, otherwise it will return the object’s current forward direction
vector.

Returns the eye vector for this object

bool ShapeBase::getImageAltTrigger(int slot)
Get the alt trigger state of the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the Image’s current alt trigger state

bool ShapeBase::getImageAmmo(int slot)
Get the ammo state of the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the Image’s current ammo state

bool ShapeBase::getImageGenericTrigger(int slot, int trigger)
Get the generic trigger state of the Image mounted in the specified slot.

Parameters

• slot – Image slot to query

5.3. Console Reference 569

Torque 3D Documentation, Release 3.5.1

• trigger – Generic trigger number

Returns the Image’s current generic trigger state

bool ShapeBase::getImageLoaded(int slot)
Get the loaded state of the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the Image’s current loaded state

string ShapeBase::getImageScriptAnimPrefix(int slot)
Get the script animation prefix of the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the Image’s current script animation prefix

int ShapeBase::getImageSkinTag(int slot)
Get the skin tag ID for the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the skinTag value passed to mountImage when the image was mounted

string ShapeBase::getImageState(int slot)
Get the name of the current state of the Image in the specified slot.

Parameters slot – Image slot to query

Returns name of the current Image state, or “Error” if slot is invalid

bool ShapeBase::getImageTarget(int slot)
Get the target state of the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the Image’s current target state

bool ShapeBase::getImageTrigger(int slot)
Get the trigger state of the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns the Image’s current trigger state

string ShapeBase::getLookAtPoint(float distance, int typeMask)
Get the world position this object is looking at. Casts a ray from the eye and returns information about what the
ray hits.

Parameters

• distance – maximum distance of the raycast

• typeMask – typeMask of objects to include for raycast collision testing

Returns look-at information as “Object HitX HitY HitZ [Material]” or empty string for no hit

Example:

%lookat = %obj.getLookAtPoint();
echo("Looking at: " @ getWords(%lookat, 1, 3));

float ShapeBase::getMaxDamage()
Get the object’s maxDamage level.

Returns datablock.maxDamage

570 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string ShapeBase::getModelFile()
Get the model filename used by this shape.

Returns the shape filename

int ShapeBase::getMountedImage(int slot)
Get the Image mounted in the specified slot.

Parameters slot – Image slot to query

Returns datablock mounted in the slot, or 0 if no Image is mounted there.

int ShapeBase::getMountSlot(ShapeBaseImageData image)
Get the first slot the given datablock is mounted to on this object.

Parameters image – ShapeBaseImageData datablock to query

Returns index of the first slot the Image is mounted in, or -1 if the Image is not mounted in any slot
on this object.

Point3F ShapeBase::getMuzzlePoint(int slot)
Get the muzzle position of the Image mounted in the specified slot. If the Image shape contains a node called
‘muzzlePoint’, then the muzzle position is the position of that node in world space. If no such node is specified,
the slot’s mount node is used instead.

Parameters slot – Image slot to query

Returns the muzzle position, or “0 0 0” if the slot is invalid

VectorF ShapeBase::getMuzzleVector(int slot)
Get the muzzle vector of the Image mounted in the specified slot. If the Image shape contains a node called
‘muzzlePoint’, then the muzzle vector is the forward direction vector of that node’s transform in world space. If
no such node is specified, the slot’s mount node is used instead. If the correctMuzzleVector flag (correctMuz-
zleVectorTP in 3rd person) is set in the Image, the muzzle vector is computed to point at whatever object is right
in front of the object’s ‘eye’ node.

Parameters slot – Image slot to query

Returns the muzzle vector, or “0 1 0” if the slot is invalid

int ShapeBase::getPendingImage(int slot)
Get the Image that will be mounted next in the specified slot. Calling mountImage when an Image is already
mounted does one of two things: This command retrieves the ID of the pending Image (2nd case above).

Parameters slot – Image slot to query

Returns datablock, or 0 if none.

float ShapeBase::getRechargeRate()
Get the current recharge rate.

Returns the recharge rate (per tick)

float ShapeBase::getRepairRate()
Get the per-tick repair amount.

Returns the current value to be subtracted from damage level each tick

string ShapeBase::getShapeName()
Get the name of the shape.

Returns the name of the shape

string ShapeBase::getSkinName()
Get the name of the skin applied to this shape.

5.3. Console Reference 571

Torque 3D Documentation, Release 3.5.1

Returns the name of the skin

TransformF ShapeBase::getSlotTransform(int slot)
Get the world transform of the specified mount slot.

Parameters slot – Image slot to query

Returns the mount transform

int ShapeBase::getTargetCount()
Get the number of materials in the shape.

Returns the number of materials in the shape.

string ShapeBase::getTargetName(int index)
Get the name of the indexed shape material.

Parameters index – index of the material to get (valid range is 0 - getTargetCount()-1).

Returns the name of the indexed material.

VectorF ShapeBase::getVelocity()
Get the object’s current velocity. Reimplemented in Camera .

Returns the current velocity

float ShapeBase::getWhiteOut()
Get the white-out level.

Returns white-out level

bool ShapeBase::hasImageState(int slot, string state)
Check if the given state exists on the mounted Image.

Parameters

• slot – Image slot to query

• state – Image state to check for

Returns true if the Image has the requested state defined.

bool ShapeBase::isCloaked()
Check if this object is cloaked.

Returns true if cloaked, false if not

bool ShapeBase::isDestroyed()
Check if the object is in the Destroyed damage state.

Returns true if damage state is “Destroyed”, false if not

bool ShapeBase::isDisabled()
Check if the object is in the Disabled or Destroyed damage state.

Returns true if damage state is not “Enabled”, false if it is

bool ShapeBase::isEnabled()
Check if the object is in the Enabled damage state.

Returns true if damage state is “Enabled”, false if not

bool ShapeBase::isHidden()
Check if the object is hidden.

Returns true if the object is hidden, false if visible.

572 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool ShapeBase::isImageFiring(int slot)
Check if the current Image state is firing.

Parameters slot – Image slot to query

Returns true if the current Image state in this slot has the ‘stateFire’ flag set.

bool ShapeBase::isImageMounted(ShapeBaseImageData image)
Check if the given datablock is mounted to any slot on this object.

Parameters image – ShapeBaseImageData datablock to query

Returns true if the Image is mounted to any slot, false otherwise.

bool ShapeBase::mountImage(ShapeBaseImageData image, int slot, bool loaded, string skinTag)
Mount a new Image.

Parameters

• image – the Image to mount

• slot – Image slot to mount into (valid range is 0 - 3)

• loaded – initial loaded state for the Image

• skinTag – tagged string to reskin the mounted Image

Returns true if successful, false if failed

Example:

%player.mountImage(PistolImage, 1);
%player.mountImage(CrossbowImage, 0, false);
%player.mountImage(RocketLauncherImage, 0, true, blue);

bool ShapeBase::pauseThread(int slot)
Pause an animation thread. If restarted using playThread, the animation will resume from the paused position.

Parameters slot – thread slot to stop

Returns true if successful, false if failed

bool ShapeBase::playAudio(int slot, SFXTrack track)
Attach a sound to this shape and start playing it.

Parameters

• slot – Audio slot index for the sound (valid range is 0 - 3)

• track – SFXTrack to play

Returns true if the sound was attached successfully, false if failed

bool ShapeBase::playThread(int slot, string name)
Start a new animation thread, or restart one that has been paused or stopped.

Parameters

• slot – thread slot to play. Valid range is 0 - 3)

• name – name of the animation sequence to play in this slot. If not specified, the paused or
stopped thread in this slot will be resumed.

Returns true if successful, false if failed

Example:

5.3. Console Reference 573

Torque 3D Documentation, Release 3.5.1

%obj.playThread(0, "ambient"); // Play the ambient sequence in slot 0
%obj.setThreadTimeScale(0, 0.5); // Play at half-speed
%obj.pauseThread(0); // Pause the sequence
%obj.playThread(0); // Resume playback
%obj.playThread(0, "spin"); // Replace the sequence in slot 0

void ShapeBase::setAllMeshesHidden(bool hide)
Set the hidden state on all the shape meshes. This allows you to hide all meshes in the shape, for example, and
then only enable a few.

Parameters hide – new hidden state for all meshes

void ShapeBase::setCameraFov(float fov)
Set the vertical field of view in degrees for this object if used as a camera.

Parameters fov – new FOV value

void ShapeBase::setCloaked(bool cloak)
Set the cloaked state of this object. When an object is cloaked it is not rendered.

Parameters cloak – true to cloak the object, false to uncloak

void ShapeBase::setDamageFlash(float level)
Set the damage flash level. Damage flash may be used as a postfx effect to flash the screen when the client is
damaged.

Parameters level – flash level (0-1)

void ShapeBase::setDamageLevel(float level)
Set the object’s current damage level.

Parameters level – new damage level

bool ShapeBase::setDamageState(string state)
Set the object’s damage state.

Parameters state – should be one of “Enabled”, “Disabled”, “Destroyed”

Returns true if successful, false if failed

void ShapeBase::setDamageVector(Point3F vec)
Set the damage direction vector. Currently this is only used to initialise the explosion if this object is blown up.

Parameters vec – damage direction vector

Example:

%obj.setDamageVector("0 0 1");

void ShapeBase::setEnergyLevel(float level)
Set this object’s current energy level.

Parameters level – new energy level

void ShapeBase::setHidden(bool show)
Add or remove this object from the scene. When removed from the scene, the object will not be processed or
rendered. Reimplemented from SimObject .

Parameters show – False to hide the object, true to re-show it

bool ShapeBase::setImageAltTrigger(int slot, bool state)
Set the alt trigger state of the Image mounted in the specified slot.

Parameters

574 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• slot – Image slot to modify

• state – new alt trigger state for the Image

Returns the Image’s new alt trigger state

bool ShapeBase::setImageAmmo(int slot, bool state)
Set the ammo state of the Image mounted in the specified slot.

Parameters

• slot – Image slot to modify

• state – new ammo state for the Image

Returns the Image’s new ammo state

int ShapeBase::setImageGenericTrigger(int slot, int trigger, bool state)
Set the generic trigger state of the Image mounted in the specified slot.

Parameters

• slot – Image slot to modify

• trigger – Generic trigger number

• state – new generic trigger state for the Image

Returns the Image’s new generic trigger state or -1 if there was a problem.

bool ShapeBase::setImageLoaded(int slot, bool state)
Set the loaded state of the Image mounted in the specified slot.

Parameters

• slot – Image slot to modify

• state – new loaded state for the Image

Returns the Image’s new loaded state

void ShapeBase::setImageScriptAnimPrefix(int slot, string prefix)
Set the script animation prefix for the Image mounted in the specified slot. This is used to further modify the
prefix used when deciding which animation sequence to play while this image is mounted.

Parameters

• slot – Image slot to modify

• prefix – The prefix applied to the image

bool ShapeBase::setImageTarget(int slot, bool state)
Set the target state of the Image mounted in the specified slot.

Parameters

• slot – Image slot to modify

• state – new target state for the Image

Returns the Image’s new target state

bool ShapeBase::setImageTrigger(int slot, bool state)
Set the trigger state of the Image mounted in the specified slot.

Parameters

• slot – Image slot to modify

5.3. Console Reference 575

Torque 3D Documentation, Release 3.5.1

• state – new trigger state for the Image

Returns the Image’s new trigger state

void ShapeBase::setInvincibleMode(float time, float speed)
Setup the invincible effect. This effect is used for HUD feedback to the user that they are invincible.

Parameters

• time – duration in seconds for the invincible effect

• speed – speed at which the invincible effect progresses

void ShapeBase::setMeshHidden(string name, bool hide)
Set the hidden state on the named shape mesh.

Parameters

• name – name of the mesh to hide/show

• hide – new hidden state for the mesh

void ShapeBase::setRechargeRate(float rate)
Set the recharge rate. The recharge rate is added to the object’s current energy level each tick, up to the maxEn-
ergy level set in the ShapeBaseData datablock.

Parameters rate – the recharge rate (per tick)

void ShapeBase::setRepairRate(float rate)
Set amount to repair damage by each tick. Note that this value is separate to the repairRate field in ShapeBase-
Data . This value will be subtracted from the damage level each tick, whereas the ShapeBaseData field limits
how much of the applyRepair value is subtracted each tick. Both repair types can be active at the same time.

Parameters rate – value to subtract from damage level each tick (must be > 0)

void ShapeBase::setShapeName(string name)
Set the name of this shape.

Parameters name – new name for the shape

void ShapeBase::setSkinName(string name)
Apply a new skin to this shape. ‘Skinning’ the shape effectively renames the material targets, allowing different
materials to be used on different instances of the same model.

Parameters name – name of the skin to apply

bool ShapeBase::setThreadDir(int slot, bool fwd)
Set the playback direction of an animation thread.

Parameters

• slot – thread slot to modify

• fwd – true to play the animation forwards, false to play backwards

Returns true if successful, false if failed

bool ShapeBase::setThreadPosition(int slot, float pos)
Set the position within an animation thread.

Parameters

• slot – thread slot to modify

• pos – position within thread

Returns true if successful, false if failed

576 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool ShapeBase::setThreadTimeScale(int slot, float scale)
Set the playback time scale of an animation thread.

Parameters

• slot – thread slot to modify

• scale – new thread time scale (1=normal speed, 0.5=half speed etc)

Returns true if successful, false if failed

bool ShapeBase::setVelocity(Point3F vel)
Set the object’s velocity.

Parameters vel – new velocity for the object

Returns true

void ShapeBase::setWhiteOut(float level)
Set the white-out level. White-out may be used as a postfx effect to brighten the screen in response to a game
event.

Parameters level – flash level (0-1)

void ShapeBase::startFade(int time, int delay, bool fadeOut)
Fade the object in or out without removing it from the scene. A faded out object is still in the scene and can still
be collided with, so if you want to disable collisions for this shape after it fades out use setHidden to temporarily
remove this shape from the scene.

Parameters

• time – duration of the fade effect in ms

• delay – delay in ms before the fade effect begins

• fadeOut – true to fade-out to invisible, false to fade-in to full visibility

bool ShapeBase::stopAudio(int slot)
Stop a sound started with playAudio.

Parameters slot – audio slot index (started with playAudio)

Returns true if the sound was stopped successfully, false if failed

bool ShapeBase::stopThread(int slot)
Stop an animation thread. If restarted using playThread, the animation will start from the beginning again.

Parameters slot – thread slot to stop

Returns true if successful, false if failed

bool ShapeBase::unmountImage(int slot)
Unmount the mounted Image in the specified slot.

Parameters slot – Image slot to unmount

Returns true if successful, false if failed

float ShapeBase::validateCameraFov(float fov)
Called on the server when the client has requested a FOV change. When the client requests that its field of view
should be changed (because they want to use a sniper scope, for example) this new FOV needs to be validated
by the server. This method is called if it exists (it is optional) to validate the requested FOV, and modify it if
necessary. This could be as simple as checking that the FOV falls within a correct range, to making sure that
the FOV matches the capabilities of the current weapon. Following this method, ShapeBase ensures that the
given FOV still falls within the datablock’s cameraMinFov and cameraMaxFov. If that is good enough for your
purposes, then you do not need to define the validateCameraFov() callback for your ShapeBase .

5.3. Console Reference 577

Torque 3D Documentation, Release 3.5.1

Parameters fov – The FOV that has been requested by the client.

Returns The FOV as validated by the server.

Fields
bool ShapeBase::isAIControlled

Is this object AI controlled. If True then this object is considered AI controlled and not player controlled.
string ShapeBase::skin

The skin applied to the shape. ‘Skinning’ the shape effectively renames the material targets, allowing different
materials to be used on different instances of the same model. Using getSkinName() and setSkinName() is
equivalent to reading and writing the skin field directly. Any material targets that start with the old skin name
have that part of the name replaced with the new skin name. The initial old skin name is “base”. For example,
if a new skin of “blue” was applied to a model that had material targets base_body and face , the new targets
would be blue_body and face . Note that face was not renamed since it did not start with the old skin name of
“base”. To support models that do not use the default “base” naming convention, you can also specify the part
of the name to replace in the skin field itself. For example, if a model had a material target called shapemat ,
we could apply a new skin “shape=blue”, and the material target would be renamed to bluemat (note “shape”
has been replaced with “blue”). Multiple skin updates can also be applied at the same time by separating them
with a semicolon. For example: “base=blue;face=happy_face”. Material targets are only renamed if an existing
Material maps to that name, or if there is a diffuse texture in the model folder with the same name as the new
target.

ShapeBaseData object.

Inherit: GameBaseData

Description Defines properties for a ShapeBase object.

Methods
bool ShapeBaseData::checkDeployPos(TransformF txfm)

Check if there is the space at the given transform is free to spawn into. The shape’s bounding box volume is used
to check for collisions at the given world transform. Only interior and static objects are checked for collision.

Parameters txfm – Deploy transform to check

Returns True if the space is free, false if there is already something in the way.
TransformF ShapeBaseData::getDeployTransform(Point3F pos, Point3F normal)

Helper method to get a transform from a position and vector (suitable for use with setTransform).

Parameters

• pos – Desired transform position

• normal – Vector of desired direction

Returns The deploy transform

void ShapeBaseData::onCollision(ShapeBase obj, SceneObject collObj, VectorF vec, float len)
Called when we collide with another object.

Parameters

• obj – The ShapeBase object

• collObj – The object we collided with

• vec – Collision impact vector

578 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• len – Length of the impact vector

void ShapeBaseData::onDamage(ShapeBase obj, float delta)
Called when the object is damaged.

Parameters

• obj – The ShapeBase object

• obj – The ShapeBase object

• delta – The amount of damage received.

void ShapeBaseData::onDestroyed(ShapeBase obj, string lastState)
Called when the object damage state changes to Destroyed.

Parameters

• obj – The ShapeBase object

• lastState – The previous damage state

void ShapeBaseData::onDisabled(ShapeBase obj, string lastState)
Called when the object damage state changes to Disabled.

Parameters

• obj – The ShapeBase object

• lastState – The previous damage state

void ShapeBaseData::onEnabled(ShapeBase obj, string lastState)
Called when the object damage state changes to Enabled.

Parameters

• obj – The ShapeBase object

• lastState – The previous damage state

void ShapeBaseData::onEndSequence(ShapeBase obj, int slot)
Called when a thread playing a non-cyclic sequence reaches the end of the sequence.

Parameters

• obj – The ShapeBase object

• slot – Thread slot that finished playing

void ShapeBaseData::onForceUncloak(ShapeBase obj, string reason)
Called when the object is forced to uncloak.

Parameters

• obj – The ShapeBase object

• reason – String describing why the object was uncloaked

void ShapeBaseData::onImpact(ShapeBase obj, SceneObject collObj, VectorF vec, float len)
Called when we collide with another object beyond some impact speed. The Player class makes use of this
callback when a collision speed is more than PlayerData::minImpactSpeed .

Parameters

• obj – The ShapeBase object

• collObj – The object we collided with

• vec – Collision impact vector

5.3. Console Reference 579

Torque 3D Documentation, Release 3.5.1

• len – Length of the impact vector

void ShapeBaseData::onTrigger(ShapeBase obj, int index, bool state)
Called when a move trigger input changes state.

Parameters

• obj – The ShapeBase object

• index – Index of the trigger that changed

• state – New state of the trigger

Fields
bool ShapeBaseData::cameraCanBank

If the derrived class supports it, allow the camera to bank.
float ShapeBaseData::cameraDefaultFov

The default camera vertical FOV in degrees.

float ShapeBaseData::cameraMaxDist
The maximum distance from the camera to the object. Used when computing a custom camera transform for
this object.

float ShapeBaseData::cameraMaxFov
The maximum camera vertical FOV allowed in degrees.

float ShapeBaseData::cameraMinDist
The minimum distance from the camera to the object. Used when computing a custom camera transform for
this object.

float ShapeBaseData::cameraMinFov
The minimum camera vertical FOV allowed in degrees.

bool ShapeBaseData::computeCRC
If true, verify that the CRC of the client’s shape model matches the server’s CRC for the shape model when
loaded by the client.

string ShapeBaseData::cubeReflectorDesc
References a ReflectorDesc datablock that defines performance and quality properties for dynamic reflections.

DebrisData ShapeBaseData::Debris
Debris to generate when this shape is blown up.

filename ShapeBaseData::debrisShapeName
The DTS or DAE model to use for auto-generated breakups.

float ShapeBaseData::density
Shape density. Used when computing buoyancy when in water.

float ShapeBaseData::destroyedLevel
Damage level above which the object is destroyed. When the damage level increases above this value, the object
damage state is set to “Destroyed”.

float ShapeBaseData::disabledLevel
Damage level above which the object is disabled. Currently unused.

float ShapeBaseData::drag
Drag factor. Reduces velocity of moving objects.

ExplosionData ShapeBaseData::Explosion
Explosion to generate when this shape is blown up.

580 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool ShapeBaseData::firstPersonOnly
Flag controlling whether the view from this object is first person only.

bool ShapeBaseData::inheritEnergyFromMount
Flag controlling whether to manage our own energy level, or to use the energy level of the object we are mounted
to.

bool ShapeBaseData::isInvincible
Invincible flag; when invincible, the object cannot be damaged or repaired.

float ShapeBaseData::mass
Shape mass. Used in simulation of moving objects.

float ShapeBaseData::maxDamage
Maximum damage level for this object.

float ShapeBaseData::maxEnergy
Maximum energy level for this object.

bool ShapeBaseData::mountedImagesBank
Do mounted images bank along with the camera?

bool ShapeBaseData::observeThroughObject
Observe this object through its camera transform and default fov. If true, when this object is the camera it can
provide a custom camera transform and FOV (instead of the default eye transform).

bool ShapeBaseData::renderWhenDestroyed
Whether to render the shape when it is in the “Destroyed” damage state.

float ShapeBaseData::repairRate
Rate at which damage is repaired in damage units/tick. This value is subtracted from the damage level until it
reaches 0.

bool ShapeBaseData::shadowEnable
Enable shadows for this shape (currently unused, shadows are always enabled).

float ShapeBaseData::shadowMaxVisibleDistance
Maximum distance at which shadow is visible (currently unused).

float ShapeBaseData::shadowProjectionDistance
Maximum height above ground to project shadow. If the object is higher than this no shadow will be rendered.

int ShapeBaseData::shadowSize
Size of the projected shadow texture (must be power of 2).

float ShapeBaseData::shadowSphereAdjust
Scalar applied to the radius of spot shadows (initial radius is based on the shape bounds but can be adjusted with
this field).

filename ShapeBaseData::shapeFile
The DTS or DAE model to use for this object.

ExplosionData ShapeBaseData::underwaterExplosion
Explosion to generate when this shape is blown up underwater.

bool ShapeBaseData::useEyePoint
Flag controlling whether the client uses this object’s eye point to view from.

ShapeBaseImageData object.

Inherit: GameBaseData

5.3. Console Reference 581

Torque 3D Documentation, Release 3.5.1

Description Represents geometry to be mounted to a ShapeBase object.

Unlike other datablocks, ShapeBaseImageData does not have a base class associated with it. Instead, this datablock is
an abstraction of geometry that can only be mounted to a ShapeBase object and is only used by a ShapBase object.

The most common use for ShapeBaseImageData objects (referred to as Images hereafter) is for weapons carried by
a Player or Vehicle object, and much of the functionality provided by the Image is aimed at that use-case. Images
include a powerful state machine to control animations, sounds, script callbacks, and state transitions. This state
system is downloaded to the client so that clients can predict state changes and animate accordingly.

The following example - a grenade launcher weapon - demonstates the flexibility of the system. The weapon includes
states and transitions to handle the normal ready->fire->reload->ready loop as well as noammo->dryfire for firing
when the weapon is out of ammo.

Example:

datablock ShapeBaseImageData(GrenadeLauncherImage)
{

// Basic properties
shapefile = "art/shapes/weapons/ramrifle/base.dts";

// Specify mount point & offset for 3rd person, and eye offset// for first person rendering.mountPoint = 0;
offset = "0.0 0.0 0.1";
eyeOffset = "0.25 0.4 -0.4";

// Add the WeaponImage namespace as a parent, WeaponImage namespace// provides some hooks into the inventory system.className = "WeaponImage";

// Projectile and Ammo.
item = GrenadeLauncher;
ammo = GrenadeLauncherAmmo;
projectile = GrenadeLauncherProjectile;
wetProjectile = GrenadeWetProjectile;
projectileType = Projectile;

// Shell casingscasing = GrenadeLauncherShellCasing;
shellExitDir = "1.0 0.3 1.0";
shellExitOffset = "0.15 -0.56 -0.1";
shellExitVariance = 15.0;
shellVelocity = 3.0;

// Let there be light - NoLight, ConstantLight, PulsingLight, WeaponFireLight.lightType = "WeaponFireLight";
lightColor = "1.0 1.0 0.9";
lightDuration = 200;
lightRadius = 20;

// Initial start up statestateName[0] = "Preactivate";
stateTransitionOnLoaded[0] = "Activate";
stateTransitionOnNoAmmo[0] = "NoAmmo";

// Activating the gun.// Called when the weapon is first mounted and there is ammo.stateName[1] = "Activate";
stateTransitionOnTimeout[1] = "Ready";
stateTimeoutValue[1] = 0.6;
stateSequence[1] = "Activate";

// Ready to fire, just waiting for the triggerstateName[2] = "Ready";
stateTransitionOnNoAmmo[2] = "NoAmmo";
stateTransitionOnTriggerDown[2] = "CheckWet";
stateSequence[2] = "Ready";

582 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Fire the weapon. Calls the fire script which does the actual work.stateName[3] = "Fire";
stateTransitionOnTimeout[3] = "PostFire";
stateTimeoutValue[3] = 0.4;
stateFire[3] = true;
stateAllowImageChange[3] = false;
stateSequence[3] = "Fire";
stateScript[3] = "onFire";
stateSound[3] = GrenadeLauncherFireSound;

// Check ammostateName[4] = "PostFire";
stateTransitionOnAmmo[4] = "Reload";
stateTransitionOnNoAmmo[4] = "NoAmmo";

// Play the reload animation, and transition back into Ready statestateName[5] = "Reload";
stateTransitionOnTimeout[5] = "Ready";
stateTimeoutValue[5] = 0.2;
stateAllowImageChange[5] = false;
stateSequence[5] = "Reload";
stateEjectShell[5] = false; // set to true to enable shell casing ejectstateSound[5] = GrenadeLauncherReloadSound;

// No ammo in the weapon, just idle until something shows up.// Play the dry fire sound if the trigger iS pulled.stateName[6] = "NoAmmo";
stateTransitionOnAmmo[6] = "Reload";
stateSequence[6] = "NoAmmo";
stateTransitionOnTriggerDown[6] = "DryFire";

// No ammo dry firestateName[7] = "DryFire";
stateTimeoutValue[7] = 1.0;
stateTransitionOnTimeout[7] = "NoAmmo";
stateSound[7] = GrenadeLauncherFireEmptySound;

// Check if wetstateName[8] = "CheckWet";
stateTransitionOnWet[8] = "WetFire";
stateTransitionOnNotWet[8] = "Fire";

// Wet firestateName[9] = "WetFire";
stateTransitionOnTimeout[9] = "PostFire";
stateTimeoutValue[9] = 0.4;
stateFire[9] = true;
stateAllowImageChange[9] = false;
stateSequence[9] = "Fire";
stateScript[9] = "onWetFire";
stateSound[9] = GrenadeLauncherFireSound;

};

Images are mounted into a slot on the target ShapeBase derrived object as shown below.

Example:

$WeaponSlot = 0;

...

// Use a weapon by mounting it onto the given ShapeBase derrived object.// %data is the weapon whose .image member points to its ShapeBaseImageData datablock// %obj is the object to mount the weapon on
function Weapon::onUse(%data, %obj)
{

// Default behavior for all weapons is to mount it into the objects weapon// slot, as defined by $WeaponSlot here, and is usually slot 0. We begin by// checking if the requested weapon is already mounted.if (%obj.getMountedImage($WeaponSlot) != %data.image.getId())
{

// The requested weapon is not mounted on $WeaponSlot so mount it now.
%obj.mountImage(%data.image, $WeaponSlot);

5.3. Console Reference 583

Torque 3D Documentation, Release 3.5.1

}
}

Weapon Shape Nodes The DTS or DAE model used for the Image has the following requirements:

Weapon Muzzle Flash When the Image is used as a weapon, a sequence can be added to display a muzzle flash
when the weapon is fired (if stateSequenceRandomFlash is set to true for the firing state). The name of the muzzle
flash sequence is the same as the state sequence (eg. fire), but with ‘_vis’ appended (eg. fire_vis).

In the example below, the muzzle flash is made up of three quads; one facing the player, and two crossed quads
pointing out of the weapon so viewers perpendicular to the player will also see the flash.

The visibility of the muzzle flash mesh is animated on for 1 frame then off for 1 frame as shown below, but any Torque
supported animation method could be used as well. For example, the node the quads are attached to could be rotated
or scaled, or the mesh Material could be animated (UV or frame) to provide further variation.

First Person Shape [Optional] The ShapeBaseImageData supports an optional shape that is displayed when the
player is in a first person view. This shape is defined using the shapeFileFP property. You also must set an eyeOffset
or make use of an eye mount node for this shape to be used in a first person view.

Having this second shape defined provides for more flexibility between 3rd person (and what other players see) and 1st
person views. In a typical first person shooter the 3rd person weapon is not as detailed and supports a limited number
of animation sequences. Just enough for the other players in the game to get a sense of what the player is doing. Then
the 1st person weapon has a lot more detail, such as moving parts, etc. It may also have some arms and hands incldued
that are animated when reloading the weapon and other actions. Only the player holding the weapon sees all of this.

There are a number of things to keep in mind if you make use of shapeFileFP:

Animation Sequence Transitions Starting with T3D 1.2 control is now given over transitioning from one image
state’s sequence to another state’s sequence. The new state “stateSequenceTransitionIn” and “stateSequenceTransi-
tionOut” flags dictate if the current state’s sequence should be transitioned into when changing to the current state, or
transitioned out of when switching to a new state. However, there are times when you don’t want to do an animation
sequence transition regardless of which state you are coming from. An example of this is the traditional “Fire” state.
A Fire state should play immediately and not be transitioned into. In these cases a state may set the “stateSequenceN-
everTransition” flag. With that set a state’s sequence will begin to play immediately.

Animation Sequence Selection When it comes to choosing what sequence to play on the mounted image there are
now some new rules. Under 1.1 when an image state requested a named sequence that is found on the mounted image
and played – its action sequence. This still occurs under 1.2. However, it is now possible to modify the name of the
sequence to play based on some prefixes. PlayerData now has two additional, optional fields: imageAnimPrefix and
imageAnimPrefixFP. Just like how these same fields on ShapeBaseImageData can modify when sequences are played
on the player based on what is mounted (see Player class documentation), these two PlayerData fields can modify
what sequence is played on the mounted image based on the mounting player. This becomes especially useful when
combined with 1st person arms – although here we’re just talking about weapons/mounted images.

Let’s suppose we have two types of player: Soldier and Alien. We may want each type of player to use the same
weapon slightly differently (or even radically differently, such as the Alien holding the weapon upside down). We use
the “Soldier” anim prefix in the soldier’s datablock and the “Alien” prefix in the alien’s datablock. Now when looking
up the sequence for a weapon’s fire state – usually called “fire” by convention – the appropriate prefix is added first.
And if that prefixed sequence is not found, then we fall back to the standard sequence name. So the soldier’s sequence
name search looks like this:

and the alien’s sequence name search looks like this:

584 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

This gives the artist greater control over how the weapons look. And because there are separate prefixes possible on
PlayerData for 1st person and 3rd person you can mix and match as appropriate. So you could set a prefix for 1st
person, but leave it blank for 3rd person (don’t do anything special in 3rd person).

Another way that an image state’s sequence name could be modified is through the new Shape-
Base::setImageScriptAnimPrefix() method. This allows you to insert an additional prefix into the name look up.
The current scripts pass along the player’s current pose name, but anything could be passed in based on game play.
This can be even more useful with the 1st person arms. You could then have a weapon idle state when swimming
that moves the weapon (and 1st person arms) in a gentle swim motion. When you combine the PlayerData prefix with
the script anim prefix and finally with the image state sequence name, you end up with the following sequence name
search pattern (the first found is used):

Whenever ShapeBase::setImageScriptAnimPrefix() is called there is a transition from the currently playing state se-
quence into the new script prefixed animation sequence. In our example, this allows for a transition from walking to
swimming for the weapon. The new ShapeBaseImageData scriptAnimationTransitionTime controls how long to take
for this transition.

eyeMount Node [Optional] As with 1.1 the placement of the 1st person image may be set with the eyeOffset
parameter. Now with 1.2 the 1st person image may be placed based on a node in the 1st person DTS/DAE shape,
the “eyeMount” node. When the ShapeBaseImageData’s useEyeNode parameter is made true, the image is effectively
mounted to the 3rd person player’s “eye” node, locking it into place. This allows the artist in their 3D application to
precisely place the 1st person weapon in view when their 3D app’s camera is placed on the eyeMount node and has the
same field of view as Torque. This is very handy when animating the 1st person weapon, especially with 1st person
arms.

Also with 1.2 an image that is placed with the eyeMount node may have an “eye” node defined. When found the
player’s camera is mounted to the image’s “eye” node rather than the 3rd person player’s “eye” node. This allows for
animating the camera such as during a fire sequence.

Allowing for this much control does have a potential down side. In order for a weapon to fire correctly on the server
it needs to have its muzzle point at the correct location. If a weapon’s root pose (without animation) doesn’t have its
muzzle point at roughly the same location as when the weapon is fired, then the new ShapeBaseImageData “anima-
teOnServer” flag should be set. When set the server will perform all state machine animation to ensure the muzzle
point is at the correct location when required. This puts an extra strain on the server. If care is taken when building the
weapons such that the root pose is close enough to the fire pose, then you can safely leave the “animateOnServer” flag
off and not have to worry about the extra server load.

Special State Triggers Starting with 1.2 there are now a number of new triggers that may be set for a ShapeBa-
seImageData’s state machine to react to. These provide greater game play control over an image’s state flow. The
first are the “stateTransitionOnMotion” and “stateTransitionOnNoMotion” triggers. This trigger occurs whenever the
mounting ShapeBase (usually a Player) has x, y or z motion applied through the Move structure. From a Player
perspective this means whenever the user moves their player forwards, backwards or strafes. That has been used to
provide weapons a slight bobbing appearance (using an animation sequence) when the weapon is idle. Fire and Reload
states don’t usually make use of these triggers to keep those actions solid.

There has always been a target trigger for ShapeBaseImageData but under 1.1 it was not possible to set it, nor was it
used. Starting with 1.2 you can now set the target trigger in script using ShapeBase::setImageTargetState() and use
stateTransitionOnTarget and stateTransitionOnNoTarget for whatever game play reasons are required.

Finally, there are four new generic triggers that may be set from script and used for whatever purpose the game play
imposes. These are “stateTransitionGeneric0In”, “stateTransitionGeneric1In”, etc. and “stateTransitionGeneric0Out”,
“stateTransition1Out” etc. The FPS Tutorial weapons use the first generic trigger to indicate that the player is sprinting
and switch to a Sprint state to prevent firing of the weapon. Other possible uses are for iron sights.

5.3. Console Reference 585

Torque 3D Documentation, Release 3.5.1

Special States The client and server move through a ShapeBaseImageData’s state machine independantly according
to various triggers, timeouts, etc. The client is not normally told to move to a specific state when the server does.
However, there are three instances where the client is told by the server to immediately jump to a given state. This
ensures that the client’s experience matches the server at key moments. As such, only one of each of these states may
exist in a single ShapeBaseImageData state machine at a time.

The fire state is the first such state. It is indicated by setting the state’s “stateFire” flag to true. This is the state
immediately jumped to when the weapon begins to fire.

The alternate fire state is the second forced jump point (new in 1.2). It is indicated by setting the state’s “stateAlter-
nateFire” flag to true. Not all weapons have an alternate fire state. In fact most games treat a weapon’s alternate fire as
a separate weapon altogether.

The reload state is the last special state (new in 1.2). It is indicated by setting the state’s “stateReload” flag to true.
This state is triggered if the weapon makes use of the new 1.2 ammo clip system and the weapon is reloading a clip,
either automatically or manually triggered by the client.

Methods
void ShapeBaseImageData::onMount(ShapeBase obj, int slot, float dt)

Called when the Image is first mounted to the object.

Parameters

• obj – object that this Image has been mounted to

• slot – Image mount slot on the object

• dt – time remaining in this Image update
void ShapeBaseImageData::onUnmount(ShapeBase obj, int slot, float dt)

Called when the Image is unmounted from the object.

Parameters

• obj – object that this Image has been unmounted from

• slot – Image mount slot on the object

• dt – time remaining in this Image update

Fields
bool ShapeBaseImageData::accuFire

Flag to control whether the Image’s aim is automatically converged with the crosshair. Currently unused.
bool ShapeBaseImageData::animateAllShapes

Indicates that all shapes should be animated in sync. When multiple shapes are defined for this image datablock,
each of them are automatically animated in step with each other. This allows for easy switching between between
shapes when some other condition changes, such as going from first person to third person, and keeping their
look consistent. If you know that you’ll never switch between shapes on the fly, such as players only being
allowed in a first person view, then you could set this to false to save some calculations. There are other
circumstances internal to the engine that determine that only the current shape should be animated rather than
all defined shapes. In those cases, this property is ignored.

bool ShapeBaseImageData::animateOnServer
Indicates that the image should be animated on the server. In most cases you’ll want this set if you’re using
useEyeNode. You may also want to set this if the muzzlePoint is animated while it shoots. You can set this to
false even if these previous cases are true if the image’s shape is set up in the correct position and orientation in
the ‘root’ pose and none of the nodes are animated at key times, such as the muzzlePoint essentially remaining
at the same position at the start of the fire state (it could animate just fine after the projectile is away as the
muzzle vector is only calculated at the start of the state). You’ll also want to set this to true if you’re animating

586 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

the camera using the image’s ‘eye’ node – unless the movement is very subtle and doesn’t need to be reflected
on the server.

Point3F ShapeBaseImageData::camShakeAmp
Amplitude of the camera shaking effect.

Point3F ShapeBaseImageData::camShakeFreq
Frequency of the camera shaking effect.

DebrisData ShapeBaseImageData::casing
DebrisData datablock to use for ejected casings.

bool ShapeBaseImageData::cloakable
Whether this Image can be cloaked. Currently unused.

bool ShapeBaseImageData::computeCRC
If true, verify that the CRC of the client’s Image matches the server’s CRC for the Image when loaded by the
client.

bool ShapeBaseImageData::correctMuzzleVector
Flag to adjust the aiming vector to the eye’s LOS point when in 1st person view.

bool ShapeBaseImageData::correctMuzzleVectorTP
Flag to adjust the aiming vector to the camera’s LOS point when in 3rd person view.

bool ShapeBaseImageData::emap
Whether to enable environment mapping on this Image.

MatrixPosition ShapeBaseImageData::eyeOffset
“X Y Z” translation offset from the ShapeBase model’s eye node. When in first person view, this is the offset
from the eye node to place the gun. This gives the gun a fixed point in space, typical of a lot of FPS games.

MatrixRotation ShapeBaseImageData::eyeRotation
“X Y Z ANGLE” rotation offset from the ShapeBase model’s eye node. When in first person view, this is the
rotation from the eye node to place the gun.

bool ShapeBaseImageData::firstPerson
Set to true to render the image in first person.

caseString ShapeBaseImageData::imageAnimPrefix
Passed along to the mounting shape to modify animation sequences played in third person. [optional].

caseString ShapeBaseImageData::imageAnimPrefixFP
Passed along to the mounting shape to modify animation sequences played in first person. [optional].

float ShapeBaseImageData::lightBrightness
Brightness of the light this Image emits. Only valid for WeaponFireLight.

ColorF ShapeBaseImageData::lightColor
The color of light this Image emits.

int ShapeBaseImageData::lightDuration
Duration in SimTime of Pulsing and WeaponFire type lights.

float ShapeBaseImageData::lightRadius
Radius of the light this Image emits.

ShapeBaseImageLightType ShapeBaseImageData::lightType
The type of light this Image emits.

float ShapeBaseImageData::mass
Mass of this Image. This is added to the total mass of the ShapeBase object.

5.3. Console Reference 587

Torque 3D Documentation, Release 3.5.1

int ShapeBaseImageData::maxConcurrentSounds
Maximum number of sounds this Image can play at a time. Any value lt = 0 indicates that it can play an infinite
number of sounds.

float ShapeBaseImageData::minEnergy
Minimum Image energy for it to be operable.

int ShapeBaseImageData::mountPoint
Mount node # to mount this Image to. This should correspond to a mount# node on the ShapeBase derived
object we are mounting to.

MatrixPosition ShapeBaseImageData::offset
“X Y Z” translation offset from this Image’s mountPoint node to attach to. Defaults to “0 0 0”. ie. attach this
Image’s mountPoint node to the ShapeBase model’s mount# node without any offset.

ProjectileData ShapeBaseImageData::Projectile
The projectile fired by this Image.

MatrixRotation ShapeBaseImageData::rotation
“X Y Z ANGLE” rotation offset from this Image’s mountPoint node to attach to. Defaults to “0 0 0”. ie. attach
this Image’s mountPoint node to the ShapeBase model’s mount# node without any additional rotation.

float ShapeBaseImageData::scriptAnimTransitionTime
The amount of time to transition between the previous sequence and new sequence when the script prefix has
changed. When setImageScriptAnimPrefix() is used on a ShapeBase that has this image mounted, the image
will attempt to switch to the new animation sequence based on the given script prefix. This is the amount of time
it takes to transition from the previously playing animation sequence tothe new script prefix-based animation
sequence.

bool ShapeBaseImageData::shakeCamera
Flag indicating whether the camera should shake when this Image fires.

filename ShapeBaseImageData::shapeFile
The DTS or DAE model to use for this Image.

filename ShapeBaseImageData::shapeFileFP
The DTS or DAE model to use for this Image when in first person. This is an optional parameter that also
requires either eyeOffset or useEyeNode to be set. If none of these conditions is met then shapeFile will be used
for all cases. Typically you set a first person image for a weapon that includes the player’s arms attached to it
for animating while firing, reloading, etc. This is typical of many FPS games.

Point3F ShapeBaseImageData::shellExitDir
Vector direction to eject shell casings.

float ShapeBaseImageData::shellExitVariance
Variance (in degrees) from the shellExitDir vector to eject casings.

float ShapeBaseImageData::shellVelocity
Speed at which to eject casings.

bool ShapeBaseImageData::stateAllowImageChange[31]
If false, other Images will temporarily be blocked from mounting while the state machine is executing the tasks
in this state. For instance, if we have a rocket launcher, the player shouldn’t be able to switch out while firing.
So, you’d set stateAllowImageChange to false in firing states, and true the rest of the time.

bool ShapeBaseImageData::stateAlternateFire[31]
The first state with this set to true is the state entered by the client when it receives the ‘altFire’ event.

bool ShapeBaseImageData::stateDirection[31]
Direction of the animation to play in this state. True is forward, false is backward.

588 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool ShapeBaseImageData::stateEjectShell[31]
If true, a shell casing will be ejected in this state.

ParticleEmitterData ShapeBaseImageData::stateEmitter[31]
Emitter to generate particles in this state (from muzzle point or specified node).

string ShapeBaseImageData::stateEmitterNode[31]
Name of the node to emit particles from.

float ShapeBaseImageData::stateEmitterTime[31]
How long (in seconds) to emit particles on entry to this state.

float ShapeBaseImageData::stateEnergyDrain[31]
Amount of energy to subtract from the Image in this state. Energy is drained at stateEnergyDrain units/tick as
long as we are in this state.

bool ShapeBaseImageData::stateFire[31]
The first state with this set to true is the state entered by the client when it receives the ‘fire’ event.

bool ShapeBaseImageData::stateIgnoreLoadedForReady[31]
If set to true, and both ready and loaded transitions are true, the ready transition will be taken instead of the
loaded transition. A state is ‘ready’ if pressing the fire trigger in that state would transition to the fire state.

ShapeBaseImageLoadedState ShapeBaseImageData::stateLoadedFlag[31]
Set the loaded state of the Image.

•IgnoreLoaded: Don’t change Image loaded state.

•Loaded: Set Image loaded state to true.

•NotLoaded: Set Image loaded state to false.

caseString ShapeBaseImageData::stateName[31]
Name of this state.

ShapeBaseImageRecoilState ShapeBaseImageData::stateRecoil[31]
Type of recoil sequence to play on the ShapeBase object on entry to this state.

•NoRecoil: Do not play a recoil sequence.

•LightRecoil: Play the light_recoil sequence.

•MediumRecoil: Play the medium_recoil sequence.

•HeavyRecoil: Play the heavy_recoil sequence.

bool ShapeBaseImageData::stateReload[31]
The first state with this set to true is the state entered by the client when it receives the ‘reload’ event.

bool ShapeBaseImageData::stateScaleAnimation[31]
If true, the timeScale of the stateSequence animation will be adjusted such that the sequence plays for state-
TimeoutValue seconds.

bool ShapeBaseImageData::stateScaleAnimationFP[31]
If true, the timeScale of the first person stateSequence animation will be adjusted such that the sequence plays
for stateTimeoutValue seconds.

bool ShapeBaseImageData::stateScaleShapeSequence[31]
Indicates if the sequence to be played on the mounting shape should be scaled to the length of the state.

caseString ShapeBaseImageData::stateScript[31]
Method to execute on entering this state. Scoped to this image class name, then ShapeBaseImageData . The
script callback function takes the same arguments as the onMount callback.

5.3. Console Reference 589

Torque 3D Documentation, Release 3.5.1

string ShapeBaseImageData::stateSequence[31]
Name of the sequence to play on entry to this state.

bool ShapeBaseImageData::stateSequenceNeverTransition[31]
Never allow a transition to this sequence. Often used for a fire sequence.

bool ShapeBaseImageData::stateSequenceRandomFlash[31]
If true, the muzzle flash sequence will be played while in this state. The name of the muzzle flash sequence is
the same as stateSequence, with “_vis” at the end.

bool ShapeBaseImageData::stateSequenceTransitionIn[31]
Do we transition to the state’s sequence when we enter the state?

bool ShapeBaseImageData::stateSequenceTransitionOut[31]
Do we transition to the new state’s sequence when we leave the state?

float ShapeBaseImageData::stateSequenceTransitionTime[31]
The time to transition in or out of a sequence.

string ShapeBaseImageData::stateShapeSequence[31]
Name of the sequence that is played on the mounting shape.

SFXTrack ShapeBaseImageData::stateSound[31]
Sound to play on entry to this state.

ShapeBaseImageSpinState ShapeBaseImageData::stateSpinThread[31]
Controls how fast the ‘spin’ animation sequence will be played in this state.

•Ignore: No change to the spin sequence.

•Stop: Stops the spin sequence at its current position.

•SpinUp: Increase spin sequence timeScale from 0 (on state entry) to 1 (after stateTimeoutValue seconds).

•SpinDown: Decrease spin sequence timeScale from 1 (on state entry) to 0 (after stateTimeoutValue sec-
onds).

•FullSpeed: Resume the spin sequence playback at its current position with timeScale=1.

float ShapeBaseImageData::stateTimeoutValue[31]
Time in seconds to wait before transitioning to stateTransitionOnTimeout.

string ShapeBaseImageData::stateTransitionGeneric0In[31]
Name of the state to transition to when the generic trigger 0 state changes to true.

string ShapeBaseImageData::stateTransitionGeneric0Out[31]
Name of the state to transition to when the generic trigger 0 state changes to false.

string ShapeBaseImageData::stateTransitionGeneric1In[31]
Name of the state to transition to when the generic trigger 1 state changes to true.

string ShapeBaseImageData::stateTransitionGeneric1Out[31]
Name of the state to transition to when the generic trigger 1 state changes to false.

string ShapeBaseImageData::stateTransitionGeneric2In[31]
Name of the state to transition to when the generic trigger 2 state changes to true.

string ShapeBaseImageData::stateTransitionGeneric2Out[31]
Name of the state to transition to when the generic trigger 2 state changes to false.

string ShapeBaseImageData::stateTransitionGeneric3In[31]
Name of the state to transition to when the generic trigger 3 state changes to true.

string ShapeBaseImageData::stateTransitionGeneric3Out[31]
Name of the state to transition to when the generic trigger 3 state changes to false.

590 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string ShapeBaseImageData::stateTransitionOnAltTriggerDown[31]
Name of the state to transition to when the alt trigger state of the Image changes to false (alt fire button up).

string ShapeBaseImageData::stateTransitionOnAltTriggerUp[31]
Name of the state to transition to when the alt trigger state of the Image changes to true (alt fire button down).

string ShapeBaseImageData::stateTransitionOnAmmo[31]
Name of the state to transition to when the ammo state of the Image changes to true.

string ShapeBaseImageData::stateTransitionOnLoaded[31]
Name of the state to transition to when the loaded state of the Image changes to ‘Loaded’.

string ShapeBaseImageData::stateTransitionOnMotion[31]
Name of the state to transition to when the Player moves.

string ShapeBaseImageData::stateTransitionOnNoAmmo[31]
Name of the state to transition to when the ammo state of the Image changes to false.

string ShapeBaseImageData::stateTransitionOnNoMotion[31]
Name of the state to transition to when the Player stops moving.

string ShapeBaseImageData::stateTransitionOnNoTarget[31]
Name of the state to transition to when the Image loses a target.

string ShapeBaseImageData::stateTransitionOnNotLoaded[31]
Name of the state to transition to when the loaded state of the Image changes to ‘Empty’.

string ShapeBaseImageData::stateTransitionOnNotWet[31]
Name of the state to transition to when the Image exits the water.

string ShapeBaseImageData::stateTransitionOnTarget[31]
Name of the state to transition to when the Image gains a target.

string ShapeBaseImageData::stateTransitionOnTimeout[31]
Name of the state to transition to when we have been in this state for stateTimeoutValue seconds.

string ShapeBaseImageData::stateTransitionOnTriggerDown[31]
Name of the state to transition to when the trigger state of the Image changes to false (fire button released).

string ShapeBaseImageData::stateTransitionOnTriggerUp[31]
Name of the state to transition to when the trigger state of the Image changes to true (fire button down).

string ShapeBaseImageData::stateTransitionOnWet[31]
Name of the state to transition to when the Image enters the water.

bool ShapeBaseImageData::stateWaitForTimeout[31]
If false, this state ignores stateTimeoutValue and transitions immediately if other transition conditions are met.

bool ShapeBaseImageData::useEyeNode
Mount image using image’s eyeMount node and place the camera at the image’s eye node (or at the eyeMount
node if the eye node is missing). When in first person view, if an ‘eyeMount’ node is present in the image’s
shape, this indicates that the image should mount eyeMount node to Player eye node for image placement. The
Player’s camera should also mount to the image’s eye node to inherit any animation (or the eyeMount node if
the image doesn’t have an eye node).

bool ShapeBaseImageData::useRemainderDT
If true, allow multiple timeout transitions to occur within a single tick (useful if states have a very small timeout).

bool ShapeBaseImageData::usesEnergy
Flag indicating whether this Image uses energy instead of ammo. The energy level comes from the ShapeBase
object we’re mounted to.

5.3. Console Reference 591

Torque 3D Documentation, Release 3.5.1

SpawnSphere This class is used for creating any type of game object, assigning it a class, datablock, and other
properties when it is spawned.

Inherit: MissionMarker

Description Torque 3D uses a simple spawn system, which can be easily modified to spawn any kind of object (of
any class). Each new level already contains at least one SpawnSphere, which is represented by a green octahedron in
stock Torque 3D. The spawnClass field determines the object type, such as Player, AIPlayer, etc. The spawnDataBlock
field applies the pre-defined datablock to each spawned object instance. The really powerful feature of this class is
provided by the spawnScript field which allows you to define a simple script (multiple lines) that will be executed once
the object has been spawned.

Example:

// Define an SpawnSphere that essentially performs the following each time an object is spawned
//$SpawnObject = new Player()
//{
// dataBlock = "DefaultPlayerData";
// name = "Bob";
// lifeTotal = 3;
//};
//echo("Spawned a Player: " @ $SpawnObject);
newSpawnSphere(DefaultSpawnSphere)
{

spawnClass = "Player";
spawnDatablock = "DefaultPlayerData";
spawnScript = "echo(\"Spawned a Player: \" @ $SpawnObject);"; // embedded quotes must be escaped with \ spawnProperties = "name = \"Bob\";lifeTotal = 3;"; // embedded quotes must be escaped with \ autoSpawn = "1";
dataBlock = "SpawnSphereMarker";
position = "-0.77266 -19.882 17.8153";
rotation = "1 0 0 0";
scale = "1 1 1";
canSave = "1";
canSaveDynamicFields = "1";

};

// Because autoSpawn is set to true in the above example, the following lines
// of code will execute AFTER the Player object has been spawned.
echo("Object Spawned");
echo("Hello World");

Methods
void SpawnSphere::onAdd(int objectId)

Called when the SpawnSphere is being created.

Parameters objectId – The unique SimObjectId generated when SpawnSphere is created (%this
in script)

bool SpawnSphere::spawnObject(string additionalProps)
Dynamically create a new game object with a specified class, datablock, and optional properties. This is called
on the actual SpawnSphere , not to be confused with the Sim::spawnObject() global function

Parameters additionalProps – Optional set of semiconlon delimited parameters applied to
the spawn object during creation.

Example:

// Use the SpawnSphere::spawnObject function to create a game object// No additional properties assigned
%player = DefaultSpawnSphere.spawnObject();

592 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
bool SpawnSphere::autoSpawn

Flag to spawn object as soon as SpawnSphere is created, true to enable or false to disable.
float SpawnSphere::indoorWeight

Deprecated.

float SpawnSphere::outdoorWeight
Deprecated.

float SpawnSphere::radius
Deprecated.

string SpawnSphere::spawnClass
Object class to create (eg. Player , AIPlayer , Debris etc).

string SpawnSphere::spawnDatablock
Predefined datablock assigned to the object when created.

string SpawnSphere::spawnProperties
String containing semicolon (;) delimited properties to set when the object is created.

string SpawnSphere::spawnScript
Command to execute immediately after spawning an object. New object id is stored in $SpawnObject. Max 255
characters.

bool SpawnSphere::spawnTransform
Flag to set the spawned object’s transform to the SpawnSphere’s transform.

float SpawnSphere::sphereWeight
Deprecated.

StaticShape The most basic 3D shape with a datablock available in Torque 3D.

Inherit: ShapeBase

Description The most basic 3D shape with a datablock available in Torque 3D.

When it comes to placing 3D objects in the scene, you technically have two options:

1. TSStatic objects

2. ShapeBase derived objects

Since ShapeBase and ShapeBaseData are not meant to be instantiated in script, you will use one of its child classes
instead. Several game related objects are derived from ShapeBase: Player, Vehicle, Item, and so on.

When you need a 3D object with datablock capabilities, you will use an object derived from ShapeBase. When you
need an object with extremely low overhead, and with no other purpose than to be a 3D object in the scene, you will
use TSStatic.

The most basic child of ShapeBase is StaticShape. It does not introduce any of the additional functionality you
see in Player, Item, Vehicle or the other game play heavy classes. At its core, it is comparable to a TSStatic, but
with a datbalock. Having a datablock provides a location for common variables as well as having access to various
ShapeBaseData, GameBaseData and SimDataBlock callbacks.

Example:

// Create a StaticShape using a datablock
datablock StaticShapeData(BasicShapeData)
{

shapeFile = "art/shapes/items/kit/healthkit.dts";

5.3. Console Reference 593

Torque 3D Documentation, Release 3.5.1

testVar = "Simple string, not a stock variable";
};

newStaticShape()
{

dataBlock = "BasicShapeData";
position = "0.0 0.0 0.0";
rotation = "1 0 0 0";
scale = "1 1 1";

};

StaticShapeData derrived shape datablock available in Torque 3D.

Inherit: ShapeBaseData

Description The most basic ShapeBaseData derrived shape datablock available in Torque 3D.

When it comes to placing 3D objects in the scene, you effectively have two options:

1. TSStatic objects

2. ShapeBase derived objects

Since ShapeBase and ShapeBaseData are not meant to be instantiated in script, you will use one of its child classes
instead. Several game related objects are derived from ShapeBase: Player, Vehicle, Item, and so on.

When you need a 3D object with datablock capabilities, you will use an object derived from ShapeBase. When you
need an object with extremely low overhead, and with no other purpose than to be a 3D object in the scene, you will
use TSStatic.

The most basic child of ShapeBase is StaticShape. It does not introduce any of the additional functionality you
see in Player, Item, Vehicle or the other game play heavy classes. At its core, it is comparable to a TSStatic, but
with a datbalock. Having a datablock provides a location for common variables as well as having access to various
ShapeBaseData, GameBaseData and SimDataBlock callbacks.

Example:

// Create a StaticShape using a datablock
datablock StaticShapeData(BasicShapeData)
{

shapeFile = "art/shapes/items/kit/healthkit.dts";
testVar = "Simple string, not a stock variable";

};

newStaticShape()
{

dataBlock = "BasicShapeData";
position = "0.0 0.0 0.0";
rotation = "1 0 0 0";
scale = "1 1 1";

};

Fields
int StaticShapeData::dynamicType

An integer value which, if speficied, is added to the value retured by getType(). This allows you to extend the
type mask for a StaticShape that uses this datablock. Type masks are used for container queries, etc.

594 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool StaticShapeData::noIndividualDamage
Deprecated.

Trigger .

Inherit: GameBase

Description A Trigger is a volume of space that initiates script callbacks when objects pass through the Trigger.

TriggerData provides the callbacks for the Trigger when an object enters, stays inside or leaves the Trigger’s volume.

Methods
int Trigger::getNumObjects()

Get the number of objects that are within the Trigger’s bounds.
int Trigger::getObject(int index)

Retrieve the requested object that is within the Trigger’s bounds.

Parameters index – Index of the object to get (range is 0 to getNumObjects()-1)

Returns The SimObjectID of the object, or -1 if the requested index is invalid.

void Trigger::onAdd(int objectId)
Called when the Trigger is being created.

Parameters objectId – the object id of the Trigger being created

void Trigger::onRemove(int objectId)
Called just before the Trigger is deleted.

Parameters objectId – the object id of the Trigger being deleted

Fields
string Trigger::enterCommand

The command to execute when an object enters this trigger. Object id stored in %obj. Maximum 1023 charac-
ters.

string Trigger::leaveCommand
The command to execute when an object leaves this trigger. Object id stored in %obj. Maximum 1023 charac-
ters.

floatList Trigger::polyhedron
Defines a non-rectangular area for the trigger. Rather than the standard rectangular bounds, this optional param-
eter defines a quadrilateral trigger area. The quadrilateral is defined as a corner point followed by three vectors
representing the edges extending from the corner.

string Trigger::tickCommand
The command to execute while an object is inside this trigger. Maximum 1023 characters.

TriggerData objects.

Inherit: GameBaseData

Description Defines shared properties for Trigger objects.

The primary focus of the TriggerData datablock is the callbacks it provides when an object is within or leaves the
Trigger bounds.

5.3. Console Reference 595

Torque 3D Documentation, Release 3.5.1

Methods
void TriggerData::onEnterTrigger(Trigger trigger, GameBase obj)

Called when an object enters the volume of the Trigger instance using this TriggerData .

Parameters

• trigger – the Trigger instance whose volume the object entered

• obj – the object that entered the volume of the Trigger instance
void TriggerData::onLeaveTrigger(Trigger trigger, GameBase obj)

Called when an object leaves the volume of the Trigger instance using this TriggerData .

Parameters

• trigger – the Trigger instance whose volume the object left

• obj – the object that left the volume of the Trigger instance

void TriggerData::onTickTrigger(Trigger trigger)
Called every tickPeriodMS number of milliseconds (as specified in the TriggerData) whenever one or more
objects are inside the volume of the trigger. The Trigger has methods to retrieve the objects that are within the
Trigger’s bounds if you want to do something with them in this callback.

Parameters trigger – the Trigger instance whose volume the object is inside

Fields
bool TriggerData::clientSide

Forces Trigger callbacks to only be called on clients.
int TriggerData::tickPeriodMS

Time in milliseconds between calls to onTickTrigger() while at least one object is within a Trigger’s bounds.

TSShapeConstructor An object used to modify a DTS or COLLADA shape model after it has been loaded by
Torque.

Inherit: SimObject

Description An object used to modify a DTS or COLLADA shape model after it has been loaded by Torque.

TSShapeConstructor is a special object used to modify a DTS or COLLADA shape model after it has been loaded by
Torque, but before it is used by any other object.

It is often used to share animations from DSQ files between shapes with a common skeleton.

It may also be used to ‘Torquify’ a model that is missing the nodes and/or sequences required to function as a particular
Torque object. A model used for a Player character for example should have an eye and a cam node, but these might
not be present in a model not specifically created for Torque. TSShapeConstructor allows the missing nodes to be
added and positioned so that the shape does not need to be re-worked or re-exported by an artist.

TSShapeConstructor also includes features to aid in loading COLLADA models, such as allowing the <up_axis> and
<unit> elements to be overridden, and can also apply a user specified prefix to the names of COLLADA materials as
shown below. Prefixing material names is useful to avoid name clashes, particularly for 3D apps like Google SketchUp
that export models with generic material names like “material0”. These options are most easily accessed using the
COLLADA import gui, which will be displayed automatically the first time a COLLADA model is imported into
Torque.

Settings from the import gui are automatically saved to a TSShapeConstructor script in the same folder as the model.

To create your own TSShapeConstructor object, simply create a TorqueScript file in the same folder as your DTS or
COLLADA model, with the same filename but .cs extension. For example, if your model file was called myShape.dts,
you would create a file called myShape.cs. Some example appear below:

596 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

The name of the TSShapeConstructor object (MyShapeDae and MyShape2Dae in the code samples above) is up to
you, but you should choose a name that does not conflict with other objects or datablocks. A common convention for
TSShapeConstructor objects is the name of the shape file. eg. MyShapeDae for a file called myshape.dae.

When Torque loads a DTS (.dts) or COLLADA (.dae) file, it first looks in the same folder for a TorqueScript file with
the same filename (but .cs extension) in order to create the TSShapeConstructor object. Such scripts are executed
automatically by Torque 3D, so there is no need to manually call exec(“myShape.cs”) from another script. Also, you
should avoid adding other object and datablock declarations to this script because it will be executed every time the
model is loaded, which may cause unexpected results if the datablocks already exist.

After Torque has loaded the model from the DTS or COLLADA file, it executes the TSShapeConstructor onLoad
method to apply the desired set of changes to the shape. It should be noted that the changes are applied to the loaded
model in memory rather than to the DTS or COLLADA file itself. This means the model can be re-exported to DTS
or COLLADA without overwriting the TSShapeConstructor changes. TSShapeConstructor should be thought of as a
post-export processing step, and is intended to be used alongside existing object and datablock setups.

Note that DSQ sequences may still be specified within the TSShapeConstructor object as normal:

Note that most of the features in TSShapeConstructor are far more easily accessible in the Shape Editor tool. This tool
uses TSShapeConstructor ‘under-the-hood’ to edit the nodes, sequences and details of a shape, and the changes are
saved to a TSShapeConstructor script object.

Shape Terminology The following definitions should be understood before reading the TSShapeConstructor exam-
ples and function reference:

Example 1: Adding a Collision Mesh To an Existing Shape Imagine you have a model that you want to add to the
scene as a StaticShape, but it is missing a collision mesh. TSShapeConstructor makes it simple to modify an existing
DTS shape to add a collision (or line-of-sight collision) detail level.

First, define the StaticShapeData datablock as normal. Create a script called myShape.cs in the art/datablocks folder,
and define the datablock:

We need to tell Torque to execute this script so add exec(”./myShape.cs”); to art/datablocks/datablockExec.cs.

Now we define the TSShapeConstructor object by creating a new script called myShape.cs in the art/shapes/myShape
folder:

This script will add a box mesh with the same center and dimensions as the original model using the “Col” detail level
at size -1. The negative detail size means that the mesh will not be rendered in-game, and the use of the special “Col”
name means that this mesh will be detected as a collision mesh by the Torque engine.

When a Torque mission is started, the following steps occur:

Example 2: Adding a Mesh From an Existing DTS File The image below shows a boulder.dts shape in the Torque
Show Tool Pro (TSTPro). The circled items indicate the geometry and material that will be copied into a different
shape using TSShapeConstructor.

The following shows how to include the boulder1 mesh in another shape:

The output of the dumpShape command is shown below:

Note that the new detail (“detail128”), object (“test”) and material (“MossyRock02”) have been added to the normal
rock1.dts shape.

Example 3: Auto-loading animations Instead of manually specifying all of the animations to load, it’s easy to
write some TorqueScript that will scan a folder for any matching animations and add them to the shape automatically.
Imagine that we have the following shape (DTS) and sequence (DSQ) files:

5.3. Console Reference 597

Torque 3D Documentation, Release 3.5.1

The following script will scan the animations folder and add the sequences to the shape.

Example 4: Splitting COLLADA animations Many COLLADA exporters do not support the <animation_clip>
element, meaning that animated models imported into Torque appear to have only a single sequence containing all of
the animations. TSShapeConstructor can be used to split this combined animation into individual sequences. This is
most easily done using the Shape Editor tool, but can also be done manually as follows:

Example 5: LOD using separate files In the past, using LOD required the artist to export all detail levels into a
single DTS file. Using TSShapeConstructor, we can combine separate model files together. In fact, we can even use
the folder-scanning approach from Example 3 to automatically construct the shape detail levels using all of the model
files in the folder!

Note that the detail level models must contain the same object name, and for skinned models, the skin must be applied
to the same skeleton for this script to work.

Imagine that we have the following shape (DAE) files:

Example 6: Add lights to the scene Although most often used to modify a shape before it is used, TSShapeCon-
structor can also be used as a general purpose interface to a 3D shape. For example, a 3D modeling package could be
used to layout positions for lights in the scene. On import, the shape hierarchy might look like this:

The following code demonstrates how to create a TSShapeConstructor object on-demand in order to access the 3D
shape data. This example adds lights to the current scene at position of the lightX nodes in the shape:

The original shape can be placed anywhere in the scene, then AddLights is called to create and place a PointLight at
each node.

Example 7: Rigid-body Player Character Using the addNode and addMesh functions, it is possible to create a
rigid-body (ie. non-skinned) player model compatible with the default animations, completely from TorqueScript!

The default player skeleton node transforms were obtained by adding the following code to the TSShapeConstructor
onLoad function for a shape that already contained the default skeleton:

The contents of the console can then be copied and pasted into a new script. The script below shows the player model
creation process: first pick a dummy dts file (rock1.dts in this case), and delete its existing nodes and meshes. Then
create the default player skeleton. Finally, some box meshes are added at certain nodes to build up a rigid-body player
character.

This produces the following shape:

Methods
bool TSShapeConstructor::addCollisionDetail(int size, string type, string target, int depth, float

merge, float concavity, int maxVerts, float box-
MaxError, float sphereMaxError, float capsule-
MaxError)

Autofit a mesh primitive or set of convex hulls to the shape geometry. Hulls may optionally be converted to
boxes, spheres and/or capsules based on their volume.

Parameters

• size – size for this detail level

• type – one of: box, sphere, capsule, 10-dop x, 10-dop y, 10-dop z, 18-dop, 26-dop, convex
hulls. See the Shape Editor documentation for more details about these types.

598 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• target – geometry to fit collision mesh(es) to; either “bounds” (for the whole shape), or
the name of an object in the shape

• depth – maximum split recursion depth (hulls only)

• merge – volume % threshold used to merge hulls together (hulls only)

• concavity – volume % threshold used to detect concavity (hulls only)

• maxVerts – maximum number of vertices per hull (hulls only)

• boxMaxError – max % volume difference for a hull to be converted to a box (hulls only)

• sphereMaxError – max % volume difference for a hull to be converted to a sphere (hulls
only)

• capsuleMaxError – max % volume difference for a hull to be converted to a capsule
(hulls only)

Returns true if successful, false otherwise

Example:

%this.addCollisionDetail(-1, "box", "bounds");
%this.addCollisionDetail(-1, "convex hulls", "bounds", 4, 30, 30, 32, 0, 0, 0);
%this.addCollisionDetail(-1, "convex hulls", "bounds", 4, 30, 30, 32, 50, 50, 50);

int TSShapeConstructor::addImposter(int size, int equatorSteps, int polarSteps, int dl, int dim, bool
includePoles, float polarAngle)

Add (or edit) an imposter detail level to the shape. If the shape already contains an imposter detail level, this
command will simply change the imposter settings

Parameters

• size – size of the imposter detail level

• equatorSteps – defines the number of snapshots to take around the equator. Imagine
the object being rotated around the vertical axis, then a snapshot taken at regularly spaced
intervals.

• polarSteps – defines the number of snapshots taken between the poles (top and bottom),
at each equator step. eg. At each equator snapshot, snapshots are taken at regular intervals
between the poles.

• dl – the detail level to use when generating the snapshots. Note that this is an array index
rather than a detail size. So if an object has detail sizes of: 200, 150, and 40, then setting dl
to 1 will generate the snapshots using detail size 150.

• dim – defines the size of the imposter images in pixels. The larger the number, the more
detailed the billboard will be.

• includePoles – flag indicating whether to include the “pole” snapshots. ie. the views
from the top and bottom of the object.

• polar_angle – if pole snapshots are active (includePoles is true), this parameter defines
the camera angle (in degrees) within which to render the pole snapshot. eg. if polar_angle
is set to 25 degrees, then the snapshot taken at the pole (looking directly down or up at the
object) will be rendered when the camera is within 25 degrees of the pole.

Returns true if successful, false otherwise

Example:

%this.addImposter(2, 4, 0, 0, 64, false, 0);
%this.addImposter(2, 4, 2, 0, 64, true, 10); // this command would edit the existing imposter detail level

5.3. Console Reference 599

Torque 3D Documentation, Release 3.5.1

bool TSShapeConstructor::addMesh(string meshName, string srcShape, string srcMesh)
Add geometry from another DTS or DAE shape file into this shape. Any materials required by the source mesh
are also copied into this shape.

Parameters

• meshName – full name (object name + detail size) of the new mesh. If no detail size is
present at the end of the name, a value of 2 is used. An underscore before the number at the
end of the name will be interpreted as a negative sign. eg. “MyMesh_4” will be interpreted
as “MyMesh-4”.

• srcShape – name of a shape file (DTS or DAE) that contains the mesh

• srcMesh – the full name (object name + detail size) of the mesh to copy from the
DTS/DAE file into this shape

Returns true if successful, false otherwise

Example:

%this.addMesh("ColMesh-1", "./collision.dts", "ColMesh", "Col-1");
%this.addMesh("SimpleShape10", "./testShape.dae", "MyMesh2",);

bool TSShapeConstructor::addNode(string name, string parentName, TransformF txfm, bool is-
World)

Add a new node.

Parameters

• name – name for the new node (must not already exist)

• parentName – name of an existing node to be the parent of the new node. If empty (“”),
the new node will be at the root level of the node hierarchy.

• txfm – (optional) transform string of the form: “pos.x pos.y pos.z rot.x rot.y rot.z rot.angle”

• isworld – (optional) flag to set the local-to-parent or the global transform. If false, or not
specified, the position and orientation are treated as relative to the node’s parent.

Returns true if successful, false otherwise

Example:

%this.addNode("Nose", "Bip01 Head", "0 2 2 0 0 1 0");
%this.addNode("myRoot", "", "0 0 4 0 0 1 1.57");
%this.addNode("Nodes", "Bip01 Head", "0 2 0 0 0 1 0", true);

bool TSShapeConstructor::addPrimitive(string meshName, string type, string params, TransformF
txfm, string nodeName)

Add a new mesh primitive to the shape.

Parameters

• meshName – full name (object name + detail size) of the new mesh. If no detail size is
present at the end of the name, a value of 2 is used. An underscore before the number at the
end of the name will be interpreted as a negative sign. eg. “MyMesh_4” will be interpreted
as “MyMesh-4”.

• type – one of: “box”, “sphere”, “capsule”

• params – mesh primitive parameters: for box: “size_x size_y size_z”, for sphere: “radius”,
for capsule: “height radius”

• txfm – local transform offset from the node for this mesh

600 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• nodeName – name of the node to attach the new mesh to (will change the object’s node if
adding a new mesh to an existing object)

Returns true if successful, false otherwise

Example:

%this.addMesh("Box4", "box", "2 4 2", "0 2 0 0 0 1 0", "eye");
%this.addMesh("Sphere256", "sphere", "2", "0 0 0 0 0 1 0", "root");
%this.addMesh("MyCapsule-1", "capsule", "2 5", "0 0 2 0 0 1 0", "base01");

bool TSShapeConstructor::addSequence(string source, string name, int start, int end, bool padRot,
bool padTrans)

Add a new sequence to the shape.

Parameters

• source – the name of an existing sequence, or the name of a DTS or DAE shape or DSQ
sequence file. When the shape file contains more than one sequence, the desired sequence
can be specified by appending the name to the end of the shape file. eg. “myShape.dts run”
would select the “run” sequence from the “myShape.dts” file.

• name – name of the new sequence

• start – (optional) first frame to copy. Defaults to 0, the first frame in the sequence.

• end – (optional) last frame to copy. Defaults to -1, the last frame in the sequence.

• padRot – (optional) copy root-pose rotation keys for non-animated nodes. This is useful
if the source sequence data has a different root-pose to the target shape, such as if one
character was in the T pose, and the other had arms at the side. Normally only nodes that
are actually rotated by the source sequence have keyframes added, but setting this flag will
also add keyframes for nodes that are not animated, but have a different root-pose rotation
to the target shape root pose.

• padTrans – (optional) copy root-pose translation keys for non-animated nodes. This is
useful if the source sequence data has a different root-pose to the target shape, such as if one
character was in the T pose, and the other had arms at the side. Normally only nodes that
are actually moved by the source sequence have keyframes added, but setting this flag will
also add keyframes for nodes that are not animated, but have a different root-pose position
to the target shape root pose.

Returns true if successful, false otherwise

Example:

%this.addSequence("./testShape.dts ambient", "ambient");
%this.addSequence("./myPlayer.dae run", "run");
%this.addSequence("./player_look.dsq", "look", 0, -1); // start to end
%this.addSequence("walk", "walk_shortA", 0, 4); // start to frame 4
%this.addSequence("walk", "walk_shortB", 4, -1); // frame 4 to end

bool TSShapeConstructor::addTrigger(string name, int keyframe, int state)
Add a new trigger to the sequence.

Parameters

• name – name of the sequence to modify

• keyframe – keyframe of the new trigger

• state – of the new trigger

Returns true if successful, false otherwise

5.3. Console Reference 601

Torque 3D Documentation, Release 3.5.1

Example:

%this.addTrigger("walk", 3, 1);
%this.addTrigger("walk", 5, -1);

void TSShapeConstructor::dumpShape(string filename)
Dump the shape hierarchy to the console or to a file. Useful for reviewing the result of a series of construction
commands.

Parameters filename – Destination filename. If not specified, dump to console.

Example:

%this.dumpShape(); // dump to console
%this.dumpShape("./dump.txt"); // dump to file

Box3F TSShapeConstructor::getBounds()
Get the bounding box for the shape.

Returns Bounding box “minX minY minZ maxX maxY maxZ”

int TSShapeConstructor::getDetailLevelCount()
Get the total number of detail levels in the shape.

Returns the number of detail levels in the shape

int TSShapeConstructor::getDetailLevelIndex(int size)
Get the index of the detail level with a given size.

Parameters size – size of the detail level to lookup

Returns index of the detail level with the desired size, or -1 if no such detail exists

Example:

if (%this.getDetailLevelSize(32) == -1)
echo("Error: This shape does not have a detail level at size 32");

string TSShapeConstructor::getDetailLevelName(int index)
Get the name of the indexed detail level.

Parameters index – detail level index (valid range is 0 - getDetailLevelCount()-1)

Returns the detail level name

Example:

// print the names of all detail levels in the shape
%count = %this.getDetailLevelCount();
for (%i = 0; %i < %count; %i++)

echo(%i SPC %this.getDetailLevelName(%i));

int TSShapeConstructor::getDetailLevelSize(int index)
Get the size of the indexed detail level.

Parameters index – detail level index (valid range is 0 - getDetailLevelCount()-1)

Returns the detail level size

Example:

// print the sizes of all detail levels in the shape
%count = %this.getDetailLevelCount();
for (%i = 0; %i < %count; %i++)

echo("Detail" @ %i @ " has size " @ %this.getDetailLevelSize(%i));

602 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int TSShapeConstructor::getImposterDetailLevel()
Get the index of the imposter (auto-billboard) detail level (if any).

Returns imposter detail level index, or -1 if the shape does not use imposters.

string TSShapeConstructor::getImposterSettings(int index)
Get the settings used to generate imposters for the indexed detail level.

Parameters index – index of the detail level to query (does not need to be an imposter detail level

Returns 1 if this detail level generates imposters, 0 otherwise

Example:

// print the imposter detail level settings
%index = %this.getImposterDetailLevel();
if (%index != -1)

echo("Imposter settings: " @ %this.getImposterSettings(%index));

int TSShapeConstructor::getMeshCount(string name)
Get the number of meshes (detail levels) for the specified object.

Parameters name – name of the object to query

Returns the number of meshes for this object.

Example:

%count = %this.getMeshCount("SimpleShape");

string TSShapeConstructor::getMeshMaterial(string name)
Get the name of the material attached to a mesh. Note that only the first material used by the mesh is returned.

Parameters name – full name (object name + detail size) of the mesh to query

Returns mapTo field)

Example:

echo("Mesh material is " @ %this.sgetMeshMaterial("SimpleShape128"));

string TSShapeConstructor::getMeshName(string name, int index)
Get the name of the indexed mesh (detail level) for the specified object.

Parameters

• name – name of the object to query

• index – index of the mesh (valid range is 0 - getMeshCount()-1)

Returns the mesh name.

Example:

// print the names of all meshes in the shape
%objCount = %this.getObjectCount();
for (%i = 0; %i < %objCount; %i++)
{

%objName = %this.getObjectName(%i);
%meshCount = %this.getMeshCount(%objName);
for (%j = 0; %j < %meshCount; %j++)

echo(%this.getMeshName(%objName, %j));
}

5.3. Console Reference 603

Torque 3D Documentation, Release 3.5.1

int TSShapeConstructor::getMeshSize(string name, int index)
Get the detail level size of the indexed mesh for the specified object.

Parameters

• name – name of the object to query

• index – index of the mesh (valid range is 0 - getMeshCount()-1)

Returns the mesh detail level size.

Example:

// print sizes for all detail levels of this object
%objName = "trunk";
%count = %this.getMeshCount(%objName);
for (%i = 0; %i < %count; %i++)

echo(%this.getMeshSize(%objName, %i));

string TSShapeConstructor::getMeshType(string name)
Get the display type of the mesh.

Parameters name – name of the mesh to query

Returns a normal 3D mesh

Example:

echo("Mesh type is " @ %this.getMeshType("SimpleShape128"));

int TSShapeConstructor::getNodeChildCount(string name)
Get the number of children of this node.

Parameters name – name of the node to query.

Returns the number of child nodes.

Example:

%count = %this.getNodeChildCount("Bip01 Pelvis");

string TSShapeConstructor::getNodeChildName(string name, int index)
Get the name of the indexed child node.

Parameters

• name – name of the parent node to query.

• index – index of the child node (valid range is 0 - getNodeChildName()-1).

Returns the name of the indexed child node.

Example:

function dumpNode(%shape, %name, %indent)
{

echo(%indent @ %name);
%count = %shape.getNodeChildCount(%name);
for (%i = 0; %i < %count; %i++)

dumpNode(%shape, %shape.getNodeChildName(%name, %i), %indent @ "");
}

function dumpShape(%shape)
{

// recursively dump node hierarchy

604 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%count = %shape.getNodeCount();
for (%i = 0; %i < %count; %i++)
{

// dump top level nodes
%name = %shape.getNodeName(%i);
if (%shape.getNodeParentName(%name) $=)

dumpNode(%shape, %name, "");
}

}

int TSShapeConstructor::getNodeCount()
Get the total number of nodes in the shape.

Returns the number of nodes in the shape.

Example:

%count = %this.getNodeCount();

int TSShapeConstructor::getNodeIndex(string name)
Get the index of the node.

Parameters name – name of the node to lookup.

Returns the index of the named node, or -1 if no such node exists.

Example:

// get the index of Bip01 Pelvis node in the shape
%index = %this.getNodeIndex("Bip01 Pelvis");

string TSShapeConstructor::getNodeName(int index)
Get the name of the indexed node.

Parameters index – index of the node to lookup (valid range is 0 - getNodeCount()-1).

Returns the name of the indexed node, or “” if no such node exists.

Example:

// print the names of all the nodes in the shape
%count = %this.getNodeCount();
for (%i = 0; %i < %count; %i++)

echo(%i SPC %this.getNodeName(%i));

int TSShapeConstructor::getNodeObjectCount(string name)
Get the number of geometry objects attached to this node.

Parameters name – name of the node to query.

Returns the number of attached objects.

Example:

%count = %this.getNodeObjectCount("Bip01 Head");

string TSShapeConstructor::getNodeObjectName(string name, int index)
Get the name of the indexed object.

Parameters

• name – name of the node to query.

• index – index of the object (valid range is 0 - getNodeObjectCount()-1).

5.3. Console Reference 605

Torque 3D Documentation, Release 3.5.1

Returns the name of the indexed object.

Example:

// print the names of all objects attached to the node
%count = %this.getNodeObjectCount("Bip01 Head");
for (%i = 0; %i < %count; %i++)

echo(%this.getNodeObjectName("Bip01 Head", %i));

string TSShapeConstructor::getNodeParentName(string name)
Get the name of the node’s parent. If the node has no parent (ie. it is at the root level), return an empty string.

Parameters name – name of the node to query.

Returns the name of the node’s parent, or “” if the node is at the root level

Example:

echo("Bip01 Pelvis parent = " @ %this.getNodeParentName("Bip01 Pelvis "));

TransformF TSShapeConstructor::getNodeTransform(string name, bool isWorld)
Get the base (ie. not animated) transform of a node.

Parameters

• name – name of the node to query.

• isWorld – true to get the global transform, false (or omitted) to get the local-to-parent
transform.

Returns the node transform in the form “pos.x pos.y pos.z rot.x rot.y rot.z rot.angle”.

Example:

%ret = %this.getNodeTransform("mount0");
%this.setNodeTransform("mount4", %ret);

int TSShapeConstructor::getObjectCount()
Get the total number of objects in the shape.

Returns the number of objects in the shape.

Example:

%count = %this.getObjectCount();

int TSShapeConstructor::getObjectIndex(string name)
Get the index of the first object with the given name.

Parameters name – name of the object to get.

Returns the index of the named object.

Example:

%index = %this.getObjectIndex("Head");

string TSShapeConstructor::getObjectName(int index)
Get the name of the indexed object.

Parameters index – index of the object to get (valid range is 0 - getObjectCount()-1).

Returns the name of the indexed object.

Example:

606 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// print the names of all objects in the shape
%count = %this.getObjectCount();
for (%i = 0; %i < %count; %i++)

echo(%i SPC %this.getObjectName(%i));

string TSShapeConstructor::getObjectNode(string name)
Get the name of the node this object is attached to.

Parameters name – name of the object to get.

Returns the name of the attached node, or an empty string if this object is not attached to a node
(usually the case for skinned meshes).

Example:

echo("Hand is attached to " @ %this.getObjectNode("Hand"));

string TSShapeConstructor::getSequenceBlend(string name)
Get information about blended sequences.

Parameters name – name of the sequence to query

Returns a boolean flag indicating whether this sequence is a blend

Example:

%blendData = %this.getSequenceBlend("look");
if (getField(%blendData, 0))

echo("look is a blend, reference: " @ getField(%blendData, 1));

int TSShapeConstructor::getSequenceCount()
Get the total number of sequences in the shape.

Returns the number of sequences in the shape

bool TSShapeConstructor::getSequenceCyclic(string name)
Check if this sequence is cyclic (looping).

Parameters name – name of the sequence to query

Returns true if this sequence is cyclic, false if not

Example:

if (!%this.getSequenceCyclic("ambient"))
error("ambient sequence is not cyclic!");

int TSShapeConstructor::getSequenceFrameCount(string name)
Get the number of keyframes in the sequence.

Parameters name – name of the sequence to query

Returns number of keyframes in the sequence

Example:

echo("Run has " @ %this.getSequenceFrameCount("run") @ " keyframes");

string TSShapeConstructor::getSequenceGroundSpeed(string name)
Get the ground speed of the sequence.

Parameters name – name of the sequence to query

Returns string of the form: “trans.x trans.y trans.z rot.x rot.y rot.z”

5.3. Console Reference 607

Torque 3D Documentation, Release 3.5.1

Example:

%speed = VectorLen(getWords(%this.getSequenceGroundSpeed("run"), 0, 2));
echo("Run moves at " @ %speed @ " units per frame");

int TSShapeConstructor::getSequenceIndex(string name)
Find the index of the sequence with the given name.

Parameters name – name of the sequence to lookup

Returns index of the sequence with matching name, or -1 if not found

Example:

// Check if a given sequence exists in the shapeif (%this.getSequenceIndex("walk") == -1)
echo("Could not find walk sequence");

string TSShapeConstructor::getSequenceName(int index)
Get the name of the indexed sequence.

Parameters index – index of the sequence to query (valid range is 0 - getSequenceCount()-1)

Returns the name of the sequence

Example:

// print the name of all sequences in the shape
%count = %this.getSequenceCount();
for (%i = 0; %i < %count; %i++)

echo(%i SPC %this.getSequenceName(%i));

float TSShapeConstructor::getSequencePriority(string name)
Get the priority setting of the sequence.

Parameters name – name of the sequence to query

Returns priority value of the sequence

string TSShapeConstructor::getSequenceSource(string name)
Get information about where the sequence data came from. For example, whether it was loaded from an external
DSQ file.

Parameters name – name of the sequence to query

Returns the source of the animation data, such as the path to a DSQ file, or the name of an existing
sequence in the shape. This field will be empty for sequences already embedded in the DTS or
DAE file.

Example:

// print the source for the walk animationecho("walk source:" SPC getField(%this.getSequenceSource("walk"), 0));

int TSShapeConstructor::getTargetCount()
Get the number of materials in the shape.

Returns the number of materials in the shape.

Example:

%count = %this.getTargetCount();

string TSShapeConstructor::getTargetName(int index)
Get the name of the indexed shape material.

Parameters index – index of the material to get (valid range is 0 - getTargetCount()-1).

608 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns the name of the indexed material.

Example:

%count = %this.getTargetCount();
for (%i = 0; %i < %count; %i++)

echo("Target " @ %i @ ": " @ %this.getTargetName(%i));

string TSShapeConstructor::getTrigger(string name, int index)
Get information about the indexed trigger.

Parameters

• name – name of the sequence to query

• index – index of the trigger (valid range is 0 - getTriggerCount()-1)

Returns string of the form “frame state”

Example:

// print all triggers in the sequence
%count = %this.getTriggerCount("back");
for (%i = 0; %i < %count; %i++)

echo(%i SPC %this.getTrigger("back", %i));

int TSShapeConstructor::getTriggerCount(string name)
Get the number of triggers in the specified sequence.

Parameters name – name of the sequence to query

Returns number of triggers in the sequence

void TSShapeConstructor::notifyShapeChanged()
Notify game objects that this shape file has changed, allowing them to update internal data if needed.

void TSShapeConstructor::onLoad()
Called immediately after the DTS or DAE file has been loaded; before the shape data is available to any other
object (StaticShape , Player etc). This is where you should put any post-load commands to modify the shape
in-memory such as addNode, renameSequence etc.

void TSShapeConstructor::onUnload()
Called when the DTS or DAE resource is flushed from memory. Not normally required, but may be useful to
perform cleanup.

bool TSShapeConstructor::removeDetailLevel(int index)
Remove the detail level (including all meshes in the detail level).

Parameters size – size of the detail level to remove

Returns true if successful, false otherwise

Example:

%this.removeDetailLevel(2);

bool TSShapeConstructor::removeImposter()
Remove the imposter detail level (if any) from the shape.

Returns true if successful, false otherwise

bool TSShapeConstructor::removeMesh(string name)
Remove a mesh from the shape. If all geometry is removed from an object, the object is also removed.

Parameters name – full name (object name + detail size) of the mesh to remove

5.3. Console Reference 609

Torque 3D Documentation, Release 3.5.1

Returns true if successful, false otherwise

Example:

%this.removeMesh("SimpleShape128");

bool TSShapeConstructor::removeNode(string name)
Remove a node from the shape. The named node is removed from the shape, including from any sequences that
use the node. Child nodes and objects attached to the node are re-assigned to the node’s parent.

Parameters name – name of the node to remove.

Returns true if successful, false otherwise.

Example:

%this.removeNode("Nose");

bool TSShapeConstructor::removeObject(string name)
Remove an object (including all meshes for that object) from the shape.

Parameters name – name of the object to remove.

Returns true if successful, false otherwise.

Example:

// clear all objects in the shape
%count = %this.getObjectCount();
for (%i = %count-1; %i >= 0; %i--)

%this.removeObject(%this.getObjectName(%i));

bool TSShapeConstructor::removeSequence(string name)
Remove the sequence from the shape.

Parameters name – name of the sequence to remove

Returns true if successful, false otherwise

bool TSShapeConstructor::removeTrigger(string name, int keyframe, int state)
Remove a trigger from the sequence.

Parameters

• name – name of the sequence to modify

• keyframe – keyframe of the trigger to remove

• state – of the trigger to remove

Returns true if successful, false otherwise

Example:

%this.removeTrigger("walk", 3, 1);

bool TSShapeConstructor::renameDetailLevel(string oldName, string newName)
Rename a detail level.

Parameters

• oldName – current name of the detail level

• newName – new name of the detail level

Returns true if successful, false otherwise

610 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

%this.renameDetailLevel("detail-1", "collision-1");

bool TSShapeConstructor::renameNode(string oldName, string newName)
Rename a node.

Parameters

• oldName – current name of the node

• newName – new name of the node

Returns true if successful, false otherwise

Example:

%this.renameNode("Bip01 L Hand", "mount5");

bool TSShapeConstructor::renameObject(string oldName, string newName)
Rename an object.

Parameters

• oldName – current name of the object

• newName – new name of the object

Returns true if successful, false otherwise

Example:

%this.renameObject("MyBox", "Box");

bool TSShapeConstructor::renameSequence(string oldName, string newName)
Rename a sequence.

Parameters

• oldName – current name of the sequence

• newName – new name of the sequence

Returns true if successful, false otherwise

Example:

%this.renameSequence("walking", "walk");

void TSShapeConstructor::saveShape(string filename)
Save the shape (with all current changes) to a new DTS file.

Parameters filename – Destination filename.

Example:

%this.saveShape("./myShape.dts");

bool TSShapeConstructor::setBounds(Box3F bbox)
Set the shape bounds to the given bounding box.

Parameters Bounding – box “minX minY minZ maxX maxY maxZ”

Returns true if successful, false otherwise

int TSShapeConstructor::setDetailLevelSize(int index, int newSize)
Change the size of a detail level.

5.3. Console Reference 611

Torque 3D Documentation, Release 3.5.1

Parameters

• index – index of the detail level to modify

• newSize – new size for the detail level

Returns new index for this detail level

Example:

%this.setDetailLevelSize(2, 256);

bool TSShapeConstructor::setMeshMaterial(string meshName, string matName)
Set the name of the material attached to the mesh.

Parameters

• meshName – full name (object name + detail size) of the mesh to modify

• matName – name of the material to attach. This could be the base name of the diffuse
texture (eg. “test_mat” for “test_mat.jpg”), or the name of a Material object already defined
in script.

Returns true if successful, false otherwise

Example:

// set the mesh material
%this.setMeshMaterial("SimpleShape128", "test_mat");

bool TSShapeConstructor::setMeshSize(string name, int size)
Change the detail level size of the named mesh.

Parameters

• name – full name (object name + current size) of the mesh to modify

• size – new detail level size

Returns true if successful, false otherwise.

Example:

%this.setMeshSize("SimpleShape128", 64);

bool TSShapeConstructor::setMeshType(string name, string type)
Set the display type for the mesh.

Parameters

• name – full name (object name + detail size) of the mesh to modify

• type – the new type for the mesh: “normal”, “billboard” or “billboardzaxis”

Returns true if successful, false otherwise

Example:

// set the mesh to be a billboard
%this.setMeshType("SimpleShape64", "billboard");

bool TSShapeConstructor::setNodeParent(string name, string parentName)
Set the parent of a node.

Parameters

• name – name of the node to modify

612 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• parentName – name of the parent node to set (use “” to move the node to the root level)

Returns true if successful, false if failed

Example:

%this.setNodeParent("Bip01 Pelvis", "start01");

bool TSShapeConstructor::setNodeTransform(string name, TransformF txfm, bool isWorld)
Set the base transform of a node. That is, the transform of the node when in the root (not-animated) pose.

Parameters

• name – name of the node to modify

• txfm – transform string of the form: “pos.x pos.y pos.z rot.x rot.y rot.z rot.angle”

• isworld – (optional) flag to set the local-to-parent or the global transform. If false, or not
specified, the position and orientation are treated as relative to the node’s parent.

Returns true if successful, false otherwise

Example:

%this.setNodeTransform("mount0", "0 0 1 0 0 1 0");
%this.setNodeTransform("mount0", "0 0 0 0 0 1 1.57");
%this.setNodeTransform("mount0", "1 0 0 0 0 1 0", true);

bool TSShapeConstructor::setObjectNode(string objName, string nodeName)
Set the node an object is attached to. When the shape is rendered, the object geometry is rendered at the node’s
current transform.

Parameters

• objName – name of the object to modify

• nodeName – name of the node to attach the object to

Returns true if successful, false otherwise

Example:

%this.setObjectNode("Hand", "Bip01 LeftHand");

bool TSShapeConstructor::setSequenceBlend(string name, bool blend, string blendSeq, int blend-
Frame)

Mark a sequence as a blend or non-blend. A blend sequence is one that will be added on top of any other playing
sequences. This is done by storing the animated node transforms relative to a reference frame, rather than as
absolute transforms.

Parameters

• name – name of the sequence to modify

• blend – true to make the sequence a blend, false for a non-blend

• blendSeq – the name of the sequence that contains the blend reference frame

• blendFrame – the reference frame in the blendSeq sequence

Returns true if successful, false otherwise

Example:

%this.setSequenceBlend("look", true, "root", 0);

5.3. Console Reference 613

Torque 3D Documentation, Release 3.5.1

bool TSShapeConstructor::setSequenceCyclic(string name, bool cyclic)
Mark a sequence as cyclic or non-cyclic.

Parameters

• name – name of the sequence to modify

• cyclic – true to make the sequence cyclic, false for non-cyclic

Returns true if successful, false otherwise

Example:

%this.setSequenceCyclic("ambient", true);
%this.setSequenceCyclic("shoot", false);

bool TSShapeConstructor::setSequenceGroundSpeed(string name, Point3F transSpeed, Point3F
rotSpeed)

Set the translation and rotation ground speed of the sequence. The ground speed of the sequence is set by
generating ground transform keyframes. The ground translational and rotational speed is assumed to be constant
for the duration of the sequence. Existing ground frames for the sequence (if any) will be replaced.

Parameters

• name – name of the sequence to modify

• transSpeed – translational speed (trans.x trans.y trans.z) in Torque units per frame

• rotSpeed – (optional) rotational speed (rot.x rot.y rot.z) in radians per frame. Default is
“0 0 0”

Returns true if successful, false otherwise

Example:

%this.setSequenceGroundSpeed("run", "5 0 0");
%this.setSequenceGroundSpeed("spin", "0 0 0", "4 0 0");

bool TSShapeConstructor::setSequencePriority(string name, float priority)
Set the sequence priority.

Parameters

• name – name of the sequence to modify

• priority – new priority value

Returns true if successful, false otherwise

void TSShapeConstructor::writeChangeSet()
Write the current change set to a TSShapeConstructor script file. The name of the script file is the same as the
model, but with .cs extension. eg. myShape.cs for myShape.dts or myShape.dae.

Fields
bool TSShapeConstructor::adjustCenter

Translate COLLADA model on import so the origin is at the center. No effect for DTS files.
bool TSShapeConstructor::adjustFloor

Translate COLLADA model on import so origin is at the (Z axis) bottom of the model. No effect for DTS files.
This can be used along with adjustCenter to have the origin at the center of the bottom of the model.

string TSShapeConstructor::alwaysImport
TAB separated patterns of nodes to import even if in neverImport list. No effect for DTS files. Torque allows
unwanted nodes in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated

614 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

list of patterns to match node names. Any node that matches one of the patterns in the list will always be
imported, even if it also matches the neverImport list

Example:

singleton TSShapeConstructor(MyShapeDae)
{

baseShape = "./myShape.dae";
alwaysImport = "mount*" TAB "eye";
neverImport = "*-PIVOT";

}

string TSShapeConstructor::alwaysImportMesh
TAB separated patterns of meshes to import even if in neverImportMesh list. No effect for DTS files. Torque
allows unwanted meshes in COLLADA (.dae) files to to be ignored during import. This field contains a TAB
separated list of patterns to match mesh names. Any mesh that matches one of the patterns in the list will always
be imported, even if it also matches the neverImportMesh list

Example:

singleton TSShapeConstructor(MyShapeDae)
{

baseShape = "./myShape.dae";
alwaysImportMesh = "body*" TAB "armor" TAB "bounds";
neverImportMesh = "*-dummy";

}

filename TSShapeConstructor::baseShape
Specifies the path to the DTS or DAE file to be operated on by this object. Since the TSShapeConstructor script
must be in the same folder as the DTS or DAE file, it is recommended to use a relative path so that the shape
and script files can be copied to another location without having to modify the path.

bool TSShapeConstructor::forceUpdateMaterials
Forces update of the materials.cs file in the same folder as the COLLADA (.dae) file, even if Materials already
exist. No effect for DTS files. Normally only Materials that are not already defined are written to materials.cs.

bool TSShapeConstructor::ignoreNodeScale
Ignore lt scale gt elements inside COLLADA lt node gt s. No effect for DTS files. This field is a workaround
for certain exporters that generate bad node scaling, and is not usually required.

TSShapeConstructorLodType TSShapeConstructor::lodType
Control how the COLLADA (.dae) importer interprets LOD in the model. No effect for DTS files. Set to one of
the following values:

string TSShapeConstructor::matNamePrefix
Prefix to apply to all material map names in the COLLADA (.dae) file. No effect for DTS files. This field
is useful to avoid material name clashes for exporters that generate generic material names like “texture0” or
“material1”.

string TSShapeConstructor::neverImport
TAB separated patterns of nodes to ignore on loading. No effect for DTS files. Torque allows unwanted nodes
in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated list of patterns to
match node names. Any node that matches one of the patterns in the list will not be imported (unless it matches
the alwaysImport list.

string TSShapeConstructor::neverImportMesh
TAB separated patterns of meshes to ignore on loading. No effect for DTS files. Torque allows unwanted meshes
in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated list of patterns to
match mesh names. Any mesh that matches one of the patterns in the list will not be imported (unless it matches
the alwaysImportMesh list.

5.3. Console Reference 615

Torque 3D Documentation, Release 3.5.1

filename TSShapeConstructor::sequence
Legacy method of adding sequences to a DTS or DAE shape after loading.

Example:

singleton TSShapeConstructor(MyShapeDae)
{

baseShape = "./myShape.dae";
sequence = "../anims/root.dae root";
sequence = "../anims/walk.dae walk";
sequence = "../anims/jump.dsq jump";

}

int TSShapeConstructor::singleDetailSize
Sets the detail size when lodType is set to SingleSize. No effect otherwise, and no effect for DTS files.

float TSShapeConstructor::unit
Override the lt unit gt element in the COLLADA (.dae) file. No effect for DTS files. COLLADA (.dae) files
usually contain a lt unit gt element that indicates the ‘real world’ units that the model is described in. It means
you can work in sensible and meaningful units in your modeling app. For example, if you were modeling a
small object like a cup, it might make sense to work in inches (1 MAX unit = 1 inch), but if you were modeling
a building, it might make more sense to work in feet (1 MAX unit = 1 foot). If you export both models to
COLLADA, T3D will automatically scale them appropriately. 1 T3D unit = 1 meter, so the cup would be scaled
down by 0.0254, and the building scaled down by 0.3048, given them both the correct scale relative to each
other. Omit the field or set to -1 to use the value in the .dae file (1.0 if the lt unit gt element is not present)

TSShapeConstructorUpAxis TSShapeConstructor::upAxis
Override the lt up_axis gt element in the COLLADA (.dae) file. No effect for DTS files. Set to one of the
following values:

TSStatic A static object derived from a 3D model file and placed within the game world.

Inherit: SceneObject

Description A static object derived from a 3D model file and placed within the game world.

TSStatic is the most basic 3D shape in Torque. Unlike StaticShape it doesn’t make use of a datablock. It derrives
directly from SceneObject. This makes TSStatic extremely light weight, which is why the Tools use this class when
you want to drop in a DTS or DAE object.

While a TSStatic doesn’t provide any motion – it stays were you initally put it – it does allow for a single ambient
animation sequence to play when the object is first added to the scene.

Example:

newTSStatic(Team1Base) {
shapeName = "art/shapes/desertStructures/station01.dts";
playAmbient = "1";
receiveSunLight = "1";
receiveLMLighting = "1";
useCustomAmbientLighting = "0";
customAmbientLighting = "0 0 0 1";
collisionType = "Visible Mesh";
decalType = "Collision Mesh";
allowPlayerStep = "1";
renderNormals = "0";
forceDetail = "-1";
position = "315.18 -180.418 244.313";
rotation = "0 0 1 195.952";

616 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

scale = "1 1 1";
isRenderEnabled = "true";
canSaveDynamicFields = "1";

};

Methods
void TSStatic::changeMaterial(string mapTo, Material oldMat, Material newMat)

Change one of the materials on the shape. This method changes materials per mapTo with others. The material
that is being replaced is mapped to unmapped_mat as a part of this transition.

Parameters

• mapTo – the name of the material target to remap (from getTargetName)

• oldMat – the old Material that was mapped

• newMat – the new Material to map

Example:

// remap the first material in the shape
%mapTo = %obj.getTargetName(0);
%obj.changeMaterial(%mapTo, 0, MyMaterial);

string TSStatic::getModelFile()
Get the model filename used by this shape.

Returns the shape filename

Example:

// Acquire the model filename used on this shape.
%modelFilename = %obj.getModelFile();

int TSStatic::getTargetCount()
Get the number of materials in the shape.

Returns the number of materials in the shape.

string TSStatic::getTargetName(int index)
Get the name of the indexed shape material.

Parameters index – index of the material to get (valid range is 0 - getTargetCount()-1).

Returns the name of the indexed material.

Fields
bool TSStatic::allowPlayerStep

Allow a Player to walk up sloping polygons in the TSStatic (based on the collisionType). When set to false, the
slightest bump will stop the player from walking on top of the object.

TSMeshType TSStatic::collisionType
The type of mesh data to use for collision queries.

TSMeshType TSStatic::decalType
The type of mesh data used to clip decal polygons against.

int TSStatic::forceDetail
Forces rendering to a particular detail level.

5.3. Console Reference 617

Torque 3D Documentation, Release 3.5.1

bool TSStatic::meshCulling
Enables detailed culling of meshes within the TSStatic . Should only be used with large complex shapes like
buildings which contain many submeshes.

bool TSStatic::originSort
Enables translucent sorting of the TSStatic by its origin instead of the bounds.

bool TSStatic::playAmbient
Enables automatic playing of the animation sequence named “ambient” (if it exists) when the TSStatic is loaded.

float TSStatic::renderNormals
Debug rendering mode shows the normals for each point in the TSStatic’s mesh.

filename TSStatic::shapeName
Path and filename of the model file (.DTS, .DAE) to use for this TSStatic .

string TSStatic::skin
The skin applied to the shape. ‘Skinning’ the shape effectively renames the material targets, allowing different
materials to be used on different instances of the same model. Any material targets that start with the old skin
name have that part of the name replaced with the new skin name. The initial old skin name is “base”. For
example, if a new skin of “blue” was applied to a model that had material targets base_body and face , the new
targets would be blue_body and face . Note that face was not renamed since it did not start with the old skin
name of “base”. To support models that do not use the default “base” naming convention, you can also specify
the part of the name to replace in the skin field itself. For example, if a model had a material target called
shapemat , we could apply a new skin “shape=blue”, and the material target would be renamed to bluemat (note
“shape” has been replaced with “blue”). Multiple skin updates can also be applied at the same time by separating
them with a semicolon. For example: “base=blue;face=happy_face”. Material targets are only renamed if an
existing Material maps to that name, or if there is a diffuse texture in the model folder with the same name as
the new target.

TurretShape Base turret class.

Inherit: Item

Description Base turret class.

Uses the TurretShapeData datablock for common properties.

The TurretShape class provides a player mountable turret. It also forms the base for AITurretShape, an AI controlled
turret. It is based on the Item class, which allows turrets to be treated as any other Item by the Player, such as throwing
smaller turrets. When used directly, TurretShape takes input moves from the player’s GameConnection to rotate the
turret and trigger its weapons.

A turret consists of two components. There is the TurretShape object (or AITurretShape), and then there are one or
more ShapeBaseImageData objects that are mounted to the turret. The TurretShape provides the weapons platform that
rotates towards a target. The ShapeBaseImageData provides the actual weapon that fires at the target. Any standard
ShapeBaseImageData weapon may be used.

Shape File Nodes The shape file used for the TurretShape needs to have a number of defined nodes. The first node
is named ‘heading’. The heading node is special in that it is controlled by the TurretShape code. This means that it
should not be animated by the artist, nor should it have anything but the default transform applied to it. This doesn’t
stop the heading node’s parent or its children from being animated, however.

The second special node is named ‘pitch’. The pitch node is also controlled by the TurretShape code so it too should
not be animated within the shape file. Typically the pitch node will be a child of the heading node, although it need not
be a direct child. The pitch node is also optional if you don’t want the TurretShape to pitch towards its target. In this

618 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

case you may be doing something special with the mounted weapon to have its projectiles automatically aim towards
the target.

The next set of nodes are weaponMount0 through weaponMount3. These provide up to four mounting points for
weapons on the turret. Typically these are children of the pitch nodes, although they need not be direct children of that
node. You do not need to have all of these weapon mount point nodes defined within the shape. Only as many as you
need for the weapons. The mounted ShapeBaseImageData weapons’ mountPoint node will mount to these nodes.

There are four optional nodes named pitch0 through pitch3 that may be used in special cases. These nodes are also
controlled by the TurretShape code and have the same restrictions. Their rotation exactly matches that of the standard
pitch node. These exist for mounted weapons that may not all rotate about the same x axis. For example, a turret may
have two sets of weapons, one mounted above the other. These two sets of weapons could all share the same point of
rotation (the pitch node) which means they’ll rotate as a group. Or the top weapons could be attached to the pitch node
while the bottom weapons could be attached to the pitch0 node. This makes the two sets of weapons rotate about their
own centers and provides an entirely different look.

You could also use these additional pitchN nodes to animate some non-weapon attachments on the turret, such as a
radar dish or targeting scope. TurretShape also supports four optional heading0 through heading3 nodes that operate
in the same way as the pitchN nodes.

Weapon Mounting TurretShape weapon mounting is done within the TurretShapeData::onAdd() script method.
This method makes use of datablock fields that are only defined in script and are not passed along to the client. The
first field is numWeaponMountPoints that defines the number of weapons that will be mounted and the number of
weaponMountN nodes to expect within the turret’s shape file.

The other fields that are required to mount weapons are the weapon[], weaponAmmo[] and weaponAmmoAmount[]
arrays – one of each per weapon to mount. The weapon[] array points to an ItemData datablock that defines the
weapon (just like any Player weapon). The weaponAmmo[] array points to an ItemData datablock that defines the
ammo to use for the weapon. Finally, the weaponAmmoAmount[] array is the quantity of ammo the turret has for that
weapon.

As turrets use the same inventory system as players, you also need to define the maximum number of weapons and
ammo that the turret may possess. Here is an example of setting up three weapons and their ammo for a turret (a
TurretShapeData fragment):

Example:

// Weapon mounting
numWeaponMountPoints = 3;

weapon[0] = TurretWeapon;
weaponAmmo[0] = BulletAmmo;
weaponAmmoAmount[0] = 10000;

weapon[1] = TurretWeaponB;
weaponAmmo[1] = BulletAmmo;
weaponAmmoAmount[1] = 10000;

weapon[2] = TurretWeapon;
weaponAmmo[2] = BulletAmmo;
weaponAmmoAmount[2] = 10000;

maxInv[TurretWeaponB] = 1;
maxInv[TurretWeapon] = 2;
maxInv[BulletAmmo] = 10000;

5.3. Console Reference 619

Torque 3D Documentation, Release 3.5.1

Mounted Weapon States There are a couple of things to be aware of so that an turret’s mounted weapons play
along with the turret’s states, especially for AI turrets. Setting TurretShapeData::startLoaded to true indicates that all
mounted weapons will start loaded when their state machines start up. A static turret placed with the World Editor
would normally begin this way. Setting TurretShapeData::startLoaded to false causes all mounted weapons to not start
in a loaded state. This can be used to have the mounted weapons begin in some folded state when a deployable turret is
thrown by the player. When a thrown turret comes to rest and begins to deploy, all mounted weapons are automatically
set to the loaded state so they may also unfold, start up, or show some other method that the weapon is becoming ready
to fight. This could also be used for player mountable turrets so that the weapons come to life when a player mounts
the turret.

The default scripts for AITurretShapeData also fires the first image generic trigger on all mounted weapons when
the turret is destroyed. This shows up as stateTransitionGeneric0In within a weapon image’s state machine. This
allows for all weapons to show that they are destroyed or shutting down. Something similar could be done for general
TurretShapeData turrets.

Weapons can also feed back to the turret they are mounted on. TurretShape supports the standard ShapeBaseIm-
ageData stateRecoil and will play the indicated animation, if available. You can also use ShapeBaseImageData’s
stateShapeSequence field to play a generic sequence on the turret at any time from a mounted weapon.

Player Mounting Turrets act very similar to vehicles when it comes to player mounting. By default colliding with
a turret causes the player to mount it, if the turret is free.

When it comes to firing the turret’s weapons there are a number of methods that are triggered based on the weapon-
LinkType on the TurretShapeData datablock. Setting this field to FireTogether causes all weapons to fire at once based
on the input from trigger 0. Using GroupedFire will make weaponMount0 and weaponMount2 mounted weapons fire
on trigger 0, and weaponMount1 and weaponMount3 mounted weapons fire on trigger 1. Finally, IndividualFire will
have each weaponMountN mounted weapons fire based on their own trigger (0 through 3). This provides exact control
over which turret weapon will fire when there are multiple weapons mounted.

The player mounting callbacks are done using the TurretBaseData datablock on the server, and in a special case on
the TurretBase object on the client. The server side makes use of the standard TurretBaseData::onMountObject() and
TurretBaseData::onUnmountObject() callbacks. See those for more information.

When a player mounted turret is destroyed the TurretShapeData::damage() method will automatically kill all mounted
players. To modify this behaviour – such as only dismounting players from a destroyed turret – you’ll need to create
your own damage() method for your turret’s datablock.

On the client side the special turretMountCallback() callback function is called for the TurretShape object that is
being mounted. This callback receives the SimObjectID of the turret object, the SimObjectID of the player doing the
mounting or unmounting, and a Boolean set to true if mounting and false if unmounting. As this callback is made on
the client, it allows the client to set up any action maps, make HUD changes, etc.

Example:

// --// Turret Support// --// Called by the TurretShape class when a player mounts or unmounts it.// %turret = The turret that was mounted// %player = The player doing the mounting// %mounted = True if the turret was mounted, false if it was unmounted
function turretMountCallback(%turret, %player, %mounted)
{

echo ("\c4turretMountCallback ->" @ %mounted);

if (%mounted)
{

// Push the action map
turretMap.push();

}
else
{

// Pop the action map
turretMap.pop();

620 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

}
}

Turret Destruction When a turret is destroyed the default TurretBaseData::onDestroyed() method is called. This
causes the turret to sit in a Dead state for TurretBase::DestroyedFadeDelay milliseconds, and then the turret will fade
away. If the turret is marked to respawn – TurretShape::doRespawn() returns true – then the turret is respawned after
TurretShape::RespawnTime milliseconds. By default all turrets placed in the World Editor are marked to respawn.

Turret Optional Animation Sequences If present in the TurretShape’s shape, the optional ‘heading’ and ‘pitch’
sequences will be played as the turret rotates. These sequences are given a timeline position that corresponds to the
turret’s rotation within its minimum and maximum ranges. These sequences could be used to rotate wheels or gears
on the turret as it rotates, for example.

Methods
bool TurretShape::doRespawn()

Does the turret respawn after it has been destroyed.

Returns True if the turret respawns.
bool TurretShape::getAllowManualFire()

Get if the turret is allowed to fire through moves.

Returns True if the turret is allowed to fire through moves.

bool TurretShape::getAllowManualRotation()
Get if the turret is allowed to rotate through moves.

Returns True if the turret is allowed to rotate through moves.

string TurretShape::getState()
Get the name of the turret’s current state. The state is one of the following:

•Dead - The TurretShape is destroyed.

•Mounted - The TurretShape is mounted to an object such as a vehicle.

•Ready - The TurretShape is free to move. The usual state.

Returns The current state; one of: “Dead”, “Mounted”, “Ready”

Point3F TurretShape::getTurretEulerRotation()
Get Euler rotation of this turret’s heading and pitch nodes.

Returns the orientation of the turret’s heading and pitch nodes in the form of rotations around the
X, Y and Z axes in degrees.

void TurretShape::setAllowManualFire(bool allow)
Set if the turret is allowed to fire through moves.

Parameters allow – If true then the turret may be fired through moves.

void TurretShape::setAllowManualRotation(bool allow)
Set if the turret is allowed to rotate through moves.

Parameters allow – If true then the turret may be rotated through moves.

void TurretShape::setTurretEulerRotation(Point3F rot)
Set Euler rotation of this turret’s heading and pitch nodes in degrees.

5.3. Console Reference 621

Torque 3D Documentation, Release 3.5.1

Parameters rot – The rotation in degrees. The pitch is the X component and the heading is the Z
component. The Y component is ignored.

Fields
bool TurretShape::respawn

Respawn the turret after it has been destroyed. If true, the turret will respawn after it is destroyed.

TurretShapeData object.

Inherit: ItemData

Description Defines properties for a TurretShape object.

Methods
void TurretShapeData::onMountObject(TurretShape turret, SceneObject obj, int node)

Informs the TurretShapeData object that a player is mounting it.

Parameters

• turret – The TurretShape object.

• obj – The player that is mounting.

• node – The node the player is mounting to.
void TurretShapeData::onStickyCollision(TurretShape obj)

Informs the TurretData object that it is now sticking to another object. This callback is only called if the
TurretData::sticky property for this Turret is true.

Parameters obj – The Turret object that is colliding.

void TurretShapeData::onUnmountObject(TurretShape turret, SceneObject obj)
Informs the TurretShapeData object that a player is unmounting it.

Parameters

• turret – The TurretShape object.

• obj – The player that is unmounting.

Fields
float TurretShapeData::cameraOffset

Vertical (Z axis) height of the camera above the turret.
float TurretShapeData::headingRate

Degrees per second rotation. A value of 0 means no rotation is allowed. A value less than 0 means the rotation
is instantaneous.

float TurretShapeData::maxHeading
Maximum number of degrees to rotate from center. A value of 180 or more degrees indicates the turret may
rotate completely around.

float TurretShapeData::maxPitch
Maximum number of degrees to rotate up from straight ahead.

float TurretShapeData::minPitch
Minimum number of degrees to rotate down from straight ahead.

622 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float TurretShapeData::pitchRate
Degrees per second rotation. A value of 0 means no rotation is allowed. A value less than 0 means the rotation
is instantaneous.

bool TurretShapeData::startLoaded
Does the turret’s mounted weapon(s) start in a loaded state. True indicates that all mounted weapons start in a
loaded state.

TurretShapeFireLinkType TurretShapeData::weaponLinkType
Set how the mounted weapons are linked and triggered.

•FireTogether: All weapons fire under trigger 0.

•GroupedFire: Weapon mounts 0,2 fire under trigger 0, mounts 1,3 fire under trigger 1.

•IndividualFire: Each weapon mount fires under its own trigger 0-3.

bool TurretShapeData::zRotOnly
Should the turret allow only z rotations. True indicates that the turret may only be rotated on its z axis, just like
the Item class. This keeps the turret always upright regardless of the surface it lands on.

Enumeration

enum ItemLightType
The type of light the Item has.

Parameters

• NoLight – The item has no light attached.

• ConstantLight – The item has a constantly emitting light attached.

• PulsingLight – The item has a pulsing light attached.

enum PlayerPose
The pose of the Player .

Parameters

• Stand – Standard movement pose.

• Sprint – Sprinting pose.

• Crouch – Crouch pose.

• Prone – Prone pose.

• Swim – Swimming pose.

enum ShapeBaseImageLightType
The type of light to attach to this ShapeBaseImage.

Parameters

• NoLight – No light is attached.

• ConstantLight – A constant emitting light is attached.

• SpotLight – A spotlight is attached.

• PulsingLight – A pusling light is attached.

• WeaponFireLight – Light emits when the weapon is fired, then dissipates.

5.3. Console Reference 623

Torque 3D Documentation, Release 3.5.1

enum ShapeBaseImageLoadedState
The loaded state of this ShapeBaseImage.

Parameters

• Ignore – Ignore the loaded state.

• Loaded – ShapeBaseImage is loaded.

• Empty – ShapeBaseImage is not loaded.

enum ShapeBaseImageRecoilState
What kind of recoil this ShapeBaseImage should emit when fired.

Parameters

• NoRecoil – No recoil occurs.

• LightRecoil – A light recoil occurs.

• MediumRecoil – A medium recoil occurs.

• HeavyRecoil – A heavy recoil occurs.

enum ShapeBaseImageSpinState
How the spin animation should be played.

Parameters

• Ignore – No changes to the spin sequence.

• Stop – Stops the spin sequence at its current position.

• SpinUp – Increase spin sequence timeScale from 0 (on state entry) to 1 (after stateTime-
outValue seconds).

• SpinDown – Decrease spin sequence timeScale from 1 (on state entry) to 0 (after state-
TimeoutValue seconds).

• FullSpeed – Resume the spin sequence playback at its current position with timeScale =
1.

enum TSMeshType
Type of mesh data available in a shape.

Parameters

• None – No mesh data.

• Bounds – Bounding box of the shape.

• Mesh – Specifically desingated “collision” meshes.

• Mesh – Rendered mesh polygons.

enum TurretShapeFireLinkType
How the weapons are linked to triggers for this TurretShape .

Parameters

• FireTogether – All weapons fire under trigger 0.

• GroupedFire – Weapon mounts 0,2 fire under trigger 0, mounts 1,3 fire under trigger 1.

• IndividualFire – Each weapon mount fires under its own trigger 0-3.

624 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Variables

float $SB::CloakSpeed
Time to cloak, in seconds.

float $SB::DFDec
Speed to reduce the damage flash effect per tick.

float $SB::FullCorrectionDistance
Distance at which a weapon’s muzzle vector is fully corrected to match where the player is looking. When a
weapon image has correctMuzzleVector set and the Player is in 1st person, the muzzle vector from the weapon is
modified to match where the player is looking. Beyond the FullCorrectionDistance the muzzle vector is always
corrected. Between FullCorrectionDistance and the player, the weapon’s muzzle vector is adjusted so that the
closer the aim point is to the player, the closer the muzzle vector is to the true (non-corrected) one.

bool Trigger::renderTriggers[static, inherited]
Forces all Trigger’s to render. Used by the Tools and debug render modes.

float $SB::WODec
Speed to reduce the whiteout effect per tick.

Special Effects

Classes responsible for special effect objects, such as Explosion, Debris, Particles, etc.

Classes

Debris datablock for properties of individual debris objects.

Inherit: GameBase

Description Base debris class. Uses the DebrisData datablock for properties of individual debris objects.

Debris is typically made up of a shape and up to two particle emitters. In most cases Debris objects are not created
directly. They are usually produced automatically by other means, such as through the Explosion class. When an
explosion goes off, its ExplosionData datablock determines what Debris to emit.

Example:

datablock ExplosionData(GrenadeLauncherExplosion)
{

// Assiging debris data
debris = GrenadeDebris;

// Adjust how debris is ejected
debrisThetaMin = 10;
debrisThetaMax = 60;
debrisNum = 4;
debrisNumVariance = 2;
debrisVelocity = 25;
debrisVelocityVariance = 5;

// Note: other ExplosionData properties are not listed for this example
};

5.3. Console Reference 625

Torque 3D Documentation, Release 3.5.1

Methods
bool Debris::init(string inputPosition, string inputVelocity)

Manually set this piece of debris at the given position with the given velocity. Usually you do not manually
create Debris objects as they are generated through other means, such as an Explosion . This method exists
when you do manually create a Debris object and want to have it start moving.

Parameters

• inputPosition – Position to place the debris.

• inputVelocity – Velocity to move the debris after it has been placed.

Returns Always returns true.

Example:

// Define the position
%position = "1.0 1.0 1.0";

// Define the velocity
%velocity = "1.0 0.0 0.0";

// Inform the debris object of its new position and velocity
%debris.init(%position,%velocity);

Fields
float Debris::lifetime

Length of time for this debris object to exist. When expired, the object will be deleted. The initial lifetime value
comes from the DebrisData datablock.

DebrisData Stores properties for an individual debris type.

Inherit: GameBaseData

Description Stores properties for an individual debris type.

DebrisData defines the base properties for a Debris object. Typically you’ll want a Debris object to consist of a shape
and possibly up to two particle emitters. The DebrisData datablock provides the definition for these items, along with
physical properties and how a Debris object will react to other game objects, such as water and terrain.

Example:

datablock DebrisData(GrenadeDebris)
{

shapeFile = "art/shapes/weapons/ramrifle/debris.dts";
emitters[0] = GrenadeDebrisFireEmitter;
elasticity = 0.4;
friction = 0.25;
numBounces = 3;
bounceVariance = 1;
explodeOnMaxBounce = false;
staticOnMaxBounce = false;
snapOnMaxBounce = false;
minSpinSpeed = 200;
maxSpinSpeed = 600;
lifetime = 4;
lifetimeVariance = 1.5;
velocity = 15;

626 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

velocityVariance = 5;
fade = true;
useRadiusMass = true;
baseRadius = 0.3;
gravModifier = 1.0;
terminalVelocity = 20;
ignoreWater = false;

};

Fields
float DebrisData::baseRadius

Radius at which the standard elasticity and friction apply. Only used when useRaduisMass is true.
int DebrisData::bounceVariance

Allowed variance in the value of numBounces. Must be less than numBounces.

float DebrisData::elasticity
A floating-point value specifying how ‘bouncy’ this object is. Must be in the range of -10 to 10.

ParticleEmitterData DebrisData::emitters[2]
List of particle emitters to spawn along with this debris object. These are optional. You could have Debris made
up of only a shape.

bool DebrisData::explodeOnMaxBounce
If true, this debris object will explode after it has bounced max times. Be sure to provide an ExplosionData
datablock for this to take effect.

ExplosionData DebrisData::Explosion
ExplosionData to spawn along with this debris object. This is optional as not all Debris explode.

bool DebrisData::fade
If true, this debris object will fade out when destroyed. This fade occurs over the last second of the Debris’
lifetime.

float DebrisData::friction
A floating-point value specifying how much velocity is lost to impact and sliding friction. Must be in the range
of -10 to 10.

float DebrisData::gravModifier
How much gravity affects debris.

bool DebrisData::ignoreWater
If true, this debris object will not collide with water, acting as if the water is not there.

float DebrisData::lifetime
Amount of time until this debris object is destroyed. Must be in the range of 0 to 1000.

float DebrisData::lifetimeVariance
Allowed variance in the value of lifetime. Must be less than lifetime.

float DebrisData::maxSpinSpeed
Maximum speed that this debris object will rotate. Must be in the range of -10000 to 10000.

float DebrisData::minSpinSpeed
Minimum speed that this debris object will rotate. Must be in the range of -10000 to 1000, and must be less than
maxSpinSpeed.

int DebrisData::numBounces
How many times to allow this debris object to bounce until it either explodes, becomes static or snaps (defined
in explodeOnMaxBounce, staticOnMaxBounce, snapOnMaxBounce). Must be within the range of 0 to 10000.

5.3. Console Reference 627

Torque 3D Documentation, Release 3.5.1

filename DebrisData::shapeFile
Object model to use for this debris object. This shape is optional. You could have Debris made up of only
particles.

bool DebrisData::snapOnMaxBounce
If true, this debris object will snap into a resting position on the last bounce.

bool DebrisData::staticOnMaxBounce
If true, this debris object becomes static after it has bounced max times.

float DebrisData::terminalVelocity
Max velocity magnitude.

string DebrisData::texture
Texture imagemap to use for this debris object. Not used any more.

bool DebrisData::useRadiusMass
Use mass calculations based on radius. Allows for the adjustment of elasticity and friction based on the Debris
size.

float DebrisData::velocity
Speed at which this debris object will move.

float DebrisData::velocityVariance
Allowed variance in the value of velocity. Must be less than velocity.

DecalData A datablock describing an individual decal.

Inherit: SimDataBlock

Description A datablock describing an individual decal.

The textures defined by the decal Material can be divided into multiple rectangular sub-textures as shown below,
with a different sub-texture selected by all decals using the same DecalData (via frame) or each decal instance (via
randomize).

Example of a Decal imagemap

Example:

datablock DecalData(BulletHoleDecal)
{

material = "DECAL_BulletHole";
size = "5.0";
lifeSpan = "50000";
randomize = "1";
texRows = "2";
texCols = "2";
clippingAngle = "60";

};

Methods
void DecalData::postApply()

Recompute the imagemap sub-texture rectangles for this DecalData .

Example:

628 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Inform the decal object to reload its imagemap and frame data.
%decalData.texRows = 4;
%decalData.postApply();

Fields
float DecalData::clippingAngle

The angle in degrees used to clip geometry that faces away from the decal projection direction.
float DecalData::fadeEndPixelSize

LOD value - size in pixels at which decals of this type are fully faded out. This should be a smaller value than
fadeStartPixelSize .

float DecalData::fadeStartPixelSize
LOD value - size in pixels at which decals of this type begin to fade out. This should be a larger value than
fadeEndPixelSize . However, you may also set this to a negative value to disable lod-based fading.

int DecalData::fadeTime
Time (in milliseconds) over which to fade out the decal before deleting it at the end of its lifetime.

int DecalData::frame
Index of the texture rectangle within the imagemap to use for this decal.

int DecalData::lifeSpan
Time (in milliseconds) before this decal will be automatically deleted.

string DecalData::Material
Material to use for this decal.

bool DecalData::randomize
If true, a random frame from the imagemap is selected for each instance of the decal.

char DecalData::renderPriority
Default renderPriority for decals of this type (determines draw order when decals overlap).

float DecalData::size
Width and height of the decal in meters before scale is applied.

int DecalData::texCols
Number of columns in the supplied imagemap. Use texRows and texCols if the imagemap frames are arranged
in a grid; use textureCoords to manually specify UV coordinates for irregular sized frames.

int DecalData::texRows
Number of rows in the supplied imagemap. Use texRows and texCols if the imagemap frames are arranged in a
grid; use textureCoords to manually specify UV coordinates for irregular sized frames.

int DecalData::textureCoordCount
Number of individual frames in the imagemap (maximum 16).

RectF DecalData::textureCoords[16]
An array of RectFs (topleft.x topleft.y extent.x extent.y) representing the UV coordinates for each frame in the
imagemap.

DecalManager The object that manages all of the decals in the active mission.

Inherit: SceneObject

Description The object that manages all of the decals in the active mission.

5.3. Console Reference 629

Torque 3D Documentation, Release 3.5.1

Explosion object.

Inherit: GameBase

Description The emitter for an explosion effect, with properties defined by a ExplosionData object.

The object will initiate the explosion effects automatically after being added to the simulation.

Example:

datablock ExplosionData(GrenadeSubExplosion)
{

offset = 0.25;
emitter[0] = GrenadeExpSparkEmitter;

lightStartRadius = 4.0;
lightEndRadius = 0.0;
lightStartColor = "0.9 0.7 0.7";
lightEndColor = "0.9 0.7 0.7";
lightStartBrightness = 2.0;
lightEndBrightness = 0.0;

};

datablock ExplosionData(GrenadeLauncherExplosion)
{

soundProfile = GrenadeLauncherExplosionSound;
lifeTimeMS = 400; // Quick flash, short burn, and moderate dispersal// Volume particles
particleEmitter = GrenadeExpFireEmitter;
particleDensity = 75;
particleRadius = 2.25;

// Point emission
emitter[0] = GrenadeExpDustEmitter;
emitter[1] = GrenadeExpSparksEmitter;
emitter[2] = GrenadeExpSmokeEmitter;

// Sub explosion objects
subExplosion[0] = GrenadeSubExplosion;

// Camera Shaking
shakeCamera = true;
camShakeFreq = "10.0 11.0 9.0";
camShakeAmp = "15.0 15.0 15.0";
camShakeDuration = 1.5;
camShakeRadius = 20;

// Exploding debris
debris = GrenadeDebris;
debrisThetaMin = 10;
debrisThetaMax = 60;
debrisNum = 4;
debrisNumVariance = 2;
debrisVelocity = 25;
debrisVelocityVariance = 5;

lightStartRadius = 4.0;
lightEndRadius = 0.0;
lightStartColor = "1.0 1.0 1.0";
lightEndColor = "1.0 1.0 1.0";

630 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

lightStartBrightness = 4.0;
lightEndBrightness = 0.0;
lightNormalOffset = 2.0;

};

function createExplosion()
{

// Create a new explosion - it will explode automatically
%pos = "0 0 100";
%obj = newExplosion()
{

position = %pos;
dataBlock = GrenadeLauncherExplosion;

};
}

// schedule an explosionschedule(1000, 0, createExplosion);

ExplosionData : particleEmitters, debris, lighting and camera shake effects.

Inherit: GameBaseData

Description Defines the attributes of an Explosion: particleEmitters, debris, lighting and camera shake effects.

Fields
Point3F ExplosionData::camShakeAmp

Amplitude of camera shaking, defined in the “X Y Z” axes. Set any value to 0 to disable shaking in that axis.
float ExplosionData::camShakeDuration

Duration (in seconds) to shake the camera.

float ExplosionData::camShakeFalloff
Falloff value for the camera shake.

Point3F ExplosionData::camShakeFreq
Frequency of camera shaking, defined in the “X Y Z” axes.

float ExplosionData::camShakeRadius
Radial distance that a camera’s position must be within relative to the center of the explosion to be shaken.

DebrisData ExplosionData::Debris
List of DebrisData objects to spawn with this explosion.

int ExplosionData::debrisNum
Number of debris objects to create.

int ExplosionData::debrisNumVariance
Variance in the number of debris objects to create (must be from 0 - debrisNum).

float ExplosionData::debrisPhiMax
Maximum reference angle, from the vertical plane, to eject debris from.

float ExplosionData::debrisPhiMin
Minimum reference angle, from the vertical plane, to eject debris from.

float ExplosionData::debrisThetaMax
Maximum angle, from the horizontal plane, to eject debris from.

5.3. Console Reference 631

Torque 3D Documentation, Release 3.5.1

float ExplosionData::debrisThetaMin
Minimum angle, from the horizontal plane, to eject debris from.

float ExplosionData::debrisVelocity
Velocity to toss debris at.

float ExplosionData::debrisVelocityVariance
Variance in the debris initial velocity (must be gt = 0).

int ExplosionData::delayMS
Amount of time, in milliseconds, to delay the start of the explosion effect from the creation of the Explosion
object.

int ExplosionData::delayVariance
Variance, in milliseconds, of delayMS.

ParticleEmitterData ExplosionData::emitter[4]
List of additional ParticleEmitterData objects to spawn with this explosion.

Point3F ExplosionData::explosionScale
“X Y Z” scale factor applied to the explosionShape model at the start of the explosion.

filename ExplosionData::explosionShape
Optional DTS or DAE shape to place at the center of the explosion. The ambient animation of this model will
be played automatically at the start of the explosion.

bool ExplosionData::faceViewer
Controls whether the visual effects of the explosion always face the camera.

int ExplosionData::lifetimeMS
Lifetime, in milliseconds, of the Explosion object.

int ExplosionData::lifetimeVariance
Variance, in milliseconds, of the lifetimeMS of the Explosion object.

float ExplosionData::lightEndBrightness
Final brightness of the PointLight created by this explosion.

ColorF ExplosionData::lightEndColor
Final color of the PointLight created by this explosion.

float ExplosionData::lightEndRadius
Final radius of the PointLight created by this explosion.

float ExplosionData::lightNormalOffset
Distance (in the explosion normal direction) of the PointLight position from the explosion center.

float ExplosionData::lightStartBrightness
Initial brightness of the PointLight created by this explosion. Brightness is linearly interpolated from lightStart-
Brightness to lightEndBrightness over the lifetime of the explosion.

ColorF ExplosionData::lightStartColor
Initial color of the PointLight created by this explosion. Color is linearly interpolated from lightStartColor to
lightEndColor over the lifetime of the explosion.

float ExplosionData::lightStartRadius
Initial radius of the PointLight created by this explosion. Radius is linearly interpolated from lightStartRadius
to lightEndRadius over the lifetime of the explosion.

float ExplosionData::offset
Offset distance (in a random direction) of the center of the explosion from the Explosion object position. Most
often used to create some variance in position for subExplosion effects.

632 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int ExplosionData::particleDensity
Density of the particle cloud created at the start of the explosion.

ParticleEmitterData ExplosionData::ParticleEmitter
Emitter used to generate a cloud of particles at the start of the explosion. Explosions can generate two different
particle effects. The first is a single burst of particles at the start of the explosion emitted in a spherical cloud
using particleEmitter. The second effect spawns the list of ParticleEmitters given by the emitter[] field. These
emitters generate particles in the normal way throughout the lifetime of the explosion.

float ExplosionData::particleRadius
Radial distance from the explosion center at which cloud particles are emitted.

float ExplosionData::playSpeed
Time scale at which to play the explosionShape ambient sequence.

bool ExplosionData::shakeCamera
Controls whether the camera shakes during this explosion.

Point3F ExplosionData::sizes[4]
“X Y Z” size keyframes used to scale the explosionShape model. The explosionShape (if defined) will be scaled
using the times/sizes keyframes over the lifetime of the explosion.

SFXTrack ExplosionData::soundProfile
Non-looping sound effect that will be played at the start of the explosion.

ExplosionData ExplosionData::subExplosion[5]
List of additional ExplosionData objects to create at the start of the explosion.

float ExplosionData::times[4]
Time keyframes used to scale the explosionShape model. Values should be in increasing order from 0.0 - 1.0,
and correspond to the life of the Explosion where 0 is the beginning and 1 is the end of the explosion lifetime.

ForestWindEmitter Object responsible for simulating wind in a level.

Inherit: SceneObject

Description When placed in the level, a ForestWindEmitter will cause tree branches to bend and sway, leaves to
flutter, and create vertical bending on the tree’s trunk.

Example:

// The following is a full declaration of a wind emitternewForestWindEmitter()
{

position = "497.739 765.821 102.395";
windEnabled = "1";
radialEmitter = "1";
strength = "1";
radius = "3";
gustStrength = "0.5";
gustFrequency = "1";
gustYawAngle = "10";
gustYawFrequency = "4";
gustWobbleStrength = "2";
turbulenceStrength = "1";
turbulenceFrequency = "2";
hasMount = "0";
scale = "3 3 3";
canSave = "1";
canSaveDynamicFields = "1";

5.3. Console Reference 633

Torque 3D Documentation, Release 3.5.1

rotation = "1 0 0 0";
};

Methods
void ForestWindEmitter::attachToObject(int objectID)

Mounts the wind emitter to another scene object.

Parameters objectID – Unique ID of the object wind emitter should attach to

Example:

// Wind emitter previously created and named %windEmitter// Going to attach it to the player, making him a walking wind storm
%windEmitter.attachToObject(%player);

Fields
float ForestWindEmitter::gustFrequency

The frequency of gusting in seconds.
float ForestWindEmitter::gustStrength

The maximum strength of a gust.

float ForestWindEmitter::gustWobbleStrength
The amount of random wobble added to gust and turbulence vectors.

float ForestWindEmitter::gustYawAngle
The amount of degrees the wind direction can drift (both positive and negative).

float ForestWindEmitter::gustYawFrequency
The frequency of wind yaw drift, in seconds.

bool ForestWindEmitter::hasMount
Determines if the emitter is mounted to another object.

bool ForestWindEmitter::radialEmitter
Determines if the emitter is a global direction or local radial emitter.

float ForestWindEmitter::radius
The radius of the emitter for local radial emitters.

float ForestWindEmitter::strength
The strength of the wind force.

float ForestWindEmitter::turbulenceFrequency
The frequency of gust turbulence, in seconds.

float ForestWindEmitter::turbulenceStrength
The strength of gust turbulence.

bool ForestWindEmitter::windEnabled
Determines if the emitter will be counted in wind calculations.

LightAnimData A datablock which defines and performs light animation, such as rotation, brightness fade, and
colorization.

Inherit: SimDataBlock

634 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description A datablock which defines and performs light animation, such as rotation, brightness fade, and col-
orization.

Example:

datablock LightAnimData(SubtlePulseLightAnim)
{

brightnessA = 0.5;
brightnessZ = 1;
brightnessPeriod = 1;
brightnessKeys = "aza";
brightnessSmooth = true;

};

Fields
float LightAnimData::brightnessA

The value of the A key in the keyframe sequence.
string LightAnimData::brightnessKeys

The keyframe sequence encoded into a string where characters from A to Z define a position between the two
animation values.

float LightAnimData::brightnessPeriod
The animation time for keyframe sequence.

bool LightAnimData::brightnessSmooth
If true the transition between keyframes will be smooth.

float LightAnimData::brightnessZ
The value of the Z key in the keyframe sequence.

float LightAnimData::colorA[3]
The value of the A key in the keyframe sequence.

string LightAnimData::colorKeys[3]
The keyframe sequence encoded into a string where characters from A to Z define a position between the two
animation values.

float LightAnimData::colorPeriod[3]
The animation time for keyframe sequence.

bool LightAnimData::colorSmooth[3]
If true the transition between keyframes will be smooth.

float LightAnimData::colorZ[3]
The value of the Z key in the keyframe sequence.

float LightAnimData::offsetA[3]
The value of the A key in the keyframe sequence.

string LightAnimData::offsetKeys[3]
The keyframe sequence encoded into a string where characters from A to Z define a position between the two
animation values.

float LightAnimData::offsetPeriod[3]
The animation time for keyframe sequence.

bool LightAnimData::offsetSmooth[3]
If true the transition between keyframes will be smooth.

float LightAnimData::OffsetZ[3]
The value of the Z key in the keyframe sequence.

5.3. Console Reference 635

Torque 3D Documentation, Release 3.5.1

float LightAnimData::rotA[3]
The value of the A key in the keyframe sequence.

string LightAnimData::rotKeys[3]
The keyframe sequence encoded into a string where characters from A to Z define a position between the two
animation values.

float LightAnimData::rotPeriod[3]
The animation time for keyframe sequence.

bool LightAnimData::rotSmooth[3]
If true the transition between keyframes will be smooth.

float LightAnimData::rotZ[3]
The value of the Z key in the keyframe sequence.

Lightning An emitter for lightning bolts.

Inherit: GameBase

Description An emitter for lightning bolts.

Lightning strike events are created on the server and transmitted to all clients to render the bolt. The strike may
be followed by a random thunder sound. Player or Vehicle objects within the Lightning strike range can be hit and
damaged by bolts.

Methods
void Lightning::applyDamage(Point3F hitPosition, Point3F hitNormal, SceneObject hitObject)

Informs an object that it was hit by a lightning bolt and needs to take damage.

Parameters

• hitPosition – World position hit by the lightning bolt.

• hitNormal – Surface normal at hitPosition.

• hitObject – Player or Vehicle object that was hit.

Example:

function Lightning::applyDamage(%this, %hitPosition, %hitNormal, %hitObject)
{

// apply damage to the player
%hitObject.applyDamage(25);

}

void Lightning::strikeObject(int id)
Creates a LightningStrikeEvent which strikes a specific object.

void Lightning::strikeRandomPoint()
Creates a LightningStrikeEvent which attempts to strike and damage a random object in range of the Lightning
object.

Example:

// Generate a damaging lightning strike effect on all clients
%lightning.strikeRandomPoint();

void Lightning::warningFlashes()
Creates a LightningStrikeEvent that triggers harmless lightning bolts on all clients. No objects will be damaged
by these bolts.

636 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// Generate a harmless lightning strike effect on all clients
%lightning.warningFlashes();

Fields
float Lightning::boltStartRadius

Radial distance from the center of the Lightning object for the start point of the bolt. The actual start point will
be a random point within this radius.

float Lightning::chanceToHitTarget
Percentage chance (0-1) that a given lightning bolt will hit something.

ColorF Lightning::color
Color to blend the strike texture with.

ColorF Lightning::fadeColor
Color to blend the strike texture with when the bolt is fading away. Bolts fade away automatically shortly after
the strike occurs.

float Lightning::strikeRadius
Horizontal size (XY plane) of the search box used to find and damage Player or Vehicle objects within range of
the strike. Only the object at highest altitude with a clear line of sight to the bolt will be hit.

int Lightning::strikesPerMinute
Number of lightning strikes to perform per minute. Automatically invokes strikeRandomPoint() at regular in-
tervals.

float Lightning::strikeWidth
Width of a lightning bolt.

bool Lightning::useFog
Controls whether lightning bolts are affected by fog when they are rendered.

LightningData emitter object.

Inherit: GameBaseData

Description Common data for a Lightning emitter object.

Fields
SFXTrack LightningData::strikeSound

Sound profile to play when a lightning strike occurs.
string LightningData::strikeTextures[8]

List of textures to use to render lightning strikes.

SFXTrack LightningData::thunderSounds[8]
List of thunder sound effects to play. A random one of these sounds will be played shortly after each strike
occurs.

LightningStrikeEvent Network event that triggers a lightning strike on the client when it is received. Description
———–

Network event that triggers a lightning strike on the client when it is received.

This event is sent to all clients when the warningFlashes(), strikeRandomPoint() or strikeObject() methods are invoked
on the Lightning object on the server.

5.3. Console Reference 637

Torque 3D Documentation, Release 3.5.1

ParticleData Contains information for how specific particles should look and react including particle colors, particle
imagemap, acceleration value for individual particles and spin information.

Inherit: SimDataBlock

Description Contains information for how specific particles should look and react including particle colors, particle
imagemap, acceleration value for individual particles and spin information.

Example:

datablock ParticleData(GLWaterExpSmoke)
{

textureName = "art/shapes/particles/smoke";
dragCoefficient = 0.4;
gravityCoefficient = -0.25;
inheritedVelFactor = 0.025;
constantAcceleration = -1.1;
lifetimeMS = 1250;
lifetimeVarianceMS = 0;
useInvAlpha = false;
spinSpeed = 1;
spinRandomMin = -200.0;
spinRandomMax = 200.0;

colors[0] = "0.1 0.1 1.0 1.0";
colors[1] = "0.4 0.4 1.0 1.0";
colors[2] = "0.4 0.4 1.0 0.0";

sizes[0] = 2.0;
sizes[1] = 6.0;
sizes[2] = 2.0;

times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;

};

Methods
void ParticleData::reload()

Reloads this particle.

Example:

// Get the editors current particle
%particle = PE_ParticleEditor.currParticle

// Change a particle value
%particle.setFieldValue(%propertyField, %value);

// Reload it
%particle.reload();

Fields
bool ParticleData::animateTexture

If true, allow the particle texture to be an animated sprite.

638 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string ParticleData::animTexFrames
A list of frames and/or frame ranges to use for particle animation if animateTexture is true. Each frame token
must be separated by whitespace. A frame token must be a positive integer frame number or a range of frame
numbers separated with a ‘-‘. The range separator, ‘-‘, cannot have any whitspace around it. Ranges can be
specified to move through the frames in reverse as well as forward (eg. 19-14). Frame numbers exceeding the
number of tiles will wrap.

Example:

animTexFrames = "0-16 20 19 18 17 31-21";

string ParticleData::animTexName
Texture file to use for this particle if animateTexture is true. Deprecated. Use textureName instead.

Point2I ParticleData::animTexTiling
The number of frames, in rows and columns stored in textureName (when animateTexture is true). A maximum
of 256 frames can be stored in a single texture when using animTexTiling. Value should be “NumColumns
NumRows”, for example “4 4”.

ColorF ParticleData::colors[4]
Particle RGBA color keyframe values. The particle color will linearly interpolate between the color/time keys
over the lifetime of the particle.

float ParticleData::constantAcceleration
Constant acceleration to apply to this particle.

float ParticleData::dragCoefficient
Particle physics drag amount.

int ParticleData::framesPerSec
If animateTexture is true, this defines the frames per second of the sprite animation.

float ParticleData::gravityCoefficient
Strength of gravity on the particles.

float ParticleData::inheritedVelFactor
Amount of emitter velocity to add to particle initial velocity.

int ParticleData::lifetimeMS
Time in milliseconds before this particle is destroyed.

int ParticleData::lifetimeVarianceMS
Variance in lifetime of particle, from 0 - lifetimeMS.

float ParticleData::sizes[4]
Particle size keyframe values. The particle size will linearly interpolate between the size/time keys over the
lifetime of the particle.

float ParticleData::spinRandomMax
Maximum allowed spin speed of this particle, between spinRandomMin and 1000.

float ParticleData::spinRandomMin
Minimum allowed spin speed of this particle, between -1000 and spinRandomMax.

float ParticleData::spinSpeed
Speed at which to spin the particle.

Point2F ParticleData::textureCoords[4]
4 element array defining the UV coords into textureName to use for this particle. Coords should be set for the
first tile only when using animTexTiling; coordinates for other tiles will be calculated automatically. “0 0” is
top left and “1 1” is bottom right.

5.3. Console Reference 639

Torque 3D Documentation, Release 3.5.1

string ParticleData::textureName
Texture file to use for this particle.

float ParticleData::times[4]
Time keys used with the colors and sizes keyframes. Values are from 0.0 (particle creation) to 1.0 (end of
lifespace).

bool ParticleData::useInvAlpha
Controls how particles blend with the scene. If true, particles blend like ParticleBlendStyle NORMAL, if false,
blend like ParticleBlendStyle ADDITIVE.

float ParticleData::windCoefficient
Strength of wind on the particles.

ParticleEmitter This object is responsible for spawning particles.

Inherit: GameBase

Description This object is responsible for spawning particles.

This class is the main interface for creating particles - though it is usually only accessed from within another object
like ParticleEmitterNode or WheeledVehicle. If using this object class (via C++) directly, be aware that it does not
track changes in source axis or velocity over the course of a single update, so emitParticles should be called at a fairly
fine grain. The emitter will potentially track the last particle to be created into the next call to this function in order to
create a uniformly random time distribution of the particles.

If the object to which the emitter is attached is in motion, it should try to ensure that for call (n+1) to this function,
start is equal to the end from call (n). This will ensure a uniform spatial distribution.

ParticleEmitterData .

Inherit: GameBaseData

Description Defines particle emission properties such as ejection angle, period and velocity for a ParticleEmitter.

Example:

datablock ParticleEmitterData(GrenadeExpDustEmitter)
{

ejectionPeriodMS = 1;
periodVarianceMS = 0;
ejectionVelocity = 15;
velocityVariance = 0.0;
ejectionOffset = 0.0;
thetaMin = 85;
thetaMax = 85;
phiReferenceVel = 0;
phiVariance = 360;
overrideAdvance = false;
lifetimeMS = 200;
particles = "GrenadeExpDust";

};

Methods

640 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void ParticleEmitterData::reload()
Reloads the ParticleData datablocks and other fields used by this emitter.

Example:

// Get the editors current particle emitter
%emitter = PE_EmitterEditor.currEmitter

// Change a field value
%emitter.setFieldValue(%propertyField, %value);

// Reload this emitter
%emitter.reload();

Fields
Point3F ParticleEmitterData::alignDirection

The direction aligned particles should face, only valid if alignParticles is true.
bool ParticleEmitterData::alignParticles

If true, particles always face along the axis defined by alignDirection.

float ParticleEmitterData::ambientFactor
Used to generate the final particle color by controlling interpolation between the particle color and the particle
color multiplied by the ambient light color.

ParticleBlendStyle ParticleEmitterData::blendStyle
String value that controls how emitted particles blend with the scene.

float ParticleEmitterData::ejectionOffset
Distance along ejection Z axis from which to eject particles.

float ParticleEmitterData::ejectionOffsetVariance
Distance Padding along ejection Z axis from which to eject particles.

int ParticleEmitterData::ejectionPeriodMS
Time (in milliseconds) between each particle ejection.

float ParticleEmitterData::ejectionVelocity
Particle ejection velocity.

bool ParticleEmitterData::highResOnly
This particle system should not use the mixed-resolution renderer. If your particle system has large amounts of
overdraw, consider disabling this option.

int ParticleEmitterData::lifetimeMS
Lifetime of emitted particles (in milliseconds).

int ParticleEmitterData::lifetimeVarianceMS
Variance in particle lifetime from 0 - lifetimeMS.

bool ParticleEmitterData::orientOnVelocity
If true, particles will be oriented to face in the direction they are moving.

bool ParticleEmitterData::orientParticles
If true, Particles will always face the camera.

bool ParticleEmitterData::overrideAdvance
If false, particles emitted in the same frame have their positions adjusted. If true, adjustment is skipped and
particles will clump together.

5.3. Console Reference 641

Torque 3D Documentation, Release 3.5.1

string ParticleEmitterData::particles
List of space or TAB delimited ParticleData datablock names. A random one of these datablocks is selected
each time a particle is emitted.

int ParticleEmitterData::periodVarianceMS
Variance in ejection period, from 1 - ejectionPeriodMS.

float ParticleEmitterData::phiReferenceVel
Reference angle, from the vertical plane, to eject particles from.

float ParticleEmitterData::phiVariance
Variance from the reference angle, from 0 - 360.

bool ParticleEmitterData::renderReflection
Controls whether particles are rendered onto reflective surfaces like water.

bool ParticleEmitterData::reverseOrder
If true, reverses the normal draw order of particles. Particles are normally drawn from newest to oldest, or in Z
order (furthest first) if sortParticles is true. Setting this field to true will reverse that order: oldest first, or nearest
first if sortParticles is true.

float ParticleEmitterData::softnessDistance
For soft particles, the distance (in meters) where particles will be faded based on the difference in depth between
the particle and the scene geometry.

bool ParticleEmitterData::sortParticles
If true, particles are sorted furthest to nearest.

string ParticleEmitterData::textureName
Optional texture to override ParticleData::textureName .

float ParticleEmitterData::thetaMax
Maximum angle, from the horizontal plane, to eject particles from.

float ParticleEmitterData::thetaMin
Minimum angle, from the horizontal plane, to eject from.

bool ParticleEmitterData::useEmitterColors
If true, use emitter specified colors instead of datablock colors. Useful for ShapeBase dust and WheeledVehicle
wheel particle emitters that use the current material to control particle color.

bool ParticleEmitterData::useEmitterSizes
If true, use emitter specified sizes instead of datablock sizes. Useful for Debris particle emitters that control the
particle size.

float ParticleEmitterData::velocityVariance
Variance for ejection velocity, from 0 - ejectionVelocity.

ParticleEmitterNode A particle emitter object that can be positioned in the world and dynamically enabled or
disabled.

Inherit: GameBase

Description A particle emitter object that can be positioned in the world and dynamically enabled or disabled.

Example:

datablock ParticleEmitterNodeData(SimpleEmitterNodeData)
{

timeMultiple = 1.0;
};

642 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%emitter = newParticleEmitterNode()
{

datablock = SimpleEmitterNodeData;
active = true;
emitter = FireEmitterData;
velocity = 3.5;

};

// Dynamically change emitter datablock
%emitter.setEmitterDataBlock(DustEmitterData);

Methods
void ParticleEmitterNode::setActive(bool active)

Turns the emitter on or off.

Parameters active – New emitter state
void ParticleEmitterNode::setEmitterDataBlock(ParticleEmitterData emitterDatablock)

Assigns the datablock for this emitter node.

Parameters emitterDatablock – ParticleEmitterData datablock to assign

Example:

// Assign a new emitter datablock
%emitter.setEmitterDatablock(%emitterDatablock);

Fields
bool ParticleEmitterNode::active

Controls whether particles are emitted from this node.
ParticleEmitterData ParticleEmitterNode::emitter

Datablock to use when emitting particles.

float ParticleEmitterNode::velocity
Velocity to use when emitting particles (in the direction of the ParticleEmitterNode object’s up (Z) axis).

ParticleEmitterNodeData .

Inherit: GameBaseData

Description Contains additional data to be associated with a ParticleEmitterNode.

Fields
float ParticleEmitterNodeData::timeMultiple

Time multiplier for particle emitter nodes. Increasing timeMultiple is like running the emitter at a faster rate -
single-shot emitters will complete in a shorter time, and continuous emitters will generate particles more quickly.
Valid range is 0.01 - 100.

Precipitation Defines a precipitation based storm (rain, snow, etc).

Inherit: GameBase

5.3. Console Reference 643

Torque 3D Documentation, Release 3.5.1

Description Defines a precipitation based storm (rain, snow, etc).

The Precipitation effect works by creating many ‘drops’ within a fixed size box. This box can be configured to move
around with the camera (to simulate level-wide precipitation), or to remain in a fixed position (to simulate localized
precipitation). When followCam is true, the box containing the droplets can be thought of as centered on the camera
then pushed slightly forward in the direction the camera is facing so most of the box is in front of the camera (allowing
more drops to be visible on screen at once).

The effect can also be configured to create a small ‘splash’ whenever a drop hits another world object.

Example:

// The following is added to a level file (.mis) by the World EditornewPrecipitation(TheRain)
{

dropSize = "0.5";
splashSize = "0.5";
splashMS = "250";
animateSplashes = "1";
dropAnimateMS = "0";
fadeDist = "0";
fadeDistEnd = "0";
useTrueBillboards = "0";
useLighting = "0";
glowIntensity = "0 0 0 0";
reflect = "0";
rotateWithCamVel = "1";
doCollision = "1";
hitPlayers = "0";
hitVehicles = "0";
followCam = "1";
useWind = "0";
minSpeed = "1.5";
maxSpeed = "2";
minMass = "0.75";
maxMass = "0.85";
useTurbulence = "0";
maxTurbulence = "0.1";
turbulenceSpeed = "0.2";
numDrops = "1024";
boxWidth = "200";
boxHeight = "100";
dataBlock = "HeavyRain";

};

Methods
void Precipitation::modifyStorm(float percentage, float seconds)

Smoothly change the maximum number of drops in the effect (from current value to numDrops * percentage
). This method can be used to simulate a storm building or fading in intensity as the number of drops in the
Precipitation box changes.

Parameters

• percentage – New maximum number of drops value (as a percentage of numDrops).
Valid range is 0-1.

• seconds – Length of time (in seconds) over which to increase the drops percentage value.
Set to 0 to change instantly.

Example:

644 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%percentage = 0.5; // The percentage, from 0 to 1, of the maximum drops to display
%seconds = 5.0; // The length of time over which to make the change.
%precipitation.modifyStorm(%percentage, %seconds);

void Precipitation::setPercentage(float percentage)
Sets the maximum number of drops in the effect, as a percentage of numDrops . The change occurs instantly
(use modifyStorm() to change the number of drops over a period of time.

Parameters percentage – New maximum number of drops value (as a percentage of numDrops).
Valid range is 0-1.

Example:

%percentage = 0.5; // The percentage, from 0 to 1, of the maximum drops to display
%precipitation.setPercentage(%percentage);

void Precipitation::setTurbulence(float max, float speed, float seconds)
Smoothly change the turbulence parameters over a period of time.

Parameters

• max – New maxTurbulence value. Set to 0 to disable turbulence.

• speed – New turbulenceSpeed value.

• seconds – Length of time (in seconds) over which to interpolate the turbulence settings.
Set to 0 to change instantly.

Example:

%turbulence = 0.5; // Set the new turbulence value. Set to 0 to disable turbulence.
%speed = 5.0; // The new speed of the turbulance effect.
%seconds = 5.0; // The length of time over which to make the change.
%precipitation.setTurbulence(%turbulence, %speed, %seconds);

Fields
bool Precipitation::animateSplashes

Set to true to enable splash animations when drops collide with other surfaces.
float Precipitation::boxHeight

Height (vertical dimension) of the precipitation box.

float Precipitation::boxWidth
Width and depth (horizontal dimensions) of the precipitation box.

bool Precipitation::doCollision
Allow drops to collide with world objects. If animateSplashes is true, drops that collide with another object will
produce a simple splash animation.

int Precipitation::dropAnimateMS
Length (in milliseconds) to display each drop frame. If dropAnimateMS lt = 0, drops select a single random
frame at creation that does not change throughout the drop’s lifetime. If dropAnimateMS gt 0, each drop cycles
through the the available frames in the drop texture at the given rate.

float Precipitation::dropSize
Size of each drop of precipitation. This will scale the texture.

float Precipitation::fadeDist
The distance at which drops begin to fade out.

float Precipitation::fadeDistEnd
The distance at which drops are completely faded out.

5.3. Console Reference 645

Torque 3D Documentation, Release 3.5.1

bool Precipitation::followCam
Controls whether the Precipitation system follows the camera or remains where it is first placed in the scene.
Set to true to make it seem like it is raining everywhere in the level (ie. the Player will always be in the rain).
Set to false to have a single area affected by rain (ie. the Player can move in and out of the rainy area).

ColorF Precipitation::glowIntensity
Set to 0 to disable the glow or or use it to control the intensity of each channel.

bool Precipitation::hitPlayers
Allow drops to collide with Player objects; only valid if doCollision is true.

bool Precipitation::hitVehicles
Allow drops to collide with Vehicle objects; only valid if doCollision is true.

float Precipitation::maxMass
Maximum mass of a drop. Drop mass determines how strongly the drop is affected by wind and turbulence. On
creation, the drop will be assigned a random speed between minMass and minMass .

float Precipitation::maxSpeed
Maximum speed at which a drop will fall. On creation, the drop will be assigned a random speed between
minSpeed and maxSpeed .

float Precipitation::maxTurbulence
Radius at which precipitation drops spiral when turbulence is enabled.

float Precipitation::minMass
Minimum mass of a drop. Drop mass determines how strongly the drop is affected by wind and turbulence. On
creation, the drop will be assigned a random speed between minMass and minMass .

float Precipitation::minSpeed
Minimum speed at which a drop will fall. On creation, the drop will be assigned a random speed between
minSpeed and maxSpeed .

int Precipitation::numDrops
Maximum number of drops allowed to exist in the precipitation box at any one time. The actual number of drops
in the effect depends on the current percentage, which can change over time using modifyStorm() .

bool Precipitation::reflect
This enables precipitation rendering during reflection passes.

bool Precipitation::rotateWithCamVel
Set to true to include the camera velocity when calculating drop rotation speed.

int Precipitation::splashMS
Lifetime of splashes in milliseconds.

float Precipitation::splashSize
Size of each splash animation when a drop collides with another surface.

float Precipitation::turbulenceSpeed
Speed at which precipitation drops spiral when turbulence is enabled.

bool Precipitation::useLighting
Set to true to enable shading of the drops and splashes by the sun color.

bool Precipitation::useTrueBillboards
Set to true to make drops true (non axis-aligned) billboards.

bool Precipitation::useTurbulence
Check to enable turbulence. This causes precipitation drops to spiral while falling.

bool Precipitation::useWind
Controls whether drops are affected by wind.

646 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

PrecipitationData Defines the droplets used in a storm (raindrops, snowflakes, etc).

Inherit: GameBaseData

Description Defines the droplets used in a storm (raindrops, snowflakes, etc).

Example:

datablock PrecipitationData(HeavyRain)
{

soundProfile = "HeavyRainSound";
dropTexture = "art/environment/precipitation/rain";
splashTexture = "art/environment/precipitation/water_splash";
dropsPerSide = 4;
splashesPerSide = 2;

};

Fields
string PrecipitationData::dropShader

The name of the shader used for raindrops.
int PrecipitationData::dropsPerSide

How many rows and columns are in the raindrop texture. For example, if the texture has 16 raindrops arranged
in a grid, this field should be set to 4.

filename PrecipitationData::dropTexture
Texture filename for drop particles. The drop texture can contain several different drop sub-textures arranged in
a grid. There must be the same number of rows as columns. A random frame will be chosen for each drop.

SFXTrack PrecipitationData::soundProfile
Looping SFXProfile effect to play while Precipitation is active.

int PrecipitationData::splashesPerSide
How many rows and columns are in the splash texture. For example, if the texture has 9 splashes arranged in a
grid, this field should be set to 3.

string PrecipitationData::splashShader
The name of the shader used for splashes.

filename PrecipitationData::splashTexture
Texture filename for splash particles. The splash texture can contain several different splash sub-textures ar-
ranged in a grid. There must be the same number of rows as columns. A random frame will be chosen for each
splash.

Splash effect.

Inherit: GameBase

Description Manages the ring used for a Splash effect.

SplashData is created from.

Inherit: GameBaseData

Description Acts as the physical point in space in white a Splash is created from.

5.3. Console Reference 647

Torque 3D Documentation, Release 3.5.1

Fields
float SplashData::acceleration

Constant acceleration value to place upon the splash effect.
ColorF SplashData::colors[4]

Color values to set the splash effect, rgba. Up to 4 allowed. Will transition through colors based on values set in
the times value. Example: colors[0] = “0.6 1.0 1.0 0.5”.

int SplashData::delayMS
Time to delay, in milliseconds, before actually starting this effect.

int SplashData::delayVariance
Time variance for delayMS.

float SplashData::ejectionAngle
Rotational angle to create a splash ring.

float SplashData::ejectionFreq
Frequency in which to emit splash rings.

ParticleEmitterData SplashData::emitter[3]
List of particle emitters to create at the point of this Splash effect.

ExplosionData SplashData::Explosion
ExplosionData object to create at the creation position of this splash effect.

float SplashData::height
Height for the splash to reach.

int SplashData::lifetimeMS
Lifetime for this effect, in milliseconds.

int SplashData::lifetimeVariance
Time variance for lifetimeMS.

int SplashData::numSegments
Number of ejection points in the splash ring.

float SplashData::ringLifetime
Lifetime, in milliseconds, for a splash ring.

Point3F SplashData::scale
The scale of this splashing effect, defined as the F32 points X, Y, Z.

SFXProfile SplashData::soundProfile
SFXProfile effect to play.

float SplashData::startRadius
Starting radius size of a splash ring.

float SplashData::texFactor
Factor in which to apply the texture to the splash ring, 0.0f - 1.0f.

filename SplashData::texture[2]
Imagemap file to use as the texture for the splash effect.

float SplashData::texWrap
Amount to wrap the texture around the splash ring, 0.0f - 1.0f.

float SplashData::times[4]
Times to transition through the splash effect. Up to 4 allowed. Values are 0.0 - 1.0, and corrispond to the life of
the particle where 0 is first created and 1 is end of lifespace.

648 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float SplashData::velocity
Velocity for the splash effect to travel.

float SplashData::width
Width for the X and Y coordinates to create this effect within.

Enumeration

enum ParticleBlendStyle
The type of visual blending style to apply to the particles.

Parameters

• NORMAL – No blending style.

• ADDITIVE – Adds the color of the pixel to the frame buffer with full alpha for each pixel.

• SUBTRACTIVE – Subtractive Blending. Reverses the color model, causing dark colors to
have a stronger visual effect.

• PREMULTALPHA – Color blends with the colors of the imagemap rather than the alpha.

Functions

float calcExplosionCoverage(Point3F pos, int id, int covMask)
Calculates how much an explosion effects a specific object. Use this to determine how much damage to apply to
objects based on their distance from the explosion’s center point, and whether the explosion is blocked by other
objects.

Parameters

• pos – Center position of the explosion.

• id – Id of the object of which to check coverage.

• covMask – Mask of object types that may block the explosion.

Returns Coverage value from 0 (not affected by the explosion) to 1 (fully affected)

Example:

// Get the position of the explosion.
%position = %explosion.getPosition();

// Set a list of TypeMasks (defined in gameFunctioncs.cpp), seperated by the | character.
%TypeMasks = $TypeMasks::StaticObjectType | $TypeMasks::ItemObjectType

// Acquire the damage value from 0.0f - 1.0f.
%coverage = calcExplosionCoverage(%position, %sceneObject, %TypeMasks);

// Apply damage to object
%sceneObject.applyDamage(%coverage * 20);

Decals

Decals are non-SimObject derived objects that are stored and loaded separately from the normal mission file.

The DecalManager handles all aspects of decal management including loading, creation, saving, and automatically
deleting decals that have exceeded their lifeSpan.

5.3. Console Reference 649

Torque 3D Documentation, Release 3.5.1

The static decals associated with a mission are normally loaded immediately after the mission itself has loaded as
shown below.

Example:

// Load the static mission decals.
decalManagerLoad(%missionName @ ".decals");

Classes

Functions

int decalManagerAddDecal(Point3F position, Point3F normal, float rot, float scale, DecalData decal-
Data, bool isImmortal)

Adds a new decal to the decal manager.

Parameters

• position – World position for the decal.

• normal – Decal normal vector (if the decal was a tire lying flat on a surface, this is the
vector pointing in the direction of the axle).

• rot – Angle (in radians) to rotate this decal around its normal vector.

• scale – Scale factor applied to the decal.

• decalData – DecalData datablock to use for the new decal.

• isImmortal – Whether or not this decal is immortal. If immortal, it does not expire
automatically and must be removed explicitly.

Returns Returns the ID of the new Decal object or -1 on failure.

Example:

// Specify the decal position
%position = "1.0 1.0 1.0";

// Specify the up vector
%normal = "0.0 0.0 1.0";

// Add the new decal.
%decalObj = decalManagerAddDecal(%position, %normal, 0.5, 0.35, ScorchBigDecal, false);

void decalManagerClear()
Removes all decals currently loaded in the decal manager.

Example:

// Tell the decal manager to remove all existing decals.decalManagerClear();

bool decalManagerDirty()
Returns whether the decal manager has unsaved modifications.

Returns True if the decal manager has unsaved modifications, false if everything has been saved.

Example:

650 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Ask the decal manager if it has unsaved modifications.
%hasUnsavedModifications = decalManagerDirty();

bool decalManagerLoad(string fileName)
Clears existing decals and replaces them with decals loaded from the specified file.

Parameters fileName – Filename to load the decals from.

Returns True if the decal manager was able to load the requested file, false if it could not.

Example:

// Set the filename to load the decals from.
%fileName = "./missionDecals.mis.decals";
// Inform the decal manager to load the decals from the entered filename.decalManagerLoad(%fileName);

bool decalManagerRemoveDecal(int decalID)
Remove specified decal from the scene.

Parameters decalID – ID of the decal to remove.

Returns Returns true if successful, false if decal ID not found.

Example:

// Specify a decal ID to be removed
%decalID = 1;

// Tell the decal manager to remove the specified decal ID.
decalManagerRemoveDecal(%decalId)

void decalManagerSave(String decalSaveFile)
Saves the decals for the active mission in the entered filename.

Parameters decalSaveFile – Filename to save the decals to.

Example:

// Set the filename to save the decals in. If no filename is set, then the
// decals will default to <activeMissionName>.mis.decals
%fileName = "./missionDecals.mis.decals";
// Inform the decal manager to save the decals for the active mission.
decalManagerSave(%fileName);

Variables

bool $Decals::debugRender
If true, the decal spheres will be visualized when in the editor.

bool $pref::Decals::enabled
Controls whether decals are rendered.

float $pref::Decals::lifeTimeScale
Lifetime that decals will last after being created in the world. Deprecated. Use DecalData::lifeSpan instead.

bool $Decals::poolBuffers
If true, will merge all PrimitiveBuffers and VertexBuffers into a pair of pools before clearing them at the end of
a frame. If false, will just clear them at the end of a frame.

float $Decals::sphereDistanceTolerance
The distance at which the decal system will start breaking up decal spheres when adding new decals.

5.3. Console Reference 651

Torque 3D Documentation, Release 3.5.1

float $Decals::sphereRadiusTolerance
The radius beyond which the decal system will start breaking up decal spheres when adding new decals.

AI

Classes and functions related to artificial intelligence for Torque 3D.

Classes

AIClient Simulated client driven by AI commands.

Inherit: AIConnection

Description This object is derived from the AIConnection class. It introduces its own Player object to solidify the
purpose of this class: Simulated client connecting as a player

To get more specific, if you want a strong alternative to AIPlayer (and wish to make use of the AIConnection structure),
consider AIClient. AIClient inherits from AIConnection, contains quite a bit of functionality you will find in AIPlayer,
and has its own Player object.

Fields
string AIClient::getAimLocation

ai.getAimLocation();
string AIClient::getLocation

ai.getLocation();

string AIClient::getMoveDestination
ai.getMoveDestination();

int AIClient::getTargetObject
ai.getTargetObject();

void AIClient::missionCycleCleanup
ai.missionCycleCleanup();

void AIClient::move
ai.move();

void AIClient::moveForward
ai.moveForward();

void AIClient::setAimLocation
ai.setAimLocation(x y z);

void AIClient::setMoveDestination
ai.setMoveDestination(x y z);

void AIClient::setMoveSpeed
ai.setMoveSpeed(float);

void AIClient::setTargetObject
ai.setTargetObject(obj);

void AIClient::stop
ai.stop();

652 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

AIConnection Special client connection driven by an AI, rather than a human.

Inherit: GameConnection

Description Unlike other net connections, AIConnection is intended to run unmanned. Rather than gathering input
from a human using a device, move events, triggers, and look events are driven through functions like AIConnec-
tion::setMove.

In addition to having its own set of functions for managing client move events, a member variable inherited by Game-
Connection is toggle: mAIControlled. This is useful for a server to determine if a connection is AI driven via the
function GameConnection::isAIControlled

AIConnection is an alternative to manually creating an AI driven game object. When you want the server to manage
AI, you will create a specific one from script using a class like AIPlayer. If you do not want the server managing the
AI and wish to simulate a complete client connection, you will use AIConnection

.To get more specific, if you want a strong alternative to AIPlayer (and wish to make use of the AIConnection structure),
consider AIClient. AIClient inherits from AIConnection, contains quite a bit of functionality you will find in AIPlayer,
and has its own Player object.

Example:

// Create a new AI client connection
%botConnection = aiConnect("MasterBlaster" @ %i, -1, 0.5, false, "SDF", 1.0);

// In another area of the code, you can locate this and any other AIConnections
// using the isAIControlled function
for(%i = 0; %i < ClientGroup.getCount(); %i++)
{

%client = ClientGroup.getObject(%i);
if(%client.isAIControlled())
{

// React to this AI controlled client
}

}

Methods
float AIConnection::getMove(string field)

Get the given field of a move.

Parameters field – One of {‘x’,’y’,’z’,’yaw’,’pitch’,’roll’}

Returns The requested field on the current move.
bool AIConnection::getTrigger(int trigger)

Is the given trigger set?

void AIConnection::setFreeLook(bool isFreeLook)
Enable/disable freelook on the current move.

void AIConnection::setMove(string field, float value)
Set a field on the current move.

Parameters

• field – One of {‘x’,’y’,’z’,’yaw’,’pitch’,’roll’}

• value – Value to set field to.

void AIConnection::setTrigger(int trigger, bool set)
Set a trigger.

5.3. Console Reference 653

Torque 3D Documentation, Release 3.5.1

Fields
string AIConnection::getAddress
bool AIConnection::getFreeLook

getFreeLook() Is freelook on for the current move?

NavMesh

Inherit: SceneObject

Description UNDOCUMENTED!

Methods
bool NavMesh::build(bool background, bool save)

Create a Recast nav mesh.
void NavMesh::buildTiles(Box3F box)

Rebuild the tiles overlapped by the input box.

void NavMesh::cancelBuild()
Cancel the current NavMesh build.

bool NavMesh::load()
Load this NavMesh from its file.

void NavMesh::save()
Save this NavMesh to its file.

Fields
float NavMesh::actorClimb

Maximum climbing height of an actor.
float NavMesh::actorHeight

Height of an actor.

float NavMesh::actorRadius
Radius of an actor.

bool NavMesh::alwaysRender
Display this NavMesh even outside the editor.

int NavMesh::borderSize
Size of the non-walkable border around the navigation mesh (in voxels).

float NavMesh::cellHeight
Height of a voxel.

float NavMesh::cellSize
Length/width of a voxel.

float NavMesh::detailSampleDist
Sets the sampling distance to use when generating the detail mesh.

float NavMesh::detailSampleError
The maximum distance the detail mesh surface should deviate from heightfield data.

string NavMesh::fileName
Name of the data file to store this navmesh in (relative to engine executable).

int NavMesh::maxEdgeLen
The maximum allowed length for contour edges along the border of the mesh.

654 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int NavMesh::maxPolysPerTile
The maximum number of polygons allowed in a tile.

int NavMesh::mergeRegionArea
Any regions with a span count smaller than this value will, if possible, be merged with larger regions.

int NavMesh::minRegionArea
The minimum number of cells allowed to form isolated island areas.

float NavMesh::simplificationError
The maximum distance a simplfied contour’s border edges should deviate from the original raw contour.

float NavMesh::tileSize
The horizontal size of tiles.

float NavMesh::walkableSlope
Maximum walkable slope in degrees.

NavPath

Inherit: SceneObject

Description UNDOCUMENTED!

Methods
int NavPath::getCount()

Return the number of nodes in this path.
float NavPath::getLength()

Get the length of this path in Torque units (i.e. the total distance it covers).

Point3F NavPath::getNode(int idx)
Get a specified node along the path.

bool NavPath::replan()
Find a path using the already-specified path properties.

Fields
bool NavPath::alwaysRender

Render this NavPath even when not selected.
Point3F NavPath::from

World location this path starts at.

bool NavPath::isLooping
Does this path loop?

NavMesh NavPath::mesh
NavMesh object this path travels within.

Point3F NavPath::to
World location this path should end at.

Path NavPath::waypoints
Path containing waypoints for this NavPath to visit.

bool NavPath::xray
Render this NavPath through other objects.

5.3. Console Reference 655

Torque 3D Documentation, Release 3.5.1

Functions

int aiConnect(...)
Creates a new AIConnection , and passes arguments to its onConnect script callback.

Returns AIConnection

Physics

Objects and functions related to Torque 3D’s physics layer.

Classes

PhysicsDebris Represents one or more rigid bodies defined in a single mesh file with a limited
lifetime.

Inherit: GameBase

Description A PhysicsDebris object can be viewed as a single system capable of generating multiple
PhysicsBodies as debris when triggered. Vaguely similar to how a ParticleEmitter is capable of creating
Particles, but isn’t a particle in itself. After it’s lifetime has elapsed, the object will be deleted.

PhysicsDebris loads a standard .DAE or .DTS file and creates a rigid body for each defined collision node.

For collision nodes to work correctly, they must be setup as follows:

• Visible mesh nodes are siblings of the collision node under a common parent dummy node.

• Collision node is a child of its visible mesh node.

Colmesh type nodes are NOT supported; physx and most standard rigid body simulations do not support
arbitrary triangle meshs for dynamics do to the computational expense.

Therefore, collision nodes must be one of the following:

• Colbox

• Colsphere

• Colcapsule

• Col (convex)

PhysicsDebris should NOT be created on the server.

PhysicsDebrisData Defines the properties of a PhysicsDebris object.

Inherit: GameBaseData

Description Defines the properties of a PhysicsDebris object.

656 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
float PhysicsDebrisData::angularDamping

Value that reduces an object’s rotational velocity over time. Larger values will cause velocity to
decay quicker.

float PhysicsDebrisData::angularSleepThreshold
Minimum rotational velocity before the shape can be put to sleep. This should be a positive value.
Shapes put to sleep will not be simulated in order to save system resources.

float PhysicsDebrisData::buoyancyDensity
The density of this shape for purposes of calculating buoyant forces. The result of the calculated
buoyancy is relative to the density of the WaterObject the PhysicsDebris is within.

bool PhysicsDebrisData::castShadows
Determines if the shape’s shadow should be cast onto the environment.

float PhysicsDebrisData::friction
Coefficient of kinetic friction to be applied to the shape. Kinetic friction reduces the velocity of
a moving object while it is in contact with a surface. A larger coefficient will result in a larger
reduction in velocity. A shape’s friction should be smaller than it’s staticFriction, but greater than 0.

float PhysicsDebrisData::lifetime
Base time, in seconds, that debris persists after time of creation.

float PhysicsDebrisData::lifetimeVariance
Range of variation randomly applied to lifetime when debris is created. Represents the maximum
amount of seconds that will be added or subtracted to a shape’s base lifetime. A value of 0 will apply
the same lifetime to each shape created.

float PhysicsDebrisData::linearDamping
Value that reduces an object’s linear velocity over time. Larger values will cause velocity to decay
quicker.

float PhysicsDebrisData::linearSleepThreshold
Minimum linear velocity before the shape can be put to sleep. This should be a positive value.
Shapes put to sleep will not be simulated in order to save system resources.

float PhysicsDebrisData::mass
Value representing the mass of the shape. A shape’s mass influences the magnitude of any force
applied to it.

void PhysicsDebrisData::preload
Loads some information to have readily available at simulation time. Forces generation of shaders,
materials, and other data used by the PhysicsDebris object. This function should be used while a
level is loading in order to shorten the amount of time to create a PhysicsDebris in game.

float PhysicsDebrisData::restitution
Bounce coeffecient applied to the shape in response to a collision. Restitution is a ratio of a shape’s
velocity before and after a collision. A value of 0 will zero out a shape’s post-collision velocity, mak-
ing it stop on contact. Larger values will remove less velocity after a collision, making it ‘bounce’
with greater force. Normal restitution values range between 0 and 1.0.

filename PhysicsDebrisData::shapeFile
Path to the .DAE or .DTS file to use for this shape. Compatable with Live-Asset Reloading.

float PhysicsDebrisData::staticFriction
Coefficient of static friction to be applied to the shape. Static friction determines the force needed
to start moving an at-rest object in contact with a surface. If the force applied onto shape cannot
overcome the force of static friction, the shape will remain at rest. A higher coefficient will require
a larger force to start motion. This value should be both greater than 0 and the PhysicsDebris-
Data::friction .

5.3. Console Reference 657

Torque 3D Documentation, Release 3.5.1

float PhysicsDebrisData::waterDampingScale
Scale to apply to linear and angular dampening while underwater.

PhysicsForce Helper object for gameplay physical forces.

Inherit: SceneObject

Description PhysicsForces can be created and “attached” to other PhysicsBodies to attract them to the
position of the PhysicsForce.

Methods
void PhysicsForce::attach(Point3F start, Point3F direction, float maxDist)

Attempts to associate the PhysicsForce with a PhysicsBody. Performs a physics ray cast of the
provided length and direction. The PhysicsForce will attach itself to the first dynamic PhysicsBody
the ray collides with. On every tick, the attached body will be attracted towards the position of the
PhysicsForce. A PhysicsForce can only be attached to one body at a time.

void PhysicsForce::detach(Point3F force)
Disassociates the PhysicsForce from any attached PhysicsBody.

Parameters force – Optional force to apply to the attached PhysicsBody before detach-
ing.

bool PhysicsForce::isAttached()
Returns true if the PhysicsForce is currently attached to an object.

PhysicsShape Represents a destructible physical object simulated through the plugin system.

Inherit: GameBase

Description Represents a destructible physical object simulated through the plugin system.

Methods
void PhysicsShape::destroy()

Disables rendering and physical simulation. Calling destroy() will also spawn any explosions, de-
bris, and/or destroyedShape defined for it, as well as remove it from the scene graph. Destroyed
objects are only created on the server. Ghosting will later update the client.

bool PhysicsShape::isDestroyed()
Returns if a PhysicsShape has been destroyed or not.

void PhysicsShape::restore()
Restores the shape to its state before being destroyed. Re-enables rendering and physical simulation
on the object and adds it to the client’s scene graph. Has no effect if the shape is not destroyed.

Fields
bool PhysicsShape::playAmbient

Enables or disables playing of an ambient animation upon loading the shape.

PhysicsShapeData Defines the properties of a PhysicsShape.

Inherit: GameBaseData

658 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description Defines the properties of a PhysicsShape.

Fields
float PhysicsShapeData::angularDamping

Value that reduces an object’s rotational velocity over time. Larger values will cause velocity to
decay quicker.

float PhysicsShapeData::angularSleepThreshold
Minimum rotational velocity before the shape can be put to sleep. This should be a positive value.
Shapes put to sleep will not be simulated in order to save system resources.

float PhysicsShapeData::buoyancyDensity
The density of the shape for calculating buoyant forces. The result of the calculated buoyancy is
relative to the density of the WaterObject the PhysicsShape is within.

PhysicsDebrisData PhysicsShapeData::Debris
Name of a PhysicsDebrisData to spawn when this shape is destroyed (optional).

PhysicsShapeData PhysicsShapeData::destroyedShape
Name of a PhysicsShapeData to spawn when this shape is destroyed (optional).

ExplosionData PhysicsShapeData::Explosion
Name of an ExplosionData to spawn when this shape is destroyed (optional).

float PhysicsShapeData::friction
Coefficient of kinetic friction to be applied to the shape. Kinetic friction reduces the velocity of a
moving object while it is in contact with a surface. A higher coefficient will result in a larger velocity
reduction. A shape’s friction should be lower than it’s staticFriction, but larger than 0.

float PhysicsShapeData::linearDamping
Value that reduces an object’s linear velocity over time. Larger values will cause velocity to decay
quicker.

float PhysicsShapeData::linearSleepThreshold
Minimum linear velocity before the shape can be put to sleep. This should be a positive value.
Shapes put to sleep will not be simulated in order to save system resources.

float PhysicsShapeData::mass
Value representing the mass of the shape. A shape’s mass influences the magnitude of any force
exerted on it. For example, a PhysicsShape with a large mass requires a much larger force to move
than the same shape with a smaller mass.

float PhysicsShapeData::restitution
Coeffecient of a bounce applied to the shape in response to a collision. Restitution is a ratio of
a shape’s velocity before and after a collision. A value of 0 will zero out a shape’s post-collision
velocity, making it stop on contact. Larger values will remove less velocity after a collision, making
it ‘bounce’ with a greater force. Normal restitution values range between 0 and 1.0.

filename PhysicsShapeData::shapeName
Path to the .DAE or .DTS file to use for this shape. Compatable with Live-Asset Reloading.

PhysicsSimType PhysicsShapeData::simType
Controls whether this shape is simulated on the server, client, or both physics simulations.

float PhysicsShapeData::staticFriction
Coefficient of static friction to be applied to the shape. Static friction determines the force needed
to start moving an at-rest object in contact with a surface. If the force applied onto shape cannot
overcome the force of static friction, the shape will remain at rest. A larger coefficient will require a
larger force to start motion. This value should be larger than zero and the physicsShape’s friction.

5.3. Console Reference 659

Torque 3D Documentation, Release 3.5.1

float PhysicsShapeData::waterDampingScale
Scale to apply to linear and angular dampening while underwater. Used with the waterViscosity of
the

PxCloth Rectangular patch of cloth simulated by PhysX.

Inherit: GameBase

Description PxCloth is affected by other objects in the simulation but does not itself affect others, it is
essentially a visual effect. Eg, shooting at cloth will disturb it but will not explode the projectile.

Be careful with the cloth size and resolution because it can easily become performance intensive to simu-
late. A single piece of cloth that is very large or high resolution is also much more expensive than multiple
pieces that add up to the same number of verts.

Note that most field docs have been copied from their PhysX counterpart.

Fields
PxClothAttachment PxCloth::attachments

Optional way to specify cloth verts that will be attached to the world position it is created at.
bool PxCloth::bending

Enables or disables bending resistance. Set the bending resistance through Px-
Cloth::bendingStiffness .

float PxCloth::bendingStiffness
Bending stiffness of the cloth in the range 0 to 1.

bool PxCloth::damping
Enable/disable damping of internal velocities.

float PxCloth::dampingCoefficient
Spring damping of the cloth in the range 0 to 1.

float PxCloth::density
Density of the cloth (Mass per Area).

float PxCloth::friction
Friction coefficient in the range 0 to 1. Defines the damping of the velocities of cloth particles that
are in contact.

string PxCloth::Material
Name of the material to render.

Point2I PxCloth::samples
The number of cloth vertices in width and length. At least two verts should be defined.

bool PxCloth::selfCollision
Enables or disables self-collision handling within a single piece of cloth.

Point2F PxCloth::size
The width and height of the cloth.

float PxCloth::thickness
Value representing how thick the cloth is. The thickness is usually a fraction of the overall extent of
the cloth and should not be set to a value greater than that. A good value is the maximal distance
between two adjacent cloth particles in their rest pose. Visual artifacts or collision problems may
appear if the thickness is too small.

660 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool PxCloth::triangleCollision
Not supported in current release (according to PhysX docs). Enables or disables collision detection
of cloth triangles against the scene. If not set, only collisions of cloth particles are detected. If set,
collisions of cloth triangles are detected as well.

PxMaterial Defines a PhysX material assignable to a PxMaterial.

Inherit: SimDataBlock

Description When two actors collide, the collision behavior that results depends on the material prop-
erties of the actors’ surfaces. For example, the surface properties determine if the actors will or will
not bounce, or if they will slide or stick. Currently, the only special feature supported by materials is
anisotropic friction, but according to Nvidia, other effects such as moving surfaces and more types of
friction are slotted for future release.

For more information, refer to Nvidia’s PhysX docs.

Fields
float PxMaterial::dynamicFriction

Coefficient of dynamic friction to be applied. Dynamic friction reduces the velocity of a moving
object while it is in contact with a surface. A higher coefficient will result in a larger reduction in
velocity. A shape’s dynamicFriction should be equal to or larger than 0.

float PxMaterial::restitution
Coeffecient of a bounce applied to the shape in response to a collision. A value of 0 makes the object
bounce as little as possible, while higher values up to 1.0 result in more bounce.

float PxMaterial::staticFriction
Coefficient of static friction to be applied. Static friction determines the force needed to start moving
an at-rest object in contact with a surface. If the force applied onto shape cannot overcome the force
of static friction, the shape will remain at rest. A higher coefficient will require a larger force to start
motion.

PxMultiActor Represents a destructible physical object simulated using PhysX.

Inherit: GameBase

Description Usually it is prefered to use PhysicsShape and not PxMultiActor because it is not PhysX
specific and much easier to setup.

Methods
void PxMultiActor::listMeshes(enum Hidden, enum Shown, enum All)

Lists all meshes of the provided type in the console window.

Parameters

• All – Lists all of the PxMultiActor’s meshes.

• Hidden – Lists all of the PxMultiActor’s hidden meshes.

• Shown – Lists all of the PxMultiActor’s visible meshes.
void PxMultiActor::setAllHidden()

Hides or unhides all meshes contained in the PxMultiActor . Hidden meshes will not be rendered.

void PxMultiActor::setBroken()
Sets the PxMultiActor to a broken or unbroken state.

5.3. Console Reference 661

Torque 3D Documentation, Release 3.5.1

void PxMultiActor::setMeshHidden(string meshName, bool isHidden)
Prevents the provided mesh from being rendered.

Fields
bool PxMultiActor::broken
bool PxMultiActor::debugRender

PxMultiActorData Defines the properties of a type of PxMultiActor.

Inherit: GameBaseData

Description Usually it is prefered to use PhysicsShape rather than PxMultiActor because a Physic-
sShape is not PhysX specific and can be much easier to setup.

For more information, refer to Nvidia’s PhysX docs.

Fields
float PxMultiActorData::angularDrag

Value used to help calculate rotational drag force while submerged in water.
float PxMultiActorData::breakForce

Force required to break an actor. This value does not apply to joints. If an actor is associated with a
joint it will break whenever the joint does. This allows an actor “not” associated with a joint to also
be breakable.

float PxMultiActorData::buoyancyDensity
The density used to calculate buoyant forces. The result of the calculated buoyancy is relative to the
density of the WaterObject the PxMultiActor is within.

bool PxMultiActorData::clientOnly

void PxMultiActorData::dumpModel
Dumps model hierarchy and details to a file. The file will be created as ‘model.dump’ in the game
folder. If model.dump already exists, it will be overwritten.

float PxMultiActorData::linearDrag
Value used to help calculate linear drag force while submerged in water.

PxMaterial PxMultiActorData::Material
An optional PxMaterial to be used for the PxMultiActor . Defines properties such as friction and
restitution. Unrelated to the material used for rendering. The physXStream will contain defined
materials that can be customized in 3DS Max. To override the material for all physics shapes in the
physXStream, specify a material here.

bool PxMultiActorData::noCorrection

filename PxMultiActorData::physXStream
.XML file containing data such as actors, shapes, and joints. These files can be created using a free
PhysX plugin for 3DS Max.

void PxMultiActorData::reload
Reloads all data used for the PxMultiActorData . If the reload sucessfully completes, all PxMulti-
Actor’s will be notified.

filename PxMultiActorData::shapeName
Path to the .DAE or .DTS file to render.

bool PxMultiActorData::singlePlayerOnly

662 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

string PxMultiActorData::string

float PxMultiActorData::waterDragScale
Scale to apply to linear and angular dampening while submerged in water.

RadialImpulseEvent Creates a physics-based impulse effect from a defined central point and magni-
tude.

Description Creates a physics-based impulse effect from a defined central point and magnitude.

Methods
static void RadialImpulseEvent::send(string inPosition, float radius, float magnitude)

Applies a radial impulse to any SceneObjects within the area of effect. This event is performed both
server and client-side.

Parameters

• position – Center point for this radial impulse.

• radius – Distance from the position for this radial impulse to affect.

• magnitude – The force applied to objects within the radius from the position of
this radial impulse effect.

Example:

// Define the Position
%position = "10.0 15.0 10.0";

// Define the Radius
%radius = "25.0";

// Define the Magnitude
%magnitude = "30.0"
// Create a globalRadialImpulse physics effect.
RadialImpulseEvent::send(%position,%radius,%magnitude);

RigidShape Implements rigid-body physics for DTS objects in the world.

Inherit: ShapeBase

Description The RigidShape class implements rigid-body physics for DTS objects in the world.

“Rigid body physics” refers to a system whereby objects are assumed to have a finite size, equally dis-
tributed masses, and where deformations of the objects themselves are not accounted for. Uses the Rigid-
Shape class to control its physics.

Example:

datablock RigidShapeData(BouncingBoulder)
{

category = "RigidShape";

shapeFile = "~/data/shapes/boulder/boulder.dts";
emap = true;

// Rigid Body

5.3. Console Reference 663

Torque 3D Documentation, Release 3.5.1

mass = 500;
massCenter = "0 0 0"; // Center of mass for rigid body
massBox = "0 0 0"; // Size of box used for moment of inertia,

// if zero it defaults to object bounding box
drag = 0.2; // Drag coefficient
bodyFriction = 0.2;
bodyRestitution = 0.1;
minImpactSpeed = 5; // Impacts over this invoke the script callback
softImpactSpeed = 5; // Play SoftImpact Sound
hardImpactSpeed = 15; // Play HardImpact Sound
integration = 4; // Physics integration: TickSec/Rate
collisionTol = 0.1; // Collision distance tolerance
contactTol = 0.1; // Contact velocity tolerance

minRollSpeed = 10;

maxDrag = 0.5;
minDrag = 0.01;

dustHeight = 10;

dragForce = 0.05;
vertFactor = 0.05;

};

new RigidShape()
{

dataBlock = "BouncingBoulder";
parentGroup = EWCreatorWindow.objectGroup;

};

Methods
void RigidShape::forceClientTransform()

Forces the client to jump to the RigidShape’s transform rather then warp to it.
void RigidShape::freezeSim(bool isFrozen)

Enables or disables the physics simulation on the RigidShape object.

Parameters isFrozen – Boolean frozen state to set the object.

Example:

// Define the frozen state.
%isFrozen = "true";

// Inform the object of the defined frozen state
%thisRigidShape.freezeSim(%isFrozen);

void RigidShape::onEnterLiquid(string objId, string waterCoverage, string liquidType)
Called whenever this RigidShape object enters liquid.

Parameters

• objId – The ID of the rigidShape object.

• waterCoverage – Amount of water coverage the RigidShape has.

• liquidType – Type of liquid that was entered.

Example:

664 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// The RigidShape object falls in a body of liquid, causing the callback to occur.
RigidShape::onEnterLiquid(%this,%objId,%waterCoverage,%liquidType)
{

// Code to run whenever this callback occurs.
}

void RigidShape::onLeaveLiquid(string objId, string liquidType)
Called whenever the RigidShape object exits liquid.

Parameters

• objId – The ID of the RigidShape object.

• liquidType – Type if liquid that was exited.

Example:

// The RigidShape object exits in a body of liquid, causing the callback to occur.
RigidShape::onLeaveLiquid(%this,%objId,%liquidType)
{

// Code to run whenever this callback occurs.
}

void RigidShape::reset()
Clears physic forces from the shape and sets it at rest.

Example:

// Inform the RigidShape object to reset.
%thisRigidShape.reset();

RigidShapeData Physics object.

Inherit: ShapeBaseData

Description Defines the physics properties for an individual RigidShapeData physics object.

Example:

datablock RigidShapeData(BouncingBoulder)
{

category = "RigidShape";

shapeFile = "~/data/shapes/boulder/boulder.dts";
emap = true;

// Rigid Bodymass = 500;
massCenter = "0 0 0"; // Center of mass for rigid bodymass
Box = "0 0 0"; // Size of box used for moment of inertia,

// if zero it defaults to object bounding box
drag = 0.2; // Drag coefficientbodyFriction = 0.2;
bodyRestitution = 0.1;
minImpactSpeed = 5; // Impacts over this invoke the script callback
softImpactSpeed = 5; // Play SoftImpact Sound
hardImpactSpeed = 15; // Play HardImpact Sound
integration = 4; // Physics integration: TickSec/Rate
collisionTol = 0.1; // Collision distance
tolerancecontactTol = 0.1; // Contact velocity toleranceminRollSpeed = 10;

5.3. Console Reference 665

Torque 3D Documentation, Release 3.5.1

maxDrag = 0.5;
minDrag = 0.01;

dustHeight = 10;

dragForce = 0.05;
vertFactor = 0.05;

};

Fields
float RigidShapeData::bodyFriction

How much friction this object has. Lower values will cause the object to appear to be more slippery.
float RigidShapeData::bodyRestitution

The percentage of kinetic energy kept by this object in a collision.

float RigidShapeData::cameraDecay
Scalar rate at which the third person camera offset decays, per tick.

float RigidShapeData::cameraLag
Scalar amount by which the third person camera lags the object, relative to the object’s linear veloc-
ity.

float RigidShapeData::cameraOffset
The vertical offset of the object’s camera.

bool RigidShapeData::cameraRoll
Specifies whether the camera’s rotation matrix, and the render eye transform are multiplied during
camera updates.

float RigidShapeData::collisionTol
Collision distance tolerance.

float RigidShapeData::contactTol
Contact velocity tolerance.

float RigidShapeData::dragForce
Used to simulate the constant drag acting on the object.

ParticleEmitterData RigidShapeData::dustEmitter
Array of pointers to ParticleEmitterData datablocks which will be used to emit particles at ob-
ject/terrain contact point.

float RigidShapeData::dustHeight
Height of dust effects.

ParticleEmitterData RigidShapeData::dustTrailEmitter
Particle emitter used to create a dust trail for the moving object.

SFXTrack RigidShapeData::exitingWater
The AudioProfile will be used to produce sounds when emerging from water.

float RigidShapeData::exitSplashSoundVelocity
The minimum velocity at which the exit splash sound will be played when emerging from water.

SFXTrack RigidShapeData::hardImpactSound
Sound to play when body impacts with at least hardImpactSpeed.

float RigidShapeData::hardImpactSpeed
Minimum speed at which the object must be travelling for the hard impact sound to be played.

666 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float RigidShapeData::hardSplashSoundVelocity
The minimum velocity at which the hard splash sound will be played when impacting water.

SFXTrack RigidShapeData::impactWaterEasy
The AudioProfile will be used to produce sounds when a soft impact with water occurs.

SFXTrack RigidShapeData::impactWaterHard
The AudioProfile will be used to produce sounds when a hard impact with water occurs.

SFXTrack RigidShapeData::impactWaterMedium
The AudioProfile will be used to produce sounds when a medium impact with water occurs.

int RigidShapeData::integration
Number of physics steps to process per tick.

Point3F RigidShapeData::massBox
Size of inertial box.

Point3F RigidShapeData::massCenter
Center of mass for rigid body.

float RigidShapeData::maxDrag
Maximum drag available to this object.

float RigidShapeData::mediumSplashSoundVelocity
The minimum velocity at which the medium splash sound will be played when impacting water.

float RigidShapeData::minDrag
Minimum drag available to this object.

float RigidShapeData::minImpactSpeed
Minimum collision speed to classify collision as impact (triggers onImpact on server object).

float RigidShapeData::minRollSpeed

SFXTrack RigidShapeData::softImpactSound
Sound to play when body impacts with at least softImageSpeed but less than hardImpactSpeed.

float RigidShapeData::softImpactSpeed
Minimum speed at which this object must be travelling for the soft impact sound to be played.

float RigidShapeData::softSplashSoundVelocity
The minimum velocity at which the soft splash sound will be played when impacting water.

ParticleEmitterData RigidShapeData::splashEmitter[2]
Array of pointers to ParticleEmitterData datablocks which will generate splash effects.

float RigidShapeData::splashFreqMod
The simulated frequency modulation of a splash generated by this object. Multiplied along with
speed and time elapsed when determining splash emition rate.

float RigidShapeData::splashVelEpsilon
The threshold speed at which we consider the object’s movement to have stopped when updating
splash effects.

float RigidShapeData::triggerDustHeight
Maximum height from the ground at which the object will generate dust.

float RigidShapeData::vertFactor
The scalar applied to the vertical portion of the velocity drag acting on a object.

SFXTrack RigidShapeData::waterWakeSound
The AudioProfile will be used to produce sounds when a water wake is displayed.

5.3. Console Reference 667

Torque 3D Documentation, Release 3.5.1

Enumeration

enum PhysicsSimType
How to handle the physics simulation with the client’s and server.

Parameters

• ClientOnly – Only handle physics on the client.

• ServerOnly – Only handle physics on the server.

• ClientServer – Handle physics on both the client and server.

Variables

bool $PhysXLogWarnings
Output PhysX warnings to the console.

bool $Physics::isSinglePlayer
Informs the physics simulation if only a single player exists. If true, optimizations will be implemented to better
cater to a single player environmnent.

bool physicsPluginPresent
Returns true if a physics plugin exists and is initialized. physicsPluginPresent()

int $pref::Physics::threadCount
Number of threads to use in a single pass of the physics engine. Defaults to 2 if not set.

Vehicles

This section is dedicated to vehicle game objects, such as the base Vehicle class, WheeledVehicle, FlyingVehicle, and
so on.

Classes

FlyingVehicle A flying vehicle.

Inherit: Vehicle

Description The model used for the FlyingVehicle should contain the elements shown below. Only the collision
mesh is actually required for the object to be added to the simulation, but particle emitters will not work unless the
relevant nodes are present.

The example below shows the datablock required for a simple FlyingVehicle. The script should be executed on the
server, and the vehicle can then be added to the simulation programmatically from the level startup scripts, or by
selecting the JetFighter datablock from the World Editor (Library->ScriptedObjects->Vehicles).

Example:

datablock FlyingVehicleData(JetFighter)
{

category = "Vehicles";
shapeFile = "art/shapes/fighterjet.dae";

createHoverHeight = 20;

668 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// 3rd person camera settings
cameraRoll = true;
cameraMaxDist = 16;
cameraOffset = 1.0;
cameraLag = 0.1;
cameraDecay = 1.25;

// Rigid Body
mass = 100;
massCenter = "0 -0.2 0";
massBox = "0 0 0";
integration = 3;
collisionTol = 0.6;
contactTol = 0.4;

bodyFriction = 0;
bodyRestitution = 0.8;
minRollSpeed = 2000;
minImpactSpeed = 5;
softImpactSpeed = 3;
hardImpactSpeed = 15;

drag = 0.25;
minDrag = 40;
rotationalDrag = 20;

// Autostabilizer
maxAutoSpeed = 6;
autoAngularForce = 400;
autoLinearForce = 300;
autoInputDamping = 0.55;

// Maneuvering
maxSteeringAngle = 3;
horizontalSurfaceForce = 20;
verticalSurfaceForce = 20;
maneuveringForce = 6400;
steeringForce = 500;
steeringRollForce = 200;
rollForce = 10;
hoverHeight = 0.5;
createHoverHeight = 0.5;
maxForwardSpeed = 90;

// Vertical jetting
maxEnergy = 100;
jetForce = 3000;
minJetEnergy = 28;
jetEnergyDrain = 2.8;
vertThrustMultiple = 3.0;

// Emitters
forwardJetEmitter = FighterJettingEmitter;
backwardJetEmitter = FighterJettingEmitter;
downJetEmitter = FighterJettingEmitter;
trailEmitter = FighterContrailEmitter;
minTrailSpeed = 10;

5.3. Console Reference 669

Torque 3D Documentation, Release 3.5.1

// Sounds
engineSound = FighterEngineSnd;
jetSound = FighterJettingSnd;

};

// This function is executed when the FlyingVehicle object is added to the simulation.
function JetFighter::onAdd(%this, %obj)
{

Parent::onAdd(%this, %obj);

// Allow jetting energy to recharge over time
%obj.setRechargeRate(2);

}

Methods
void FlyingVehicle::useCreateHeight(bool enabled)

Set whether the vehicle should temporarily use the createHoverHeight specified in the datablock. This can help
avoid problems with spawning.

Parameters enabled – true to use the datablock createHoverHeight, false otherwise

FlyingVehicleData Defines the properties of a FlyingVehicle.

Inherit: VehicleData

Description Defines the properties of a FlyingVehicle.

Fields
float FlyingVehicleData::autoAngularForce

Corrective torque applied to level out the vehicle when moving at less than maxAutoSpeed. The torque is
inversely proportional to vehicle speed.

float FlyingVehicleData::autoInputDamping
Scale factor applied to steering input if speed is less than maxAutoSpeed to.improve handling at very low speeds.
Smaller values make steering less sensitive.

float FlyingVehicleData::autoLinearForce
Corrective force applied to slow the vehicle when moving at less than maxAutoSpeed. The force is inversely
proportional to vehicle speed.

ParticleEmitterData FlyingVehicleData::backwardJetEmitter
Emitter to generate particles for backward jet thrust. Backward jet thrust particles are emitted from model nodes
JetNozzleX and JetNozzleY.

float FlyingVehicleData::createHoverHeight
The vehicle’s height off the ground when useCreateHeight is active. This can help avoid problems with spawning
the vehicle.

ParticleEmitterData FlyingVehicleData::downJetEmitter
Emitter to generate particles for downward jet thrust. Downward jet thrust particles are emitted from model
nodes JetNozzle2 and JetNozzle3.

SFXProfile FlyingVehicleData::engineSound
Looping engine sound.

670 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

ParticleEmitterData FlyingVehicleData::forwardJetEmitter
Emitter to generate particles for forward jet thrust. Forward jet thrust particles are emitted from model nodes
JetNozzle0 and JetNozzle1.

float FlyingVehicleData::horizontalSurfaceForce
Damping force in the opposite direction to sideways velocity. Provides “bite” into the wind for climbing/diving
and turning).

float FlyingVehicleData::hoverHeight
The vehicle’s height off the ground when at rest.

SFXProfile FlyingVehicleData::jetSound
Looping sound to play while the vehicle is jetting.

float FlyingVehicleData::maneuveringForce
Maximum X and Y (horizontal plane) maneuvering force. The actual force applied depends on the current
thrust.

float FlyingVehicleData::maxAutoSpeed
Maximum speed for automatic vehicle control assistance - vehicles travelling at speeds above this value do not
get control assitance.

float FlyingVehicleData::minTrailSpeed
Minimum speed at which to start generating contrail particles.

float FlyingVehicleData::rollForce
Damping torque against rolling maneuvers (rotation about the y-axis), proportional to linear velocity. Acts to
adjust roll to a stable position over time as the vehicle moves.

float FlyingVehicleData::rotationalDrag
Rotational drag factor (slows vehicle rotation speed in all axes).

float FlyingVehicleData::steeringForce
Maximum X and Z (sideways and vertical) steering force. The actual force applied depends on the current
steering input.

float FlyingVehicleData::steeringRollForce
Roll force induced by sideways steering input value (controls how much the vehicle rolls when turning).

ParticleEmitterData FlyingVehicleData::trailEmitter
Emitter to generate contrail particles from model nodes contrail0 - contrail3.

float FlyingVehicleData::verticalSurfaceForce
Damping force in the opposite direction to vertical velocity. Controls side slip; lower numbers give more slide.

float FlyingVehicleData::vertThrustMultiple
Multiplier applied to the jetForce (defined in VehicleData) when thrusting vertically.

HoverVehicle A hovering vehicle.

Inherit: Vehicle

Description A hover vehicle is a vehicle that maintains a specific distance between the vehicle and the ground at all
times; unlike a flying vehicle which is free to ascend and descend at will.The model used for the HoverVehicle has the
following requirements:

HoverVehicleData Defines the properties of a HoverVehicle.

Inherit: VehicleData

5.3. Console Reference 671

Torque 3D Documentation, Release 3.5.1

Description Defines the properties of a HoverVehicle.

Fields
float HoverVehicleData::brakingActivationSpeed

Maximum speed below which a braking force is applied.
float HoverVehicleData::brakingForce

Force generated by braking. The vehicle is considered to be braking if it is moving, but the throttle is off,
and no left or right thrust is being applied. This force is only applied when the vehicle’s velocity is less than
brakingActivationSpeed.

float HoverVehicleData::dragForce
Drag force factor that acts opposite to the vehicle velocity. Also used to determnine the vehicle’s maxThrust-
Speed.

ParticleEmitterData HoverVehicleData::dustTrailEmitter
Emitter to generate particles for the vehicle’s dust trail. The trail of dust particles is generated only while the
vehicle is moving.

float HoverVehicleData::dustTrailFreqMod
Number of dust trail particles to generate based on vehicle speed. The vehicle’s speed is divided by this value
to determine how many particles to generate each frame. Lower values give a more dense trail, higher values a
more sparse trail.

Point3F HoverVehicleData::dustTrailOffset
“X Y Z” offset from the vehicle’s origin from which to generate dust trail particles. By default particles are
emitted directly beneath the origin of the vehicle model.

SFXProfile HoverVehicleData::engineSound
Looping engine sound. The volume is dynamically adjusted based on the current thrust level.

float HoverVehicleData::floatingGravMag
Scale factor applied to the vehicle gravitational force when the vehicle is floating.

float HoverVehicleData::floatingThrustFactor
Scalar applied to the vehicle’s thrust force when the vehicle is floating.

SFXProfile HoverVehicleData::floatSound
Looping sound played while the vehicle is floating.

ParticleEmitterData HoverVehicleData::forwardJetEmitter
Emitter to generate particles for forward jet thrust. Forward jet thrust particles are emitted from model nodes
JetNozzle0 and JetNozzle1.

float HoverVehicleData::gyroDrag
Damping torque that acts against the vehicle’s current angular momentum.

SFXProfile HoverVehicleData::jetSound
Looping sound played when the vehicle is jetting.

float HoverVehicleData::mainThrustForce
Force generated by thrusting the vehicle forward. Also used to determine the maxThrustSpeed:

Example:

maxThrustSpeed = (mainThrustForce + strafeThrustForce) / dragForce;

float HoverVehicleData::normalForce
Force generated in the ground normal direction when the vehicle is not floating (within stabalizer length from
the ground).

672 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float HoverVehicleData::pitchForce
Pitch (rotation about the X-axis) force applied when steering in the y-axis direction.

float HoverVehicleData::restorativeForce
Force generated to stabalize the vehicle (return it to neutral pitch/roll) when the vehicle is floating (more than
stabalizer length from the ground.

float HoverVehicleData::reverseThrustForce
Force generated by thrusting the vehicle backward.

float HoverVehicleData::rollForce
Roll (rotation about the Y-axis) force applied when steering in the x-axis direction.

float HoverVehicleData::stabDampingConstant
Damping spring force acting against changes in the stabalizer length.

float HoverVehicleData::stabLenMax
Length of the base stabalizer when travelling at maximum speed (maxThrustSpeed).

float HoverVehicleData::stabLenMin
Length of the base stabalizer when travelling at minimum speed (0). Each tick, the vehicle performs 2 raycasts
(from the center back and center front of the vehicle) to check for contact with the ground. The base stabalizer
length determines the length of that raycast; if neither raycast hit the ground, the vehicle is floating, stabalizer
spring and ground normal forces are not applied.

float HoverVehicleData::stabSpringConstant
Value used to generate stabalizer spring force. The force generated depends on stabilizer compression, that is
how close the vehicle is to the ground proportional to current stabalizer length.

float HoverVehicleData::steeringForce
Yaw (rotation about the Z-axis) force applied when steering in the x-axis direction.about the vehicle’s Z-axis).

float HoverVehicleData::strafeThrustForce
Force generated by thrusting the vehicle to one side. Also used to determine the vehicle’s maxThrustSpeed.

float HoverVehicleData::triggerTrailHeight
Maximum height above surface to emit dust trail particles. If the vehicle is less than triggerTrailHeight above
a static surface with a material that has ‘showDust’ set to true, the vehicle will emit particles from the dust-
TrailEmitter.

float HoverVehicleData::turboFactor
Scale factor applied to the vehicle’s thrust force when jetting.

float HoverVehicleData::vertFactor
Scalar applied to the vertical portion of the velocity drag acting on the vehicle. For the horizontal (X and Y)
components of velocity drag, a factor of 0.25 is applied when the vehicle is floating, and a factor of 1.0 is applied
when the vehicle is not floating. This velocity drag is multiplied by the vehicle’s dragForce, as defined above,
and the result is subtracted from it’s movement force.

Vehicle Base functionality shared by all Vehicles (FlyingVehicle, HoverVehicle, WheeledVehicle).

Inherit: ShapeBase

Description This object implements functionality shared by all Vehicle types, but should not be instantiated directly.
Create a FlyingVehicle, HoverVehicle, or WheeledVehicle instead.

Fields
bool Vehicle::disableMove

When this flag is set, the vehicle will ignore throttle changes.

5.3. Console Reference 673

Torque 3D Documentation, Release 3.5.1

float Vehicle::workingQueryBoxSizeMultiplier[static]
How much larger the mWorkingQueryBox should be made when updating the working collision list. The larger
this number the less often the working list will be updated due to motion, but any non-static shape that moves
into the query box will not be noticed.

int Vehicle::workingQueryBoxStaleThreshold[static]
The maximum number of ticks that go by before the mWorkingQueryBox is considered stale and needs updating.
Other factors can cause the collision working query box to become invalidated, such as the vehicle moving far
enough outside of this cached box. The smaller this number, the more times the working list of triangles that
are considered for collision is refreshed. This has the greatest impact with colliding with high triangle count
meshes.

VehicleData Base properties shared by all Vehicles (FlyingVehicle, HoverVehicle, WheeledVehicle).

Inherit: ShapeBaseData

Description This datablock defines properties shared by all Vehicle types, but should not be instantiated directly.
Instead, set the desired properties in the FlyingVehicleData, HoverVehicleData or WheeledVehicleData datablock.

Damage The VehicleData class extends the basic energy/damage functionality provided by ShapeBaseData to in-
clude damage from collisions, as well as particle emitters activated automatically when damage levels reach user
specified thresholds.

The example below shows how to setup a Vehicle to:

Example:

// damage from collisionscollDamageMultiplier = 0.05;
collDamageThresholdVel = 15;

// damage levelsdamageLevelTolerance[0] = 0.5;
damageEmitter[0] = GraySmokeEmitter; // emitter used when damage is >= 50%
damageLevelTolerance[1] = 0.85;
damageEmitter[1] = BlackSmokeEmitter; // emitter used when damage is >= 85%
damageEmitter[2] = DamageBubbleEmitter; // emitter used instead of damageEmitter[0:1]
// when offset point is underwater
// emit offsets (used for all active damage level emitters)
damageEmitterOffset[0] = "0.5 3 1";
damageEmitterOffset[1] = "-0.5 3 1";
numDmgEmitterAreas = 2;

Methods
void VehicleData::onEnterLiquid(Vehicle obj, float coverage, string type)

Called when the vehicle enters liquid.

Parameters

• obj – the Vehicle object

• coverage – percentage of the vehicle’s bounding box covered by the liquid

• type – type of liquid the vehicle has entered
void VehicleData::onLeaveLiquid(Vehicle obj, string type)

Called when the vehicle leaves liquid.

Parameters

674 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• obj – the Vehicle object

• type – type of liquid the vehicle has left

Fields
float VehicleData::bodyFriction

Collision friction coefficient. How well this object will slide against objects it collides with.
float VehicleData::bodyRestitution

Collision ‘bounciness’. Normally in the range 0 (not bouncy at all) to 1 (100% bounciness).

float VehicleData::cameraDecay
How quickly the camera moves back towards the vehicle when stopped.

float VehicleData::cameraLag
How much the camera lags behind the vehicle depending on vehicle speed. Increasing this value will make the
camera fall further behind the vehicle as it accelerates away.

float VehicleData::cameraOffset
Vertical (Z axis) height of the camera above the vehicle.

bool VehicleData::cameraRoll
If true, the camera will roll with the vehicle. If false, the camera will always have the positive Z axis as up.

float VehicleData::collDamageMultiplier
Damage to this vehicle after a collision (multiplied by collision velocity). Currently unused.

float VehicleData::collDamageThresholdVel
Minimum collision velocity to cause damage to this vehicle. Currently unused.

float VehicleData::collisionTol
Minimum distance between objects for them to be considered as colliding.

float VehicleData::contactTol
Maximum relative velocity between objects for collisions to be resolved as contacts. Velocities greater than this
are handled as collisions.

ParticleEmitterData VehicleData::damageEmitter[3]
Array of particle emitters used to generate damage (dust, smoke etc) effects. Currently, the first two emitters
(indices 0 and 1) are used when the damage level exceeds the associated damageLevelTolerance. The 3rd emitter
is used when the emitter point is underwater.

Point3F VehicleData::damageEmitterOffset[2]
Object space “x y z” offsets used to emit particles for the active damageEmitter.

Example:

// damage levelsdamageLevelTolerance[0] = 0.5;
damageEmitter[0] = SmokeEmitter;
// emit offsets (used for all active damage level emitters)
damageEmitterOffset[0] = "0.5 3 1";
damageEmitterOffset[1] = "-0.5 3 1";
numDmgEmitterAreas = 2;

float VehicleData::damageLevelTolerance[2]
Damage levels (as a percentage of maxDamage) above which to begin emitting particles from the associated
damageEmitter. Levels should be in order of increasing damage.

ParticleEmitterData VehicleData::dustEmitter
Dust particle emitter.

5.3. Console Reference 675

Torque 3D Documentation, Release 3.5.1

float VehicleData::dustHeight
Height above ground at which to emit particles from the dustEmitter.

SFXProfile VehicleData::exitingWater
Sound to play when exiting the water.

float VehicleData::exitSplashSoundVelocity
Minimum velocity when leaving the water for the exitingWater sound to play.

SFXProfile VehicleData::hardImpactSound
Sound to play on a ‘hard’ impact. This sound is played if the impact speed gt = hardImpactSpeed.

float VehicleData::hardImpactSpeed
Minimum collision speed for the hardImpactSound to be played.

float VehicleData::hardSplashSoundVelocity
Minimum velocity when entering the water for the imapactWaterHard sound to play.

SFXProfile VehicleData::impactWaterEasy
Sound to play when entering the water with speed gt = softSplashSoundVelocity and lt mediumSplashSoundVe-
locity.

SFXProfile VehicleData::impactWaterHard
Sound to play when entering the water with speed gt = hardSplashSoundVelocity.

SFXProfile VehicleData::impactWaterMedium
Sound to play when entering the water with speed gt = mediumSplashSoundVelocity and lt hardSplashSound-
Velocity.

int VehicleData::integration
Number of integration steps per tick. Increase this to improve simulation stability (also increases simulation
processing time).

float VehicleData::jetEnergyDrain
Energy amount to drain for each tick the vehicle is jetting. Once the vehicle’s energy level reaches 0, it will no
longer be able to jet.

float VehicleData::jetForce
Additional force applied to the vehicle when it is jetting. For WheeledVehicles, the force is applied in the
forward direction. For FlyingVehicles, the force is applied in the thrust direction.

Point3F VehicleData::massBox
Define the box used to estimate the vehicle’s moment of inertia. Currently only used by WheeledVehicle ; other
vehicle types use a unit sphere to compute inertia.

Point3F VehicleData::massCenter
Defines the vehicle’s center of mass (offset from the origin of the model).

float VehicleData::maxDrag
Maximum drag coefficient. Currently unused.

float VehicleData::maxSteeringAngle
Maximum yaw (horizontal) and pitch (vertical) steering angle in radians.

float VehicleData::mediumSplashSoundVelocity
Minimum velocity when entering the water for the imapactWaterMedium sound to play.

float VehicleData::minDrag
Minimum drag coefficient. Currently only used by FlyingVehicle .

float VehicleData::minImpactSpeed
Minimum collision speed for the onImpact callback to be invoked.

676 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float VehicleData::minJetEnergy
Minimum vehicle energy level to begin jetting.

float VehicleData::minRollSpeed
Unused.

float VehicleData::numDmgEmitterAreas
Number of damageEmitterOffset values to use for each damageEmitter.

bool VehicleData::powerSteering
If true, steering does not auto-centre while the vehicle is being steered by its driver.

SFXProfile VehicleData::softImpactSound
Sound to play on a ‘soft’ impact. This sound is played if the impact speed is lt hardImpactSpeed and gt =
softImpactSpeed.

float VehicleData::softImpactSpeed
Minimum collision speed for the softImpactSound to be played.

float VehicleData::softSplashSoundVelocity
Minimum velocity when entering the water for the imapactWaterEasy sound to play.

ParticleEmitterData VehicleData::splashEmitter[2]
Array of particle emitters used to generate splash effects.

float VehicleData::splashFreqMod
Number of splash particles to generate based on vehicle speed. This value is multiplied by the current speed to
determine how many particles to generate each frame.

float VehicleData::splashVelEpsilon
Minimum speed when moving through water to generate splash particles.

float VehicleData::steeringReturn
Rate at which the vehicle’s steering returns to forwards when it is moving.

float VehicleData::steeringReturnSpeedScale
Amount of effect the vehicle’s speed has on its rate of steering return.

float VehicleData::triggerDustHeight
Maximum height above surface to emit dust particles. If the vehicle is less than triggerDustHeight above a static
surface with a material that has ‘showDust’ set to true, the vehicle will emit particles from the dustEmitter.

SFXProfile VehicleData::waterWakeSound
Looping sound to play while moving through the water.

WheeledVehicle A wheeled vehicle.

Inherit: Vehicle

Description A multi-wheeled vehicle.

The model used for the WheeledVehicle should contain the elements shown below. Only the collision mesh and hub
nodes are actually required for the object to be added to the simulation, but the suspension will look strange if the
spring animations are not present.

Collision mesh A convex collision mesh at detail size -1.

Hub nodes The model must contain a node for each wheel called hubN, where N is a an integer value starting
from 0. For example, a four wheeled vehicle would have nodes: hub0, hub1, hub2, and hub3. The wheel
model (specified by WheeledVehicleTire) is positioned at the hub node, and automatically rotated to the right
orientation (whether on the left or right side of the vehicle).

5.3. Console Reference 677

Torque 3D Documentation, Release 3.5.1

Spring animations To visualise the suspension action, the vehicle model should contain a non-cyclic animation se-
quence for each wheel that animates the appropriate hub node from t=0 (fully compressed to t=1 (fully extended).
The sequences must be called springN, where N matches the wheel hub index.

Steering animation Optional non-cyclic animation called ‘steering’ that animates from t=0 (full right) to t=0.5 (cen-
ter) to t=1 (full left).”

Brakelight animation Optional non-cyclic animation called ‘brakeLight’ that animates from t=0 (off) to t=1 (brak-
ing). This is usually a 2-frame animation controlling the visibility of a quad or mesh to represent each brake
light.

The example below shows the datablocks required for a simple 4-wheeled vehicle. The script should be executed on
the server, and the vehicle can then be added to the simulation programmatically from the level startup scripts, or by
selecting the MyCar datablock from the World Editor (Library->ScriptedObjects->Vehicles).

Example:

datablock WheeledVehicleTire(MyCarTire)
{

shapeFile = "art/shapes/wheel.dts";
staticFriction = 4.2;
kineticFriction = 1.0;

lateralForce = 18000;
lateralDamping = 6000;
lateralRelaxation = 1;

longitudinalForce = 18000;
longitudinalDamping = 4000;
longitudinalRelaxation = 1;
radius = 0.61;

};

datablock WheeledVehicleSpring(MyCarSpring)
{

length = 0.5;
force = 2800;
damping = 3600;
antiSwayForce = 3;

};

datablock WheeledVehicleData(MyCar)
{

category = "Vehicles";
shapeFile = "art/shapes/car.dts";

maxSteeringAngle = 0.585;

// 3rd person camera settings
cameraRoll = false;
cameraMaxDist = 7.8;
cameraOffset = 1.0;
cameraLag = 0.3;
cameraDecay = 1.25;

useEyePoint = true;

// Rigid Body
mass = "400";
massCenter = "0 -0.2 0";

678 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

massBox = "0 0 0";

drag = 0.6;
bodyFriction = 0.6;
bodyRestitution = 0.4;
minImpactSpeed = 5;
softImpactSpeed = 5;
hardImpactSpeed = 15;
integration = 8;
collisionTol = 0.05;
contactTol = 0.4;

// Engine
engineTorque = 4300;
engineBrake = 5000;
brakeTorque = 10000;
maxWheelSpeed = 50;

// Energy
maxEnergy = 100;
jetForce = 3000;
minJetEnergy = 30;
jetEnergyDrain = 2;

// Sounds
engineSound = CarEngineSnd;
squealSound = CarSquealSnd;
softImpactSound = SoftImpactSnd;
hardImpactSound = HardImpactSnd;

// Particles
tireEmitter = "CarTireEmitter";
dustEmitter = "CarTireEmitter";
dustHeight = "1";

};

// This function is executed when the WheeledVehicle object is added to the// simulation.
function MyCar::onAdd(%this, %obj)
{

Parent::onAdd(%this, %obj);

// Setup the car with some tires & springsfor (%i = %obj.getWheelCount() - 1; %i >= 0; %i--)
{

%obj.setWheelTire(%i,MyCarTire);
%obj.setWheelSpring(%i, MyCarSpring);
%obj.setWheelPowered(%i, true);

}

// Steer with the front tires only
%obj.setWheelSteering(0, 1);
%obj.setWheelSteering(1, 1);

}

Methods
int WheeledVehicle::getWheelCount()

Get the number of wheels on this vehicle.

5.3. Console Reference 679

Torque 3D Documentation, Release 3.5.1

Returns the number of wheels (equal to the number of hub nodes defined in the model)
bool WheeledVehicle::setWheelPowered(int wheel, bool powered)

Set whether the wheel is powered (has torque applied from the engine). A rear wheel drive car for example
would set the front wheels to false, and the rear wheels to true.

Parameters

• wheel – index of the wheel to set (hub node #)

• powered – flag indicating whether to power the wheel or not

Returns true if successful, false if failed

bool WheeledVehicle::setWheelSpring(int wheel, WheeledVehicleSpring spring)
Set the WheeledVehicleSpring datablock for this wheel.

Parameters

• wheel – index of the wheel to set (hub node #)

• spring – WheeledVehicleSpring datablock

Returns true if successful, false if failed

Example:

%obj.setWheelSpring(0, FrontSpring);

bool WheeledVehicle::setWheelSteering(int wheel, float steering)
Set how much the wheel is affected by steering. The steering factor controls how much the wheel is rotated by
the vehicle steering. For example, most cars would have their front wheels set to 1.0, and their rear wheels set
to 0 since only the front wheels should turn. Negative values will turn the wheel in the opposite direction to the
steering angle.

Parameters

• wheel – index of the wheel to set (hub node #)

• steering – steering factor from -1 (full inverse) to 1 (full)

Returns true if successful, false if failed

bool WheeledVehicle::setWheelTire(int wheel, WheeledVehicleTire tire)
Set the WheeledVehicleTire datablock for this wheel.

Parameters

• wheel – index of the wheel to set (hub node #)

• tire – WheeledVehicleTire datablock

Returns true if successful, false if failed

Example:

%obj.setWheelTire(0, FrontTire);

WheeledVehicleData Defines the properties of a WheeledVehicle.

Inherit: VehicleData

Description Defines the properties of a WheeledVehicle.

680 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
float WheeledVehicleData::brakeTorque

Torque applied when braking. This controls how fast the vehicle will stop when the brakes are applied.
float WheeledVehicleData::engineBrake

Braking torque applied by the engine when the throttle and brake are both 0. This controls how quickly the
vehicle will coast to a stop.

SFXTrack WheeledVehicleData::engineSound
Looping engine sound. The pitch is dynamically adjusted based on the current engine RPM

float WheeledVehicleData::engineTorque
Torque available from the engine at 100% throttle. This controls vehicle acceleration. ie. how fast it will reach
maximum speed.

SFXTrack WheeledVehicleData::jetSound
Looping sound played when the vehicle is jetting.

float WheeledVehicleData::maxWheelSpeed
Maximum linear velocity of each wheel. This caps the maximum speed of the vehicle.

SFXTrack WheeledVehicleData::squealSound
Looping sound played while any of the wheels is slipping. The volume is dynamically adjusted based on how
much the wheels are slipping.

ParticleEmitterData WheeledVehicleData::tireEmitter
ParticleEmitterData datablock used to generate particles from each wheel when the vehicle is moving and the
wheel is in contact with the ground.

SFXTrack WheeledVehicleData::WheelImpactSound
Sound played when the wheels impact the ground. Currently unused.

WheeledVehicleSpring Defines the properties of a WheeledVehicle spring.

Inherit: SimDataBlock

Description Defines the properties of a WheeledVehicle spring.

Fields
float WheeledVehicleSpring::antiSwayForce

Force applied to equalize extension of the spring on the opposite wheel. This force helps to keep the suspension
balanced when opposite wheels are at different heights.

float WheeledVehicleSpring::damping
Force applied to slow changes to the extension of this spring. Increasing this makes the suspension stiffer which
can help stabilise bouncy vehicles.

float WheeledVehicleSpring::force
Maximum spring force (when compressed to minimum length, 0). Increasing this will make the vehicle suspen-
sion ride higher (for a given vehicle mass), and also make the vehicle more bouncy when landing jumps.

float WheeledVehicleSpring::length
Maximum spring length. ie. how far the wheel can extend from the root hub position. This should be set to the
vertical (Z) distance the hub travels in the associated spring animation.

WheeledVehicleTire Defines the properties of a WheeledVehicle tire.

Inherit: SimDataBlock

5.3. Console Reference 681

Torque 3D Documentation, Release 3.5.1

Description Tires act as springs and generate lateral and longitudinal forces to move the vehicle. These distor-
tion/spring forces are what convert wheel angular velocity into forces that act on the rigid body.

Fields
float WheeledVehicleTire::kineticFriction

Tire friction when the wheel is slipping (no traction).
float WheeledVehicleTire::lateralDamping

Damping force applied against lateral forces generated by the tire.

float WheeledVehicleTire::lateralForce
Tire force perpendicular to the direction of movement. Lateral force can in simple terms be considered left/right
steering force. WheeledVehicles are acted upon by forces generated by their tires and the lateralForce mea-
sures the magnitude of the force exerted on the vehicle when the tires are deformed along the x-axis. With
real wheeled vehicles, tires are constantly being deformed and it is the interplay of deformation forces which
determines how a vehicle moves. In Torque’s simulation of vehicle physics, tire deformation obviously can’t be
handled with absolute realism, but the interplay of a vehicle’s velocity, its engine’s torque and braking forces,
and its wheels’ friction, lateral deformation, lateralDamping, lateralRelaxation, longitudinal deformation, lon-
gitudinalDamping, and longitudinalRelaxation forces, along with its wheels’ angular velocity are combined to
create a robust real-time physical simulation. For this field, the larger the value supplied for the lateralForce, the
larger the effect steering maneuvers can have. In Torque tire forces are applied at a vehicle’s wheel hubs.

float WheeledVehicleTire::lateralRelaxation
Relaxing force applied against lateral forces generated by the tire. The lateralRelaxation force measures how
strongly the tire effectively un-deforms.

float WheeledVehicleTire::longitudinalDamping
Damping force applied against longitudinal forces generated by the tire.

float WheeledVehicleTire::longitudinalForce
Tire force in the direction of movement. Longitudinal force can in simple terms be considered forward/backward
movement force. WheeledVehicles are acted upon by forces generated by their tires and the longitudinalForce
measures the magnitude of the force exerted on the vehicle when the tires are deformed along the y-axis. For
this field, the larger the value, the larger the effect acceleration/deceleration inputs have.

float WheeledVehicleTire::longitudinalRelaxation
Relaxing force applied against longitudinal forces generated by the tire. The longitudinalRelaxation force mea-
sures how strongly the tire effectively un-deforms.

float WheeledVehicleTire::mass
The mass of the wheel. Currently unused.

float WheeledVehicleTire::radius
The radius of the wheel. The radius is determined from the bounding box of the shape provided in the shapefile
field, and does not need to be specified in script. The tire should be built with its hub axis along the object’s
Y-axis.

float WheeledVehicleTire::restitution
Tire restitution. Currently unused.

filename WheeledVehicleTire::shapeFile
The path to the shape to use for the wheel.

float WheeledVehicleTire::staticFriction
Tire friction when the wheel is not slipping (has traction).

682 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

5.3.4 Environment

Objects that represent environmental features, such as, terrain, water, atmosphere, plants and trees.

Atmosphere

Objects that represent the atmosphere and weather, such as the sky, sun, clouds, and precipitation.

Classes

BasicClouds Renders up to three layers of scrolling cloud-cover textures overhead.

Inherit: SceneObject

Description BasicClouds always renders overhead, following the camera. It is intended as part of the background
of your level, rendering in front of Sky/Sun type objects and behind everything else.

The parameters controlling the rendering of each texture are refered to and grouped as ‘layers’. They are rendered in
sequential order, so, layer 1 obscures layer 0, and so on.

BasicClouds is not affected by scene lighting and is therefore not appropriate for scenes in which lighting radically
changes, such as day/night.

Fields
float BasicClouds::height[3]

Abstract number which controls the curvature and height of the dome mesh.
bool BasicClouds::layerEnabled[3]

Enable or disable rendering of this layer.

Point2F BasicClouds::texDirection[3]
Texture scroll direction for this layer, relative to the world axis.

Point2F BasicClouds::texOffset[3]
UV offset for this layer.

float BasicClouds::texScale[3]
Texture repeat for this layer.

float BasicClouds::texSpeed[3]
Texture scroll speed for this layer.

filename BasicClouds::texture[3]
Texture for this layer.

CloudLayer A layer of clouds which change shape over time and are affected by scene lighting.

Inherit: SceneObject

Description CloudLayer always renders overhead, following the camera. It is intended as part of the background of
your level, rendering in front of Sky/Sun type objects and behind everything else.

The illusion of clouds forming and changing over time is controlled by the normal/opacity texture and the three sets
of texture animation parameters. The texture is sampled three times. The first sample defines overall cloud density,
where clouds are likely to form and their general size and shape. The second two samples control how it changes over
time; they are combined and used as modifiers to the first sample.

5.3. Console Reference 683

Torque 3D Documentation, Release 3.5.1

CloudLayer is affected by scene lighting and is designed to be used in scenes with dynamic lighting or time of day
changes.

Fields
ColorF CloudLayer::baseColor

Base cloud color before lighting.
float CloudLayer::coverage

Fraction of sky covered by clouds 0-1.

float CloudLayer::exposure
Brightness scale so CloudLayer can be overblown if desired.

float CloudLayer::height
Abstract number which controls the curvature and height of the dome mesh.

Point2F CloudLayer::texDirection[3]
Controls the direction this slot scrolls.

float CloudLayer::texScale[3]
Controls the texture repeat of this slot.

float CloudLayer::texSpeed[3]
Controls the speed this slot scrolls.

filename CloudLayer::texture
An RGBA texture which should contain normals and opacity (density).

float CloudLayer::windSpeed
Overall scalar to texture scroll speed.

ScatterSky Represents both the sun and sky for scenes with a dynamic time of day.

Inherit: SceneObject

Description Represents both the sun and sky for scenes with a dynamic time of day.

ScatterSky renders as a dome shaped mesh which is camera relative and always overhead. It is intended to be part of
the background of your scene and renders before all other objects types.

ScatterSky is designed for outdoor scenes which need to transition fluidly between radically different times of day. It
will respond to time changes originating from a TimeOfDay object or the elevation field can be directly adjusted.

During day, ScatterSky uses atmosphereic sunlight scattering aproximations to generate a sky gradient and sun corona.
It also calculates the fog color, ambient color, and sun color, which are used for scene lighting. This is user controlled
by fields within the ScatterSky group.

During night, ScatterSky supports can transition to a night sky cubemap and moon sprite. The user can control this
and night time colors used for scene lighting with fields within the Night group.

A scene with a ScatterSky should not have any other sky or sun objects as it already fulfills both roles.

ScatterSky is intended to be used with CloudLayer and TimeOfDay as part of a scene with dynamic lighting. Having a
ScatterSky without a changing time of day would unnecessarily give up artistic control compared and fillrate compared
to a SkyBox + Sun setup.

Methods
void ScatterSky::applyChanges()

Apply a full network update of all fields to all clients.

684 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
ColorF ScatterSky::ambientScale

Modulates the ambient color of sunlight.
Point3F ScatterSky::attenuationRatio

The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.

float ScatterSky::azimuth
The horizontal angle of the sun measured clockwise from the positive Y world axis. This field is networked.

float ScatterSky::brightness
The brightness of the ScatterSky’s light object.

bool ScatterSky::castShadows
Enables/disables shadows cast by objects due to ScatterSky light.

ColorF ScatterSky::colorize
Tints the sky the color specified, the alpha controls the brigthness. The brightness is multipled by the value of
colorizeAmt.

float ScatterSky::colorizeAmount
Controls how much the the alpha component of colorize brigthens the sky. Setting to 0 returns default behavior.

filename ScatterSky::cookie
A custom pattern texture which is projected from the light.

float ScatterSky::elevation
The elevation angle of the sun above or below the horizon. This field is networked.

float ScatterSky::exposure
Controls the contrast of the sky and sun during daytime.

float ScatterSky::fadeStartDistance
Start fading shadows out at this distance. 0 = auto calculate this distance.

float ScatterSky::flareScale
Changes the size and intensity of the flare.

LightFlareData ScatterSky::flareType
Datablock for the flare produced by the ScatterSky .

ColorF ScatterSky::fogScale
Modulates the fog color. Note that this overrides the LevelInfo.fogColor property, so you should not use Lev-
elInfo.fogColor if the level contains a ScatterSky object.

bool ScatterSky::includeLightmappedGeometryInShadow
This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedIn-
Lightmap’ is false).

bool ScatterSky::lastSplitTerrainOnly
This toggles only terrain being rendered to the last split of a PSSM shadow map.

float ScatterSky::logWeight
The logrithmic PSSM split distance factor.

float ScatterSky::moonAzimuth
The horizontal angle of the moon measured clockwise from the positive Y world axis. This is not animated by
time or networked.

float ScatterSky::moonElevation
The elevation angle of the moon above or below the horizon. This is not animated by time or networked.

bool ScatterSky::moonEnabled
Enable or disable rendering of the moon sprite during night.

5.3. Console Reference 685

Torque 3D Documentation, Release 3.5.1

ColorF ScatterSky::moonLightColor
Color of light cast by the directional light during night.

string ScatterSky::moonMat
Material for the moon sprite.

float ScatterSky::moonScale
Controls size the moon sprite renders, specified as a fractional amount of the screen height.

ColorF ScatterSky::nightColor
The ambient color during night. Also used for the sky color if useNightCubemap is false.

string ScatterSky::nightCubemap
Cubemap visible during night.

ColorF ScatterSky::nightFogColor
The fog color during night.

int ScatterSky::numSplits
The logrithmic PSSM split distance factor.

Point4F ScatterSky::overDarkFactor
The ESM shadow darkening factor.

float ScatterSky::rayleighScattering
Controls how blue the atmosphere is during the day.

bool ScatterSky::representedInLightmap
This light is represented in lightmaps (static light, default: false).

ColorF ScatterSky::shadowDarkenColor
The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘rep-
resentedInLightmap’ is false).

float ScatterSky::shadowDistance
The distance from the camera to extend the PSSM shadow.

float ScatterSky::shadowSoftness

ShadowType ScatterSky::shadowType
The type of shadow to use on this light.

float ScatterSky::skyBrightness
Global brightness and intensity applied to the sky and objects in the level.

ColorF ScatterSky::sunScale
Modulates the directional color of sunlight.

float ScatterSky::sunSize
Affects the size of the sun’s disk.

int ScatterSky::texSize
The texture size of the shadow map.

bool ScatterSky::useNightCubemap
Transition to the nightCubemap during night. If false we use nightColor.

SkyBox Represents the sky with an artist-created cubemap.

Inherit: SceneObject

686 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description Represents the sky with an artist-created cubemap.

SkyBox is not a directional light and should be used in conjunction with a Sun object.

Fields
bool SkyBox::drawBottom

If false the bottom of the skybox is not rendered.
float SkyBox::fogBandHeight

The height (0-1) of the fog band from the horizon to the top of the SkyBox .

string SkyBox::Material
The name of a cubemap material for the sky box.

void SkyBox::postApply

Sun A global light affecting your entire scene and optionally renders a corona effect.

Inherit: SceneObject

Description A global light affecting your entire scene and optionally renders a corona effect.

Sun is both the directional and ambient light for your entire scene.

Fields
ColorF Sun::ambient

Color shading applied to surfaces not in direct contact with light source, such as in the shadows or interiors.
void Sun::animate

animate(F32 duration, F32 startAzimuth, F32 endAzimuth, F32 startElevation, F32 endElevation)

void Sun::apply

Point3F Sun::attenuationRatio
The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.

float Sun::azimuth
The horizontal angle of the sun measured clockwise from the positive Y world axis.

float Sun::brightness
Adjust the Sun’s global contrast/intensity.

bool Sun::castShadows
Enables/disables shadows cast by objects due to Sun light.

ColorF Sun::color
Color shading applied to surfaces in direct contact with light source.

filename Sun::cookie
A custom pattern texture which is projected from the light.

bool Sun::coronaEnabled
Enable or disable rendering of the corona sprite.

string Sun::coronaMaterial
Texture for the corona sprite.

float Sun::coronaScale
Controls size the corona sprite renders, specified as a fractional amount of the screen height.

5.3. Console Reference 687

Torque 3D Documentation, Release 3.5.1

ColorF Sun::coronaTint
Modulates the corona sprite color (if coronaUseLightColor is false).

bool Sun::coronaUseLightColor
Modulate the corona sprite color by the color of the light (overrides coronaTint).

float Sun::elevation
The elevation angle of the sun above or below the horizon.

float Sun::fadeStartDistance
Start fading shadows out at this distance. 0 = auto calculate this distance.

float Sun::flareScale
Changes the size and intensity of the flare.

LightFlareData Sun::flareType
Datablock for the flare produced by the Sun .

bool Sun::includeLightmappedGeometryInShadow
This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedIn-
Lightmap’ is false).

bool Sun::lastSplitTerrainOnly
This toggles only terrain being rendered to the last split of a PSSM shadow map.

float Sun::logWeight
The logrithmic PSSM split distance factor.

int Sun::numSplits
The logrithmic PSSM split distance factor.

Point4F Sun::overDarkFactor
The ESM shadow darkening factor.

bool Sun::representedInLightmap
This light is represented in lightmaps (static light, default: false).

ColorF Sun::shadowDarkenColor
The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘rep-
resentedInLightmap’ is false).

float Sun::shadowDistance
The distance from the camera to extend the PSSM shadow.

float Sun::shadowSoftness

ShadowType Sun::shadowType
The type of shadow to use on this light.

int Sun::texSize
The texture size of the shadow map.

Water

Objects that represent water features, from puddles to rivers and oceans.

Classes

River A water volume defined by a 3D spline.

Inherit: WaterObject

688 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description A water volume defined by a 3D spline.

User may control width and depth per node and overall spline shape in three dimensions.

River supports dynamic planar reflections (fullReflect) like all WaterObject classes, but keep in mind it is not necessar-
ily a planar surface. For best visual quality a River should be less reflective the more it twists and bends. This caution
only applies to Rivers with fullReflect on.

Methods
void River::regenerate()

Intended as a helper to developers and editor scripts. Force River to recreate its geometry.
void River::setBatchSize(float meters)

Intended as a helper to developers and editor scripts. BatchSize is not currently used.

void River::setMaxDivisionSize(float meters)
Intended as a helper to developers and editor scripts.

void River::setMetersPerSegment(float meters)
Intended as a helper to developers and editor scripts.

void River::setNodeDepth(int idx, float meters)
Intended as a helper to developers and editor scripts. Sets the depth in meters of a particular node.

Fields
bool River::EditorOpen[static]

For editor use.
float River::FlowMagnitude

Magnitude of the force vector applied to dynamic objects within the River .

float River::LowLODDistance
Segments of the river at this distance in meters or greater will render as a single unsubdivided without undulation
effects.

string River::Node
For internal use, do not modify.

float River::SegmentLength
Divide the River lengthwise into segments of this length in meters. These geometric volumes are used for spacial
queries like determining containment.

bool River::showNodes[static]
For editor use.

bool River::showRiver[static]
For editor use.

bool River::showSpline[static]
For editor use.

bool River::showWalls[static]
For editor use.

bool River::showWireframe[static]
For editor use.

float River::SubdivideLength
For purposes of generating the renderable geometry River segments are further subdivided such that no quad is
of greater width or length than this distance in meters.

5.3. Console Reference 689

Torque 3D Documentation, Release 3.5.1

WaterBlock A block shaped water volume defined by a 3D scale and orientation.

Inherit: WaterObject

Description A block shaped water volume defined by a 3D scale and orientation.

Fields
float WaterBlock::gridElementSize

Spacing between vertices in the WaterBlock mesh.
float WaterBlock::gridSize

Duplicate of gridElementSize for backwards compatility.

WaterObject Abstract base class for representing a body of water.

Inherit: SceneObject

Description Abstract base class for representing a body of water.

WaterObject is abstract and may not be created. It defines functionality shared by its derived classes.

WaterObject exposes many fields for controlling it visual quality.

WaterObject surface rendering has the following general features:

It will, however, look significantly different depending on the LightingManager that is active. With Basic Lighting, we
do not have a prepass texture to lookup per-pixel depth and therefore cannot use our rendering techniques that depend
on it.

In particular, the following field groups are not used under Basic Lighting:

WaterObject also defines several fields for gameplay use and objects that support buoyancy.

Fields
ColorI WaterObject::baseColor

Changes color of water fog.
float WaterObject::clarity

Relative opacity or transparency of the water surface.

string WaterObject::cubemap
Cubemap used instead of reflection texture if fullReflect is off.

float WaterObject::density
Affects buoyancy of an object, thus affecting the Z velocity of a player (jumping, falling, etc.

float WaterObject::depthGradientMax
Depth in world units, the max range of the color gradient texture.

filename WaterObject::depthGradientTex
1D texture defining the base water color by depth

float WaterObject::distortEndDist
Max distance that distortion algorithm is performed. The lower, the more distorted the effect.

float WaterObject::distortFullDepth
Determines the scaling down of distortion in shallow water.

float WaterObject::distortStartDist
Determines start of distortion effect where water surface intersects the camera near plane.

690 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool WaterObject::emissive
When true the water colors don’t react to changes to environment lighting.

float WaterObject::foamAmbientLerp

Point2F WaterObject::foamDir[2]

float WaterObject::foamMaxDepth

float WaterObject::foamOpacity[2]

float WaterObject::foamRippleInfluence

float WaterObject::foamSpeed[2]

filename WaterObject::foamTex
Diffuse texture for foam in shallow water (advanced lighting only).

Point2F WaterObject::foamTexScale[2]
applied to the surface.

float WaterObject::fresnelBias
Extent of fresnel affecting reflection fogging.

float WaterObject::fresnelPower
Measures intensity of affect on reflection based on fogging.

bool WaterObject::fullReflect
Enables dynamic reflection rendering.

string WaterObject::liquidType
Liquid type of WaterBlock , such as water, ocean, lava Currently only Water is defined and used.

float WaterObject::overallFoamOpacity

float WaterObject::overallRippleMagnitude
Master variable affecting entire surface.

float WaterObject::overallWaveMagnitude
Master variable affecting entire body of water’s undulation.

float WaterObject::reflectDetailAdjust
scale up or down the detail level for objects rendered in a reflection

float WaterObject::reflectivity
Overall scalar to the reflectivity of the water surface.

int WaterObject::reflectMaxRateMs
Affects the sort time of reflected objects.

bool WaterObject::reflectNormalUp
always use z up as the reflection normal

float WaterObject::reflectPriority
Affects the sort order of reflected objects.

int WaterObject::reflectTexSize
The texture size used for reflections (square).

Point2F WaterObject::rippleDir[3]
Modifies the direction of ripples on the surface.

float WaterObject::rippleMagnitude[3]
Intensifies the vertext modification of the surface.

5.3. Console Reference 691

Torque 3D Documentation, Release 3.5.1

float WaterObject::rippleSpeed[3]
Modifies speed of surface ripples.

filename WaterObject::rippleTex
Normal map used to simulate small surface ripples.

Point2F WaterObject::rippleTexScale[3]
Intensifies the affect of the normal map applied to the surface.

SFXAmbience WaterObject::soundAmbience
Ambient sound environment when listener is submerged.

ColorF WaterObject::specularColor
Color used for specularity on the water surface (sun only).

float WaterObject::specularPower
Power used for specularity on the water surface (sun only).

ColorI WaterObject::underwaterColor
Changes the color shading of objects beneath the water surface.

bool WaterObject::useOcclusionQuery
turn off reflection rendering when occluded (delayed).

float WaterObject::viscosity
Affects drag force applied to an object submerged in this container.

float WaterObject::waterFogDensity
Intensity of underwater fogging.

float WaterObject::waterFogDensityOffset
Delta, or limit, applied to waterFogDensity.

Point2F WaterObject::waveDir[3]
Direction waves flow toward shores.

float WaterObject::waveMagnitude[3]
Height of water undulation.

float WaterObject::waveSpeed[3]
Speed of water undulation.

float WaterObject::wetDarkening
The refract color intensity scaled at wetDepth.

float WaterObject::wetDepth
The depth in world units at which full darkening will be received, giving a wet look to objects underwater.

WaterPlane Represents a large body of water stretching to the horizon in all directions.

Inherit: WaterObject

Description Represents a large body of water stretching to the horizon in all directions.

WaterPlane’s position is defined only height, the z element of position, it is infinite in xy and depth. WaterPlane is
designed to represent the ocean on an island scene and viewed from ground level; other uses may not be appropriate
and a WaterBlock may be used.

Limitations:

Because WaterPlane cannot be projected exactly to the far-clip distance, other objects nearing this distance can have
noticible artifacts as they clip through first the WaterPlane and then the far plane.

692 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

To avoid this large objects should be positioned such that they will not line up with the far-clip from vantage points
the player is expected to be. In particular, your TerrainBlock should be completely contained by the far-clip distance.

Viewing WaterPlane from a high altitude with a tight far-clip distance will accentuate this limitation. WaterPlane is
primarily designed to be viewed from ground level.

Fields
float WaterPlane::gridElementSize

Duplicate of gridElementSize for backwards compatility.
int WaterPlane::gridSize

Spacing between vertices in the WaterBlock mesh.

Variables

bool $pref::Water::disableTrueReflections
Force all water objects to use static cubemap reflections.

bool WaterObject::wireframe[static, inherited]
If true, will render the wireframe of the WaterObject .

Terrain

Objects that specialize in representing terrain and other collidable/walkable surfaces.

Classes

DecalRoad A strip shaped decal defined by spine nodes which clips against Terrain objects.

Inherit: SceneObject

Description A strip shaped decal defined by spine nodes which clips against Terrain objects.

DecalRoad is for representing a road or path (or other inventive things) across a TerrainBlock. It renders as a decal
and is therefore only for features that do not need geometric depth.

The Material assigned to DecalRoad should tile vertically.

Methods
void DecalRoad::postApply()

Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit the
material and other fields (not including nodes) to client objects.

void DecalRoad::regenerate()
Intended as a helper to developers and editor scripts. Force DecalRoad to update it’s spline and reclip geometry.

Fields
float DecalRoad::breakAngle

Angle in degrees - DecalRoad will subdivided the spline if its curve is greater than this threshold.
bool DecalRoad::discardAll[static]

For use by the Decal Editor.

bool DecalRoad::EditorOpen[static]
For use by the Decal Editor.

5.3. Console Reference 693

Torque 3D Documentation, Release 3.5.1

string DecalRoad::Material
Material used for rendering.

string DecalRoad::Node
Do not modify, for internal use.

int DecalRoad::renderPriority
DecalRoad(s) are rendered in descending renderPriority order.

bool DecalRoad::showBatches[static]
For use by the Decal Editor.

bool DecalRoad::showRoad[static]
For use by the Decal Editor.

bool DecalRoad::showSpline[static]
For use by the Decal Editor.

float DecalRoad::textureLength
The length in meters of textures mapped to the DecalRoad .

int DecalRoad::updateDelay[static]
For use by the Decal Editor.

bool DecalRoad::wireframe[static]
For use by the Decal Editor.

GroundPlane An infinite plane extending in all direction.

Inherit: SceneObject

Description An infinite plane extending in all direction.

GroundPlane is useful for setting up simple testing scenes, or it can be placed under an existing scene to keep objects
from falling into ‘nothing’.

GroundPlane may not be moved or rotated, it is always at the world origin.

Methods
void GroundPlane::postApply()

Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit
material and other fields to client objects.

Fields
string GroundPlane::Material

Name of Material used to render GroundPlane’s surface.
float GroundPlane::scaleU

Scale of texture repeat in the U direction.

float GroundPlane::scaleV
Scale of texture repeat in the V direction.

float GroundPlane::squareSize
Square size in meters to which GroundPlane subdivides its geometry.

694 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

MeshRoad A strip of rectangular mesh segments defined by a 3D spline for prototyping road-shaped objects in your
scene.

Inherit: SceneObject

Description A strip of rectangular mesh segments defined by a 3D spline for prototyping road-shaped objects in
your scene.

User may control width and depth per node, overall spline shape in three dimensions, and seperate Materials for
rendering the top, bottom, and side surfaces.

MeshRoad is not capable of handling intersections, branches, curbs, or other desirable features in a final ‘road’ asset
and is therefore intended for prototyping and experimentation.

Materials assigned to MeshRoad should tile vertically.

Methods
void MeshRoad::postApply()

Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit
material and other fields (not including nodes) to client objects.

void MeshRoad::regenerate()
Intended as a helper to developers and editor scripts. Force MeshRoad to recreate its geometry.

void MeshRoad::setNodeDepth(int idx, float meters)
Intended as a helper to developers and editor scripts. Sets the depth in meters of a particular node.

Fields
string MeshRoad::bottomMaterial

Material for the bottom surface of the road.
float MeshRoad::breakAngle

Angle in degrees - MeshRoad will subdivide the spline if its curve is greater than this threshold.

bool MeshRoad::EditorOpen[static]
True if the MeshRoad editor is open, otherwise false.

string MeshRoad::Node
Do not modify, for internal use.

bool MeshRoad::showBatches[static]
Determines if the debug rendering of the batches cubes is displayed or not.

bool MeshRoad::showRoad[static]
If true, the road will be rendered. When in the editor, roads are always rendered regardless of this flag.

bool MeshRoad::showSpline[static]
If true, the spline on which the curvature of this road is based will be rendered.

string MeshRoad::sideMaterial
Material for the left, right, front, and back surfaces of the road.

float MeshRoad::textureLength
The length in meters of textures mapped to the MeshRoad .

string MeshRoad::topMaterial
Material for the upper surface of the road.

int MeshRoad::widthSubdivisions
Subdivide segments widthwise this many times when generating vertices.

5.3. Console Reference 695

Torque 3D Documentation, Release 3.5.1

bool MeshRoad::wireframe[static]
If true, will render the wireframe of the road.

TerrainBlock Represent a terrain object in a Torque 3D level.

Inherit: SceneObject

Description Represent a terrain object in a Torque 3D level.

Example:

newTerrainBlock(theTerrain)
{

terrainFile = "art/terrains/Deathball Desert_0.ter";
squareSize = "2";
tile = "0";
baseTexSize = "1024";
screenError = "16";
position = "-1024 -1024 179.978";
rotation = "1 0 0 0";
scale = "1 1 1";
isRenderEnabled = "true";
canSaveDynamicFields = "1";

};

Methods
bool TerrainBlock::exportHeightMap(string filename)

export the terrain block’s heightmap to a bitmap file (default: png)
bool TerrainBlock::exportLayerMaps(string filePrefix)

export the terrain block’s layer maps to bitmap files (default: png)

int TerrainBlock::import(String terrainName, String heightMap, F32 metersPerPixel, F32 heightScale,
String materials, String opacityLayers)

bool TerrainBlock::save(string fileName)
Saves the terrain block’s terrain file to the specified file name.

Parameters fileName – Name and path of file to save terrain data to.

Returns True if file save was successful, false otherwise

Fields
int TerrainBlock::baseTexSize

Size of base texture size per meter.
bool TerrainBlock::castShadows

Allows the terrain to cast shadows onto itself and other objects.

int TerrainBlock::createNew
TerrainBlock.create(String terrainName, U32 resolution, String materialName, bool genNoise).

int TerrainBlock::lightMapSize
Light map dimensions in pixels.

int TerrainBlock::screenError
Not yet implemented.

float TerrainBlock::squareSize
Indicates the spacing between points on the XY plane on the terrain.

696 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

filename TerrainBlock::terrainFile
The source terrain data file.

Functions

bool getTerrainHeight(Point2I position)
Gets the terrain height at the specified position.

Parameters position – The world space point, minus the z (height) value. Formatted as (“x y”)

Returns Returns the terrain height at the given point as an F32 value.

bool getTerrainHeight(F32 x, F32 y)
Gets the terrain height at the specified position.

Parameters

• x – The X coordinate in world space

• y – The Y coordinate in world space

Returns Returns the terrain height at the given point as an F32 value.

bool getTerrainHeightBelowPosition(Point2I position)
Takes a world point and find the “highest” terrain underneath it.

Parameters position – The world space point, minus the z (height) value. Formatted as (“x y”)

Returns Returns the closest terrain height below the given point as an F32 value.

bool getTerrainHeightBelowPosition(F32 x, F32 y)
Takes a world point and find the “highest” terrain underneath it.

Parameters

• x – The X coordinate in world space

• y – The Y coordinate in world space

Returns Returns the closest terrain height below the given point as an F32 value.

bool getTerrainUnderWorldPoint(Point3F position)
Gets the terrain block that is located under the given world point.

Parameters position – The world space coordinate you wish to query at. Formatted as (“x y z”)

Returns Returns the ID of the requested terrain block (0 if not found).

bool getTerrainUnderWorldPoint(F32 x, F32 y, F32 z)
Takes a world point and find the “highest” terrain underneath it.

Parameters

• x – The X coordinate in world space

• y – The Y coordinate in world space

• z – The Z coordinate in world space

Returns Returns the ID of the requested terrain block (0 if not found).

5.3. Console Reference 697

Torque 3D Documentation, Release 3.5.1

Variables

bool TerrainBlock::debugRender[static, inherited]
Triggers debug rendering of terrain cells.

float $pref::Terrain::detailScale
A global detail scale used to tweak the material detail distances.

float $pref::Terrain::lodScale
A global LOD scale used to tweak the default terrain screen error value.

Forest

Objects for efficiently placing and rendering trees, rocks, foliage, or any such feature needed in large number.

Classes

Forest Forest is a global-bounds scene object provides collision and rendering for a (.forest) data file.

Inherit: SceneObject

Description Forest is a global-bounds scene object provides collision and rendering for a (.forest) data file.

Forest is designed to efficiently render a large number of static meshes: trees, rocks plants, etc. These cannot be
moved at game-time or play animations but do support wind effects using vertex shader transformations guided by
vertex color in the asset and user placed wind emitters (or weapon explosions).

Script level manipulation of forest data is not possible through Forest, it is only the rendering/collision. All editing is
done through the world editor.

Methods
void Forest::clear()
bool Forest::isDirty()

void Forest::regenCells()

Fields
filename Forest::dataFile

The source forest data file.
float Forest::lodReflectScalar

Scalar applied to the farclip distance when Forest renders into a reflection.

bool Forest::saveDataFile
saveDataFile([path])

ForestBrushElement Represents a type of ForestItem and parameters for how it is placed when painting with a
ForestBrush that contains it.

Inherit: SimObject

Description Represents a type of ForestItem and parameters for how it is placed when painting with a ForestBrush
that contains it.

698 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
float ForestBrushElement::elevationMax

The max world space elevation this item will be placed.
float ForestBrushElement::elevationMin

The min world space elevation this item will be placed.

ForestItemData ForestBrushElement::ForestItemData
The type of ForestItem this element holds placement parameters for.

float ForestBrushElement::probability
The probability that this element will be created during an editor brush stroke is the sum of all element proba-
bilities in the brush divided by the probability of this element.

float ForestBrushElement::rotationRange
The max rotation in degrees that items will be placed.

float ForestBrushElement::scaleExponent
An exponent used to bias between the minimum and maximum random sizes.

float ForestBrushElement::scaleMax
The maximum random size of each item.

float ForestBrushElement::scaleMin
The minimum random size for each item.

float ForestBrushElement::sinkMax
Max variation in the sink radius.

float ForestBrushElement::sinkMin
Min variation in the sink radius.

float ForestBrushElement::sinkRadius
This is the radius used to calculate how much to sink the trunk at its base and is used to sink the tree into the
ground when its on a slope.

float ForestBrushElement::slopeMax
The max surface slope in degrees this item will be placed on.

float ForestBrushElement::slopeMin
The min surface slope in degrees this item will be placed on.

ForestItemData Base class for defining a type of ForestItem. It does not implement loading or rendering of the
shapeFile.

Inherit: SimDataBlock

Description Base class for defining a type of ForestItem. It does not implement loading or rendering of the shapeFile.

Fields
float ForestItemData::branchAmp

Amplitude of the effect on larger branches.
bool ForestItemData::collidable

Can other objects or spacial queries hit items of this type.

float ForestItemData::dampingCoefficient
Coefficient used in calculating spring forces on the trunk. Causes oscillation and forces to decay faster over
time.

5.3. Console Reference 699

Torque 3D Documentation, Release 3.5.1

float ForestItemData::detailAmp
Amplitude of the winds effect on leafs/fronds.

float ForestItemData::detailFreq
Frequency (speed) of the effect on leafs/fronds.

float ForestItemData::mass
Mass used in calculating spring forces on the trunk. Generally how springy a plant is.

float ForestItemData::radius
Radius used during placement to ensure items are not crowded.

float ForestItemData::rigidity
Rigidity used in calculating spring forces on the trunk. How much the plant resists the wind force.

filename ForestItemData::shapeFile
Shape file for this item type.

float ForestItemData::tightnessCoefficient
Coefficient used in calculating spring forces on the trunk. How much the plant resists bending.

float ForestItemData::trunkBendScale
Overall bend amount of the tree trunk by wind and impacts.

float ForestItemData::windScale
Overall scale to the effect of wind.

TSForestItemData Concrete implementation of ForestItemData which loads and renders dts format shapeFiles.

Inherit: ForestItemData

Variables

bool Forest::disableImposters[static, inherited]
A debugging aid which will disable rendering of all imposters in the forest.

bool Forest::drawBounds[static, inherited]
A debugging aid which renders the forest bounds.

bool Forest::drawCells[static, inherited]
A debugging aid which renders the forest cell bounds.

bool Forest::forceImposters[static, inherited]
A debugging aid which will force all forest items to be rendered as imposters.

Foliage

Objects used for mass replication of foliage, such as grass, rocks, and bushes.

Classes

fxFoliageReplicator An emitter to replicate fxFoliageItem objects across an area.

Inherit: SceneObject

Description An emitter to replicate fxFoliageItem objects across an area.

700 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
int fxFoliageReplicator::AllowedTerrainSlope

Maximum surface angle allowed for foliage instances.
bool fxFoliageReplicator::AllowOnStatics

Foliage will be placed on Static shapes when set.

bool fxFoliageReplicator::AllowOnTerrain
Foliage will be placed on terrain when set.

bool fxFoliageReplicator::AllowOnWater
Foliage will be placed on/under water when set.

bool fxFoliageReplicator::AllowWaterSurface
Foliage will be placed on water when set. Requires AllowOnWater.

float fxFoliageReplicator::AlphaCutoff
Minimum alpha value allowed on foliage instances.

int fxFoliageReplicator::CullResolution
Minimum size of culling bins. Must be gt = 8 and lt = OuterRadius.

float fxFoliageReplicator::DebugBoxHeight
Height multiplier for drawn culling bins.

float fxFoliageReplicator::FadeInRegion
Region beyond ViewDistance where foliage fades in/out.

float fxFoliageReplicator::FadeOutRegion
Region before ViewClosest where foliage fades in/out.

bool fxFoliageReplicator::FixAspectRatio
Maintain aspect ratio of image if true. This option ignores MaxWidth.

bool fxFoliageReplicator::FixSizeToMax
Use only MaxWidth and MaxHeight for billboard size. Ignores MinWidth and MinHeight.

int fxFoliageReplicator::FoliageCount
Maximum foliage instance count.

filename fxFoliageReplicator::FoliageFile
Image file for the foliage texture.

int fxFoliageReplicator::FoliageRetries
Number of times to try placing a foliage instance before giving up.

float fxFoliageReplicator::GroundAlpha
Alpha of the foliage at ground level. 0 = transparent, 1 = opaque.

bool fxFoliageReplicator::HideFoliage
Foliage is hidden when set to true.

int fxFoliageReplicator::InnerRadiusX
Placement area inner radius on the X axis.

int fxFoliageReplicator::InnerRadiusY
Placement area inner radius on the Y axis.

bool fxFoliageReplicator::LightOn
Foliage should be illuminated with changing lights when true.

bool fxFoliageReplicator::LightSync
Foliage instances have the same lighting when set and LightOn is set.

5.3. Console Reference 701

Torque 3D Documentation, Release 3.5.1

float fxFoliageReplicator::lightTime
Time before foliage illumination cycle repeats.

float fxFoliageReplicator::MaxHeight
Maximum height of foliage billboards.

float fxFoliageReplicator::MaxLuminance
Maximum luminance for foliage instances.

float fxFoliageReplicator::MaxSwayTime
Maximum sway cycle time in seconds.

float fxFoliageReplicator::MaxWidth
Maximum width of foliage billboards.

float fxFoliageReplicator::MinHeight
Minimum height of foliage billboards.

float fxFoliageReplicator::MinLuminance
Minimum luminance for foliage instances.

float fxFoliageReplicator::MinSwayTime
Minumum sway cycle time in seconds.

float fxFoliageReplicator::MinWidth
Minimum width of foliage billboards.

float fxFoliageReplicator::OffsetZ
Offset billboards by this amount vertically.

int fxFoliageReplicator::OuterRadiusX
Placement area outer radius on the X axis.

int fxFoliageReplicator::OuterRadiusY
Placement area outer radius on the Y axis.

int fxFoliageReplicator::PlacementAreaHeight
Height of the placement ring in world units.

ColorF fxFoliageReplicator::PlacementColour
Color of the placement ring.

bool fxFoliageReplicator::RandomFlip
Randomly flip billboards left-to-right.

int fxFoliageReplicator::seed
Random seed for foliage placement.

bool fxFoliageReplicator::ShowPlacementArea
Draw placement rings when set to true.

float fxFoliageReplicator::SwayMagFront
Front-to-back sway magnitude.

float fxFoliageReplicator::SwayMagSide
Left-to-right sway magnitude.

bool fxFoliageReplicator::SwayOn
Foliage should sway randomly when true.

bool fxFoliageReplicator::SwaySync
Foliage instances should sway together when true and SwayOn is enabled.

702 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool fxFoliageReplicator::UseCulling
Use culling bins when enabled.

bool fxFoliageReplicator::UseDebugInfo
Culling bins are drawn when set to true.

bool fxFoliageReplicator::useTrueBillboards
Use camera facing billboards (including the z axis).

float fxFoliageReplicator::ViewClosest
Minimum distance from camera where foliage appears.

float fxFoliageReplicator::ViewDistance
Maximum distance from camera where foliage appears.

fxShapeReplicatedStatic The object definition for shapes that will be replicated across an area using an
fxShapeReplicator.

Inherit: SceneObject

Description The object definition for shapes that will be replicated across an area using an fxShapeReplicator.

Fields
bool fxShapeReplicatedStatic::allowPlayerStep

Allow a Player to walk up sloping polygons in the TSStatic (based on the collisionType). When set to false, the
slightest bump will stop the player from walking on top of the object.

TSMeshType fxShapeReplicatedStatic::collisionType
The type of mesh data to use for collision queries.

TSMeshType fxShapeReplicatedStatic::decalType
The type of mesh data used to clip decal polygons against.

int fxShapeReplicatedStatic::forceDetail
Forces rendering to a particular detail level.

bool fxShapeReplicatedStatic::meshCulling
Enables detailed culling of meshes within the TSStatic . Should only be used with large complex shapes like
buildings which contain many submeshes.

bool fxShapeReplicatedStatic::originSort
Enables translucent sorting of the TSStatic by its origin instead of the bounds.

bool fxShapeReplicatedStatic::playAmbient
Enables automatic playing of the animation sequence named “ambient” (if it exists) when the TSStatic is loaded.

float fxShapeReplicatedStatic::renderNormals
Debug rendering mode shows the normals for each point in the TSStatic’s mesh.

filename fxShapeReplicatedStatic::shapeName
Path and filename of the model file (.DTS, .DAE) to use for this TSStatic .

string fxShapeReplicatedStatic::skin
The skin applied to the shape. ‘Skinning’ the shape effectively renames the material targets, allowing different
materials to be used on different instances of the same model. Any material targets that start with the old skin
name have that part of the name replaced with the new skin name. The initial old skin name is “base”. For
example, if a new skin of “blue” was applied to a model that had material targets base_body and face , the new
targets would be blue_body and face . Note that face was not renamed since it did not start with the old skin
name of “base”. To support models that do not use the default “base” naming convention, you can also specify

5.3. Console Reference 703

Torque 3D Documentation, Release 3.5.1

the part of the name to replace in the skin field itself. For example, if a model had a material target called
shapemat , we could apply a new skin “shape=blue”, and the material target would be renamed to bluemat (note
“shape” has been replaced with “blue”). Multiple skin updates can also be applied at the same time by separating
them with a semicolon. For example: “base=blue;face=happy_face”. Material targets are only renamed if an
existing Material maps to that name, or if there is a diffuse texture in the model folder with the same name as
the new target.

fxShapeReplicator An emitter for objects to replicate across an area.

Inherit: SceneObject

Description An emitter for objects to replicate across an area.

Fields
bool fxShapeReplicator::AlignToTerrain

Align shapes to surface normal when set.
int fxShapeReplicator::AllowedTerrainSlope

Maximum surface angle allowed for shape instances.

bool fxShapeReplicator::AllowOnStatics
Shapes will be placed on Static shapes when set.

bool fxShapeReplicator::AllowOnTerrain
Shapes will be placed on terrain when set.

bool fxShapeReplicator::AllowOnWater
Shapes will be placed on/under water when set.

bool fxShapeReplicator::AllowWaterSurface
Shapes will be placed on water when set. Requires AllowOnWater.

bool fxShapeReplicator::HideReplications
Replicated shapes are hidden when set to true.

int fxShapeReplicator::InnerRadiusX
Placement area inner radius on the X axis.

int fxShapeReplicator::InnerRadiusY
Placement area inner radius on the Y axis.

bool fxShapeReplicator::Interactions
Allow physics interactions with shapes.

int fxShapeReplicator::OffsetZ
Offset shapes by this amount vertically.

int fxShapeReplicator::OuterRadiusX
Placement area outer radius on the X axis.

int fxShapeReplicator::OuterRadiusY
Placement area outer radius on the Y axis.

int fxShapeReplicator::PlacementAreaHeight
Height of the placement ring in world units.

ColorF fxShapeReplicator::PlacementColour
Color of the placement ring.

704 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int fxShapeReplicator::seed
Random seed for shape placement.

int fxShapeReplicator::ShapeCount
Maximum shape instance count.

filename fxShapeReplicator::shapeFile
Filename of shape to replicate.

int fxShapeReplicator::ShapeRetries
Number of times to try placing a shape instance before giving up.

Point3F fxShapeReplicator::ShapeRotateMax
Maximum shape rotation angles.

Point3F fxShapeReplicator::ShapeRotateMin
Minimum shape rotation angles.

Point3F fxShapeReplicator::ShapeScaleMax
Maximum shape scale.

Point3F fxShapeReplicator::ShapeScaleMin
Minimum shape scale.

bool fxShapeReplicator::ShowPlacementArea
Draw placement rings when set to true.

Point3F fxShapeReplicator::TerrainAlignment
Surface normals will be multiplied by these values when AlignToTerrain is enabled.

GroundCover Covers the ground in a field of objects (IE: Grass, Flowers, etc).

Inherit: SceneObject

Description Covers the ground in a field of objects (IE: Grass, Flowers, etc).

Fields
RectF GroundCover::billboardUVs[8]

Subset material UV coordinates for this cover billboard.
float GroundCover::clumpExponent[8]

An exponent used to bias between the minimum and maximum clump counts for a particular clump.

float GroundCover::clumpRadius[8]
The maximum clump radius.

float GroundCover::dissolveRadius
This is less than or equal to radius and defines when fading of cover elements begins.

int GroundCover::gridSize
The number of cells per axis in the grid.

bool GroundCover::invertLayer[8]
Indicates that the terrain material index given in ‘layer’ is an exclusion mask.

string GroundCover::layer[8]
Terrain material name to limit coverage to, or blank to not limit.

bool GroundCover::lockFrustum
Debug parameter for locking the culling frustum which will freeze the cover generation.

5.3. Console Reference 705

Torque 3D Documentation, Release 3.5.1

string GroundCover::Material
Material used by all GroundCover segments.

float GroundCover::maxBillboardTiltAngle
The maximum amout of degrees the billboard will tilt down to match the camera.

int GroundCover::maxClumpCount[8]
The maximum amount of elements in a clump.

int GroundCover::maxElements
The maximum amount of cover elements to include in the grid at any one time.

float GroundCover::maxElevation[8]
The maximum world space elevation for placement.

float GroundCover::maxSlope[8]
The maximum slope angle in degrees for placement.

int GroundCover::minClumpCount[8]
The minimum amount of elements in a clump.

float GroundCover::minElevation[8]
The minimum world space elevation for placement.

bool GroundCover::noBillboards
Debug parameter for turning off billboard rendering.

bool GroundCover::noShapes
Debug parameter for turning off shape rendering.

float GroundCover::probability[8]
The probability of one cover type verses another (relative to all cover types).

float GroundCover::radius
Outer generation radius from the current camera position.

float GroundCover::reflectScale
Scales the various culling radii when rendering a reflection. Typically for water.

bool GroundCover::renderCells
Debug parameter for displaying the grid cells.

int GroundCover::seed
This RNG seed is saved and sent to clients for generating the same cover.

float GroundCover::shapeCullRadius
This is the distance at which DTS elements are completely culled out.

filename GroundCover::shapeFilename[8]
The cover shape filename. [Optional].

bool GroundCover::shapesCastShadows
Whether DTS elements should cast shadows or not.

float GroundCover::sizeExponent[8]
An exponent used to bias between the minimum and maximum random sizes.

float GroundCover::sizeMax[8]
The maximum random size of this cover type.

float GroundCover::sizeMin[8]
The minimum random size for each cover type.

706 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Point2F GroundCover::windDirection
The direction of the wind.

float GroundCover::windGustFrequency
Controls how often the wind gust peaks per second.

float GroundCover::windGustLength
The length in meters between peaks in the wind gust.

float GroundCover::windGustStrength
The maximum distance in meters that the peak wind gust will displace an element.

float GroundCover::windScale[8]
The wind effect scale.

float GroundCover::windTurbulenceFrequency
Controls the overall rapidity of the wind turbulence.

float GroundCover::windTurbulenceStrength
The maximum distance in meters that the turbulence can displace a ground cover element.

float GroundCover::zOffset
Offset along the Z axis to render the ground cover.

Functions

void StartClientReplication()
Activates the shape replicator.

Example:

// Call the function
StartClientReplication()

void StartFoliageReplication()
Activates the foliage replicator.

Example:

// Call the function
StartFoliageReplication();

Variables

float $pref::GroundCover::densityScale
A global LOD scalar which can reduce the overall density of placed GroundCover .

int GroundCover::renderedBatches[static, inherited]
Stat for number of rendered billboard batches.

int GroundCover::renderedBillboards[static, inherited]
Stat for number of rendered billboards.

int GroundCover::renderedCells[static, inherited]
Stat for number of rendered cells.

int GroundCover::renderedShapes[static, inherited]
Stat for number of rendered shapes.

5.3. Console Reference 707

Torque 3D Documentation, Release 3.5.1

Miscellaneous

Miscellaneous environmental and level objects.

Classes

ConvexShape A renderable, collidable convex shape defined by a collection of surface planes.

Inherit: SceneObject

Description ConvexShape is intended to be used as a temporary asset for quickly blocking out a scene or filling in
approximate shapes to be later replaced with final assets. This is most easily done by using the WorldEditor’s Sketch
Tool.

Fields
string ConvexShape::Material

Material used to render the ConvexShape surface.
string ConvexShape::surface

Do not modify, for internal use.

LevelInfo Stores and controls the rendering and status information for a game level.

Inherit: NetObject

Description Stores and controls the rendering and status information for a game level.

Example:

newLevelInfo(theLevelInfo)
{

visibleDistance = "1000";
fogColor = "0.6 0.6 0.7 1";
fogDensity = "0";
fogDensityOffset = "700";
fogAtmosphereHeight = "0";
canvasClearColor = "0 0 0 255";
canSaveDynamicFields = "1";
levelName = "Blank Room";
desc0 = "A blank room ready to be populated with Torque objects.";
Enabled = "1";

};

Fields
bool LevelInfo::advancedLightmapSupport

Enable expanded support for mixing static and dynamic lighting (more costly).
EaseF LevelInfo::ambientLightBlendCurve

Interpolation curve to use for blending from one ambient light color to a different one.

float LevelInfo::ambientLightBlendPhase
Number of seconds it takes to blend from one ambient light color to a different one.

ColorI LevelInfo::canvasClearColor
The color used to clear the background before the scene or any GUIs are rendered.

708 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float LevelInfo::decalBias
NearPlane bias used when rendering Decal and DecalRoad . This should be tuned to the visibleDistance in your
level.

float LevelInfo::fogAtmosphereHeight
A height in meters for altitude fog falloff.

ColorF LevelInfo::fogColor
The default color for the scene fog.

float LevelInfo::fogDensity
The 0 to 1 density value for the exponential fog falloff.

float LevelInfo::fogDensityOffset
An offset from the camera in meters for moving the start of the fog effect.

float LevelInfo::nearClip
Closest distance from the camera’s position to render the world.

SFXAmbience LevelInfo::soundAmbience
The global ambient sound environment.

SFXDistanceModel LevelInfo::soundDistanceModel
The distance attenuation model to use.

float LevelInfo::visibleDistance
Furthest distance fromt he camera’s position to render the world.

Marker A single joint, or knot, along a path.

Inherit: SceneObject

Description A single joint, or knot, along a path. Should be stored inside a Path container object. A path markers
can be one of three primary movement types: “normal”, “Position Only”, or “Kink”.

Example:

new path()
{

isLooping = "1";

newMarker()
{

seqNum = "0";
type = "Normal";
msToNext = "1000";
smoothingType = "Spline";
position = "-0.054708 -35.0612 234.802";
rotation = "1 0 0 0";

};

};

Fields
int Marker::msToNext

Milliseconds to next marker in sequence.
int Marker::seqNum

Marker position in sequence of markers on this path.

5.3. Console Reference 709

Torque 3D Documentation, Release 3.5.1

MarkerSmoothingType Marker::smoothingType
Path smoothing at this marker/knot. “Linear” means no smoothing, while “Spline” means to smooth.

MarkerKnotType Marker::type
Type of this marker/knot. A “normal” knot will have a smooth camera translation/rotation effect. “Position
Only” will do the same for translations, leaving rotation un-touched. Lastly, a “Kink” means the rotation will
take effect immediately for an abrupt rotation change.

MissionArea Level object which defines the boundaries of the level.

Inherit: NetObject

Description This is a simple box with starting points, width, depth, and height. It does not have any default func-
tionality. Instead, when objects hit the boundaries certain script callbacks will be made allowing you to control the
reaction.

Example:

newMissionArea(GlobalMissionArea)
{

Area = "-152 -352 1008 864";
flightCeiling = "300";
flightCeilingRange = "20";
canSaveDynamicFields = "1";

enabled = "1";
TypeBool locked = "false";

};

Methods
string MissionArea::getArea()

Returns 4 fields: starting x, starting y, extents x, extents y.
void MissionArea::postApply()

Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit
material and other fields (not including nodes) to client objects.

void MissionArea::setArea(int x, int y, int width, int height)
Defines the size of the MissionArea param x Starting X coordinate position for MissionArea param y Starting
Y coordinate position for MissionArea param width New width of the MissionArea param height New height
of the MissionArea

Fields
RectI MissionArea::area

Four corners (X1, X2, Y1, Y2) that makes up the level’s boundaries.
float MissionArea::flightCeiling

Represents the top of the mission area, used by FlyingVehicle .

float MissionArea::flightCeilingRange
Distance from ceiling before FlyingVehicle thrust is cut off.

MissionMarker This is a base class for all “marker” related objets. It is a 3D representation of a point in the level.

Inherit: ShapeBase

710 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description The main use of a MissionMarker is to represent a point in 3D space with a mesh and basic ShapeBase
information. If you simply need to mark a spot in your level, with no overhead from additional fields, this is a useful
object.

Example:

newMissionMarker()
{

dataBlock = "WayPointMarker";
position = "295.699 -171.817 280.124";
rotation = "0 0 -1 13.8204";
scale = "1 1 1";
isRenderEnabled = "true";
canSaveDynamicFields = "1";
enabled = "1";

};

MissionMarkerData A very basic class containing information used by MissionMarker objects for rendering.

Inherit: ShapeBaseData

Description MissionMarkerData, is an extremely barebones class derived from ShapeBaseData. It is solely used by
MissionMarker classes (such as SpawnSphere), so that you can see the object while editing a level.

Example:

datablock MissionMarkerData(SpawnSphereMarker)
{

category = "Misc";
shapeFile = "core/art/shapes/octahedron.dts";

};

OcclusionVolume An invisible shape that causes objects hidden from view behind it to not be rendered.

Inherit: SceneObject

Description OcclusionVolume is a class for scene optimization. It’s main use is for outdoor spaces where zones
and portals do not help in optimizing scene culling as they almost only make sense for modeling visibility in indoor
scenarios (and for connecting indoor spaces to outdoor spaces).

During rendering, every object that is fully behind an occluder

Be aware that occluders add overhead to scene culling. Only if this overhead is outweighed by the time saved by
not rendering hidden objects, is the occluder actually effective. Because of this, chose only those spots for placing
occluders where a significant number of objects will be culled from points that the player will actually be at during the
game.

Like zones and portals, OcclusionVolumes may have a default box shape or a more complex.

Fields
string OcclusionVolume::edge

For internal use only.
string OcclusionVolume::plane

For internal use only.

5.3. Console Reference 711

Torque 3D Documentation, Release 3.5.1

string OcclusionVolume::point
For internal use only.

Path A spline along which various objects can move along.

Inherit: SimGroup

Description A spline along which various objects can move along. The spline object acts like a container for Marker
objects, which make up the joints, or knots, along the path. Paths can be assigned a speed, can be looping or non-
looping. Each of a path’s markers can be one of three primary movement types: “normal”, “Position Only”, or “Kink”.

Example:

new path()
{

isLooping = "1";

newMarker()
{

seqNum = "0";
type = "Normal";
msToNext = "1000";
smoothingType = "Spline";
position = "-0.054708 -35.0612 234.802";
rotation = "1 0 0 0";

};

};

Methods
int Path::getPathId()

Returns the PathID (not the object ID) of this path.

Returns PathID (not the object ID) of this path.

Example:

// Acquire the PathID of this path object.
%pathID = %thisPath.getPathId();

Fields
bool Path::isLooping

If this is true, the loop is closed, otherwise it is open.

PhysicalZone Physical Zones are areas that modify the player’s gravity and/or velocity and/or applied force.

Inherit: SceneObject

Description The datablock properties determine how the physics, velocity and applied forces affect a player who
enters this zone.

Example:

712 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

newPhysicalZone(Team1JumpPad) {
velocityMod = "1";gravityMod = "0";
appliedForce = "0 0 20000";
polyhedron = "0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 0.0000000 0.0000000 0.0000000 1.0000000";
position = "273.559 -166.371 249.856";
rotation = "0 0 1 13.0216";
scale = "8 4.95 28.31";
isRenderEnabled = "true";
canSaveDynamicFields = "1";
enabled = "1";
};

Methods
void PhysicalZone::activate()

Activate the physical zone’s effects.

Example:

// Activate effects for a specific physical zone.
%thisPhysicalZone.activate();

void PhysicalZone::deactivate()
Deactivate the physical zone’s effects.

Example:

// Deactivate effects for a specific physical zone.
%thisPhysicalZone.deactivate();

Fields
Point3F PhysicalZone::appliedForce

Three-element floating point value representing forces in three axes to apply to objects entering PhysicalZone .
float PhysicalZone::gravityMod

Gravity in PhysicalZone . Multiplies against standard gravity.

floatList PhysicalZone::polyhedron
The polyhedron type is really a quadrilateral and consists of a cornerpoint followed by three vectors representing
the edges extending from the corner.

bool PhysicalZone::renderZones[static]
If true, a box will render around the location of all PhysicalZones.

float PhysicalZone::velocityMod
Multiply velocity of objects entering zone by this value every tick.

Portal An object that provides a “window” into a zone, allowing a viewer to see what’s rendered in the zone.

Inherit: Zone

Description A portal is an object that connects zones such that the content of one zone becomes visible in the other
when looking through the portal.

Each portal is a full zone which is divided into two sides by the portal plane that intersects it. This intersection polygon
is shown in red in the editor. Either of the sides of a portal can be connected to one or more zones.

A connection from a specific portal side to a zone is made in either of two ways:

5.3. Console Reference 713

Torque 3D Documentation, Release 3.5.1

1. By moving a Zone object to intersect with the portal at the respective side. While usually it makes sense for this
overlap to be small, the connection is established correctly as long as the center of the Zone object that should
connect is on the correct side of the portal plane.

2. By the respective side of the portal free of Zone objects that would connect to it. In this case, given that the
other side is connected to one or more Zones, the portal will automatically connect itself to the outdoor “zone”
which implicitly is present in any level.

From this, it follows that there are two types of portals:

Exterior Portals An exterior portal is one that is connected to one or more Zone objects on one side and to the
outdoor zone at the other side. This kind of portal is most useful for covering transitions from outdoor spaces to
indoor spaces.

Interior Portals An interior portal is one that is connected to one or more Zone objects on both sides. This kind of
portal is most useful for covering transitions between indoor spaces

Strictly speaking, there is a third type of portal called an “invalid portal”. This is a portal that is not connected to a
Zone object on either side in which case the portal serves no use.

Portals in Torque are bidirectional meaning that they connect zones both ways and you can look through the portal’s
front side as well as through its back-side.

Like Zones, Portals can either be box-shaped or use custom convex polyhedral shapes.

Portals will usually be created in the editor but can, of course, also be created in script code as such:

Example:

// Example declaration of a Portal.
// This will create a box-shaped portal.
newPortal(PortalToTestZone)
{

position = "12.8467 -4.02246 14.8017";
rotation = "0 0 -1 97.5085";
scale = "1 0.25 1";
canSave = "1";
canSaveDynamicFields = "1";

};

Note: Keep in mind that zones and portals are more or less strictly a scene optimization mechanism meant to improve
render times.

Methods
bool Portal::isExteriorPortal()

Test whether the portal connects interior zones to the outdoor zone.

Returns True if the portal is an exterior portal.
bool Portal::isInteriorPortal()

Test whether the portal connects interior zones only.

Returns True if the portal is an interior portal.

Fields
bool Portal::backSidePassable

Whether one can view through the back-side of the portal.
bool Portal::frontSidePassable

Whether one can view through the front-side of the portal.

714 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Prefab A collection of arbitrary objects which can be allocated and manipulated as a group.

Inherit: SceneObject

Description Prefab always points to a (.prefab) file which defines its objects. In fact more than one Prefab can
reference this file and both will update if the file is modified.

Prefab is a very simple object and only exists on the server. When it is created it allocates children objects by reading
the (.prefab) file like a list of instructions. It then sets their transform relative to the Prefab and Torque networking
handles the rest by ghosting the new objects to clients. Prefab itself is not ghosted.

Methods
void Prefab::onLoad(SimGroup children)

Called when the prefab file is loaded and children objects are created.

Parameters children – SimGroup containing all children objects.

Fields
filename Prefab::fileName

(.prefab) File describing objects within this prefab.

ReflectorDesc A datablock which defines performance and quality properties for dynamic reflections.

Inherit: SimDataBlock

Description ReflectorDesc is not itself a reflection and does not render reflections. It is a dummy class for holding
and exposing to the user a set of reflection related properties. Objects which support dynamic reflections may then
reference a ReflectorDesc.

Example:

datablock ReflectorDesc(ExampleReflectorDesc)
{

texSize = 256;
nearDist = 0.1;
farDist = 500;
objectTypeMask = 0xFFFFFFFF;
detailAdjust = 1.0;
priority = 1.0;
maxRateMs = 0;
useOcclusionQuery = true;

};

Fields
float ReflectorDesc::detailAdjust

Scale applied to lod calculation of objects rendering into this reflection (modulates $pref::TS::detailAdjust).
float ReflectorDesc::farDist

Far plane distance to use when rendering reflections.

int ReflectorDesc::maxRateMs
If less than maxRateMs has elapsed since this relfection was last updated, then do not update it again. This
‘skip’ can be disabled by setting maxRateMs to zero.

float ReflectorDesc::nearDist
Near plane distance to use when rendering this reflection. Adjust this to limit self-occlusion artifacts.

5.3. Console Reference 715

Torque 3D Documentation, Release 3.5.1

int ReflectorDesc::objectTypeMask
Object types which render into this reflection.

float ReflectorDesc::priority
Priority for updating this reflection, relative to others.

int ReflectorDesc::texSize
Size in pixels of the (square) reflection texture. For a cubemap this value is interpreted as size of each face.

bool ReflectorDesc::useOcclusionQuery
If available on the device use HOQs to determine if the reflective object is visible before updating its reflection.

TerrainMaterial The TerrainMaterial class orginizes the material settings for a single terrain material layer.

Inherit: SimObject

Description The TerrainMaterial class orginizes the material settings for a single terrain material layer.

Example:

// Created by the Terrain Painter tool in the World EditornewTerrainMaterial()
{

internalName = "grass1";
diffuseMap = "art/terrains/Test/grass1";
detailMap = "art/terrains/Test/grass1_d";
detailSize = "10";
isManaged = "1";
detailBrightness = "1";
Enabled = "1";
diffuseSize = "200";

};

Fields
float TerrainMaterial::detailDistance

Changes how far camera can see the detail map rendering on the material.
filename TerrainMaterial::detailMap

Detail map for the material.

float TerrainMaterial::detailSize
Used to scale the detail map to the material square.

float TerrainMaterial::detailStrength
Exponentially sharpens or lightens the detail map rendering on the material.

filename TerrainMaterial::diffuseMap
Base texture for the material.

float TerrainMaterial::diffuseSize
Used to scale the diffuse map to the material square.

float TerrainMaterial::macroDistance
Changes how far camera can see the Macro map rendering on the material.

filename TerrainMaterial::macroMap
Macro map for the material.

float TerrainMaterial::macroSize
Used to scale the Macro map to the material square.

716 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float TerrainMaterial::macroStrength
Exponentially sharpens or lightens the Macro map rendering on the material.

filename TerrainMaterial::normalMap
Bump map for the material.

float TerrainMaterial::parallaxScale
Used to scale the height from the normal map to give some self occlusion effect (aka parallax) to the terrain
material.

bool TerrainMaterial::useSideProjection
Makes that terrain material project along the sides of steep slopes instead of projected downwards.

TimeOfDay Environmental object that triggers a day/night cycle in level.

Inherit: SceneObject

Description Environmental object that triggers a day/night cycle in level.

Example:

newTimeOfDay(tod)
{

axisTilt = "23.44";
dayLength = "120";
startTime = "0.15";
time = "0.15";
play = "0";
azimuthOverride = "572.958";
dayScale = "1";
nightScale = "1.5";
position = "598.399 550.652 196.297";
rotation = "1 0 0 0";
scale = "1 1 1";
canSave = "1";
canSaveDynamicFields = "1";

};

Methods
void TimeOfDay::addTimeOfDayEvent(float elevation, string identifier)
void TimeOfDay::animate(float elevation, float degreesPerSecond)

void TimeOfDay::setDayLength(float seconds)

void TimeOfDay::setPlay(bool enabled)

void TimeOfDay::setTimeOfDay(float time)

Fields
float TimeOfDay::axisTilt

The angle in degrees between global equator and tropic.
float TimeOfDay::azimuthOverride

float TimeOfDay::dayLength
The length of a virtual day in real world seconds.

float TimeOfDay::dayScale
Scalar applied to time that elapses while the sun is up.

5.3. Console Reference 717

Torque 3D Documentation, Release 3.5.1

float TimeOfDay::nightScale
Scalar applied to time that elapses while the sun is down.

bool TimeOfDay::play
True when the TimeOfDay object is operating.

float TimeOfDay::startTime

float TimeOfDay::time
Current time of day.

WayPoint Special type of marker, distinguished by a name and team ID number.

Inherit: MissionMarker

Description The original Torque engines were built from a multi-player game called Tribes. The Tribes series
featured various team based game modes, such as capture the flag. The WayPoint class survived the conversion from
game (Tribes) to game engine (Torque).

Essentially, this is a MissionMarker with the addition of two variables: markerName and team. Whenever a WayPoint
is created, it is added to a unique global list called WayPointSet. You can iterate through this set, seeking out specific
markers determined by their markerName and team ID. This avoids the overhead of constantly calling commandTo-
Client and commandToServer to determine a WayPoint object’s name, unique ID, etc.

Example:

newWayPoint()
{

team = "1";
dataBlock = "WayPointMarker";
position = "-0.0224786 1.53471 2.93219";
rotation = "1 0 0 0";
scale = "1 1 1";
canSave = "1";
canSaveDynamicFields = "1";

};

Fields
caseString WayPoint::markerName

Unique name representing this waypoint.
WayPointTeam WayPoint::team

Unique numerical ID assigned to this waypoint, or set of waypoints.

Zone An object that represents an interior space.

Inherit: SceneObject

Description A zone is an invisible volume that encloses an interior space. All objects that have their world space
axis-aligned bounding boxes (AABBs) intersect the zone’s volume are assigned to the zone. This assignment happens
automatically as objects are placed and transformed. Also, assignment is not exclusive meaning that an object can be
assigned to many zones at the same time if it intersects all of them.

In itself, the volume of a zone is fully sealed off from the outside. This means that while viewing the scene from inside
the volume, only objects assigned to the zone are rendered while when viewing the scene from outside the volume,
objects exclusively only assigned the zone are not rendered.

718 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Usually, you will want to connect zones to each other by means of portals. A portal overlapping with a zone

Example:

// Example declaration of a Zone. This creates a box-shaped zone.newZone(TestZone)
{

position = "3.61793 -1.01945 14.7442";
rotation = "1 0 0 0";
scale = "10 10 10";

};

Zone Groups Normally, Zones will not connect to each other when they overlap. This means that if viewing the
scene from one zone, the contents of the other zone will not be visible except when there is a portal connecting the
zones. However, sometimes it is convenient to represent a single interior space through a combination of Zones so that
when any of these zones is visible, all other zones that are part of the same interior space are visible. This is possible
by employing “zone groups”.

Methods
void Zone::dumpZoneState(bool updateFirst)

Dump a list of all objects assigned to the zone to the console as well as a list of all connected zone spaces.

Parameters updateFirst – Whether to update the contents of the zone before dumping. Since
zoning states of objects are updated on demand, the zone contents can be outdated.

int Zone::getZoneId()
Get the unique numeric ID of the zone in its scene.

Returns The ID of the zone.

Fields
ColorF Zone::ambientLightColor

Color of ambient lighting in this zone. Only used if useAmbientLightColor is true.
string Zone::edge

For internal use only.

string Zone::plane
For internal use only.

string Zone::point
For internal use only.

SFXAmbience Zone::soundAmbience
Ambient sound environment for the space.

bool Zone::useAmbientLightColor
Whether to use ambientLightColor for ambient lighting in this zone or the global ambient color.

int Zone::zoneGroup
ID of group the zone is part of.

Enumeration

enum MarkerKnotType
The type of knot that this marker will be.

Parameters

• Normal – Knot will have a smooth camera translation/rotation effect.

5.3. Console Reference 719

Torque 3D Documentation, Release 3.5.1

• Only – Will do the same for translations, leaving rotation un-touched.

• Kink – The rotation will take effect immediately for an abrupt rotation change.

enum MarkerSmoothingType
The type of smoothing this marker will have for pathed objects.

Parameters

• Spline – Marker will cause the movements of the pathed object to be smooth.

• Linear – Marker will have no smoothing effect.

Functions

MissionArea getMissionAreaServerObject()
Get the MissionArea object, if any.

5.3.5 Miscellaneous

Camera, sound, input and networking.

Camera

This section is dedicated to the various camera objects in Torque 3D. The base Camera object that is typically manip-
ulated by a GameConnection’s input. A Path Camera moves along a path.

Classes

Camera Represents a position, direction and field of view to render a scene from.

Inherit: ShapeBase

Description A camera is typically manipulated by a GameConnection. When set as the connection’s control object,
the camera handles all movement actions ($mvForwardAction, $mvPitch, etc.) just like a Player.

Example:

// Set an already created camera as the GameConnections control object
%connection.setControlObject(%camera);

Methods of Operation The camera has two general methods of operation. The first is the standard mode where the
camera starts and stops its motion and rotation instantly. This is the default operation of the camera and is used by
most games. It may be specifically set with Camera::setFlyMode() for 6 DoF motion. It is also typically the method
used with Camera::setOrbitMode() or one of its helper methods to orbit about a specific object (such as the Player’s
dead body) or a specific point.

The second method goes under the name of Newton as it follows Newton’s 2nd law of motion: F=ma. This provides
the camera with an ease-in and ease-out feel for both movement and rotation. To activate this method for movement,
either use Camera::setNewtonFlyMode() or set the Camera::newtonMode field to true. To activate this method for
rotation, set the Camera::newtonRotation to true. This method of operation is not typically used in games, and was
developed to allow for a smooth fly through of a game level while recording a demo video. But with the right force
and drag settings, it may give a more organic feel to the camera to games that use an overhead view, such as a RTS.

720 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

There is a third, minor method of operation but it is not generally used for games. This is when the camera is
used with Torque’s World Editor in Edit Orbit Mode. When set, this allows the camera to rotate about a spe-
cific point in the world, and move towards and away from this point. See Camera::setEditOrbitMode() and Cam-
era::setEditOrbitPoint(). While in this mode, Camera::autoFitRadius() may also be used.

Example:

// Create a camera in the level and set its position to a given spawn point.
// Note: The camera starts in the standard fly mode.
%cam = newCamera() {

datablock = "Observer";
};
MissionCleanup.add(%cam);
%cam.setTransform(%spawnPoint.getTransform());

Example:

// Create a camera at the given spawn point for the specified
// GameConnection i.e. the client. Uses the standard
// Sim::spawnObject() function to create the camera using the
// defined default settings.
// Note: The camera starts in the standard fly mode.
function GameConnection::spawnCamera(%this, %spawnPoint)
{

// Set the control object to the default camera
if (!isObject(%this.camera))
{

if (isDefined("$Game::DefaultCameraClass"))
%this.camera = spawnObject($Game::DefaultCameraClass, $Game::DefaultCameraDataBlock);

}

// If we have a camera then set up some properties
if (isObject(%this.camera))
{

// Make sure were cleaned up when the mission ends
MissionCleanup.add(%this.camera);

// Make sure the camera is always in scope for the connection
%this.camera.scopeToClient(%this);

// Send all user input from the connection to the camera
%this.setControlObject(%this.camera);

if (isDefined("%spawnPoint"))
{

// Attempt to treat %spawnPoint as an object, such as a
// SpawnSphere class.
if (getWordCount(%spawnPoint) == 1 &&isObject(%spawnPoint))
{

%this.camera.setTransform(%spawnPoint.getTransform());
}
else
{

// Treat %spawnPoint as an AngleAxis transform
%this.camera.setTransform(%spawnPoint);

}
}

}
}

5.3. Console Reference 721

Torque 3D Documentation, Release 3.5.1

Motion Modes Beyond the different operation methods, the Camera may be set to one of a number of motion modes.
These motion modes determine how the camera will respond to input and may be used to constrain how the Camera
moves. The CameraMotionMode enumeration defines the possible set of modes and the Camera’s current may be
obtained by using getMode().

Some of the motion modes may be set using specific script methods. These often provide additional parameters to
set up the mode in one go. Otherwise, it is always possible to set a Camera’s motion mode using the controlMode
property. Just pass in the name of the mode enum. The following table lists the motion modes, how to set them up,
and what they offer:

Mode Set From Script Input Move Input Rotate Can Use Newton
Mode?

Stationary controlMode
property

No No No

FreeRotate controlMode
property

No Yes Rotate Only

Fly setFlyMode() Yes Yes Yes
OrbitObject setOrbitMode() Orbits

object
Points to object Move only

OrbitPoint setOrbitPoint() Orbits point Points to
location

Move only

TrackObject setTrackObject() No Points to object Yes
Overhead controlMode

property
Yes No Yes

EditOrbit (object
selected)

setEditOrbitMode() Orbits
object

Points to object Move only

EditOrbit (no object) setEditOrbitMode() Yes Yes Yes

Trigger Input Passing a move trigger ($mvTriggerCount0, $mvTriggerCount1, etc.) on to a Camera performs
different actions depending on which mode the camera is in. While in Fly, Overhead or EditOrbit mode, either
trigger0 or trigger1 will cause a camera to move twice its normal movement speed. You can see this in action within
the World Editor, where holding down the left mouse button while in mouse look mode (right mouse button is also
down) causes the Camera to move faster.

Passing along trigger2 will put the camera into strafe mode. While in this mode a Fly, FreeRotate or Overhead Camera
will not rotate from the move input. Instead the yaw motion will be applied to the Camera’s x motion, and the pitch
motion will be applied to the Camera’s z motion. You can see this in action within the World Editor where holding
down the middle mouse button allows the user to move the camera up, down and side-to-side.

While the camera is operating in Newton Mode, trigger0 and trigger1 behave slightly differently. Here trigger0 ac-
tivates a multiplier to the applied acceleration force as defined by speedMultiplier. This has the affect of making
the camera move up to speed faster. trigger1 has the opposite affect by acting as a brake. When trigger1 is active a
multiplier is added to the Camera’s drag as defined by brakeMultiplier.

Methods
void Camera::autoFitRadius(float radius)

Move the camera to fully view the given radius.

Parameters radius – The radius to view.
VectorF Camera::getAngularVelocity()

Get the angular velocity for a Newton mode camera.

Returns The angular velocity in the form of “x y z”.

Camera::CameraMotionMode Camera::getMode()
Returns the current camera control mode.

722 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Point3F Camera::getOffset()
Get the camera’s offset from its orbit or tracking point. The offset is added to the camera’s position when set to
CameraMode::OrbitObject.

Returns The offset in the form of “x y z”.

Point3F Camera::getPosition()
Get the camera’s position in the world. Reimplemented from SceneObject .

Returns The position in the form of “x y z”.

Point3F Camera::getRotation()
Get the camera’s Euler rotation in radians.

Returns The rotation in radians in the form of “x y z”.

VectorF Camera::getVelocity()
Get the velocity for the camera. Reimplemented from ShapeBase .

Returns The camera’s velocity in the form of “x y z”.

bool Camera::isEditOrbitMode()
Is the camera in edit orbit mode?

Returns true if the camera is in edit orbit mode.

bool Camera::isRotationDamped()
Is this a Newton Fly mode camera with damped rotation?

Returns is set to true.

void Camera::lookAt(Point3F point)
Point the camera at the specified position. Does not work in Orbit or Track modes.

Parameters point – The position to point the camera at.

void Camera::setAngularDrag(float drag)
Set the angular drag for a Newton mode camera.

Parameters drag – The angular drag applied while the camera is rotating.

void Camera::setAngularForce(float force)
Set the angular force for a Newton mode camera.

Parameters force – The angular force applied when attempting to rotate the camera.

void Camera::setAngularVelocity(VectorF velocity)
Set the angular velocity for a Newton mode camera.

Parameters velocity – The angular velocity infor form of “x y z”.

void Camera::setBrakeMultiplier(float multiplier)
Set the Newton mode camera brake multiplier when trigger[1] is active.

Parameters multiplier – The brake multiplier to apply.

void Camera::setDrag(float drag)
Set the drag for a Newton mode camera.

Parameters drag – The drag applied to the camera while moving.

void Camera::setEditOrbitMode()
Set the editor camera to orbit around a point set with Camera::setEditOrbitPoint() .

void Camera::setEditOrbitPoint(Point3F point)
Set the editor camera’s orbit point.

5.3. Console Reference 723

Torque 3D Documentation, Release 3.5.1

Parameters point – The point the camera will orbit in the form of “x y z”.

void Camera::setFlyForce(float force)
Set the force applied to a Newton mode camera while moving.

Parameters force – The force applied to the camera while attempting to move.

void Camera::setFlyMode()
Set the camera to fly freely. Allows the camera to have 6 degrees of freedom. Provides for instantaneous
motion and rotation unless one of the Newton fields has been set to true. See Camera::newtonMode and Cam-
era::newtonRotation .

void Camera::setMass(float mass)
Set the mass for a Newton mode camera.

Parameters mass – The mass used during ease-in and ease-out calculations.

void Camera::setNewtonFlyMode()
Set the camera to fly freely, but with ease-in and ease-out. This method allows for the same 6 degrees of
freedom as Camera::setFlyMode() but activates the ease-in and ease-out on the camera’s movement. To also
activate Newton mode for the camera’s rotation, set Camera::newtonRotation to true.

void Camera::setOffset(Point3F offset)
Set the camera’s offset. The offset is added to the camera’s position when set to CameraMode::OrbitObject.

Parameters offset – The distance to offset the camera by in the form of “x y z”.

void Camera::setOrbitMode(GameBase orbitObject, TransformF orbitPoint, float minDistance, float
maxDistance, float initDistance, bool ownClientObj, Point3F offset, bool
locked)

Set the camera to orbit around the given object, or if none is given, around the given point.

Parameters

• orbitObject – The object to orbit around. If no object is given (0 or blank string is
passed in) use the orbitPoint instead

• orbitPoint – The point to orbit around when no object is given. In the form of “x y z ax
ay az aa” such as returned by SceneObject::getTransform().

• minDistance – The minimum distance allowed to the orbit object or point.

• maxDistance – The maximum distance allowed from the orbit object or point.

• initDistance – The initial distance from the orbit object or point.

• ownClientObj – [optional] Are we orbiting an object that is owned by us? Default is
false.

• offset – [optional] An offset added to the camera’s position. Default is no offset.

• locked – [optional] Indicates the camera does not receive input from the player. Default
is false.

bool Camera::setOrbitObject(GameBase orbitObject, VectorF rotation, float minDistance, float
maxDistance, float initDistance, bool ownClientObject, Point3F offset,
bool locked)

Set the camera to orbit around a given object.

Parameters

• orbitObject – The object to orbit around.

• rotation – The initial camera rotation about the object in radians in the form of “x y z”.

• minDistance – The minimum distance allowed to the orbit object or point.

724 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• maxDistance – The maximum distance allowed from the orbit object or point.

• initDistance – The initial distance from the orbit object or point.

• ownClientObject – [optional] Are we orbiting an object that is owned by us? Default
is false.

• offset – [optional] An offset added to the camera’s position. Default is no offset.

• locked – [optional] Indicates the camera does not receive input from the player. Default
is false.

Returns false if the given object could not be found.

void Camera::setOrbitPoint(TransformF orbitPoint, float minDistance, float maxDistance, float init-
Distance, Point3F offset, bool locked)

Set the camera to orbit around a given point.

Parameters

• orbitPoint – The point to orbit around. In the form of “x y z ax ay az aa” such as
returned by SceneObject::getTransform().

• minDistance – The minimum distance allowed to the orbit object or point.

• maxDistance – The maximum distance allowed from the orbit object or point.

• initDistance – The initial distance from the orbit object or point.

• offset – [optional] An offset added to the camera’s position. Default is no offset.

• locked – [optional] Indicates the camera does not receive input from the player. Default
is false.

void Camera::setRotation(Point3F rot)
Set the camera’s Euler rotation in radians.

Parameters rot – The rotation in radians in the form of “x y z”.

void Camera::setSpeedMultiplier(float multiplier)
Set the Newton mode camera speed multiplier when trigger[0] is active.

Parameters multiplier – The speed multiplier to apply.

bool Camera::setTrackObject(GameBase trackObject, Point3F offset)
Set the camera to track a given object.

Parameters

• trackObject – The object to track.

• offset – [optional] An offset added to the camera’s position. Default is no offset.

Returns false if the given object could not be found.

void Camera::setValidEditOrbitPoint(bool validPoint)
Set if there is a valid editor camera orbit point. When validPoint is set to false the Camera operates as if it is in
Fly mode rather than an Orbit mode.

Parameters validPoint – Indicates the validity of the orbit point.

void Camera::setVelocity(VectorF velocity)
Set the velocity for the camera.

Parameters velocity – The camera’s velocity in the form of “x y z”.

5.3. Console Reference 725

Torque 3D Documentation, Release 3.5.1

Fields
float Camera::angularDrag

Drag on camera when rotating (Newton mode only). Default value is 2.
float Camera::angularForce

Force applied on camera when asked to rotate (Newton mode only). Default value is 100.

float Camera::brakeMultiplier
Speed multiplier when triggering the brake (Newton mode only). Default value is 2.

CameraMotionMode Camera::controlMode
The current camera control mode.

float Camera::drag
Drag on camera when moving (Newton mode only). Default value is 2.

float Camera::force
Force applied on camera when asked to move (Newton mode only). Default value is 500.

float Camera::mass
The camera’s mass (Newton mode only). Default value is 10.

bool Camera::newtonMode
Apply smoothing (acceleration and damping) to camera movements.

bool Camera::newtonRotation
Apply smoothing (acceleration and damping) to camera rotations.

float Camera::speedMultiplier
Speed multiplier when triggering the accelerator (Newton mode only). Default value is 2.

CameraData A datablock that describes a camera.

Inherit: ShapeBaseData

Description A datablock that describes a camera.

Example:

datablock CameraData(Observer)
{

mode = "Observer";
};

Datablocks and Networking

PathCamera A camera that moves along a path. The camera can then be made to travel along this path forwards or
backwards.

Inherit: ShapeBase

Description A camera’s path is made up of knots, which define a position, rotation and speed for the camera.
Traversal from one knot to another may be either linear or using a Catmull-Rom spline. If the knot is part of a spline,
then it may be a normal knot or defined as a kink. Kinked knots are a hard transition on the spline rather than a smooth
one. A knot may also be defined as a position only. In this case the knot is treated as a normal knot but is ignored
when determining how to smoothly rotate the camera while it is travelling along the path (the algorithm moves on to
the next knot in the path for determining rotation).

726 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

The datablock field for a PathCamera is a previously created PathCameraData, which acts as the interface between the
script and the engine for this PathCamera object.

Example:

%newPathCamera = newPathCamera()
{

dataBlock = LoopingCam;
position = "0 0 300 1 0 0 0";

};

Methods
void PathCamera::onNode(string node)

A script callback that indicates the path camera has arrived at a specific node in its path. Server side only.

Parameters Node – Unique ID assigned to this node.
void PathCamera::popFront()

Removes the knot at the front of the camera’s path.

Example:

// Remove the first knot in the cameras path.
%pathCamera.popFront();

void PathCamera::pushBack(TransformF transform, float speed, string type, string path)
Adds a new knot to the back of a path camera’s path.

Parameters

• transform – Transform for the new knot. In the form of “x y z ax ay az aa” such as
returned by SceneObject::getTransform()

• speed – Speed setting for this knot.

• type – Knot type (Normal, Position Only, Kink).

• path – Path type (Linear, Spline).

Example:

// Transform vector for new knot.
// (Pos_X Pos_Y Pos_Z Rot_X Rot_Y Rot_Z Angle)
%transform = "15.0 5.0 5.0 1.4 1.0 0.2 1.0"
// Speed setting for knot.
%speed = "1.0"
// Knot type.
// (Normal, Position Only, Kink)
%type = "Normal";

// Path Type. (Linear, Spline)
%path = "Linear";

// Inform the path camera to add a new knot to the back of its path
%pathCamera.pushBack(%transform,%speed,%type,%path);

void PathCamera::pushFront(TransformF transform, float speed, string type, string path)
Adds a new knot to the front of a path camera’s path.

Parameters

• transform – Transform for the new knot. In the form of “x y z ax ay az aa” such as
returned by SceneObject::getTransform()

5.3. Console Reference 727

Torque 3D Documentation, Release 3.5.1

• speed – Speed setting for this knot.

• type – Knot type (Normal, Position Only, Kink).

• path – Path type (Linear, Spline).

Example:

// Transform vector for new knot.
// (Pos_X,Pos_Y,Pos_Z,Rot_X,Rot_Y,Rot_Z,Angle)
%transform = "15.0 5.0 5.0 1.4 1.0 0.2 1.0"
// Speed setting for knot.
%speed = "1.0";

// Knot type.
// (Normal, Position Only, Kink)
%type = "Normal";

// Path Type. (Linear, Spline)
%path = "Linear";

// Inform the path camera to add a new knot to the front of its path
%pathCamera.pushFront(%transform, %speed, %type, %path);

void PathCamera::reset(float speed)
Clear the camera’s path and set the camera’s current transform as the start of the new path. What specifically
occurs is a new knot is created from the camera’s current transform. Then the current path is cleared and the new
knot is pushed onto the path. Any previous target is cleared and the camera’s movement state is set to Forward.
The camera is now ready for a new path to be defined.

Parameters speed – Speed for the camera to move along its path after being reset.

Example:

//Determine the new movement speed of this camera. If not set, the speed will default to 1.0.
%speed = "0.50";

// Inform the path camera to start a new path at
// the cameras current position, and set the new
// paths speed value.
%pathCamera.reset(%speed);

void PathCamera::setPosition(float position)
Set the current position of the camera along the path.

Parameters position – Position along the path, from 0.0 (path start) - 1.0 (path end), to place
the camera.

Example:

// Set the camera on a position along its path from 0.0 - 1.0.
%position = "0.35";

// Force the pathCamera to its new position along the path.
%pathCamera.setPosition(%position);

void PathCamera::setState(string newState)
Set the movement state for this path camera.

Parameters newState – New movement state type for this camera. Forward, Backward or Stop.

Example:

728 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Set the state type (forward, backward, stop).
// In this example, the camera will travel from the first node
// to the last node (or target if given with setTarget())
%state = "forward";

// Inform the pathCamera to change its movement state to the defined value.
%pathCamera.setState(%state);

void PathCamera::setTarget(float position)
Set the movement target for this camera along its path. The camera will attempt to move along the path to the
given target in the direction provided by setState() (the default is forwards). Once the camera moves past this
target it will come to a stop, and the target state will be cleared.

Parameters position – Target position, between 0.0 (path start) and 1.0 (path end), for the cam-
era to move to along its path.

Example:

// Set the position target, between 0.0 (path start)
// and 1.0 (path end), for this camera to move to.
%position = "0.50";

// Inform the pathCamera of the new target position it will move to.
%pathCamera.setTarget(%position);

PathCameraData General interface to control a PathCamera object from the script level.

Inherit: ShapeBaseData

Description General interface to control a PathCamera object from the script level.

Example:

datablock PathCameraData(LoopingCam)
{

mode = "";
};

Functions

void setDefaultFov(float defaultFOV)
Set the default FOV for a camera.

Parameters defaultFOV – The default field of view in degrees

void setFov(float FOV)
Set the FOV of the camera.

Parameters FOV – The camera’s new FOV in degrees

void setZoomSpeed(int speed)
Set the zoom speed of the camera. This affects how quickly the camera changes from one field of view to
another.

Parameters speed – The camera’s zoom speed in ms per 90deg FOV change

5.3. Console Reference 729

Torque 3D Documentation, Release 3.5.1

Enumerations

enum CameraMotionMode
Movement behavior type for Camera.

Parameters

• Stationary – Camera does not rotate or move.

• FreeRotate – Camera may rotate but does not move.

• Fly – Camera may rotate and move freely.

• OrbitObject – Camera orbits about a given object. Damage flash and white out is deter-
mined by the object being orbited. See Camera::setOrbitMode() to set the orbit object and
other parameters.

• OrbitPoint – Camera orbits about a given point. See Camera::setOrbitMode() to set the
orbit point and other parameters.

• TrackObject – Camera always faces a given object. See Camera::setTrackObject() to
set the object to track and a distance to remain from the object.

• Overhead – Camera moves in the XY plane.

• EditOrbit – Used by the World Editor to orbit about a point. When first activated, the
camera is rotated to face the orbit point rather than move to it.

Variables

int Camera::extendedMovePosRotIndex
The ExtendedMove position/rotation index used for camera movements.

float Camera::movementSpeed
Global camera movement speed in units/s (typically m/s), with a base value of 40.

Used in the following camera modes:

•Edit Orbit Mode

•Fly Mode

•Overhead Mode

Input

Functions and classes relating to to user input.

Classes

ActionMap ActionMaps assign platform input events to console commands.

Inherit: SimObject

730 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description Any platform input event can be bound in a single, generic way. In theory, the game doesn’t need to
know if the event came from the keyboard, mouse, joystick or some other input device. This allows users of the game
to map keys and actions according to their own preferences. Game action maps are arranged in a stack for processing
so individual parts of the game can define specific actions. For example, when the player jumps into a vehicle it could
push a vehicle action map and pop the default player action map.

Creating an ActionMap The input system allows for the creation of multiple ActionMaps, so long as they have
unique names and do not already exist. It’s a simple three step process.

1. Check to see if the ActionMap exists

2. Delete it if it exists

3. Instantiate the ActionMap

The following is an example of how to create a new ActionMap:

Example:

if (isObject(moveMap))
moveMap.delete();

newActionMap(moveMap);

Binding Functions Once you have created an ActionMap, you can start binding functionality to events. Currently,
Torque 3D supports the following devices out of the box

• Mouse

• Keyboard

• Joystick/Gamepad

• Xbox 360 Controller

The two most commonly used binding methods are bind() and bindCmd(). Both are similar in that they will bind
functionality to a device and event, but different in how the event is interpreted. With bind(), you specify a device,
action to bind, then a function to be called when the event happens.

Example:

// Simple function that prints to console// %val - Sent by the device letting the user know// if an input was pressed (true) or released (false)
function testInput(%val)
{

if(%val)
echo("Key is down");

elseecho("Key was released");
}

// Bind the K key to the testInput function
moveMap.bind(keyboard, "k", testInput);

bindCmd is an alternative method for binding commands. This function is similar to bind(), except two functions are
set to be called when the event is processed.

One will be called when the event is activated (input down), while the other is activated when the event is broken
(input release). When using bindCmd(), pass the functions as strings rather than the function names.

Example:

5.3. Console Reference 731

Torque 3D Documentation, Release 3.5.1

// Print to the console when the spacebar is pressed
function onSpaceDown()
{

echo("Space bar down!");
}

// Print to the console when the spacebar is released
function onSpaceUp()
{

echo("Space bar up!");
}

// Bind the commands onSpaceDown and onSpaceUp to spacebar events
moveMap.bindCmd(keyboard, "space", "onSpaceDown();", "onSpaceUp();");

Switching ActionMaps Let’s say you want to have different ActionMaps activated based on game play situations.
A classic example would be first person shooter controls and racing controls in the same game. On foot, spacebar may
cause your player to jump. In a vehicle, it may cause some kind of “turbo charge”. You simply need to push/pop the
ActionMaps appropriately:

First, create two separate ActionMaps:

Example:

// Create the two ActionMaps
if (isObject(moveMap))

moveMap.delete();
newActionMap(moveMap);

if (isObject(carMap))
carMap.delete();

newActionMap(carMap);

Next, create the two separate functions. Both will be bound to spacebar, but not the same ActionMap:

Example:

// Print to the console the player is jumping
function playerJump(%val)
{

if(%val)
echo("Player jumping!");

}

// Print to the console the vehicle is charging
function turboCharge()
{

if(%val)
echo("Vehicle turbo charging!");

}

You are now ready to bind functions to your ActionMaps’ devices:

Example:

// Bind the spacebar to the playerJump function
// when moveMap is the active ActionMap
moveMap.bind(keyboard, "space", playerJump);

732 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Bind the spacebar to the turboCharge function
// when carMap is the active ActionMap
carMap.bind(keyboard, "space", turboCharge);

Finally, you can use the push() and pop() commands on each ActionMap to toggle activation. To activate an Action-
Map, use push():

Example:

// Make moveMap the active action map
// You should now be able to activate playerJump with spacebar
moveMap.push();

To switch ActionMaps, first pop() the old one. Then you can push() the new one:

Example:

// Deactivate moveMap
moveMap.pop();

// Activate carMap
carMap.push();

Methods
bool ActionMap::bind(string device, string action, string command)

Associates a function to an input event. When the input event is raised, the specified function will be called.

Parameters

• device – The input device, such as mouse or keyboard.

• action – The input event, such as space, button0, etc.

• command – The function to bind to the action. Function must have a single boolean argu-
ment.

Returns True if the binding was successful, false if the device was unknown or description failed.

Example:

// Simple function that prints to console
// %val - Sent by the device letting the user know
// if an input was pressed (true) or released (false)
function testInput(%val)
{

if(%val)
echo("Key is down");

elseecho("Key was released");
}

// Bind the K key to the testInput function
moveMap.bind(keyboard, k, testInput);

bool ActionMap::bind(string device, string action, string flag, string deadZone, string scale, string com-
mand)

Associates a function and input parameters to an input event. When the input event is raised, the specified
function will be called. Modifier flags may be specified to process dead zones, input inversion, and more. Valid
modifier flags:

•R - Input is Ranged.

•S - Input is Scaled.

5.3. Console Reference 733

Torque 3D Documentation, Release 3.5.1

•I - Input is inverted.

•D - Dead zone is present.

•N - Input should be re-fit to a non-linear scale.

Parameters

• device – The input device, such as mouse or keyboard.

• action – The input event, such as space, button0, etc.

• flag – Modifier flag assigned during binding, letting event know there are additional pa-
rameters to consider.

• deadZone – Restricted region in which device motion will not be acknowledged.

• scale – Modifies the deadZone region.

• command – The function bound to the action. Must take in a single argument.

Returns True if the binding was successful, false if the device was unknown or description failed.

Example:

// Simple function that adjusts the pitch of the camera
// based on the mouses movement along the X axis.
function testPitch(%val)
{

%pitchAdj = getMouseAdjustAmount(%val);
$mvPitch += %pitchAdj;

}

// Bind the mouses X axis to the testPitch function
// DI is flagged, meaning input is inverted and has a deadzone
%this.bind(mouse, "xaxis", "DI", "-0.23 0.23", testPitch);

bool ActionMap::bindCmd(string device, string action, string makeCmd, string breakCmd)
Associates a make command and optional break command to a specified input device action. Must include
parenthesis and semicolon in the make and break command strings.

Parameters

• device – The device to bind to. Can be a keyboard, mouse, joystick or gamepad.

• action – The device action to bind to. The action is dependant upon the device. Specify
a key for keyboards.

• makeCmd – The command to execute when the device/action is made.

• breakCmd – [optional] The command to execute when the device or action is unmade.

Returns True the bind was successful, false if the device was unknown or description failed.

Example:

// Print to the console when the spacebar is pressed
function onSpaceDown()
{

echo("Space bar down!");
}

// Print to the console when the spacebar is released
function onSpaceUp()

734 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

{
echo("Space bar up!");

}

// Bind the commands onSpaceDown() and onSpaceUp() to spacebar events

moveMap.bindCmd(keyboard, "space", "onSpaceDown();", "onSpaceUp();");

bool ActionMap::bindObj(string device, string action, string command, SimObjectID object)
Associates a function to an input event for a specified class or object. You must specify a device, the action
to bind, a function, and an object to be called when the event happens. The function specified must be set to
receive a single boolean value passed.

Parameters

• device – The input device, such as mouse or keyboard.

• action – The input event, such as space, button0, etc.

• command – The function bound to the action.

• object – The object or class bound to the action.

Returns True if the binding was successful, false if the device was unknown or description failed.

Example:

moveMap.bindObj(keyboard, "numpad1", "rangeChange", %player);

bool ActionMap::bindObj(string device, string action, string flag, string deadZone, string scale, string
command, SimObjectID object)

Associates a function to an input event for a specified class or object. You must specify a device, the action
to bind, a function, and an object to be called when the event happens. The function specified must be set to
receive a single boolean value passed. Modifier flags may be specified to process dead zones, input inversion,
and more. Valid modifier flags:

•R - Input is Ranged.

•S - Input is Scaled.

•I - Input is inverted.

•D - Dead zone is present.

•N - Input should be re-fit to a non-linear scale.

Parameters

• device – The input device, such as mouse or keyboard.

• action – The input event, such as space, button0, etc.

• flag – Modifier flag assigned during binding, letting event know there are additional pa-
rameters to consider.

• deadZone – [Required only when flag is set] Restricted region in which device motion
will not be acknowledged.

• scale – [Required only when flag is set] Modifies the deadZone region.

• command – The function bound to the action.

• object – The object or class bound to the action.

Returns True if the binding was successful, false if the device was unknown or description failed.

5.3. Console Reference 735

Torque 3D Documentation, Release 3.5.1

Example:

// Bind the mouses movement along the x-axis to
// the testInput function of the Player class
// DSI is flagged, meaning input is inverted,
// has scale and has a deadzone
%this.bindObj(mouse, "xaxis", "DSI", %deadZone, %scale, "testInput", %player);

string ActionMap::getBinding(string command)
Gets the ActionMap binding for the specified command. Use getField() on the return value to get the device and
action of the binding.

Parameters command – The function to search bindings for.

Returns The binding against the specified command. Returns an empty string(“”) if a binding wasn’t
found.

Example:

// Find what the function "jump()" is bound to in moveMap
%bind = moveMap.getBinding("jump");

if (%bind !$= "")
{

// Find out what device is used in the binding
%device = getField(%bind, 0);

// Find out what action (such as a key) is used in the binding
%action = getField(%bind, 1);

}

string ActionMap::getCommand(string device, string action)
Gets ActionMap command for the device and action.

Parameters

• device – The device that was bound. Can be a keyboard, mouse, joystick or a gamepad.

• action – The device action that was bound. The action is dependant upon the device.
Specify a key for keyboards.

Returns The command against the specified device and action.

Example:

// Find what function is bound to a devices action
// In this example, "jump()" was assigned to the space key in another script
%command = moveMap.getCommand("keyboard", "space");

// Should print "jump" in the console
echo(%command)

string ActionMap::getDeadZone(string device, string action)
Gets the Dead zone for the specified device and action.

Parameters

• device – The device that was bound. Can be a keyboard, mouse, joystick or a gamepad.

• action – The device action that was bound. The action is dependant upon the device.
Specify a key for keyboards.

736 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns The dead zone for the specified device and action. Returns “0 0” if there is no dead zone or
an empty string(“”) if the mapping was not found.

Example:

%deadZone = moveMap.getDeadZone("gamepad", "thumbrx");

float ActionMap::getScale(string device, string action)
Get any scaling on the specified device and action.

Parameters

• device – The device that was bound. Can be keyboard, mouse, joystick or gamepad.

• action – The device action that was bound. The action is dependant upon the device.
Specify a key for keyboards.

Returns Any scaling applied to the specified device and action.

Example:

%scale = %moveMap.getScale("gamepad", "thumbrx");

bool ActionMap::isInverted(string device, string action)
Determines if the specified device and action is inverted. Should only be used for scrolling devices or
gamepad/joystick axes.

Parameters

• device – The device that was bound. Can be a keyboard, mouse, joystick or a gamepad.

• action – The device action that was bound. The action is dependant upon the device.
Specify a key for keyboards.

Returns True if the specified device and action is inverted.

Example:

%if (moveMap.isInverted("mouse", "xaxis"))
echo("Mouses xAxis is inverted");

void ActionMap::pop()
Pop the ActionMap off the ActionMap stack. Deactivates an ActionMap and removes it from the stack.

Example:

// Deactivate moveMap
moveMap.pop();

void ActionMap::push()
Push the ActionMap onto the ActionMap stack. Activates an ActionMap and placees it at the top of the Action-
Map stack.

Example:

// Make moveMap the active action map
moveMap.push();

void ActionMap::save(string fileName, bool append)
Saves the ActionMap to a file or dumps it to the console.

Parameters

• fileName – The file path to save the ActionMap to. If a filename is not specified the
ActionMap will be dumped to the console.

5.3. Console Reference 737

Torque 3D Documentation, Release 3.5.1

• append – Whether to write the ActionMap at the end of the file or overwrite it.

Example:

// Write out the actionmap into the config.cs file
moveMap.save("scripts/client/config.cs");

bool ActionMap::unbind(string device, string action)
Removes the binding on an input device and action.

Parameters

• device – The device to unbind from. Can be a keyboard, mouse, joystick or a gamepad.

• action – The device action to unbind from. The action is dependant upon the device.
Specify a key for keyboards.

Returns True if the unbind was successful, false if the device was unknown or description failed.

Example:

moveMap.unbind("keyboard", "space");

bool ActionMap::unbindObj(string device, string action, string obj)
Remove any object-binding on an input device and action.

Parameters

• device – The device to bind to. Can be keyboard, mouse, joystick or gamepad.

• action – The device action to unbind from. The action is dependant upon the device.
Specify a key for keyboards.

• obj – The object to perform unbind against.

Returns True if the unbind was successful, false if the device was unknown or description failed.

Example:

moveMap.unbindObj("keyboard", "numpad1", "rangeChange", %player);

LeapMotionFrame

Inherit: SimObject

Description UNDOCUMENTED!

Methods
int LeapMotionFrame::getFrameInternalId()

Provides the internal ID for this frame.

Returns Internal ID of this frame.
int LeapMotionFrame::getFrameRealTime()

Get the real time that this frame was generated.

Returns Real time of this frame in milliseconds.

int LeapMotionFrame::getFrameSimTime()
Get the sim time that this frame was generated.

Returns Sim time of this frame in milliseconds.

738 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int LeapMotionFrame::getHandCount()
Get the number of hands defined in this frame.

Returns The number of defined hands.

int LeapMotionFrame::getHandId(int index)
Get the ID of the requested hand.

Parameters index – The hand index to check.

Returns ID of the requested hand.

int LeapMotionFrame::getHandPointablesCount(int index)
Get the number of pointables associated with this hand.

Parameters index – The hand index to check.

Returns Number of pointables that belong with this hand.

Point3I LeapMotionFrame::getHandPos(int index)
Get the position of the requested hand. The position is the hand’s integer position converted to Torque 3D
coordinates (in millimeters).

Parameters index – The hand index to check.

Returns Integer position of the requested hand (in millimeters).

Point3F LeapMotionFrame::getHandRawPos(int index)
Get the raw position of the requested hand. The raw position is the hand’s floating point position converted to
Torque 3D coordinates (in millimeters).

Parameters index – The hand index to check.

Returns Raw position of the requested hand.

TransformF LeapMotionFrame::getHandRawTransform(int index)
Get the raw transform of the requested hand.

Parameters index – The hand index to check.

Returns The raw position and rotation of the requested hand (in Torque 3D coordinates).

AngAxisF LeapMotionFrame::getHandRot(int index)
Get the rotation of the requested hand. The Leap Motion hand rotation as converted into the Torque 3Dcoordi-
nate system.

Parameters index – The hand index to check.

Returns Rotation of the requested hand.

Point2F LeapMotionFrame::getHandRotAxis(int index)
Get the axis rotation of the requested hand. This is the axis rotation of the hand as if the hand were a gamepad
thumb stick. Imagine a stick coming out the top of the hand and tilting the hand front, back, left and right
controls that stick. The values returned along the x and y stick axis are normalized from -1.0 to 1.0 with the
maximum hand tilt angle for these values as defined by $LeapMotion::MaximumHandAxisAngle .

Parameters index – The hand index to check.

Returns Axis rotation of the requested hand.

TransformF LeapMotionFrame::getHandTransform(int index)
Get the transform of the requested hand.

Parameters index – The hand index to check.

Returns The position and rotation of the requested hand (in Torque 3D coordinates).

5.3. Console Reference 739

Torque 3D Documentation, Release 3.5.1

bool LeapMotionFrame::getHandValid(int index)
Check if the requested hand is valid.

Parameters index – The hand index to check.

Returns True if the hand is valid.

int LeapMotionFrame::getPointableHandIndex(int index)
Get the index of the hand that this pointable belongs to, if any.

Parameters index – The pointable index to check.

Returns Index of the hand this pointable belongs to, or -1 if there is no associated hand.

int LeapMotionFrame::getPointableId(int index)
Get the ID of the requested pointable.

Parameters index – The pointable index to check.

Returns ID of the requested pointable.

float LeapMotionFrame::getPointableLength(int index)
Get the length of the requested pointable.

Parameters index – The pointable index to check.

Returns Length of the requested pointable (in millimeters).

Point3I LeapMotionFrame::getPointablePos(int index)
Get the position of the requested pointable. The position is the pointable’s integer position converted to Torque
3D coordinates (in millimeters).

Parameters index – The pointable index to check.

Returns Integer position of the requested pointable (in millimeters).

Point3F LeapMotionFrame::getPointableRawPos(int index)
Get the raw position of the requested pointable. The raw position is the pointable’s floating point position
converted to Torque 3D coordinates (in millimeters).

Parameters index – The pointable index to check.

Returns Raw position of the requested pointable.

TransformF LeapMotionFrame::getPointableRawTransform(int index)
Get the raw transform of the requested pointable.

Parameters index – The pointable index to check.

Returns The raw position and rotation of the requested pointable (in Torque 3D coordinates).

AngAxisF LeapMotionFrame::getPointableRot(int index)
Get the rotation of the requested pointable. The Leap Motion pointable rotation as converted into the Torque
3Dcoordinate system.

Parameters index – The pointable index to check.

Returns Rotation of the requested pointable.

int LeapMotionFrame::getPointablesCount()
Get the number of pointables defined in this frame.

Returns The number of defined pointables.

TransformF LeapMotionFrame::getPointableTransform(int index)
Get the transform of the requested pointable.

740 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters index – The pointable index to check.

Returns The position and rotation of the requested pointable (in Torque 3D coordinates).

LeapMotionFramePointableType LeapMotionFrame::getPointableType(int index)
Get the type of the requested pointable.

Parameters index – The pointable index to check.

Returns Type of the requested pointable.

bool LeapMotionFrame::getPointableValid(int index)
Check if the requested pointable is valid.

Parameters index – The pointable index to check.

Returns True if the pointable is valid.

float LeapMotionFrame::getPointableWidth(int index)
Get the width of the requested pointable.

Parameters index – The pointable index to check.

Returns Width of the requested pointable (in millimeters).

bool LeapMotionFrame::isFrameValid()
Checks if this frame is valid.

Returns True if the frame is valid.

RazerHydraFrame

Inherit: SimObject

Description UNDOCUMENTED!

Methods
bool RazerHydraFrame::getControllerButton1(int index)

Get the button 1 state for the requested controller.

Parameters index – The controller index to check.

Returns Button 1 state requested controller as true or false.
bool RazerHydraFrame::getControllerButton2(int index)

Get the button 2 state for the requested controller.

Parameters index – The controller index to check.

Returns Button 2 state requested controller as true or false.

bool RazerHydraFrame::getControllerButton3(int index)
Get the button 3 state for the requested controller.

Parameters index – The controller index to check.

Returns Button 3 state requested controller as true or false.

bool RazerHydraFrame::getControllerButton4(int index)
Get the button 4 state for the requested controller.

Parameters index – The controller index to check.

Returns Button 4 state requested controller as true or false.

5.3. Console Reference 741

Torque 3D Documentation, Release 3.5.1

int RazerHydraFrame::getControllerCount()
Get the number of controllers defined in this frame.

Returns The number of defined controllers.

bool RazerHydraFrame::getControllerDocked(int index)
Get the docked state of the controller.

Parameters index – The controller index to check.

Returns True if the requested controller is docked.

bool RazerHydraFrame::getControllerEnabled(int index)
Get the enabled state of the controller.

Parameters index – The controller index to check.

Returns True if the requested controller is enabled.

Point3I RazerHydraFrame::getControllerPos(int index)
Get the position of the requested controller. The position is the controller’s integer position converted to Torque
3D coordinates (in millimeters).

Parameters index – The controller index to check.

Returns Integer position of the requested controller (in millimeters).

Point3F RazerHydraFrame::getControllerRawPos(int index)
Get the raw position of the requested controller. The raw position is the controller’s floating point position
converted to Torque 3D coordinates (in millimeters).

Parameters index – The controller index to check.

Returns Raw position of the requested controller (in millimeters).

TransformF RazerHydraFrame::getControllerRawTransform(int index)
Get the raw transform of the requested controller.

Parameters index – The controller index to check.

Returns The raw position and rotation of the requested controller (in Torque 3D coordinates).

AngAxisF RazerHydraFrame::getControllerRot(int index)
Get the rotation of the requested controller. The Razer Hydra controller rotation as converted into the Torque
3Dcoordinate system.

Parameters index – The controller index to check.

Returns Rotation of the requested controller.

Point2F RazerHydraFrame::getControllerRotAxis(int index)
Get the axis rotation of the requested controller. This is the axis rotation of the controller as if the controller
were a gamepad thumb stick. Imagine a stick coming out the top of the controller and tilting the controller front,
back, left and right controls that stick. The values returned along the x and y stick axis are normalized from -1.0
to 1.0 with the maximum controller tilt angle for these values as defined by $RazerHydra::MaximumAxisAngle
.

Parameters index – The controller index to check.

Returns Axis rotation of the requested controller.

int RazerHydraFrame::getControllerSequenceNum(int index)
Get the controller sequence number.

Parameters index – The controller index to check.

742 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns The sequence number of the requested controller.

bool RazerHydraFrame::getControllerShoulderButton(int index)
Get the shoulder button state for the requested controller.

Parameters index – The controller index to check.

Returns Shoulder button state requested controller as true or false.

bool RazerHydraFrame::getControllerStartButton(int index)
Get the start button state for the requested controller.

Parameters index – The controller index to check.

Returns Start button state requested controller as true or false.

bool RazerHydraFrame::getControllerThumbButton(int index)
Get the thumb button state for the requested controller.

Parameters index – The controller index to check.

Returns Thumb button state requested controller as true or false.

Point2F RazerHydraFrame::getControllerThumbStick(int index)
Get the thumb stick values of the requested controller. The thumb stick values are in the range of -1.0..1.0

Parameters index – The controller index to check.

Returns Thumb stick values of the requested controller.

TransformF RazerHydraFrame::getControllerTransform(int index)
Get the transform of the requested controller.

Parameters index – The controller index to check.

Returns The position and rotation of the requested controller (in Torque 3D coordinates).

float RazerHydraFrame::getControllerTrigger(int index)
Get the trigger value for the requested controller. The trigger value is in the range of -1.0..1.0

Parameters index – The controller index to check.

Returns value of the requested controller.

int RazerHydraFrame::getFrameInternalId()
Provides the internal ID for this frame.

Returns Internal ID of this frame.

int RazerHydraFrame::getFrameRealTime()
Get the real time that this frame was generated.

Returns Real time of this frame in milliseconds.

int RazerHydraFrame::getFrameSimTime()
Get the sim time that this frame was generated.

Returns Sim time of this frame in milliseconds.

bool RazerHydraFrame::isFrameValid()
Checks if this frame is valid.

Returns True if the frame is valid.

5.3. Console Reference 743

Torque 3D Documentation, Release 3.5.1

Description

Input events come from the OS, are translated in the platform layer and then posted to the game. By default the game
then checks the input event against a global ActionMap (which supercedes all other action handlers). If there is no
action specified for the event, it is passed on to the GUI system. If the GUI does not handle the input event it is passed
to the currently active (non-global) ActionMap stack.

Example: the user presses the ~ (tilde) key, which is bound in the global ActionMap to toggleConsole.

This causes the console function associated with the bind to be executed, which in this case is toggleConsole, resulting
in the console output window being shown. If the key had not been bound in the global map, it would have passed to
the first gui that could have handled it, and if none did, it would pass to any game actions that were bound to that key.

Input Events The following table represents all keyboard, mouse, and joystick input events available to stock Torque
3D. It should be noted that letter and number keys directly correlate to their mapping. For example “a” is literally the
letter a. The button0, button1, and button2 are the most commonly used input mappings for left mouse button, right
mouse button, and middle mouse button (respectively).

Keyboard General Events:

backspace end win_apps tilde
tab home cmd minus
return left equals enter
up lopt lbracket opt
shift right ropt rbracket
ctrl down numlock backslash
alt print scrolllock semicolon
pause insert rshift apostrophe
capslock delete lcontrol comma
escape help rcontrol period
space win_lwindow lalt slash
pagedown win_rwindow ralt lessthan
pageup

Note: All general keys can be bound by simply using the key... ex. “u” will trigger the u key response.

Keyboard Numpad Events:

numpad0 numpad5 numpad9 numpadminus
numpad1 numpad6 numpadadmult numpaddecimal
numpad2 numpad7 numpadadd numpaddivide
numpad3 numpad8 numpadsep numpadenter
numpad4

Keyboard Function Key Events:

f1 f7 f13 f19
f2 f8 f14 f20
f3 f9 f15 f21
f4 f10 f16 f22
f5 f11 f17 f23
f6 f12 f18 f24

Joystick/Mouse Events:

744 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

button0 button8 button16 button24
button1 button9 button17 button25
button2 button10 button18 button26
button3 button11 button19 button27
button4 button12 button20 button28
button5 button13 button21 button29
button6 button14 button22 button30
button7 button15 button23 button31

Joystick/Mouse Axes:

xaxis zaxis ryaxis slider
yaxis rxaxis rzaxis

Joystick POV:

xpov dpov xpov2 dpov2
ypov lpov ypov2 lpov2
upov rpov upov2 rpov2

Miscellaneous Events:

anykey nomatch

Functions

void activateDirectInput()
Activates DirectInput. Also activates any connected joysticks.

void deactivateDirectInput()
Disables DirectInput. Also deactivates any connected joysticks.

void disableJoystick()
Disables use of the joystick.

Note: DirectInput must be enabled and active to use this function.

void disableXInput()
Disables XInput for Xbox 360 controllers.

void echoInputState()
Prints information to the console stating if DirectInput and a Joystick are enabled and active.

bool enableJoystick()
Enables use of the joystick.

Note: DirectInput must be enabled and active to use this function.

bool enableXInput()
Enables XInput for Xbox 360 controllers.

Note: XInput is enabled by default. Disable to use an Xbox 360 Controller as a joystick device.

ActionMap getCurrentActionMap()
Returns the current ActionMap.

See also:

5.3. Console Reference 745

Torque 3D Documentation, Release 3.5.1

ActionMap

int getXInputState(int controllerID, string property, bool current)
Queries the current state of a connected Xbox 360 controller.

XInput Properties:

•XI_THUMBLX, XI_THUMBLY - X and Y axes of the left thumbstick.

•XI_THUMBRX, XI_THUMBRY - X and Y axes of the right thumbstick.

•XI_LEFT_TRIGGER, XI_RIGHT_TRIGGER - Left and Right triggers.

•SI_UPOV, SI_DPOV, SI_LPOV, SI_RPOV - Up, Down, Left, and Right on the directional pad.

•XI_START, XI_BACK - The Start and Back buttons.

•XI_LEFT_THUMB, XI_RIGHT_THUMB - Clicking in the left and right thumbstick.

•XI_LEFT_SHOULDER, XI_RIGHT_SHOULDER - Left and Right bumpers.

•XI_A, XI_B , XI_X, XI_Y - The A, B, X, and Y buttons.

Parameters

• controllerID – Zero-based index of the controller to return information about.

• property – Name of input action being queried, such as “XI_THUMBLX”.

• current – True checks current device in action.

Returns Button queried - 1 if the button is pressed, 0 if it’s not. Thumbstick queried - Int represent-
ing displacement from rest position. Trigger queried - Int from 0 to 255 representing how far the
trigger is displaced.

bool isJoystickEnabled()
Queries input manager to see if a joystick is enabled.

Returns 1 if a joystick exists and is enabled, 0 if it’s not.

bool isXInputConnected(int controllerID)
Checks to see if an Xbox 360 controller is connected.

Parameters controllerID – Zero-based index of the controller to check.

Returns 1 if the controller is connected, 0 if it isn’t, and 205 if XInput hasn’t been initialized.

void lockMouse(bool isLocked)
Lock or unlock the mouse to the window.

When true, prevents the mouse from leaving the bounds of the game window.

void resetXInput()
Rebuilds the XInput section of the InputManager.

Requests a full refresh of events for all controllers. Useful when called at the beginning of game code after
actionMaps are set up to hook up all appropriate events.

void rumble(string device, float xRumble, float yRumble)
Activates the vibration motors in the specified controller.

The controller will constantly at it’s xRumble and yRumble intensities until changed or told to stop.Valid inputs
for xRumble/yRumble are [0 - 1].

Parameters

• device – Name of the device to rumble.

746 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• xRumble – Intensity to apply to the left motor.

• yRumble – Intensity to apply to the right motor.

Note: In an Xbox 360 controller, the left motor is low-frequency, while the right motor is high-frequency.

Network

Classes and functions related Torque 3D networking.

Description

Torque was designed from the foundation up to offer robust client/server networked simulations. Performance over
the internet drove the design for the networking model. Torque attempts to deal with three fundamental problems of
network simulation programming: limited bandwidth, packet loss and latency.

An instance of Torque can be set up as a dedicated server, a client, or both a client and a server. If the game is a client
and a server, it still behaves as a client connected to a server - instead of using the network, however, the NetConnection
object has a short-circuit link to another NetConnection object in the same application instance. This is known as a
local connection.

Handling Limited Bandwidth Bandwidth is a problem because in the large, open environments that Torque allows,
and with the large number of clients that the engine supports (depending on amount of data sent per client, game world
complexity, and available bandwidth), potentially many different objects can be moving and updating at once.

Torque uses three main strategies to maximize available bandwidth. First, it prioritizes data, sending updates to what
is most “important” to a client at a greater frequency than it updates data that is less important. Second, it sends only
data that is necessary. Using the BitStream class, only the absolute minimum number of bits needed for a given piece
of data will be sent. Also, when object state changes, Torque only sends the part of the object state that changed. Last,
Torque caches common strings (NetStringTable) and data (SimDataBlock) so that they only need to be transmitted
once.

Handling Packet Loss Packet loss is a problem because the information in lost data packets must somehow be
retransmitted, yet in many cases the data in the dropped packet, if resent directly, will be stale by the time it gets to the
client.

5.3. Console Reference 747

Torque 3D Documentation, Release 3.5.1

For example, suppose that packet 2 contains a position update for a player and packet 3 contains a more recent position
update for that same player. If packet 2 is dropped but packet 3 makes it across to the client, the engine shouldn’t resend
the data that was in packet 2. It is older than the version that was received by the client. In order to minimize data that
gets resent unnecessarily, the engine classifies data into five groups:

• Unguaranteed Data (NetEvent) - If this data is lost, don’t re-transmit it. An example of this type of data could
be real-time voice traffic. By the time it is resent subsequent voice segments will already have played.

• Guaranteed Data (NetEvent) - If this data is lost, resend it. This is good for important, one-time information,
like which team the player is on, or mission end messages are all examples of guaranteed data.

• Guaranteed Ordered Data (NetEvent) - If this data is lost, not only resend it, but make sure it arrives in the
correct order. Chat messages, and messages for players joining and leaving the game all examples of guaranteed,
ordered data. In the diagram above, packet 5 arrives before packet 4. If these consist of guaranteed ordered data,
the client will not process packet 5 until packet 4 is first handled.

• Most-Recent State Data (NetObject) - Only the most current version of the data is important. If an update is
lost, send the current state, unless it has been sent already. Most scene objects transmit their information in this
manner.

• Guaranteed Quickest Data (Move) - Critical data that must get through as soon as possible. An example of
this is movement information from the client to the server, which is transmitted with every packet by the Move
Manager.

Handling Latency Latency is a problem in the simulation because the network delay in information transfer (which,
for modems, can be up to a quarter of a second or more) makes the client’s view of the world perpetually out-of-sync
with the server.

Twitch FPS games, for which Torque was initially designed, require instant control response in order to feel anything
but sluggish. Also, fast moving objects can be difficult for highly latent players to hit. In order to solve these problems
Torque employs several strategies:

• Interpolation is used to smoothly move an object from where the client thinks it is to where the server says it is.

• Extrapolation is used to guess where the object is going based on its state and rules of movement.

• Prediction is used to form an educated guess about where an object is going based on rules of movement and
client input.

The network architecture is layered: at the bottom is the platform layer, above that the notify protocol layer, followed
by the NetConnection object and event management layer.

748 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

On Ghosting and Scoping One of the most powerful aspects of Torque’s networking code is its support for ghosting
and prioritized, most-recent-state network updates. The way this works is a bit complex, but it is immensely efficient.
Let’s run through the steps that the server goes through for each client in this part of Torque’s networking:

• First, the server determines what objects are in-scope for the client. This is done by calling onCameraScope-
Query() on the object which is considered the “scope” object. This is usually the player object, but it can be
something else. (For instance, the current vehicle, or an object we’re remote controlling.)

• Second, it ghosts them to the client. A ghost is the client’s representation of the server’s object, and only
maintains data that the client requires for the simulation. Ghosts come and go on the client according to the
scope rules in the first step above.

• Finally, the server sends updates as needed, by checking the dirty list and packing updates. By only sending
dirty data and using bit packing, no excess bandwidth is wasted. The order of ghost updates and their frequency
is prioritized by the results of the object’s getUpdatePriority() method.

Each object ghosted is assigned a ghost ID; the client is only aware of the ghost ID. This acts to enhance game security,
as it becomes difficult to map objects from one connection to another, or to reliably identify objects from ID alone.
IDs are also reassigned based on need, making it hard to track objects that have fallen out of scope (as any object
which the player shouldn’t see would).

NetConnection::resolveGhostID() is used on the client side, and NetConnection::resolveObjectFromGhostIndex() on
the server side, to turn ghost IDs into object references. NetConnection::getGhostID() is used in the other direction
to determine an object’s ghost ID based on its SimObject ID. There is a cap on the maximum number of ghosts per
client. Ghost IDs are currently sent via a 12-bit field, ergo, there is a cap of 4096 objects ghosted per client. This can
be easily raised; see the GhostConstants enum in the source code.

See also:

NetObject for a further description of ghosting and individual objects.

NetConnection Group The NetConnection is a SimGroup. On the client side, it contains all the objects which have
been ghosted to that client. On the server side, it is empty. It can be used (typically in script) to hold objects related
to the connection. For instance, you might place an observation camera in the NetConnnection, or the current Player
obejct. In both cases, when the connection is destroyed, so are the contained objects.

See also:

NetConnection, the basis for implementing a multiplayer game protocol. Also see NetObject, which is the superclass
for ghostable objects, and ShapeBase, which is the base for player and vehicle classes.

Local Connections It is possible to run both the server and client within the same process. This is typically done
while developing your multiplayer game, and is often required when using Torque’s built-in world creation tools. This
is also how a single player game is run. Having both a server and client together is known as a local connection.

Any time a player launches the game and chooses to host a mission, they are also making use of a local connection.
All other players joining the game use a regular, networked connection, and are considered clients.

Internally, a local connection short-circuits the networking layer and allows for data to pass immediately between the
internal server and client. However, it should be noted that there is still the additional overhead of having seperate
server and client branches within the code, even when creating a single player game. When developing your single
player game, you need to be mindful that a client and server still exist within the engine.

See also:

NetConnection, the basis for implementing a multiplayer game protocol.

5.3. Console Reference 749

Torque 3D Documentation, Release 3.5.1

Monitoring the Network If you are interested in seeing Torque’s various network statistics, use the Net Graph.

The Net Graph is from a client, or ServerConnection, point of view. To activate the Net Graph, either press the ‘n’
key, or open the console and type ‘toggleNetGraph();’. The Net Graph presents a number of networking statistics, as
described below:

• Ghosts Active - The number of active ghosts on the connection.

• Ghost Updates - The total number of ghosts added, removed or updated since the last update.

• Bytes Sent - The total number of bytes sent to the server since the last update.

• Bytes Received - The total number of bytes received from the server since the last update.

• Latency - The average round trip time (in ms) for the connection. Also known as ping.

• Packet Loss - The percentage of packets lost since the last update.

Classes

GameConnection The game-specific subclass of NetConnection.

Inherit: NetConnection

Description The GameConnection introduces the concept of the control object. The control object is simply the
object that the client is associated with that network connection controls. By default the control object is an instance
of the Player class, but can also be an instance of Camera (when editing the mission, for example), or any other
ShapeBase derived class as appropriate for the game.

Torque uses a model in which the server is the authoritative master of the simulation. To prevent clients from cheating,
the server simulates all player moves and then tells the client where his player is in the world. This model, while
secure, can have problems. If the network latency is high, this round-trip time can give the player a very noticeable
sense of movement lag. To correct this problem, the game uses a form of prediction - it simulates the movement of the
control object on the client and on the server both. This way the client doesn’t need to wait for round-trip verification
of his moves. Only in the case of a force acting on the control object on the server that doesn’t exist on the client does
the client’s position need to be forcefully changed.

To support this, all control objects (derivative of ShapeBase) must supply a writePacketData() and readPacketData()
function that send enough data to accurately simulate the object on the client. These functions are only called for the
current control object, and only when the server can determine that the client’s simulation is somehow out of sync

750 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

with the server. This occurs usually if the client is affected by a force not present on the server (like an interpolating
object) or if the server object is affected by a server only force (such as the impulse from an explosion).

The Move structure is a 32 millisecond snapshot of player input, containing x, y, and z positional and rotational
changes as well as trigger state changes. When time passes in the simulation moves are collected (depending on how
much time passes), and applied to the current control object on the client. The same moves are then packed over to the
server in GameConnection::writePacket(), for processing on the server’s version of the control object.

Methods
void GameConnection::activateGhosting()

Called by the server during phase 2 of the mission download to start sending ghosts to the client. Ghosts
represent objects on the server that are in scope for the client. These need to be synchronized with the client in
order for the client to see and interact with them. This is typically done during the standard mission start phase
2 when following Torque’s example mission startup sequence.

Example:

function serverCmdMissionStartPhase2Ack(%client, %seq, %playerDB)
{

// Make sure to ignore calls from a previous mission load
if (%seq != $missionSequence || !$MissionRunning)

return;
if (%client.currentPhase != 1.5)

return;
%client.currentPhase = 2;

// Set the player datablock choice
%client.playerDB = %playerDB;

// Update mod paths, this needs to get there before the objects.
%client.transmitPaths();

// Start ghosting objects to the client
%client.activateGhosting();

}

bool GameConnection::chaseCam(int size)
Sets the size of the chase camera’s matrix queue.

void GameConnection::clearCameraObject()
Clear the connection’s camera object reference.

void GameConnection::clearDisplayDevice()
Clear any display device. A display device may define a number of properties that are used during rendering.

void GameConnection::delete(string reason)
On the server, disconnect a client and pass along an optional reason why. This method performs two operations:
it disconnects a client connection from the server, and it deletes the connection object. The optional reason is
sent in the disconnect packet and is often displayed to the user so they know why they’ve been disconnected.

Parameters reason – [optional] The reason why the user has been disconnected from the server.

Example:

function kick(%client)
{

messageAll(MsgAdminForce, \c2The Admin has kicked %1., %client.playerName);

if (!%client.isAIControlled())
BanList::add(%client.guid, %client.getAddress(), $Pref::Server::KickBanTime);

5.3. Console Reference 751

Torque 3D Documentation, Release 3.5.1

%client.delete("You have been kicked from this server");
}

SimObject GameConnection::getCameraObject()
Returns the connection’s camera object used when not viewing through the control object.

float GameConnection::getControlCameraDefaultFov()
Returns the default field of view as used by the control object’s camera.

float GameConnection::getControlCameraFov()
Returns the field of view as used by the control object’s camera.

GameBase GameConnection::getControlObject()
On the server, returns the object that the client is controlling.By default the control object is an instance of
the Player class, but can also be an instance of Camera (when editing the mission, for example), or any other
ShapeBase derived class as appropriate for the game.

bool GameConnection::getControlSchemeAbsoluteRotation()
Get the connection’s control scheme absolute rotation property.

Returns True if the connection’s control object should use an absolute rotation control scheme.

float GameConnection::getDamageFlash()
On the client, get the control object’s damage flash level.

Returns flash level

static int GameConnection::getServerConnection()
On the client, this static mehtod will return the connection to the server, if any.

Returns ID of the server connection, or -1 if none is found.

float GameConnection::getWhiteOut()
On the client, get the control object’s white-out level.

Returns white-out level

void GameConnection::initialControlSet()
Called on the client when the first control object has been set by the server and we are now ready to go. A
common action to perform when this callback is called is to switch the GUI canvas from the loading screen and
over to the 3D game GUI.

bool GameConnection::isAIControlled()
Returns true if this connection is AI controlled.

bool GameConnection::isControlObjectRotDampedCamera()
Returns true if the object being controlled by the client is making use of a rotation damped camera.

bool GameConnection::isDemoPlaying()
Returns true if a previously recorded demo file is now playing.

bool GameConnection::isDemoRecording()
Returns true if a demo file is now being recorded.

bool GameConnection::isFirstPerson()
Returns true if this connection is in first person mode.

void GameConnection::listClassIDs()
List all of the classes that this connection knows about, and what their IDs are. Useful for debugging network
problems.

void GameConnection::onConnectionAccepted()
Called on the client when the connection to the server has been established.

752 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void GameConnection::onConnectionDropped(string reason)
Called on the client when the connection to the server has been dropped.

Parameters reason – The reason why the connection was dropped.

void GameConnection::onConnectionError(string errorString)
Called on the client when there is an error with the connection to the server.

Parameters errorString – The connection error text.

void GameConnection::onConnectionTimedOut()
Called on the client when the connection to the server times out.

void GameConnection::onConnectRequestRejected(string reason)
Called on the client when the connection to the server has been rejected.

Parameters reason – The reason why the connection request was rejected.

void GameConnection::onConnectRequestTimedOut()
Called when connection attempts have timed out.

void GameConnection::onControlObjectChange()
Called on the client when the control object has been changed by the server.

void GameConnection::onDataBlocksDone(int sequence)
Called on the server when all datablocks has been sent to the client. During phase 1 of the mission download,
all datablocks are sent from the server to the client. Once all datablocks have been sent, this callback is called
and the mission download procedure may move on to the next phase.

Parameters sequence – The sequence is common between the server and client and ensures that
the client is acting on the most recent mission start process. If an errant network packet (one that
was lost but has now been found) is received by the client with an incorrect sequence, it is just
ignored. This sequence number is updated on the server every time a mission is loaded.

void GameConnection::onDrop(string disconnectReason)
Called on the server when the client’s connection has been dropped.

Parameters disconnectReason – The reason why the connection was dropped.

void GameConnection::onFlash(bool state)
Called on the client when the damage flash or white out states change. When the server changes the damage
flash or white out values, this callback is called either is on or both are off. Typically this is used to enable the
flash postFx.

Parameters state – Set to true if either the damage flash or white out conditions are active.

bool GameConnection::play2D(SFXProfile profile)
Used on the server to play a 2D sound that is not attached to any object.

Parameters profile – The SFXProfile that defines the sound to play.

Example:

function ServerPlay2D(%profile)
{

// Play the given sound profile on every client.
// The sounds will be transmitted as an event, not attached to any object.
for(%idx = 0; %idx < ClientGroup.getCount(); %idx++)

ClientGroup.getObject(%idx).play2D(%profile);
}

bool GameConnection::play3D(SFXProfile profile, TransformF location)
Used on the server to play a 3D sound that is not attached to any object.

5.3. Console Reference 753

Torque 3D Documentation, Release 3.5.1

Parameters

• profile – The SFXProfile that defines the sound to play.

• location – The position and orientation of the 3D sound given in the form of “x y z ax
ay az aa”.

Example:

function ServerPlay3D(%profile,%transform)
{

// Play the given sound profile at the given position on every client
// The sound will be transmitted as an event, not attached to any object.
for(%idx = 0; %idx < ClientGroup.getCount(); %idx++)

ClientGroup.getObject(%idx).play3D(%profile,%transform);
}

bool GameConnection::playDemo(string demoFileName)
On the client, play back a previously recorded game session. It is often useful to play back a game session. This
could be for producing a demo of the game that will be shown at a later time, or for debugging a game. By
recording the entire network stream it is possible to later play game the game exactly as it unfolded during the
actual play session. This is because all user control and server results pass through the connection.

Returns True if the playback was successful. False if there was an issue, such as not being able to
open the demo file for playback.

void GameConnection::resetGhosting()
On the server, resets the connection to indicate that ghosting has been disabled. Typically when a mission
has ended on the server, all connected clients are informed of this change and their connections are reset back
to a starting state. This method resets a connection on the server to indicate that ghosts are no longer being
transmitted. On the client end, all ghost information will be deleted.

Example:

// Inform the clients
for (%clientIndex = 0; %clientIndex < ClientGroup.getCount(); %clientIndex++)

{
// clear ghosts and paths from all clients
%cl = ClientGroup.getObject(%clientIndex);
%cl.endMission();
%cl.resetGhosting();
%cl.clearPaths();

}

void GameConnection::setBlackOut(bool doFade, int timeMS)
On the server, sets the client’s 3D display to fade to black.

Parameters

• doFade – Set to true to fade to black, and false to fade from black.

• timeMS – Time it takes to perform the fade as measured in ms.

bool GameConnection::setCameraObject(GameBase camera)
On the server, set the connection’s camera object used when not viewing through the control object.

void GameConnection::setConnectArgs(const char *args)
On the client, pass along a variable set of parameters to the server. Once the connection is established with the
server, the server calls its onConnect() method with the client’s passed in parameters as aruments.

void GameConnection::setControlCameraFov(float newFOV)
On the server, sets the control object’s camera’s field of view.

754 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters newFOV – New field of view (in degrees) to force the control object’s camera to use.
This value is clamped to be within the range of 1 to 179 degrees.

bool GameConnection::setControlObject(GameBase ctrlObj)
On the server, sets the object that the client will control. By default the control object is an instance of the Player
class, but can also be an instance of Camera (when editing the mission, for example), or any other ShapeBase
derived class as appropriate for the game.

Parameters ctrlObj – The GameBase object on the server to control.

void GameConnection::setControlSchemeParameters(bool absoluteRotation, bool addYaw-
ToAbsRot, bool addPitchToAbsRot)

Set the control scheme that may be used by a connection’s control object.

Parameters

• absoluteRotation – Use absolute rotation values from client, likely through Extend-
edMove.

• addYawToAbsRot – Add relative yaw control to the absolute rotation calculation. Only
useful when absoluteRotation is true.

void GameConnection::setFirstPerson(bool firstPerson)
On the server, sets this connection into or out of first person mode.

Parameters firstPerson – Set to true to put the connection into first person mode.

void GameConnection::setJoinPassword(string password)
On the client, set the password that will be passed to the server. On the server, this password is compared with
what is stored in pref::Server::Password is empty then the client’s sent password is ignored. Otherwise, if the
passed in client password and the server password do not match, the CHR_PASSWORD error string is sent back
to the client and the connection is immediately terminated. This password checking is performed quite early
on in the connection request process so as to minimize the impact of multiple failed attempts – also known as
hacking.

void GameConnection::setLagIcon(bool state)
Called on the client to display the lag icon. When the connection with the server is lagging, this callback is
called to allow the game GUI to display some indicator to the player.

Parameters state – Set to true if the lag icon should be displayed.

void GameConnection::setMissionCRC(int CRC)
On the server, transmits the mission file’s CRC value to the client. Typically, during the standard mission start
phase 1, the mission file’s CRC value on the server is send to the client. This allows the client to determine if the
mission has changed since the last time it downloaded this mission and act appropriately, such as rebuilt cached
lightmaps.

Parameters CRC – The mission file’s CRC value on the server.

Example:

function serverCmdMissionStartPhase1Ack(%client, %seq)
{

// Make sure to ignore calls from a previous mission loadif (%seq != $missionSequence || !$MissionRunning)
return;

if (%client.currentPhase != 0)
return;

%client.currentPhase = 1;

// Start with the CRC
%client.setMissionCRC($missionCRC);

5.3. Console Reference 755

Torque 3D Documentation, Release 3.5.1

// Send over the datablocks...
// OnDataBlocksDone will get called when have confirmation
// that theyve all been received.
%client.transmitDataBlocks($missionSequence);

}

void GameConnection::startRecording(string fileName)
On the client, starts recording the network connection’s traffic to a demo file. It is often useful to play back
a game session. This could be for producing a demo of the game that will be shown at a later time, or for
debugging a game. By recording the entire network stream it is possible to later play game the game exactly as
it unfolded during the actual play session. This is because all user control and server results pass through the
connection.

Parameters fileName – The file name to use for the demo recording.

void GameConnection::stopRecording()
On the client, stops the recording of a connection’s network traffic to a file.

void GameConnection::transmitDataBlocks(int sequence)
Sent by the server during phase 1 of the mission download to send the datablocks to the client. SimDataBlocks,
also known as just datablocks, need to be transmitted to the client prior to the client entering the game world.
These represent the static data that most objects in the world reference. This is typically done during the standard
mission start phase 1 when following Torque’s example mission startup sequence. When the datablocks have all
been transmitted, onDataBlocksDone() is called to move the mission start process to the next phase.

Parameters sequence – The sequence is common between the server and client and ensures that
the client is acting on the most recent mission start process. If an errant network packet (one that
was lost but has now been found) is received by the client with an incorrect sequence, it is just
ignored. This sequence number is updated on the server every time a mission is loaded.

Example:

function serverCmdMissionStartPhase1Ack(%client, %seq)
{

// Make sure to ignore calls from a previous mission load
if (%seq != $missionSequence || !$MissionRunning)

return;
if (%client.currentPhase != 0)

return;
%client.currentPhase = 1;

// Start with the CRC
%client.setMissionCRC($missionCRC);

// Send over the datablocks...
// OnDataBlocksDone will get called when have confirmation
// that theyve all been received.
%client.transmitDataBlocks($missionSequence);

}

HTTPObject Allows communications between the game and a server using HTTP.

Inherit: TCPObject

Description HTTPObject is derrived from TCPObject and makes use of the same callbacks for dealing with con-
nections and received data. However, the way in which you use HTTPObject to connect with a server is different than

756 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

TCPObject. Rather than opening a connection, sending data, waiting to receive data, and then closing the connection,
you issue a get() or post() and handle the response. The connection is automatically created and destroyed for you.

Example:

// In this example well retrieve the weather in Las Vegas using
// Googles API. The response is in XML which could be processed
// and used by the game using SimXMLDocument, but well just output
// the results to the console in this example.

// Define callbacks for our specific HTTPObject using our instances
// name (WeatherFeed) as the namespace.

// Handle an issue with resolving the servers name
function WeatherFeed::onDNSFailed(%this)
{

// Store this state
%this.lastState = "DNSFailed";

// Handle DNS failure
}

function WeatherFeed::onConnectFailed(%this)
{

// Store this state
%this.lastState = "ConnectFailed";

// Handle connection failure
}

function WeatherFeed::onDNSResolved(%this)
{

// Store this state
%this.lastState = "DNSResolved";

}

function WeatherFeed::onConnected(%this)
{

// Store this state
%this.lastState = "Connected";

// Clear our buffer
%this.buffer = "";

}

function WeatherFeed::onDisconnect(%this)
{

// Store this state
%this.lastState = "Disconnected";

// Output the buffer to the consoleecho("Google Weather Results:");
echo(%this.buffer);

}

// Handle a line from the server
function WeatherFeed::onLine(%this, %line)
{

// Store this line in out buffer

5.3. Console Reference 757

Torque 3D Documentation, Release 3.5.1

%this.buffer = %this.buffer @ %line;
}

// Create the HTTPObject
%feed = newHTTPObject(WeatherFeed);

// Define a dynamic field to store the last connection state
%feed.lastState = "None";

// Send the GET command
%feed.get("www.google.com:80", "/ig/api", "weather=Las-Vegas,US");

Methods
void HTTPObject::get(string Address, string requirstURI, string query)

Send a GET command to a server to send or retrieve data.

Parameters

• Address – HTTP web address to send this get call to. Be sure to include the port at the
end (IE: “www.garagegames.com:80”).

• requirstURI – Specific location on the server to access (IE: “index.php”.)

• query – Optional. Actual data to transmit to the server. Can be anything re-
quired providing it sticks with limitations of the HTTP protocol. If you were build-
ing the URL manually, this is the text that follows the question mark. For example:
http://www.google.com/ig/api?weather=Las-Vegas,US

Example:

// Create an HTTP object for communications
%httpObj = newHTTPObject();

// Specify a URL to transmit to
%url = "www.garagegames.com:80";

// Specify a URI to communicate with
%URI = "/index.php";

// Specify a query to send.
%query = "";

// Send the GET command to the server
%httpObj.get(%url,%URI,%query);

void HTTPObject::post(string Address, string requirstURI, string query, string post)
Send POST command to a server to send or retrieve data.

Parameters

• Address – HTTP web address to send this get call to. Be sure to include the port at the
end (IE: “www.garagegames.com:80”).

• requirstURI – Specific location on the server to access (IE: “index.php”.)

• query – Actual data to transmit to the server. Can be anything required providing it sticks
with limitations of the HTTP protocol.

• post – Submission data to be processed.

Example:

758 Chapter 5. Scripting

http://www.google.com/ig/api?weather=Las-Vegas,US

Torque 3D Documentation, Release 3.5.1

// Create an HTTP object for communications
%httpObj = newHTTPObject();

// Specify a URL to transmit to
%url = "www.garagegames.com:80";

// Specify a URI to communicate with
%URI = "/index.php";

// Specify a query to send.
%query = "";

// Specify the submission data.
%post = "";

// Send the POST command to the server
%httpObj.POST(%url,%URI,%query,%post);

NetConnection Provides the basis for implementing a multiplayer game protocol.

Inherit: SimGroup

Description NetConnection combines a low-level notify protocol implemented in ConnectionProtocol with a Sim-
Group, and implements several distinct subsystems:

Event Manager This is responsible for transmitting NetEvents over the wire. It deals with ensuring that the various
types of NetEvents are delivered appropriately, and with notifying the event of its delivery status.

Move Manager This is responsible for transferring a Move to the server 32 times a second (on the client) and applying
it to the control object (on the server).

Ghost Manager This is responsible for doing scoping calculations (on the server side) and transmitting most-recent
ghost information to the client.

File Transfer It is often the case that clients will lack important files when connecting to a server which is running a
mod or new map. This subsystem allows the server to transfer such files to the client.

Networked String Table String data can easily soak up network bandwidth, so for efficiency, we implement a net-
worked string table. We can then notify the connection of strings we will reference often, such as player names,
and transmit only a tag, instead of the whole string.

Demo Recording A demo in Torque is a log of the network traffic between client and server; when a NetConnection
records a demo, it simply logs this data to a file. When it plays a demo back, it replays the logged data.

Connection Database This is used to keep track of all the NetConnections; it can be iterated over (for instance, to
send an event to all active connections), or queried by address.

The NetConnection is a SimGroup. On the client side, it contains all the objects which have been ghosted to that
client. On the server side, it is empty; it can be used (typically in script) to hold objects related to the connection.
For instance, you might place an observation camera in the NetConnnection. In both cases, when the connection is
destroyed, so are the contained objects.

The NetConnection also has the concept of local connections. These are used when the client and server reside in
the same process. A local connection is typically required to use the standard Torque world building tools. A local
connection is also required when building a single player game.

Methods

5.3. Console Reference 759

Torque 3D Documentation, Release 3.5.1

void NetConnection::checkMaxRate()
Ensures that all configured packet rates and sizes meet minimum requirements. This method is normally only
called when a NetConnection class is first constructed. It need only be manually called if the global variables
that set the packet rate or size have changed.

void NetConnection::clearPaths()
On the server, resets the connection to indicate that motion spline paths have not been transmitted. Typically
when a mission has ended on the server, all connected clients are informed of this change and their connections
are reset back to a starting state. This method resets a connection on the server to indicate that motion spline
paths have not been transmitted.

Example:

// Inform the clients
for (%clientIndex = 0; %clientIndex < ClientGroup.getCount(); %clientIndex++)

{
// clear ghosts and paths from all clients
%cl = ClientGroup.getObject(%clientIndex);
%cl.endMission();
%cl.resetGhosting();
%cl.clearPaths();

}

void NetConnection::connect(string remoteAddress)
Connects to the remote address. Attempts to connect with another NetConnection on the given address. Typi-
cally once connected, a game’s information is passed along from the server to the client, followed by the player
entering the game world. The actual procedure is dependent on the NetConnection subclass that is used. i.e.
GameConnection .

Parameters remoteAddress – The address to connect to in the form of IP:<address>:<port al-
though the IP: portion is optional. The address portion may be in the form of w.x.y.z or as a
host name, in which case a DNS lookup will be performed. You may also substitue the word
broadcast for the address to broadcast the connect request over the local subnet.

string NetConnection::connectLocal()
Connects with the server that is running within the same process as the client.

Returns An error text message upon failure, or an empty string when successful.

string NetConnection::getAddress()
Returns the far end network address for the connection. The address will be in one of the following forms:

•IP:Broadcast:<port> for broadcast type addresses

•IP:<address>:<port> for IP addresses

•local when connected locally (server and client running in same process

int NetConnection::getGhostID(int realID)
On server or client, convert a real id to the ghost id for this connection. Torque’s network ghosting system
only exchanges ghost ID’s between the server and client. Use this method on the server or client to discover an
object’s ghost ID based on its real SimObject ID.

Parameters realID – The real SimObject ID of the object.

Returns The ghost ID of the object for this connection, or -1 if it could not be resolved.

int NetConnection::getGhostsActive()
Provides the number of active ghosts on the connection.

Returns The number of active ghosts.

760 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int NetConnection::getPacketLoss()
Returns the percentage of packets lost per tick.

int NetConnection::getPing()
Returns the average round trip time (in ms) for the connection. The round trip time is recalculated every time
a notify packet is received. Notify packets are used to information the connection that the far end successfully
received the sent packet.

int NetConnection::resolveGhostID(int ghostID)
On the client, convert a ghost ID from this connection to a real SimObject ID. Torque’s network ghosting system
only exchanges ghost ID’s between the server and client. Use this method on the client to discover an object’s
local SimObject ID when you only have a ghost ID.

Parameters ghostID – The ghost ID of the object as sent by the server.

Returns ID of the object, or 0 if it could not be resolved.

Example:

%object = ServerConnection.resolveGhostID(%ghostId);

int NetConnection::resolveObjectFromGhostIndex(int ghostID)
On the server, convert a ghost ID from this connection to a real SimObject ID. Torque’s network ghosting system
only exchanges ghost ID’s between the server and client. Use this method on the server to discover an object’s
local SimObject ID when you only have a ghost ID.

Parameters ghostID – The ghost ID of the object as sent by the server.

Returns ID of the object, or 0 if it could not be resolved.

Example:

%object = %client.resolveObjectFromGhostIndex(%ghostId);

void NetConnection::setSimulatedNetParams(float packetLoss, int delay)
Simulate network issues on the connection for testing.

Parameters

• packetLoss – The fraction of packets that will be lost. Ranges from 0.0 (no loss) to 1.0
(complete loss)

• delay – Delays packets being transmitted by simulating a particular ping. This is an abso-
lute integer, measured in ms.

void NetConnection::transmitPaths()
Sent by the server during phase 2 of the mission download to update motion spline paths. The server transmits
all spline motion paths that are within the mission (Path) separate from other objects. This is due to the
potentially large number of nodes within each path, which may saturate a packet sent to the client. By managing
this step separately, Torque has finer control over how packets are organised vs. doing it during the ghosting
stage. Internally a PathManager is used to track all paths defined within a mission on the server, and each one
is transmitted using a PathManagerEvent. The client side collects these events and builds the given paths within
its own PathManager. This is typically done during the standard mission start phase 2 when following Torque’s
example mission startup sequence. When a mission is ended, all paths need to be cleared from their respective
path managers.

Example:

function serverCmdMissionStartPhase2Ack(%client, %seq, %playerDB)
{

// Make sure to ignore calls from a previous mission load
if (%seq != $missionSequence || !$MissionRunning)

5.3. Console Reference 761

Torque 3D Documentation, Release 3.5.1

return;
if (%client.currentPhase != 1.5)

return;
%client.currentPhase = 2;

// Set the player datablock choice
%client.playerDB = %playerDB;

// Update mission paths (SimPath), this needs to get there before the objects.
%client.transmitPaths();

// Start ghosting objects to the client
%client.activateGhosting();

}

NetObject Superclass for all ghostable networked objects.

Inherit: SimObject

Description

Introduction To NetObject And Ghosting This class is the basis of the ghost implementation in Torque 3D. Every
3D object is a NetObject. One of the most powerful aspects of Torque’s networking code is its support for ghosting
and prioritized, most-recent-state network updates. The way this works is a bit complex, but it is immensely efficient.
Let’s run through the steps that the server goes through for each client in this part of Torque’s networking:

• First, the server determines what objects are in-scope for the client. This is done by calling onCameraScope-
Query() on the object which is considered the “scope” object. This is usually the player object, but it can be
something else. (For instance, the current vehicle, or a object we’re remote controlling.)

• Second, it ghosts them to the client; this is implemented in netGhost.cc.

• Finally, it sends updates as needed, by checking the dirty list and packing updates.

There several significant advantages to using this networking system:

• Efficient network usage, since we only send data that has changed. In addition, since we only care about most-
recent data, if a packet is dropped, we don’t waste effort trying to deliver stale data.

• Cheating protection; since we don’t deliver information about game objects which aren’t in scope, we dramati-
cally reduce the ability of clients to hack the game and gain a meaningful advantage. (For instance, they can’t
find out about things behind them, since objects behind them don’t fall in scope.) In addition, since ghost IDs
are assigned per-client, it’s difficult for any sort of co-ordination between cheaters to occur.

NetConnection contains the Ghost Manager implementation, which deals with transferring data to the appropriate
clients and keeping state in synch.

An Example Implementation The basis of the ghost implementation in Torque is NetObject. It tracks the dirty
flags for the various states that the object wants to network, and does some other book-keeping to allow more efficient
operation of the networking layer.

Using a NetObject is very simple; let’s go through a simple example implementation:

class SimpleNetObject : public NetObject
{
public:

762 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

typedef NetObject Parent;
DECLARE_CONOBJECT(SimpleNetObject);

Above is the standard boilerplate code for a Torque class. You can find out more about this in SimObject:

char message1[256];
char message2[256];
enum States {

Message1Mask = BIT(0),
Message2Mask = BIT(1),

};

For our example, we’re having two “states” that we keep track of, message1 and message2. In a real object, we might
map our states to health and position, or some other set of fields. You have 32 bits to work with, so it’s possible to be
very specific when defining states. In general, you should try to use as few states as possible (you never know when
you’ll need to expand your object’s functionality!), and in fact, most of your fields will end up changing all at once, so
it’s not worth it to be too fine-grained. (As an example, position and velocity on Player are controlled by the same bit,
as one rarely changes without the other changing, too.):

SimpleNetObject()
{

// In order for an object to be considered by the network system,
// the Ghostable net flag must be set.
// The ScopeAlways flag indicates that the object is always scoped
// on all active connections.
mNetFlags.set(ScopeAlways | Ghostable);
dStrcpy(message1, "Hello World 1!");
dStrcpy(message2, "Hello World 2!");

}

Here is the constructor. Here, you see that we initialize our net flags to show that we should always be scoped, and
that we’re to be taken into consideration for ghosting. We also provide some initial values for the message fields:

U32 packUpdate(NetConnection *, U32 mask, BitStream *stream)
{

// check which states need to be updated, and update them
if(stream->writeFlag(mask & Message1Mask))

stream->writeString(message1);
if(stream->writeFlag(mask & Message2Mask))

stream->writeString(message2);

// the return value from packUpdate can set which states still
// need to be updated for this object.
return 0;

}

Here’s half of the meat of the networking code, the packUpdate() function. (The other half, unpackUpdate(), we’ll
get to in a second.) The comments in the code pretty much explain everything, however, notice that the code follows
a pattern of if(writeFlag(mask & StateMask)) { ... write data ... }. The packUpdate()/unpackUpdate() functions are
responsible for reading and writing the dirty bits to the bitstream by themselves:

void unpackUpdate(NetConnection *, BitStream *stream)
{

// the unpackUpdate function must be symmetrical to packUpdate
if(stream->readFlag())
{

stream->readString(message1);
Con::printf("Got message1: %s", message1);

5.3. Console Reference 763

Torque 3D Documentation, Release 3.5.1

}
if(stream->readFlag())
{

stream->readString(message2);
Con::printf("Got message2: %s", message2);

}
}

The other half of the networking code in any NetObject, unpackUpdate(). In our simple example, all that the code does
is print the new messages to the console; however, in a more advanced object, you might trigger animations, update
complex object properties, or even spawn new objects, based on what packet data you unpack:

void setMessage1(const char *msg)
{

setMaskBits(Message1Mask);
dStrcpy(message1, msg);

}
void setMessage2(const char *msg)
{

setMaskBits(Message2Mask);
dStrcpy(message2, msg);

}

Here are the accessors for the two properties. It is good to encapsulate your state variables, so that you don’t have to
remember to make a call to setMaskBits every time you change anything; the accessors can do it for you. In a more
complex object, you might need to set multiple mask bits when you change something; this can be done using the |
operator, for instance, setMaskBits(Message1Mask | Message2Mask); if you changed both messages:

IMPLEMENT_CO_NETOBJECT_V1(SimpleNetObject);

ConsoleMethod(SimpleNetObject, setMessage1, void, 3, 3, "(string msg) Set message 1.")
{

object->setMessage1(argv[2]);
}

ConsoleMethod(SimpleNetObject, setMessage2, void, 3, 3, "(string msg) Set message 2.")
{

object->setMessage2(argv[2]);
}

Finally, we use the NetObject implementation macro, IMPLEMENT_CO_NETOBJECT_V1(), to implement our Ne-
tObject. It is important that we use this, as it makes Torque perform certain initialization tasks that allow us to send
the object over the network. IMPLEMENT_CONOBJECT() doesn’t perform these tasks, see the documentation on
AbstractClassRep for more details.

Methods
void NetObject::clearScopeToClient(NetConnection client)

Undo the effects of a scopeToClient() call.

Parameters client – The connection to remove this object’s scoping from
int NetObject::getClientObject()

Returns a pointer to the client object when on a local connection. Short-Circuit-Networking: this is only valid
for a local-client / singleplayer situation.

Returns ID of the client object.

764 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// Psuedo-code, some values left out for this example
%node = newParticleEmitterNode(){};
%clientObject = %node.getClientObject();
if(isObject(%clientObject)

%clientObject.setTransform("0 0 0");

int NetObject::getGhostID()
Get the ghost index of this object from the server.

Returns on the server

Example:

%ghostID = LocalClientConnection.getGhostId(%serverObject);

int NetObject::getServerObject()
Returns a pointer to the client object when on a local connection. Short-Circuit-Netorking: this is only valid for
a local-client / singleplayer situation.

Returns ID of the server object.

Example:

// Psuedo-code, some values left out for this example
%node = newParticleEmitterNode(){};
%serverObject = %node.getServerObject();
if(isObject(%serverObject)

%serverObject.setTransform("0 0 0");

bool NetObject::isClientObject()
Called to check if an object resides on the clientside.

Returns True if the object resides on the client, false otherwise.

bool NetObject::isServerObject()
Checks if an object resides on the server.

Returns True if the object resides on the server, false otherwise.

void NetObject::scopeToClient(NetConnection client)
Cause the NetObject to be forced as scoped on the specified NetConnection .

Parameters client – The connection this object will always be scoped to

Example:

// Called to create new cameras in TorqueScript
// %this - The active GameConnection
// %spawnPoint - The spawn point location where we creat the camera
function GameConnection::spawnCamera(%this, %spawnPoint)
{

// If this connections camera existsif(isObject(%this.camera))
{

// Add it to the mission group to be cleaned up later
MissionCleanup.add(%this.camera);

// Force it to scope to the client side
%this.camera.scopeToClient(%this);

}
}

5.3. Console Reference 765

Torque 3D Documentation, Release 3.5.1

void NetObject::setScopeAlways()
Always scope this object on all connections. The object is marked as ScopeAlways and is immediately ghosted
to all active connections. This function has no effect if the object is not marked as Ghostable.

SimpleMessageEvent A very simple example of a network event.

Description This object exists purely for instructional purposes. It is primarily geared toward developers that wish
to understand the inner-working of Torque 3D’s networking system. This is not intended for actual game development.

Methods
static void SimpleMessageEvent::msg(NetConnection con, string message)

Send a SimpleMessageEvent message to the specified connection. The far end that receives the message will
print the message out to the console.

Parameters

• con – The unique ID of the connection to transmit to

• message – The string containing the message to transmit

Example:

// Send a message to the other end of the given
NetConnectionSimpleMessageEvent::msg(%conn, "A message from me!");

// The far end will see the following in the console
// (Note: The number may be something other than 1796 as it is the SimObjectID
// of the received event)
//
// RMSG 1796 A message from me!

SimpleNetObject A very simple example of a class derived from NetObject.

Inherit: NetObject

Description This object exists purely for instructional purposes. It is primarily geared toward developers that wish
to understand the inner-working of Torque 3D’s networking system. This is not intended for actual game development.

Example:

// On the server, create a new SimpleNetObject. This is a ghost always
// object so it will be immediately ghosted to all connected clients.
$s = newSimpleNetObject();

// All connected clients will see the following in their console:
//
// Got message: Hello World!

Methods
void SimpleNetObject::setMessage(string msg)

Sets the internal message variable. SimpleNetObject is set up to automatically transmit this new message to all
connected clients. It will appear in the clients’ console.

Parameters msg – The new message to send

766 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// On the server, create a new SimpleNetObject. This is a ghost always
// object so it will be immediately ghosted to all connected clients.
$s = newSimpleNetObject();

// All connected clients will see the following in their console:
//
// Got message: Hello World!
// Now again on the server, change the message. This will cause it to
// be sent to all connected clients.
$s.setMessage("A new message from me!");

// All connected clients will now see in their console:
//
// Go message: A new message from me!

TCPObject Allows communications between the game and a server using TCP/IP protocols.

Inherit: SimObject

Description To use TCPObject you set up a connection to a server, send data to the server, and handle each line of
the server’s response using a callback. Once you are done communicating with the server, you disconnect.

TCPObject is intended to be used with text based protocols which means you’ll need to delineate the server’s response
with an end-of-line character. i.e. the newline character n. You may optionally include the carriage return character r
prior to the newline and TCPObject will strip it out before sending the line to the callback. If a newline character is
not included in the server’s output, the received data will not be processed until you disconnect from the server (which
flushes the internal buffer).

TCPObject may also be set up to listen to a specific port, making Torque into a TCP server. When used in this manner,
a callback is received when a client connection is made. Following the outside connection, text may be sent and lines
are processed in the usual manner.

If you want to work with HTTP you may wish to use HTTPObject instead as it handles all of the HTTP header setup
and parsing.

Example:

// In this example well retrieve the new forum threads RSS
// feed from garagegames.com. As were using TCPObject, the
// raw text response will be received from the server, including
// the HTTP header.

// Define callbacks for our specific TCPObject using our instances
// name (RSSFeed) as the namespace.

// Handle an issue with resolving the servers name
function RSSFeed::onDNSFailed(%this)
{

// Store this state
%this.lastState = "DNSFailed";

// Handle DNS failure
}

function RSSFeed::onConnectFailed(%this)
{

5.3. Console Reference 767

Torque 3D Documentation, Release 3.5.1

// Store this state
%this.lastState = "ConnectFailed";

// Handle connection failure
}

function RSSFeed::onDNSResolved(%this)
{

// Store this state
%this.lastState = "DNSResolved";

}

function RSSFeed::onConnected(%this)
{

// Store this state
%this.lastState = "Connected";

}

function RSSFeed::onDisconnect(%this)
{

// Store this state
%this.lastState = "Disconnected";

}

// Handle a line from the server
function RSSFeed::onLine(%this, %line)
{

// Print the line to the consoleecho(%line);
}

// Create the TCPObject
%rss = newTCPObject(RSSFeed);

// Define a dynamic field to store the last connection state
%rss.lastState = "None";

// Connect to the server
%rss.connect("www.garagegames.com:80");

// Send the RSS feed request to the server. Response will be// handled in onLine() callback above
%rss.send("GET /feeds/rss/threads HTTP/1.1\r\nHost: www.garagegames.com\r\n\r\n");

Methods
void TCPObject::connect(string address)

Connect to the given address.

Parameters address – Server address (including port) to connect to.

Example:

// Set the address.
%address = "www.garagegames.com:80";

// Inform this TCPObject to connect to the specified address.
%thisTCPObj.connect(%address);

768 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void TCPObject::disconnect()
Disconnect from whatever this TCPObject is currently connected to, if anything.

Example:

// Inform this TCPObject to disconnect from anything it is currently connected to.
%thisTCPObj.disconnect();

void TCPObject::listen(int port)
Start listening on the specified port for connections. This method starts a listener which looks for incoming TCP
connections to a port. You must overload the onConnectionRequest callback to create a new TCPObject to read,
write, or reject the new connection.

Parameters port – Port for this TCPObject to start listening for connections on.

Example:

// Create a listener on port 8080.
newTCPObject(TCPListener);
TCPListener.listen(8080);

function TCPListener::onConnectionRequest(%this, %address, %id)
{

// Create a new object to manage the connection.newTCPObject(TCPClient, %id);
}

function TCPClient::onLine(%this, %line)
{

// Print the line of text from client.echo(%line);
}

void TCPObject::onConnected()
Called whenever a connection is established with a server.

void TCPObject::onConnectFailed()
Called whenever a connection has failed to be established with a server.

void TCPObject::onConnectionRequest(string address, string ID)
Called whenever a connection request is made. This callback is used when the TCPObject is listening to a port
and a client is attempting to connect.

Parameters

• address – Server address connecting from.

• ID – Connection ID

void TCPObject::onDisconnect()
Called whenever the TCPObject disconnects from whatever it is currently connected to.

void TCPObject::onDNSFailed()
Called whenever the DNS has failed to resolve.

void TCPObject::onDNSResolved()
Called whenever the DNS has been resolved.

void TCPObject::onLine(string line)
Called whenever a line of data is sent to this TCPObject . This callback is called when the received data contains
a newline n character, or the connection has been disconnected and the TCPObject’s buffer is flushed.

Parameters line – Data sent from the server.

5.3. Console Reference 769

Torque 3D Documentation, Release 3.5.1

void TCPObject::send(string data)
Transmits the data string to the connected computer. This method is used to send text data to the connected
computer regardless if we initiated the connection using connect() , or listening to a port using listen() .

Parameters data – The data string to send.

Example:

// Set the command data
%data = "GET " @ $RSSFeed::serverURL @ " HTTP/1.0\r\n";
%data = %data @ "Host: " @ $RSSFeed::serverName @ "\r\n";
%data = %data @ "User-Agent: " @ $RSSFeed::userAgent @ "\r\n\r\n"
// Send the command to the connected server.
%thisTCPObj.send(%data);

BanList Used for kicking and banning players from a server.

Description There is only a single instance of BanList. It is very important to note that you do not ever create this
object in script like you would other game play objects. You simply reference it via namespace.

For this to be used effectively, make sure you are hooking up other functions to BanList. For example, functions
like GameConnection::onConnectRequestRejected(this, msg) and function GameConnection::onConnectRequest are
excellent places to make use of the BanList. Other systems can be used in conjunction for strict control over a server

Methods
static void BanList::add(int uniqueId, string transportAddress, int banLength)

Ban a user for banLength seconds.

Parameters

• uniqueId – Unique ID of the player.

• transportAddress – Address from which the player connected.

• banLength – Time period over which to ban the player.

Example:

// Kick someone off the server
// %client - This is the connection to the person we are kicking
function kick(%client)
{

// Let the server know what happened
messageAll(MsgAdminForce, \c2The Admin has kicked %1., %client.playerName);

// If it is not an AI Player, execute the ban.
if (!%client.isAIControlled())

BanList::add(%client.guid, %client.getAddress(), $pref::Server::KickBanTime);

// Let the player know they messed up
%client.delete("You have been kicked from this server");

}

static void BanList::addAbsolute(int uniqueId, string transportAddress, int banTime)
Ban a user until a given time.

Parameters

• uniqueId – Unique ID of the player.

770 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• transportAddress – Address from which the player connected.

• banTime – Time at which they will be allowed back in.

Example:

// Kick someone off the server
// %client - This is the connection to the person we are kicking
function kick(%client)
{

// Let the server know what happened
messageAll(MsgAdminForce, \c2The Admin has kicked %1., %client.playerName);

// If it is not an AI Player, execute the ban.
if (!%client.isAIControlled())

BanList::addAbsolute(%client.guid, %client.getAddress(), $pref::Server::KickBanTime);

// Let the player know they messed up
%client.delete("You have been kicked from this server");

}

static void BanList::export(string filename)
Dump the banlist to a file.

Parameters filename – Path of the file to write the list to.

Example:

BanList::Export("./server/banlist.cs");

static bool BanList::isBanned(int uniqueId, string transportAddress)
Is someone banned?

Parameters

• uniqueId – Unique ID of the player.

• transportAddress – Address from which the player connected.

Example:

// This script function is called before a client connection
// is accepted. Returning will accept the connection,
// anything else will be sent back as an error to the client.
// All the connect args are passed also to onConnectRequest
function GameConnection::onConnectRequest(%client, %netAddress, %name)
{

// Find out who is trying to connect
echo("Connect request from: " @ %netAddress);

// Are they allowed in?
if(BanList::isBanned(%client.guid, %netAddress))

return"CR_YOUAREBANNED";

// Is there room for an unbanned player?
if($Server::PlayerCount >= $pref::Server::MaxPlayers)

return"CR_SERVERFULL";
return ;

}

static void BanList::removeBan(int uniqueId, string transportAddress)
Unban someone.

5.3. Console Reference 771

Torque 3D Documentation, Release 3.5.1

Parameters

• uniqueId – Unique ID of the player.

• transportAddress – Address from which the player connected.

Example:

BanList::removeBan(%userID, %ipAddress);

Functions

string addTaggedString(string str)
Use the addTaggedString function to tag a new string and add it to the NetStringTable.

Parameters str – The string to be tagged and placed in the NetStringTable. Tagging ignores case,
so tagging the same string (excluding case differences) will be ignored as a duplicated tag.

Returns Returns a string(containing a numeric value) equivalent to the string ID for the newly
tagged string

string buildTaggedString(string format, ...)
Build a string using the specified tagged string format. This function takes an already tagged string (passed
in as a tagged string ID) and one or more additional strings. If the tagged string contains argument tags that
range from %1 through %9, then each additional string will be substituted into the tagged string. The final (non-
tagged) combined string will be returned. The maximum length of the tagged string plus any inserted additional
strings is 511 characters.

Parameters

• format – A tagged string ID that contains zero or more argument tags, in the form of %1
through %9.

• ... – A variable number of arguments that are insterted into the tagged string based on the
argument tags within the format string.

Returns An ordinary string that is a combination of the original tagged string with any additional
strings passed in inserted in place of each argument tag.

Example:

// Create a tagged string with argument tags
%taggedStringID = addTaggedString("Welcome %1 to the game!");

// Some point later, combine the tagged string with some other string
%string = buildTaggedString(%taggedStringID, %playerName);
echo(%string);

void closeNetPort()
Closes the current network port.

void commandToClient(NetConnection client, string func, ...)
Send a command from the server to the client.

Parameters

• client – The numeric ID of a client GameConnection

• func – Name of the client function being called

• ... – Various parameters being passed to client command

772 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Example:

// Set up the client command. Needs to be executed on the client, such as
// within scripts/client/client.cs
// Update the Ammo Counter with current ammo, if not any then hide the counter.
function clientCmdSetAmmoAmountHud(%amount)
{

if (!%amount)
AmmoAmount.setVisible(false);

else
{

AmmoAmount.setVisible(true);
AmmoAmount.setText("Ammo: "@%amount);

}
}

// Call it from a server function.
// Needs to be executed on the server,
// such as within scripts/server/game.cs
function GameConnection::setAmmoAmountHud(%client, %amount)
{

commandToClient(%client, SetAmmoAmountHud, %amount);
}

void commandToServer(string func, ...)
Send a command to the server.

Parameters

• func – Name of the server command being called

• ... – Various parameters being passed to server command

Example:

// Create a standard function.
// Needs to be executed on the client, such
// as within scripts/client/default.bind.cs
function toggleCamera(%val)
{

// If key was down, call a server command named ToggleCamera
if (%val)

commandToServer(ToggleCamera);
}

// Server command being called from above. Needs to be executed on the
// server, such as within scripts/server/commands.cs
function serverCmdToggleCamera(%client)
{

if (%client.getControlObject() == %client.player)
{

%client.camera.setVelocity("0 0 0");
%control = %client.camera;

}
else
{

%client.player.setVelocity("0 0 0");
%control = %client.player;

}
%client.setControlObject(%control);

5.3. Console Reference 773

Torque 3D Documentation, Release 3.5.1

clientCmdSyncEditorGui();
}

string detag(string str)
Returns the string from a tag string. Should only be used within the context of a function that receives a tagged
string, and is not meant to be used outside of this context. Use getTaggedString() to convert a tagged string ID
back into a regular string at any time.

Example:

// From scripts/client/message.cs
function clientCmdChatMessage(%sender, %voice, %pitch, %msgString, %a1, %a2, %a3, %a4, %a5, %a6, %a7, %a8, %a9, %a10)
{

onChatMessage(detag(%msgString), %voice, %pitch);
}

void DNetSetLogging(bool enabled)
Enables logging of the connection protocols. When enabled a lot of network debugging information is sent to
the console.

Parameters enabled – True to enable, false to disable

void dumpNetStats()
Dumps network statistics for each class to the console. The returned avg , min and max values are in bits sent
per update. The num value is the total number of events collected.

void dumpNetStringTable()
Dump the current contents of the networked string table to the console. The results are returned in three columns.
The first column is the network string ID. The second column is the string itself. The third column is the
reference count to the network string.

string getTag(string textTagString)
Extracts the tag from a tagged string. Should only be used within the context of a function that receives a tagged
string, and is not meant to be used outside of this context.

Parameters textTagString – The tagged string to extract.

Returns The tag ID of the string.

string getTaggedString(string tag)
Use the getTaggedString function to convert a tag to a string. This is not the same as detag() which can only be
used within the context of a function that receives a tag. This function can be used any time and anywhere to
convert a tag to a string.

Parameters tag – A numeric tag ID.

Returns The string as found in the Net String table.

void onDataBlockObjectReceived(int index, int total)
Called on the client each time a datablock has been received. This callback is typically used to notify the player
of how far along in the datablock download process they are.

Parameters

• index – The index of the datablock just received.

• total – The total number of datablocks to be received.

void onLightManagerActivate(string name)
A callback called by the engine when a light manager is activated.

Parameters name – The name of the light manager being activated.

774 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void onLightManagerDeactivate(string name)
A callback called by the engine when a light manager is deactivated.

Parameters name – The name of the light manager being deactivated.

void pathOnMissionLoadDone()
Load all Path information from the mission. This function is usually called from the loadMissionStage2() server-
side function after the mission file has loaded. Internally it places all Paths into the server’s PathManager. From
this point the Paths are ready for transmission to the clients.

Example:

// Inform the engine to load all Path information from the mission.
pathOnMissionLoadDone();

void removeTaggedString(int tag)
Remove a tagged string from the Net String Table.

Parameters tag – The tag associated with the string

bool setNetPort(int port, bool bind)
Set the network port for the game to use.

Parameters

• port – The port to use.

• bind – True if bind() should be called on the port.

Returns True if the port was successfully opened. This will trigger a windows firewall prompt. If
you don’t have firewall tunneling tech you can set this to false to avoid the prompt.

Variables

void allowConnections
Sets whether or not the global NetInterface allows connections from remote hosts. allowConnections(bool
allow);

Parameters allow – Set to true to allow remote connections.

int $pref::Net::LagThreshold
How long between received packets before the client is considered as lagging (in ms). This is used by Game-
Connection to determine if the client is lagging. If the client is indeed lagging, setLagIcon() is called to inform
the user in some way. i.e. display an icon on screen.

int $Stats::netBitsReceived
The number of bytes received during the last packet process operation.

int $Stats::netBitsSent
The number of bytes sent during the last packet send operation.

int $Stats::netGhostUpdates
The total number of ghosts added, removed, and/or updated on the client during the last packet process operation.

int $pref::Net::PacketRateToClient
Sets how often packets are sent from the server to a client. It is possible to control how often packets may be
sent to the clients. This may be used to throttle the amount of bandwidth being used, but should be adjusted
with caution. The actual formula used to calculate the delay between sending packets to a client is:

int $pref::Net::PacketRateToServer
Sets how often packets are sent from the client to the server. It is possible to control how often packets may be

5.3. Console Reference 775

Torque 3D Documentation, Release 3.5.1

sent to the server. This may be used to throttle the amount of bandwidth being used, but should be adjusted with
caution. The actual formula used to calculate the delay between sending packets to the server is:

int $pref::Net::PacketSize
Sets the maximum size in bytes an individual network packet may be. It is possible to control how large each
individual network packet may be. Increasing its size from the default allows for more data to be sent on each
network send. However, this value should be changed with caution as too large a value will cause packets to be
split up by the networking platform or hardware, which is something Torque cannot handle. A minimum packet
size of 100 bytes is enforced in the source code. There is no enforced maximum. The default value is 200 bytes.

Platform

Enumeration

enum MBButtons
Which buttons to display on a message box.

Parameters

• Ok –

• OkCancel –

• RetryCancel –

• SaveDontSave –

• SaveDontSaveCancel –

enum MBIcons
What icon to show on a message box.

Parameters

• Information –

• Warning –

• Stop –

• Question –

enum MBReturnVal
Return value for messageBox() indicating which button was pressed by the user.

Parameters

• OK –

• Cancelled –

• Retry –

• DontSave –

Functions

bool displaySplashWindow(string path = “art/gui/splash.bmp”)
Display a startup splash window suitable for showing while the engine still starts up.

Note: This is currently only implemented on Windows.

776 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns True if the splash window could be successfully initialized.

int getRealTime()

Returns Return the current real time in milliseconds. Real time is platform defined; typically time
since the computer booted.

int getSimTime()
Sim time is time since the game started.

Returns Return the current sim time in milliseconds.

bool getWebDeployment()
Test whether Torque is running in web-deployment mode.

In this mode, Torque will usually run within a browser and certain restrictions apply (e.g. Torque will not be
able to enter fullscreen exclusive mode).

Returns True if Torque is running in web-deployment mode.

void gotoWebPage(string address)
Open the given URL or file in the user’s web browser.

Parameters address – The address to open. If this is not prefixed by a protocol specifier (”...://”),
then the function checks whether the address refers to a file or directory and if so, prepends
“file://” to adress; if the file check fails, “http://” is prepended to address.

Example:

gotoWebPage("http://www.garagegames.com");

bool isDebugBuild()
Test whether the engine has been compiled with TORQUE_DEBUG, i.e. if it includes debugging functionality.

Returns True if this is a debug build; false otherwise.

bool isShippingBuild()
Test whether the engine has been compiled with TORQUE_SHIPPING, i.e. in a form meant for final release.

Returns True if this is a shipping build; false otherwise.

bool isToolBuild()
Test whether the engine has been compiled with TORQUE_TOOLS, i.e. if it includes tool-related functionality.

Returns True if this is a tool build; false otherwise.

int messageBox(string title, string message, MBButtons buttons = MBOkCancel, MBIcons icons = MIInfor-
mation)

Display a modal message box using the platform’s native message box implementation.

Parameters

• title – The title to display on the message box window.

• message – The text message to display in the box.

• buttons – Which buttons to put on the message box.

• icons – Which icon to show next to the message.

Returns One of $MROK, $MRCancel, $MRRetry, and $MRDontSave identifying the button that
the user pressed.

Example:

5.3. Console Reference 777

http://

Torque 3D Documentation, Release 3.5.1

messageBox("Error", "");

void playJournal(string filename)
Begin playback of a journal from a specified field.

Parameters filename – Name and path of file journal file

void quit()
Shut down the engine and exit its process. This function cleanly uninitializes the engine and then exits back to
the system with a process exit status indicating a clean exit.

void quitWithErrorMessage(string message)
Display an error message box showing the given message and then shut down the engine and exit its process.
This function cleanly uninitialized the engine and then exits back to the system with a process exit status indi-
cating an error.

Parameters message – The message to log to the console and show in an error message box.

void saveJournal(string filename)
Save the journal to the specified file.

bool shellExecute(string executable, string args, string directory)
Launches an outside executable or batch file.

Parameters

• executable – Name of the executable or batch file

• args – Optional list of arguments, in string format, to pass to the executable

• directory – Optional string containing path to output or shell

Variables

int $MRCancel
Determines the cancel button press state in a message box.

int $MRDontSave
Determines the don’t save button press state in a message box.

int $MROk
Determines the ok button press state in a message box.

int $MRRetry
Determines the retry button press state in a message box.

int $platform::backgroundSleepTime
Controls processor time usage when the game window is out of focus.

int $platform::timeManagerProcessInterval
Controls processor time usage when the game window is in focus.

Localization

Localization of games to multiple languages.

778 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Classes

LangTable Provides the code necessary to handle the low level management of the string tables for localization.

Inherit: SimObject

Description One LangTable is created for each mod, as well as one for the C++ code. LangTable is responsible for
obtaining the correct strings from each and relaying it to the appropriate controls.

Methods
int LangTable::addLanguage(string filename)

Adds a language to the table.

Parameters

• filename – Name and path to the language file

• languageName – Optional name to assign to the new language entry

Returns True If file was successfully found and language created
int LangTable::getCurrentLanguage()

Get the ID of the current language table.

Returns Numerical ID of the current language table

string LangTable::getLangName(int language)
Return the readable name of the language table.

Parameters language – Numerical ID of the language table to access

Returns String containing the name of the table, NULL if ID was invalid or name was never speci-
fied

int LangTable::getNumLang()
Used to find out how many languages are in the table.

Returns Size of the vector containing the languages, numerical

string LangTable::getString(string filename)
Grabs a string from the specified table. If an invalid is passed, the function will attempt to to grab from the
default table

Parameters filename – Name of the language table to access

Returns Text from the specified language table, “” if ID was invalid and default table is not set

void LangTable::setCurrentLanguage(int language)
Sets the current language table for grabbing text.

Parameters language – ID of the table

void LangTable::setDefaultLanguage(int language)
Sets the default language table.

Parameters language – ID of the table

Description

Localizing large applications can be an extremely time consuming and aggravating process. This manual is intended
to guide you through the changes made to Torque to support localization and help you reduce the ongoing headaches

5.3. Console Reference 779

Torque 3D Documentation, Release 3.5.1

in day-to-day development in a localized codebase. This manual assumes you are at least familiar with Torque Script.
C++ and localization experience is not necessary.

Languages and String Tables Lets say you want to print some text to the console. From script, you’d usually just
write something like:

echo(“Hello, World!”); This is all well and good, if all you care about is English. What do you do if the user wants
your game to talk French? You could do something like the following:

switch($Pref::Language)
{

case $ENGLISH:
echo("Hello, World!");

case $FRENCH:
echo("Salut, Monde!");

... other languages here ...
}

Sure, this works. It’s also a complete pain in the backside to keep up to date, let alone that you’d have to repeat
the switch for every string you use. In the C++ code alone there is upwards of 4000 strings that are candidates for
localization, so this method is clearly not even close to an option.

String tables are the answer to this problem. A string table is an array of strings that you can reference based on an
ID instead of specifying the string directly in the source code. Changing which language the string is displayed in is
simply a matter of using a string table that contains the strings in the language you wish to display. The above example
can be reduced down to the following:

echo(L($STR_HELLO_WORLD));

The code is not much different to how you wrote it before, but the string will now be displayed in the correct language
based on the user’s selection. This does come with a price, however. You now have to create and maintain string tables
for all the languages you support, which can be a big headache. Torque tries to make this as simple as possible, and
some tips for creating and maintaining these string tables are given later.

Script Interface Torque contains a lot of strings, not just in the C++ code but in the script code too. For example,
all your GUIs are created in script and must also be localized. To further complicate matters the scripts are contained
in mod directories, each of which is a separate entity.

Strings in Script It would be cumbersome and difficult to maintain one string table for all the strings, so Torque
doesn’t try. Each mod has it’s own string table, as well as the core C++ code. You would be forgiven for thinking that
this leads to having to write code as follows:

echo(L($StarterFPSTable, $STR_HELLO_WORLD));

I don’t know about you, but I’m a lazy programmer and that’s just too much typing for me to put up with every time I
want to display a string. Instead, you just use:

echo(L($STR_HELLO_WORLD));

Torque takes care of the rest: the correct table will be used based on which mod the code is executed from.

Loading strings and specifying languages The new LangTable class, accessible in script as well as in C++, provides
the code necessary to handle the low level management of the string tables and obtaining the correct strings from them.
One LangTable is created for each mod, as well as one for the C++ code.

780 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

An important portion of the localization system is implemented in script. This support code is responsible for managing
the language tables and provides you with a simpler API than would be the case using LangTable directly. To provide
this API, a new mod called “lang” has been added. The lang mod works a little like the common mod in that it just
provides code needed by all mods. As the localization code is needed very early in the initialisation code, adding it to
the common mod was not possible.

To ease loading of language tables, language maps are provided. These map the displayed name of the language to a
string table on disk and are used to provide automatic loading across all mods. You specify the language map in the
lang/languages.cs script, for example:

addLanguageMap("English", "english.lso");
addLanguageMap("Pony", "pony.lso");

The first argument to addLanguageMap() is the name of the language as it will be displayed to the user, and the second
is the filename of the language. The filename will be concatenated onto the mod path to find the actual filename name
of the table to load.

To load the language tables for the current mod, in the onStart() function for the mod, before any other code, use the
following:

table = loadModLangTables("starter.fps/lang/tables");
setModLangTable(table);
loadModLangTables() loads the tables from the specified directory based on the information in the language map. setModLangTable() tells the C++ code to use the specified table for the current mod. This is usually done in the mod's onStart() function. After loading the tables, the current language will be set to English.

// setup localization:
$I18N::starter.fps = new LangTable();
exec("starter.fps/lang/tables/German.cs");
exec("starter.fps/lang/tables/English.cs");
$I18N::starter.fps.addLanguage("starter.fps/lang/tables/German.lso", "German");
$I18N::starter.fps.addLanguage("starter.fps/lang/tables/English.lso", "English");
$I18N::starter.fps.setDefaultLanguage(0); // German is default here
$I18N::starter.fps.setCurrentLanguage(0); // German is current

$I18N::starter.fps.setCurrentLanguage(1); // this would set the current language to english

Handling user language preferences In the Torque demo, the user is provided two ways to change their language
settings. If they have not already chosen a language, for example the first time they run the game, a dialog will pop
up after the splash screens asking them to choose a language. The language can also be changed at any time from the
options dialog. Note that some strings will not be in the new language until the game is restarted. There will be further
discussion on this topic in later chapters.

When the language is changed, the onChangeLanguage() function is called. This should be overriden for each mod in
the same way as onStart(). The following code can be used for all mods:

function onChangeLanguage()
{

setCurrentLanguage(getModLangTable(), $pref::I18N::language);
Parent::onChangeLanguage();

}

To change the language for all mods, you can simply use the setLanguage() function. setLanguage() takes one argu-
ment, the display name of the language to switch to.

Localizing the GUI The GUI provides some interesting challenges for localization. Since GUI files are just script
files that create the objects for the GUI, text is specified as a member field of the object. For example:

new GuiButtonCtrl() {
text = "Quit!";

5.3. Console Reference 781

Torque 3D Documentation, Release 3.5.1

... other fields ...
};

As this is just a script, you can localize it easily by using the L() function in the same way you would with other scripts,
for example:

new GuiButtonCtrl() {
text = L($STR_QUIT);

... other fields ...
};

Unfortunately, this is not a viable solution. If you save that GUI from the GUI editor, the call to L() will be replaced
with the text it returned when creating the GUI, reverting it to the first example. The only way around that is to edit
all your GUIs by hand, which is not a particularly pleasant option when you have an editor to do it for you.

In order to sensibly support editing of GUIs, most of the GUI controls that support the text field now also support a
textID field. This is the name of the ID variable for the string, for example:

new GuiButtonCtrl() {
textID = "STR_QUIT";

... other fields ...
};

In addition, a setTextID() method was added to all controls that expose a setText() method to allow you to set the text
at run time. It functions the same as the setText() method, except it works with IDs:

obj.setTextID("STR_ABOUT");

The only caveat is you must specify the name of the variable as a string, and not the variable itself. If you used the
variable, for example obj.setText($STR_ABOUT), then the textID field would get set to the numeric ID, and the GUI
control would be looking for a variable called, for example, 45.

If you don’t specify an ID, or the ID you do specify is invalid for whatever reason, then the control will simply use the
text field as before.

Specifying the language table Unfortunately, there is not enough context available in the GUI system to determine
which mod the control was defined in, so the tricks used to make the L() function work cannot be used in the GUI.

To work around the problem, a field was added to GuiControl to specify the table to use, called langTableMod, which
is simply the name of the mod to get the language table from. Usually, this will be the same as the mod that the .gui
file resides in.

To avoid having to specify the table for every control that needs it, a crude form of inheritance was implemented. If
langTableMod is not specified for a control, the control’s parent will be checked. This means you only have to specify
the table in the root control for the GUI. However, you could also specify a different table on a per-control basis if
needed, for example if you wanted to use a string from the language table for common. The following example GUI
illustrates this better:

// The value that you set langTableMod to is the same as name after "$I18N::".
// If you use "$I18N::bob" then langTableMod = "bob".
new GuiChunkedBitmapCtrl(MainMenuGui)
{

profile = "GuiContentProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "1";

782 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

langTableMod = "starter.fps";
bitmap = "./background";
useVariable = "0";
tile = "0";
helpTag = "0";
new GuiButtonCtrl() {

profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "36 413";
extent = "110 20";
minExtent = "8 8";
visible = "1";
command = "quit();";
textID = "STR_QUIT";
groupNum = "-1";
buttonType = "PushButton";

helpTag = "0";
};

};

Refreshing the GUI When the user has chosen a new language, it would be nice to be able to get the GUI to refresh
without forcing them to restart the game. One nice side effect of the updates to the GUI system is that we can do that.

The way the textID field was implemented is it checks for a valid ID, then if it has one it passes the string directly
to setText(). The initial update of the text field is done on onWake(), so to get the control to update you only have to
cause it to get an onWake() event.

It turns out that you can trick Torque into resending onWake() events quite simply, without having to write a ton of
code. For the main canvas, you can simply do:

if(isObject(Canvas))
Canvas.setContent(Canvas.getContent());

When implementing the options dialog, I found that this wont refresh the dialogs. To work around that, when you
click apply the script will pop the dialog then re-push it, as follows:

Canvas.popDialog(optionsDlg);
Canvas.pushDialog(optionsDlg);

Of course, some things will not be possible to update when you change the language. It may be worth considering
requiring users to restart the game for language changes to take effect for the sake of consistency.

C++ Interface The C++ interface is largely in flux at the moment pending fixing the string extractor to cope with
multi-line strings. In terms of how you reference strings, it will be largely the same as the script interface.

Caveats This will have caveats for the localization thingy.

The Localization Tools The current toolset consists of the command line language compiler, called langc, which is
used to compile a language file into the various formats needed by the engine.

Language Files Language files are simple text files containing the identifiers and strings. An example follows:

5.3. Console Reference 783

Torque 3D Documentation, Release 3.5.1

TEST_STR_1=This is a test
TEST_STR_2=and so is this!

The string definitions are similar to variable definitions in C++ and Torque Script, except you do not need quotes or a
semicolon. The “variable” becomes the ID as it will be referred to in the game code.

If you need the string to span multiple lines, you can use the usual as you would in C++. Note that currently you can’t
use a trailing on the line to continue to the next line. (Note: this should be fixed)

You can use any amount of white space on either side of the equals sign. Two options control how the compiler handles
whitespace. By default, any whitespace after the equals (leading spaces) will be stripped and any space on the end of
the string (trailing spaces) will be left alone. Two options control this behaviour:

S Strip leading space. When this option is specified, any space after the = sign will become part of the string.

T Strip trailing space. When specified, space on the end of the string will be stripped.

Comments may be inserted in the language file at the beginning of a line only. You can use #, ; or // to delimit
comments. For example:

This is a comment
; So is this
And this

Compiling Language Files Before a language file can be used in the engine, it has to be compiled into a .lso file.
As the process is slightly different depending on whether you are compiling the default english language file or a
translation, it is not possible to do this automatically, as is done with scripts.

The default language is usually English. There is no hard and fast restriction on which language is the default, but for
the purposes of documentation it will be assumed that English is your default language. It is worth pointing out that
because strings that are missing from a particular language will use the default language, and some strings (particularly
in the C++ code) are not localized, not using English for the default language may cause inconsistencies.

Language files are compiled with the langc tool, found in the tools directory. Like other Torque tools, langc must be
compiled before you can use it.

langc can also produce some other related files, for example header files for the IDs and templates for translations.

In its simplest usage, langc requires the name of the language file to compile and an output basename, for example:

> langc english.lang english

The first argument is the name of the language file and the second is the basename for output files. langc can create
a number of different files, so rather then force you to specify the filename of each one explicitly, you only have to
specify the first part of the filename. The relevant extension will be added automatically.

If you were to run the above example, english.lang would be compiled, but no output files will be generated. This can
be useful for checking if there are any errors in the file, but most of the time you’ll want to produce some output files.

To compile the language to an lso, you use the -l option, as follows:

> langc -l english.lang english

This will compile english.lang and, assuming there were no errors, will produce english.lso, ready to load into the
engine.

Identifiers ~~~~~~~~~-~

Earlier in this manual, global variables were used as identifiers for the strings, but there was no mention of where they
came from. Because these are a pain in the backside to maintain, langc does the job for you. When you compile the

784 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

english language file, you can also generate a script file containing global variables for each string ID in the language
file.

To generate the script, simply use the -s option. For example:

> langc -s english.lang english

This will generate a file called english.cs. Using the earlier example .lang file, the generated script would look some-
thing like this:

// Automatically generated. DO NOT EDIT
This is a test
$TEST_STR_1 = 0;
and so is this!
$TEST_STR_2 = 1;

If you’d like to save some time, you can specify multiple options at once, as in the following example:

> langc -ls english.lang english

This will create both english.lso and english.cs.

Compiling Translations Although translations compile to the same lso files as the default language, the process
is slightly more involved. This is because the identifiers must come from the default english file to ensure they are
correct.

You can create a template for a new translation, based on the english file, as follows:

> langc -r english.lang french

This will generate a file called french.tran, the format of which is identical to the .lang files described earlier:

Automatically generated.
[TEST_STR_1:0] This is a test
TEST_STR_1=
[TEST_STR_2:1] and so is this!
TEST_STR_2=

The comments preceding each string definition are intended to tell the translator what the original english string was.
The actual string definitions are left blank so that langc will issue a warning for empty, and thus untranslated, strings.

Compiling a translation requires a few more options then compiling the english file:

> langc -tl -e english.lang french.tran french

Here, -t tells langc you want to compile a translation, -e english.lang specifies the filename of the english translation
and, as before, -l causes the .lso file to be compiled.

When the translation is loaded into the engine, any strings that are left empty will automatically fall back to the english
version of them. By default, langc will issue a warning when compiling the file if a string is empty. This is useful while
compiling translations to determine which strings have not been translated. However, it’s less useful when compiling
the english file, so these warnings may be turned off with the -W option. It is not recommended to use -W when
compiling translations.

Other langc options Aside from the above, langc provides a few additional options that you may find useful. These
were purposefully not mentioned before as they are not particularly useful at this time.

A complete list of current langc options may be obtained by running langc with no arguments, as follows:

5.3. Console Reference 785

Torque 3D Documentation, Release 3.5.1

> langc
Usage: langc [options] <filename> <outbasename>
Where options is one or more of:
-l Write Language File -h Write C++ Header
-s Write Script -d Write C++ Defaults
-t Compile a translation -r Write translation file
-e <filename> Specify english file when compiling translations
-S Don't strip leading spaces -T Strip trailing spaces
-I Don't warn for invalid chars -W Don't warn for empty identifiers
-q Quiet mode, no warnings at all

Of particular note are the options -h and -d, used when building files for the C++ localization. The -h option generates
a C++ header file in the same way as the -s option does for scripts. The -d option writes a C++ source file that provides
a big array of default strings. This is intended to be used as an extra fallback when a string can’t be found in the
language table (or when there is no language table), which allows the same executable to be used whether localization
is active or not.

Identifiers must be valid variable names, as they are used directly both as script variables and C++ defines. By default,
langc will warn you if an invalid character is used in an identifier. The -I option prevents this.

The -q option is simply a shortcut to disable all warnings at once. If any errors occur, they will still be displayed.

Functions

int getCoreLangTable()
Gets the primary LangTable used by the game.

Returns ID of the core LangTable

void setCoreLangTable(string LangTable)
Sets the primary LangTable used by the game.

Parameters LangTable – ID of the core LangTable

Sound

A broad range of functionality for creating rich game audio.

Classes

SFXAmbience A datablock that describes an ambient sound space.

Inherit: SimDataBlock

Description Each ambience datablock captures the properties of a unique ambient sound space. A sound space is
comprised of:

• an ambient audio track that is played when the listener is inside the space,

• a reverb environment that is active inside the space, and

• a number of SFXStates that are activated when entering the space and deactivated when exiting it.

Each of these properties is optional.

786 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

An important characteristic of ambient audio spaces is that their unique nature is not determined by their location in
space but rather by their SFXAmbience datablock. This means that the same SFXAmbience datablock assigned to
multiple locations in a level represents the same unique audio space to the sound system.

This is an important distinction for the ambient sound mixer which will activate a given ambient audio space only once
at any one time regardless of how many intersecting audio spaces with the same SFXAmbience datablock assigned
the listener may currently be in.

All SFXAmbience instances are automatically added to the global SFXAmbienceSet.

At the moment, transitions between reverb environments are not blended and different reverb environments from
multiple active SFXAmbiences will not be blended together. This will be added in a future version.

Example:

singleton SFXAmbience(Underwater)
{

environment = AudioEnvUnderwater;
soundTrack = ScubaSoundList;
states[0] = AudioLocationUnderwater;

};

Fields
float SFXAmbience::dopplerFactor

The factor to apply to the doppler affect in this space. Defaults to 0.5. Doppler Effect
SFXEnvironment SFXAmbience::environment

Reverb environment active in the ambience zone. Audio Reverb

float SFXAmbience::rolloffFactor
The rolloff factor to apply to distance-based volume attenuation in this space. Defaults to 1.0. Volume Attenua-
tion

SFXTrack SFXAmbience::soundTrack
Sound track to play in the ambience zone.

SFXState SFXAmbience::states[4]
States to activate when the ambient zone is entered. When the ambient sound state is entered, all states associated
with the state will be activated (given that they are not disabled) and deactivated when the space is exited again.

SFXController A sound source that drives multi-source playback.

Inherit: SFXSource

Description This class acts as an interpreter for SFXPlayLists. It goes through the slots of the playlist it is attached
to and performs the actions described by each of the slots in turn. As SFXControllers are created implicitly by the
SFX system when instantiating a source for a play list it is in most cases not necessary to directly deal with the class.
The following example demonstrates how a controller would commonly be created.

Example:

// Create a play list from two SFXProfiles.
%playList = newSFXPlayList()
{

// Use a looped description so the list playback will loop.description = AudioMusicLoop2D;

track[0] = Profile1;
track[1] = Profile2;

};

5.3. Console Reference 787

Torque 3D Documentation, Release 3.5.1

// Play the list. This will implicitly create a controller.sfxPlayOnce(%playList);

Methods
int SFXController::getCurrentSlot()

Get the index of the playlist slot currently processed by the controller.

Returns The slot index currently being played.
void SFXController::setCurrentSlot(int index)

Set the index of the playlist slot to play by the controller. This can be used to seek in the playlist.

Parameters index – Index of the playlist slot.

Fields
bool SFXController::trace

If true, the controller logs its operation to the console. This is a non-networked field that will work locally only.

SFXDescription A description for how a sound should be played.

Inherit: SimDataBlock

Description SFXDescriptions are used by the sound system to collect all parameters needed to set up a given sound
for playback. This includes information like its volume level, its pitch shift, etc. as well as more complex information
like its fade behavior, 3D properties, and per-sound reverb properties.

Any sound playback will require a valid SFXDescription.

As datablocks, SFXDescriptions can be set up as either networked datablocks or non-networked datablocks, though it
generally makes sense to keep all descriptions non-networked since they will be used exclusively by clients.

Example:

// A description for a 3D sound with a reasonable default range setting.
// The description is set up to assign sounds to the AudioChannelEffects source group
// (defined in the core scripts). An alternative means to achieve this is to use the
// AudioEffects description as a copy source (": AudioEffects").

singleton SFXDescription(Audio3DSound)
{

sourceGroup = AudioChannelEffects;
is3D = true;
referenceDistance = 20.0;
maxDistance = 100.0;

};

Fields
int SFXDescription::coneInsideAngle

Inner sound cone angle in degrees. This value determines the angle of the inner volume cone that protrudes out
in the direction of a sound. Within this cone, the sound source retains full volume that is unaffected by sound
cone settings (though still affected by distance attenuation.) Valid values are from 0 to 360. Must be less than
coneOutsideAngle. Default is 360. Only for 3D sounds. Sound Cones

int SFXDescription::coneOutsideAngle
Outer sound cone angle in degrees. This value determines the angle of the outer volume cone that protrudes
out in the direction of a sound and surrounds the inner volume cone. Within this cone, volume will linearly
interpolate from the outer cone hull inwards to the inner coner hull starting with the base volume scaled by

788 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

coneOutsideVolume and ramping up/down to the full base volume. Valid values are from 0 to 360. Must be gt
= coneInsideAngle. Default is 360. Only for 3D sounds. Sound Cones

float SFXDescription::coneOutsideVolume
Determines the volume scale factor applied the a source’s base volume level outside of the outer cone. In the
outer cone, starting from outside the inner cone, the scale factor smoothly interpolates from 1.0 (within the inner
cone) to this value. At the moment, the allowed range is 0.0 (silence) to 1.0 (no attenuation) as amplification is
only supported on XAudio2 but not on the other devices. Only for 3D sound. Sound Cones

EaseF SFXDescription::fadeInEase
Easing curve for fade-in transition. Volume fade-ins will interpolate volume along this curve. Volume Fades

float SFXDescription::fadeInTime
Number of seconds to gradually fade in volume from zero when playback starts. Must be gt = 0. Volume Fades

bool SFXDescription::fadeLoops
Fade each cycle of a loop in and/or out; otherwise only fade-in first cycle. By default, volume fading is applied
to the beginning and end of the playback range, i.e. a fade-in segment is placed at the beginning of the sound and
a fade-out segment is paced at the end of a sound. However, when looping playback, this may be undesirable
as each iteration of the sound will then have a fade-in and fade-out effect. To set up looping sounds such that a
fade-in is applied only when the sound is first started (or playback resumed) and a fade-out is only applied when
the sound is explicitly paused or stopped, set this field to true. Default is false. Volume Fades

EaseF SFXDescription::fadeOutEase
Easing curve for fade-out transition. Volume fade-outs will interpolate volume along this curve. Volume Fades

float SFXDescription::fadeOutTime
Number of seconds to gradually fade out volume down to zero when playback is stopped or paused. Must be gt
=0. Volume Fades

bool SFXDescription::is3D
If true, sounds played with this description will have a position and orientation in space. Unlike a non-positional
sound, a 3D sound will have its volume attenuated depending on the distance to the listener in space. The farther
the sound moves away from the listener, the less audible it will be. Non-positional sounds, in contrast, will
remain at their original volume regardless of where the listener is. 3D Audio Volume Attenuation

bool SFXDescription::isLooping
If true, the sound will be played in an endless loop. Default is false.

bool SFXDescription::isStreaming
If true, incrementally stream sounds; otherwise sounds are loaded in full. Streaming vs. Buffered Audio

float SFXDescription::maxDistance
The distance at which attenuation stops. In the linear distance model, the attenuated volume will be zero at
this distance. In the logarithmic model, attenuation will simply stop at this distance and the sound will keep its
attenuated volume from there on out. As such, it primarily functions as a cutoff factor to exponential distance
attentuation to limit the number of voices relevant to updates. Only applies to 3D sounds. 3D Audio Volume
Attenuation

string SFXDescription::parameters[8]
Names of the parameters to which sources using this description will automatically be linked. Individual pa-
rameters are identified by their internalName . Interactive Audio

float SFXDescription::pitch
Pitch shift to apply to playback. The pitch assigned to a sound determines the speed at which it is played back.
A pitch shift of 1 plays the sound at its default speed. A greater shift factor speeds up playback and a smaller
shift factor slows it down. Must be gt 0. Default is 1.

float SFXDescription::priority
Priority level for virtualization of sounds (1 = base level). When there are more concurrently active sounds than

5.3. Console Reference 789

Torque 3D Documentation, Release 3.5.1

supported by the audio mixer, some of the sounds need to be culled. Which sounds are culled first depends
primarily on total audibility of individual sounds. However, the priority of invidual sounds may be decreased or
decreased through this field. Sounds and Voices

float SFXDescription::referenceDistance
Distance at which volume attenuation begins. Up to this distance, the sound retains its base volume. In the
linear distance model, the volume will linearly from this distance onwards up to maxDistance where it reaches
zero. In the logarithmic distance model, the reference distance determine how fast the sound volume decreases
with distance. Each referenceDistance steps (scaled by the rolloff factor), the volume halves. A rule of thumb
is that for sounds that require you to be close to hear them in the real world, set the reference distance to small
values whereas for sounds that are widely audible set it to larger values. Only applies to 3D sounds. 3D Audio
Volume Attenuation

const int SFXDescription::REVERB_DIRECTHFAUTO[static]
Automatic setting of SFXDescription::reverbDirect due to distance to listener.

const int SFXDescription::REVERB_INSTANCE0[static]
EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 0. Default target.

const int SFXDescription::REVERB_INSTANCE1[static]
EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 1.

const int SFXDescription::REVERB_INSTANCE2[static]
EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 2.

const int SFXDescription::REVERB_INSTANCE3[static]
EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 3.

const int SFXDescription::REVERB_ROOMAUTO[static]
Automatic setting of SFXDescription::reverbRoom due to distance to listener.

const int SFXDescription::REVERB_ROOMHFAUTO[static]
Automatic setting of SFXDescription::reverbRoomHF due to distance to listener.

float SFXDescription::reverbAirAbsorptionFactor
Multiplies SFXEnvironment::airAbsorptionHR.

int SFXDescription::reverbDirect
Direct path level (at low and mid frequencies).

int SFXDescription::reverbDirectHF
Relative direct path level at high frequencies.

float SFXDescription::reverbDopplerFactor
Per-source doppler factor.

int SFXDescription::reverbExclusion
Main exclusion control (attenuation at high frequencies).

float SFXDescription::reverbExclusionLFRatio
Exclusion low-frequency level re. main control.

int SFXDescription::reverbFlags
Bitfield combination of per-sound reverb flags.

int SFXDescription::reverbObstruction
Main obstruction control (attenuation at high frequencies).

float SFXDescription::reverbObstructionLFRatio
Obstruction low-frequency level re. main control.

int SFXDescription::reverbOcclusion
Main occlusion control (attenuation at high frequencies).

790 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float SFXDescription::reverbOcclusionDirectRatio
Relative occlusion control for direct path.

float SFXDescription::reverbOcclusionLFRatio
Occlusion low-frequency level re. main control.

float SFXDescription::reverbOcclusionRoomRatio
Relative occlusion control for room effect.

int SFXDescription::reverbOutsideVolumeHF
Outside sound cone level at high frequencies.

float SFXDescription::reverbReverbRolloffFactor
Per-source logarithmic falloff factor.

int SFXDescription::reverbRoom
Room effect level (at low and mid frequencies).

int SFXDescription::reverbRoomHF
Relative room effect level at high frequencies.

float SFXDescription::reverbRoomRolloffFactor
Room effect falloff factor.

float SFXDescription::rolloffFactor
Scale factor to apply to logarithmic distance attenuation curve. If -1, the global rolloff setting is used.

Point3F SFXDescription::scatterDistance
Bounds on random displacement of 3D sound positions. When a 3D sound is created and given its initial position
in space, this field is used to determine the amount of randomization applied to the actual position given to the
sound system. The randomization uses the following scheme:

SFXSource SFXDescription::sourceGroup
Group that sources playing with this description should be put into. When a sound source is allocated, it will
be made a child of the source group that is listed in its description. This group will then modulate several
properties of the sound as it is played. For example, one use of groups is to segregate sounds so that volume
levels of different sound groups such as interface audio and game audio can be controlled independently. Source
Hierarchies

int SFXDescription::streamPacketSize
Number of seconds of sample data per single streaming packet. This field allows to fine-tune streaming for
individual sounds. The streaming system processes streamed sounds in batches called packets. Each packet will
contain a set amount of sample data determined by this field. The greater its value, the more sample data each
packet contains, the more work is done per packet. Streaming vs. Buffered Audio

int SFXDescription::streamReadAhead
Number of sample packets to read and buffer in advance. This field determines the number of packets that the
streaming system will try to keep buffered in advance. As such it determines the number of packets that can be
consumed by the sound device before the playback queue is running dry. Greater values thus allow for more lag
in the streaming pipeline. Streaming vs. Buffered Audio

bool SFXDescription::useCustomReverb
If true, use the reverb properties defined here on sounds. By default, sounds will be assigned a generic reverb
profile. By setting this flag to true, a custom reverb setup can be defined using the “Reverb” properties that will
then be assigned to sounds playing with the description. Audio Reverb

bool SFXDescription::useHardware
Whether the sound is allowed to be mixed in hardware. If true, the sound system will try to allocate the voice
for the sound directly on the sound hardware for mixing by the hardware mixer. Be aware that a hardware mixer
may not provide all features available to sounds mixed in software.

5.3. Console Reference 791

Torque 3D Documentation, Release 3.5.1

float SFXDescription::volume
Base volume level for the sound. This will be the starting point for volume attenuation on the sound. The final
effective volume of a sound will be dependent on a number of parameters. Must be between 0 (mute) and 1 (full
volume). Default is 1. Volume Attenuation

SFXEmitter An invisible 3D object that emits sound.

Inherit: SceneObject

Description Sound emitters are used to place sounds in the level. They are full 3D objects with their own position
and orientation and when assigned 3D sounds, the transform and velocity of the sound emitter object will be applied
to the 3D sound.

Sound emitters can be set up of in either of two ways:

• By assigning an existing SFXTrack to the emitter’s track property. In this case the general sound setup (3D,
streaming, looping, etc.) will be taken from track. However, the emitter’s own properties will still override their
corresponding properties in the track’s SFXDescription.

• By directly assigning a sound file to the emitter’s fileName property. In this case, the sound file will be set up
for playback according to the properties defined on the emitter.

Using playOnAdd emitters can be configured to start playing immediately when they are added to the system (e.g.
when the level objects are loaded from the mission file).

Note: A sound emitter need not necessarily emit a 3D sound. Instead, sound emitters may also be used to
play non-positional sounds. For placing background audio to a level, however, it is usually easier to use Lev-
elInfo::soundAmbience.

Sound Emitters and Networking It is important to be aware of the fact that sounds will only play client-side
whereas SFXEmitter objects are server-side entities. This means that a server-side object has no connection to the
actual sound playing on the client. It is thus not possible for the server-object to perform queries about playback status
and other source-related properties as these may in fact differ from client to client.

Methods
SFXSource SFXEmitter::getSource()

Get the sound source object from the emitter.

Returns The sound source used by the emitter or null.
void SFXEmitter::play()

Manually start playback of the emitter’s sound. If this is called on the server-side object, the play command will
be related to all client-side ghosts.

void SFXEmitter::stop()
Manually stop playback of the emitter’s sound. If this is called on the server-side object, the stop command will
be related to all client-side ghosts.

Fields
int SFXEmitter::coneInsideAngle

Angle of inner volume cone of 3D sound in degrees.
int SFXEmitter::coneOutsideAngle

Angle of outer volume cone of 3D sound in degrees.

792 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float SFXEmitter::coneOutsideVolume
Volume scale factor of outside of outer volume 3D sound cone.

float SFXEmitter::fadeInTime
Number of seconds to gradually fade in volume from zero when playback starts.

float SFXEmitter::fadeOutTime
Number of seconds to gradually fade out volume down to zero when playback is stopped or paused.

filename SFXEmitter::fileName
The sound file to play. Use either this property or track . If both are assigned, track takes precendence. The
primary purpose of this field is to avoid the need for the user to define SFXTrack datablocks for all sounds used
in a level.

bool SFXEmitter::is3D
Whether to play fileName as a positional (3D) sound or not. If a track is assigned, the value of this field is
ignored.

bool SFXEmitter::isLooping
Whether to play fileName in an infinite loop. If a track is assigned, the value of this field is ignored.

bool SFXEmitter::isStreaming
Whether to use streamed playback for fileName . If a track is assigned, the value of this field is ignored.
Streaming vs. Buffered Audio

float SFXEmitter::maxDistance
Distance at which to stop volume attenuation of the 3D sound.

float SFXEmitter::pitch
Pitch shift to apply to the sound. Default is 1 = play at normal speed.

bool SFXEmitter::playOnAdd
Whether playback of the emitter’s sound should start as soon as the emitter object is added to the level. If this is
true, the emitter will immediately start to play when the level is loaded.

float SFXEmitter::referenceDistance
Distance at which to start volume attenuation of the 3D sound.

Point3F SFXEmitter::scatterDistance
Bounds on random offset to apply to initial 3D sound position.

SFXSource SFXEmitter::sourceGroup
The SFXSource to which to assign the sound of this emitter as a child.

SFXTrack SFXEmitter::track
The track which the emitter should play.

bool SFXEmitter::useTrackDescriptionOnly
If this is true, all fields except for playOnAdd and track are ignored on the emitter object. This is useful to
prevent fields in the track ‘s description from being overridden by emitter fields.

float SFXEmitter::volume
Volume level to apply to the sound.

SFXEnvironment Description of a reverb environment.

Inherit: SimDataBlock

Description A reverb environment specifies how the audio mixer should render advanced environmental audio ef-
fects.

5.3. Console Reference 793

Torque 3D Documentation, Release 3.5.1

To use reverb environments in your level, set up one or more ambient audio spaces, assign reverb environments
appropriately, and then attach the SFXAmbiences to your LevelInfo (taking effect globally) or Zone objects (taking
effect locally).

To define your own custom reverb environments, it is usually easiest to adapt one of the pre-existing reverb definitions:

singleton SFXEnvironment(AudioEnvCustomUnderwater : AudioEnvUnderwater)
{

// Override select properties from AudioEnvUnderwater here.
};

In the Datablock Editor, this can be done by selecting an existing environment to copy from when creating the SFX-
Environment datablock.

For a precise description of reverb audio and the properties of this class, please consult the EAX documentation.

All SFXEnvironment instances are automatically added to the global SFXEnvironmentSet.

Fields
float SFXEnvironment::airAbsorptionHF

Change in level per meter at high frequencies.
float SFXEnvironment::decayHFRatio

High-frequency to mid-frequency decay time ratio.

float SFXEnvironment::decayLFRatio
Low-frequency to mid-frequency decay time ratio.

float SFXEnvironment::decayTime
Reverberation decay time at mid frequencies.

float SFXEnvironment::density
Value that controls the modal density in the late reverberation decay.

float SFXEnvironment::diffusion
Value that controls the echo density in the late reverberation decay.

float SFXEnvironment::echoDepth
Echo depth.

float SFXEnvironment::echoTime
Echo time.

float SFXEnvironment::envDiffusion
Environment diffusion.

float SFXEnvironment::envSize
Environment size in meters.

int SFXEnvironment::flags
A bitfield of reverb flags.

float SFXEnvironment::HFReference
Reference high frequency in Hertz.

float SFXEnvironment::LFReference
Reference low frequency in Hertz.

float SFXEnvironment::modulationDepth
Modulation depth.

float SFXEnvironment::modulationTime
Modulation time.

794 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int SFXEnvironment::reflections
Early reflections level relative to room effect.

float SFXEnvironment::reflectionsDelay
Initial reflection delay time.

float SFXEnvironment::reflectionsPan[3]
Early reflections panning vector.

int SFXEnvironment::reverb
Late reverberation level relative to room effect.

const int SFXEnvironment::REVERB_CORE0[static]
PS2 Only - Reverb is applied to CORE0 (hw voices 0-23).

const int SFXEnvironment::REVERB_CORE1[static]
PS2 Only - Reverb is applied to CORE1 (hw voices 24-47).

const int SFXEnvironment::REVERB_DECAYHFLIMIT[static]
SFXEnvironment::airAbsorptionHF affects SFXEnvironment::decayHFRatio .

const int SFXEnvironment::REVERB_DECAYTIMESCALE[static]
SFXEnvironment::envSize affects reverberation decay time.

const int SFXEnvironment::REVERB_ECHOTIMESCALE[static]
SFXEnvironment::envSize affects echo time.

const int SFXEnvironment::REVERB_HIGHQUALITYDPL2REVERB[static]
GameCube/Wii Only - Use high-quality DPL2 reverb.

const int SFXEnvironment::REVERB_HIGHQUALITYREVERB[static]
GameCube/Wii Only - Use high-quality reverb.

const int SFXEnvironment::REVERB_MODULATIONTIMESCALE[static]
SFXEnvironment::envSize affects modulation time.

const int SFXEnvironment::REVERB_REFLECTIONSDELAYSCALE[static]
SFXEnvironment::envSize affects initial reflection delay time.

const int SFXEnvironment::REVERB_REFLECTIONSSCALE[static]
SFXEnvironment::envSize affects reflection level.

const int SFXEnvironment::REVERB_REVERBDELAYSCALE[static]
SFXEnvironment::envSize affects late reverberation delay time.

const int SFXEnvironment::REVERB_REVERBSCALE[static]
SFXEnvironment::envSize affects reflections level.

float SFXEnvironment::reverbDelay
Late reverberation delay time relative to initial reflection.

float SFXEnvironment::reverbPan[3]
Late reverberation panning vector.

int SFXEnvironment::room
Room effect level at mid-frequencies.

int SFXEnvironment::roomHF
Relative room effect level at high frequencies.

int SFXEnvironment::roomLF
Relative room effect level at low frequencies.

5.3. Console Reference 795

Torque 3D Documentation, Release 3.5.1

float SFXEnvironment::roomRolloffFactor
Logarithmic distance attenuation rolloff scale factor for reverb room size effect.

SFXParameter A sound channel value that can be bound to multiple sound sources.

Inherit: SimObject

Description Parameters are special objects that isolate a specific property that sound sources can have and allows to
bind this isolated instance to multiple sound sources such that when the value of the parameter changes, all sources
bound to the parameter will have their respective property changed.

Parameters are identified and referenced by their internalName. This means that the SFXDescription::parameters and
SFXTrack::parameters fields should contain the internalNames of the SFXParameter objects which should be attached
to the SFXSources when they are created. No two SFXParameters should have the same internalName.

All SFXParameter instances are automatically made children of the SFXParameterGroup.

Parameter Updates Parameters are periodically allowed to update their own values. This makes it possible to
attach custom logic to a parameter and have individual parameters synchronize their values autonomously. Use the
onUpdate() callback to attach script code to a parameter update.

Example:

newSFXParameter(EngineRPMLevel)
{

// Set the name by which this parameter is identified.
internalName = "EngineRPMLevel";

// Let this parameter control the pitch of attached sources to simulate engine RPM ramping up and down.
channel = "Pitch";

// Start out with unmodified pitch.
defaultValue = 1;

// Add a texture description of what this parameter does.
description = "Engine RPM Level";

};

// Create a description that automatically attaches the engine RPM parameter.
singleton SFXDescription(EngineRPMSound : AudioLoop2D)
{

parameters[0] = "EngineRPMLevel";
};

// Create sound sources for the engine.
sfxCreateSource(EngineRPMSound, "art/sound/engine/enginePrimary");
sfxCreateSource(EngineRPMSound, "art/sound/engine/engineSecondary");

// Setting the parameter value will now affect the pitch level of both sound sources.
EngineRPMLevel.value = 0.5;
EngineRPMLevel.value = 1.5;

Methods
String SFXParameter::getParameterName()

Get the name of the parameter.

796 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Returns The paramete name.
void SFXParameter::onUpdate()

Called when the sound system triggers an update on the parameter. This occurs periodically during system
operation.

void SFXParameter::reset()
Reset the parameter’s value to its default.

Fields
SFXChannel SFXParameter::channel

Channel that the parameter controls. This controls which property of the sources it is attached to the parameter
controls.

float SFXParameter::defaultValue
Value to which the parameter is initially set. When the parameter is first added to the system, value will be set
to defaultValue .

string SFXParameter::description
Textual description of the parameter. Primarily for use in the Audio Parameters dialog of the editor to allow for
easier identification of parameters.

Point2F SFXParameter::range
Permitted range for value . Minimum and maximum allowed value for the parameter. Both inclusive. For all
but the User0-3 channels, this property is automatically set up by SFXParameter .

float SFXParameter::value
Current value of the audio parameter. All attached sources are notified when this value changes.

SFXPlayList A datablock describing a playback pattern of sounds.

Inherit: SFXTrack

Description Playlists allow to define intricate playback patterns of invidual tracks and thus allow the sound system
to be easily used for playing multiple sounds in single operations.

As playlists are SFXTracks, they can thus be used anywhere in the engine where sound data can be assigned.

Each playlist can hold a maximum of 16 tracks. Longer playlists may be constructed by cascading lists, i.e. by creating
a playlist that references other playlists.

Processing of a single playlist slot progresses in a fixed set of steps that are invariably iterated through for each slot
(except the slot is assigned a state and its state is deactivated; in this case, the controller will exit out of the slot
directly):

1. delayIn: Waits a set amount of time before processing the slot. This is 0 by default and is determined by the
delayTimeIn (seconds to wait) and delayTimeInVariance (bounds on randomization) properties.

2. transitionIn: Decides what to do before playing the slot. Defaults to None which makes this stage a no-operation.
Alternatively, the slot can be configured to wait for playback of other slots to finish (Wait and WaitAll) or to
stop playback of other slots (Stop and StopAll). Note that Wait and Stop always refer to the source that was last
started by the list.

3. play: Finally, the track attached to the slot is played. However, this will only start playback of the track and then
immediately move on to the next stage. It will not wait for the track to finish playing. Note also that depending
on the replay setting for the slot, this stage may pick up a source that is already playing on the slot rather than
starting a new one. Several slot properties (fade times, min/max distance, and volume/pitch scale) are used in
this stage.

5.3. Console Reference 797

Torque 3D Documentation, Release 3.5.1

4. delayOut: Waits a set amount of time before transitioning out of the slot. This works the same as delayIn and is
set to 0 by default (i.e. no delay).

5. transitionOut: Decides what to do after playing the slot. This works like transitionIn.

This is a key difference to playlists in normal music players where upon reaching a certain slot, the slot will immedi-
ately play and the player then wait for playback to finish before moving on to the next slot.

Note: Be aware that time limits set on slot delays are soft limits. The sound system updates sound sources in discrete
(and equally system update frequency dependent) intervals which thus determines the granularity at which time-outs
can be handled.

Value Randomization For greater variety, many of the values for individual slots may be given a randomization
limit that will trigger a dynamic variance of the specified base value.

Any given field xyz that may be randomized has a corresponding field xyzVariance which is a two-dimensional vector.
The first number specifies the greatest value that may be subtracted from the given base value (i.e. the xyz field)
whereas the second number specifies the greatest value that may be added to the base value. Between these two limits,
a random number is generated.

The default variance settings of “0 0” will thus not allow to add or subtract anything from the base value and effectively
disable randomization.

Randomization is re-evaluated on each cycle through a list.

Playlists and States A unique aspect of playlists is that they allow their playback to be tied to the changing set
of active sound states. This feature enables playlists to basically connect to an extensible state machine that can be
leveraged by the game code to signal a multitude of different gameplay states with the audio system then automatically
reacting to state transitions.

Playlists react to states in three ways:

• Before a controller starts processing a slot it checks whether the slot is assigned a state. If this is the case, the
controller checks whether the particular state is active. If it is not, the entire slot is skipped. If it is, the controller
goes on to process the slot.

• If a controller is in one of the delay stages for a slot that has a state assigned and the state is deactivated, the
controller will stop the delay and skip any of the remaining processing stages for the slot.

• Once the play stage has been processed for a slot that has a state assigned, the slot’s stateMode will determine
what happens with the playing sound source if the slot’s state is deactivated while the sound is still playing.

A simple example of how to make use of states in combination with playlists would be to set up a playlist for back-
ground music that reacts to the mood of the current gameplay situation. For example, during combat, tenser music
could play than during normal exploration. To set this up, different SFXStates would represent different moods in the
game and the background music playlist would have one slot set up for each such mood. By making use of volume
fades and the PauseWhenDeactivatedstateMode, smooth transitions between the various audio tracks can be produced.

Example:

// Create a play list from two SFXProfiles.
%playList = newSFXPlayList()
{

// Use a looped description so the list playback will loop.description = AudioMusicLoop2D;

track[0] = Profile1;
track[1] = Profile2;

798 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

};

// Play the list.sfxPlayOnce(%playList);

Fields
float SFXPlayList::delayTimeIn[16]

Seconds to wait after moving into slot before transitionIn .
Point2F SFXPlayList::delayTimeInVariance[16]

Bounds on randomization of delayTimeIn . Value Randomization

float SFXPlayList::delayTimeOut[16]
Seconds to wait before moving out of slot after transitionOut .

Point2F SFXPlayList::delayTimeOutVariance[16]
Bounds on randomization of delayTimeOut . Value Randomization

float SFXPlayList::fadeTimeIn[16]
Seconds to fade sound in (-1 to use the track’s own fadeInTime.).

Point2F SFXPlayList::fadeTimeInVariance[16]
Bounds on randomization of fadeInTime. Value Randomization

float SFXPlayList::fadeTimeOut[16]
Seconds to fade sound out (-1 to use the track’s own fadeOutTime.).

Point2F SFXPlayList::fadeTimeOutVariance[16]
Bounds on randomization of fadeOutTime. Value Randomization

SFXPlayListLoopMode SFXPlayList::loopMode
Behavior when description has looping enabled. The loop mode determines whether the list will loop over a
single slot or loop over all the entire list of slots being played.

float SFXPlayList::maxDistance[16]
maxDistance to apply to 3D sounds in this slot (lt 1 to use maxDistance of track’s own description).

Point2F SFXPlayList::maxDistanceVariance[16]
Bounds on randomization of maxDistance . Value Randomization

int SFXPlayList::numSlotsToPlay
Number of slots to play. Up to a maximum of 16, this field determines the number of slots that are taken from
the list for playback. Only slots that have a valid track assigned will be considered for this.

float SFXPlayList::pitchScale[16]
Scale factor to apply to pitch of sounds played on this list slot. This value will scale the actual pitch set on the
track assigned to the slot, i.e. a value of 0.5 will cause the track to play at half its assigned speed.

Point2F SFXPlayList::pitchScaleVariance[16]
Bounds on randomization of pitchScale . Value Randomization

SFXPlayListRandomMode SFXPlayList::random
Slot playback order randomization pattern. By setting this field to something other than “NotRandom” to order
in which slots of the playlist are processed can be changed from sequential to a random pattern. This allows to
to create more varied playback patterns. Defaults to “NotRandom”.

float SFXPlayList::referenceDistance[16]
referenceDistance to set for 3D sounds in this slot (lt 1 to use referenceDistance of track’s own description).

Point2F SFXPlayList::referenceDistanceVariance[16]
Bounds on randomization of referenceDistance . Value Randomization

5.3. Console Reference 799

Torque 3D Documentation, Release 3.5.1

int SFXPlayList::repeatCount[16]
Number of times to loop this slot.

SFXPlayListReplayMode SFXPlayList::replay[16]
Behavior when an already playing sound is encountered on this slot from a previous cycle. Each slot can have
an arbitrary number of sounds playing on it from previous cycles. This field determines how SFXController will
handle these sources.

SFXState SFXPlayList::state[16]
State that must be active for this slot to play. Playlists and States

SFXPlayListStateMode SFXPlayList::stateMode[16]
Behavior when assigned state is deactivated while slot is playing. Playlists and States

bool SFXPlayList::trace
Enable/disable execution tracing for this playlist (local only). If this is true, SFXControllers attached to the list
will automatically run in trace mode.

SFXTrack SFXPlayList::track[16]
Track to play in this slot. This must be set for the slot to be considered for playback. Other settings for a slot
will not take effect except this field is set.

SFXPlayListTransitionMode SFXPlayList::transitionIn[16]
Behavior when moving into this slot. After the delayIn time has expired (if any), this slot determines what the
controller will do before actually playing the slot.

SFXPlayListTransitionMode SFXPlayList::transitionOut[16]
Behavior when moving out of this slot. After the detailTimeOut has expired (if any), this slot determines what
the controller will do before moving on to the next slot.

float SFXPlayList::volumeScale[16]
Scale factor to apply to volume of sounds played on this list slot. This value will scale the actual volume level
set on the track assigned to the slot, i.e. a value of 0.5 will cause the track to play at half-volume.

Point2F SFXPlayList::volumeScaleVariance[16]
Bounds on randomization of volumeScale . Value Randomization

SFXProfile Encapsulates a single sound file for playback by the sound system.

Inherit: SFXTrack

Description SFXProfile combines a sound description (SFXDescription) with a sound file such that it can be played
by the sound system. To be able to play a sound file, the sound system will always require a profile for it to be
created. However, several of the SFX functions (sfxPlayOnce(), sfxCreateSource()) perform this creation internally
for convenience using temporary profile objects.

Sound files can be in either OGG or WAV format. However, extended format support is available when using FMOD.
See Supported Sound File Formats.

Profile Loading By default, the sound data referenced by a profile will be loaded when the profile is first played and
the data then kept until either the profile is deleted or until the sound device on which the sound data is held is deleted.

This initial loading my incur a small delay when the sound is first played. To avoid this, a profile may be expicitly set
to load its sound data immediately when the profile is added to the system. This is done by setting the preload property
to true.

Example:

800 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

datablock SFXProfile(Shore01Snd)
{

fileName = "art/sound/Lakeshore_mono_01";
description = Shore01Looping3d;
preload = true;

};

Methods
float SFXProfile::getSoundDuration()

Return the length of the sound data in seconds.

Returns The length of the sound data in seconds or 0 if the sound referenced by the profile could
not be found.

Fields
filename SFXProfile::fileName

Path to the sound file. If the extension is left out, it will be inferred by the sound system. This allows to easily
switch the sound format without having to go through the profiles and change the filenames there, too.

bool SFXProfile::preload
Whether to preload sound data when the profile is added to system. Profile Loading

SFXSound A sound controller that directly plays a single sound file.

Inherit: SFXSource

Description When playing individual audio files, SFXSounds are implicitly created by the sound system.

Each sound source has an associated play cursor that can be queried and explicitly positioned by the user. The cursor
is a floating-point value measured in seconds.

For streamed sources, playback may not be continuous in case the streaming queue is interrupted.

Sounds and Voices To actually emit an audible signal, a sound must allocate a resource on the sound device through
which the sound data is being played back. This resource is called ‘voice’.

As with other types of resources, the availability of these resources may be restricted, i.e. a given sound device will
usually only support a fixed number of voices that are playing at the same time. Since, however, there may be arbitrary
many SFXSounds instantiated and playing at the same time, this needs to be solved.

Methods
float SFXSound::getDuration()

Get the total play time (in seconds) of the sound data attached to the sound.

Returns Returns:
float SFXSound::getPosition()

Get the current playback position in seconds.

Returns The current play cursor offset.

bool SFXSound::isReady()
Test whether the sound data associated with the sound has been fully loaded and is ready for playback. For
streamed sounds, this will be false during playback when the stream queue for the sound is starved and waiting
for data. For buffered sounds, only an initial loading phase will potentially cause isReady to return false.

5.3. Console Reference 801

Torque 3D Documentation, Release 3.5.1

Returns True if the sound is ready for playback.

void SFXSound::setPosition(float position)
Set the current playback position in seconds. If the source is currently playing, playback will jump to the new
position. If playback is stopped or paused, playback will resume at the given position when play() is called.

Parameters position – The new position of the play cursor (in seconds).

SFXSource Playback controller for a sound source.

Inherit: SimGroup

Description All sound playback is driven by SFXSources. Each such source represents an independent playback
controller that directly or indirectly affects sound output.

While this class itself is instantiable, such an instance will not by itself emit any sound. This is the responsibility of its
subclasses. Note, however, that none of these subclasses must be instantiated directly but must instead be instantiated
indirectly through the SFX interface.

Play-Once Sources Often, a sound source need only exist for the duration of the sound it is playing. In this case
so-called “play-once” sources simplify the bookkeeping involved by leaving the deletion of sources that have expired
their playtime to the sound system.

Play-once sources can be created in either of two ways:

• sfxPlayOnce(): Directly create a play-once source from a SFXTrack or file.

• sfxDeleteWhenStopped(): Retroactively turn any source into a play-once source that will automatically be
deleted when moving into stopped state.

Source Hierarchies Source are arranged into playback hierarchies where a parent source will scale some of the
properties of its children and also hand on any play(), pause(), and stop() commands to them. This allows to easily
group sounds into logical units that can then be operated on as a whole.

An example of this is the segregation of sounds according to their use in the game. Volume levels of background
music, in-game sound effects, and character voices will usually be controlled independently and putting their sounds
into different hierarchies allows to achieve that easily.

The source properties that are scaled by parent values are:

• volume,

• pitch, and

• priority

This means that if a parent has a volume of 0.5, the child will play at half the effective volume it would otherwise have.

Additionally, parents affect the playback state of their children:

• A parent that is in stopped state will force all its direct and indirect children into stopped state.

• A parent that is in paused state will force all its direct and indirect children that are playing into paused state.
However, children that are in stopped state will not be affected.

• A parent that is in playing state will not affect the playback state of its children.

Each source maintains a state that is wants to be in which may differ from the state that is enforced on it by its parent.
If a parent changes its states in a way that allows a child to move into its desired state, the child will do so.

802 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

For logically grouping sources, instantiate the SFXSource class directly and make other sources children to it. A
source thus instantiated will not effect any real sound output on its own but will influence the sound output of its direct
and indirect children.

Note: Be aware that the property values used to scale child property values are the effective values. For example, the
value used to scale the volume of a child is the effective volume of the parent, i.e. the volume after fades, distance
attenuation, etc. has been applied.

Volume Attenuation During its lifetime, the volume of a source will be continually updated. This update process
always progresses in a fixed set of steps to compute the final effective volume of the source based on the base volume
level that was either assigned from the SFXDescription associated with the source (SFXDescription::volume) or man-
ually set by the user. The process of finding a source’s final effective volume is called “volume attenuation”. The steps
involved in attenuating a source’s volume are (in order):

Fading If the source currently has a fade-effect applied, the volume is interpolated along the currently active fade
curve.

Modulation If the source is part of a hierarchy, it’s volume is scaled according to the effective volume of its parent.

Distance Attenuation If the source is a 3D sound source, then the volume is interpolated according to the distance
model in effect and current listener position and orientation (see 3D Audio).

Volume Fades To ease-in and ease-out playback of a sound, fade effects may be applied to sources. A fade will
either go from zero volume to full effective volume (fade-in) or from full effective volume to zero volume (fade-out).

Fading is coupled to the play(), pause(), and stop() methods as well as to loop iterations when SFXDescrip-
tion::fadeLoops is true for the source. play() and the start of a loop iteration will trigger a fade-in whereas pause(),
stop() and the end of loop iterations will trigger fade-outs.

For looping sources, if SFXDescription::fadeLoops is false, only the initial play() will trigger a fade-in and no further
fading will be applied to loop iterations.

By default, the fade durations will be governed by the SFXDescription::fadeInTime and SFXDescrip-
tion::fadeOutTime properties of the SFXDescription attached to the source. However, these may be overridden on
a per-source basis by setting fade times explicitly with setFadeTimes(). Additionally, the set values may be overridden
for individual play(), pause(), and stop() calls by supplying appropriate fadeInTime/fadeOutTime parameters.

By default, volume will interpolate linearly during fades. However, custom interpolation curves can be assigned
through the SFXDescription::fadeInEase and SFXDescription::fadeOutTime properties.

Sound Cones

Doppler Effect

Playback Markers Playback markers allow to attach notification triggers to specific playback positions. Once the
play cursor crosses a position for which a marker is defined, the onMarkerPassed callback will be triggered on the
SFXSource thus allowing to couple script logic to .

Be aware that the precision with which marker callbacks are triggered are bound by global source update frequency.
Thus there may be a delay between the play cursor actually passing a marker position and the callback being triggered.

5.3. Console Reference 803

Torque 3D Documentation, Release 3.5.1

Methods
void SFXSource::addMarker(String name, float pos)

Add a notification marker called name at pos seconds of playback.

Parameters

• name – Symbolic name for the marker that will be passed to the onMarkerPassed() callback.

• pos – Playback position in seconds when the notification should trigger. Note that this is
a soft limit and there may be a delay between the play cursor actually passing the position
and the callback being triggered.

Example:

// Create a new source.
$source = sfxCreateSource(AudioMusicLoop2D, "art/sound/backgroundMusic");

// Assign a class to the source.
$source.class = "BackgroundMusic";

// Add a playback marker at one minute into playback.
$source.addMarker("first", 60);

// Define the callback function. This function will be called when the playback position passes the one minute mark.
function BackgroundMusic::onMarkerPassed(%this, %markerName)
{

if(%markerName $= "first")
echo("Playback has passed the 60 seconds mark.");

}

// Play the sound.
$source.play();

void SFXSource::addParameter(SFXParameter parameter)
Attach parameter to the source,. Once attached, the source will react to value changes of the given parameter .
Attaching a parameter will also trigger an initial read-out of the parameter’s current value.

Parameters parameter – The parameter to attach to the source.

float SFXSource::getAttenuatedVolume()
Get the final effective volume level of the source. This method returns the volume level as it is after source
group volume modulation, fades, and distance-based volume attenuation have been applied to the base volume
level. Volume Attenuation

Returns The effective volume of the source.

float SFXSource::getFadeInTime()
Get the fade-in time set on the source. This will initially be SFXDescription::fadeInTime . Volume Fades

Returns The fade-in time set on the source in seconds.

float SFXSource::getFadeOutTime()
Get the fade-out time set on the source. This will initially be SFXDescription::fadeOutTime . Volume Fades

Returns The fade-out time set on the source in seconds.

SFXParameter SFXSource::getParameter(int index)
Get the parameter at the given index.

Parameters index – Index of the parameter to fetch. Must be 0<=index<=getParameterCount().

Returns is out of range.

Example:

804 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Print the name ofo each parameter attached to %source.
%numParams = %source.getParameterCount();
for(%i = 0; %i < %numParams; %i ++)

echo(%source.getParameter(%i).getParameterName());

int SFXSource::getParameterCount()
Get the number of SFXParameters that are attached to the source.

Returns The number of parameters attached to the source.

Example:

// Print the name ofo each parameter attached to %source.
%numParams = %source.getParameterCount();
for(%i = 0; %i < %numParams; %i ++)

echo(%source.getParameter(%i).getParameterName());

float SFXSource::getPitch()
Get the pitch scale of the source. Pitch determines the playback speed of the source (default: 1).

Returns The current pitch scale factor of the source.

SFXStatus SFXSource::getStatus()
Get the current playback status.

Returns Te current playback status

float SFXSource::getVolume()
Get the current base volume level of the source. This is not the final effective volume that the source is playing at
but rather the starting volume level before source group modulation, fades, or distance-based volume attenuation
are applied. Volume Attenuation

Returns The current base volume level.

bool SFXSource::isPaused()
Test whether the source is currently paused.

Returns True if the source is in paused state, false otherwise.

bool SFXSource::isPlaying()
Test whether the source is currently playing.

Returns True if the source is in playing state, false otherwise.

bool SFXSource::isStopped()
Test whether the source is currently stopped.

Returns True if the source is in stopped state, false otherwise.

void SFXSource::onParameterValueChange(SFXParameter parameter)
Called when a parameter attached to the source changes value. This callback will be triggered before the value
change has actually been applied to the source.

Parameters parameter – The parameter that has changed value.

void SFXSource::onStatusChange(SFXStatus newStatus)
Called when the playback status of the source changes.

Parameters newStatus – The new playback status.

void SFXSource::pause(float fadeOutTime)
Pause playback of the source.

5.3. Console Reference 805

Torque 3D Documentation, Release 3.5.1

Parameters fadeOutTime – Seconds for the sound to fade down to zero volume. If -1, the
SFXDescription::fadeOutTime set in the source’s associated description is used. Pass 0 to dis-
able a fade-out effect that may be configured on the description. Be aware that if a fade-out
effect is used, the source will not immediately to paused state but will rather remain in playing
state until the fade-out time has expired..

void SFXSource::removeParameter(SFXParameter parameter)
Detach parameter from the source. Once detached, the source will no longer react to value changes of the given
parameter . If the parameter is not attached to the source, the method will do nothing.

Parameters parameter – The parameter to detach from the source.

void SFXSource::setCone(float innerAngle, float outerAngle, float outsideVolume)
Set up the 3D volume cone for the source.

Parameters

• innerAngle – Angle of the inner sound cone in degrees (SFXDescrip-
tion::coneInsideAngle). Must be 0<=innerAngle<=360.

• outerAngle – Angle of the outer sound cone in degrees (SFXDescrip-
tion::coneOutsideAngle). Must be 0<=outerAngle<=360.

• outsideVolume – Volume scale factor outside of outer cone (SFXDescrip-
tion::coneOutsideVolume). Must be 0<=outsideVolume<=1.

void SFXSource::setFadeTimes(float fadeInTime, float fadeOutTime)
Set the fade time parameters of the source. Volume Fades

Parameters

• fadeInTime – The new fade-in time in seconds.

• fadeOutTime – The new fade-out time in seconds.

void SFXSource::setPitch(float pitch)
Set the pitch scale of the source. Pitch determines the playback speed of the source (default: 1).

Parameters pitch – The new pitch scale factor.

void SFXSource::setTransform(Point3F position, Point3F direction)
Start playback of the source. Set the position and orientation of the source’s 3D sound. Set the position of the
source’s 3D sound. If the sound data for the source has not yet been fully loaded, there will be a delay after
calling play and playback will start after the data has become available.

Parameters

• position – The new position in world space.

• direction – The forward vector.

• position – The new position in world space.

• fadeInTime – Seconds for the sound to reach full volume. If -1, the SFXDescrip-
tion::fadeInTime set in the source’s associated description is used. Pass 0 to disable a fade-in
effect that may be configured on the description.

void SFXSource::setVolume(float volume)
Set the base volume level for the source. This volume will be the starting point for source group volume
modulation, fades, and distance-based volume attenuation. Volume Attenuation

Parameters volume – The new base volume level for the source. Must be 0>=volume<=1.

void SFXSource::stop(float fadeOutTime)
Stop playback of the source.

806 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters fadeOutTime – Seconds for the sound to fade down to zero volume. If -1, the
SFXDescription::fadeOutTime set in the source’s associated description is used. Pass 0 to dis-
able a fade-out effect that may be configured on the description. Be aware that if a fade-out
effect is used, the source will not immediately transtion to stopped state but will rather remain
in playing state until the fade-out time has expired.

Fields
SFXDescription SFXSource::description

The playback configuration that determines the initial sound properties and setup. Any SFXSource must have
an associated SFXDescription .

string SFXSource::statusCallback
Name of function to call when the status of the source changes. The source that had its status changed is passed
as the first argument to the function and the new status of the source is passed as the second argument.

SFXSpace A volume in space that defines an ambient sound zone.

Inherit: SceneObject

Description A volume in space that defines an ambient sound zone.

Fields
string SFXSpace::edge

For internal use only.
string SFXSpace::plane

For internal use only.

string SFXSpace::point
For internal use only.

SFXAmbience SFXSpace::soundAmbience
Ambient sound environment for the space.

SFXState A boolean switch used to modify playlist behavior.

Inherit: SimDataBlock

Description Sound system states are used to allow playlist controllers to make decisions based on global state. This
is useful, for example, to couple audio playback to gameplay state. Certain states may, for example, represent different
locations that the listener can be in, like underwater, in open space, or indoors. Other states could represent moods of
the current gameplay situation, like, for example, an aggressive mood during combat.

By activating and deactivating sound states according to gameplay state, a set of concurrently running playlists may
react and adapt to changes in the game.

Activation and Deactivation At any time, a given state can be either active or inactive. Calling activate() on a state
increases an internal counter and calling deactivate() decreases the counter. Only when the count reaches zero will the
state be deactivated.

In addition to the activation count, states also maintain a disabling count. Calling disable() increases this count and
calling enable() decreases it. As long as this count is greater than zero, a given state will not be activated even if its
activation count is non-zero. Calling disable() on an active state will not only increase the disabling count but also
deactivate the state. Calling enable() on a state with a positive activation count will re-activate the state when the
disabling count reaches zero.

5.3. Console Reference 807

Torque 3D Documentation, Release 3.5.1

State Dependencies By listing other states in in its includedStates and excludedStates fields, a state may automati-
cally trigger the activation or disabling of other states in the sytem when it is activated. This allows to form dependency
chains between individual states.

Example:

// State indicating that the listener is submerged.
singleton SFXState(AudioLocationUnderwater)
{

parentGroup = AudioLocation;
// AudioStateExclusive is a class defined in the core scripts that will automatically// ensure for a state to deactivate all the sibling SFXStates in its parentGroup when it// is activated.className = "AudioStateExclusive";

};

// State suitable e.g. for combat.
singleton SFXState(AudioMoodAggressive)
{

parentGroup = AudioMood;
className = "AudioStateExclusive";

};

Methods
void SFXState::activate()

Increase the activation count on the state. If the state isn’t already active and it is not disabled, the state will be
activated.

void SFXState::deactivate()
Decrease the activation count on the state. If the count reaches zero and the state was not disabled, the state will
be deactivated.

void SFXState::disable()
Increase the disabling count of the state. If the state is currently active, it will be deactivated.

void SFXState::enable()
Decrease the disabling count of the state. If the disabling count reaches zero while the activation count is still
non-zero, the state will be reactivated again.

bool SFXState::isActive()
Test whether the state is currently active. This is true when the activation count is gt 0 and the disabling count
is =0.

Returns True if the state is currently active.

bool SFXState::isDisabled()
Test whether the state is currently disabled. This is true when the disabling count of the state is non-zero.

Returns True if the state is disabled.

void SFXState::onActivate()
Called when the state goes from inactive to active.

void SFXState::onDeactivate()
called when the state goes from active to deactive.

Fields
SFXState SFXState::excludedStates[4]

States that will automatically be disabled when this state is activated. Activation and Deactivation
SFXState SFXState::includedStates[4]

States that will automatically be activated when this state is activated. Activation and Deactivation

808 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

SFXTrack Abstract base class for sound data that can be played back by the sound system.

Inherit: SimDataBlock

Description The term “track” is used in the sound system to refer to any entity that can be played back as a sound
source. These can be individual files (SFXProfile), patterns of other tracks (SFXPlayList), or special sound data
defined by a device layer (SFXFMODEvent).

Any track must be paired with a SFXDescription that tells the sound system how to set up playback for the track.

All objects that are of type SFXTrack will automatically be added to SFXTrackSet.

Fields
SFXDescription SFXTrack::description

Playback setup description for this track. If unassigned, the description named “AudioEffects” will automatically
be assigned to the track. If this description is not defined, track creation will fail.

string SFXTrack::parameters[8]
Parameters to automatically attach to SFXSources created from this track. Individual parameters are identified
by their internalName .

Enumeration

enum SFXChannel
Channels are individual properties of sound sources that may be animated over time.

Parameters

• Volume – Channel controls volume level of attached sound sources. See
also:SFXDescription::volume

• Pitch – Channel controls pitch of attached sound sources. See also:SFXDescription::pitch

• Priority – Channel controls virtualizaton priority level of attached sound sources. See
also:SFXDescription::priority

• PositionX – Channel controls X coordinate of 3D sound position of attached sources.

• PositionY – Channel controls Y coordinate of 3D sound position of attached sources.

• PositionZ – Channel controls Z coordinate of 3D sound position of attached sources.

• RotationX – Channel controls X rotation (in degrees) of 3D sound orientation of attached
sources.

• RotationY – Channel controls Y rotation (in degrees) of 3D sound orientation of attached
sources.

• RotationZ – Channel controls Z rotation (in degrees) of 3D sound orientation of attached
sources.

• VelocityX – Channel controls X coordinate of 3D sound velocity vector of attached
sources.

• VelocityY – Channel controls Y coordinate of 3D sound velocity vector of attached
sources.

• VelocityZ – Channel controls Z coordinate of 3D sound velocity vector of attached
sources.

5.3. Console Reference 809

Torque 3D Documentation, Release 3.5.1

• ReferenceDistance – Channel controls reference distance of 3D sound of attached
sources. See also:SFXDescription::referenceDistance

• MaxDistance – Channel controls max volume attenuation distance of 3D sound of at-
tached sources. See also:SFXDescription::maxDistance

• ConeInsideAngle – Channel controls angle (in degrees) of 3D sound inner volume cone
of attached sources. See also:SFXDescription::coneInsideAngle

• ConeOutsideAngle – Channel controls angle (in degrees) of 3D sound outer volume
cone of attached sources. See also:SFXDescription::coneOutsideAngle

• ConeOutsideVolume – Channel controls volume outside of 3D sound outer cone of
attached sources. See also:SFXDescription::coneOutsideVolume

• Cursor – Channel controls playback cursor of attached sound sources. Note:Be aware that
different types of sound sources interpret play cursor positions differently or do not actually
have play cursors (these sources will ignore the channel).

• Status – Channel controls playback status of attached sound sources. The channel’s value
is rounded down to the nearest integer and interpreted in the following way:1: Play2: Stop3:
Pause

• User0 – Channel available for custom use. By default ignored by sources. Note:For
FMOD Designer event sources (SFXFMODEventSource), this channel is used for
event parameters defined in FMOD Designer and should not be used otherwise.See
also:SFXSource::onParameterValueChange

• User1 – Channel available for custom use. By default ignored by sources. See
also:SFXSource::onParameterValueChange

• User2 – Channel available for custom use. By default ignored by sources. See
also:SFXSource::onParameterValueChange

• User3 – Channel available for custom use. By default ignored by sources. See
also:SFXSource::onParameterValueChange

enum SFXDistanceModel
Type of volume distance attenuation curve. The distance model determines the falloff curve applied to the
volume of 3D sounds over distance.

Parameters

• Linear – Volume attenuates linearly from the references distance onwards to max distance
where it reaches zero.

• Logarithmic – Volume attenuates logarithmically starting from the reference distance
and halving every reference distance step from there on. Attenuation stops at max distance
but volume won’t reach zero.

enum SFXPlayListLoopMode
Playlist behavior when description is set to loop.

Parameters

• All – Loop over all slots, i.e. jump from last to first slot after all slots have played.

• Single – Loop infinitely over the current slot. Only useful in combination with either
states or manual playlist control.

enum SFXPlayListRandomMode
Randomization pattern to apply to playlist slot playback order.

Parameters

810 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• NotRandom – Play slots in sequential order. No randomization.

• StrictRandom – Play a strictly random selection of slots. In this mode, a set of num-
SlotsToPlay random numbers between 0 and numSlotsToPlay-1 (inclusive), i.e. in the range
of valid slot indices, is generated and playlist slots are played back in the order of this list.
This allows the same slot to occur multiple times in a list and, consequentially, allows for
other slots to not appear at all in a given slot ordering.

• OrderedRandom – Play all slots in the list in a random order. In this mode, the numSlot-
sToPlay slots from the list with valid tracks assigned are put into a random order and played.
This guarantees that each slots is played exactly once albeit at a random position in the total
ordering.

enum SFXPlayListReplayMode
Behavior when hitting the play stage of a slot that is still playing from a previous cycle.

Parameters

• IgnorePlaying – Ignore any sources that may already be playing on the slot and just
create a new source.

• RestartPlaying – Restart all sources that was last created for the slot.

• KeepPlaying – Keep playing the current source(s) as if the source started last on the slot
was created in this cycle. For this, the sources associated with the slot are brought to the top
of the play stack.

• StartNew – Stop all sources currently playing on the slot and then create a new source.

• SkipIfPlaying – If there are sources already playing on the slot, skip the play stage.

enum SFXPlayListStateMode
Reaction behavior when a state is changed incompatibly on a slot that has already started playing.

Parameters

• StopWhenDeactivated – Stop the sources playing on the slot when a state changes to
a setting that is incompatible with the slot’s state setting.

• PauseWhenDeactivated – Pause all sources playing on the slot when a state changes to
a setting that is incompatible with the slot’s state setting. When the slot’s state is reactivated
again, the sources will resume playback.

• IgnoreWhenDeactivated – Ignore when a state changes to a setting incompatible with
the slot’s state setting and just keep playing sources attached to the slot.

enum SFXPlayListTransitionMode
Playlist behavior when transitioning in and out of invididual slots. Transition behaviors apply when the play-
back controller starts processing a playlist slot and when it ends processing a slot. Using transition behaviors,
playback can be synchronized.

Parameters

• None – No transition. Immediately move on to processing the slot or immediately move on
to the next slot.

• Wait – Wait for the sound source spawned last by this playlist to finish playing. Then
proceed.

• WaitAll – Wait for all sound sources currently spawned by the playlist to finish playing.
Then proceed.

• Stop – Stop the sound source spawned last by this playlist. Then proceed.

5.3. Console Reference 811

Torque 3D Documentation, Release 3.5.1

• StopAll – Stop all sound sources spawned by the playlist. Then proceed.

enum SFXStatus
Playback status of sound source.

Parameters

• Playing – The source is currently playing.

• Stopped – Playback of the source is stopped. When transitioning to Playing state, play-
back will start at the beginning of the source.

• Paused – Playback of the source is paused. Resuming playback will play from the current
playback position.

Functions

bool sfxCreateDevice(string provider, string device, bool useHardware, int maxBuffers)
Try to create a new sound device using the given properties. If a sound device is currently initialized, it will be
uninitialized first. However, be aware that in this case, if this function fails, it will not restore the previously
active device but rather leave the sound system in an uninitialized state. Sounds that are already playing while
the new device is created will be temporarily transitioned to virtualized playback and then resume normal play-
back once the device has been created. In the core scripts, sound is automatically set up during startup in the
sfxStartup() function. Providers and Devices

Parameters

• provider – The name of the device provider as returned by sfxGetAvailableDevices().

• device – The name of the device as returned by sfxGetAvailableDevices().

• useHardware – Whether to enabled hardware mixing on the device or not. Only relevant
if supported by the given device.

• maxBuffers – The maximum number of concurrent voices for this device to use or -1 for
the device to pick its own reasonable default.

Returns True if the initialization was successful, false if not.

SFXSource sfxCreateSource(SFXTrack track)
Create a new source that plays the given track. The source will be returned in stopped state. Call SFX-
Source::play() to start playback. In contrast to play-once sources, the source object will not be automatically
deleted once playback stops. Call delete() to release the source object. This function will automatically create
the right SFXSource type for the given SFXTrack .

Parameters track – The track the source should play.

Returns for playback of the given track or 0 if no source could be created from the given track.

Example:

// Create and play a source from a pre-existing profile:
%source = sfxCreateSource(SoundFileProfile);
%source.play();

SFXSource sfxCreateSource(SFXTrack track, float x, float y, float z)
Create a new source that plays the given track and position its 3D sounds source at the given coordinates (if
it is a 3D sound). The source will be returned in stopped state. Call SFXSource::play() to start playback. In
contrast to play-once sources, the source object will not be automatically deleted once playback stops. Call
delete() to release the source object. This function will automatically create the right SFXSource type for the
given SFXTrack .

812 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Parameters

• track – The track the source should play.

• x – The X coordinate of the 3D sound position.

• y – The Y coordinate of the 3D sound position.

• z – The Z coordinate of the 3D sound position.

Returns for playback of the given track or 0 if no source could be created from the given track.

Example:

// Create and play a source from a pre-existing profile and position it at (100, 200, 300):
%source = sfxCreateSource(SoundFileProfile, 100, 200, 300);
%source.play();

SFXSound sfxCreateSource(SFXDescription description, string filename)
Create a temporary SFXProfile from the given description and filename and then create and return a new source
that plays the profile. The source will be returned in stopped state. Call SFXSource::play() to start playback.
In contrast to play-once sources, the source object will not be automatically deleted once playback stops. Call
delete() to release the source object.

Parameters

• description – The description to use for setting up the temporary SFXProfile.

• filename – Path to the sound file to play.

Returns for playback of the given track or 0 if no source or no temporary profile could be created.

Example:

// Create a source for a music track:
%source = sfxCreateSource(AudioMusicLoop2D, "art/sound/backgroundMusic");
%source.play();

SFXSound sfxCreateSource(SFXDescription description, string filename, float x, float y, float z)
Create a temporary SFXProfile from the given description and filename and then create and return a new source
that plays the profile. Position the sound source at the given coordinates (if it is a 3D sound). The source will be
returned in stopped state. Call SFXSource::play() to start playback. In contrast to play-once sources, the source
object will not be automatically deleted once playback stops. Call delete() to release the source object.

Parameters

• description – The description to use for setting up the temporary SFXProfile.

• filename – Path to the sound file to play.

• x – The X coordinate of the 3D sound position.

• y – The Y coordinate of the 3D sound position.

• z – The Z coordinate of the 3D sound position.

Returns for playback of the given track or 0 if no source or no temporary profile could be created.

Example:

// Create a source for a music track and position it at (100, 200, 300):
%source = sfxCreateSource(AudioMusicLoop3D, "art/sound/backgroundMusic", 100, 200, 300);
%source.play();

5.3. Console Reference 813

Torque 3D Documentation, Release 3.5.1

void sfxDeleteDevice()
Delete the currently active sound device and release all its resources. SFXSources that are still playing will be
transitioned to virtualized playback mode. When creating a new device, they will automatically transition back
to normal playback. In the core scripts, this is done automatically for you during shutdown in the sfxShutdown()
function. Providers and Devices

void sfxDeleteWhenStopped(SFXSource source)
Mark the given source for deletion as soon as it moves into stopped state. This function will retroactively turn
the given source into a play-once source (see Play-Once Sources).

Parameters source – A sound source.

void sfxDumpSources(bool includeGroups)
Dump information about all current SFXSource instances to the console. The dump includes information about
the playback status for each source, volume levels, virtualization, etc.

Parameters includeGroups – If true, direct instances of SFXSources (which represent logical
sound groups) will be included. Otherwise only instances of subclasses of SFXSources are
included in the dump.

string sfxDumpSourcesToString(bool includeGroups)
Dump information about all current SFXSource instances to a string. The dump includes information about the
playback status for each source, volume levels, virtualization, etc.

Parameters includeGroups – If true, direct instances of SFXSources (which represent logical
sound groups) will be included. Otherwise only instances of subclasses of SFXSources are
included in the dump.

Returns A string containing a dump of information about all currently instantiated SFXSources.

string sfxGetActiveStates()
Return a newline-separated list of all active states.

Returns where each element is the name of an active state object.

Example:

// Disable all active states.
foreach$(%state in sfxGetActiveStates())

%state.disable();

string sfxGetAvailableDevices()
Get a list of all available sound devices. The return value will be a newline-separated list of entries where each
line describes one available sound device. Each such line will have the following format:

Returns A newline-separated list of information about all available sound devices.

string sfxGetDeviceInfo()
Return information about the currently active sound device. The return value is a tab-delimited string of the
following format:

Returns A tab-separated list of properties of the currently active sound device or the empty string if
no sound device has been initialized.

SFXDistanceModel sfxGetDistanceModel()
Get the falloff curve type currently being applied to 3D sounds. Volume Attenuation 3D Audio

Returns The current distance model type.

float sfxGetDopplerFactor()
Get the current global doppler effect setting. Doppler Effect

Returns =0).

814 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float sfxGetRolloffFactor()
Get the current global scale factor applied to volume attenuation of 3D sounds in the logarithmic model. Volume
Attenuation 3D Audio

Returns The current scale factor for logarithmic 3D sound falloff curves.

SFXSource sfxPlay(SFXSource source)
Start playback of the given source. This is the same as calling SFXSource::play() directly.

Parameters source – The source to start playing.

Returns

.

Example:

// Create and play a source from a pre-existing profile:
%source = sfxCreateSource(SoundFileProfile);
%source.play();

void sfxPlay(SFXTrack track)
Create a new play-once source for the given track and start playback of the source. This is equivalent to calling
sfxCreateSource() on and SFXSource::play() on the resulting source. Play-Once Sources

Parameters track – The sound datablock to play.

Returns The newly created play-once source or 0 if the creation failed.

void sfxPlay(SFXTrack track, float x, float y, float z)
Create a new play-once source for the given track , position its 3D sound at the given coordinates (if the track’s
description is set up for 3D sound) and start playback of the source. This is equivalent to calling sfxCreate-
Source() on and SFXSource::play() on the resulting source. Play-Once Sources

Parameters

• track – The sound datablock to play.

• x – The X coordinate of the 3D sound position.

• y – The Y coordinate of the 3D sound position.

• z – The Z coordinate of the 3D sound position.

Returns The newly created play-once source or 0 if the creation failed.

SFXSource sfxPlayOnce(SFXTrack track)
Create a play-once source for the given track . Once playback has finished, the source will be automatically
deleted in the next sound system update. Play-Once Sources

Parameters track – The sound datablock.

Returns A newly created temporary source in “Playing” state or 0 if the operation failed.

SFXSource sfxPlayOnce(SFXTrack track, float x, float y, float z, float fadeInTime)
Create a play-once source for the given given track and position the source’s 3D sound at the given coordi-
nates only if the track’s description is set up for 3D sound). Once playback has finished, the source will be
automatically deleted in the next sound system update. Play-Once Sources

Parameters

• track – The sound datablock.

• x – The X coordinate of the 3D sound position.

• y – The Y coordinate of the 3D sound position.

5.3. Console Reference 815

Torque 3D Documentation, Release 3.5.1

• z – The Z coordinate of the 3D sound position.

• fadeInTime – If >=0, this overrides the SFXDescription::fadeInTime value on the track’s
description.

Returns A newly created temporary source in “Playing” state or 0 if the operation failed.

Example:

// Immediately start playing the given track. Fade it in to full volume over 5 seconds.
sfxPlayOnce(MusicTrack, 0, 0, 0, 5.f);

SFXSource sfxPlayOnce(SFXDescription description, string filename)
Create a new temporary SFXProfile from the given description and filename , then create a play-once source
for it and start playback. Once playback has finished, the source will be automatically deleted in the next sound
system update. If not referenced otherwise by then, the temporary SFXProfile will also be deleted. Play-Once
Sources

Parameters

• description – The description to use for playback.

• filename – Path to the sound file to play.

Returns A newly created temporary source in “Playing” state or 0 if the operation failed.

Example:

// Play a sound effect file once.
sfxPlayOnce(AudioEffects, "art/sound/weapons/Weapon_pickup");

SFXSource sfxPlayOnce(SFXDescription description, string filename, float x, float y, float z, float fadeIn-
Time)

Create a new temporary SFXProfile from the given description and filename , then create a play-once source for
it and start playback. Position the source’s 3D sound at the given coordinates (only if the description is set up
for 3D sound). Once playback has finished, the source will be automatically deleted in the next sound system
update. If not referenced otherwise by then, the temporary SFXProfile will also be deleted. Play-Once Sources

Parameters

• description – The description to use for playback.

• filename – Path to the sound file to play.

• x – The X coordinate of the 3D sound position.

• y – The Y coordinate of the 3D sound position.

• z – The Z coordinate of the 3D sound position.

• fadeInTime – If >=0, this overrides the SFXDescription::fadeInTime value on the track’s
description.

Returns A newly created temporary source in “Playing” state or 0 if the operation failed.

Example:

// Play a sound effect file once using a 3D sound with a default falloff placed at the origin.
sfxPlayOnce(AudioDefault3D, "art/sound/weapons/Weapon_pickup", 0, 0, 0);

void sfxSetDistanceModel(SFXDistanceModel model)
Set the falloff curve type to use for distance-based volume attenuation of 3D sounds.

Parameters model – The distance model to use for 3D sound.

816 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void sfxSetDopplerFactor(float value)
Set the global doppler effect scale factor. Doppler Effect

Parameters value – The new doppler shift scale factor.

void sfxSetRolloffFactor(float value)
Set the global scale factor to apply to volume attenuation of 3D sounds in the logarithmic model. Volume
Attenuation 3D Audio

Parameters value – The new scale factor for logarithmic 3D sound falloff curves.

void sfxStop(SFXSource source)
Stop playback of the given source . This is equivalent to calling SFXSource::stop() .

Parameters source – The source to put into stopped state.

void sfxStopAndDelete(SFXSource source)
Stop playback of the given source (if it is not already stopped) and delete the source . The advantage of this
function over directly calling delete() is that it will correctly handle volume fades that may be configured on the
source. Whereas calling delete() would immediately stop playback and delete the source, this functionality will
wait for the fade-out to play and only then stop the source and delete it. Volume Fades

Parameters source – A sound source.

Variables

int $SFX::ambientUpdateTime
Milliseconds spent on the last ambient audio update. Sound System Updates Ambient Audio

int $SFX::DEVICE_CAPS_DSPEFFECTS
Sound device capability flag indicating that the sound device supports adding DSP effect chains to sounds.

int $SFX::DEVICE_CAPS_FMODDESIGNER
Sound device capability flag indicating that the sound device supports FMOD Designer audio projects. FMOD
Designer Audio

int $SFX::DEVICE_CAPS_MULTILISTENER
Sound device capability flag indicating that the sound device supports multiple concurrent listeners.

int $SFX::DEVICE_CAPS_OCCLUSION
Sound device capability flag indicating that the sound device implements sound occlusion.

int $SFX::DEVICE_CAPS_REVERB
Sound device capability flag indicating that the sound device supports reverb. Audio Reverb

int $SFX::DEVICE_CAPS_VOICEMANAGEMENT
Sound device capability flag indicating that the sound device implements its own voice virtualization. For these
devices, the sound system will deactivate its own voice management and leave voice virtualization entirely to
the device. Sounds and Voices

int $SFX::DEVICE_INFO_CAPS
Index of device capability flags in device info string.

int $SFX::DEVICE_INFO_MAXBUFFERS
Index of buffer limit number in device info string.

int $SFX::DEVICE_INFO_NAME
Index of device name field in device info string.

int $SFX::DEVICE_INFO_PROVIDER
Index of sound provider field in device info string.

5.3. Console Reference 817

Torque 3D Documentation, Release 3.5.1

int $SFX::DEVICE_INFO_USEHARDWARE
Index of use hardware flag in device info string.

int $SFX::numCulled
Number of SFXSounds that are currently in virtualized playback mode. Sounds and Voices

int $SFX::numPlaying
Number of SFXSources that are currently in playing state.

int $SFX::numSounds
Number of SFXSound type objects (i.e. actual single-file sounds) that are currently instantiated.

int $SFX::numSources
Number of SFXSource type objects that are currently instantiated.

int $SFX::numVoices
Number of voices that are currently allocated on the sound device.

int $SFX::parameterUpdateTime
Milliseconds spent on the last SFXParameter update loop. Sound System Updates Interactive Audio

ColorI SFXEmitter::renderColorInnerCone[static, inherited]
The color with which to render dots in the inner sound cone (Editor only).

ColorI SFXEmitter::renderColorOuterCone[static, inherited]
The color with which to render dots in the outer sound cone (Editor only).

ColorI SFXEmitter::renderColorOutsideVolume[static, inherited]
The color with which to render dots outside of the outer sound cone (Editor only).

ColorI SFXEmitter::renderColorPlayingInRange[static, inherited]
The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is playing
and in range of the listener.

ColorI SFXEmitter::renderColorPlayingOutOfRange[static, inherited]
The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is playing
but out of the range of the listener.

ColorI SFXEmitter::renderColorRangeSphere[static, inherited]
The color of the range sphere with which to render sound emitters in the editor.

ColorI SFXEmitter::renderColorStoppedInRange[static, inherited]
The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is not
playing but the emitter is in range of the listener.

ColorI SFXEmitter::renderColorStoppedOutOfRange[static, inherited]
The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is not
playing and the emitter is out of range of the listener.

bool SFXEmitter::renderEmitters[static, inherited]
Whether to render enhanced range feedback in the editor on all emitters regardless of selection state.

float SFXEmitter::renderPointDistance[static, inherited]
The distance between individual points in the sound emitter rendering in the editor as the points move from the
emitter’s center away to maxDistance.

float SFXEmitter::renderRadialIncrements[static, inherited]
The stepping (in degrees) for the radial sweep along the axis of the XY plane sweep for sound emitter rendering
in the editor.

float SFXEmitter::renderSweepIncrements[static, inherited]
The stepping (in degrees) for the radial sweep on the XY plane for sound emitter rendering in the editor.

818 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int $SFX::sourceUpdateTime
Milliseconds spent on the last SFXSource update loop. Sound System Updates

FMOD

Functionality specific to the FMOD SFX implementation.

Classes

SFXFMODEvent A playable sound event in an FMOD Designer audio project.

Inherit: SFXTrack

Description A playable sound event in an FMOD Designer audio project.

Fields
SFXFMODEventGroup SFXFMODEvent::fmodGroup

DO NOT MODIFY!!
string SFXFMODEvent::fmodName

DO NOT MODIFY!!

Point2F SFXFMODEvent::fmodParameterRanges[8]
DO NOT MODIFY!!

float SFXFMODEvent::fmodParameterValues[8]
DO NOT MODIFY!!

SFXFMODEventGroup A group of events in an imported FMOD Designer project.

Inherit: SimDataBlock

Description A group of events in an imported FMOD Designer project.

Methods
void SFXFMODEventGroup::freeData()

Release the resource data for this group and its subgroups.
bool SFXFMODEventGroup::isDataLoaded()

Test whether the resource data for this group has been loaded.

Returns True if the resource data for this group is currently loaded.

bool SFXFMODEventGroup::loadData(bool loadStreams, bool loadSamples)
Load the resource data for this group, if it has not already been loaded (either directly or indirectly through a
parent group). This method works recursively and thus data for direct and indirect child groups to this group
will be loaded as well.

Parameters

• loadStreams – Whether to open streams.

• loadSamples – Whether to load sample banks.

Returns True if the data has been successfully loaded; false otherwise.

5.3. Console Reference 819

Torque 3D Documentation, Release 3.5.1

Fields
SFXFMODEventGroup SFXFMODEventGroup::fmodGroup

DO NOT MODIFY!!
string SFXFMODEventGroup::fmodName

DO NOT MODIFY!!

SFXFMODProject SFXFMODEventGroup::fmodProject
DO NOT MODIFY!!

SFXFMODEventSource A sound source controller playing an FMOD Designer event (SFXFMODEvent).

Inherit: SFXSource

Description A sound source controller playing an FMOD Designer event (SFXFMODEvent).

FMOD event sources are internally created by the sound system to play events from imported FMOD Designer
projects.

SFXFMODProject An FMOD Designer project loaded into Torque.

Inherit: SimDataBlock

Description An FMOD Designer project loaded into Torque.

Resource Loading

Fields
filename SFXFMODProject::fileName

The compiled .fev file from FMOD Designer.
filename SFXFMODProject::mediaPath

Path to the media files; if unset, defaults to project directory.

Description When using FMOD for audio output in combination with Torque’s sound system, an extended set of
features is available to the user. This includes:

• Reverb support

• Enhanced voice virtualization

• Support for multiple listeners

• Enhanced sound format support: .aiff, .asf, .asx, .dls, .flac .fsb, .it, .m3u, .mid, .mod, .mp2, .mp3, .ogg, .pls,
.s3m, .vag, .wav, .wax, .wma, .xm, .xma (on Xbox only)

• FMOD Designer enhanced audio design support

Functions
void fmodDumpDSPInfo()

Dump information about the standard DSP effects.
void fmodDumpMemoryStats()

Returns Prints the current memory consumption of the FMOD module

820 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Variables
bool $pref::SFX::FMOD::disableSoftware

Whether to disable the FMOD software mixer to conserve memory. All sounds not created with SFXDescrip-
tion::useHardware or using DSP effects will fail to load.

string $pref::SFX::FMOD::DSoundHRTF
The type of HRTF to use for hardware-mixed 3D sounds when FMOD is using DirectSound for sound output
and hardware-acceleration is not available. Options are

•“none”: simple stereo panning/doppler/attenuation

•“light”: slightly higher quality than “none”

•“full”: full quality 3D playback

bool $pref::SFX::FMOD::enableProfile
Whether to enable support for FMOD’s profiler. Using the FMOD Profiler with Torque

int $SFX::Device::fmodCoreMem
Current number of bytes allocated by the core FMOD sound system.

int $SFX::Device::fmodEventMem
Current number of bytes allocated by the FMOD Designer event system.

int $SFX::Device::fmodNumEventSources
The current number of SFXFMODEventSource instances in the system. This tells the number of sounds in the
system that are currently playing FMOD Designer events.

string $pref::SFX::FMOD::pluginPath
Path to additional FMOD plugins.

bool $pref::SFX::FMOD::useSoftwareHRTF
Whether to enable HRTF in FMOD’s software mixer. This will add a lowpass filter effect to the DSP effect
chain of all sounds mixed in software.

5.3.6 Rendering

All rendering related functionality.

Rendering

All rendering related functionality.

Classes

BarrelDistortionPostEffect A fullscreen shader effect used with the Oculus Rift.

Inherit: PostEffect

Description A fullscreen shader effect used with the Oculus Rift.

PFXTextureIdentifiers

5.3. Console Reference 821

Torque 3D Documentation, Release 3.5.1

Fields
int BarrelDistortionPostEffect::hmdIndex

Oculus VR HMD index to reference.
float BarrelDistortionPostEffect::scaleOutput

Used to increase the size of the window into the world at the expense of apparent resolution.

int BarrelDistortionPostEffect::sensorIndex
Oculus VR sensor index to reference.

PostEffect A fullscreen shader effect.

Inherit: SimGroup

Description A fullscreen shader effect.

PFXTextureIdentifiers

Methods
void PostEffect::clearShaderMacros()

Remove all shader macros.
void PostEffect::disable()

Disables the effect.

String PostEffect::dumpShaderDisassembly()
Dumps this PostEffect shader’s disassembly to a temporary text file.

Returns Full path to the dumped file or an empty string if failed.

void PostEffect::enable()
Enables the effect.

float PostEffect::getAspectRatio()

Returns Width over height of the backbuffer.

bool PostEffect::isEnabled()

Returns True if the effect is enabled.

void PostEffect::onAdd()
Called when this object is first created and registered.

void PostEffect::onDisabled()
Called when this effect becomes disabled.

bool PostEffect::onEnabled()
Called when this effect becomes enabled. If the user returns false from this callback the effect will not be
enabled.

Returns True to allow this effect to be enabled.

void PostEffect::preProcess()
Called when an effect is processed but before textures are bound. This allows the user to change texture related
paramaters or macros at runtime.

Example:

822 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

function SSAOPostFx::preProcess(%this)
{

if ($SSAOPostFx::quality !$= %this.quality)
{

%this.quality = mClamp(mRound($SSAOPostFx::quality), 0, 2);

%this.setShaderMacro("QUALITY", %this.quality);
}
%this.targetScale = $SSAOPostFx::targetScale;

}

void PostEffect::reload()
Reloads the effect shader and textures.

void PostEffect::removeShaderMacro(string key)
Remove a shader macro. This will usually be called within the preProcess callback.

Parameters key – Macro to remove.

void PostEffect::setShaderConst(string name, string value)
Sets the value of a uniform defined in the shader. This will usually be called within the setShaderConsts callback.
Array type constants are not supported.

Parameters

• name – Name of the constanst, prefixed with ‘$’.

• value – Value to set, space seperate values with more than one element.

Example:

function MyPfx::setShaderConsts(%this)
{

// example float4 uniform
%this.setShaderConst("$colorMod", "1.0 0.9 1.0 1.0");
// example float1 uniform
%this.setShaderConst("$strength", "3.0");
// example integer uniform
%this.setShaderConst("$loops", "5");}

void PostEffect::setShaderConsts()
Called immediate before processing this effect. This is the user’s chance to set the value of shader uniforms
(constants).

void PostEffect::setShaderMacro(string key, string value)
Adds a macro to the effect’s shader or sets an existing one’s value. This will usually be called within the onAdd
or preProcess callback.

Parameters

• key – lval of the macro.

• value – rval of the macro, or may be empty.

Example:

function MyPfx::onAdd(%this)
{

%this.setShaderMacro("NUM_SAMPLES", "10");
%this.setShaderMacro("HIGH_QUALITY_MODE");

5.3. Console Reference 823

Torque 3D Documentation, Release 3.5.1

// In the shader looks like... // #define NUM_SAMPLES 10// #define HIGH_QUALITY_MODE
}

void PostEffect::setTexture(int index, string filePath)
This is used to set the texture file and load the texture on a running effect. If the texture file is not different from
the current file nothing is changed. If the texture cannot be found a null texture is assigned.

Parameters

• index – The texture stage index.

• filePath – The file name of the texture to set.

bool PostEffect::toggle()
Toggles the effect between enabled / disabled.

Returns True if effect is enabled.

Fields
bool PostEffect::allowReflectPass

Is this effect processed during reflection render passes.
bool PostEffect::isEnabled

Is the effect on.

bool PostEffect::oneFrameOnly
Allows you to turn on a PostEffect for only a single frame.

bool PostEffect::onThisFrame
Allows you to turn on a PostEffect for only a single frame.

string PostEffect::renderBin
Name of a renderBin, used if renderTime is PFXBeforeBin or PFXAfterBin.

float PostEffect::renderPriority
PostEffects are processed in DESCENDING order of renderPriority if more than one has the same ren-
derBin/Time.

PFXRenderTime PostEffect::renderTime
When to process this effect during the frame.

string PostEffect::shader
Name of a GFXShaderData for this effect.

bool PostEffect::skip
Skip processing of this PostEffect and its children even if its parent is enabled. Parent and sibling PostEffects in
the chain are still processed.

GFXStateBlockData PostEffect::stateBlock
Name of a GFXStateBlockData for this effect.

string PostEffect::target
String identifier of this effect’s target texture.

PFXTargetClear PostEffect::targetClear
Describes when the target texture should be cleared.

ColorF PostEffect::targetClearColor
Color to which the target texture is cleared before rendering.

string PostEffect::targetDepthStencil
Optional string identifier for this effect’s target depth/stencil texture.

824 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

GFXFormat PostEffect::targetFormat
Format of the target texture, not applicable if writing to the backbuffer.

Point2F PostEffect::targetScale
If targetSize is zero this is used to set a relative size from the current target.

Point2I PostEffect::targetSize
If non-zero this is used as the absolute target size.

PFXTargetViewport PostEffect::targetViewport
Specifies how the viewport should be set up for a target texture.

filename PostEffect::texture[6]
Input textures to this effect (samplers).

TheoraTextureObject Definition of a named texture target playing a Theora video.

Inherit: SimObject

Description TheoraTextureObject defines a named texture target that may play back a Theora video. This texture
target can, for example, be used by materials to texture objects with videos.

Example:

// The object that provides the video texture and controls its playback.
singleton TheoraTextureObject(TheVideo)
{

// Unique name for the texture target for referencing in materials.
texTargetName = "video";

// Path to the video file.
theoraFile = "./MyVideo.ogv";

};

// Material that uses the video texture.
singleton Material(TheVideoMaterial)
{

// This has to reference the named texture target defined by the
// TheoraTextureObjects texTargetName property. Prefix with # to
// identify as texture target reference.
diffuseMap[0] = "#video";

};

Methods
void TheoraTextureObject::pause()

Pause playback of the video.
void TheoraTextureObject::play()

Start playback of the video.

void TheoraTextureObject::stop()
Stop playback of the video.

Fields
bool TheoraTextureObject::loop

Should the video loop.

5.3. Console Reference 825

Torque 3D Documentation, Release 3.5.1

SFXDescription TheoraTextureObject::SFXDescription
Sound description to use for the video’s audio channel. If not set, will use a default one.

string TheoraTextureObject::texTargetName
Name of the texture target by which the texture can be referenced in materials.

filename TheoraTextureObject::theoraFile
Theora video file to play.

Enumeration

enum PFXRenderTime
When to process this effect during the frame.

Parameters

• PFXBeforeBin – Before a RenderInstManager bin.

• PFXAfterBin – After a RenderInstManager bin.

• PFXAfterDiffuse – After the diffuse rendering pass.

• PFXEndOfFrame – When the end of the frame is reached.

• PFXTexGenOnDemand – This PostEffect is not processed by the manager. It will generate
its texture when it is requested.

enum PFXTargetClear
Describes when the target texture should be cleared.

Parameters

• PFXTargetClear_None – Never clear the PostEffect target.

• PFXTargetClear_OnCreate – Clear once on create.

• PFXTargetClear_OnDraw – Clear before every draw.

enum PFXTargetViewport
Specifies how the viewport should be set up for a PostEffect’s target.

Parameters

• PFXTargetViewport_TargetSize – Set viewport to match target size (default).

• PFXTargetViewport_GFXViewport – Use the current GFX viewport (scaled to
match target size).

• PFXTargetViewport_NamedInTexture0 – Use the input texture 0 if it is named
(scaled to match target size), otherwise revert to PFXTargetViewport_TargetSize if there is
none.

Functions

void addGlobalShaderMacro(string name, string value)
Adds a global shader macro which will be merged with the script defined macros on every shader. The macro
will replace the value of an existing macro of the same name. For the new macro to take effect all the shaders in
the system need to be reloaded.

826 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void beginSampling()
Takes a string informing the backend where to store sample data and optionally a name of the specific logging
backend to use. The default is the CSV backend. In most cases, the logging store will be a file name.

Example:

beginSampling("mysamples.csv");

void enableSamples()
Enable sampling for all keys that match the given name pattern. Slashes are treated as separators.

int getActiveDDSFiles()
Returns the count of active DDSs files in memory.

String getBitmapInfo(string filename)
Returns image info in the following format: width TAB height TAB bytesPerPixel. It will return an empty string
if the file is not found.

void initDisplayDeviceInfo()
Initializes variables that track device and vendor information/IDs.

void playJournalToVideo(string journalFile, string videoFile, string encoder, float framerate, Point2I
resolution)

Load a journal file and capture it video.

void removeGlobalShaderMacro(string name)
Removes an existing global macro by name.

void startVideoCapture(GuiCanvas canvas, string filename, string encoder, float framerate, Point2I res-
olution)

Begins a video capture session.

void stopSampling()
Stops the rendering sampler.

void stopVideoCapture()
Stops the video capture session.

Variables

bool $pref::imposter::canShadow
User preference which toggles shadows from imposters. Defaults to true.

float $pref::TS::detailAdjust
User perference for scaling the TSShape level of detail. The smaller the value the closer the camera must get to
see the highest LOD. This setting can have a huge impact on performance in mesh heavy scenes. The default
value is 1.

bool $Scene::disableTerrainOcclusion
Used to disable the somewhat expensive terrain occlusion testing.

bool $Scene::disableZoneCulling
If true, zone culling will be disabled and the scene contents will only be culled against the root frustum.

int $TSControl::frameCount
The number of frames that have been rendered since this control was created.

int $pref::Reflect::frameLimitMS
ReflectionManager tries not to spend more than this amount of time updating reflections per frame.

int $Sampler::frequency
Samples taken every nth frame.

5.3. Console Reference 827

Torque 3D Documentation, Release 3.5.1

bool $Scene::lockCull
Debug tool which locks the frustum culling to the current camera location.

int $pref::TS::maxInstancingVerts
Enables mesh instancing on non-skin meshes that have less that this count of verts. The default value is 200.
Higher values can degrade performance.

int $Scene::maxOccludersPerZone
Maximum number of occluders that will be concurrently allowed into the scene culling state of any given zone.

float $Scene::occluderMinHeightPercentage
TODO.

float $Scene::occluderMinWidthPercentage
TODO.

float $pref::Reflect::refractTexScale
RefractTex has dimensions equal to the active render target scaled in both x and y by this float.

bool $Scene::renderBoundingBoxes
If true, the bounding boxes of objects will be displayed.

int $pref::TS::skipLoadDLs
User perference which causes TSShapes to skip loading higher lods. This potentialy reduces the GPU resources
and materials generated as well as limits the LODs rendered. The default value is 0.

int $pref::TS::skipRenderDLs
User perference which causes TSShapes to skip rendering higher lods. This will reduce the number of draw
calls and triangles rendered and improve rendering performance when proper LODs have been created for your
models. The default value is 0.

float $pref::TS::smallestVisiblePixelSize
User perference which sets the smallest pixel size at which TSShapes will skip rendering. This will force all
shapes to stop rendering when they get smaller than this size. The default value is -1 which disables it.

float $pref::windEffectRadius
Radius to affect the wind.

Font

Various helpers for working with fonts from script.

Functions

void dumpFontCacheStatus()
Dumps to the console a full description of all cached fonts, along with info on the codepoints each contains.

void duplicateCachedFont(string oldFontName, int oldFontSize, string newFontName)
Copy the specified old font to a new name. The new copy will not have a platform font backing it, and so will
never have characters added to it. But this is useful for making copies of fonts to add postprocessing effects to
via exportCachedFont.

Parameters

• oldFontName – The name of the font face to copy.

• oldFontSize – The size of the font to copy.

• newFontName – The name of the new font face.

828 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

void exportCachedFont(string faceName, int fontSize, string fileName, int padding, int kerning)
Export specified font to the specified filename as a PNG. The image can then be processed in Photoshop or
another tool and reimported using importCachedFont. Characters in the font are exported as one long strip.

Parameters

• faceName – The name of the font face.

• fontSize – The size of the font in pixels.

• fileName – The file name and path for the output PNG.

• padding – The padding between characters.

• kerning – The kerning between characters.

void importCachedFont(string faceName, int fontSize, string fileName, int padding, int kerning)
Import an image strip from exportCachedFont. Call with the same parameters you called exportCachedFont.

Parameters

• faceName – The name of the font face.

• fontSize – The size of the font in pixels.

• fileName – The file name and path for the input PNG.

• padding – The padding between characters.

• kerning – The kerning between characters.

void populateAllFontCacheRange(int rangeStart, int rangeEnd)
Populate the font cache for all fonts with Unicode code points in the specified range.

Parameters

• rangeStart – The start Unicode point.

• rangeEnd – The end Unicode point.

void populateAllFontCacheString(string string)
Populate the font cache for all fonts with characters from the specified string.

void populateFontCacheRange(string faceName, int fontSize, int rangeStart, int rangeEnd)
Populate the font cache for the specified font with Unicode code points in the specified range.

Parameters

• faceName – The name of the font face.

• fontSize – The size of the font in pixels.

• rangeStart – The start Unicode point.

• rangeEnd – The end Unicode point.

void populateFontCacheString(string faceName, int fontSize, string string)
Populate the font cache for the specified font with characters from the specified string.

Parameters

• faceName – The name of the font face.

• fontSize – The size of the font in pixels.

• string – The string to populate.

void writeFontCache()
Force all cached fonts to serialize themselves to the cache.

5.3. Console Reference 829

Torque 3D Documentation, Release 3.5.1

GFX

The low level graphics interface to the engine.

Classes

CubemapData Used to create static or dynamic cubemaps.

Inherit: SimObject

Description This object is used with Material, WaterObject, and other objects for cubemap reflections.

A simple declaration of a static cubemap:

Example:

singleton CubemapData(SkyboxCubemap)
{

cubeFace[0] = "./skybox_1";
cubeFace[1] = "./skybox_2";
cubeFace[2] = "./skybox_3";
cubeFace[3] = "./skybox_4";
cubeFace[4] = "./skybox_5";
cubeFace[5] = "./skybox_6";

};

Methods
string CubemapData::getFilename()

Returns the script filename of where the CubemapData object was defined. This is used by the material editor.
Reimplemented from SimObject .

void CubemapData::updateFaces()
Update the assigned cubemaps faces.

Fields
filename CubemapData::cubeFace[6]

The 6 cubemap face textures for a static cubemap. They are in the following order:

•cubeFace[0] is -X

•cubeFace[1] is +X

•cubeFace[2] is -Z

•cubeFace[3] is +Z

•cubeFace[4] is -Y

•cubeFace[5] is +Y
bool CubemapData::dynamic

Set to true if this is a dynamic cubemap. The default is false.

float CubemapData::dynamicFarDist
The far clip distance used when rendering to the dynamic cubemap.

float CubemapData::dynamicNearDist
The near clip distance used when rendering to the dynamic cubemap.

830 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

int CubemapData::dynamicObjectTypeMask
The typemask used to filter the objects rendered to the dynamic cubemap.

int CubemapData::dynamicSize
The size of each dynamic cubemap face in pixels.

DebugDrawer A debug helper for rendering debug primitives to the scene.

Inherit: SimObject

Description The DebugDrawer is used to render debug primitives to the scene for testing. It is often useful when de-
bugging collision code or complex 3d algorithms to have them draw debug information, like culling hulls or bounding
volumes, normals, simple lines, and so forth.

A key feature of the DebugDrawer is that each primitive gets a “time to live” (TTL) which allows them to continue to
render to the scene for a fixed period of time. You can freeze or resume the system at any time to allow you to examine
the output.

Example:

DebugDraw.drawLine(%player.getMuzzlePoint(0), %hitPoint);
DebugDraw.setLastTTL(5000); // 5 seconds.

The DebugDrawer renders solely in world space and all primitives are rendered with the cull mode disabled.

Methods
void DebugDrawer::drawBox(Point3F a, Point3F b, ColorF color)

Draws an axis aligned box primitive within the two 3d points.
void DebugDrawer::drawLine(Point3F a, Point3F b, ColorF color)

Draws a line primitive between two 3d points.

void DebugDrawer::setLastTTL(int ms)
Sets the “time to live” (TTL) for the last rendered primitive.

void DebugDrawer::setLastZTest(bool enabled)
Sets the z buffer reading state for the last rendered primitive.

void DebugDrawer::toggleDrawing()
Toggles the rendering of DebugDrawer primitives.

void DebugDrawer::toggleFreeze()
Toggles freeze mode which keeps the currently rendered primitives from expiring.

GFXCardProfiler Provides a device independent wrapper around both the capabilities reported by the card/drivers
and the exceptions recorded in various scripts.

Description The GFXCardProfiler provides a device independent wrapper around both the capabilities reported by
the card/drivers and the exceptions recorded in various scripts.

The materials system keeps track of most caps-related rendering optimizations and/or workarounds, but it is occasion-
ally necessary to expose capability information to higher level code (for instance, if some feature depends on a specific
subset of render functionality) or to keep track of exceptions.

The proper way to fix this is to get the IHV to release fixed drivers and/or move to a single consistent rendering path
that works. Of course, when you’re releasing a game, especially on a timeline (or with a less than infinite budget) this
isn’t always a valid solution.

5.3. Console Reference 831

Torque 3D Documentation, Release 3.5.1

It’s also often convenient to be able to tweak performance/detail settings based on the identified card type.

GFXCardProfiler addresses both these needs by providing two data retrieval methods and a generic interface for
querying capability strings.

Note: The GFXCardProfiler is at heart a system for implementing WORKAROUNDS. It is not guaranteed to work
in all cases. The capability strings it responds to are specific to each implementation. You should be EXTREMELY
careful when working with this functionality. When used in moderation it can be a project-saver, but if used to excess
or without forethought it can lead to complex, hard-to-maintain code.

The first data retrieval method that the GFXCardProfiler supports is a card-specific capability query. This is imple-
mented by each subclass. In the case of DirectX, this means using the built-in capability query. For OpenGL or other
APIs, more exotic methods may be necessary. The goal of this method is to retrieve some reasonable defaults that can
be overridden later if necessary.

The second data retrieval method is script based. In ./profile a collection of script files are stored. They are named in
one of the forms:

Renderer.cs Renderer.VendorString.CardString.cs Renderer.VendorString.CardString.cs
Renderer.VendorString.CardString.VersionString.card-specific

These files are found and executed from most general to most specific. For instance, say we’re working in the D3D
renderer with an nVidia GeForce FX 5950, running driver version 53.36. The following files would be found and
executed:

D3D.cs D3D.nVidia.cs D3D.nVidia.GeForceFX5950.cs D3D.nVidia.GeForceFX5950.5336.cs

The general rule for turning strings into filename parts is to strip all spaces and punctuation. If a file is not found, no
error is reported; it is assumed that the absence of a file means all is well.

Several functions are made available to allow simple logic in the script functions (for instance, to enable a workaround
for a given range of driver versions). They are:

• GFXCardProfiler::getRenderer()

• GFXCardProfiler::getVendor()

• GFXCardProfiler::getCard()

• GFXCardProfiler::getVersion()

In addition, specific subclasses may expose other values (for instance, chipset IDs). These are made available as
static members of the specific subclass. For instance, a D3D-specific chipset query may be made available as
GFXD3DCardProfiler::getChipset().

Finally, once a script file has reached a determination they may indicate their settings to the GFXCardProfiler by
calling GFXCardProfiler::setCapability(). For instance,

// Indicate we can show the color red.
GFXCardProfiler::setCapability("supportsRed", true);

GFXCardProfiler may be queried from script by calling GFXCardProfiler::queryProfile() - for instance:

GFXCardProfiler::queryProfile("supportsRed", false); // Query with default.

GFXCardProfilerAPI This class is the interface between TorqueScript and GFXCardProfiler.

832 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description You will not actually declare GFXCardProfilerAPI in TorqueScript. It exists solely to give access to the
GFXCardProfiler’s querying functions, such as GFXCardProfiler::getRenderer.

Example:

// Example of accessing GFXCardProfiler function from script
// Notice you are not using the API version
%videoMem = GFXCardProfiler::getVideoMemoryMB();

Methods
static String GFXCardProfilerAPI::getCard()

Returns the card name.
static String GFXCardProfilerAPI::getRenderer()

Returns the renderer name. For example D3D9 or OpenGL.

static String GFXCardProfilerAPI::getVendor()
Returns the card vendor name.

static String GFXCardProfilerAPI::getVersion()
Returns the driver version string.

static int GFXCardProfilerAPI::getVideoMemoryMB()
Returns the amount of video memory in megabytes.

static int GFXCardProfilerAPI::queryProfile(string name, int defaultValue)
Used to query the value of a specific card capability.

Parameters

• name – The name of the capability being queried.

• defaultValue – The value to return if the capability is not defined.

static void GFXCardProfilerAPI::setCapability(string name, int value)
Used to set the value for a specific card capability.

Parameters

• name – The name of the capability being set.

• value – The value to set for that capability.

GFXInit Functions for tracking GFX adapters and initializing them into devices.

Description Functions for tracking GFX adapters and initializing them into devices.

Methods
static void GFXInit::createNullDevice()

Create the NULL graphics device used for testing or headless operation.
static String GFXInit::getAdapterMode(int index, int modeIndex)

Gets the details of the specified adapter mode.

Parameters

• index – Index of the adapter to query.

• modeIndex – Index of the mode to get data from.

Returns A video mode string in the format ‘width height fullscreen bitDepth refreshRate aaLevel’.

5.3. Console Reference 833

Torque 3D Documentation, Release 3.5.1

static int GFXInit::getAdapterModeCount(int index)
Gets the number of modes available on the specified adapter.

Parameters index – Index of the adapter to get modes from.

Returns The number of video modes supported by the adapter or -1 if the given adapter was not
found.

static String GFXInit::getAdapterName(int index)
Returns the name of the graphics adapter.

Parameters index – The index of the adapter.

static String GFXInit::getAdapterOutputName(int index)
Returns the name of the graphics adapter’s output display device.

Parameters index – The index of the adapter.

static float GFXInit::getAdapterShaderModel(int index)
Returns the supported shader model of the graphics adapter or -1 if the index is bad.

Parameters index – The index of the adapter.

static GFXAdapterType GFXInit::getAdapterType(int index)
Returns the type (D3D9, D3D8, GL, Null) of a graphics adapter.

Parameters index – The index of the adapter.

static int GFXInit::getDefaultAdapterIndex()
Returns the index of the default graphics adapter. This is the graphics device which will be used to initialize the
engine.

GFXSamplerStateData A sampler state used by GFXStateBlockData.

Inherit: SimObject

Description The samplers define how a texture will be sampled when used from the shader or fixed function device.

Example:

singleton GFXSamplerStateData(SamplerClampLinear)
{

textureColorOp = GFXTOPModulate;
addressModeU = GFXAddressClamp;
addressModeV = GFXAddressClamp;
addressModeW = GFXAddressClamp;
magFilter = GFXTextureFilterLinear;
minFilter = GFXTextureFilterLinear;
mipFilter = GFXTextureFilterLinear;

};

There are a few predefined samplers in the core scripts which you can use with GFXStateBlockData for the most
common rendering cases:

• SamplerClampLinear

• SamplerClampPoint

• SamplerWrapLinear

• SamplerWrapPoint

834 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
GFXTextureAddressMode GFXSamplerStateData::addressModeU

The texture address mode for the u coordinate. The default is GFXAddressWrap.
GFXTextureAddressMode GFXSamplerStateData::addressModeV

The texture address mode for the v coordinate. The default is GFXAddressWrap.

GFXTextureAddressMode GFXSamplerStateData::addressModeW
The texture address mode for the w coordinate. The default is GFXAddressWrap.

GFXTextureArgument GFXSamplerStateData::alphaArg1
The first alpha argument for the texture stage. The default value is GFXTATexture.

GFXTextureArgument GFXSamplerStateData::alphaArg2
The second alpha argument for the texture stage. The default value is GFXTADiffuse.

GFXTextureArgument GFXSamplerStateData::alphaArg3
The third alpha channel selector operand for triadic operations (multiply, add, and linearly interpolate). The
default value is GFXTACurrent.

GFXTextureOp GFXSamplerStateData::alphaOp
The texture alpha blending operation. The default value is GFXTOPModulate.

GFXTextureArgument GFXSamplerStateData::colorArg1
The first color argument for the texture stage. The default value is GFXTACurrent.

GFXTextureArgument GFXSamplerStateData::colorArg2
The second color argument for the texture stage. The default value is GFXTATexture.

GFXTextureArgument GFXSamplerStateData::colorArg3
The third color argument for triadic operations (multiply, add, and linearly interpolate). The default value is
GFXTACurrent.

GFXTextureFilterType GFXSamplerStateData::magFilter
The texture magnification filter. The default is GFXTextureFilterLinear.

int GFXSamplerStateData::maxAnisotropy
The maximum texture anisotropy. The default value is 1.

GFXTextureFilterType GFXSamplerStateData::minFilter
The texture minification filter. The default is GFXTextureFilterLinear.

GFXTextureFilterType GFXSamplerStateData::mipFilter
The texture mipmap filter used during minification. The default is GFXTextureFilterLinear.

float GFXSamplerStateData::mipLODBias
The mipmap level of detail bias. The default value is zero.

GFXTextureArgument GFXSamplerStateData::resultArg
The selection of the destination register for the result of this stage. The default is GFXTACurrent.

GFXTextureOp GFXSamplerStateData::textureColorOp
The texture color blending operation. The default value is GFXTOPDisable which disables the sampler.

GFXTextureTransformFlags GFXSamplerStateData::textureTransform
Sets the texture transform state. The default is GFXTTFFDisable.

GFXStateBlockData A state block description for rendering.

Inherit: SimObject

5.3. Console Reference 835

Torque 3D Documentation, Release 3.5.1

Description This object is used with ShaderData in CustomMaterial and PostEffect to define the render state.

Example:

singleton GFXStateBlockData(PFX_DOFDownSampleStateBlock)
{

zDefined = true;
zEnable = false;
zWriteEnable = false;

samplersDefined = true;
samplerStates[0] = SamplerClampLinear;
samplerStates[1] = SamplerClampPoint;

// Copy the clamped linear sampler, but change
// the u coord to wrap for this special case.
samplerStates[2] = newGFXSamplerStateData(: SamplerClampLinear)
{

addressModeU = GFXAddressWrap;
};

};

Fields
bool GFXStateBlockData::alphaDefined

Set to true if the alpha test state is not all defaults.
bool GFXStateBlockData::alphaTestEnable

Enables per-pixel alpha testing. The default is false.

GFXCmpFunc GFXStateBlockData::alphaTestFunc
The test function used to accept or reject a pixel based on its alpha value. The default is GFXCmpGreaterEqual.

int GFXStateBlockData::alphaTestRef
The reference alpha value against which pixels are tested. The default is zero.

bool GFXStateBlockData::blendDefined
Set to true if the alpha blend state is not all defaults.

GFXBlend GFXStateBlockData::blendDest
The destination blend state. The default is GFXBlendZero.

bool GFXStateBlockData::blendEnable
Enables alpha blending. The default is false.

GFXBlendOp GFXStateBlockData::blendOp
The arithmetic operation applied to alpha blending. The default is GFXBlendOpAdd.

GFXBlend GFXStateBlockData::blendSrc
The source blend state. The default is GFXBlendOne.

bool GFXStateBlockData::colorWriteAlpha
Enables alpha channel writes. The default is true.

bool GFXStateBlockData::colorWriteBlue
Enables blue channel writes. The default is true.

bool GFXStateBlockData::colorWriteDefined
Set to true if the color write state is not all defaults.

bool GFXStateBlockData::colorWriteGreen
Enables green channel writes. The default is true.

836 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool GFXStateBlockData::colorWriteRed
Enables red channel writes. The default is true.

bool GFXStateBlockData::cullDefined
Set to true if the culling state is not all defaults.

GFXCullMode GFXStateBlockData::cullMode
Defines how back facing triangles are culled if at all. The default is GFXCullCCW.

bool GFXStateBlockData::ffLighting
Enables fixed function lighting when rendering without a shader on geometry with vertex normals. The default
is false.

bool GFXStateBlockData::samplersDefined
Set to true if the sampler states are not all defaults.

GFXSamplerStateData GFXStateBlockData::samplerStates[16]
The array of texture sampler states.

bool GFXStateBlockData::separateAlphaBlendDefined
Set to true if the seperate alpha blend state is not all defaults.

GFXBlend GFXStateBlockData::separateAlphaBlendDest
The destination blend state. The default is GFXBlendZero.

bool GFXStateBlockData::separateAlphaBlendEnable
Enables the separate blend mode for the alpha channel. The default is false.

GFXBlendOp GFXStateBlockData::separateAlphaBlendOp
The arithmetic operation applied to separate alpha blending. The default is GFXBlendOpAdd.

GFXBlend GFXStateBlockData::separateAlphaBlendSrc
The source blend state. The default is GFXBlendOne.

bool GFXStateBlockData::stencilDefined
Set to true if the stencil state is not all defaults.

bool GFXStateBlockData::stencilEnable
Enables stenciling. The default is false.

GFXStencilOp GFXStateBlockData::stencilFailOp
The stencil operation to perform if the stencil test fails. The default is GFXStencilOpKeep.

GFXCmpFunc GFXStateBlockData::stencilFunc
The comparison function to test the reference value to a stencil buffer entry. The default is GFXCmpNever.

int GFXStateBlockData::stencilMask
The mask applied to the reference value and each stencil buffer entry to determine the significant bits for the
stencil test. The default is 0xFFFFFFFF.

GFXStencilOp GFXStateBlockData::stencilPassOp
The stencil operation to perform if both the stencil and the depth tests pass. The default is GFXStencilOpKeep.

int GFXStateBlockData::stencilRef
The reference value for the stencil test. The default is zero.

int GFXStateBlockData::stencilWriteMask
The write mask applied to values written into the stencil buffer. The default is 0xFFFFFFFF.

GFXStencilOp GFXStateBlockData::stencilZFailOp
The stencil operation to perform if the stencil test passes and the depth test fails. The default is GFXStencilOp-
Keep.

5.3. Console Reference 837

Torque 3D Documentation, Release 3.5.1

ColorI GFXStateBlockData::textureFactor
The color used for multiple-texture blending with the GFXTATFactor texture-blending argument or the GFX-
TOPBlendFactorAlpha texture-blending operation. The default is opaque white (255, 255, 255, 255).

bool GFXStateBlockData::vertexColorEnable
Enables fixed function vertex coloring when rendering without a shader. The default is false.

float GFXStateBlockData::zBias
A floating-point bias used when comparing depth values. The default is zero.

bool GFXStateBlockData::zDefined
Set to true if the depth state is not all defaults.

bool GFXStateBlockData::zEnable
Enables z-buffer reads. The default is true.

GFXCmpFunc GFXStateBlockData::zFunc
The depth comparision function which a pixel must pass to be written to the z-buffer. The default is GFXCmp-
LessEqual.

float GFXStateBlockData::zSlopeBias
An additional floating-point bias based on the maximum depth slop of the triangle being rendered. The default
is zero.

bool GFXStateBlockData::zWriteEnable
Enables z-buffer writes. The default is true.

Material A material in Torque 3D is a data structure that describes a surface.

Inherit: SimObject

Description It contains many different types of information for rendering properties. Torque 3D generates shaders
from Material definitions. The shaders are compiled at runtime and output into the example/shaders directory. Any
errors or warnings generated from compiling the procedurally generated shaders are output to the console as well as
the output window in the Visual C IDE.

Example:

singleton Material(DECAL_scorch)
{

baseTex[0] = "./scorch_decal.png";
vertColor[0] = true;

translucent = true;
translucentBlendOp = None;
translucentZWrite = true;
alphaTest = true;
alphaRef = 84;

};

Fields
int Material::alphaRef

The alpha reference value for alpha testing. Must be between 0 to 255.
bool Material::alphaTest

Enables alpha test when rendering the material.

MaterialAnimType Material::animFlags[4]
The types of animation to play on this material.

838 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

filename Material::baseTex[4]
For backwards compatibility.

bool Material::bumpAtlas[4]

filename Material::bumpTex[4]
For backwards compatibility.

bool Material::castShadows
If set to false the lighting system will not cast shadows from this material.

Point2I Material::cellIndex[4]

Point2I Material::cellLayout[4]

int Material::cellSize[4]

ColorF Material::colorMultiply[4]
For backwards compatibility.

string Material::cubemap
The name of a CubemapData for environment mapping.

SFXTrack Material::customFootstepSound
The sound to play when the player walks over the material. If this is set, it overrides footstepSoundId . This
field is useful for directly assigning custom footstep sounds to materials without having to rely on the PlayerData
sound assignment. Be aware that materials are client-side objects. This means that the SFXTracks assigned to
materials must be client-side, too.

SFXTrack Material::customImpactSound
The sound to play when the player impacts on the surface with a velocity equal or greater than Player-
Data::groundImpactMinSpeed . If this is set, it overrides impactSoundId . This field is useful for directly
assigning custom impact sounds to materials without having to rely on the PlayerData sound assignment. Be
aware that materials are client-side objects. This means that the SFXTracks assigned to materials must be
client-side, too.

filename Material::detailMap[4]
A typically greyscale detail texture additively blended into the material.

filename Material::detailNormalMap[4]
A second normal map texture applied at the detail scale. You can use the DXTnm format only when per-pixel
specular highlights are disabled.

float Material::detailNormalMapStrength[4]
Used to scale the strength of the detail normal map when blended with the base normal map.

Point2F Material::detailScale[4]
The scale factor for the detail map.

filename Material::detailTex[4]
For backwards compatibility.

ColorF Material::diffuseColor[4]
This color is multiplied against the diffuse texture color. If no diffuse texture is present this is the material color.

filename Material::diffuseMap[4]
The diffuse color texture map.

bool Material::doubleSided
Disables backface culling casing surfaces to be double sided. Note that the lighting on the backside will be a
mirror of the front side of the surface.

5.3. Console Reference 839

Torque 3D Documentation, Release 3.5.1

void Material::dumpInstances
Dumps a formatted list of the currently allocated material instances for this material to the console.

bool Material::dynamicCubemap
Enables the material to use the dynamic cubemap from the ShapeBase object its applied to.

ColorF Material::effectColor[2]
If showDust is true, this is the set of colors to use for the ParticleData of the dust emitter.

bool Material::emissive[4]
Enables emissive lighting for the material.

filename Material::envMap[4]
The name of an environment map cube map to apply to this material.

filename Material::envTex[4]
For backwards compatibility.

void Material::flush
Flushes all material instances that use this material.

int Material::footstepSoundId
What sound to play from the PlayerData sound list when the player walks over the material. -1 (default) to not
play any sound. The IDs are:

•0:

•PlayerData::FootSoftSound

•1:

•PlayerData::FootHardSound

•2:

•PlayerData::FootMetalSound

•3:

•PlayerData::FootSnowSound

•4:

•PlayerData::FootShallowSound

•5:

•PlayerData::FootWadingSound

•6:

•PlayerData::FootUnderwaterSound

•7:

•PlayerData::FootBubblesSound

•8:

•PlayerData::movingBubblesSound

•9:

•PlayerData::waterBreathSound

•10:

•PlayerData::impactSoftSound

840 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

•11:

•PlayerData::impactHardSound

•12:

•PlayerData::impactMetalSound

•13:

•PlayerData::impactSnowSound

•14:

•PlayerData::impactWaterEasy

•15:

•PlayerData::impactWaterMedium

•16:

•PlayerData::impactWaterHard

•17:

•PlayerData::exitingWater

string Material::getAnimFlags

string Material::getFilename
Get filename of material.

bool Material::glow[4]
Enables rendering this material to the glow buffer.

int Material::impactSoundId
What sound to play from the PlayerData sound list when the player impacts on the surface with a velocity equal
or greater than PlayerData::groundImpactMinSpeed . For a list of IDs, see footstepSoundId

bool Material::isAutoGenerated
Returns true if this Material was automatically generated by MaterialList::mapMaterials().

filename Material::lightMap[4]
The lightmap texture used with pureLight.

string Material::mapTo
Used to map this material to the material name used by TSShape.

float Material::minnaertConstant[4]
The Minnaert shading constant value. Must be greater than 0 to enable the effect.

filename Material::normalMap[4]
The normal map texture. You can use the DXTnm format only when per-pixel specular highlights are disabled,
or a specular map is in use.

filename Material::overlayMap[4]
A secondary diffuse color texture map which will use the second texcoord of a mesh.

filename Material::overlayTex[4]
For backwards compatibility.

float Material::parallaxScale[4]
Enables parallax mapping and defines the scale factor for the parallax effect. Typically this value is less than 0.4
else the effect breaks down.

5.3. Console Reference 841

Torque 3D Documentation, Release 3.5.1

bool Material::pixelSpecular[4]
This enables per-pixel specular highlights controlled by the alpha channel of the normal map texture. Note that
if pixel specular is enabled the DXTnm format will not work with your normal map, unless you are also using a
specular map.

bool Material::planarReflection

void Material::reload
Reloads all material instances that use this material.

Point2F Material::rotPivotOffset[4]
The piviot position in UV coordinates to center the rotation animation.

float Material::rotSpeed[4]
The speed to rotate the texture in degrees per second when rotation animation is enabled.

Point2F Material::scrollDir[4]
The scroll direction in UV space when scroll animation is enabled.

float Material::scrollSpeed[4]
The speed to scroll the texture in UVs per second when scroll animation is enabled.

float Material::sequenceFramePerSec[4]
The number of frames per second for frame based sequence animations if greater than zero.

float Material::sequenceSegmentSize[4]
The size of each frame in UV units for sequence animations.

void Material::setAutoGenerated
setAutoGenerated(bool isAutoGenerated): Set whether or not the Material is autogenerated.

bool Material::showDust
Whether to emit dust particles from a shape moving over the material. This is, for example, used by vehicles or
players to decide whether to show dust trails.

bool Material::showFootprints
Whether to show player footprint decals on this material.

ColorF Material::specular[4]
The color of the specular highlight when not using a specularMap.

filename Material::specularMap[4]
The specular map texture. The RGB channels of this texture provide a per-pixel replacement for the ‘specular’
parameter on the material. If this texture contains alpha information, the alpha channel of the texture will be
used as the gloss map. This provides a per-pixel replacement for the ‘specularPower’ on the material.

float Material::specularPower[4]
The hardness of the specular highlight when not using a specularMap.

float Material::specularStrength[4]
The strength of the specular highlight when not using a specularMap.

bool Material::subSurface[4]
Enables the subsurface scattering approximation.

ColorF Material::subSurfaceColor[4]
The color used for the subsurface scattering approximation.

float Material::subSurfaceRolloff[4]
The 0 to 1 rolloff factor used in the subsurface scattering approximation.

filename Material::toneMap[4]
The tonemap texture used with pureLight.

842 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

bool Material::translucent
If true this material is translucent blended.

MaterialBlendOp Material::translucentBlendOp
The type of blend operation to use when the material is translucent.

bool Material::translucentZWrite
If enabled and the material is translucent it will write into the depth buffer.

bool Material::useAnisotropic[4]
Use anisotropic filtering for the textures of this stage.

bool Material::vertColor[4]
If enabled, vertex colors are premultiplied with diffuse colors.

bool Material::vertLit[4]
If true the vertex color is used for lighting.

float Material::waveAmp[4]
The wave amplitude when wave animation is enabled.

float Material::waveFreq[4]
The wave frequency when wave animation is enabled.

MaterialWaveType Material::waveType[4]
The type of wave animation to perform when wave animation is enabled.

PfxVis Singleton class that exposes ConsoleStaticFunctions for debug visualizing PostEffects.

Description Singleton class that exposes ConsoleStaticFunctions for debug visualizing PostEffects.

Example:

// Script interface...
PfxVis::open(PostEffect)
// Multiple PostEffects can be visualized at the same time
PfxVis::clear()
// Clear all visualizer windows
PfxVis::hide()
// Hide all windows (are not destroyed)
PfxVis::show()

Methods
void PfxVis::clear()

Close all visualization windows.

Example:

PfxVis::clear();

void PfxVis::hide()
Hide all visualization windows (they are not destroyed).

Example:

PfxVis::hide();

void PfxVis::onWindowClosed(GuiWindowCtrl ctrl)
Callback when a visualization window is closed.

5.3. Console Reference 843

Torque 3D Documentation, Release 3.5.1

Parameters ctrl – Name of the GUI control being closed

Example:

PfxVis::onWindowClosed(VisWindow)

void PfxVis::open(PostEffect effect, bool clear)
Open visualization windows for all input and target textures.

Parameters

• effect – Name of the PostEffect to open

• clear – True to close all visualization windows before opening the effect

Example:

// Multiple PostEffects can be visualized at the same timePfxVis::open(PostEffect)

void PfxVis::show()
Show all visualization windows.

Example:

PfxVis::show();

RenderFormatToken Used to change the render target format when rendering in AL.

Inherit: RenderPassStateToken

Description RenderFormatToken is an implementation which changes the format of the back buffer and/or the depth
buffer.

The RenderPassStateBin manager changes the rendering state associated with this token. In stock Torque 3D, a single
example exists in the way of AL_FormatToken (found in renderManager.cs). In that script file, all the render managers
are intialized, and a single RenderFormatToken is used. This implementation basically exists to ensure Advanced
Lighting works with MSAA.

The actions for this token toggle the format of the back/depth buffers and it lets you specify a custom shader to “copy”
the data so it can be reformatted or altered. This is done through the variables copyEffect and resolveEffect (which are
post processes just like fog or glow)

Example:

// This token, and the associated render managers, ensure that driver MSAA does not get used for Advanced Lighting renders.// The AL_FormatResolve PostEffect copies the result to the backbuffer.newRenderFormatToken(AL_FormatToken)
{

enabled = "false";

format = "GFXFormatR8G8B8A8";
depthFormat = "GFXFormatD24S8";
aaLevel = 0; // -1 = match backbuffer
// The contents of the back buffer before this format token is executed
// is provided in
$inTexcopyEffect = "AL_FormatCopy";

// The contents of the render target created by this format token is
// provided in
$inTexresolveEffect = "AL_FormatCopy";

};

844 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Fields
int RenderFormatToken::aaLevel

Anti-ailiasing level for the this token. 0 disables, -1 uses adapter default.
PostEffect RenderFormatToken::copyEffect

This PostEffect will be run when the render target is changed to the format specified by this token. It is used to
copy/format data into the token rendertarget.

GFXFormat RenderFormatToken::depthFormat
Sets the depth/stencil buffer format for this token.

GFXFormat RenderFormatToken::format
Sets the color buffer format for this token.

PostEffect RenderFormatToken::resolveEffect
This PostEffect will be run when the render target is changed back to the format active prior to this token. It is
used to copy/format data from the token rendertarget to the backbuffer.

Description

In Torque the GFX layer provides access to abstracted low level graphics concepts. From script you have limited
access to graphics rendering as it is usually too slow to do individual draw calls thru the scripting interface. For
drawing its usually better to use the higher level gameplay objects.

Note: Detailed technical descriptions of when to use specific GFXStateBlockData fields, how GFXBlendOp works,
or other interfaces of that nature are outside the scope of this manual. Since Torque is based on DirectX and OpenGL
any reference documents for those APIs will provide the background needed to learn about rendering.

Enumeration

enum GFXAdapterType
Back-end graphics API used by the GFX subsystem.

Parameters

• OpenGL – OpenGL.

• D3D8 – Direct3D 8.

• D3D9 – Direct3D 9.

• NullDevice – Null device for dedicated servers.

• Xenon – Direct3D 9 on Xbox 360.

enum GFXBlend
The supported blend modes.

Parameters

• GFXBlendZero – (0, 0, 0, 0)

• GFXBlendOne – (1, 1, 1, 1)

• GFXBlendSrcColor – (Rs, Gs, Bs, As)

• GFXBlendInvSrcColor – (1 - Rs, 1 - Gs, 1 - Bs, 1 - As)

• GFXBlendSrcAlpha – (As, As, As, As)

5.3. Console Reference 845

Torque 3D Documentation, Release 3.5.1

• GFXBlendInvSrcAlpha – (1 - As, 1 - As, 1 - As, 1 - As)

• GFXBlendDestAlpha – (Ad Ad Ad Ad)

• GFXBlendInvDestAlpha – (1 - Ad 1 - Ad 1 - Ad 1 - Ad)

• GFXBlendDestColor – (Rd, Gd, Bd, Ad)

• GFXBlendInvDestColor – (1 - Rd, 1 - Gd, 1 - Bd, 1 - Ad)

• GFXBlendSrcAlphaSat – (f, f, f, 1) where f = min(As, 1 - Ad)

enum GFXBlendOp
The blend operators.

Parameters

• GFXBlendOpAdd –

• GFXBlendOpSubtract –

• GFXBlendOpRevSubtract –

• GFXBlendOpMin –

• GFXBlendOpMax –

enum GFXCmpFunc
The supported comparison functions.

Parameters

• GFXCmpNever –

• GFXCmpLess –

• GFXCmpEqual –

• GFXCmpLessEqual –

• GFXCmpGreater –

• GFXCmpNotEqual –

• GFXCmpGreaterEqual –

• GFXCmpAlways –

enum GFXCullMode
The render cull modes.

Parameters

• GFXCullNone –

• GFXCullCW –

• GFXCullCCW –

enum GFXFormat
The texture formats.

Parameters

• GFXFormatR8G8B8 –

• GFXFormatR8G8B8A8 –

• GFXFormatR8G8B8X8 –

846 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• GFXFormatR32F –

• GFXFormatR5G6B5 –

• GFXFormatR5G5B5A1 –

• GFXFormatR5G5B5X1 –

• GFXFormatA4L4 –

• GFXFormatA8L8 –

• GFXFormatA8 –

• GFXFormatL8 –

• GFXFormatDXT1 –

• GFXFormatDXT2 –

• GFXFormatDXT3 –

• GFXFormatDXT4 –

• GFXFormatDXT5 –

• GFXFormatD32 –

• GFXFormatD24X8 –

• GFXFormatD24S8 –

• GFXFormatD24FS8 –

• GFXFormatD16 –

• GFXFormatR32G32B32A32F –

• GFXFormatR16G16B16A16F –

• GFXFormatL16 –

• GFXFormatR16G16B16A16 –

• GFXFormatR16G16 –

• GFXFormatR16F –

• GFXFormatR16G16F –

• GFXFormatR10G10B10A2 –

enum GFXStencilOp
The stencil operators.

Parameters

• GFXStencilOpKeep –

• GFXStencilOpZero –

• GFXStencilOpReplace –

• GFXStencilOpIncrSat –

• GFXStencilOpDecrSat –

• GFXStencilOpInvert –

• GFXStencilOpIncr –

5.3. Console Reference 847

Torque 3D Documentation, Release 3.5.1

• GFXStencilOpDecr –

enum GFXTextureAddressMode
The texture address modes.

Parameters

• GFXAddressWrap –

• GFXAddressMirror –

• GFXAddressClamp –

• GFXAddressBorder –

• GFXAddressMirrorOnce –

enum GFXTextureArgument
The texture arguments.

Parameters

• GFXTADiffuse –

• GFXTACurrent –

• GFXTATexture –

• GFXTATFactor –

• GFXTASpecular –

• GFXTATemp –

• GFXTAConstant –

• OneMinus –

• AlphaReplicate –

enum GFXTextureFilterType
The texture filter types.

Parameters

• GFXTextureFilterNone –

• GFXTextureFilterPoint –

• GFXTextureFilterLinear –

• GFXTextureFilterAnisotropic –

• GFXTextureFilterPyramidalQuad –

• GFXTextureFilterGaussianQuad –

enum GFXTextureOp
The texture operators.

Parameters

• GFXTOPDisable –

• GFXTOPSelectARG1 –

• GFXTOPSelectARG2 –

• GFXTOPModulate –

848 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• GFXTOPModulate2X –

• GFXTOPModulate4X –

• GFXTOPAdd –

• GFXTOPAddSigned –

• GFXTOPAddSigned2X –

• GFXTOPSubtract –

• GFXTOPAddSmooth –

• GFXTOPBlendDiffuseAlpha –

• GFXTOPBlendTextureAlpha –

• GFXTOPBlendFactorAlpha –

• GFXTOPBlendTextureAlphaPM –

• GFXTOPBlendCURRENTALPHA –

• GFXTOPPreModulate –

• GFXTOPModulateAlphaAddColor –

• GFXTOPModulateColorAddAlpha –

• GFXTOPModulateInvAlphaAddColor –

• GFXTOPModulateInvColorAddAlpha –

• GFXTOPBumpEnvMap –

• GFXTOPBumpEnvMapLuminance –

• GFXTOPDotProduct3 –

• GFXTOPLERP –

enum GFXTextureTransformFlags
The texture transform state flags.

Parameters

• GFXTTFDisable –

• GFXTTFFCoord1D –

• GFXTTFFCoord2D –

• GFXTTFFCoord3D –

• GFXTTFFCoord4D –

• GFXTTFProjected –

enum MaterialAnimType
The type of animation effect to apply to this material.

Parameters

• Scroll – Scroll the material along the X/Y axis.

• Rotate – Rotate the material around a point.

• Wave – Warps the material with an animation using Sin, Triangle or Square mathematics.

• Scale – Scales the material larger and smaller with a pulsing effect.

5.3. Console Reference 849

Torque 3D Documentation, Release 3.5.1

• Sequence – Enables the material to have multiple frames of animation in its imagemap.

enum MaterialBlendOp
The type of graphical blending operation to apply to this material.

Parameters

• None – Disable blending for this material.

• Mul – Multiplicative blending.

• Add – Adds the color of the material to the frame buffer with full alpha for each pixel.

• AddAlpha – The color is modulated by the alpha channel before being added to the frame
buffer.

• Sub – Subtractive Blending. Reverses the color model, causing dark colors to have a
stronger visual effect.

• LerpAlpha – Linearly interpolates between Material color and frame buffer color based
on alpha.

enum MaterialWaveType
When using the Wave material animation, one of these Wave Types will be used to determine the type of wave
to display.

Parameters

• Sin – Warps the material along a curved Sin Wave.

• Triangle – Warps the material along a sharp Triangle Wave.

• Square – Warps the material along a wave which transitions between two oppposite states.
As a Square Wave, the transition is quick and sudden.

Functions

void cleanupTexturePool()
Release the unused pooled textures in texture manager freeing up video memory.

void clearGFXResourceFlags()
Clears the flagged state on all allocated GFX resources. See flagCurrentGFXResources for usage details.

void describeGFXResources(string resourceTypes, string filePath, bool unflaggedOnly)
Dumps a description of GFX resources to a file or the console.

•texture

•texture target

•window target

•vertex buffers

•primitive buffers

•fences

•cubemaps

•shaders

•stateblocks

Parameters

850 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

• resourceTypes – A space seperated list of resource types or an empty string for all
resources.

• filePath – A file to dump the list to or an empty string to write to the console.

• unflaggedOnly – If true only unflagged resources are dumped. See flagCurrentGFXRe-
sources.

void describeGFXStateBlocks(string filePath)
Dumps a description of all state blocks.

Parameters filePath – A file to dump the state blocks to or an empty string to write to the
console.

void dumpRandomNormalMap()
Creates a 64x64 normal map texture filled with noise. The texture is saved to randNormTex.png in the location
of the game executable.

void dumpTextureObjects()
Dumps a list of all active texture objects to the console.

void flagCurrentGFXResources()
Flags all currently allocated GFX resources. Used for resource allocation and leak tracking by flagging current
resources then dumping a list of unflagged resources at some later point in execution.

void flushTextureCache()
Releases all textures and resurrects the texture manager.

static int GFXInit::getAdapterCount()
Return the number of graphics adapters available.

GFXFormat getBestHDRFormat()
Returns the best texture format for storage of HDR data for the active device.

Point3F getDesktopResolution()
Returns the width, height, and bitdepth of the screen/desktop.

string getDisplayDeviceInformation()
Get the string describing the active GFX device.

String getDisplayDeviceList()
Returns a tab-seperated string of the detected devices across all adapters.

float getPixelShaderVersion()
Returns the pixel shader version for the active device.

String getTextureProfileStats()
Returns a list of texture profiles in the format: ProfileName TextureCount TextureMB.

void listGFXResources(bool unflaggedOnly)
Returns a list of the unflagged GFX resources. See flagCurrentGFXResources for usage details.

void reloadTextures()
Reload all the textures from disk.

void screenShot(string file, string format, int tileCount, float tileOverlap)
Takes a screenshot with optional tiling to produce huge screenshots.

Parameters

• file – The output image file path.

• format – Either JPEG or PNG.

5.3. Console Reference 851

Torque 3D Documentation, Release 3.5.1

• tileCount – If greater than 1 will tile the current screen size to take a large format screen-
shot.

• tileOverlap – The amount of horizontal and vertical overlap between the tiles used to
remove tile edge artifacts from post effects.

void setPixelShaderVersion(float version)
Sets the pixel shader version for the active device. This can be used to force a lower pixel shader version than is
supported by the device for testing or performance optimization.

Parameters version – The floating point shader version number.

void setReflectFormat(GFXFormat format)
Set the reflection texture format.

Variables

bool $gfx::disableOcclusionQuery
Debug helper that disables all hardware occlusion queries causing them to return only the visibile state.

bool $pref::Video::disableVerticalSync
Disables vertical sync on the active device.

bool $gfx::disassembleAllShaders
On supported devices this will dump shader disassembly to the procedural shader folder.

float $pref::Video::forcedPixVersion
Will force the shader model if the value is positive and less than the shader model supported by the active device.
Use 0 for fixed function.

string $pref::Video::missingTexturePath
The file path of the texture to display when the requested texture is missing.

int $pref::Video::textureReductionLevel
The number of mipmap levels to drop on loaded textures to reduce video memory usage. It will skip any textures
that have been defined as not allowing down scaling.

string $pref::Video::unavailableTexturePath
The file path of the texture to display when the requested texture is unavailable. Often this texture is used by
GUI controls to indicate that the request image is unavailable.

string $pref::Video::warningTexturePath
The file path of the texture used to warn the developer.

bool $gfx::wireframe
Used to toggle wireframe rendering at runtime.

Materials

Classes, structures, functions, and variables related to Torque 3D’s material system.

Classes

CustomMaterial Material object which provides more control over surface properties.

Inherit: Material

852 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Description CustomMaterials allow the user to specify their own shaders via the ShaderData datablock. Because
CustomMaterials are derived from Materials, they can hold a lot of the same properties. It is up to the user to code
how these properties are used.

Example:

singleton CustomMaterial(WaterBasicMat)
{

sampler["reflectMap"] = "$reflectbuff";
sampler["refractBuff"] = "$backbuff";

cubemap = NewLevelSkyCubemap;
shader = WaterBasicShader;
stateBlock = WaterBasicStateBlock;
version = 2.0;

};

Fields
Material CustomMaterial::fallback

Alternate material for targeting lower end hardware. If the CustomMaterial requires a higher pixel shader version
than the one it’s using, it’s fallback Material will be processed instead. If the fallback material wasn’t defined,
Torque 3D will assert and attempt to use a very basic material in it’s place.

bool CustomMaterial::forwardLit
Determines if the material should recieve lights in Basic Lighting. Has no effect in Advanced Lighting.

string CustomMaterial::shader
Name of the ShaderData to use for this effect.

GFXStateBlockData CustomMaterial::stateBlock
Name of a GFXStateBlockData for this effect.

string CustomMaterial::target
String identifier of this material’s target texture.

float CustomMaterial::version
Specifies pixel shader version for hardware. Valid pixel shader versions include 2.0, 3.0, etc.

Functions

void addMaterialMapping(string texName, string matName)
Maps the given texture to the given material. Generates a console warning before overwriting. Material maps
are used by terrain and interiors for triggering effects when an object moves onto a terrain block or interior
surface using the associated texture.

string getMaterialMapping(string texName)
Returns the name of the material mapped to this texture. If no materials are found, an empty string is returned.

Parameters texName – Name of the texture

Variables

int $pref::Video::defaultAnisotropy
Global variable defining the default anisotropy value. Controls the default anisotropic texture filtering level for
all materials, including the terrain. This value can be changed at runtime to see its affect without reloading.

5.3. Console Reference 853

Torque 3D Documentation, Release 3.5.1

void dumpMaterialInstances
Dumps a formatted list of currently allocated material instances to the console.

void reInitMaterials
Flushes all procedural shaders and re-initializes all active material instances.

Shaders

Classes, structures, functions, and variables related to Torque 3D’s shader system.

Classes

ShaderData Special type of data block that stores information about a handwritten shader.

Inherit: SimObject

Description To use hand written shaders, a ShaderData datablock must be used. This datablock refers only to the
vertex and pixel shader filenames and a hardware target level. Shaders are API specific, so DirectX and OpenGL
shaders must be explicitly identified.

Example:

// Used for the procedural clould system
singleton ShaderData(CloudLayerShader)
{

DXVertexShaderFile = "shaders/common/cloudLayerV.hlsl";
DXPixelShaderFile = "shaders/common/cloudLayerP.hlsl";
OGLVertexShaderFile = "shaders/common/gl/cloudLayerV.glsl";
OGLPixelShaderFile = "shaders/common/gl/cloudLayerP.glsl";
pixVersion = 2.0;

};

Methods
void ShaderData::reload()

Rebuilds all the vertex and pixel shader instances created from this ShaderData .

Example:

// Rebuild the shader instances from ShaderData CloudLayerShader
CloudLayerShader.reload();

Fields
string ShaderData::defines

String of case-sensitive defines passed to the shader compiler. The string should be delimited by a semicolon,
tab, or newline character.

Example:

singleton ShaderData(FlashShader)
{
DXVertexShaderFile = "shaders/common/postFx/flashV.hlsl";
DXPixelShaderFile = "shaders/common/postFx/flashP.hlsl";

//Define setting the color of WHITE_COLOR.defines = "WHITE_COLOR=float4(1.0,1.0,1.0,0.0)";

854 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

pixVersion = 2.0
}

filename ShaderData::DXPixelShaderFile
Path to the DirectX pixel shader file to use for this ShaderData . It must contain only one program and no vertex
shader, just the pixel shader. It can be either an HLSL or assembly level shader. HLSL’s must have a filename
extension of .hlsl, otherwise its assumed to be an assembly file.

filename ShaderData::DXVertexShaderFile
Path to the DirectX vertex shader file to use for this ShaderData . It must contain only one program and no pixel
shader, just the vertex shader.It can be either an HLSL or assembly level shader. HLSL’s must have a filename
extension of .hlsl, otherwise its assumed to be an assembly file.

filename ShaderData::OGLPixelShaderFile
Path to an OpenGL pixel shader file to use for this ShaderData . It must contain only one program and no vertex
shader, just the pixel shader.

filename ShaderData::OGLVertexShaderFile
Path to an OpenGL vertex shader file to use for this ShaderData . It must contain only one program and no pixel
shader, just the vertex shader.

float ShaderData::pixVersion
Indicates target level the shader should be compiled. Valid numbers at the time of this writing are 1.1, 1.4, 2.0,
and 3.0. The shader will not run properly if the hardware does not support the level of shader compiled.

bool ShaderData::useDevicePixVersion
If true, the maximum pixel shader version offered by the graphics card will be used. Otherwise, the script-
defined pixel shader version will be used.

Lighting

The script functionality related to the lighting systems and lights.

Classes

AdvancedLightBinManager Rendering Manager responsible for lighting, shadows, and global variables affecing
both.

Inherit: RenderTexTargetBinManager

Description Should not be exposed to TorqueScript as a game object, meant for internal use only

LightBase This is the base class for light objects.

Inherit: SceneObject

Description It is NOT intended to be used directly in script, but exists to provide the base member variables and
generic functionality. You should be using the derived classes PointLight and SpotLight, which can be declared in
TorqueScript or added from the World Editor.

For this class, we only add basic lighting options that all lighting systems would use. The specific lighting system
options are injected at runtime by the lighting system itself.

5.3. Console Reference 855

Torque 3D Documentation, Release 3.5.1

Methods
void LightBase::playAnimation()

Plays the light animation assigned to this light with the existing LightAnimData datablock.

Example:

// Play the animation assigned to this light
CrystalLight.playAnimation();

void LightBase::playAnimation(LightAnimData anim)
Plays the light animation on this light using a new LightAnimData . If no LightAnimData is passed the existing
one is played.

Parameters anim – Name of the LightAnimData datablock to be played

Example:

// Play the animation using a new LightAnimData datablock
CrystalLight.playAnimation(SubtlePulseLightAnim);

void LightBase::setLightEnabled(bool state)
Toggles the light on and off.

Parameters state – Turns the light on (true) or off (false)

Example:

// Disable the light
CrystalLight.setLightEnabled(false);

// Renable the light
CrystalLight.setLightEnabled(true);

Fields
bool LightBase::animate

Toggles animation for the light on and off.
float LightBase::animationPeriod

The length of time in seconds for a single playback of the light animation (must be gt 0).

float LightBase::animationPhase
The phase used to offset the animation start time to vary the animation of nearby lights.

LightAnimData LightBase::animationType
Datablock containing light animation information (LightAnimData).

Point3F LightBase::attenuationRatio
The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.

float LightBase::brightness
Adjusts the lights power, 0 being off completely.

bool LightBase::castShadows
Enables/disabled shadow casts by this light.

ColorF LightBase::color
Changes the base color hue of the light.

filename LightBase::cookie
A custom pattern texture which is projected from the light.

float LightBase::fadeStartDistance
Start fading shadows out at this distance. 0 = auto calculate this distance.

856 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float LightBase::flareScale
Globally scales all features of the light flare.

LightFlareData LightBase::flareType
Datablock containing light flare information (LightFlareData).

bool LightBase::includeLightmappedGeometryInShadow
This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedIn-
Lightmap’ is false).

bool LightBase::isEnabled
Enables/Disables the object rendering and functionality in the scene.

bool LightBase::lastSplitTerrainOnly
This toggles only terrain being rendered to the last split of a PSSM shadow map.

float LightBase::logWeight
The logrithmic PSSM split distance factor.

int LightBase::numSplits
The logrithmic PSSM split distance factor.

Point4F LightBase::overDarkFactor
The ESM shadow darkening factor.

void LightBase::pauseAnimation
Stops the light animation.

float LightBase::priority
Used for sorting of lights by the light manager. Priority determines if a light has a stronger effect than, those
with a lower value.

bool LightBase::representedInLightmap
This light is represented in lightmaps (static light, default: false).

ColorF LightBase::shadowDarkenColor
The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘rep-
resentedInLightmap’ is false).

float LightBase::shadowDistance
The distance from the camera to extend the PSSM shadow.

float LightBase::shadowSoftness

ShadowType LightBase::shadowType
The type of shadow to use on this light.

int LightBase::texSize
The texture size of the shadow map.

LightDescription A helper datablock used by classes (such as shapebase) that submit lights to the scene but do not
use actual “LightBase” objects.

Inherit: SimDataBlock

Description A helper datablock used by classes (such as shapebase) that submit lights to the scene but do not use
actual “LightBase” objects.

This datablock stores the properties of that light as fields that can be initialized from script.

Example:

5.3. Console Reference 857

Torque 3D Documentation, Release 3.5.1

// Declare a light description to be used on a rocket launcher projectile
datablock LightDescription(RocketLauncherLightDesc)
{

range = 4.0;
color = "1 1 0";
brightness = 5.0;
animationType = PulseLightAnim;
animationPeriod = 0.25;

};

// Declare a ProjectileDatablock which uses the light description
datablock ProjectileData(RocketLauncherProjectile)
{

lightDesc = RocketLauncherLightDesc;

projectileShapeName = "art/shapes/weapons/SwarmGun/rocket.dts";

directDamage = 30;
radiusDamage = 30;
damageRadius = 5;
areaImpulse = 2500;

// ... remaining ProjectileData fields not listed for this example
};

Methods
void LightDescription::apply()

Force an inspectPostApply call for the benefit of tweaking via the console. Normally this functionality is only
exposed to objects via the World Editor, once changes have been made. Exposing apply to script allows you to
make changes to it on the fly without the World Editor.

Example:

// Change a property of the light description
RocketLauncherLightDesc.brightness = 10;

// Make it so
RocketLauncherLightDesc.apply();

Fields
float LightDescription::animationPeriod

The length of time in seconds for a single playback of the light animation.
float LightDescription::animationPhase

The phase used to offset the animation start time to vary the animation of nearby lights.

LightAnimData LightDescription::animationType
Datablock containing light animation information (LightAnimData).

Point3F LightDescription::attenuationRatio
The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.

float LightDescription::brightness
Adjusts the lights power, 0 being off completely.

bool LightDescription::castShadows
Enables/disabled shadow casts by this light.

858 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

ColorF LightDescription::color
Changes the base color hue of the light.

filename LightDescription::cookie
A custom pattern texture which is projected from the light.

float LightDescription::fadeStartDistance
Start fading shadows out at this distance. 0 = auto calculate this distance.

float LightDescription::flareScale
Globally scales all features of the light flare.

LightFlareData LightDescription::flareType
Datablock containing light flare information (LightFlareData).

bool LightDescription::includeLightmappedGeometryInShadow
This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedIn-
Lightmap’ is false).

bool LightDescription::lastSplitTerrainOnly
This toggles only terrain being rendered to the last split of a PSSM shadow map.

float LightDescription::logWeight
The logrithmic PSSM split distance factor.

int LightDescription::numSplits
The logrithmic PSSM split distance factor.

Point4F LightDescription::overDarkFactor
The ESM shadow darkening factor.

float LightDescription::range
Controls the size (radius) of the light.

bool LightDescription::representedInLightmap
This light is represented in lightmaps (static light, default: false).

ColorF LightDescription::shadowDarkenColor
The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘rep-
resentedInLightmap’ is false).

float LightDescription::shadowDistance
The distance from the camera to extend the PSSM shadow.

float LightDescription::shadowSoftness

ShadowType LightDescription::shadowType
The type of shadow to use on this light.

int LightDescription::texSize
The texture size of the shadow map.

LightFlareData Defines a light flare effect usable by scene lights.

Inherit: SimDataBlock

Description LightFlareData is a datablock which defines a type of flare effect. This may then be referenced by other
classes which support the rendering of a flare: Sun, ScatterSky, LightBase.

A flare contains one or more elements defined in the element* named fields of LightFlareData, with a maximum of
ten elements. Each element is rendered as a 2D sprite in screenspace.

5.3. Console Reference 859

Torque 3D Documentation, Release 3.5.1

Example:

// example from Full Template, core/art/datablocks/lights.cs
datablock LightFlareData(LightFlareExample0)
{

overallScale = 2.0;
flareEnabled = true;
renderReflectPass = true;
flareTexture = "./../special/lensFlareSheet1";
occlusionRadius = 0.25;

elementRect[0] = "0 512 512 512";
elementDist[0] = 0.0;
elementScale[0] = 0.5;
elementTint[0] = "1.0 1.0 1.0";
elementRotate[0] = false;
elementUseLightColor[0] = false;

elementRect[1] = "512 0 512 512";
elementDist[1] = 0.0;
elementScale[1] = 2.0;
elementTint[1] = "0.5 0.5 0.5";
elementRotate[1] = false;
elementUseLightColor[1] = false;

};

The elementDist field defines where along the flare’s beam the element appears. A distance of 0.0 is directly over the
light source, a distance of 1.0 is at the screen center, and a distance of 2.0 is at the position of the light source mirrored
across the screen center.

Methods
void LightFlareData::apply()

Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply

Fields
float LightFlareData::elementDist[20]

Where this element appears along the flare beam.
RectF LightFlareData::elementRect[20]

A rectangle specified in pixels of the flareTexture image.

bool LightFlareData::elementRotate[20]
Defines if this element orients to point along the flare beam or if it is always upright.

float LightFlareData::elementScale[20]
Size scale applied to this element.

ColorF LightFlareData::elementTint[20]
Used to modulate this element’s color if elementUseLightColor is false.

bool LightFlareData::elementUseLightColor[20]
If true this element’s color is modulated by the light color. If false, elementTint will be used.

bool LightFlareData::flareEnabled
Allows the user to disable this flare globally for any lights referencing it.

filename LightFlareData::flareTexture
The texture / sprite sheet for this flare.

860 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float LightFlareData::occlusionRadius
If positive an occlusion query is used to test flare visibility, else it uses simple raycasts.

float LightFlareData::overallScale
Size scale applied to all elements of the flare.

bool LightFlareData::renderReflectPass
If false the flare does not render in reflections, else only non-zero distance elements are rendered.

PointLight Lighting object that radiates light in all directions.

Inherit: LightBase

Description PointLight is one of the two types of lighting objects that can be added to a Torque 3D level, the other
being SpotLight. Unlike directional or conical light, the PointLight emits lighting in all directions. The attenuation is
controlled by a single variable: LightObject::radius.

Example:

// Declaration of a point light in script, or created by World EditornewPointLight(CrystalLight)
{

radius = "10";
isEnabled = "1";
color = "1 0.905882 0 1";
brightness = "0.5";
castShadows = "1";
priority = "1";
animate = "1";
animationType = "SubtlePulseLightAnim";
animationPeriod = "3";
animationPhase = "3";
flareScale = "1";
attenuationRatio = "0 1 1";
shadowType = "DualParaboloidSinglePass";
texSize = "512";
overDarkFactor = "2000 1000 500 100";
shadowDistance = "400";
shadowSoftness = "0.15";
numSplits = "1";
logWeight = "0.91";
fadeStartDistance = "0";
lastSplitTerrainOnly = "0";
splitFadeDistances = "10 20 30 40";
representedInLightmap = "0";
shadowDarkenColor = "0 0 0 -1";
includeLightmappedGeometryInShadow = "1";
position = "-61.3866 1.69186 5.1464";
rotation = "1 0 0 0";

};

Fields
float PointLight::radius

Controls the falloff of the light emission.

SpotLight Lighting object which emits conical light in a direction.

5.3. Console Reference 861

Torque 3D Documentation, Release 3.5.1

Inherit: LightBase

Description SpotLight is one of the two types of lighting objects that can be added to a Torque 3D level, the other
being PointLight. Unlike directional or point lights, the SpotLights emits lighting in a specific direction within a cone.
The distance of the cone is controlled by the SpotLight::range variable.

Example:

// Declaration of a point light in script, or created by World EditornewSpotLight(SampleSpotLight)
{

range = "10";
innerAngle = "40";
outerAngle = "45";
isEnabled = "1";
color = "1 1 1 1";
brightness = "1";
castShadows = "0";
priority = "1";
animate = "1";
animationPeriod = "1";
animationPhase = "1";
flareType = "LightFlareExample0";
flareScale = "1";
attenuationRatio = "0 1 1";
shadowType = "Spot";
texSize = "512";
overDarkFactor = "2000 1000 500 100";
shadowDistance = "400";
shadowSoftness = "0.15";
numSplits = "1";
logWeight = "0.91";
fadeStartDistance = "0";
lastSplitTerrainOnly = "0";
representedInLightmap = "0";
shadowDarkenColor = "0 0 0 -1";
includeLightmappedGeometryInShadow = "0";
position = "-29.4362 -5.86289 5.58602";
rotation = "1 0 0 0";

};

Fields
float SpotLight::innerAngle
float SpotLight::outerAngle

float SpotLight::range

Functions

string getActiveLightManager()
Returns the active light manager name.

String getLightManagerNames()
Returns a tab seperated list of light manager names.

bool lightScene(string completeCallbackFn, string mode)
Will generate static lighting for the scene if supported by the active light manager. If mode is “forceAlways”,

862 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

the lightmaps will be regenerated regardless of whether lighting cache files can be written to. If mode is
“forceWritable”, then the lightmaps will be regenerated only if the lighting cache files can be written.

Parameters

• completeCallbackFn – The name of the function to execute when the lighting is com-
plete.

• mode – One of “forceAlways”, “forceWritable” or “loadOnly”.

Returns Returns true if the scene lighting process was started.

void onLightManagerActivate(string name)
A callback called by the engine when a light manager is activated.

Parameters name – The name of the light manager being activated.

void onLightManagerDeactivate(string name)
A callback called by the engine when a light manager is deactivated.

Parameters name – The name of the light manager being deactivated.

void resetLightManager()
Deactivates and then activates the currently active light manager.This causes most shaders to be regenerated and
is often used when global rendering changes have occured.

bool setLightManager(string name)
Finds and activates the named light manager.

Returns Returns true if the light manager is found and activated.

Variables

bool $Light::renderLightFrustums
Toggles rendering of light frustums when the light is selected in the editor.

bool $Light::renderViz
Toggles visualization of light object’s radius or cone.

Advanced Lighting

The script functionality related to the Advanced Lghting system.

Enumeration
enum ShadowFilterMode

The shadow filtering modes for Advanced Lighting shadows.

Parameters

• None – Simple point sampled filtering. This is the fastest and lowest quality mode.

• SoftShadow – A variable tap rotated poisson disk soft shadow filter. It performs 4 taps
to classify the point as in shadow, out of shadow, or along a shadow edge. Samples on the
edge get an additional 8 taps to soften them.

• SoftShadowHighQuality – A 12 tap rotated poisson disk soft shadow filter. It per-
forms all the taps for every point without any early rejection.

enum ShadowType

5.3. Console Reference 863

Torque 3D Documentation, Release 3.5.1

Parameters

• Spot –

• PSSM –

• Paraboloid –

• DualParaboloidSinglePass –

• DualParaboloid –

• CubeMap –

Variables
float $pref::PSSM::detailAdjustScale

Scales the model LOD when rendering into the PSSM shadow. Use this to reduce the draw calls when rendering
the shadow by having meshes LOD out nearer to the camera than normal.

bool $Shadows::disable
Used by the editor to disable all shadow rendering.

bool $pref::Shadows::disable
Used to disable all shadow rendering.

ShadowFilterMode $pref::shadows::filterMode
The filter mode to use for shadows.

bool $AL::PSSMDebugRender
Enables debug rendering of the PSSM shadows.

float $pref::PSSM::smallestVisiblePixelSize
The smallest pixel size an object can be and still be rendered into the PSSM shadow. Use this to force culling
of small objects which contribute little to the final shadow.

float $pref::Shadows::textureScalar
Used to scale the shadow texture sizes. This can reduce the shadow quality and texture memory overhead or
increase them.

bool $AL::UseSSAOMask
Used by the SSAO PostEffect to toggle the sampling of ssaomask texture by the light shaders.

Basic Lighting

The script functionality related to the Basic Lghting system.

Variables
int $BasicLightManagerStats::activePlugins

The number of active Basic Lighting SceneObjectLightingPlugin objects this frame.

int $BasicLightManagerStats::elapsedUpdateMs
The number of milliseconds spent this frame updating Basic Lighting shadows.

float $pref::ProjectedShadow::fadeEndPixelSize
A size in pixels at which BL shadows are fully faded out. This should be a smaller value than fadeStartPixelSize.

float $pref::ProjectedShadow::fadeStartPixelSize
A size in pixels at which BL shadows begin to fade out. This should be a larger value than fadeEndPixelSize.

864 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

float $BasicLightManager::shadowFilterDistance
The maximum distance in meters that projected shadows will get soft filtering.

int $BasicLightManagerStats::shadowsUpdated
The number of Basic Lighting shadows updated this frame.

Render Binning

The render sorting and batching system.

Classes

RenderBinManager The abstract base for all render bins.

Inherit: SimObject

Description The render bins are used by the engine as a high level method to order and batch rendering operations.

Methods
string RenderBinManager::getBinType()

Returns the bin type string.

Fields
string RenderBinManager::binType

Sets the render bin type which limits what render instances are added to this bin.
float RenderBinManager::processAddOrder

Defines the order for adding instances in relation to other bins.

float RenderBinManager::renderOrder
Defines the order for rendering in relation to other bins.

RenderGlowMgr A render bin for the glow pass.

Inherit: RenderTexTargetBinManager

Description When the glow buffer PostEffect is enabled this bin gathers mesh render instances with glow materials
and renders them to the glowbuffer offscreen render target.

This render target is then used by the ‘GlowPostFx’ PostEffect to blur and render the glowing portions of the screen.

RenderImposterMgr A render bin for batch rendering imposters.

Inherit: RenderBinManager

Description This render bin gathers imposter render instances and renders them in large batches.

You can type ‘metrics(imposter)’ in the console to see rendering statistics.

RenderMeshMgr A render bin for mesh rendering.

Inherit: RenderBinManager

5.3. Console Reference 865

Torque 3D Documentation, Release 3.5.1

Description This is the primary render bin in Torque which does most of the work of rendering DTS shapes and
arbitrary mesh geometry. It knows how to render mesh instances using materials and supports hardware mesh instanc-
ing.

RenderObjectMgr A render bin which uses object callbacks for rendering.

Inherit: RenderBinManager

Description This render bin gathers object render instances and calls its delegate method to perform rendering. It is
used infrequently for specialized scene objects which perform custom rendering.

RenderOcclusionMgr A render bin which renders occlusion query requests.

Inherit: RenderBinManager

Description This render bin gathers occlusion query render instances and renders them. It is currently used by light
flares and ShapeBase reflection cubemaps.

You can type ‘$RenderOcclusionMgr::debugRender = true’ in the console to see debug rendering of the occlusion
geometry.

RenderParticleMgr A render bin which renders particle geometry.

Inherit: RenderTexTargetBinManager

Description This render bin gathers particle render instances, sorts, and renders them. It is currently used by Parti-
cleEmitter and LightFlareData.

RenderPassManager A grouping of render bin managers which forms a render pass.

Inherit: SimObject

Description The render pass is used to order a set of RenderBinManager objects which are used when rendering a
scene. This class does little work itself other than managing its list of render bins.

In ‘core/scripts/client/renderManager.cs’ you will find the DiffuseRenderPassManager which is used by the C++ en-
gine to render the scene.

Methods
void RenderPassManager::addManager(RenderBinManager renderBin)

Add as a render bin manager to the pass.
RenderBinManager RenderPassManager::getManager(int index)

Returns the render bin manager at the index or null if the index is out of range.

int RenderPassManager::getManagerCount()
Returns the total number of bin managers.

void RenderPassManager::removeManager(RenderBinManager renderBin)
Removes a render bin manager.

866 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

RenderPassStateBin A non-rendering render bin used to enable/disable a RenderPassStateToken.

Inherit: RenderBinManager

Description This is a utility RenderBinManager which does not render any render instances. Its only used to define
a point in the render bin order at which a RenderPassStateToken is triggered.

Fields
RenderPassStateToken RenderPassStateBin::stateToken

RenderPassStateToken Abstract base class for RenderFormatToken, used to manipulate what goes on in the render
manager.

Inherit: SimObject

Description You cannot actually instantiate RenderPassToken, only its child: RenderFormatToken. RenderFormat-
Token is an implementation which changes the format of the back buffer and/or the depth buffer.

The RenderPassStateBin manager changes the rendering state associated with a token it is declared with. In stock
Torque 3D, a single example exists in the way of AL_FormatToken (found in renderManager.cs). In that script file, all
the render managers are intialized, and a single RenderFormatToken is used. This implementation basically exists to
ensure Advanced Lighting works with MSAA.

Methods
void RenderPassStateToken::disable()

Disables the token.
void RenderPassStateToken::enable()

Enables the token.

void RenderPassStateToken::toggle()
Toggles the token from enabled to disabled or vice versa.

Fields
bool RenderPassStateToken::enabled

Enables or disables this token.

RenderPrePassMgr The render bin which performs a z+normals prepass used in Advanced Lighting.

Inherit: RenderTexTargetBinManager

Description This render bin is used in Advanced Lighting to gather all opaque mesh render instances and render
them to the g-buffer for use in lighting the scene and doing effects.

PostEffect and other shaders can access the output of this bin by using the prepass texture target name. See the edge
anti-aliasing post effect for an example.

RenderTerrainMgr A render bin for terrain mesh rendering.

Inherit: RenderBinManager

5.3. Console Reference 867

Torque 3D Documentation, Release 3.5.1

Description This bin renders terrain render instances from a TerrainBlock. Normally a mesh would render via the
RenderMeshMgr, but terrain uses a TerrainMaterial designed for multi-layered surfaces which this bin can processs.

RenderTexTargetBinManager An abstract base class for render bin managers that render to a named textue target.

Inherit: RenderBinManager

Description This bin itself doesn’t do any rendering work. It offers functionality to manage a texture render target
which derived render bin classes can render into.

RenderTranslucentMgr A render bin for rendering translucent meshes.

Inherit: RenderBinManager

Description This bin is used to render translucent render mesh instances and render object instances. It is generally
ordered late in the RenderPassManager after all opaque geometry bins.

Description

In Torque we use a binning system to do the initial ordering and batching of rendering operations.

When rendering a pass is made thru all the game objects visible in the scene. The game objects will each submit one
or more RenderInst to the RenderPassManager. The pass manager maintains an ordered list of RenderBinManagers
each which get a chance to consume the RenderInst.

After all the game objects have been processed the RenderPassManager lets each bin sort then render the RenderInsts
they contain.

Currently from script you can only define and change the order of the bins in the RenderPassManager. To create new
types of bins or add new rendering methods you will need C++ source access.

See also:

The file corescriptsclientrenderManager.cs.

Enumeration

enum RenderTexTargetSize
What size to render the target texture. Sizes are based on the Window the render is occuring in.

Parameters

• windowsize – Render to the size of the window.

• windowsizescaled – Render to the size of the window, scaled to the render target’s
size.

• fixedsize – Don’t scale the target texture, and render to its default size.

868 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Variables

bool RenderOcclusionMgr::debugRender[static, inherited]
A debugging feature which renders the occlusion volumes to the scene.

bool RenderTerrainMgr::renderWireframe[static, inherited]
Used to enable wireframe rendering on terrain for debugging.

5.3.7 Examples

Examples

Classes

RenderMeshExample An example scene object which renders a mesh.

Inherit: SceneObject

Description This class implements a basic SceneObject that can exist in the world at a 3D position and render itself.
There are several valid ways to render an object in Torque. This class implements the preferred rendering method
which is to submit a MeshRenderInst along with a Material, vertex buffer, primitive buffer, and transform and allow
the RenderMeshMgr handle the actual setup and rendering for you.

See the C++ code for implementation details.

Methods
void RenderMeshExample::postApply()

A utility method for forcing a network update.

Fields
string RenderMeshExample::Material

The name of the material used to render the mesh.

RenderObjectExample An example scene object which renders using a callback.

Inherit: SceneObject

Description This class implements a basic SceneObject that can exist in the world at a 3D position and render itself.
Note that RenderObjectExample handles its own rendering by submitting itself as an ObjectRenderInst (see renderIn-
stance enderPassmanager.h) along with a delegate for its render() function. However, the preffered rendering method
in the engine is to submit a MeshRenderInst along with a Material, vertex buffer, primitive buffer, and transform and
allow the RenderMeshMgr handle the actual rendering. You can see this implemented in RenderMeshExample.

See the C++ code for implementation details.

RenderShapeExample An example scene object which renders a DTS.

Inherit: SceneObject

5.3. Console Reference 869

Torque 3D Documentation, Release 3.5.1

Description This class implements a basic SceneObject that can exist in the world at a 3D position and render itself.
There are several valid ways to render an object in Torque. This class makes use of the ‘TS’ (three space) shape system.
TS manages loading the various mesh formats supported by Torque as well was rendering those meshes (including
LOD and animation...though this example doesn’t include any animation over time).

See the C++ code for implementation details.

Fields
filename RenderShapeExample::shapeFile

The path to the DTS shape file.

5.4 Tutorials

5.4.1 Simple

Echo

Start by running a Torque 3D project. Once the game is up, open the console by pressing the tilde (~) key. In the
console, type the following:

echo("Hello World");

OUTPUT: Hello World

Now, let’s make use of the second parameter. Passing in a value for the second argument will append it to your text:

echo("Hello World", 3);

OUTPUT: Hello World3

Notice how there is no space between World and 3. The optional text is appended exactly how you type it. If you
want, you can include your own white space to format the output:

echo("Hello World: ", 5);

OUTPUT: Hello World: 5

As you can see, the colon and space are included in the output. 5 is still appended, but does not ignore the whitespace.
In addition to echo(...), there are two other output functions you will find useful. Their syntax and functionality are
nearly identical to echo, but the output is different.

The two functions I’m referring to are warn(...) and error(...). You can post a message in the console and log the same
way you echo:

warn("Be careful. Something bad might happen");

error("Something has gone horribly wrong");

OUTPUT:
Be careful. Something bad might happen (teal color)
Something has gone horribly wrong (red color)

You can use these functions to output multicolored text to the console, which will help you identify problems with
your scripts.

870 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Creating the Script

There is no real reason to have a script full of echo statements. You will want to use echo(...) while debugging your
other functions. However, as an example, you can create a script consisting only of output statements.

First, we need to create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “Output.cs”. In Torsion, right click on the directory, click the “New Script” option,
then name your script. On Windows or OS X, create a new text file and change the extension to .cs

3. Open your new script using a text editor or Torsion.

Add the following code to the script:

//---
// Torque 3D
// Copyright (C) GarageGames.com 2000 - 2009 All Rights Reserved
//---

// Create a nice border effect around these echos, makes it easier to find
echo("**");
echo("**");

// Standard use
echo("Hello");
echo("World");
echo("Hello World");

// With escape commands
echo("H\ne\nl\nl\no\nW\no\nr\nl\nd\n");

// Appending
echo("Hello World", 1);
echo("Hello World ", 2);
echo("Hello World: ", 3);

// Warning
warn("Warning! Watch for teal text");

// Error
error("Something has gone horribly wrong");
echo("**");
echo("**");

Save the script now.

Testing the Script

Open game/scripts/client/init.cs and locate the initClient() function. At the end of that function, execute your new
script by typing the following:

exec("./Output.cs");

Run your game, then open the console by pressing tilde (~). Look for the long string of asterisks (*), and you will find
your echo statements. Note: you may need to scroll up to find the echo statements.

5.4. Tutorials 871

Torque 3D Documentation, Release 3.5.1

Calling Functions

Once a function is written, you can call it from script or the console. You only need to know the name of the function
and its parameters, if it has any. The echo function is the easiest method to start with. It is a stock ConsoleFunction
which accepts up to 2 parameters:

// Print "Hello World" in the console
// Only passing in 1 argument
echo("Hello World");

The echo command can actually make use of 2 arguments, depending on your goal:

// Print "HelloWorld" in the console
// Passing in 2 arguments

%hello = "Hello";
%world = "World";

echo(%hello, %world);

If your function does not use arguments, you do not have to type anything in the parenthesis:

// Function declaration
function CreateLevels()
{

echo("Levels Created");
}

// Calling the function
CreateLevels();

The last way to call a method is invoking a member function. You can call the member functions of an object, such as
a Player, using a scoping symbol:

// Player function "doSomething"
// %this - The Player class/object
// %action - String to print out
function Player::doSomething(%this, %action)
{

echo(%action);
}

// Create a player object
%myPlayer = new Player(){...};

// Call "doSomething" member function
%myPlayer.doSomething("Dance");

Creating the Script

Now that you know how to declare and call functions, we can create a few examples from scratch. First, we need to
create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “sampleFunctions”. In Torsion, right click on the directory, click the “New Script”
option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs

3. Open your new script using a text editor or Torsion.

872 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open
game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the fol-
lowing:

Execute our new script:

exec("./sampleFunctions.cs");

Now, let’s write an extremely simple function that prints a message to the console. The echo(...) function already
performs this, but we are going to create a more intuitively named method to work with. Type the following in the
script:

// Print a message to the console
// Kind of repetitiously redundant
// %message - The message to print
function printMessage(%message)
{

echo(%message);
}

To test your new script:

1. Save

2. Run your game

3. Open the console by pressing the tilde (~) key

4. Type the following, pressing enter after each line:

printMessage("Of melodies pure and true,");
printMessage("Sayin, this is my message to you-ou-ou");

Fairly straight forward. From here on, it will be assumed you know how to save your script, run the game, and call
functions in the console. Next, let’s create a function that takes multiple parameters. Write the following code in your
script:

// Print two separate strings to the console
// Equally redundant in equality
// %part1 - First part of message
// %part2 - Second part of message
function printAdvancedMessage(%part1, %part2)
{

echo(%part1, %part2);
}

Run the game and type the following in the console:

printAdvancedMessage("Singin: dont worry about a thing,", "\ncause every little thing gonna be all right");

In a single function call, the above code will write out two separate lyrics on different lines. Every game always has
at least one initialization function. Some even have multiple inits. We can write a function that creates and initializes
a few game specific variables. Note, that the variables used here are completely new and not used by stock Torque 3D
projects:

// Change global game variables to default values
function resetGameVariables()
{

// Game's name
$GameName = "Blank";

5.4. Tutorials 873

Torque 3D Documentation, Release 3.5.1

// Player's name
$PlayerName = "Player";

// Game play type
$GameType = "Default";

}

The above code simply declares three global variables and sets them to default values. Every time this function is
called, the same logic will execute. If you were to call this in the console, you will not see anything for output. Let’s
add a function to do this:

// Print our game's information to the console
function printGameInformation()
{

echo("Game Name: ", $GameName);
echo("Player's Name: ", $PlayerName);
echo("Game Type: ", %gameType);

}

Save your new script and run the game. In the console, you will need to call the init function before the print function.
Invoke the functions in this order:

resetGameVariables();
printGameInformation();

Instead of manually setting each variable in the console, we can write a “set” function for our game variables. Add the
following to your script:

// Set the global game variables
// %gameName - Game's name
// %playerName - Player's name
// %gameType - Game play type
function setGameVariables(%gameName, %playerName, %gameType)
{

$GameName = %gameName;
$PlayerName = %playerName;
$GameType = %gameType;

}

Now, you can set your game variables to whatever you wish through a single function call:

setGameVariables("Ars Moriendi", "Mich", "Survival Horror");

printGameInformation();

resetGameVariables();

printGameInformation();

We will get into creating member functions in a later section of the script documentation. For now, you should know
enough about functions to move on.

Math

There are two types of variables you can declare and use in TorqueScript: local and global. Both are created and
referenced similarly:

874 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%localVariable = 1;
$globalVariable = 2;

As you can see, local variable names are preceded by the percent sign (%). Global variables are preceded by the dollar
sign ($). Both types can be used in the same manner: operations, functions, equations, etc. The main difference has to
do with how they are scoped.

In programming, scoping refers to where in memory a variable exists during its life. A local variable is meant to only
exist in specific blocks of code, and its value is discarded when you leave that block. Global variables are meant to
exist and hold their value during your entire programs execution.

Creating the Script

First, we need to create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “maths”. In Torsion, right click on the directory, click the “New Script” option,
then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

3. Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open
game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the fol-
lowing:

Execute our new script:

exec("./maths.cs");

Standard arithmetic operators are the easiest to script. Start by adding this function to your new script:

// Print the sum of %a and %b
function addValues(%a, %b)
{

%sum = %a + %b;

echo("Sum of " @ %a @ " + " @ %b @ ": ", %sum);
}

This simple function takes in two numerical arguments. A new variable, %sum, holds the result of adding the two
arguments together. Finally, an echo(...) statement is formatted to print the original values (%a and %b) and the sum
(%sum of the two).

To test your new script:

1. Save the script

2. Run your game

3. Open the console by pressing the tilde (~) key

4. Type the following, pressing enter after each line:

addValues(1,1);
addValues(2,3);
addValues(-3,2);

Your console output should look like this:

5.4. Tutorials 875

Torque 3D Documentation, Release 3.5.1

Sum of 1 + 1: 2
Sum of 2 + 3: 5
Sum of -3 + 2: -1

As you can see, you can use positive or negative numbers. You can also use floating point (decimal) values if you
wish. Add the following script code to test the other basic arithmetic operations:

// Print the difference between %a and %b
function subtractValues(%a, %b)
{

%difference = %a - %b;

echo("Difference between " @ %a @ " - " @ %b @ ": ", %difference);
}

// Print the product of %a and %b
function multiplyValues(%a, %b)
{

%product = %a * %b;

echo("Product of " @ %a @ " * " @ %b @ ": ", %product);
}

// Print the quotient of %a and %b
function divideValues(%a, %b)
{

%quotient = %a / %b;

echo("Quotient of " @ %a @ " / " @ %b @ ": ", %quotient);
}

// Print remainder of %a divided by %b
function moduloValue(%a, %b)
{

%remainder = %a % %b;

echo("Remainder of " @ %a @ " % " @ %b @ ": ", %remainder);
}

You will use the same process of scripting, saving, running the game, and calling the functions via the console that has
been previously discussed above. Another way of manipulating values involves more complex operators. Standard
additions, subtraction, etc, use two operators: assignment (=) and arithmetic (+, -, *, etc).

You can increase or decrease the value of a variable by using the auto-increment and auto-decrement operators. As
soon as the operation completes, the variable is permanently changed. You do not need to use an assignment operator
in this case. Use the following script code to test it out:

// Print the increment of %a
function incrementValue(%a)
{

%original = %a;
%a++;

echo("Single increment of " @ %original @ ": ", %a);
}

// Print the decrement of %a
function decrementValue(%a)
{

876 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

%original = %a;
%a--;

echo("Single decrement of " @ %original @ ": ", %a);
}

As you can see, the original value of %a had to be stored before the increment/decrement operation was applied.
The ++ and – automatically adjust the variable for you. Another non-basic manipulation involves combining the
assignment operator with an arithmetic operator:

// Print the result of a+=b
function addToValue(%a, %b)
{

%original = %a;
%a += %b;

echo("Sum of " @ %original @ " += " @ %b @ ": ", %a);
}

In the above example, the + and = are combined together for a single operation. In simple terms, %a += %b can be
verbalized as “A equals itself plus B.” Unlike the addValue(...) function written earlier, a third variable is not used in
this equation. This operation can be applied to the other arithmetic operators.

The last topic we will cover in this guide is comparison operators. As the name implies, these operators will compare
two values together and produce a boolean (1 or 0) based on the results. Add the following function to see the first
example:

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{

if(%a > %b)
echo("A is greater than B");

}

The above code is very straight forward. The values of %a and %b are compared to each other to see which is higher.
Test the comparison code in the console using the following:

compareValues(2,1);
compareValues(3,2);
compareValues(1,2);
compareValues(0,0);

The output should be the following:

A is greater than B
A is greater than B
<no output>
<no output>

The first two calls will prove the comparison as “true”, and print out the message. The comparison results to false on
the last two calls, so nothing will be printed. The rest of the function showing off the comparison operators can be
copied over what you currently have:

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{

// Printing symbols just as a decorator
// Makes it easier to isolate the print out
echo("\n====================================");

5.4. Tutorials 877

Torque 3D Documentation, Release 3.5.1

// Print out the value of %a and %b
echo("\nValue of A: ", %a);
echo("Value of B: ", %b);

if(!%a)
echo("\nA is a zero value\n");

else
echo("\nA is a non-zero value\n");

if(!%b)
echo("B is a zero value\n");

else
echo("B is a non-zero value\n");

if(%a && %b)
echo("Both A and B are non-zero values\n");

if(%a || %b)
echo("Either A or B is a non-zero value\n");

if(%a == %b)
echo("A is exactly equal to B\n");

if(%a != %b)
echo("A is not equal to B\n");

if(%a < %b)
echo("A is less than B");

else if(%a <= %b)
echo("A is less than or equal to B");

if(%a > %b)
echo("A is greater than B");

else if(%a >= %b)
echo("A is greater than or equal to B");

// Printing symbols just as a decorator
// Makes it easier to isolate the print out
echo("\n====================================");

}

I have added “decorator text” to help separate console output and make the output easier to read. Notice that each
operation uses an if(...) statement to compare. Remember, the if(...) code is based on checking for a 1 (true) or 0
(false) value. This is all a comparison operation will return.

String Manipulation

Text, such as names or phrases, are supported as strings. Numbers can also be stored in string format. Standard strings
are stored in double-quotes:

"abcd" (string)

Example:

$UserName = "Heather";

Strings with single quotes are called “tagged strings.”:

878 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

'abcd' (tagged string)

Tagged strings are special in that they contain string data, but also have a special numeric tag associated with them.
Tagged strings are used for sending string data across a network. The value of a tagged string is only sent once,
regardless of how many times you actually do the sending.

On subsequent sends, only the tag value is sent. Tagged values must be de-tagged when printing. You will not need to
use a tagged string often unless you are in need of sending strings across a network often, like a chat system.

There are special values you can use to concatenate strings and variables. Concatenation refers to the joining of
multiple values into a single variable. The following is the basic syntax:

"string 1" operation "string 2"

You can use string operators similarly to how you use mathematical operators (=, +, -, *). You have four operators at
your disposal:

@ (concatenates two strings)
TAB (concatenation with tab)
SPC (concatenation with space)
NL (newline)

Creating the Script

First, we need to create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “stringManip”. In Torsion, right click on the directory, click the “New Script”
option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

3. Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open
game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the fol-
lowing:

Execute our new script:

exec("./stringManip.cs");

In the new script, define three global variables at the very top as shown in the following code:

$PlayerName = "Player";
$GameName = "Default";
$BattleCry = "Hello World";

These are the strings that will be manipulated in this script. To test one of the variables, write the following function:

// Print player name string
function printPlayerName()
{

echo($PlayerName);
}

The printPlayerName() function simply prints out the string value held by $PlayerName to the console. To test your
new script:

1. Save the script

2. Run your game

5.4. Tutorials 879

Torque 3D Documentation, Release 3.5.1

3. Open the console by pressing the tilde (~) key

4. Type the following, and press enter:

printPlayerName();

The output is extremely basic. All you will see is the string held by the variable. We can perform some string
manipulation to print out something more descriptive. Change the function code to the following:

// Print player name string
function printPlayerName()
{

// Concatenate "Player's Name" with the variable
// Containing the name
echo("Player's Name: " @ $PlayerName);

}

Now, when you call the function you will see the following output:

Player's Name: Default

This kind of string formatting and manipulation will make debugging and management a lot easier. Add the following
code to achieve the same affect for the $GameName variable:

// Print game name string
function printGameName()
{

// Concatenate "Game Name" with the variable
// Containing the name
echo("Game Name: " @ $GameName);

}

We will do something slightly different with the battle cry. You can store the result of a string manipulation in a
variable before you use it. This will come in handy for saving permanent changes for strings and numbers. Use the
following code to create a new function:

// Print battle cry string
function printBattleCry()
{

// Concatenate the string in $PlayerName
// with the static string yelled: "
%message = $PlayerName @ " yelled: \"";

// Concatenate the value of %message with
// the string in $BattleCry and the " symbol
// Store the results in the %message variable
%message = %message @ $BattleCry @ "\"";

// Print the new string after it
// has been manipulated
echo(%message);

}

The printBattleCry() function starts by defining a new local variable (%message) and assigning it the value of the
$PlayerName concatenated with a static string. The second line concatenates the new %message variable with the
contents of $BattleCry, and wraps the quotation mark around the actual phrase. In the same line, the %message
variable is replaced with itself + the concatenated string.

Let’s go ahead and create a function to print all of the variables out with a little decoration. Add the following to your
script:

880 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

// Print all the game strings using a single function
function printGameStrings()
{

echo("\n***********************************");
echo("* GAME STATS *");
echo("***********************************\n");

echo("Game Name: " @ $GameName);
echo("Player's Name: " @ $PlayerName);
echo($PlayerName @ " battle cry: \"" @ $BattleCry @ "\"");

}

When you call this function in the console, you will get the following output:

* GAME STATS *

Game Name: Default
Player's Name: Player
Player battle cry: "Hello World"

So far we have been concatenating and printing out strings. You can also assign string values using the assignment
operator (=), and compare string values using the string equality operator ($=).

The following function uses the operators to adjust the game string variables:

// Set game strings with other strings
// %playerName will be assigned to $PlayerName
// %gameName will be assigned to $GameName
// %battleCry will be assigned to $BattleCry
function setGameStrings(%playerName, %gameName, %battleCry)
{

// Check to see if the two strings are identical
// If so, do nothing and print a message.
// Otherwise, assign the new string
if($PlayerName $= %playerName)

echo("New player name is identical. Doing nothing");
else

$PlayerName = %playerName;
}

The above function takes in three variables containing strings, one of which is used initially. The first if(...) check
compares $PlayerName to %playerName. If the two are identical, the assignment of a new value will not occur. A
message will be printed to console instead.

You can also apply the logical NOT (!) operator to a comparison to achieve the opposite test:

// Check to see if the two strings are different
// If so, assign the new string
// Otherwise, do nothing and print a message.
if($GameName !$= %gameName)

$GameName = %gameName;
else

echo("Game name is identical. Doing nothing");

In this check, if the two strings are NOT the same, then the new value assignment will occur. Otherwise, a message is
printed to the console. You can go ahead and add the last portion of the code handling the %battleCry assignment:

5.4. Tutorials 881

Torque 3D Documentation, Release 3.5.1

// Check to see if the two strings are identical
// If so, do nothing and print a message.
// Otherwise, assign the new string
if($BattleCry $= %battleCry)

echo("Battle cry is identical. Doing nothing");
else

$BattleCry = %battleCry;

Looping Structures

There are two types of used in TorqueScript: for and while loops. A for loop repeats a statement or block of code for a
set number of iterations. A while loop on the other hand repeats a statement or block of code as long as an expression
given to the while loop remains true.

for Loop Syntax:

for(expression0; expression1; expression2)
{

statement(s);
}

One way to label the expressions in this syntax are (startExpression; testExpression; countExpression). Each expres-
sion is separated by a semi-colon.

while Loop Syntax:

while(expression)
{

statements;
}

As soon as the expression is met, the while loop will terminate.

Example For Loop:

for(%count = 0; %count < 3; %count++)
{

echo(%count);
}

OUTPUT:
0
1
2

While Loop:

%countLimit = 0;

while(%countLimit <= 5)
{

echo("Still in loop");
%count++;

}
echo("Loop was terminated");

OUTPUT:
Still in loop
Still in loop

882 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

Still in loop
Still in loop
Still in loop
Loop was terminated

Creating the Script

First, we need to create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “loops”. In Torsion, right click on the directory, click the “New Script” option,
then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

3. Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open
game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the fol-
lowing:

Execute our new script:

exec("./loops.cs");

We will start with a very basic loop. Add the following to your script:

// Print 0 -> %count in the console
function printNumbers(%count)
{

for(%i = 0; %i < %count; %i++)
{

echo(%i);
}

}

The above function takes in a single argument (%count). The for(...) loop uses three expressions. The first is declara-
tion expression. This is the setup for the loop. In this example, the iterator is defined. The iterator is the variable that
will change each loop.

The second expression sets up the condition that will cause the loop to terminate. In the above code, when the iterator
is no longer less than the %count variable, the loop will end. Finally, the third expression is the logic that occurs after
each loop. In our example, we increment the count of our iterator.

The main logic is enclosed in brackets after the loop declaration. In above code, the iterator (%i) is printed to the
console each loop. To test your new script:

1. Save the script

2. Run your game

3. Open the console by pressing the tilde (~) key

4. Type the following, and press enter:

printNumbers(10);

Your output should look like the following:

0
1
2

5.4. Tutorials 883

Torque 3D Documentation, Release 3.5.1

3
4
5
6
7
8
9

As expected, the iterator is printed to the console then incremented by 1. Notice that it stops when it gets to 9, even
though 10 was passed in. Look at the second expression’s logic again:

%i < %count;

When %i reaches 10, then it is equal to the %count passed in which is also 10. 10 is not less than 10. As soon as that
expression failed, the loop terminated. To get the full ten count, modify the function to use a different logic check:

function printNumbers(%count)
{

for(%i = 0; %i <= %count; %i++)
{

echo(%i);
}

}

Now, when you call the following code in the console:

printNumbers(10);

Your output should be:

0
1
2
3
4
5
6
7
8
9
10

You can apply different modifiers to your iterator. You do not always have to use an incremental counter. Add the
following function to your script:

// Print %startCount -> 0 in the console
function countdown(%startCount)
{

for(%i = %startCount; %i >= 0; %i--)
{

echo(%i);
}

}

Save and run. Now you can see a countdown from a base number, as the following shows:

countdown(5);

Output:

884 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

5
4
3
2
1
0

An important keyword to remember when working with for(...) loops is continue. The continue keyword will cause
a loop to immediately skip to the next iteration, similar to how the return keyword works in a function. Add the
following function to see it work:

// Print 0 -> %count, except %skipNumber, in the console
function skipCount(%count, %skipNumber)
{

for(%i = 0; %i <= %count; %i++)
{

if(%i == %skipNumber)
continue;

echo(%i);
}

}

In the above code, when the iterator (%i) exactly matches the %skipNumber variable, the loop immediately goes to
the next iteration. This ignores the echo(...) command on the next line. Try calling this in the console:

skipCount(5, 4);

The output should be:

0
1
2
3
5

Instead of terminating soon as the iterator reached 4, a continue keyword was used to skip to the next loop iteration. If
a less complex loop is desired, the while(...) structure will be handy.

Add the following function to your script:

// Increase %count incrementally until it is no
// longer less than %breakNumber
function whileExample(%count, %breakNumber)
{

// While the count is less than the breaknumber
while(%count < %breakNumber)
{

// Print the count
echo(%count);

// Increase the count
%count++;

}
}

In this new function, the loop will check the expression in the parenthesis each time it completes an iteration. The
body of the loop, contained in the brackets, simply prints the %count variable and then increases. You must be careful
with loops, especially while(...) structures. The wrong use of variables can result in an infinite loop which will freeze
your game.

5.4. Tutorials 885

Torque 3D Documentation, Release 3.5.1

Break is another keyword that affects looping structures. It will immediately terminate the loop. The following
function shows proper use of a while loop avoiding infinite cycling:

// Increase %iterator until it is equal to
// %conditional. When it is, break out of
// the infinite loop
function breakOut(%iterator, %conditional)
{

// If iterator is less than conditional
// we will be stuck in an infinite loop
// Error out and exit function.
if(%iterator > %conditional)
{

error("Iterator is greater than conditional, try again");
return;

}

// Loop infinitely until a condition is met
while(true)
{

// Condition has been met, break out.
if(%iterator == %conditional)

break;

echo(%iterator);

%iterator++;
}

}

Before the loop even starts, an if(...) check is made to make sure the variables used by the loop will insure a proper
break. The goal of the loop is to continue iterating until the %iterator variable is equal to the %conditional.

The while(true) syntax creates the “infinite” loop. However, it will not loop infinitely since a break keyword is used.
Once the %iterator is equal to the %conditional, a break is called. Otherwise, the %iterator is printed to the console
and then increased.

To see the output, call the following in the console (pressing enter after each line):

breakOut(10,1);
breakOut(10,10);
breakOut(0, 10);

Output:

Iterator is greater than conditional, try again

0
1
2
3
4
5
6
7
8
9

The first call gives you the error message. The second call immediately causes the loop to terminate since the two
variables are already equal. The last call provides the proper output of the function.

886 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

The last concept we will cover is nested loops. These are loops within other loops. For the next example, the termi-
nology should be addressed first. The first loop is identical to the structures you have created in the past.

The nested loop is declared inside the first loop. Remember, it is important to be smart about your variable names.
You can name your iterators anything you want, such as using %iterator instead of %i. If you go with the longer name,
then it would make sense to name your second iterator something like “%iteratorTwo”.

The naming convention for loop iterators is preferential. The use of %i typically stands for iterator. In quite a few
programming primers (such as the ones this writer has read), the second iterator is often named %j. For these simple
examples, you can get away with this. In more complex or critical loops, you might want to name your iterators based
on what the loop does.

Add the following function:

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{

// Max iteration for first loop
%firstCount = 10;

// Execute first loop %firstCount times
for(%i = 0; %i < %firstCount; %i++)
{

// Print in teal
warn("Running main loop: " @ %i);

}
}

Run the function in the console, and you should see the following printed in a teal color:

Running main loop: 0
Running main loop: 1
Running main loop: 2
Running main loop: 3
Running main loop: 4
Running main loop: 5
Running main loop: 6
Running main loop: 7
Running main loop: 8
Running main loop: 9

For the nested loop, we will stick with a pattern. A second count variable should be declared, and the nested loop
should perform a similar operation. Modify the function to use this pattern:

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{

// Max iteration for first loop
%firstCount = 10;

// Max iteration for nested loop
%secondCount = 2;

// Execute first loop %firstCount times
for(%i = 0; %i < %firstCount; %i++)
{

// Execute nested loop %secondCount times
for(%j = 0; %j < %secondCount; %j++)

5.4. Tutorials 887

Torque 3D Documentation, Release 3.5.1

{
// Print in red
error("Running nested loop: " @ %j);

}
// Print in teal
warn("Running main loop: " @ %i);

}
}

Run this function again to see the new output:

Running nested loop: 0
Running nested loop: 1
Running main loop: 0
Running nested loop: 0
Running nested loop: 1
Running main loop: 1
Running nested loop: 0
Running nested loop: 1
Running main loop: 2
Running nested loop: 0
Running nested loop: 1
Running main loop: 3
Running nested loop: 0
Running nested loop: 1
Running main loop: 4
Running nested loop: 0
Running nested loop: 1
Running main loop: 5
Running nested loop: 0
Running nested loop: 1
Running main loop: 6
Running nested loop: 0
Running nested loop: 1
Running main loop: 7
Running nested loop: 0
Running nested loop: 1
Running main loop: 8
Running nested loop: 0
Running nested loop: 1
Running main loop: 9

Your console output will be color-coded. The main loop output should still be teal, and the nested loop output should
be red. Here is the breakdown of the full loop:

1. First loop starts

2. Main iterator (%i) starts at 0

3. Nested loop starts

4. Second iterator (%j) starts at 0

5. Print second iterator (0)

6. Increment second iterator

7. Print second iterator (1)

8. End nested loop

9. Print first iterator

888 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

10. Increment first loop

11. Go back to step 3, repeat until first loop ends

Based on the default values, the nested loop will execute 10 times. Its iterator will reset each time the first loop
iterates. Try adjusting the %firstCount and %secondCount variables to see the varying outputs if you are still trying to
understand the concept.

Array Manipulation

Arrays are data structures used to store consecutive values of the same data type. Arrays can be single-dimension or
multidimensional:

$TestArray[n] (Single-dimension)
$TestArray[m,n] (Multidimensional)
$TestArray[m_n] (Multidimensional)

If you have a list of similar variables you wish to store together, try using an array to save time and create cleaner code.
The syntax displayed above uses the letters ‘n’ and ‘m’ to represent where you will input the number of elements in
an array. The following example shows code that could benefit from an array:

$userNames[0] = "Heather";
$userNames[1] = "Nikki";
$userNames[2] = "Mich";

echo($userNames[0]);
echo($userNames[1]);
echo($userNames[2]);

Creating the Script

First, we need to create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “arrays”. In Torsion, right click on the directory, click the “New Script” option,
then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

3. Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open
game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the fol-
lowing:

Execute our new script:

exec("./arrays.cs");

This new script is going to work with two different arrays: $names and $board. $names is a single dimensional array
containing strings. $board is a two dimensional array, also containing strings. The two are not related, but show off
different uses of arrays. Let’s create the initialization function:

// Set up all of the arrays
// with default values
function initArrays()
{

// Initialize single dimensional array
// containing a list of names

5.4. Tutorials 889

Torque 3D Documentation, Release 3.5.1

$names[0] = "Heather";
$names[1] = "Nikki";
$names[2] = "Mich";

// Initialize two dimensional array
// containing symbols for a
// tic-tac-toe game

// Row one values
$board[0,0] = "_";
$board[0,1] = "_";
$board[0,2] = "_";

// Row two values
$board[1,0] = "_";
$board[1,1] = "_";
$board[1,2] = "_";

// Row three values
$board[2,0] = "_";
$board[2,1] = "_";
$board[2,2] = "_";

}

The above code defines the two arrays ($names and $board). $names is given three strings representing people’s
names. $board is setup like a tic-tac-toe board. It will be making use of “X”s and “O”s, but for now the blank value is
“_”.

Instead of manually calling this function every time the game is run, we can call the function on game initialization.
Open game/scripts/client/init.cs. Scroll down to the initClient function. Under this code:

exec("./arrays.cs");

Add the following:

initArrays();

Save the arrays.cs and init.cs scripts. Since there is nothing to see yet, create a function that will print out the values
of $names:

// Print out all the values
// in the $names array
function printNames()
{

// Print each name using
// hard coded values (0,1,2)
echo("0:" @ $names[0]);
echo("1:" @ $names[1]);
echo("2:" @ $names[2]);

}

To test your new script:

1. Save the script

2. Run your game

3. Open the console by pressing the tilde (~) key

4. Type the following, and press enter:

890 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

printNames();

The output is extremely basic. All you will see is the strings held by the array, by index:

0: Heather
1: Nikki
2: Mich

This is a good start, but what if the array has 1000 elements? An optimization for this function would be to make use
of a looping structure. Modify the printNames() function to use the following code:

function printNames()
{

// Iterate through the names
// array and print the values
for(%i = 0; %i < 3; %i++)

echo(%i @ ": " @ $names[%i]);
}

Instead of having three (or 1000) echo statements, you only have to script two lines. The above code iterates through
the elements of the $names array using a for(...) loop. To change an individual element, add the following function to
your script:

// Change the value of an array item
// %id = index to change
// %name = the new value
function setNames(%id, %name)
{

// Our array only contains three elements:
// [0] [1] [2]
// If anything other than 0, 1, or 2 is
// passed in, inform the user of an error
if(%id > 2 || %id < 0)
{

error("Index " @ %id @ " out of range");
error("Please use 0 - 2 as the %id");

}
else

$names[%id] = %name;
}

To use this function, run the game and open the console. The first variable determines which array index is changing,
and the second variable is the new string (name) to use. Example usage:

setNames(0, "Brad");

If you try to pass in any other numbers besides 0, 1, or 2, you will get an error message letting you know you have tried
to access outside of the array bounds. Moving on, the script needs functions for printing, manipulating, and testing the
$board array.

To print out just the values in order, add the following function:

// Print out the the values
// in the $board array
function printBoardValues()
{

// %i loops through rows
for(%i = 0; %i < 3; %i++)
{

// %j loops through columns

5.4. Tutorials 891

Torque 3D Documentation, Release 3.5.1

for(%j = 0; %j < 3; %j++)
{

// Print the value of the [%i,%j]
echo("[" @ %i @ "," @ %j @ "]: " @ $board[%i, %j]);

}
}

}

The above code uses the concept of nested loops. Nested loops are simply loops within other loops. Notice there
are two for(...) structures set up. This allows the iteration of each row and column, which is necessary with a two-
dimensional array. Calling this function will result in the following output:

[0,0]: _
[0,1]: _
[0,2]: _
[1,0]: _
[1,1]: _
[1,2]: _
[2,0]: _
[2,1]: _
[2,2]: _

As you can see, the function prints the current index and the value it contains. Being a tic-tac-toe board, it might help
to visualize the board based on value locations. The following function will print the values of $board in a relative
format:

// Print tic-tac-toe board
// in a relative format
function printBoard()
{

// Print out an entre row in 1 echo
echo($board[0,0] @" "@ $board[0,1] @" "@ $board[0,2]);
echo($board[1,0] @" "@ $board[1,1] @" "@ $board[1,2]);
echo($board[2,0] @" "@ $board[2,1] @" "@ $board[2,2]);

}

The initial output without changing the values will look like this:
_ _ _
_ _ _
_ _ _

If you have never played tic-tac-toe, each player takes a turn putting an X or O in one of the board positions. When
three X’s or O’s are lined up, a player wins. The alignment can be three in a row, three in a column, or three diagonally.
We can simulate this game play, but we will only work with rows.

We are going to change this function a few times, but we will start with the shell:

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{

// Make sure "X" or "O" was passed in
if(%value !$= "X" && %value !$= "O")
{

echo("Invalid entry:\nPlease use \'X\' or \'O\'");
return;

}
}

892 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

The user will input a row index (%row), a column index (%column), and a value (%value) represented by an “X” or
“O” string. If anything other than a capital X or capital O are passed in, the function will throw an error message and
exit. If the function gets past the check, the value is assigned:

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{

// Make sure "X" or "O" was passed in
if(%value !$= "X" && %value !$= "O")
{

echo("Invalid entry:\nPlease use \'X\' or \'O\'");
return;

}

// Set the board value
$board[%row, %column] = %value;

}

Save the script and run. Call the following functions, in order, to see the results:

printBoard();
setBoardValue(0,0,"X");
setBoardValue(0,1,"O");
printBoard();

Your output should look like the following:
_ _ _
_ _ _
_ _ _

X O _
_ _ _
_ _ _

To reset back to the default values, you can create a function that iterates through the array:

// Set all values of $board
// array back to "nothing"
// In this case, nothing is _
function resetBoard()
{

// %i loops through rows
for(%i = 0; %i < 3; %i++)
{

// %j loops through columns
for(%j = 0; %j < 3; %j++)
{

// Set value to _
$board[%i, %j] = "_";

}
}

}

Now, any normal game will have a victory condition. Enable to win, a row must contain three of the same value.
Creating a function for this is quite simple using array access and string comparisons:

// Compare the values of each array
// item in a row

5.4. Tutorials 893

Torque 3D Documentation, Release 3.5.1

// If row contains the same values
// Return true for a victory
// Return false if values are different
function checkForWin()
{

// Make sure at least the first symbol is X or O
// Then compare the three values of a row

// Row 1
if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])

return true;

// Row 2
if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])

return true;

// Row 3
if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])

return true;

return false;
}

The checkForWin() function will return true if any of the three if(...) statements pass. If there is no win condition, the
function will return false. In a previous guide, you learned about the $= operator. Alternatively, you can use a function
to compare two strings: strcmp(...).

The strcmp(...) function takes in two string, compares the two, then return a 1 or 0 based on the comparison. If the
two strings are the same, it will return a 0. If the two strings are different, it will return a 1.

Example:

%string1 = "Hello";
%string2 = "Hello";
%string3 = "World";

// Returns 0
strcmp(%string1, %string2);

// Returns 1
strcmp(%string1, %string3);

We can replace the $= operators in the checkForWin() function using a different set of operators. Comment out the
first chunk of code, and replace it with the following:

function checkForWin()
{

// Make sure at least the first symbol is X or O
// Then compare the three values of a row
//if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])

//return true;
//

//if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])
//return true;
//

//if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])
//return true;

if($board[0,0] !$= "_" && !strcmp($board[0,0], $board[0,1]) && !strcmp($board[0,1], $board[0,2]))

894 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

return true;

if($board[0,0] !$= "_" && !strcmp($board[1,0], $board[1,1]) && !strcmp($board[1,1], $board[1,2]))
return true;

if($board[0,0] !$= "_" && !strcmp($board[2,0], $board[2,1]) && !strcmp($board[2,1], $board[2,2]))
return true;

return false;
}

Let’s break down the if(...) statements to see what is going on:

if($board[0,0] !$= "_" &&)

The first part checks to see if the row contains a blank entry (“_”). If this is true, then there is no point checking for
anything else. The row does not have three similar values, so the function can move on to check the rest of the rows:

!strcmp($board[0,0], $board[0,1])

If the first check succeeds, the values of the row’s first and second column are compared. If they are the same, a 0 is
returned. Instead of catching the return value in a variable and testing it, we can just use the logical NOT (!) operator.

If the first two columns are the same, we can just compare the third column to one of the others. There is no point in
making three string comparisons:

&& !strcmp($board[0,1], $board[0,2])

There are most likely more optimized ways to check for this kind of situation, but the above code demonstrates multiple
syntactical approaches and comparisons. We can now have a way to check for a victory condition. Go back into the
setBoardValue(...) function and add the win check:

function setBoardValue(%row, %column, %value)
{

// Make sure "X" or "O" was passed in
if(%value !$= "X" && %value !$= "O")
{

echo("Invalid entry:\nPlease use \'X\' or \'O\'");
return;

}

// Set the board value
$board[%row, %column] = %value;

// Check to see if we have the same
// three values in a row
if(checkForWin())
{

// Entire row matched
// Print a victory message
echo("\n**********************");
echo("* Win Condition! *");
echo("**********************\n");

// Print the board
printBoard();

// Reset the game
echo("\nResetting board");

5.4. Tutorials 895

Torque 3D Documentation, Release 3.5.1

resetBoard();
}

}

Remember, the checkForWin() functions returns a true if the game has been won. The first portion of the code prints
a message about the victory. After that, the board is printed to show what row won, and then resets the game.

While this version of the game is very rudimentary, you should be able to expand it by checking for columns and
diagonals. There is plenty of room for optimization and more functions to make the game easier. However, this is not
necessary to learning a powerful game engine like Torque 3D.

Switch Statements

There are two types of switch statements used in TorqueScript. switch(...) is used to compare numerical values and
switch$(...) is used to compare strings.

Standard switch statements use numerical values to determine which case to execute.

switch Syntax:

switch(<numeric expression>)
{

case value0:
statements;

case value1:
statements;

case value3:
statements;

default:
statements;

}

Switch statements requiring string comparison use the switch$ syntax.

switch$ Syntax:

switch$ (<string expression>)
{

case "string value 0":
statements;

case "string value 1":
statements;

...
case "string value N":

statements;
default:

statements;
}

Creating the Script

First, we need to create a new script:

1. Navigate to your project’s game/scripts/client directory.

2. Create a new script file called “switch”. In Torsion, right click on the directory, click the “New Script” option,
then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

896 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

3. Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open
game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the fol-
lowing:

Execute our new script:

exec("./switch.cs");

The first function we are going to write will take in a numerical argument. This number will be checked for a specific
value, and a message will be printed based on the value comparison. Create the following function in your script:

// Print a message to a console based on
// the amount of ammo a weapon has
// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{

// If the ammo is at 0, we are out of ammo
// If the ammo is at 1, we are at the end of the clip
// If the ammo is at 100, we have a full clip
// If the ammo is anything else, we do not care
if(%ammoCount == 0)

echo("Out of ammo, time to reload");
else if(%ammoCount == 1)

echo("Almost out of ammo, warn user");
else if(%ammoCount == 100)

echo("Full ammo count");
else

echo("Doing nothing");
}

To test your new script:

1. Save the script

2. Run your game

3. Open the console by pressing the tilde (~) key

4. Type the following, press enter after each line:

checkAmmoCount(0);
checkAmmoCount(1);
checkAmmoCount(100);
checkAmmoCount(44);

Your console output should be the following:

Out of ammo, time to reload

Almost out of ammo, warn user

Full ammo count

Do nothing

Instead of using four separate if/else checks, we can use a single switch statement to handle all of the cases. Change
the checkAmmoCount(...) function to use the following code:

// Print a message to a console based on
// the amount of ammo a weapon has

5.4. Tutorials 897

Torque 3D Documentation, Release 3.5.1

// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{

// If the ammo is at 0, we are out of ammo
// If the ammo is at 1, we are at the end of the clip
// If the ammo is at 100, we have a full clip
// If the ammo is anything else, we do not care
switch(%ammoCount)
{

case 0:
echo("Out of ammo, time to reload");

case 1:
echo("Almost out of ammo, warn user");

case 100:
echo("Full ammo count");

default:
echo("Doing nothing");

}
}

The switch is declared using the switch(%ammoCount){...} syntax. The test value is kept in the parenthesis, and the
cases are defined in the brackets. Each case you wish to check for is defined by the keyword case, the value, and a
colon (case: 0).

You can write as few or as many lines of TorqueScript code between cases as you need to handle each numerical value.
The default keyword is used when you want to handle a value that does not have a defined case. Without the default
case, any other value besides was is defined as a case will be ignored.

If you test the function as you did previously, you should get the same result:

checkAmmoCount(0);
checkAmmoCount(1);
checkAmmoCount(100);
checkAmmoCount(44);

Result:

Out of ammo, time to reload

Almost out of ammo, warn user

Full ammo count

Do nothing

Testing strings in switch statements requires a small syntactical change. There are multiple ways to perform a string
comparison. Write the following function in your script:

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{

if(!strcmp(%userName, "Heather"))
echo("User Found: " @ %userName);

else if(%userName $= "Mich")
echo("User Found: " @ %userName);

else if(%userName $= "Nikki")
echo("User Found: " @ %userName);

898 Chapter 5. Scripting

Torque 3D Documentation, Release 3.5.1

else
echo("User " @ %userName @ " not found");

}

The above code defines a function which takes in a string as an argument, then performs three separate string compar-
ison to find a result. The first if(...) check uses the strcmp function to check the %userName variable against a static
string (“Heather”).

The two other checks use the basic $= string equality operator. Finally, an else statement exists to inform the system
that no user was found. Run the script and type the following to test the function:

matchNames("Heather");
matchNames("Mich");
matchNames("Nikki");
matchNames("Brad");

Output:

User Found: Heather
User Found: Mich
User Found: Nikki
User Brad not found

Instead of four separate if/else string comparison statements, a single switch can clean the code up greatly. Replace
the matchNames(...) function with the following:

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{

switch$(%userName)
{

case "Heather":
echo("User Found: " @ %userName);

case "Mich":
echo("User Found: " @ %userName);

case "Nikki":
echo("User Found: " @ %userName);

default:
echo("User: " @ %userName @ " not found");

}
}

Just like the switch statement used in the checkAmmoCount(...) function, the above code starts with the switch$
keyword. This is followed by the string we are testing, held in the parenthesis. Instead of numerical values, the case
keywords are followed by a strings.

In the above example, the case statements are comparing the test (%userName) against string literals. String literals
are raw text displayed in code between quotations. If you have variables that contain a string value to test against, you
can use those instead.

As with a numerical switch statement, you can write your logic in between the case statements.

5.4. Tutorials 899

Torque 3D Documentation, Release 3.5.1

5.4.2 Advanced

Player Class

Player Datablock

Shapebase Class

Turrest

Weapons

Proximity Mines

Camera Modes

RTS Prototype

TShapeConstructor

Engine to Script

Projectiles

Networking

900 Chapter 5. Scripting

CHAPTER 6

Engine

901

Torque 3D Documentation, Release 3.5.1

902 Chapter 6. Engine

CHAPTER 7

License

Copyright (c) 2012 GarageGames, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

903

Torque 3D Documentation, Release 3.5.1

904 Chapter 7. License

Index

A
ActionMap::bind (C++ function), 733
ActionMap::bindCmd (C++ function), 734
ActionMap::bindObj (C++ function), 735
ActionMap::getBinding (C++ function), 736
ActionMap::getCommand (C++ function), 736
ActionMap::getDeadZone (C++ function), 736
ActionMap::getScale (C++ function), 737
ActionMap::isInverted (C++ function), 737
ActionMap::pop (C++ function), 737
ActionMap::push (C++ function), 737
ActionMap::save (C++ function), 737
ActionMap::unbind (C++ function), 738
ActionMap::unbindObj (C++ function), 738
activateDirectInput (C++ function), 745
activatePackage (C++ function), 317
addBadWord (C++ function), 510
addGlobalShaderMacro (C++ function), 826
addMaterialMapping (C++ function), 853
addTaggedString (C++ function), 772
AIClient::getAimLocation (C++ member), 652
AIClient::getLocation (C++ member), 652
AIClient::getMoveDestination (C++ member), 652
AIClient::getTargetObject (C++ member), 652
AIClient::missionCycleCleanup (C++ member), 652
AIClient::move (C++ member), 652
AIClient::moveForward (C++ member), 652
AIClient::setAimLocation (C++ member), 652
AIClient::setMoveDestination (C++ member), 652
AIClient::setMoveSpeed (C++ member), 652
AIClient::setTargetObject (C++ member), 652
AIClient::stop (C++ member), 652
aiConnect (C++ function), 656
AIConnection::getAddress (C++ member), 654
AIConnection::getFreeLook (C++ member), 654
AIConnection::getMove (C++ function), 653
AIConnection::getTrigger (C++ function), 653
AIConnection::setFreeLook (C++ function), 653
AIConnection::setMove (C++ function), 653
AIConnection::setTrigger (C++ function), 653

AIPlayer::clearAim (C++ function), 523
AIPlayer::getAimLocation (C++ function), 523
AIPlayer::getAimObject (C++ function), 523
AIPlayer::getMoveDestination (C++ function), 523
AIPlayer::getMoveSpeed (C++ function), 523
AIPlayer::mMoveTolerance (C++ member), 524
AIPlayer::moveStuckTestDelay (C++ member), 524
AIPlayer::moveStuckTolerance (C++ member), 524
AIPlayer::setAimLocation (C++ function), 523
AIPlayer::setAimObject (C++ function), 523
AIPlayer::setMoveDestination (C++ function), 523
AIPlayer::setMoveSpeed (C++ function), 524
AIPlayer::stop (C++ function), 524
AITurretShape::activateTurret (C++ function), 529
AITurretShape::addToIgnoreList (C++ function), 529
AITurretShape::deactivateTurret (C++ function), 529
AITurretShape::getTarget (C++ function), 530
AITurretShape::getWeaponLeadVelocity (C++ function),

530
AITurretShape::hasTarget (C++ function), 530
AITurretShape::recenterTurret (C++ function), 530
AITurretShape::removeFromIgnoreList (C++ function),

530
AITurretShape::resetTarget (C++ function), 530
AITurretShape::setAllGunsFiring (C++ function), 530
AITurretShape::setGunSlotFiring (C++ function), 530
AITurretShape::setTurretState (C++ function), 530
AITurretShape::setWeaponLeadVelocity (C++ function),

530
AITurretShape::startScanForTargets (C++ function), 530
AITurretShape::startTrackingTarget (C++ function), 530
AITurretShape::stopScanForTargets (C++ function), 530
AITurretShape::stopTrackingTarget (C++ function), 531
AITurretShapeData::maxScanDistance (C++ member),

531
AITurretShapeData::maxScanHeading (C++ member),

531
AITurretShapeData::maxScanPitch (C++ member), 531
AITurretShapeData::maxWeaponRange (C++ member),

531

905

Torque 3D Documentation, Release 3.5.1

AITurretShapeData::scanTickFrequency (C++ member),
531

AITurretShapeData::scanTickFrequencyVariance (C++
member), 531

AITurretShapeData::stateDirection (C++ member), 531
AITurretShapeData::stateFire (C++ member), 531
AITurretShapeData::stateName (C++ member), 531
AITurretShapeData::stateScaleAnimation (C++ mem-

ber), 531
AITurretShapeData::stateScan (C++ member), 531
AITurretShapeData::stateScript (C++ member), 531
AITurretShapeData::stateSequence (C++ member), 531
AITurretShapeData::stateTimeoutValue (C++ member),

531
AITurretShapeData::stateTransitionOnActivated (C++

member), 531
AITurretShapeData::stateTransitionOnAtRest (C++

member), 532
AITurretShapeData::stateTransitionOnDeactivated (C++

member), 532
AITurretShapeData::stateTransitionOnNoTarget (C++

member), 532
AITurretShapeData::stateTransitionOnNotAtRest (C++

member), 532
AITurretShapeData::stateTransitionOnTarget (C++ mem-

ber), 532
AITurretShapeData::stateTransitionOnTimeout (C++

member), 532
AITurretShapeData::stateWaitForTimeout (C++ mem-

ber), 532
AITurretShapeData::trackLostTargetTime (C++ mem-

ber), 532
AITurretShapeData::weaponLeadVelocity (C++ mem-

ber), 532
allowConnections (C++ member), 775
ArrayObject::add (C++ function), 318
ArrayObject::append (C++ function), 318
ArrayObject::caseSensitive (C++ member), 322
ArrayObject::count (C++ function), 318
ArrayObject::countKey (C++ function), 318
ArrayObject::countValue (C++ function), 318
ArrayObject::crop (C++ function), 318
ArrayObject::duplicate (C++ function), 318
ArrayObject::echo (C++ function), 319
ArrayObject::empty (C++ function), 319
ArrayObject::erase (C++ function), 319
ArrayObject::getCurrent (C++ function), 319
ArrayObject::getIndexFromKey (C++ function), 319
ArrayObject::getIndexFromValue (C++ function), 319
ArrayObject::getKey (C++ function), 319
ArrayObject::getValue (C++ function), 319
ArrayObject::insert (C++ function), 319
ArrayObject::key (C++ member), 322
ArrayObject::moveFirst (C++ function), 319

ArrayObject::moveLast (C++ function), 320
ArrayObject::moveNext (C++ function), 320
ArrayObject::movePrev (C++ function), 320
ArrayObject::pop_back (C++ function), 320
ArrayObject::pop_front (C++ function), 320
ArrayObject::push_back (C++ function), 320
ArrayObject::push_front (C++ function), 320
ArrayObject::setCurrent (C++ function), 320
ArrayObject::setKey (C++ function), 320
ArrayObject::setValue (C++ function), 320
ArrayObject::sort (C++ function), 320
ArrayObject::sorta (C++ function), 320
ArrayObject::sortd (C++ function), 320
ArrayObject::sortf (C++ function), 321
ArrayObject::sortfd (C++ function), 321
ArrayObject::sortfk (C++ function), 321
ArrayObject::sortfkd (C++ function), 321
ArrayObject::sortk (C++ function), 321
ArrayObject::sortka (C++ function), 321
ArrayObject::sortkd (C++ function), 321
ArrayObject::sortn (C++ function), 321
ArrayObject::sortna (C++ function), 321
ArrayObject::sortnd (C++ function), 321
ArrayObject::sortnk (C++ function), 321
ArrayObject::sortnka (C++ function), 321
ArrayObject::sortnkd (C++ function), 322
ArrayObject::uniqueKey (C++ function), 322
ArrayObject::uniqueValue (C++ function), 322

B
backtrace (C++ function), 307
BanList::add (C++ function), 770
BanList::addAbsolute (C++ function), 770
BanList::isBanned (C++ function), 771
BanList::removeBan (C++ function), 771
BarrelDistortionPostEffect::hmdIndex (C++ member),

822
BarrelDistortionPostEffect::scaleOutput (C++ member),

822
BarrelDistortionPostEffect::sensorIndex (C++ member),

822
BasicClouds::height (C++ member), 683
BasicClouds::layerEnabled (C++ member), 683
BasicClouds::texDirection (C++ member), 683
BasicClouds::texOffset (C++ member), 683
BasicClouds::texScale (C++ member), 683
BasicClouds::texSpeed (C++ member), 683
BasicClouds::texture (C++ member), 683
beginSampling (C++ function), 826
buildTaggedString (C++ function), 772

C
calcExplosionCoverage (C++ function), 649
call (C++ function), 324

906 Index

Torque 3D Documentation, Release 3.5.1

Camera::angularDrag (C++ member), 726
Camera::angularForce (C++ member), 726
Camera::autoFitRadius (C++ function), 722
Camera::brakeMultiplier (C++ member), 726
Camera::controlMode (C++ member), 726
Camera::drag (C++ member), 726
Camera::extendedMovePosRotIndex (C++ member), 730
Camera::force (C++ member), 726
Camera::getAngularVelocity (C++ function), 722
Camera::getMode (C++ function), 722
Camera::getOffset (C++ function), 722
Camera::getPosition (C++ function), 723
Camera::getRotation (C++ function), 723
Camera::getVelocity (C++ function), 723
Camera::isEditOrbitMode (C++ function), 723
Camera::isRotationDamped (C++ function), 723
Camera::lookAt (C++ function), 723
Camera::mass (C++ member), 726
Camera::movementSpeed (C++ member), 730
Camera::newtonMode (C++ member), 726
Camera::newtonRotation (C++ member), 726
Camera::setAngularDrag (C++ function), 723
Camera::setAngularForce (C++ function), 723
Camera::setAngularVelocity (C++ function), 723
Camera::setBrakeMultiplier (C++ function), 723
Camera::setDrag (C++ function), 723
Camera::setEditOrbitMode (C++ function), 723
Camera::setEditOrbitPoint (C++ function), 723
Camera::setFlyForce (C++ function), 724
Camera::setFlyMode (C++ function), 724
Camera::setMass (C++ function), 724
Camera::setNewtonFlyMode (C++ function), 724
Camera::setOffset (C++ function), 724
Camera::setOrbitMode (C++ function), 724
Camera::setOrbitObject (C++ function), 724
Camera::setOrbitPoint (C++ function), 725
Camera::setRotation (C++ function), 725
Camera::setSpeedMultiplier (C++ function), 725
Camera::setTrackObject (C++ function), 725
Camera::setValidEditOrbitPoint (C++ function), 725
Camera::setVelocity (C++ function), 725
Camera::speedMultiplier (C++ member), 726
cleanupTexturePool (C++ function), 850
clearGFXResourceFlags (C++ function), 850
closeNetPort (C++ function), 772
CloudLayer::baseColor (C++ member), 684
CloudLayer::coverage (C++ member), 684
CloudLayer::exposure (C++ member), 684
CloudLayer::height (C++ member), 684
CloudLayer::texDirection (C++ member), 684
CloudLayer::texScale (C++ member), 684
CloudLayer::texSpeed (C++ member), 684
CloudLayer::texture (C++ member), 684
CloudLayer::windSpeed (C++ member), 684

cls (C++ function), 305
collapseEscape (C++ function), 365
commandToClient (C++ function), 772
commandToServer (C++ function), 773
compile (C++ function), 324
ConsoleLogger::attach (C++ function), 309
ConsoleLogger::detach (C++ function), 310
ConsoleLogger::level (C++ member), 310
containerBoxEmpty (C++ function), 511
containerFindFirst (C++ function), 511
containerFindNext (C++ function), 511
containerRayCast (C++ function), 511
containerSearchCurrDist (C++ function), 511
containerSearchCurrRadiusDist (C++ function), 512
containerSearchNext (C++ function), 512
containsBadWords (C++ function), 512
ConvexShape::Material (C++ member), 708
ConvexShape::surface (C++ member), 708
countBits (C++ function), 377
createPath (C++ function), 350
CubemapData::cubeFace (C++ member), 830
CubemapData::dynamic (C++ member), 830
CubemapData::dynamicFarDist (C++ member), 830
CubemapData::dynamicNearDist (C++ member), 830
CubemapData::dynamicObjectTypeMask (C++ member),

830
CubemapData::dynamicSize (C++ member), 831
CubemapData::getFilename (C++ function), 830
CubemapData::updateFaces (C++ function), 830
CustomMaterial::fallback (C++ member), 853
CustomMaterial::forwardLit (C++ member), 853
CustomMaterial::shader (C++ member), 853
CustomMaterial::stateBlock (C++ member), 853
CustomMaterial::target (C++ member), 853
CustomMaterial::version (C++ member), 853

D
deactivateDirectInput (C++ function), 745
deactivatePackage (C++ function), 317
Debris::init (C++ function), 626
Debris::lifetime (C++ member), 626
DebrisData::baseRadius (C++ member), 627
DebrisData::bounceVariance (C++ member), 627
DebrisData::elasticity (C++ member), 627
DebrisData::emitters (C++ member), 627
DebrisData::explodeOnMaxBounce (C++ member), 627
DebrisData::Explosion (C++ member), 627
DebrisData::fade (C++ member), 627
DebrisData::friction (C++ member), 627
DebrisData::gravModifier (C++ member), 627
DebrisData::ignoreWater (C++ member), 627
DebrisData::lifetime (C++ member), 627
DebrisData::lifetimeVariance (C++ member), 627
DebrisData::maxSpinSpeed (C++ member), 627

Index 907

Torque 3D Documentation, Release 3.5.1

DebrisData::minSpinSpeed (C++ member), 627
DebrisData::numBounces (C++ member), 627
DebrisData::shapeFile (C++ member), 627
DebrisData::snapOnMaxBounce (C++ member), 628
DebrisData::staticOnMaxBounce (C++ member), 628
DebrisData::terminalVelocity (C++ member), 628
DebrisData::texture (C++ member), 628
DebrisData::useRadiusMass (C++ member), 628
DebrisData::velocity (C++ member), 628
DebrisData::velocityVariance (C++ member), 628
debug (C++ function), 307
DebugDrawer::drawBox (C++ function), 831
DebugDrawer::drawLine (C++ function), 831
DebugDrawer::setLastTTL (C++ function), 831
DebugDrawer::setLastZTest (C++ function), 831
DebugDrawer::toggleDrawing (C++ function), 831
DebugDrawer::toggleFreeze (C++ function), 831
debugDumpAllObjects (C++ function), 307
debugEnumInstances (C++ function), 305
debugv (C++ function), 307
DecalData::clippingAngle (C++ member), 629
DecalData::fadeEndPixelSize (C++ member), 629
DecalData::fadeStartPixelSize (C++ member), 629
DecalData::fadeTime (C++ member), 629
DecalData::frame (C++ member), 629
DecalData::lifeSpan (C++ member), 629
DecalData::Material (C++ member), 629
DecalData::postApply (C++ function), 628
DecalData::randomize (C++ member), 629
DecalData::renderPriority (C++ member), 629
DecalData::size (C++ member), 629
DecalData::texCols (C++ member), 629
DecalData::texRows (C++ member), 629
DecalData::textureCoordCount (C++ member), 629
DecalData::textureCoords (C++ member), 629
decalManagerAddDecal (C++ function), 650
decalManagerClear (C++ function), 650
decalManagerDirty (C++ function), 650
decalManagerLoad (C++ function), 651
decalManagerRemoveDecal (C++ function), 651
decalManagerSave (C++ function), 651
DecalRoad::breakAngle (C++ member), 693
DecalRoad::discardAll (C++ member), 693
DecalRoad::EditorOpen (C++ member), 693
DecalRoad::Material (C++ member), 693
DecalRoad::Node (C++ member), 694
DecalRoad::postApply (C++ function), 693
DecalRoad::regenerate (C++ function), 693
DecalRoad::renderPriority (C++ member), 694
DecalRoad::showBatches (C++ member), 694
DecalRoad::showRoad (C++ member), 694
DecalRoad::showSpline (C++ member), 694
DecalRoad::textureLength (C++ member), 694
DecalRoad::updateDelay (C++ member), 694

DecalRoad::wireframe (C++ member), 694
deleteVariables (C++ function), 324
describeGFXResources (C++ function), 850
describeGFXStateBlocks (C++ function), 851
detag (C++ function), 774
disableJoystick (C++ function), 745
disableXInput (C++ function), 745
dispatchMessage (C++ function), 316
dispatchMessageObject (C++ function), 316
displaySplashWindow (C++ function), 776
DNetSetLogging (C++ function), 774
dumpAlloc (C++ function), 307
dumpConsoleClasses (C++ function), 310
dumpConsoleFunctions (C++ function), 310
dumpEngineDocs (C++ function), 305
dumpFontCacheStatus (C++ function), 828
dumpMaterialInstances (C++ member), 853
dumpMemSnapshot (C++ function), 307
dumpNetStats (C++ function), 774
dumpNetStringTable (C++ function), 774
dumpRandomNormalMap (C++ function), 851
dumpStringMemStats (C++ function), 365
dumpTextureObjects (C++ function), 851
dumpUnflaggedAllocs (C++ function), 307
duplicateCachedFont (C++ function), 828

E
echo (C++ function), 310
echoInputState (C++ function), 745
enableJoystick (C++ function), 745
enableSamples (C++ function), 827
enableXInput (C++ function), 745
endsWith (C++ function), 365
error (C++ function), 311
EventManager::dumpEvents (C++ function), 312
EventManager::dumpSubscribers (C++ function), 312
EventManager::isRegisteredEvent (C++ function), 312
EventManager::postEvent (C++ function), 312
EventManager::queue (C++ member), 313
EventManager::registerEvent (C++ function), 312
EventManager::remove (C++ function), 312
EventManager::removeAll (C++ function), 313
EventManager::subscribe (C++ function), 313
EventManager::unregisterEvent (C++ function), 313
excludeOtherInstance (C++ function), 428
exec (C++ function), 324
execPrefs (C++ function), 325
expandEscape (C++ function), 366
expandFilename (C++ function), 350
expandOldFilename (C++ function), 350
ExplosionData::camShakeAmp (C++ member), 631
ExplosionData::camShakeDuration (C++ member), 631
ExplosionData::camShakeFalloff (C++ member), 631
ExplosionData::camShakeFreq (C++ member), 631

908 Index

Torque 3D Documentation, Release 3.5.1

ExplosionData::camShakeRadius (C++ member), 631
ExplosionData::Debris (C++ member), 631
ExplosionData::debrisNum (C++ member), 631
ExplosionData::debrisNumVariance (C++ member), 631
ExplosionData::debrisPhiMax (C++ member), 631
ExplosionData::debrisPhiMin (C++ member), 631
ExplosionData::debrisThetaMax (C++ member), 631
ExplosionData::debrisThetaMin (C++ member), 631
ExplosionData::debrisVelocity (C++ member), 632
ExplosionData::debrisVelocityVariance (C++ member),

632
ExplosionData::delayMS (C++ member), 632
ExplosionData::delayVariance (C++ member), 632
ExplosionData::emitter (C++ member), 632
ExplosionData::explosionScale (C++ member), 632
ExplosionData::explosionShape (C++ member), 632
ExplosionData::faceViewer (C++ member), 632
ExplosionData::lifetimeMS (C++ member), 632
ExplosionData::lifetimeVariance (C++ member), 632
ExplosionData::lightEndBrightness (C++ member), 632
ExplosionData::lightEndColor (C++ member), 632
ExplosionData::lightEndRadius (C++ member), 632
ExplosionData::lightNormalOffset (C++ member), 632
ExplosionData::lightStartBrightness (C++ member), 632
ExplosionData::lightStartColor (C++ member), 632
ExplosionData::lightStartRadius (C++ member), 632
ExplosionData::offset (C++ member), 632
ExplosionData::particleDensity (C++ member), 632
ExplosionData::ParticleEmitter (C++ member), 633
ExplosionData::particleRadius (C++ member), 633
ExplosionData::playSpeed (C++ member), 633
ExplosionData::shakeCamera (C++ member), 633
ExplosionData::sizes (C++ member), 633
ExplosionData::soundProfile (C++ member), 633
ExplosionData::subExplosion (C++ member), 633
ExplosionData::times (C++ member), 633
exportCachedFont (C++ function), 828
exportEngineAPIToXML (C++ function), 305

F
fileBase (C++ function), 350
fileCreatedTime (C++ function), 350
fileDelete (C++ function), 350
FileDialog::changePath (C++ member), 328
FileDialog::defaultFile (C++ member), 329
FileDialog::defaultPath (C++ member), 329
FileDialog::Execute (C++ function), 327
FileDialog::fileName (C++ member), 329
FileDialog::filters (C++ member), 329
FileDialog::title (C++ member), 329
fileExt (C++ function), 350
fileModifiedTime (C++ function), 351
fileName (C++ function), 351
FileObject::close (C++ function), 330

FileObject::isEOF (C++ function), 330
FileObject::openForAppend (C++ function), 331
FileObject::openForRead (C++ function), 331
FileObject::openForWrite (C++ function), 331
FileObject::peekLine (C++ function), 331
FileObject::readLine (C++ function), 332
FileObject::writeLine (C++ function), 332
FileObject::writeObject (C++ function), 332, 333
filePath (C++ function), 351
fileSize (C++ function), 351
FileStreamObject::close (C++ function), 334
FileStreamObject::open (C++ function), 335
filterString (C++ function), 513
findFirstFile (C++ function), 353
findFirstFileMultiExpr (C++ function), 354
findNextFile (C++ function), 354
findNextFileMultiExpr (C++ function), 354
firstWord (C++ function), 373
flagCurrentAllocs (C++ function), 307
flagCurrentGFXResources (C++ function), 851
flushTextureCache (C++ function), 851
FlyingVehicle::useCreateHeight (C++ function), 670
FlyingVehicleData::autoAngularForce (C++ member),

670
FlyingVehicleData::autoInputDamping (C++ member),

670
FlyingVehicleData::autoLinearForce (C++ member), 670
FlyingVehicleData::backwardJetEmitter (C++ member),

670
FlyingVehicleData::createHoverHeight (C++ member),

670
FlyingVehicleData::downJetEmitter (C++ member), 670
FlyingVehicleData::engineSound (C++ member), 670
FlyingVehicleData::forwardJetEmitter (C++ member),

670
FlyingVehicleData::horizontalSurfaceForce (C++ mem-

ber), 671
FlyingVehicleData::hoverHeight (C++ member), 671
FlyingVehicleData::jetSound (C++ member), 671
FlyingVehicleData::maneuveringForce (C++ member),

671
FlyingVehicleData::maxAutoSpeed (C++ member), 671
FlyingVehicleData::minTrailSpeed (C++ member), 671
FlyingVehicleData::rollForce (C++ member), 671
FlyingVehicleData::rotationalDrag (C++ member), 671
FlyingVehicleData::steeringForce (C++ member), 671
FlyingVehicleData::steeringRollForce (C++ member),

671
FlyingVehicleData::trailEmitter (C++ member), 671
FlyingVehicleData::verticalSurfaceForce (C++ member),

671
FlyingVehicleData::vertThrustMultiple (C++ member),

671
fmodDumpDSPInfo (C++ function), 820

Index 909

Torque 3D Documentation, Release 3.5.1

fmodDumpMemoryStats (C++ function), 820
Forest::clear (C++ function), 698
Forest::dataFile (C++ member), 698
Forest::disableImposters (C++ member), 700
Forest::drawBounds (C++ member), 700
Forest::drawCells (C++ member), 700
Forest::forceImposters (C++ member), 700
Forest::isDirty (C++ function), 698
Forest::lodReflectScalar (C++ member), 698
Forest::regenCells (C++ function), 698
Forest::saveDataFile (C++ member), 698
ForestBrushElement::elevationMax (C++ member), 699
ForestBrushElement::elevationMin (C++ member), 699
ForestBrushElement::ForestItemData (C++ member),

699
ForestBrushElement::probability (C++ member), 699
ForestBrushElement::rotationRange (C++ member), 699
ForestBrushElement::scaleExponent (C++ member), 699
ForestBrushElement::scaleMax (C++ member), 699
ForestBrushElement::scaleMin (C++ member), 699
ForestBrushElement::sinkMax (C++ member), 699
ForestBrushElement::sinkMin (C++ member), 699
ForestBrushElement::sinkRadius (C++ member), 699
ForestBrushElement::slopeMax (C++ member), 699
ForestBrushElement::slopeMin (C++ member), 699
ForestItemData::branchAmp (C++ member), 699
ForestItemData::collidable (C++ member), 699
ForestItemData::dampingCoefficient (C++ member), 699
ForestItemData::detailAmp (C++ member), 699
ForestItemData::detailFreq (C++ member), 700
ForestItemData::mass (C++ member), 700
ForestItemData::radius (C++ member), 700
ForestItemData::rigidity (C++ member), 700
ForestItemData::shapeFile (C++ member), 700
ForestItemData::tightnessCoefficient (C++ member), 700
ForestItemData::trunkBendScale (C++ member), 700
ForestItemData::windScale (C++ member), 700
ForestWindEmitter::attachToObject (C++ function), 634
ForestWindEmitter::gustFrequency (C++ member), 634
ForestWindEmitter::gustStrength (C++ member), 634
ForestWindEmitter::gustWobbleStrength (C++ member),

634
ForestWindEmitter::gustYawAngle (C++ member), 634
ForestWindEmitter::gustYawFrequency (C++ member),

634
ForestWindEmitter::hasMount (C++ member), 634
ForestWindEmitter::radialEmitter (C++ member), 634
ForestWindEmitter::radius (C++ member), 634
ForestWindEmitter::strength (C++ member), 634
ForestWindEmitter::turbulenceFrequency (C++ mem-

ber), 634
ForestWindEmitter::turbulenceStrength (C++ member),

634
ForestWindEmitter::windEnabled (C++ member), 634

freeMemoryDump (C++ function), 307
fxFoliageReplicator::AllowedTerrainSlope (C++ mem-

ber), 701
fxFoliageReplicator::AllowOnStatics (C++ member), 701
fxFoliageReplicator::AllowOnTerrain (C++ member),

701
fxFoliageReplicator::AllowOnWater (C++ member), 701
fxFoliageReplicator::AllowWaterSurface (C++ member),

701
fxFoliageReplicator::AlphaCutoff (C++ member), 701
fxFoliageReplicator::CullResolution (C++ member), 701
fxFoliageReplicator::DebugBoxHeight (C++ member),

701
fxFoliageReplicator::FadeInRegion (C++ member), 701
fxFoliageReplicator::FadeOutRegion (C++ member), 701
fxFoliageReplicator::FixAspectRatio (C++ member), 701
fxFoliageReplicator::FixSizeToMax (C++ member), 701
fxFoliageReplicator::FoliageCount (C++ member), 701
fxFoliageReplicator::FoliageFile (C++ member), 701
fxFoliageReplicator::FoliageRetries (C++ member), 701
fxFoliageReplicator::GroundAlpha (C++ member), 701
fxFoliageReplicator::HideFoliage (C++ member), 701
fxFoliageReplicator::InnerRadiusX (C++ member), 701
fxFoliageReplicator::InnerRadiusY (C++ member), 701
fxFoliageReplicator::LightOn (C++ member), 701
fxFoliageReplicator::LightSync (C++ member), 701
fxFoliageReplicator::lightTime (C++ member), 701
fxFoliageReplicator::MaxHeight (C++ member), 702
fxFoliageReplicator::MaxLuminance (C++ member), 702
fxFoliageReplicator::MaxSwayTime (C++ member), 702
fxFoliageReplicator::MaxWidth (C++ member), 702
fxFoliageReplicator::MinHeight (C++ member), 702
fxFoliageReplicator::MinLuminance (C++ member), 702
fxFoliageReplicator::MinSwayTime (C++ member), 702
fxFoliageReplicator::MinWidth (C++ member), 702
fxFoliageReplicator::OffsetZ (C++ member), 702
fxFoliageReplicator::OuterRadiusX (C++ member), 702
fxFoliageReplicator::OuterRadiusY (C++ member), 702
fxFoliageReplicator::PlacementAreaHeight (C++ mem-

ber), 702
fxFoliageReplicator::PlacementColour (C++ member),

702
fxFoliageReplicator::RandomFlip (C++ member), 702
fxFoliageReplicator::seed (C++ member), 702
fxFoliageReplicator::ShowPlacementArea (C++ mem-

ber), 702
fxFoliageReplicator::SwayMagFront (C++ member), 702
fxFoliageReplicator::SwayMagSide (C++ member), 702
fxFoliageReplicator::SwayOn (C++ member), 702
fxFoliageReplicator::SwaySync (C++ member), 702
fxFoliageReplicator::UseCulling (C++ member), 702
fxFoliageReplicator::UseDebugInfo (C++ member), 703
fxFoliageReplicator::useTrueBillboards (C++ member),

703

910 Index

Torque 3D Documentation, Release 3.5.1

fxFoliageReplicator::ViewClosest (C++ member), 703
fxFoliageReplicator::ViewDistance (C++ member), 703
fxShapeReplicatedStatic::allowPlayerStep (C++ mem-

ber), 703
fxShapeReplicatedStatic::collisionType (C++ member),

703
fxShapeReplicatedStatic::decalType (C++ member), 703
fxShapeReplicatedStatic::forceDetail (C++ member), 703
fxShapeReplicatedStatic::meshCulling (C++ member),

703
fxShapeReplicatedStatic::originSort (C++ member), 703
fxShapeReplicatedStatic::playAmbient (C++ member),

703
fxShapeReplicatedStatic::renderNormals (C++ member),

703
fxShapeReplicatedStatic::shapeName (C++ member),

703
fxShapeReplicatedStatic::skin (C++ member), 703
fxShapeReplicator::AlignToTerrain (C++ member), 704
fxShapeReplicator::AllowedTerrainSlope (C++ member),

704
fxShapeReplicator::AllowOnStatics (C++ member), 704
fxShapeReplicator::AllowOnTerrain (C++ member), 704
fxShapeReplicator::AllowOnWater (C++ member), 704
fxShapeReplicator::AllowWaterSurface (C++ member),

704
fxShapeReplicator::HideReplications (C++ member),

704
fxShapeReplicator::InnerRadiusX (C++ member), 704
fxShapeReplicator::InnerRadiusY (C++ member), 704
fxShapeReplicator::Interactions (C++ member), 704
fxShapeReplicator::OffsetZ (C++ member), 704
fxShapeReplicator::OuterRadiusX (C++ member), 704
fxShapeReplicator::OuterRadiusY (C++ member), 704
fxShapeReplicator::PlacementAreaHeight (C++ mem-

ber), 704
fxShapeReplicator::PlacementColour (C++ member),

704
fxShapeReplicator::seed (C++ member), 704
fxShapeReplicator::ShapeCount (C++ member), 705
fxShapeReplicator::shapeFile (C++ member), 705
fxShapeReplicator::ShapeRetries (C++ member), 705
fxShapeReplicator::ShapeRotateMax (C++ member), 705
fxShapeReplicator::ShapeRotateMin (C++ member), 705
fxShapeReplicator::ShapeScaleMax (C++ member), 705
fxShapeReplicator::ShapeScaleMin (C++ member), 705
fxShapeReplicator::ShowPlacementArea (C++ member),

705
fxShapeReplicator::TerrainAlignment (C++ member),

705

G
GameBase::applyImpulse (C++ function), 532
GameBase::applyRadialImpulse (C++ function), 532

GameBase::boundingBox (C++ member), 533
GameBase::dataBlock (C++ member), 533
GameBase::getDataBlock (C++ function), 532
GameBase::setControl (C++ function), 532
GameBase::setDataBlock (C++ function), 533
GameBaseData::category (C++ member), 534
GameBaseData::onAdd (C++ function), 533
GameBaseData::onMount (C++ function), 534
GameBaseData::onNewDataBlock (C++ function), 534
GameBaseData::onRemove (C++ function), 534
GameBaseData::onUnmount (C++ function), 534
GameConnection::activateGhosting (C++ function), 751
GameConnection::chaseCam (C++ function), 751
GameConnection::clearCameraObject (C++ function),

751
GameConnection::clearDisplayDevice (C++ function),

751
GameConnection::getCameraObject (C++ function), 752
GameConnection::getControlCameraDefaultFov (C++

function), 752
GameConnection::getControlCameraFov (C++ function),

752
GameConnection::getControlObject (C++ function), 752
GameConnection::getControlSchemeAbsoluteRotation

(C++ function), 752
GameConnection::getDamageFlash (C++ function), 752
GameConnection::getServerConnection (C++ function),

752
GameConnection::getWhiteOut (C++ function), 752
GameConnection::initialControlSet (C++ function), 752
GameConnection::isAIControlled (C++ function), 752
GameConnection::isControlObjectRotDampedCamera

(C++ function), 752
GameConnection::isDemoPlaying (C++ function), 752
GameConnection::isDemoRecording (C++ function), 752
GameConnection::isFirstPerson (C++ function), 752
GameConnection::listClassIDs (C++ function), 752
GameConnection::onConnectionAccepted (C++ func-

tion), 752
GameConnection::onConnectionDropped (C++ func-

tion), 752
GameConnection::onConnectionError (C++ function),

753
GameConnection::onConnectionTimedOut (C++ func-

tion), 753
GameConnection::onConnectRequestRejected (C++

function), 753
GameConnection::onConnectRequestTimedOut (C++

function), 753
GameConnection::onControlObjectChange (C++ func-

tion), 753
GameConnection::onDataBlocksDone (C++ function),

753
GameConnection::onDrop (C++ function), 753

Index 911

Torque 3D Documentation, Release 3.5.1

GameConnection::onFlash (C++ function), 753
GameConnection::play2D (C++ function), 753
GameConnection::play3D (C++ function), 753
GameConnection::playDemo (C++ function), 754
GameConnection::resetGhosting (C++ function), 754
GameConnection::setBlackOut (C++ function), 754
GameConnection::setCameraObject (C++ function), 754
GameConnection::setConnectArgs (C++ function), 754
GameConnection::setControlCameraFov (C++ function),

754
GameConnection::setControlObject (C++ function), 755
GameConnection::setControlSchemeParameters (C++

function), 755
GameConnection::setFirstPerson (C++ function), 755
GameConnection::setJoinPassword (C++ function), 755
GameConnection::setLagIcon (C++ function), 755
GameConnection::setMissionCRC (C++ function), 755
GameConnection::startRecording (C++ function), 756
GameConnection::stopRecording (C++ function), 756
GameConnection::transmitDataBlocks (C++ function),

756
generateUUID (C++ function), 377
getActiveDDSFiles (C++ function), 827
getActiveLightManager (C++ function), 862
getAppVersionNumber (C++ member), 309
getAppVersionString (C++ member), 309
getBestHDRFormat (C++ function), 851
getBitmapInfo (C++ function), 827
getBoxCenter (C++ function), 355
getBuildString (C++ member), 309
getCategoryOfClass (C++ function), 305
getCompileTimeString (C++ member), 309
getCoreLangTable (C++ function), 786
getCurrentActionMap (C++ function), 745
getCurrentDirectory (C++ function), 351
getDescriptionOfClass (C++ function), 305
getDesktopResolution (C++ function), 851
getDirectoryList (C++ function), 351
getDisplayDeviceInformation (C++ function), 851
getDisplayDeviceList (C++ function), 851
getDSOPath (C++ function), 325
getEngineName (C++ member), 309
getExecutableName (C++ function), 351
getField (C++ function), 373
getFieldCount (C++ function), 374
getFields (C++ function), 374
getFileCount (C++ function), 355
getFileCountMultiExpr (C++ function), 355
getFileCRC (C++ function), 351
getFunctionPackage (C++ function), 317
getLightManagerNames (C++ function), 862
getMainDotCsDir (C++ function), 351
getMaterialMapping (C++ function), 853
getMax (C++ function), 355

getMethodPackage (C++ function), 317
getMin (C++ function), 356
getMissionAreaServerObject (C++ function), 720
getOVRHMDChromaticAbCorrection (C++ function),

513
getOVRHMDCount (C++ function), 513
getOVRHMDCurrentIPD (C++ function), 513
getOVRHMDDisplayDesktopPos (C++ function), 513
getOVRHMDDisplayDeviceId (C++ function), 513
getOVRHMDDisplayDeviceName (C++ function), 513
getOVRHMDDistortionCoefficients (C++ function), 514
getOVRHMDDistortionScale (C++ function), 514
getOVRHMDEyeXOffsets (C++ function), 514
getOVRHMDManufacturer (C++ function), 514
getOVRHMDProductName (C++ function), 514
getOVRHMDProfileIPD (C++ function), 514
getOVRHMDResolution (C++ function), 514
getOVRHMDVersion (C++ function), 514
getOVRHMDXCenterOffset (C++ function), 514
getOVRHMDYFOV (C++ function), 514
getOVRSensorAcceleration (C++ function), 515
getOVRSensorAngVelocity (C++ function), 515
getOVRSensorCount (C++ function), 515
getOVRSensorEulerRotation (C++ function), 515
getOVRSensorGravityCorrection (C++ function), 515
getOVRSensorMagnetometer (C++ function), 515
getOVRSensorMagnetometerCalibrated (C++ function),

515
getOVRSensorPredictionTime (C++ function), 515
getOVRSensorYawCorrection (C++ function), 515
getPackageList (C++ function), 317
getPixelShaderVersion (C++ function), 851
getRandom (C++ function), 364
getRandomSeed (C++ function), 365
getRazerHydraControllerPos (C++ function), 515
getRazerHydraControllerRot (C++ function), 516
getRazerHydraControllerTransform (C++ function), 516
getRealTime (C++ function), 777
getRecord (C++ function), 374
getRecordCount (C++ function), 374
getRecords (C++ function), 375
getSimTime (C++ function), 777
getSubStr (C++ function), 366
getTag (C++ function), 774
getTaggedString (C++ function), 774
getTerrainHeight (C++ function), 697
getTerrainHeightBelowPosition (C++ function), 697
getTerrainUnderWorldPoint (C++ function), 697
getTextureProfileStats (C++ function), 851
getTrailingNumber (C++ function), 366
getVariable (C++ function), 325
getVersionNumber (C++ member), 309
getVersionString (C++ member), 309
getWebDeployment (C++ function), 777

912 Index

Torque 3D Documentation, Release 3.5.1

getWord (C++ function), 375
getWordCount (C++ function), 375
getWords (C++ function), 375
getWorkingDirectory (C++ function), 351
getXInputState (C++ function), 746
GFXCardProfilerAPI::getCard (C++ function), 833
GFXCardProfilerAPI::getRenderer (C++ function), 833
GFXCardProfilerAPI::getVendor (C++ function), 833
GFXCardProfilerAPI::getVersion (C++ function), 833
GFXCardProfilerAPI::getVideoMemoryMB (C++ func-

tion), 833
GFXCardProfilerAPI::queryProfile (C++ function), 833
GFXCardProfilerAPI::setCapability (C++ function), 833
GFXInit::createNullDevice (C++ function), 833
GFXInit::getAdapterCount (C++ function), 851
GFXInit::getAdapterMode (C++ function), 833
GFXInit::getAdapterModeCount (C++ function), 833
GFXInit::getAdapterName (C++ function), 834
GFXInit::getAdapterOutputName (C++ function), 834
GFXInit::getAdapterShaderModel (C++ function), 834
GFXInit::getAdapterType (C++ function), 834
GFXInit::getDefaultAdapterIndex (C++ function), 834
GFXSamplerStateData::addressModeU (C++ member),

835
GFXSamplerStateData::addressModeV (C++ member),

835
GFXSamplerStateData::addressModeW (C++ member),

835
GFXSamplerStateData::alphaArg1 (C++ member), 835
GFXSamplerStateData::alphaArg2 (C++ member), 835
GFXSamplerStateData::alphaArg3 (C++ member), 835
GFXSamplerStateData::alphaOp (C++ member), 835
GFXSamplerStateData::colorArg1 (C++ member), 835
GFXSamplerStateData::colorArg2 (C++ member), 835
GFXSamplerStateData::colorArg3 (C++ member), 835
GFXSamplerStateData::magFilter (C++ member), 835
GFXSamplerStateData::maxAnisotropy (C++ member),

835
GFXSamplerStateData::minFilter (C++ member), 835
GFXSamplerStateData::mipFilter (C++ member), 835
GFXSamplerStateData::mipLODBias (C++ member),

835
GFXSamplerStateData::resultArg (C++ member), 835
GFXSamplerStateData::textureColorOp (C++ member),

835
GFXSamplerStateData::textureTransform (C++ mem-

ber), 835
GFXStateBlockData::alphaDefined (C++ member), 836
GFXStateBlockData::alphaTestEnable (C++ member),

836
GFXStateBlockData::alphaTestFunc (C++ member), 836
GFXStateBlockData::alphaTestRef (C++ member), 836
GFXStateBlockData::blendDefined (C++ member), 836
GFXStateBlockData::blendDest (C++ member), 836

GFXStateBlockData::blendEnable (C++ member), 836
GFXStateBlockData::blendOp (C++ member), 836
GFXStateBlockData::blendSrc (C++ member), 836
GFXStateBlockData::colorWriteAlpha (C++ member),

836
GFXStateBlockData::colorWriteBlue (C++ member),

836
GFXStateBlockData::colorWriteDefined (C++ member),

836
GFXStateBlockData::colorWriteGreen (C++ member),

836
GFXStateBlockData::colorWriteRed (C++ member), 836
GFXStateBlockData::cullDefined (C++ member), 837
GFXStateBlockData::cullMode (C++ member), 837
GFXStateBlockData::ffLighting (C++ member), 837
GFXStateBlockData::samplersDefined (C++ member),

837
GFXStateBlockData::samplerStates (C++ member), 837
GFXStateBlockData::separateAlphaBlendDefined (C++

member), 837
GFXStateBlockData::separateAlphaBlendDest (C++

member), 837
GFXStateBlockData::separateAlphaBlendEnable (C++

member), 837
GFXStateBlockData::separateAlphaBlendOp (C++

member), 837
GFXStateBlockData::separateAlphaBlendSrc (C++

member), 837
GFXStateBlockData::stencilDefined (C++ member), 837
GFXStateBlockData::stencilEnable (C++ member), 837
GFXStateBlockData::stencilFailOp (C++ member), 837
GFXStateBlockData::stencilFunc (C++ member), 837
GFXStateBlockData::stencilMask (C++ member), 837
GFXStateBlockData::stencilPassOp (C++ member), 837
GFXStateBlockData::stencilRef (C++ member), 837
GFXStateBlockData::stencilWriteMask (C++ member),

837
GFXStateBlockData::stencilZFailOp (C++ member), 837
GFXStateBlockData::textureFactor (C++ member), 837
GFXStateBlockData::vertexColorEnable (C++ member),

838
GFXStateBlockData::zBias (C++ member), 838
GFXStateBlockData::zDefined (C++ member), 838
GFXStateBlockData::zEnable (C++ member), 838
GFXStateBlockData::zFunc (C++ member), 838
GFXStateBlockData::zSlopeBias (C++ member), 838
GFXStateBlockData::zWriteEnable (C++ member), 838
gotoWebPage (C++ function), 777
GroundCover::billboardUVs (C++ member), 705
GroundCover::clumpExponent (C++ member), 705
GroundCover::clumpRadius (C++ member), 705
GroundCover::dissolveRadius (C++ member), 705
GroundCover::gridSize (C++ member), 705
GroundCover::invertLayer (C++ member), 705

Index 913

Torque 3D Documentation, Release 3.5.1

GroundCover::layer (C++ member), 705
GroundCover::lockFrustum (C++ member), 705
GroundCover::Material (C++ member), 705
GroundCover::maxBillboardTiltAngle (C++ member),

706
GroundCover::maxClumpCount (C++ member), 706
GroundCover::maxElements (C++ member), 706
GroundCover::maxElevation (C++ member), 706
GroundCover::maxSlope (C++ member), 706
GroundCover::minClumpCount (C++ member), 706
GroundCover::minElevation (C++ member), 706
GroundCover::noBillboards (C++ member), 706
GroundCover::noShapes (C++ member), 706
GroundCover::probability (C++ member), 706
GroundCover::radius (C++ member), 706
GroundCover::reflectScale (C++ member), 706
GroundCover::renderCells (C++ member), 706
GroundCover::renderedBatches (C++ member), 707
GroundCover::renderedBillboards (C++ member), 707
GroundCover::renderedCells (C++ member), 707
GroundCover::renderedShapes (C++ member), 707
GroundCover::seed (C++ member), 706
GroundCover::shapeCullRadius (C++ member), 706
GroundCover::shapeFilename (C++ member), 706
GroundCover::shapesCastShadows (C++ member), 706
GroundCover::sizeExponent (C++ member), 706
GroundCover::sizeMax (C++ member), 706
GroundCover::sizeMin (C++ member), 706
GroundCover::windDirection (C++ member), 706
GroundCover::windGustFrequency (C++ member), 707
GroundCover::windGustLength (C++ member), 707
GroundCover::windGustStrength (C++ member), 707
GroundCover::windScale (C++ member), 707
GroundCover::windTurbulenceFrequency (C++ mem-

ber), 707
GroundCover::windTurbulenceStrength (C++ member),

707
GroundCover::zOffset (C++ member), 707
GroundPlane::Material (C++ member), 694
GroundPlane::postApply (C++ function), 694
GroundPlane::scaleU (C++ member), 694
GroundPlane::scaleV (C++ member), 694
GroundPlane::squareSize (C++ member), 694
GuiAutoScrollCtrl::childBorder (C++ member), 451
GuiAutoScrollCtrl::isLooping (C++ member), 451
GuiAutoScrollCtrl::onComplete (C++ function), 451
GuiAutoScrollCtrl::onReset (C++ function), 451
GuiAutoScrollCtrl::onStart (C++ function), 451
GuiAutoScrollCtrl::onTick (C++ function), 451
GuiAutoScrollCtrl::reset (C++ function), 451
GuiAutoScrollCtrl::resetDelay (C++ member), 451
GuiAutoScrollCtrl::scrollDirection (C++ member), 451
GuiAutoScrollCtrl::scrollOutOfSight (C++ member), 451
GuiAutoScrollCtrl::scrollSpeed (C++ member), 451

GuiAutoScrollCtrl::startDelay (C++ member), 451
GuiBitmapButtonCtrl::autoFitExtents (C++ member),

430
GuiBitmapButtonCtrl::bitmap (C++ member), 430
GuiBitmapButtonCtrl::bitmapMode (C++ member), 430
GuiBitmapButtonCtrl::onAltClick (C++ function), 430
GuiBitmapButtonCtrl::onCtrlClick (C++ function), 430
GuiBitmapButtonCtrl::onDefaultClick (C++ function),

430
GuiBitmapButtonCtrl::onShiftClick (C++ function), 430
GuiBitmapButtonCtrl::setBitmap (C++ function), 430
GuiBitmapButtonCtrl::useModifiers (C++ member), 430
GuiBitmapButtonCtrl::useStates (C++ member), 430
GuiBitmapCtrl::bitmap (C++ member), 435
GuiBitmapCtrl::setBitmap (C++ function), 435
GuiBitmapCtrl::setValue (C++ function), 435
GuiBitmapCtrl::wrap (C++ member), 435
GuiButtonBaseCtrl::buttonType (C++ member), 432
GuiButtonBaseCtrl::getText (C++ function), 431
GuiButtonBaseCtrl::groupNum (C++ member), 432
GuiButtonBaseCtrl::onClick (C++ function), 431
GuiButtonBaseCtrl::onDoubleClick (C++ function), 431
GuiButtonBaseCtrl::onMouseDown (C++ function), 431
GuiButtonBaseCtrl::onMouseDragged (C++ function),

431
GuiButtonBaseCtrl::onMouseEnter (C++ function), 431
GuiButtonBaseCtrl::onMouseLeave (C++ function), 431
GuiButtonBaseCtrl::onMouseUp (C++ function), 431
GuiButtonBaseCtrl::onRightClick (C++ function), 431
GuiButtonBaseCtrl::performClick (C++ function), 431
GuiButtonBaseCtrl::resetState (C++ function), 432
GuiButtonBaseCtrl::setStateOn (C++ function), 432
GuiButtonBaseCtrl::setText (C++ function), 432
GuiButtonBaseCtrl::setTextID (C++ function), 432
GuiButtonBaseCtrl::text (C++ member), 432
GuiButtonBaseCtrl::textID (C++ member), 432
GuiButtonBaseCtrl::useMouseEvents (C++ member),

432
GuiCanvas::alwaysHandleMouseButtons (C++ member),

391
GuiCanvas::clientToScreen (C++ function), 385
GuiCanvas::cursorOff (C++ function), 385
GuiCanvas::cursorOn (C++ function), 386
GuiCanvas::findFirstMatchingMonitor (C++ function),

386
GuiCanvas::getContent (C++ function), 386
GuiCanvas::getCursorPos (C++ function), 386
GuiCanvas::getExtent (C++ function), 386
GuiCanvas::getMode (C++ function), 386
GuiCanvas::getModeCount (C++ function), 386
GuiCanvas::getMonitorCount (C++ function), 387
GuiCanvas::getMonitorName (C++ function), 387
GuiCanvas::getMonitorRect (C++ function), 387
GuiCanvas::getMouseControl (C++ function), 387

914 Index

Torque 3D Documentation, Release 3.5.1

GuiCanvas::getVideoMode (C++ function), 387
GuiCanvas::getWindowPosition (C++ function), 387
GuiCanvas::hideCursor (C++ function), 387
GuiCanvas::isCursorOn (C++ function), 387
GuiCanvas::isCursorShown (C++ function), 387
GuiCanvas::isFullscreen (C++ function), 388
GuiCanvas::isMaximized (C++ function), 388
GuiCanvas::isMinimized (C++ function), 388
GuiCanvas::maximizeWindow (C++ function), 388
GuiCanvas::minimizeWindow (C++ function), 388
GuiCanvas::numFences (C++ member), 391
GuiCanvas::popDialog (C++ function), 388
GuiCanvas::popLayer (C++ function), 388
GuiCanvas::pushDialog (C++ function), 388
GuiCanvas::renderFront (C++ function), 389
GuiCanvas::repaint (C++ function), 389
GuiCanvas::reset (C++ function), 389
GuiCanvas::restoreWindow (C++ function), 389
GuiCanvas::screenToClient (C++ function), 389
GuiCanvas::setContent (C++ function), 389
GuiCanvas::setCursor (C++ function), 389
GuiCanvas::setCursorPos (C++ function), 389, 390
GuiCanvas::setFocus (C++ function), 390
GuiCanvas::setVideoMode (C++ function), 390
GuiCanvas::setWindowPosition (C++ function), 390
GuiCanvas::setWindowTitle (C++ function), 390
GuiCanvas::showCursor (C++ function), 390
GuiCanvas::toggleFullscreen (C++ function), 390
GuiCheckBoxCtrl::isStateOn (C++ function), 433
GuiCheckBoxCtrl::setStateOn (C++ function), 433
GuiChunkedBitmapCtrl::bitmap (C++ member), 474
GuiChunkedBitmapCtrl::setBitmap (C++ function), 474
GuiChunkedBitmapCtrl::tile (C++ member), 474
GuiChunkedBitmapCtrl::useVariable (C++ member), 474
GuiClockHud::fillColor (C++ member), 491
GuiClockHud::frameColor (C++ member), 491
GuiClockHud::getTime (C++ function), 491
GuiClockHud::setReverseTime (C++ function), 491
GuiClockHud::setTime (C++ function), 491
GuiClockHud::showFill (C++ member), 491
GuiClockHud::showFrame (C++ member), 491
GuiClockHud::textColor (C++ member), 491
GuiConsole::onMessageSelected (C++ function), 391
GuiConsoleEditCtrl::useSiblingScroller (C++ member),

392
GuiContainer::anchorBottom (C++ member), 451
GuiContainer::anchorLeft (C++ member), 451
GuiContainer::anchorRight (C++ member), 451
GuiContainer::anchorTop (C++ member), 452
GuiContainer::docking (C++ member), 452
GuiContainer::margin (C++ member), 452
GuiContainer::padding (C++ member), 452
GuiControl::accelerator (C++ member), 397
GuiControl::active (C++ member), 397

GuiControl::addGuiControl (C++ function), 393
GuiControl::altCommand (C++ member), 397
GuiControl::clearFirstResponder (C++ function), 393
GuiControl::command (C++ member), 397
GuiControl::controlIsChild (C++ function), 393
GuiControl::extent (C++ member), 397
GuiControl::findHitControl (C++ function), 393
GuiControl::findHitControls (C++ function), 393
GuiControl::getAspect (C++ function), 393
GuiControl::getCenter (C++ function), 393
GuiControl::getExtent (C++ function), 393
GuiControl::getFirstResponder (C++ function), 393
GuiControl::getGlobalCenter (C++ function), 394
GuiControl::getGlobalPosition (C++ function), 394
GuiControl::getMinExtent (C++ function), 394
GuiControl::getParent (C++ function), 394
GuiControl::getPosition (C++ function), 394
GuiControl::getRoot (C++ function), 394
GuiControl::getValue (C++ member), 397
GuiControl::horizSizing (C++ member), 397
GuiControl::hovertime (C++ member), 397
GuiControl::isActive (C++ member), 397
GuiControl::isAwake (C++ function), 394
GuiControl::isContainer (C++ member), 397
GuiControl::isFirstResponder (C++ function), 394
GuiControl::isMouseLocked (C++ function), 394
GuiControl::isVisible (C++ function), 394
GuiControl::langTableMod (C++ member), 397
GuiControl::makeFirstResponder (C++ function), 394
GuiControl::minExtent (C++ member), 397
GuiControl::modal (C++ member), 398
GuiControl::onAction (C++ function), 394
GuiControl::onActive (C++ function), 394
GuiControl::onAdd (C++ function), 395
GuiControl::onControlDragEnter (C++ function), 395
GuiControl::onControlDragExit (C++ function), 395
GuiControl::onControlDragged (C++ function), 395
GuiControl::onControlDropped (C++ function), 395
GuiControl::onDialogPop (C++ function), 395
GuiControl::onDialogPush (C++ function), 395
GuiControl::onGainFirstResponder (C++ function), 395
GuiControl::onLoseFirstResponder (C++ function), 395
GuiControl::onRemove (C++ function), 395
GuiControl::onSleep (C++ function), 396
GuiControl::onVisible (C++ function), 396
GuiControl::onWake (C++ function), 396
GuiControl::pointInControl (C++ function), 396
GuiControl::position (C++ member), 398
GuiControl::profile (C++ member), 398
GuiControl::resize (C++ function), 396
GuiControl::setActive (C++ function), 396
GuiControl::setCenter (C++ function), 396
GuiControl::setExtent (C++ function), 396
GuiControl::setFirstResponder (C++ function), 396

Index 915

Torque 3D Documentation, Release 3.5.1

GuiControl::setFirstResponder (C++ member), 398
GuiControl::setPosition (C++ function), 396
GuiControl::setPositionGlobal (C++ function), 397
GuiControl::setProfile (C++ function), 397
GuiControl::setValue (C++ function), 397
GuiControl::setVisible (C++ function), 397
GuiControl::tooltip (C++ member), 398
GuiControl::tooltipProfile (C++ member), 398
GuiControl::variable (C++ member), 398
GuiControl::vertSizing (C++ member), 398
GuiControl::visible (C++ member), 398
GuiControlArrayControl::colCount (C++ member), 452
GuiControlArrayControl::colSizes (C++ member), 452
GuiControlArrayControl::colSpacing (C++ member),

452
GuiControlArrayControl::rowSize (C++ member), 452
GuiControlArrayControl::rowSpacing (C++ member),

452
GuiControlProfile::autoSizeHeight (C++ member), 398
GuiControlProfile::autoSizeWidth (C++ member), 398
GuiControlProfile::bevelColorHL (C++ member), 398
GuiControlProfile::bevelColorLL (C++ member), 398
GuiControlProfile::bitmap (C++ member), 398
GuiControlProfile::border (C++ member), 398
GuiControlProfile::borderColor (C++ member), 398
GuiControlProfile::borderColorHL (C++ member), 398
GuiControlProfile::borderColorNA (C++ member), 398
GuiControlProfile::borderThickness (C++ member), 398
GuiControlProfile::canKeyFocus (C++ member), 399
GuiControlProfile::category (C++ member), 399
GuiControlProfile::cursorColor (C++ member), 399
GuiControlProfile::fillColor (C++ member), 399
GuiControlProfile::fillColorHL (C++ member), 399
GuiControlProfile::fillColorNA (C++ member), 399
GuiControlProfile::fillColorSEL (C++ member), 399
GuiControlProfile::fontCharset (C++ member), 399
GuiControlProfile::fontColor (C++ member), 399
GuiControlProfile::fontColorHL (C++ member), 399
GuiControlProfile::fontColorLink (C++ member), 399
GuiControlProfile::fontColorLinkHL (C++ member), 399
GuiControlProfile::fontColorNA (C++ member), 399
GuiControlProfile::fontColors (C++ member), 399
GuiControlProfile::fontColorSEL (C++ member), 399
GuiControlProfile::fontSize (C++ member), 399
GuiControlProfile::fontType (C++ member), 399
GuiControlProfile::getStringWidth (C++ function), 398
GuiControlProfile::hasBitmapArray (C++ member), 399
GuiControlProfile::justify (C++ member), 399
GuiControlProfile::modal (C++ member), 399
GuiControlProfile::mouseOverSelected (C++ member),

399
GuiControlProfile::numbersOnly (C++ member), 399
GuiControlProfile::opaque (C++ member), 399

GuiControlProfile::profileForChildren (C++ member),
399

GuiControlProfile::returnTab (C++ member), 399
GuiControlProfile::soundButtonDown (C++ member),

400
GuiControlProfile::soundButtonOver (C++ member), 400
GuiControlProfile::tab (C++ member), 400
GuiControlProfile::textOffset (C++ member), 400
GuiCrossHairHud::damageFillColor (C++ member), 492
GuiCrossHairHud::damageFrameColor (C++ member),

492
GuiCrossHairHud::damageOffset (C++ member), 492
GuiCrossHairHud::damageRect (C++ member), 492
GuiCursor::bitmapName (C++ member), 400
GuiCursor::hotSpot (C++ member), 400
GuiCursor::renderOffset (C++ member), 400
GuiDirectoryFileListCtrl::fileFilter (C++ member), 436
GuiDirectoryFileListCtrl::filePath (C++ member), 436
GuiDirectoryFileListCtrl::getSelectedFile (C++ func-

tion), 436
GuiDirectoryFileListCtrl::getSelectedFiles (C++ func-

tion), 436
GuiDirectoryFileListCtrl::reload (C++ function), 436
GuiDirectoryFileListCtrl::setFilter (C++ function), 436
GuiDirectoryFileListCtrl::setPath (C++ function), 436
GuiDragAndDropControl::deleteOnMouseUp (C++

member), 483
GuiDragAndDropControl::startDragging (C++ function),

483
GuiDynamicCtrlArrayControl::autoCellSize (C++ mem-

ber), 453
GuiDynamicCtrlArrayControl::colCount (C++ member),

453
GuiDynamicCtrlArrayControl::colSize (C++ member),

453
GuiDynamicCtrlArrayControl::colSpacing (C++ mem-

ber), 453
GuiDynamicCtrlArrayControl::dynamicSize (C++ mem-

ber), 453
GuiDynamicCtrlArrayControl::fillRowFirst (C++ mem-

ber), 453
GuiDynamicCtrlArrayControl::frozen (C++ member),

453
GuiDynamicCtrlArrayControl::padding (C++ member),

453
GuiDynamicCtrlArrayControl::refresh (C++ function),

453
GuiDynamicCtrlArrayControl::rowCount (C++ mem-

ber), 453
GuiDynamicCtrlArrayControl::rowSize (C++ member),

453
GuiDynamicCtrlArrayControl::rowSpacing (C++ mem-

ber), 453
GuiFadeinBitmapCtrl::click (C++ function), 401

916 Index

Torque 3D Documentation, Release 3.5.1

GuiFadeinBitmapCtrl::done (C++ member), 401
GuiFadeinBitmapCtrl::fadeColor (C++ member), 401
GuiFadeinBitmapCtrl::fadeInEase (C++ member), 401
GuiFadeinBitmapCtrl::fadeInTime (C++ member), 401
GuiFadeinBitmapCtrl::fadeOutEase (C++ member), 401
GuiFadeinBitmapCtrl::fadeOutTime (C++ member), 401
GuiFadeinBitmapCtrl::onDone (C++ function), 401
GuiFadeinBitmapCtrl::waitTime (C++ member), 401
GuiFrameSetCtrl::addColumn (C++ function), 454
GuiFrameSetCtrl::addRow (C++ function), 454
GuiFrameSetCtrl::autoBalance (C++ member), 456
GuiFrameSetCtrl::borderColor (C++ member), 456
GuiFrameSetCtrl::borderEnable (C++ member), 456
GuiFrameSetCtrl::borderMovable (C++ member), 456
GuiFrameSetCtrl::borderWidth (C++ member), 456
GuiFrameSetCtrl::columns (C++ member), 456
GuiFrameSetCtrl::frameBorder (C++ function), 454
GuiFrameSetCtrl::frameMinExtent (C++ function), 454
GuiFrameSetCtrl::frameMovable (C++ function), 454
GuiFrameSetCtrl::framePadding (C++ function), 454
GuiFrameSetCtrl::fudgeFactor (C++ member), 456
GuiFrameSetCtrl::getColumnCount (C++ function), 455
GuiFrameSetCtrl::getColumnOffset (C++ function), 455
GuiFrameSetCtrl::getFramePadding (C++ function), 455
GuiFrameSetCtrl::getRowCount (C++ function), 455
GuiFrameSetCtrl::getRowOffset (C++ function), 455
GuiFrameSetCtrl::removeColumn (C++ function), 455
GuiFrameSetCtrl::removeRow (C++ function), 455
GuiFrameSetCtrl::rows (C++ member), 456
GuiFrameSetCtrl::setColumnOffset (C++ function), 455
GuiFrameSetCtrl::setRowOffset (C++ function), 455
GuiFrameSetCtrl::updateSizes (C++ function), 455
GuiGameListMenuCtrl::activateRow (C++ function), 492
GuiGameListMenuCtrl::addRow (C++ function), 492
GuiGameListMenuCtrl::callbackOnA (C++ member),

493
GuiGameListMenuCtrl::callbackOnB (C++ member),

494
GuiGameListMenuCtrl::callbackOnX (C++ member),

494
GuiGameListMenuCtrl::callbackOnY (C++ member),

494
GuiGameListMenuCtrl::debugRender (C++ member),

494
GuiGameListMenuCtrl::getRowCount (C++ function),

493
GuiGameListMenuCtrl::getRowLabel (C++ function),

493
GuiGameListMenuCtrl::getSelectedRow (C++ function),

493
GuiGameListMenuCtrl::isRowEnabled (C++ function),

493
GuiGameListMenuCtrl::onChange (C++ function), 493

GuiGameListMenuCtrl::setRowEnabled (C++ function),
493

GuiGameListMenuCtrl::setRowLabel (C++ function),
493

GuiGameListMenuCtrl::setSelected (C++ function), 493
GuiGameListMenuProfile::hitAreaLowerRight (C++

member), 494
GuiGameListMenuProfile::hitAreaUpperLeft (C++

member), 494
GuiGameListMenuProfile::iconOffset (C++ member),

494
GuiGameListMenuProfile::rowSize (C++ member), 494
GuiGameListOptionsCtrl::addRow (C++ function), 494
GuiGameListOptionsCtrl::getCurrentOption (C++ func-

tion), 495
GuiGameListOptionsCtrl::selectOption (C++ function),

495
GuiGameListOptionsCtrl::setOptions (C++ function),

495
GuiGameListOptionsProfile::columnSplit (C++ mem-

ber), 496
GuiGameListOptionsProfile::rightPad (C++ member),

496
GuiGraphCtrl::addAutoPlot (C++ function), 477
GuiGraphCtrl::addDatum (C++ function), 477
GuiGraphCtrl::centerY (C++ member), 478
GuiGraphCtrl::getDatum (C++ function), 477
GuiGraphCtrl::matchScale (C++ function), 477
GuiGraphCtrl::plotColor (C++ member), 478
GuiGraphCtrl::plotInterval (C++ member), 478
GuiGraphCtrl::plotType (C++ member), 478
GuiGraphCtrl::plotVariable (C++ member), 478
GuiGraphCtrl::removeAutoPlot (C++ function), 477
GuiGraphCtrl::setGraphType (C++ function), 478
GuiHealthBarHud::damageFillColor (C++ member), 496
GuiHealthBarHud::displayEnergy (C++ member), 496
GuiHealthBarHud::fillColor (C++ member), 496
GuiHealthBarHud::frameColor (C++ member), 496
GuiHealthBarHud::pulseRate (C++ member), 496
GuiHealthBarHud::pulseThreshold (C++ member), 496
GuiHealthBarHud::showFill (C++ member), 496
GuiHealthBarHud::showFrame (C++ member), 496
GuiHealthTextHud::fillColor (C++ member), 497
GuiHealthTextHud::frameColor (C++ member), 497
GuiHealthTextHud::pulseRate (C++ member), 497
GuiHealthTextHud::pulseThreshold (C++ member), 497
GuiHealthTextHud::showEnergy (C++ member), 497
GuiHealthTextHud::showFill (C++ member), 497
GuiHealthTextHud::showFrame (C++ member), 497
GuiHealthTextHud::showTrueValue (C++ member), 497
GuiHealthTextHud::textColor (C++ member), 497
GuiHealthTextHud::warningColor (C++ member), 497
GuiHealthTextHud::warnThreshold (C++ member), 497
GuiIconButtonCtrl::autoSize (C++ member), 402

Index 917

Torque 3D Documentation, Release 3.5.1

GuiIconButtonCtrl::buttonMargin (C++ member), 402
GuiIconButtonCtrl::iconBitmap (C++ member), 402
GuiIconButtonCtrl::iconLocation (C++ member), 402
GuiIconButtonCtrl::makeIconSquare (C++ member), 402
GuiIconButtonCtrl::setBitmap (C++ function), 402
GuiIconButtonCtrl::sizeIconToButton (C++ member),

402
GuiIconButtonCtrl::textLocation (C++ member), 402
GuiIconButtonCtrl::textMargin (C++ member), 402
GuiInputCtrl::onInputEvent (C++ function), 484
GuiListBoxCtrl::addFilteredItem (C++ function), 403
GuiListBoxCtrl::allowMultipleSelections (C++ member),

410
GuiListBoxCtrl::clearItemColor (C++ function), 403
GuiListBoxCtrl::clearItems (C++ function), 403
GuiListBoxCtrl::clearSelection (C++ function), 403
GuiListBoxCtrl::colorBullet (C++ member), 410
GuiListBoxCtrl::deleteItem (C++ function), 403
GuiListBoxCtrl::doMirror (C++ function), 404
GuiListBoxCtrl::findItemText (C++ function), 404
GuiListBoxCtrl::fitParentWidth (C++ member), 410
GuiListBoxCtrl::getItemCount (C++ function), 404
GuiListBoxCtrl::getItemObject (C++ function), 404
GuiListBoxCtrl::getItemText (C++ function), 404
GuiListBoxCtrl::getLastClickItem (C++ function), 405
GuiListBoxCtrl::getSelCount (C++ function), 405
GuiListBoxCtrl::getSelectedItem (C++ function), 405
GuiListBoxCtrl::getSelectedItems (C++ function), 405
GuiListBoxCtrl::insertItem (C++ function), 405
GuiListBoxCtrl::isObjectMirrored (C++ function), 406
GuiListBoxCtrl::makeNameCallback (C++ member),

410
GuiListBoxCtrl::mirrorSet (C++ member), 410
GuiListBoxCtrl::onClearSelection (C++ function), 406
GuiListBoxCtrl::onDeleteKey (C++ function), 406
GuiListBoxCtrl::onDoubleClick (C++ function), 406
GuiListBoxCtrl::onMouseDragged (C++ function), 406
GuiListBoxCtrl::onMouseUp (C++ function), 407
GuiListBoxCtrl::onSelect (C++ function), 407
GuiListBoxCtrl::onUnselect (C++ function), 407
GuiListBoxCtrl::removeFilteredItem (C++ function), 407
GuiListBoxCtrl::setCurSel (C++ function), 408
GuiListBoxCtrl::setCurSelRange (C++ function), 408
GuiListBoxCtrl::setItemColor (C++ function), 408
GuiListBoxCtrl::setItemText (C++ function), 408
GuiListBoxCtrl::setItemTooltip (C++ function), 409
GuiListBoxCtrl::setMultipleSelection (C++ function),

409
GuiListBoxCtrl::setSelected (C++ function), 409
GuiMenuBar::addMenu (C++ function), 410
GuiMenuBar::addMenuItem (C++ function), 411
GuiMenuBar::addSubmenuItem (C++ function), 411
GuiMenuBar::clearMenuItems (C++ function), 412
GuiMenuBar::clearMenus (C++ function), 412

GuiMenuBar::clearSubmenuItems (C++ function), 412
GuiMenuBar::onMenuItemSelect (C++ function), 412
GuiMenuBar::onMenuSelect (C++ function), 413
GuiMenuBar::onMouseInMenu (C++ function), 413
GuiMenuBar::onSubmenuSelect (C++ function), 413
GuiMenuBar::padding (C++ member), 418
GuiMenuBar::removeMenu (C++ function), 413
GuiMenuBar::removeMenuItem (C++ function), 414
GuiMenuBar::setCheckmarkBitmapIndex (C++ func-

tion), 414
GuiMenuBar::setMenuBitmapIndex (C++ function), 414
GuiMenuBar::setMenuItemBitmap (C++ function), 415
GuiMenuBar::setMenuItemChecked (C++ function), 415
GuiMenuBar::setMenuItemEnable (C++ function), 415
GuiMenuBar::setMenuItemSubmenuState (C++ func-

tion), 416
GuiMenuBar::setMenuItemText (C++ function), 416
GuiMenuBar::setMenuItemVisible (C++ function), 416
GuiMenuBar::setMenuMargins (C++ function), 417
GuiMenuBar::setMenuText (C++ function), 417
GuiMenuBar::setMenuVisible (C++ function), 418
GuiMenuBar::setSubmenuItemChecked (C++ function),

418
GuiMessageVectorCtrl::allowedMatches (C++ member),

485
GuiMessageVectorCtrl::attach (C++ function), 484
GuiMessageVectorCtrl::detach (C++ function), 485
GuiMessageVectorCtrl::lineContinuedIndex (C++ mem-

ber), 485
GuiMessageVectorCtrl::lineSpacing (C++ member), 485
GuiMessageVectorCtrl::matchColor (C++ member), 485
GuiMessageVectorCtrl::maxColorIndex (C++ member),

485
GuiMLTextCtrl::addText (C++ function), 419
GuiMLTextCtrl::allowColorChars (C++ member), 421
GuiMLTextCtrl::deniedSound (C++ member), 421
GuiMLTextCtrl::forceReflow (C++ function), 419
GuiMLTextCtrl::getText (C++ function), 419
GuiMLTextCtrl::lineSpacing (C++ member), 421
GuiMLTextCtrl::maxChars (C++ member), 421
GuiMLTextCtrl::onResize (C++ function), 420
GuiMLTextCtrl::onURL (C++ function), 420
GuiMLTextCtrl::scrollToBottom (C++ function), 420
GuiMLTextCtrl::scrollToTag (C++ function), 420
GuiMLTextCtrl::scrollToTop (C++ function), 420
GuiMLTextCtrl::setAlpha (C++ function), 420
GuiMLTextCtrl::setCursorPosition (C++ function), 421
GuiMLTextCtrl::setText (C++ function), 421
GuiMLTextCtrl::text (C++ member), 421
GuiMLTextCtrl::useURLMouseCursor (C++ member),

421
GuiMLTextEditCtrl::escapeCommand (C++ member),

437
GuiMouseEventCtrl::lockMouse (C++ member), 425

918 Index

Torque 3D Documentation, Release 3.5.1

GuiMouseEventCtrl::onMouseDown (C++ function), 422
GuiMouseEventCtrl::onMouseDragged (C++ function),

422
GuiMouseEventCtrl::onMouseEnter (C++ function), 422
GuiMouseEventCtrl::onMouseLeave (C++ function), 423
GuiMouseEventCtrl::onMouseMove (C++ function), 423
GuiMouseEventCtrl::onMouseUp (C++ function), 423
GuiMouseEventCtrl::onRightMouseDown (C++ func-

tion), 424
GuiMouseEventCtrl::onRightMouseDragged (C++ func-

tion), 424
GuiMouseEventCtrl::onRightMouseUp (C++ function),

424
GuiObjectView::animSequence (C++ member), 383
GuiObjectView::cameraRotation (C++ member), 383
GuiObjectView::cameraSpeed (C++ member), 383
GuiObjectView::getCameraSpeed (C++ function), 379
GuiObjectView::getModel (C++ function), 379
GuiObjectView::getMountedModel (C++ function), 380
GuiObjectView::getMountSkin (C++ function), 380
GuiObjectView::getOrbitDistance (C++ function), 380
GuiObjectView::getSkin (C++ function), 380
GuiObjectView::lightAmbient (C++ member), 383
GuiObjectView::lightColor (C++ member), 383
GuiObjectView::lightDirection (C++ member), 383
GuiObjectView::maxOrbitDiststance (C++ member), 383
GuiObjectView::minOrbitDiststance (C++ member), 383
GuiObjectView::mountedNode (C++ member), 383
GuiObjectView::mountedShapeFile (C++ member), 383
GuiObjectView::mountedSkin (C++ member), 384
GuiObjectView::onMouseEnter (C++ function), 380
GuiObjectView::onMouseLeave (C++ function), 380
GuiObjectView::orbitDiststance (C++ member), 384
GuiObjectView::setCameraSpeed (C++ function), 381
GuiObjectView::setLightAmbient (C++ function), 381
GuiObjectView::setLightColor (C++ function), 381
GuiObjectView::setLightDirection (C++ function), 381
GuiObjectView::setModel (C++ function), 381
GuiObjectView::setMount (C++ function), 382
GuiObjectView::setMountedModel (C++ function), 382
GuiObjectView::setMountSkin (C++ function), 382
GuiObjectView::setOrbitDistance (C++ function), 382
GuiObjectView::setSeq (C++ function), 383
GuiObjectView::setSkin (C++ function), 383
GuiObjectView::shapeFile (C++ member), 384
GuiObjectView::skin (C++ member), 384
GuiPaneControl::barBehindText (C++ member), 456
GuiPaneControl::caption (C++ member), 456
GuiPaneControl::captionID (C++ member), 457
GuiPaneControl::collapsable (C++ member), 457
GuiPaneControl::setCollapsed (C++ function), 456
GuiPopUpMenuCtrl::add (C++ function), 437
GuiPopUpMenuCtrl::addScheme (C++ function), 437
GuiPopUpMenuCtrl::bitmap (C++ member), 438

GuiPopUpMenuCtrl::bitmapBounds (C++ member), 438
GuiPopUpMenuCtrl::changeTextById (C++ function),

437
GuiPopUpMenuCtrl::clear (C++ member), 438
GuiPopUpMenuCtrl::clearEntry (C++ function), 437
GuiPopUpMenuCtrl::findText (C++ function), 437
GuiPopUpMenuCtrl::forceClose (C++ member), 438
GuiPopUpMenuCtrl::forceOnAction (C++ member), 438
GuiPopUpMenuCtrl::getSelected (C++ member), 438
GuiPopUpMenuCtrl::getText (C++ member), 438
GuiPopUpMenuCtrl::getTextById (C++ function), 437
GuiPopUpMenuCtrl::maxPopupHeight (C++ member),

438
GuiPopUpMenuCtrl::replaceText (C++ function), 437
GuiPopUpMenuCtrl::reverseTextList (C++ member), 438
GuiPopUpMenuCtrl::sbUsesNAColor (C++ member),

438
GuiPopUpMenuCtrl::setEnumContent (C++ function),

437
GuiPopUpMenuCtrl::setFirstSelected (C++ function),

438
GuiPopUpMenuCtrl::setNoneSelected (C++ member),

438
GuiPopUpMenuCtrl::setSelected (C++ function), 438
GuiPopUpMenuCtrl::size (C++ member), 438
GuiPopUpMenuCtrl::sort (C++ member), 438
GuiPopUpMenuCtrl::sortID (C++ member), 438
GuiPopUpMenuCtrlEx::add (C++ function), 439
GuiPopUpMenuCtrlEx::addCategory (C++ function),

439
GuiPopUpMenuCtrlEx::addScheme (C++ function), 439
GuiPopUpMenuCtrlEx::bitmap (C++ member), 440
GuiPopUpMenuCtrlEx::bitmapBounds (C++ member),

440
GuiPopUpMenuCtrlEx::clear (C++ function), 439
GuiPopUpMenuCtrlEx::clearEntry (C++ function), 439
GuiPopUpMenuCtrlEx::findText (C++ function), 439
GuiPopUpMenuCtrlEx::forceClose (C++ function), 439
GuiPopUpMenuCtrlEx::forceOnAction (C++ function),

439
GuiPopUpMenuCtrlEx::getColorById (C++ member),

440
GuiPopUpMenuCtrlEx::getSelected (C++ function), 439
GuiPopUpMenuCtrlEx::getText (C++ function), 439
GuiPopUpMenuCtrlEx::getTextById (C++ function), 440
GuiPopUpMenuCtrlEx::hotTrackCallback (C++ mem-

ber), 440
GuiPopUpMenuCtrlEx::maxPopupHeight (C++ mem-

ber), 440
GuiPopUpMenuCtrlEx::replaceText (C++ member), 440
GuiPopUpMenuCtrlEx::reverseTextList (C++ member),

440
GuiPopUpMenuCtrlEx::sbUsesNAColor (C++ member),

441

Index 919

Torque 3D Documentation, Release 3.5.1

GuiPopUpMenuCtrlEx::setEnumContent (C++ member),
441

GuiPopUpMenuCtrlEx::setNoneSelected (C++ function),
440

GuiPopUpMenuCtrlEx::setSelected (C++ function), 440
GuiPopUpMenuCtrlEx::setText (C++ function), 440
GuiPopUpMenuCtrlEx::size (C++ member), 441
GuiPopUpMenuCtrlEx::sort (C++ function), 440
GuiPopUpMenuCtrlEx::sortID (C++ function), 440
GuiProgressBitmapCtrl::bitmap (C++ member), 479
GuiProgressBitmapCtrl::setBitmap (C++ function), 479
GuiRolloutCtrl::autoCollapseSiblings (C++ member),

458
GuiRolloutCtrl::caption (C++ member), 458
GuiRolloutCtrl::clickCollapse (C++ member), 458
GuiRolloutCtrl::collapse (C++ function), 457
GuiRolloutCtrl::defaultHeight (C++ member), 458
GuiRolloutCtrl::expand (C++ function), 457
GuiRolloutCtrl::expanded (C++ member), 458
GuiRolloutCtrl::hideHeader (C++ member), 458
GuiRolloutCtrl::instantCollapse (C++ function), 457
GuiRolloutCtrl::instantExpand (C++ function), 458
GuiRolloutCtrl::isExpanded (C++ function), 458
GuiRolloutCtrl::margin (C++ member), 458
GuiRolloutCtrl::onCollapsed (C++ function), 458
GuiRolloutCtrl::onExpanded (C++ function), 458
GuiRolloutCtrl::onHeaderRightClick (C++ function),

458
GuiRolloutCtrl::sizeToContents (C++ function), 458
GuiRolloutCtrl::toggleCollapse (C++ function), 458
GuiRolloutCtrl::toggleExpanded (C++ function), 458
GuiScriptNotifyCtrl::onChildAdded (C++ function), 485
GuiScriptNotifyCtrl::onChildAdded (C++ member), 486
GuiScriptNotifyCtrl::onChildRemoved (C++ function),

486
GuiScriptNotifyCtrl::onChildRemoved (C++ member),

486
GuiScriptNotifyCtrl::onChildResized (C++ function),

486
GuiScriptNotifyCtrl::onChildResized (C++ member),

486
GuiScriptNotifyCtrl::onGainFirstResponder (C++ func-

tion), 486
GuiScriptNotifyCtrl::onGainFirstResponder (C++ mem-

ber), 486
GuiScriptNotifyCtrl::onLoseFirstResponder (C++ func-

tion), 486
GuiScriptNotifyCtrl::onLoseFirstResponder (C++ mem-

ber), 486
GuiScriptNotifyCtrl::onParentResized (C++ function),

486
GuiScriptNotifyCtrl::onParentResized (C++ member),

486
GuiScriptNotifyCtrl::onResize (C++ function), 486

GuiScriptNotifyCtrl::onResize (C++ member), 486
GuiScrollCtrl::childMargin (C++ member), 459
GuiScrollCtrl::computeSizes (C++ function), 459
GuiScrollCtrl::constantThumbHeight (C++ member),

459
GuiScrollCtrl::getScrollPosition (C++ function), 459
GuiScrollCtrl::getScrollPositionX (C++ function), 459
GuiScrollCtrl::getScrollPositionY (C++ function), 459
GuiScrollCtrl::hScrollBar (C++ member), 459
GuiScrollCtrl::lockHorizScroll (C++ member), 459
GuiScrollCtrl::lockVertScroll (C++ member), 459
GuiScrollCtrl::mouseWheelScrollSpeed (C++ member),

460
GuiScrollCtrl::onScroll (C++ function), 459
GuiScrollCtrl::scrollToBottom (C++ function), 459
GuiScrollCtrl::scrollToObject (C++ function), 459
GuiScrollCtrl::scrollToTop (C++ function), 459
GuiScrollCtrl::setScrollPosition (C++ function), 459
GuiScrollCtrl::vScrollBar (C++ member), 460
GuiScrollCtrl::willFirstRespond (C++ member), 460
GuiSeparatorCtrl::borderMargin (C++ member), 441
GuiSeparatorCtrl::caption (C++ member), 441
GuiSeparatorCtrl::invisible (C++ member), 441
GuiSeparatorCtrl::leftMargin (C++ member), 441
GuiSeparatorCtrl::type (C++ member), 441
GuiShapeNameHud::distanceFade (C++ member), 498
GuiShapeNameHud::fillColor (C++ member), 498
GuiShapeNameHud::frameColor (C++ member), 498
GuiShapeNameHud::labelFillColor (C++ member), 498
GuiShapeNameHud::labelFrameColor (C++ member),

498
GuiShapeNameHud::labelPadding (C++ member), 498
GuiShapeNameHud::showFill (C++ member), 498
GuiShapeNameHud::showFrame (C++ member), 498
GuiShapeNameHud::showLabelFill (C++ member), 498
GuiShapeNameHud::showLabelFrame (C++ member),

498
GuiShapeNameHud::textColor (C++ member), 498
GuiShapeNameHud::verticalOffset (C++ member), 498
GuiSliderCtrl::getValue (C++ function), 480
GuiSliderCtrl::isThumbBeingDragged (C++ function),

480
GuiSliderCtrl::onMouseDragged (C++ function), 480
GuiSliderCtrl::range (C++ member), 481
GuiSliderCtrl::setValue (C++ function), 481
GuiSliderCtrl::snap (C++ member), 481
GuiSliderCtrl::ticks (C++ member), 481
GuiSliderCtrl::value (C++ member), 481
GuiSpeedometerHud::center (C++ member), 460
GuiSpeedometerHud::color (C++ member), 460
GuiSpeedometerHud::length (C++ member), 460
GuiSpeedometerHud::maxAngle (C++ member), 460
GuiSpeedometerHud::maxSpeed (C++ member), 460
GuiSpeedometerHud::minAngle (C++ member), 460

920 Index

Torque 3D Documentation, Release 3.5.1

GuiSpeedometerHud::tail (C++ member), 460
GuiSpeedometerHud::width (C++ member), 460
GuiSplitContainer::fixedPanel (C++ member), 461
GuiSplitContainer::fixedSize (C++ member), 461
GuiSplitContainer::orientation (C++ member), 461
GuiSplitContainer::splitPoint (C++ member), 461
GuiSplitContainer::splitterSize (C++ member), 461
GuiStackControl::changeChildPosition (C++ member),

462
GuiStackControl::changeChildSizeToFit (C++ member),

462
GuiStackControl::dynamicNonStackExtent (C++ mem-

ber), 462
GuiStackControl::dynamicPos (C++ member), 462
GuiStackControl::dynamicSize (C++ member), 463
GuiStackControl::freeze (C++ function), 462
GuiStackControl::horizStacking (C++ member), 463
GuiStackControl::isFrozen (C++ function), 462
GuiStackControl::padding (C++ member), 463
GuiStackControl::stackingType (C++ member), 463
GuiStackControl::updateStack (C++ function), 462
GuiStackControl::vertStacking (C++ member), 463
GuiSwatchButtonCtrl::color (C++ member), 434
GuiSwatchButtonCtrl::gridBitmap (C++ member), 434
GuiSwatchButtonCtrl::setColor (C++ function), 434
GuiTabBookCtrl::addPage (C++ function), 463
GuiTabBookCtrl::allowReorder (C++ member), 464
GuiTabBookCtrl::defaultPage (C++ member), 464
GuiTabBookCtrl::frontTabPadding (C++ member), 464
GuiTabBookCtrl::getSelectedPage (C++ function), 463
GuiTabBookCtrl::minTabWidth (C++ member), 464
GuiTabBookCtrl::onTabRightClick (C++ function), 463
GuiTabBookCtrl::onTabSelected (C++ function), 463
GuiTabBookCtrl::selectedPage (C++ member), 464
GuiTabBookCtrl::selectPage (C++ function), 463
GuiTabBookCtrl::tabHeight (C++ member), 464
GuiTabBookCtrl::tabMargin (C++ member), 464
GuiTabBookCtrl::tabPosition (C++ member), 464
GuiTabPageCtrl::fitBook (C++ member), 464
GuiTabPageCtrl::select (C++ function), 464
GuiTextCtrl::maxLength (C++ member), 425
GuiTextCtrl::setText (C++ function), 425
GuiTextCtrl::setTextID (C++ function), 425
GuiTextCtrl::text (C++ member), 425
GuiTextCtrl::textID (C++ member), 426
GuiTextEditCtrl::clearSelectedText (C++ function), 442
GuiTextEditCtrl::deniedSound (C++ member), 444
GuiTextEditCtrl::escapeCommand (C++ member), 444
GuiTextEditCtrl::forceValidateText (C++ function), 442
GuiTextEditCtrl::getCursorPos (C++ function), 442
GuiTextEditCtrl::getText (C++ function), 442
GuiTextEditCtrl::historySize (C++ member), 444
GuiTextEditCtrl::isAllTextSelected (C++ function), 442
GuiTextEditCtrl::onReturn (C++ function), 443

GuiTextEditCtrl::onTabComplete (C++ function), 443
GuiTextEditCtrl::onValidate (C++ function), 443
GuiTextEditCtrl::password (C++ member), 444
GuiTextEditCtrl::passwordMask (C++ member), 444
GuiTextEditCtrl::selectAllText (C++ function), 443
GuiTextEditCtrl::setCursorPos (C++ function), 443
GuiTextEditCtrl::setText (C++ function), 443
GuiTextEditCtrl::sinkAllKeyEvents (C++ member), 444
GuiTextEditCtrl::tabComplete (C++ member), 444
GuiTextEditCtrl::validate (C++ member), 444
GuiTextEditSliderBitmapCtrl::bitmap (C++ member),

426
GuiTextEditSliderBitmapCtrl::focusOnMouseWheel

(C++ member), 426
GuiTextEditSliderBitmapCtrl::format (C++ member),

426
GuiTextEditSliderBitmapCtrl::increment (C++ member),

426
GuiTextEditSliderBitmapCtrl::range (C++ member), 426
GuiTextEditSliderCtrl::focusOnMouseWheel (C++ mem-

ber), 427
GuiTextEditSliderCtrl::format (C++ member), 427
GuiTextEditSliderCtrl::increment (C++ member), 427
GuiTextEditSliderCtrl::range (C++ member), 427
GuiTextListCtrl::addRow (C++ function), 444
GuiTextListCtrl::clear (C++ function), 445
GuiTextListCtrl::clearSelection (C++ function), 445
GuiTextListCtrl::clipColumnText (C++ member), 449
GuiTextListCtrl::columns (C++ member), 450
GuiTextListCtrl::findTextIndex (C++ function), 445
GuiTextListCtrl::fitParentWidth (C++ member), 450
GuiTextListCtrl::getRowId (C++ function), 445
GuiTextListCtrl::getRowNumById (C++ function), 445
GuiTextListCtrl::getRowText (C++ function), 446
GuiTextListCtrl::getRowTextById (C++ function), 446
GuiTextListCtrl::getSelectedId (C++ function), 446
GuiTextListCtrl::getSelectedRow (C++ function), 446
GuiTextListCtrl::isRowActive (C++ function), 446
GuiTextListCtrl::onDeleteKey (C++ function), 447
GuiTextListCtrl::onSelect (C++ function), 447
GuiTextListCtrl::removeRow (C++ function), 447
GuiTextListCtrl::removeRowById (C++ function), 447
GuiTextListCtrl::rowCount (C++ function), 447
GuiTextListCtrl::scrollVisible (C++ function), 448
GuiTextListCtrl::setRowActive (C++ function), 448
GuiTextListCtrl::setRowById (C++ function), 448
GuiTextListCtrl::setSelectedById (C++ function), 448
GuiTextListCtrl::setSelectedRow (C++ function), 449
GuiTextListCtrl::sort (C++ function), 449
GuiTextListCtrl::sortNumerical (C++ function), 449
GuiTheoraCtrl::backgroundColor (C++ member), 475
GuiTheoraCtrl::getCurrentTime (C++ function), 475
GuiTheoraCtrl::isPlaybackDone (C++ function), 475
GuiTheoraCtrl::matchVideoSize (C++ member), 475

Index 921

Torque 3D Documentation, Release 3.5.1

GuiTheoraCtrl::pause (C++ function), 475
GuiTheoraCtrl::play (C++ function), 475
GuiTheoraCtrl::playOnWake (C++ member), 475
GuiTheoraCtrl::renderDebugInfo (C++ member), 475
GuiTheoraCtrl::setFile (C++ function), 475
GuiTheoraCtrl::stop (C++ function), 475
GuiTheoraCtrl::stopOnSleep (C++ member), 475
GuiTheoraCtrl::theoraFile (C++ member), 475
GuiTheoraCtrl::transcoder (C++ member), 475
GuiTickCtrl::setProcessTicks (C++ function), 487
GuiTreeViewCtrl::addChildSelectionByValue (C++

member), 469
GuiTreeViewCtrl::addSelection (C++ function), 465
GuiTreeViewCtrl::buildIconTable (C++ function), 465
GuiTreeViewCtrl::buildVisibleTree (C++ member), 469
GuiTreeViewCtrl::cancelRename (C++ member), 469
GuiTreeViewCtrl::canRenameObject (C++ function), 465
GuiTreeViewCtrl::canRenameObjects (C++ member),

469
GuiTreeViewCtrl::clear (C++ function), 465
GuiTreeViewCtrl::clearAllOnSingleSelection (C++

member), 469
GuiTreeViewCtrl::clearFilterText (C++ function), 465
GuiTreeViewCtrl::clearSelection (C++ function), 465
GuiTreeViewCtrl::compareToObjectID (C++ member),

469
GuiTreeViewCtrl::deleteObjectAllowed (C++ member),

469
GuiTreeViewCtrl::deleteSelection (C++ function), 465
GuiTreeViewCtrl::destroyTreeOnSleep (C++ member),

469
GuiTreeViewCtrl::dragToItemAllowed (C++ member),

469
GuiTreeViewCtrl::editItem (C++ function), 466
GuiTreeViewCtrl::expandItem (C++ function), 466
GuiTreeViewCtrl::findChildItemByName (C++ func-

tion), 466
GuiTreeViewCtrl::findItemByName (C++ function), 466
GuiTreeViewCtrl::findItemByObjectId (C++ function),

466
GuiTreeViewCtrl::findItemByValue (C++ function), 466
GuiTreeViewCtrl::fullRowSelect (C++ member), 469
GuiTreeViewCtrl::getChild (C++ function), 466
GuiTreeViewCtrl::getFilterText (C++ function), 466
GuiTreeViewCtrl::getFirstRootItem (C++ member), 469
GuiTreeViewCtrl::getItemCount (C++ member), 469
GuiTreeViewCtrl::getItemText (C++ function), 466
GuiTreeViewCtrl::getItemValue (C++ function), 466
GuiTreeViewCtrl::getNextSibling (C++ function), 466
GuiTreeViewCtrl::getParent (C++ function), 466
GuiTreeViewCtrl::getPrevSibling (C++ function), 466
GuiTreeViewCtrl::getSelectedItem (C++ function), 466
GuiTreeViewCtrl::getSelectedItemList (C++ member),

469

GuiTreeViewCtrl::getSelectedItemsCount (C++ mem-
ber), 469

GuiTreeViewCtrl::getSelectedObject (C++ function), 466
GuiTreeViewCtrl::getSelectedObjectList (C++ member),

469
GuiTreeViewCtrl::getTextToRoot (C++ function), 466
GuiTreeViewCtrl::handleRenameObject (C++ function),

466
GuiTreeViewCtrl::hideSelection (C++ function), 466
GuiTreeViewCtrl::insertItem (C++ function), 467
GuiTreeViewCtrl::isItemSelected (C++ function), 467
GuiTreeViewCtrl::isParentItem (C++ function), 467
GuiTreeViewCtrl::isValidDragTarget (C++ function), 467
GuiTreeViewCtrl::itemHeight (C++ member), 469
GuiTreeViewCtrl::lockSelection (C++ function), 467
GuiTreeViewCtrl::markItem (C++ function), 467
GuiTreeViewCtrl::mouseDragging (C++ member), 469
GuiTreeViewCtrl::moveItemDown (C++ function), 467
GuiTreeViewCtrl::moveItemUp (C++ function), 467
GuiTreeViewCtrl::multipleSelections (C++ member),

469
GuiTreeViewCtrl::onAddGroupSelected (C++ function),

467
GuiTreeViewCtrl::onAddMultipleSelectionBegin (C++

function), 467
GuiTreeViewCtrl::onAddMultipleSelectionEnd (C++

function), 467
GuiTreeViewCtrl::onAddSelection (C++ function), 467
GuiTreeViewCtrl::onBeginReparenting (C++ function),

467
GuiTreeViewCtrl::onClearSelection (C++ function), 467
GuiTreeViewCtrl::onDefineIcons (C++ function), 467
GuiTreeViewCtrl::onDeleteObject (C++ function), 467
GuiTreeViewCtrl::onDeleteSelection (C++ function), 467
GuiTreeViewCtrl::onDragDropped (C++ function), 467
GuiTreeViewCtrl::onEndReparenting (C++ function),

467
GuiTreeViewCtrl::onInspect (C++ function), 468
GuiTreeViewCtrl::onKeyDown (C++ function), 468
GuiTreeViewCtrl::onMouseDragged (C++ function), 468
GuiTreeViewCtrl::onMouseUp (C++ function), 468
GuiTreeViewCtrl::onObjectDeleteCompleted (C++ func-

tion), 468
GuiTreeViewCtrl::onRemoveSelection (C++ function),

468
GuiTreeViewCtrl::onRenameValidate (C++ member),

469
GuiTreeViewCtrl::onReparent (C++ function), 468
GuiTreeViewCtrl::onRightMouseDown (C++ function),

468
GuiTreeViewCtrl::onRightMouseUp (C++ function), 468
GuiTreeViewCtrl::onSelect (C++ function), 468
GuiTreeViewCtrl::onUnselect (C++ function), 468
GuiTreeViewCtrl::open (C++ function), 468

922 Index

Torque 3D Documentation, Release 3.5.1

GuiTreeViewCtrl::removeAllChildren (C++ member),
469

GuiTreeViewCtrl::removeChildSelectionByValue (C++
member), 469

GuiTreeViewCtrl::removeItem (C++ function), 468
GuiTreeViewCtrl::removeSelection (C++ function), 468
GuiTreeViewCtrl::renameInternal (C++ member), 469
GuiTreeViewCtrl::scrollVisible (C++ function), 468
GuiTreeViewCtrl::scrollVisibleByObjectId (C++ func-

tion), 468
GuiTreeViewCtrl::selectItem (C++ function), 468
GuiTreeViewCtrl::setDebug (C++ function), 468
GuiTreeViewCtrl::setFilterText (C++ function), 468
GuiTreeViewCtrl::setItemImages (C++ function), 468
GuiTreeViewCtrl::setItemTooltip (C++ function), 468
GuiTreeViewCtrl::showClassNameForUnnamedObjects

(C++ member), 469
GuiTreeViewCtrl::showClassNames (C++ member), 469
GuiTreeViewCtrl::showInternalNames (C++ member),

469
GuiTreeViewCtrl::showItemRenameCtrl (C++ function),

468
GuiTreeViewCtrl::showObjectIds (C++ member), 469
GuiTreeViewCtrl::showObjectNames (C++ member),

470
GuiTreeViewCtrl::showRoot (C++ member), 470
GuiTreeViewCtrl::sort (C++ function), 468
GuiTreeViewCtrl::tabSize (C++ member), 470
GuiTreeViewCtrl::textOffset (C++ member), 470
GuiTreeViewCtrl::toggleHideSelection (C++ function),

468
GuiTreeViewCtrl::toggleLockSelection (C++ function),

468
GuiTreeViewCtrl::tooltipOnWidthOnly (C++ member),

470
GuiTreeViewCtrl::useInspectorTooltips (C++ member),

470
GuiTSCtrl::calculateViewDistance (C++ function), 384
GuiTSCtrl::cameraZRot (C++ member), 384
GuiTSCtrl::forceFOV (C++ member), 384
GuiTSCtrl::getWorldToScreenScale (C++ function), 384
GuiTSCtrl::project (C++ function), 384
GuiTSCtrl::reflectPriority (C++ member), 384
GuiTSCtrl::renderStyle (C++ member), 385
GuiTSCtrl::unproject (C++ function), 384
GuiWindowCtrl::attach (C++ function), 470
GuiWindowCtrl::attachTo (C++ function), 470
GuiWindowCtrl::canClose (C++ member), 471
GuiWindowCtrl::canCollapse (C++ member), 471
GuiWindowCtrl::canMaximize (C++ member), 471
GuiWindowCtrl::canMinimize (C++ member), 471
GuiWindowCtrl::canMove (C++ member), 471
GuiWindowCtrl::closeCommand (C++ member), 471
GuiWindowCtrl::edgeSnap (C++ member), 471

GuiWindowCtrl::onClose (C++ function), 470
GuiWindowCtrl::onCollapse (C++ function), 470
GuiWindowCtrl::onMaximize (C++ function), 470
GuiWindowCtrl::onMinimize (C++ function), 470
GuiWindowCtrl::onRestore (C++ function), 470
GuiWindowCtrl::resizeHeight (C++ member), 471
GuiWindowCtrl::resizeWidth (C++ member), 471
GuiWindowCtrl::selectWindow (C++ function), 470
GuiWindowCtrl::setCollapseGroup (C++ function), 471
GuiWindowCtrl::text (C++ member), 471
GuiWindowCtrl::toggleCollapseGroup (C++ function),

471

H
HoverVehicleData::brakingActivationSpeed (C++ mem-

ber), 672
HoverVehicleData::brakingForce (C++ member), 672
HoverVehicleData::dragForce (C++ member), 672
HoverVehicleData::dustTrailEmitter (C++ member), 672
HoverVehicleData::dustTrailFreqMod (C++ member),

672
HoverVehicleData::dustTrailOffset (C++ member), 672
HoverVehicleData::engineSound (C++ member), 672
HoverVehicleData::floatingGravMag (C++ member), 672
HoverVehicleData::floatingThrustFactor (C++ member),

672
HoverVehicleData::floatSound (C++ member), 672
HoverVehicleData::forwardJetEmitter (C++ member),

672
HoverVehicleData::gyroDrag (C++ member), 672
HoverVehicleData::jetSound (C++ member), 672
HoverVehicleData::mainThrustForce (C++ member), 672
HoverVehicleData::normalForce (C++ member), 672
HoverVehicleData::pitchForce (C++ member), 672
HoverVehicleData::restorativeForce (C++ member), 673
HoverVehicleData::reverseThrustForce (C++ member),

673
HoverVehicleData::rollForce (C++ member), 673
HoverVehicleData::stabDampingConstant (C++ mem-

ber), 673
HoverVehicleData::stabLenMax (C++ member), 673
HoverVehicleData::stabLenMin (C++ member), 673
HoverVehicleData::stabSpringConstant (C++ member),

673
HoverVehicleData::steeringForce (C++ member), 673
HoverVehicleData::strafeThrustForce (C++ member),

673
HoverVehicleData::triggerTrailHeight (C++ member),

673
HoverVehicleData::turboFactor (C++ member), 673
HoverVehicleData::vertFactor (C++ member), 673
HTTPObject::get (C++ function), 758
HTTPObject::post (C++ function), 758

Index 923

Torque 3D Documentation, Release 3.5.1

I
importCachedFont (C++ function), 829
initContainerRadiusSearch (C++ function), 516
initContainerTypeSearch (C++ function), 516
initDisplayDeviceInfo (C++ function), 827
isalnum (C++ function), 366
isClass (C++ function), 306
isDebugBuild (C++ function), 777
isDefined (C++ function), 325
IsDirectory (C++ function), 352
isFile (C++ function), 352
isFunction (C++ function), 326
isJoystickEnabled (C++ function), 746
isLeapMotionActive (C++ function), 516
isMemberOfClass (C++ function), 306
isMethod (C++ function), 326
isOculusVRDeviceActive (C++ function), 516
isOVRHMDSimulated (C++ function), 516
isPackage (C++ function), 317
isQueueRegistered (C++ function), 316
isRazerHydraActive (C++ function), 516
isRazerHydraControllerDocked (C++ function), 517
isShippingBuild (C++ function), 777
isspace (C++ function), 366
isToolBuild (C++ function), 777
isValidObjectName (C++ function), 306
isWriteableFileName (C++ function), 352
isXInputConnected (C++ function), 746
Item::getLastStickyNormal (C++ function), 535
Item::getLastStickyPos (C++ function), 535
Item::isAtRest (C++ function), 535
Item::isRotating (C++ function), 535
Item::isStatic (C++ function), 535
Item::maxWarpTicks (C++ member), 536
Item::minWarpTicks (C++ member), 536
Item::onEnterLiquid (C++ function), 536
Item::onLeaveLiquid (C++ function), 536
Item::onStickyCollision (C++ function), 536
Item::rotate (C++ member), 536
Item::setCollisionTimeout (C++ function), 536
ItemData::elasticity (C++ member), 537
ItemData::friction (C++ member), 537
ItemData::gravityMod (C++ member), 537
ItemData::lightColor (C++ member), 537
ItemData::lightOnlyStatic (C++ member), 537
ItemData::lightRadius (C++ member), 537
ItemData::lightTime (C++ member), 537
ItemData::lightType (C++ member), 538
ItemData::maxVelocity (C++ member), 538
ItemData::simpleServerCollision (C++ member), 538
ItemData::sticky (C++ member), 538

L
LangTable::addLanguage (C++ function), 779

LangTable::getCurrentLanguage (C++ function), 779
LangTable::getLangName (C++ function), 779
LangTable::getNumLang (C++ function), 779
LangTable::getString (C++ function), 779
LangTable::setCurrentLanguage (C++ function), 779
LangTable::setDefaultLanguage (C++ function), 779
LeapMotionFrame::getFrameInternalId (C++ function),

738
LeapMotionFrame::getFrameRealTime (C++ function),

738
LeapMotionFrame::getFrameSimTime (C++ function),

738
LeapMotionFrame::getHandCount (C++ function), 738
LeapMotionFrame::getHandId (C++ function), 739
LeapMotionFrame::getHandPointablesCount (C++ func-

tion), 739
LeapMotionFrame::getHandPos (C++ function), 739
LeapMotionFrame::getHandRawPos (C++ function), 739
LeapMotionFrame::getHandRawTransform (C++ func-

tion), 739
LeapMotionFrame::getHandRot (C++ function), 739
LeapMotionFrame::getHandRotAxis (C++ function), 739
LeapMotionFrame::getHandTransform (C++ function),

739
LeapMotionFrame::getHandValid (C++ function), 739
LeapMotionFrame::getPointableHandIndex (C++ func-

tion), 740
LeapMotionFrame::getPointableId (C++ function), 740
LeapMotionFrame::getPointableLength (C++ function),

740
LeapMotionFrame::getPointablePos (C++ function), 740
LeapMotionFrame::getPointableRawPos (C++ function),

740
LeapMotionFrame::getPointableRawTransform (C++

function), 740
LeapMotionFrame::getPointableRot (C++ function), 740
LeapMotionFrame::getPointablesCount (C++ function),

740
LeapMotionFrame::getPointableTransform (C++ func-

tion), 740
LeapMotionFrame::getPointableType (C++ function),

741
LeapMotionFrame::getPointableValid (C++ function),

741
LeapMotionFrame::getPointableWidth (C++ function),

741
LeapMotionFrame::isFrameValid (C++ function), 741
LevelInfo::advancedLightmapSupport (C++ member),

708
LevelInfo::ambientLightBlendCurve (C++ member), 708
LevelInfo::ambientLightBlendPhase (C++ member), 708
LevelInfo::canvasClearColor (C++ member), 708
LevelInfo::decalBias (C++ member), 708
LevelInfo::fogAtmosphereHeight (C++ member), 709

924 Index

Torque 3D Documentation, Release 3.5.1

LevelInfo::fogColor (C++ member), 709
LevelInfo::fogDensity (C++ member), 709
LevelInfo::fogDensityOffset (C++ member), 709
LevelInfo::nearClip (C++ member), 709
LevelInfo::soundAmbience (C++ member), 709
LevelInfo::soundDistanceModel (C++ member), 709
LevelInfo::visibleDistance (C++ member), 709
LightAnimData::brightnessA (C++ member), 635
LightAnimData::brightnessKeys (C++ member), 635
LightAnimData::brightnessPeriod (C++ member), 635
LightAnimData::brightnessSmooth (C++ member), 635
LightAnimData::brightnessZ (C++ member), 635
LightAnimData::colorA (C++ member), 635
LightAnimData::colorKeys (C++ member), 635
LightAnimData::colorPeriod (C++ member), 635
LightAnimData::colorSmooth (C++ member), 635
LightAnimData::colorZ (C++ member), 635
LightAnimData::offsetA (C++ member), 635
LightAnimData::offsetKeys (C++ member), 635
LightAnimData::offsetPeriod (C++ member), 635
LightAnimData::offsetSmooth (C++ member), 635
LightAnimData::OffsetZ (C++ member), 635
LightAnimData::rotA (C++ member), 635
LightAnimData::rotKeys (C++ member), 636
LightAnimData::rotPeriod (C++ member), 636
LightAnimData::rotSmooth (C++ member), 636
LightAnimData::rotZ (C++ member), 636
LightBase::animate (C++ member), 856
LightBase::animationPeriod (C++ member), 856
LightBase::animationPhase (C++ member), 856
LightBase::animationType (C++ member), 856
LightBase::attenuationRatio (C++ member), 856
LightBase::brightness (C++ member), 856
LightBase::castShadows (C++ member), 856
LightBase::color (C++ member), 856
LightBase::cookie (C++ member), 856
LightBase::fadeStartDistance (C++ member), 856
LightBase::flareScale (C++ member), 856
LightBase::flareType (C++ member), 857
LightBase::includeLightmappedGeometryInShadow

(C++ member), 857
LightBase::isEnabled (C++ member), 857
LightBase::lastSplitTerrainOnly (C++ member), 857
LightBase::logWeight (C++ member), 857
LightBase::numSplits (C++ member), 857
LightBase::overDarkFactor (C++ member), 857
LightBase::pauseAnimation (C++ member), 857
LightBase::playAnimation (C++ function), 856
LightBase::priority (C++ member), 857
LightBase::representedInLightmap (C++ member), 857
LightBase::setLightEnabled (C++ function), 856
LightBase::shadowDarkenColor (C++ member), 857
LightBase::shadowDistance (C++ member), 857
LightBase::shadowSoftness (C++ member), 857

LightBase::shadowType (C++ member), 857
LightBase::texSize (C++ member), 857
LightDescription::animationPeriod (C++ member), 858
LightDescription::animationPhase (C++ member), 858
LightDescription::animationType (C++ member), 858
LightDescription::apply (C++ function), 858
LightDescription::attenuationRatio (C++ member), 858
LightDescription::brightness (C++ member), 858
LightDescription::castShadows (C++ member), 858
LightDescription::color (C++ member), 858
LightDescription::cookie (C++ member), 859
LightDescription::fadeStartDistance (C++ member), 859
LightDescription::flareScale (C++ member), 859
LightDescription::flareType (C++ member), 859
LightDescription::includeLightmappedGeometryInShadow

(C++ member), 859
LightDescription::lastSplitTerrainOnly (C++ member),

859
LightDescription::logWeight (C++ member), 859
LightDescription::numSplits (C++ member), 859
LightDescription::overDarkFactor (C++ member), 859
LightDescription::range (C++ member), 859
LightDescription::representedInLightmap (C++ mem-

ber), 859
LightDescription::shadowDarkenColor (C++ member),

859
LightDescription::shadowDistance (C++ member), 859
LightDescription::shadowSoftness (C++ member), 859
LightDescription::shadowType (C++ member), 859
LightDescription::texSize (C++ member), 859
LightFlareData::apply (C++ function), 860
LightFlareData::elementDist (C++ member), 860
LightFlareData::elementRect (C++ member), 860
LightFlareData::elementRotate (C++ member), 860
LightFlareData::elementScale (C++ member), 860
LightFlareData::elementTint (C++ member), 860
LightFlareData::elementUseLightColor (C++ member),

860
LightFlareData::flareEnabled (C++ member), 860
LightFlareData::flareTexture (C++ member), 860
LightFlareData::occlusionRadius (C++ member), 860
LightFlareData::overallScale (C++ member), 861
LightFlareData::renderReflectPass (C++ member), 861
Lightning::applyDamage (C++ function), 636
Lightning::boltStartRadius (C++ member), 637
Lightning::chanceToHitTarget (C++ member), 637
Lightning::color (C++ member), 637
Lightning::fadeColor (C++ member), 637
Lightning::strikeObject (C++ function), 636
Lightning::strikeRadius (C++ member), 637
Lightning::strikeRandomPoint (C++ function), 636
Lightning::strikesPerMinute (C++ member), 637
Lightning::strikeWidth (C++ member), 637
Lightning::useFog (C++ member), 637

Index 925

Torque 3D Documentation, Release 3.5.1

Lightning::warningFlashes (C++ function), 636
LightningData::strikeSound (C++ member), 637
LightningData::strikeTextures (C++ member), 637
LightningData::thunderSounds (C++ member), 637
lightScene (C++ function), 862
listGFXResources (C++ function), 851
loadObject (C++ function), 306
lockMouse (C++ function), 746
log (C++ function), 311
logError (C++ function), 311
logWarning (C++ function), 311
ltrim (C++ function), 367

M
m2Pi (C++ function), 356
mAbs (C++ function), 356
mAcos (C++ function), 356
makeFullPath (C++ function), 352
makeRelativePath (C++ function), 352
Marker::msToNext (C++ member), 709
Marker::seqNum (C++ member), 709
Marker::smoothingType (C++ member), 709
Marker::type (C++ member), 710
mAsin (C++ function), 356
mAtan (C++ function), 356
Material::alphaRef (C++ member), 838
Material::alphaTest (C++ member), 838
Material::animFlags (C++ member), 838
Material::baseTex (C++ member), 838
Material::bumpAtlas (C++ member), 839
Material::bumpTex (C++ member), 839
Material::castShadows (C++ member), 839
Material::cellIndex (C++ member), 839
Material::cellLayout (C++ member), 839
Material::cellSize (C++ member), 839
Material::colorMultiply (C++ member), 839
Material::cubemap (C++ member), 839
Material::customFootstepSound (C++ member), 839
Material::customImpactSound (C++ member), 839
Material::detailMap (C++ member), 839
Material::detailNormalMap (C++ member), 839
Material::detailNormalMapStrength (C++ member), 839
Material::detailScale (C++ member), 839
Material::detailTex (C++ member), 839
Material::diffuseColor (C++ member), 839
Material::diffuseMap (C++ member), 839
Material::doubleSided (C++ member), 839
Material::dumpInstances (C++ member), 839
Material::dynamicCubemap (C++ member), 840
Material::effectColor (C++ member), 840
Material::emissive (C++ member), 840
Material::envMap (C++ member), 840
Material::envTex (C++ member), 840
Material::flush (C++ member), 840

Material::footstepSoundId (C++ member), 840
Material::getAnimFlags (C++ member), 841
Material::getFilename (C++ member), 841
Material::glow (C++ member), 841
Material::impactSoundId (C++ member), 841
Material::isAutoGenerated (C++ member), 841
Material::lightMap (C++ member), 841
Material::mapTo (C++ member), 841
Material::minnaertConstant (C++ member), 841
Material::normalMap (C++ member), 841
Material::overlayMap (C++ member), 841
Material::overlayTex (C++ member), 841
Material::parallaxScale (C++ member), 841
Material::pixelSpecular (C++ member), 841
Material::planarReflection (C++ member), 842
Material::reload (C++ member), 842
Material::rotPivotOffset (C++ member), 842
Material::rotSpeed (C++ member), 842
Material::scrollDir (C++ member), 842
Material::scrollSpeed (C++ member), 842
Material::sequenceFramePerSec (C++ member), 842
Material::sequenceSegmentSize (C++ member), 842
Material::setAutoGenerated (C++ member), 842
Material::showDust (C++ member), 842
Material::showFootprints (C++ member), 842
Material::specular (C++ member), 842
Material::specularMap (C++ member), 842
Material::specularPower (C++ member), 842
Material::specularStrength (C++ member), 842
Material::subSurface (C++ member), 842
Material::subSurfaceColor (C++ member), 842
Material::subSurfaceRolloff (C++ member), 842
Material::toneMap (C++ member), 842
Material::translucent (C++ member), 842
Material::translucentBlendOp (C++ member), 843
Material::translucentZWrite (C++ member), 843
Material::useAnisotropic (C++ member), 843
Material::vertColor (C++ member), 843
Material::vertLit (C++ member), 843
Material::waveAmp (C++ member), 843
Material::waveFreq (C++ member), 843
Material::waveType (C++ member), 843
mathInit (C++ function), 356
MatrixCreate (C++ function), 363
MatrixCreateFromEuler (C++ function), 364
MatrixMulPoint (C++ function), 364
MatrixMultiply (C++ function), 364
MatrixMulVector (C++ function), 364
mCeil (C++ function), 357
mClamp (C++ function), 357
mCos (C++ function), 357
mDegToRad (C++ function), 357
MeshRoad::bottomMaterial (C++ member), 695
MeshRoad::breakAngle (C++ member), 695

926 Index

Torque 3D Documentation, Release 3.5.1

MeshRoad::EditorOpen (C++ member), 695
MeshRoad::Node (C++ member), 695
MeshRoad::postApply (C++ function), 695
MeshRoad::regenerate (C++ function), 695
MeshRoad::setNodeDepth (C++ function), 695
MeshRoad::showBatches (C++ member), 695
MeshRoad::showRoad (C++ member), 695
MeshRoad::showSpline (C++ member), 695
MeshRoad::sideMaterial (C++ member), 695
MeshRoad::textureLength (C++ member), 695
MeshRoad::topMaterial (C++ member), 695
MeshRoad::widthSubdivisions (C++ member), 695
MeshRoad::wireframe (C++ member), 695
Message::addReference (C++ function), 314
Message::freeReference (C++ function), 314
Message::getType (C++ function), 314
Message::onAdd (C++ function), 314
Message::onRemove (C++ function), 314
messageBox (C++ function), 777
MessageForwarder::toQueue (C++ member), 314
MessageVector::clear (C++ function), 488
MessageVector::deleteLine (C++ function), 488
MessageVector::dump (C++ function), 488
MessageVector::getLineIndexByTag (C++ function), 488
MessageVector::getLineTag (C++ function), 488
MessageVector::getLineText (C++ function), 489
MessageVector::getLineTextByTag (C++ function), 489
MessageVector::getNumLines (C++ function), 489
MessageVector::insertLine (C++ function), 489
MessageVector::popBackLine (C++ function), 489
MessageVector::popFrontLine (C++ function), 490
MessageVector::pushBackLine (C++ function), 490
MessageVector::pushFrontLine (C++ function), 490
mFloatLength (C++ function), 357
mFloor (C++ function), 357
mFMod (C++ function), 357
mIsPow2 (C++ function), 357
MissionArea::area (C++ member), 710
MissionArea::flightCeiling (C++ member), 710
MissionArea::flightCeilingRange (C++ member), 710
MissionArea::getArea (C++ function), 710
MissionArea::postApply (C++ function), 710
MissionArea::setArea (C++ function), 710
mLerp (C++ function), 358
mLog (C++ function), 358
mPi (C++ function), 358
mPow (C++ function), 358
mRadToDeg (C++ function), 358
mRound (C++ function), 358
mSaturate (C++ function), 358
mSin (C++ function), 358
mSolveCubic (C++ function), 358
mSolveQuadratic (C++ function), 359
mSolveQuartic (C++ function), 359

mSqrt (C++ function), 359
mTan (C++ function), 359

N
NavMesh::actorClimb (C++ member), 654
NavMesh::actorHeight (C++ member), 654
NavMesh::actorRadius (C++ member), 654
NavMesh::alwaysRender (C++ member), 654
NavMesh::borderSize (C++ member), 654
NavMesh::build (C++ function), 654
NavMesh::buildTiles (C++ function), 654
NavMesh::cancelBuild (C++ function), 654
NavMesh::cellHeight (C++ member), 654
NavMesh::cellSize (C++ member), 654
NavMesh::detailSampleDist (C++ member), 654
NavMesh::detailSampleError (C++ member), 654
NavMesh::fileName (C++ member), 654
NavMesh::load (C++ function), 654
NavMesh::maxEdgeLen (C++ member), 654
NavMesh::maxPolysPerTile (C++ member), 654
NavMesh::mergeRegionArea (C++ member), 655
NavMesh::minRegionArea (C++ member), 655
NavMesh::save (C++ function), 654
NavMesh::simplificationError (C++ member), 655
NavMesh::tileSize (C++ member), 655
NavMesh::walkableSlope (C++ member), 655
NavPath::alwaysRender (C++ member), 655
NavPath::from (C++ member), 655
NavPath::getCount (C++ function), 655
NavPath::getLength (C++ function), 655
NavPath::getNode (C++ function), 655
NavPath::isLooping (C++ member), 655
NavPath::mesh (C++ member), 655
NavPath::replan (C++ function), 655
NavPath::to (C++ member), 655
NavPath::waypoints (C++ member), 655
NavPath::xray (C++ member), 655
NetConnection::checkMaxRate (C++ function), 759
NetConnection::clearPaths (C++ function), 760
NetConnection::connect (C++ function), 760
NetConnection::connectLocal (C++ function), 760
NetConnection::getAddress (C++ function), 760
NetConnection::getGhostID (C++ function), 760
NetConnection::getGhostsActive (C++ function), 760
NetConnection::getPacketLoss (C++ function), 760
NetConnection::getPing (C++ function), 761
NetConnection::resolveGhostID (C++ function), 761
NetConnection::resolveObjectFromGhostIndex (C++

function), 761
NetConnection::setSimulatedNetParams (C++ function),

761
NetConnection::transmitPaths (C++ function), 761
NetObject::clearScopeToClient (C++ function), 764
NetObject::getClientObject (C++ function), 764

Index 927

Torque 3D Documentation, Release 3.5.1

NetObject::getGhostID (C++ function), 765
NetObject::getServerObject (C++ function), 765
NetObject::isClientObject (C++ function), 765
NetObject::isServerObject (C++ function), 765
NetObject::scopeToClient (C++ function), 765
NetObject::setScopeAlways (C++ function), 765
nextToken (C++ function), 367

O
OcclusionVolume::edge (C++ member), 711
OcclusionVolume::plane (C++ member), 711
OcclusionVolume::point (C++ member), 711
onDataBlockObjectReceived (C++ function), 774
onLightManagerActivate (C++ function), 774, 863
onLightManagerDeactivate (C++ function), 774, 863
openFile (C++ function), 352
OpenFileDialog::MultipleFiles (C++ member), 336
OpenFileDialog::MustExist (C++ member), 336
openFolder (C++ function), 352
OpenFolderDialog::fileMustExist (C++ member), 336
ovrResetAllSensors (C++ function), 517

P
ParticleData::animateTexture (C++ member), 638
ParticleData::animTexFrames (C++ member), 639
ParticleData::animTexName (C++ member), 639
ParticleData::animTexTiling (C++ member), 639
ParticleData::colors (C++ member), 639
ParticleData::constantAcceleration (C++ member), 639
ParticleData::dragCoefficient (C++ member), 639
ParticleData::framesPerSec (C++ member), 639
ParticleData::gravityCoefficient (C++ member), 639
ParticleData::inheritedVelFactor (C++ member), 639
ParticleData::lifetimeMS (C++ member), 639
ParticleData::lifetimeVarianceMS (C++ member), 639
ParticleData::reload (C++ function), 638
ParticleData::sizes (C++ member), 639
ParticleData::spinRandomMax (C++ member), 639
ParticleData::spinRandomMin (C++ member), 639
ParticleData::spinSpeed (C++ member), 639
ParticleData::textureCoords (C++ member), 639
ParticleData::textureName (C++ member), 639
ParticleData::times (C++ member), 640
ParticleData::useInvAlpha (C++ member), 640
ParticleData::windCoefficient (C++ member), 640
ParticleEmitterData::alignDirection (C++ member), 641
ParticleEmitterData::alignParticles (C++ member), 641
ParticleEmitterData::ambientFactor (C++ member), 641
ParticleEmitterData::blendStyle (C++ member), 641
ParticleEmitterData::ejectionOffset (C++ member), 641
ParticleEmitterData::ejectionOffsetVariance (C++ mem-

ber), 641
ParticleEmitterData::ejectionPeriodMS (C++ member),

641

ParticleEmitterData::ejectionVelocity (C++ member),
641

ParticleEmitterData::highResOnly (C++ member), 641
ParticleEmitterData::lifetimeMS (C++ member), 641
ParticleEmitterData::lifetimeVarianceMS (C++ member),

641
ParticleEmitterData::orientOnVelocity (C++ member),

641
ParticleEmitterData::orientParticles (C++ member), 641
ParticleEmitterData::overrideAdvance (C++ member),

641
ParticleEmitterData::particles (C++ member), 641
ParticleEmitterData::periodVarianceMS (C++ member),

642
ParticleEmitterData::phiReferenceVel (C++ member),

642
ParticleEmitterData::phiVariance (C++ member), 642
ParticleEmitterData::reload (C++ function), 640
ParticleEmitterData::renderReflection (C++ member),

642
ParticleEmitterData::reverseOrder (C++ member), 642
ParticleEmitterData::softnessDistance (C++ member),

642
ParticleEmitterData::sortParticles (C++ member), 642
ParticleEmitterData::textureName (C++ member), 642
ParticleEmitterData::thetaMax (C++ member), 642
ParticleEmitterData::thetaMin (C++ member), 642
ParticleEmitterData::useEmitterColors (C++ member),

642
ParticleEmitterData::useEmitterSizes (C++ member),

642
ParticleEmitterData::velocityVariance (C++ member),

642
ParticleEmitterNode::active (C++ member), 643
ParticleEmitterNode::emitter (C++ member), 643
ParticleEmitterNode::setActive (C++ function), 643
ParticleEmitterNode::setEmitterDataBlock (C++ func-

tion), 643
ParticleEmitterNode::velocity (C++ member), 643
ParticleEmitterNodeData::timeMultiple (C++ member),

643
Path::getPathId (C++ function), 712
Path::isLooping (C++ member), 712
PathCamera::onNode (C++ function), 727
PathCamera::popFront (C++ function), 727
PathCamera::pushBack (C++ function), 727
PathCamera::pushFront (C++ function), 727
PathCamera::reset (C++ function), 728
PathCamera::setPosition (C++ function), 728
PathCamera::setState (C++ function), 728
PathCamera::setTarget (C++ function), 729
pathConcat (C++ function), 352
pathCopy (C++ function), 353
pathOnMissionLoadDone (C++ function), 775

928 Index

Torque 3D Documentation, Release 3.5.1

PfxVis::clear (C++ function), 843
PfxVis::hide (C++ function), 843
PfxVis::onWindowClosed (C++ function), 843
PfxVis::open (C++ function), 844
PfxVis::show (C++ function), 844
PhysicalZone::activate (C++ function), 713
PhysicalZone::appliedForce (C++ member), 713
PhysicalZone::deactivate (C++ function), 713
PhysicalZone::gravityMod (C++ member), 713
PhysicalZone::polyhedron (C++ member), 713
PhysicalZone::renderZones (C++ member), 713
PhysicalZone::velocityMod (C++ member), 713
PhysicsDebrisData::angularDamping (C++ member), 657
PhysicsDebrisData::angularSleepThreshold (C++ mem-

ber), 657
PhysicsDebrisData::buoyancyDensity (C++ member),

657
PhysicsDebrisData::castShadows (C++ member), 657
PhysicsDebrisData::friction (C++ member), 657
PhysicsDebrisData::lifetime (C++ member), 657
PhysicsDebrisData::lifetimeVariance (C++ member), 657
PhysicsDebrisData::linearDamping (C++ member), 657
PhysicsDebrisData::linearSleepThreshold (C++ mem-

ber), 657
PhysicsDebrisData::mass (C++ member), 657
PhysicsDebrisData::preload (C++ member), 657
PhysicsDebrisData::restitution (C++ member), 657
PhysicsDebrisData::shapeFile (C++ member), 657
PhysicsDebrisData::staticFriction (C++ member), 657
PhysicsDebrisData::waterDampingScale (C++ member),

657
PhysicsForce::attach (C++ function), 658
PhysicsForce::detach (C++ function), 658
PhysicsForce::isAttached (C++ function), 658
physicsPluginPresent (C++ member), 668
PhysicsShape::destroy (C++ function), 658
PhysicsShape::isDestroyed (C++ function), 658
PhysicsShape::playAmbient (C++ member), 658
PhysicsShape::restore (C++ function), 658
PhysicsShapeData::angularDamping (C++ member), 659
PhysicsShapeData::angularSleepThreshold (C++ mem-

ber), 659
PhysicsShapeData::buoyancyDensity (C++ member), 659
PhysicsShapeData::Debris (C++ member), 659
PhysicsShapeData::destroyedShape (C++ member), 659
PhysicsShapeData::Explosion (C++ member), 659
PhysicsShapeData::friction (C++ member), 659
PhysicsShapeData::linearDamping (C++ member), 659
PhysicsShapeData::linearSleepThreshold (C++ member),

659
PhysicsShapeData::mass (C++ member), 659
PhysicsShapeData::restitution (C++ member), 659
PhysicsShapeData::shapeName (C++ member), 659
PhysicsShapeData::simType (C++ member), 659

PhysicsShapeData::staticFriction (C++ member), 659
PhysicsShapeData::waterDampingScale (C++ member),

659
Player::allowAllPoses (C++ function), 547
Player::allowCrouching (C++ function), 547
Player::allowJetJumping (C++ function), 547
Player::allowJumping (C++ function), 547
Player::allowProne (C++ function), 547
Player::allowSprinting (C++ function), 547
Player::allowSwimming (C++ function), 547
Player::checkDismountPoint (C++ function), 547
Player::clearControlObject (C++ function), 548
Player::crouchTrigger (C++ member), 550
Player::extendedMoveHeadPosRotIndex (C++ member),

550
Player::getControlObject (C++ function), 548
Player::getDamageLocation (C++ function), 548
Player::getNumDeathAnimations (C++ function), 548
Player::getPose (C++ function), 548
Player::getState (C++ function), 548
Player::imageTrigger0 (C++ member), 550
Player::imageTrigger1 (C++ member), 550
Player::jumpJetTrigger (C++ member), 550
Player::jumpTrigger (C++ member), 550
Player::maxImpulseVelocity (C++ member), 550
Player::maxPredictionTicks (C++ member), 550
Player::maxWarpTicks (C++ member), 550
Player::minWarpTicks (C++ member), 550
Player::proneTrigger (C++ member), 551
Player::renderCollision (C++ member), 551
Player::renderMyItems (C++ member), 551
Player::renderMyPlayer (C++ member), 551
Player::setActionThread (C++ function), 548
Player::setArmThread (C++ function), 550
Player::setControlObject (C++ function), 550
Player::sprintTrigger (C++ member), 551
Player::vehicleDismountTrigger (C++ member), 551
PlayerData::airControl (C++ member), 552
PlayerData::allowImageStateAnimation (C++ member),

552
PlayerData::animationDone (C++ function), 551
PlayerData::boundingBox (C++ member), 552
PlayerData::boxHeadBackPercentage (C++ member),

552
PlayerData::boxHeadFrontPercentage (C++ member),

552
PlayerData::boxHeadLeftPercentage (C++ member), 552
PlayerData::boxHeadPercentage (C++ member), 552
PlayerData::boxHeadRightPercentage (C++ member),

553
PlayerData::boxTorsoPercentage (C++ member), 553
PlayerData::bubbleEmitTime (C++ member), 553
PlayerData::crouchBoundingBox (C++ member), 553
PlayerData::crouchForce (C++ member), 553

Index 929

Torque 3D Documentation, Release 3.5.1

PlayerData::DecalData (C++ member), 553
PlayerData::decalOffset (C++ member), 553
PlayerData::doDismount (C++ function), 551
PlayerData::dustEmitter (C++ member), 553
PlayerData::exitingWater (C++ member), 553
PlayerData::exitSplashSoundVelocity (C++ member),

553
PlayerData::fallingSpeedThreshold (C++ member), 553
PlayerData::firstPersonShadows (C++ member), 553
PlayerData::FootBubblesSound (C++ member), 553
PlayerData::FootHardSound (C++ member), 553
PlayerData::FootMetalSound (C++ member), 553
PlayerData::footPuffEmitter (C++ member), 553
PlayerData::footPuffNumParts (C++ member), 553
PlayerData::footPuffRadius (C++ member), 553
PlayerData::FootShallowSound (C++ member), 553
PlayerData::FootSnowSound (C++ member), 554
PlayerData::FootSoftSound (C++ member), 554
PlayerData::footstepSplashHeight (C++ member), 554
PlayerData::FootUnderwaterSound (C++ member), 554
PlayerData::FootWadingSound (C++ member), 554
PlayerData::groundImpactMinSpeed (C++ member), 554
PlayerData::groundImpactShakeAmp (C++ member),

554
PlayerData::groundImpactShakeDuration (C++ member),

554
PlayerData::groundImpactShakeFalloff (C++ member),

554
PlayerData::groundImpactShakeFreq (C++ member), 554
PlayerData::hardSplashSoundVelocity (C++ member),

554
PlayerData::horizMaxSpeed (C++ member), 554
PlayerData::horizResistFactor (C++ member), 554
PlayerData::horizResistSpeed (C++ member), 554
PlayerData::imageAnimPrefix (C++ member), 554
PlayerData::imageAnimPrefixFP (C++ member), 554
PlayerData::impactHardSound (C++ member), 554
PlayerData::impactMetalSound (C++ member), 554
PlayerData::impactSnowSound (C++ member), 554
PlayerData::impactSoftSound (C++ member), 555
PlayerData::impactWaterEasy (C++ member), 555
PlayerData::impactWaterHard (C++ member), 555
PlayerData::impactWaterMedium (C++ member), 555
PlayerData::jetJumpEnergyDrain (C++ member), 555
PlayerData::jetJumpForce (C++ member), 555
PlayerData::jetJumpSurfaceAngle (C++ member), 555
PlayerData::jetMaxJumpSpeed (C++ member), 555
PlayerData::jetMinJumpEnergy (C++ member), 555
PlayerData::jetMinJumpSpeed (C++ member), 555
PlayerData::jumpDelay (C++ member), 555
PlayerData::jumpEnergyDrain (C++ member), 555
PlayerData::jumpForce (C++ member), 555
PlayerData::jumpSurfaceAngle (C++ member), 555
PlayerData::jumpTowardsNormal (C++ member), 555

PlayerData::landSequenceTime (C++ member), 555
PlayerData::maxBackwardSpeed (C++ member), 555
PlayerData::maxCrouchBackwardSpeed (C++ member),

555
PlayerData::maxCrouchForwardSpeed (C++ member),

555
PlayerData::maxCrouchSideSpeed (C++ member), 556
PlayerData::maxForwardSpeed (C++ member), 556
PlayerData::maxFreelookAngle (C++ member), 556
PlayerData::maxJumpSpeed (C++ member), 556
PlayerData::maxLookAngle (C++ member), 556
PlayerData::maxProneBackwardSpeed (C++ member),

556
PlayerData::maxProneForwardSpeed (C++ member), 556
PlayerData::maxProneSideSpeed (C++ member), 556
PlayerData::maxSideSpeed (C++ member), 556
PlayerData::maxSprintBackwardSpeed (C++ member),

556
PlayerData::maxSprintForwardSpeed (C++ member),

556
PlayerData::maxSprintSideSpeed (C++ member), 556
PlayerData::maxStepHeight (C++ member), 556
PlayerData::maxTimeScale (C++ member), 556
PlayerData::maxUnderwaterBackwardSpeed (C++ mem-

ber), 556
PlayerData::maxUnderwaterForwardSpeed (C++ mem-

ber), 556
PlayerData::maxUnderwaterSideSpeed (C++ member),

556
PlayerData::mediumSplashSoundVelocity (C++ mem-

ber), 556
PlayerData::minImpactSpeed (C++ member), 556
PlayerData::minJumpEnergy (C++ member), 557
PlayerData::minJumpSpeed (C++ member), 557
PlayerData::minLateralImpactSpeed (C++ member), 557
PlayerData::minLookAngle (C++ member), 557
PlayerData::minRunEnergy (C++ member), 557
PlayerData::minSprintEnergy (C++ member), 557
PlayerData::movingBubblesSound (C++ member), 557
PlayerData::onEnterLiquid (C++ function), 551
PlayerData::onEnterMissionArea (C++ function), 551
PlayerData::onLeaveLiquid (C++ function), 551
PlayerData::onLeaveMissionArea (C++ function), 552
PlayerData::onPoseChange (C++ function), 552
PlayerData::onStartSprintMotion (C++ function), 552
PlayerData::onStartSwim (C++ function), 552
PlayerData::onStopSprintMotion (C++ function), 552
PlayerData::onStopSwim (C++ function), 552
PlayerData::physicsPlayerType (C++ member), 557
PlayerData::pickupRadius (C++ member), 557
PlayerData::proneBoundingBox (C++ member), 557
PlayerData::proneForce (C++ member), 557
PlayerData::recoverDelay (C++ member), 557
PlayerData::recoverRunForceScale (C++ member), 557

930 Index

Torque 3D Documentation, Release 3.5.1

PlayerData::renderFirstPerson (C++ member), 557
PlayerData::runEnergyDrain (C++ member), 557
PlayerData::runForce (C++ member), 557
PlayerData::runSurfaceAngle (C++ member), 557
PlayerData::shapeNameFP (C++ member), 558
PlayerData::Splash (C++ member), 558
PlayerData::splashAngle (C++ member), 558
PlayerData::splashEmitter (C++ member), 558
PlayerData::splashFreqMod (C++ member), 558
PlayerData::splashVelEpsilon (C++ member), 558
PlayerData::splashVelocity (C++ member), 558
PlayerData::sprintCanJump (C++ member), 558
PlayerData::sprintEnergyDrain (C++ member), 558
PlayerData::sprintForce (C++ member), 558
PlayerData::sprintPitchScale (C++ member), 558
PlayerData::sprintStrafeScale (C++ member), 558
PlayerData::sprintYawScale (C++ member), 558
PlayerData::swimBoundingBox (C++ member), 558
PlayerData::swimForce (C++ member), 558
PlayerData::transitionToLand (C++ member), 558
PlayerData::upMaxSpeed (C++ member), 558
PlayerData::upResistFactor (C++ member), 558
PlayerData::upResistSpeed (C++ member), 558
PlayerData::waterBreathSound (C++ member), 558
playJournal (C++ function), 778
playJournalToVideo (C++ function), 827
PointLight::radius (C++ member), 861
populateAllFontCacheRange (C++ function), 829
populateAllFontCacheString (C++ function), 829
populateFontCacheRange (C++ function), 829
populateFontCacheString (C++ function), 829
Portal::backSidePassable (C++ member), 714
Portal::frontSidePassable (C++ member), 714
Portal::isExteriorPortal (C++ function), 714
Portal::isInteriorPortal (C++ function), 714
PostEffect::allowReflectPass (C++ member), 824
PostEffect::clearShaderMacros (C++ function), 822
PostEffect::disable (C++ function), 822
PostEffect::dumpShaderDisassembly (C++ function),

822
PostEffect::enable (C++ function), 822
PostEffect::getAspectRatio (C++ function), 822
PostEffect::isEnabled (C++ function), 822
PostEffect::isEnabled (C++ member), 824
PostEffect::onAdd (C++ function), 822
PostEffect::onDisabled (C++ function), 822
PostEffect::oneFrameOnly (C++ member), 824
PostEffect::onEnabled (C++ function), 822
PostEffect::onThisFrame (C++ member), 824
PostEffect::preProcess (C++ function), 822
PostEffect::reload (C++ function), 823
PostEffect::removeShaderMacro (C++ function), 823
PostEffect::renderBin (C++ member), 824
PostEffect::renderPriority (C++ member), 824

PostEffect::renderTime (C++ member), 824
PostEffect::setShaderConst (C++ function), 823
PostEffect::setShaderConsts (C++ function), 823
PostEffect::setShaderMacro (C++ function), 823
PostEffect::setTexture (C++ function), 824
PostEffect::shader (C++ member), 824
PostEffect::skip (C++ member), 824
PostEffect::stateBlock (C++ member), 824
PostEffect::target (C++ member), 824
PostEffect::targetClear (C++ member), 824
PostEffect::targetClearColor (C++ member), 824
PostEffect::targetDepthStencil (C++ member), 824
PostEffect::targetFormat (C++ member), 824
PostEffect::targetScale (C++ member), 825
PostEffect::targetSize (C++ member), 825
PostEffect::targetViewport (C++ member), 825
PostEffect::texture (C++ member), 825
PostEffect::toggle (C++ function), 824
Precipitation::animateSplashes (C++ member), 645
Precipitation::boxHeight (C++ member), 645
Precipitation::boxWidth (C++ member), 645
Precipitation::doCollision (C++ member), 645
Precipitation::dropAnimateMS (C++ member), 645
Precipitation::dropSize (C++ member), 645
Precipitation::fadeDist (C++ member), 645
Precipitation::fadeDistEnd (C++ member), 645
Precipitation::followCam (C++ member), 645
Precipitation::glowIntensity (C++ member), 646
Precipitation::hitPlayers (C++ member), 646
Precipitation::hitVehicles (C++ member), 646
Precipitation::maxMass (C++ member), 646
Precipitation::maxSpeed (C++ member), 646
Precipitation::maxTurbulence (C++ member), 646
Precipitation::minMass (C++ member), 646
Precipitation::minSpeed (C++ member), 646
Precipitation::modifyStorm (C++ function), 644
Precipitation::numDrops (C++ member), 646
Precipitation::reflect (C++ member), 646
Precipitation::rotateWithCamVel (C++ member), 646
Precipitation::setPercentage (C++ function), 645
Precipitation::setTurbulence (C++ function), 645
Precipitation::splashMS (C++ member), 646
Precipitation::splashSize (C++ member), 646
Precipitation::turbulenceSpeed (C++ member), 646
Precipitation::useLighting (C++ member), 646
Precipitation::useTrueBillboards (C++ member), 646
Precipitation::useTurbulence (C++ member), 646
Precipitation::useWind (C++ member), 646
PrecipitationData::dropShader (C++ member), 647
PrecipitationData::dropsPerSide (C++ member), 647
PrecipitationData::dropTexture (C++ member), 647
PrecipitationData::soundProfile (C++ member), 647
PrecipitationData::splashesPerSide (C++ member), 647
PrecipitationData::splashShader (C++ member), 647

Index 931

Torque 3D Documentation, Release 3.5.1

PrecipitationData::splashTexture (C++ member), 647
Prefab::fileName (C++ member), 715
Prefab::onLoad (C++ function), 715
profilerDump (C++ function), 308
profilerDumpToFile (C++ function), 308
profilerEnable (C++ function), 308
profilerMarkerEnable (C++ function), 308
profilerReset (C++ function), 308
Projectile::initialPosition (C++ member), 559
Projectile::initialVelocity (C++ member), 559
Projectile::presimulate (C++ function), 559
Projectile::sourceObject (C++ member), 559
Projectile::sourceSlot (C++ member), 559
ProjectileData::armingDelay (C++ member), 560
ProjectileData::bounceElasticity (C++ member), 560
ProjectileData::bounceFriction (C++ member), 560
ProjectileData::decal (C++ member), 560
ProjectileData::Explosion (C++ member), 560
ProjectileData::fadeDelay (C++ member), 560
ProjectileData::gravityMod (C++ member), 561
ProjectileData::impactForce (C++ member), 561
ProjectileData::isBallistic (C++ member), 561
ProjectileData::lifetime (C++ member), 561
ProjectileData::lightDesc (C++ member), 561
ProjectileData::muzzleVelocity (C++ member), 561
ProjectileData::onCollision (C++ function), 560
ProjectileData::onExplode (C++ function), 560
ProjectileData::ParticleEmitter (C++ member), 561
ProjectileData::particleWaterEmitter (C++ member), 561
ProjectileData::projectileShapeName (C++ member), 561
ProjectileData::scale (C++ member), 561
ProjectileData::sound (C++ member), 561
ProjectileData::Splash (C++ member), 561
ProjectileData::velInheritFactor (C++ member), 561
ProjectileData::waterExplosion (C++ member), 561
ProximityMine::explode (C++ function), 562
ProximityMineData::armingDelay (C++ member), 563
ProximityMineData::armingSound (C++ member), 563
ProximityMineData::autoTriggerDelay (C++ member),

563
ProximityMineData::explosionOffset (C++ member), 563
ProximityMineData::onExplode (C++ function), 563
ProximityMineData::onTriggered (C++ function), 563
ProximityMineData::triggerDelay (C++ member), 563
ProximityMineData::triggerOnOwner (C++ member),

563
ProximityMineData::triggerRadius (C++ member), 563
ProximityMineData::triggerSound (C++ member), 563
ProximityMineData::triggerSpeed (C++ member), 563
PxCloth::attachments (C++ member), 660
PxCloth::bending (C++ member), 660
PxCloth::bendingStiffness (C++ member), 660
PxCloth::damping (C++ member), 660
PxCloth::dampingCoefficient (C++ member), 660

PxCloth::density (C++ member), 660
PxCloth::friction (C++ member), 660
PxCloth::Material (C++ member), 660
PxCloth::samples (C++ member), 660
PxCloth::selfCollision (C++ member), 660
PxCloth::size (C++ member), 660
PxCloth::thickness (C++ member), 660
PxCloth::triangleCollision (C++ member), 660
PxMaterial::dynamicFriction (C++ member), 661
PxMaterial::restitution (C++ member), 661
PxMaterial::staticFriction (C++ member), 661
PxMultiActor::broken (C++ member), 662
PxMultiActor::debugRender (C++ member), 662
PxMultiActor::setAllHidden (C++ function), 661
PxMultiActor::setBroken (C++ function), 661
PxMultiActor::setMeshHidden (C++ function), 662
PxMultiActorData::angularDrag (C++ member), 662
PxMultiActorData::breakForce (C++ member), 662
PxMultiActorData::buoyancyDensity (C++ member),

662
PxMultiActorData::clientOnly (C++ member), 662
PxMultiActorData::dumpModel (C++ member), 662
PxMultiActorData::linearDrag (C++ member), 662
PxMultiActorData::Material (C++ member), 662
PxMultiActorData::noCorrection (C++ member), 662
PxMultiActorData::physXStream (C++ member), 662
PxMultiActorData::reload (C++ member), 662
PxMultiActorData::shapeName (C++ member), 662
PxMultiActorData::singlePlayerOnly (C++ member),

662
PxMultiActorData::string (C++ member), 662
PxMultiActorData::waterDragScale (C++ member), 663

Q
quit (C++ function), 778
quitWithErrorMessage (C++ function), 778

R
RadialImpulseEvent::send (C++ function), 663
RazerHydraFrame::getControllerButton1 (C++ function),

741
RazerHydraFrame::getControllerButton2 (C++ function),

741
RazerHydraFrame::getControllerButton3 (C++ function),

741
RazerHydraFrame::getControllerButton4 (C++ function),

741
RazerHydraFrame::getControllerCount (C++ function),

741
RazerHydraFrame::getControllerDocked (C++ function),

742
RazerHydraFrame::getControllerEnabled (C++ function),

742
RazerHydraFrame::getControllerPos (C++ function), 742

932 Index

Torque 3D Documentation, Release 3.5.1

RazerHydraFrame::getControllerRawPos (C++ function),
742

RazerHydraFrame::getControllerRawTransform (C++
function), 742

RazerHydraFrame::getControllerRot (C++ function), 742
RazerHydraFrame::getControllerRotAxis (C++ func-

tion), 742
RazerHydraFrame::getControllerSequenceNum (C++

function), 742
RazerHydraFrame::getControllerShoulderButton (C++

function), 743
RazerHydraFrame::getControllerStartButton (C++ func-

tion), 743
RazerHydraFrame::getControllerThumbButton (C++

function), 743
RazerHydraFrame::getControllerThumbStick (C++ func-

tion), 743
RazerHydraFrame::getControllerTransform (C++ func-

tion), 743
RazerHydraFrame::getControllerTrigger (C++ function),

743
RazerHydraFrame::getFrameInternalId (C++ function),

743
RazerHydraFrame::getFrameRealTime (C++ function),

743
RazerHydraFrame::getFrameSimTime (C++ function),

743
RazerHydraFrame::isFrameValid (C++ function), 743
ReflectorDesc::detailAdjust (C++ member), 715
ReflectorDesc::farDist (C++ member), 715
ReflectorDesc::maxRateMs (C++ member), 715
ReflectorDesc::nearDist (C++ member), 715
ReflectorDesc::objectTypeMask (C++ member), 716
ReflectorDesc::priority (C++ member), 716
ReflectorDesc::texSize (C++ member), 716
ReflectorDesc::useOcclusionQuery (C++ member), 716
registerMessageListener (C++ function), 316
registerMessageQueue (C++ function), 316
reInitMaterials (C++ member), 854
reloadTextures (C++ function), 851
removeField (C++ function), 376
removeGlobalShaderMacro (C++ function), 827
removeRecord (C++ function), 376
removeTaggedString (C++ function), 775
removeWord (C++ function), 376
RenderBinManager::binType (C++ member), 865
RenderBinManager::getBinType (C++ function), 865
RenderBinManager::processAddOrder (C++ member),

865
RenderBinManager::renderOrder (C++ member), 865
RenderFormatToken::aaLevel (C++ member), 845
RenderFormatToken::copyEffect (C++ member), 845
RenderFormatToken::depthFormat (C++ member), 845
RenderFormatToken::format (C++ member), 845

RenderFormatToken::resolveEffect (C++ member), 845
RenderMeshExample::Material (C++ member), 869
RenderMeshExample::postApply (C++ function), 869
RenderOcclusionMgr::debugRender (C++ member), 869
RenderPassManager::addManager (C++ function), 866
RenderPassManager::getManager (C++ function), 866
RenderPassManager::getManagerCount (C++ function),

866
RenderPassManager::removeManager (C++ function),

866
RenderPassStateBin::stateToken (C++ member), 867
RenderPassStateToken::disable (C++ function), 867
RenderPassStateToken::enable (C++ function), 867
RenderPassStateToken::enabled (C++ member), 867
RenderPassStateToken::toggle (C++ function), 867
RenderShapeExample::shapeFile (C++ member), 870
RenderTerrainMgr::renderWireframe (C++ member), 869
resetFPSTracker (C++ function), 517
resetLightManager (C++ function), 863
resetXInput (C++ function), 746
restWords (C++ function), 376
RigidShape::forceClientTransform (C++ function), 664
RigidShape::freezeSim (C++ function), 664
RigidShape::onEnterLiquid (C++ function), 664
RigidShape::onLeaveLiquid (C++ function), 665
RigidShape::reset (C++ function), 665
RigidShapeData::bodyFriction (C++ member), 666
RigidShapeData::bodyRestitution (C++ member), 666
RigidShapeData::cameraDecay (C++ member), 666
RigidShapeData::cameraLag (C++ member), 666
RigidShapeData::cameraOffset (C++ member), 666
RigidShapeData::cameraRoll (C++ member), 666
RigidShapeData::collisionTol (C++ member), 666
RigidShapeData::contactTol (C++ member), 666
RigidShapeData::dragForce (C++ member), 666
RigidShapeData::dustEmitter (C++ member), 666
RigidShapeData::dustHeight (C++ member), 666
RigidShapeData::dustTrailEmitter (C++ member), 666
RigidShapeData::exitingWater (C++ member), 666
RigidShapeData::exitSplashSoundVelocity (C++ mem-

ber), 666
RigidShapeData::hardImpactSound (C++ member), 666
RigidShapeData::hardImpactSpeed (C++ member), 666
RigidShapeData::hardSplashSoundVelocity (C++ mem-

ber), 666
RigidShapeData::impactWaterEasy (C++ member), 667
RigidShapeData::impactWaterHard (C++ member), 667
RigidShapeData::impactWaterMedium (C++ member),

667
RigidShapeData::integration (C++ member), 667
RigidShapeData::massBox (C++ member), 667
RigidShapeData::massCenter (C++ member), 667
RigidShapeData::maxDrag (C++ member), 667

Index 933

Torque 3D Documentation, Release 3.5.1

RigidShapeData::mediumSplashSoundVelocity (C++
member), 667

RigidShapeData::minDrag (C++ member), 667
RigidShapeData::minImpactSpeed (C++ member), 667
RigidShapeData::minRollSpeed (C++ member), 667
RigidShapeData::softImpactSound (C++ member), 667
RigidShapeData::softImpactSpeed (C++ member), 667
RigidShapeData::softSplashSoundVelocity (C++ mem-

ber), 667
RigidShapeData::splashEmitter (C++ member), 667
RigidShapeData::splashFreqMod (C++ member), 667
RigidShapeData::splashVelEpsilon (C++ member), 667
RigidShapeData::triggerDustHeight (C++ member), 667
RigidShapeData::vertFactor (C++ member), 667
RigidShapeData::waterWakeSound (C++ member), 667
River::EditorOpen (C++ member), 689
River::FlowMagnitude (C++ member), 689
River::LowLODDistance (C++ member), 689
River::Node (C++ member), 689
River::regenerate (C++ function), 689
River::SegmentLength (C++ member), 689
River::setBatchSize (C++ function), 689
River::setMaxDivisionSize (C++ function), 689
River::setMetersPerSegment (C++ function), 689
River::setNodeDepth (C++ function), 689
River::showNodes (C++ member), 689
River::showRiver (C++ member), 689
River::showSpline (C++ member), 689
River::showWalls (C++ member), 689
River::showWireframe (C++ member), 689
River::SubdivideLength (C++ member), 689
rtrim (C++ function), 367
rumble (C++ function), 746

S
SaveFileDialog::OverwritePrompt (C++ member), 337
saveJournal (C++ function), 778
saveObject (C++ function), 306
ScatterSky::ambientScale (C++ member), 685
ScatterSky::applyChanges (C++ function), 684
ScatterSky::attenuationRatio (C++ member), 685
ScatterSky::azimuth (C++ member), 685
ScatterSky::brightness (C++ member), 685
ScatterSky::castShadows (C++ member), 685
ScatterSky::colorize (C++ member), 685
ScatterSky::colorizeAmount (C++ member), 685
ScatterSky::cookie (C++ member), 685
ScatterSky::elevation (C++ member), 685
ScatterSky::exposure (C++ member), 685
ScatterSky::fadeStartDistance (C++ member), 685
ScatterSky::flareScale (C++ member), 685
ScatterSky::flareType (C++ member), 685
ScatterSky::fogScale (C++ member), 685

ScatterSky::includeLightmappedGeometryInShadow
(C++ member), 685

ScatterSky::lastSplitTerrainOnly (C++ member), 685
ScatterSky::logWeight (C++ member), 685
ScatterSky::moonAzimuth (C++ member), 685
ScatterSky::moonElevation (C++ member), 685
ScatterSky::moonEnabled (C++ member), 685
ScatterSky::moonLightColor (C++ member), 685
ScatterSky::moonMat (C++ member), 686
ScatterSky::moonScale (C++ member), 686
ScatterSky::nightColor (C++ member), 686
ScatterSky::nightCubemap (C++ member), 686
ScatterSky::nightFogColor (C++ member), 686
ScatterSky::numSplits (C++ member), 686
ScatterSky::overDarkFactor (C++ member), 686
ScatterSky::rayleighScattering (C++ member), 686
ScatterSky::representedInLightmap (C++ member), 686
ScatterSky::shadowDarkenColor (C++ member), 686
ScatterSky::shadowDistance (C++ member), 686
ScatterSky::shadowSoftness (C++ member), 686
ScatterSky::shadowType (C++ member), 686
ScatterSky::skyBrightness (C++ member), 686
ScatterSky::sunScale (C++ member), 686
ScatterSky::sunSize (C++ member), 686
ScatterSky::texSize (C++ member), 686
ScatterSky::useNightCubemap (C++ member), 686
sceneDumpZoneStates (C++ function), 517
sceneGetZoneOwner (C++ function), 517
SceneObject::getEulerRotation (C++ function), 564
SceneObject::getForwardVector (C++ function), 564
SceneObject::getInverseTransform (C++ function), 564
SceneObject::getMountedObject (C++ function), 564
SceneObject::getMountedObjectCount (C++ function),

564
SceneObject::getMountedObjectNode (C++ function),

564
SceneObject::getMountNodeObject (C++ function), 564
SceneObject::getObjectBox (C++ function), 565
SceneObject::getObjectMount (C++ function), 565
SceneObject::getPosition (C++ function), 565
SceneObject::getRightVector (C++ function), 565
SceneObject::getScale (C++ function), 565
SceneObject::getTransform (C++ function), 565
SceneObject::getType (C++ function), 565
SceneObject::getUpVector (C++ function), 565
SceneObject::getWorldBox (C++ function), 565
SceneObject::getWorldBoxCenter (C++ function), 565
SceneObject::isGlobalBounds (C++ function), 565
SceneObject::isMounted (C++ function), 565
SceneObject::isRenderEnabled (C++ member), 566
SceneObject::isSelectionEnabled (C++ member), 566
SceneObject::mountNode (C++ member), 566
SceneObject::mountObject (C++ function), 565
SceneObject::mountPID (C++ member), 566

934 Index

Torque 3D Documentation, Release 3.5.1

SceneObject::mountPos (C++ member), 566
SceneObject::mountRot (C++ member), 566
SceneObject::position (C++ member), 566
SceneObject::rotation (C++ member), 566
SceneObject::scale (C++ member), 566
SceneObject::setScale (C++ function), 566
SceneObject::setTransform (C++ function), 566
SceneObject::unmount (C++ function), 566
SceneObject::unmountObject (C++ function), 566
screenShot (C++ function), 851
ScriptGroup::onAdd (C++ function), 322
ScriptGroup::onRemove (C++ function), 323
ScriptMsgListener::onAdd (C++ function), 315
ScriptMsgListener::onAddToQueue (C++ function), 315
ScriptMsgListener::onMessageObjectReceived (C++

function), 315
ScriptMsgListener::onMessageReceived (C++ function),

315
ScriptMsgListener::onRemove (C++ function), 316
ScriptMsgListener::onRemoveFromQueue (C++ func-

tion), 316
ScriptObject::onAdd (C++ function), 323
ScriptObject::onRemove (C++ function), 323
ScriptTickObject::callOnAdvanceTime (C++ member),

324
ScriptTickObject::isProcessingTicks (C++ function), 323
ScriptTickObject::onAdvanceTime (C++ function), 323
ScriptTickObject::onInterpolateTick (C++ function), 323
ScriptTickObject::onProcessTick (C++ function), 324
ScriptTickObject::setProcessTicks (C++ function), 324
setAllSensorPredictionTime (C++ function), 517
setCoreLangTable (C++ function), 786
setCurrentDirectory (C++ function), 353
setDefaultFov (C++ function), 729
setField (C++ function), 376
setFov (C++ function), 729
setLightManager (C++ function), 863
setLogMode (C++ function), 311
setNetPort (C++ function), 775
setOVRHMDAsGameConnectionDisplayDevice (C++

function), 517
setOVRHMDCurrentIPD (C++ function), 517
setOVRSensorGravityCorrection (C++ function), 517
setOVRSensorYawCorrection (C++ function), 517
setPixelShaderVersion (C++ function), 852
setRandomSeed (C++ function), 365
setRecord (C++ function), 377
setReflectFormat (C++ function), 852
setSensorPredictionTime (C++ function), 518
setVariable (C++ function), 326
setWord (C++ function), 377
setZoomSpeed (C++ function), 729
SFXAmbience::dopplerFactor (C++ member), 787
SFXAmbience::environment (C++ member), 787

SFXAmbience::rolloffFactor (C++ member), 787
SFXAmbience::soundTrack (C++ member), 787
SFXAmbience::states (C++ member), 787
SFXController::getCurrentSlot (C++ function), 788
SFXController::setCurrentSlot (C++ function), 788
SFXController::trace (C++ member), 788
sfxCreateDevice (C++ function), 812
sfxCreateSource (C++ function), 812, 813
sfxDeleteDevice (C++ function), 813
sfxDeleteWhenStopped (C++ function), 814
SFXDescription::coneInsideAngle (C++ member), 788
SFXDescription::coneOutsideAngle (C++ member), 788
SFXDescription::coneOutsideVolume (C++ member),

789
SFXDescription::fadeInEase (C++ member), 789
SFXDescription::fadeInTime (C++ member), 789
SFXDescription::fadeLoops (C++ member), 789
SFXDescription::fadeOutEase (C++ member), 789
SFXDescription::fadeOutTime (C++ member), 789
SFXDescription::is3D (C++ member), 789
SFXDescription::isLooping (C++ member), 789
SFXDescription::isStreaming (C++ member), 789
SFXDescription::maxDistance (C++ member), 789
SFXDescription::parameters (C++ member), 789
SFXDescription::pitch (C++ member), 789
SFXDescription::priority (C++ member), 789
SFXDescription::referenceDistance (C++ member), 790
SFXDescription::REVERB_DIRECTHFAUTO (C++

member), 790
SFXDescription::REVERB_INSTANCE0 (C++ mem-

ber), 790
SFXDescription::REVERB_INSTANCE1 (C++ mem-

ber), 790
SFXDescription::REVERB_INSTANCE2 (C++ mem-

ber), 790
SFXDescription::REVERB_INSTANCE3 (C++ mem-

ber), 790
SFXDescription::REVERB_ROOMAUTO (C++ mem-

ber), 790
SFXDescription::REVERB_ROOMHFAUTO (C++

member), 790
SFXDescription::reverbAirAbsorptionFactor (C++ mem-

ber), 790
SFXDescription::reverbDirect (C++ member), 790
SFXDescription::reverbDirectHF (C++ member), 790
SFXDescription::reverbDopplerFactor (C++ member),

790
SFXDescription::reverbExclusion (C++ member), 790
SFXDescription::reverbExclusionLFRatio (C++ mem-

ber), 790
SFXDescription::reverbFlags (C++ member), 790
SFXDescription::reverbObstruction (C++ member), 790
SFXDescription::reverbObstructionLFRatio (C++ mem-

ber), 790

Index 935

Torque 3D Documentation, Release 3.5.1

SFXDescription::reverbOcclusion (C++ member), 790
SFXDescription::reverbOcclusionDirectRatio (C++

member), 790
SFXDescription::reverbOcclusionLFRatio (C++ mem-

ber), 791
SFXDescription::reverbOcclusionRoomRatio (C++

member), 791
SFXDescription::reverbOutsideVolumeHF (C++ mem-

ber), 791
SFXDescription::reverbReverbRolloffFactor (C++ mem-

ber), 791
SFXDescription::reverbRoom (C++ member), 791
SFXDescription::reverbRoomHF (C++ member), 791
SFXDescription::reverbRoomRolloffFactor (C++ mem-

ber), 791
SFXDescription::rolloffFactor (C++ member), 791
SFXDescription::scatterDistance (C++ member), 791
SFXDescription::sourceGroup (C++ member), 791
SFXDescription::streamPacketSize (C++ member), 791
SFXDescription::streamReadAhead (C++ member), 791
SFXDescription::useCustomReverb (C++ member), 791
SFXDescription::useHardware (C++ member), 791
SFXDescription::volume (C++ member), 791
sfxDumpSources (C++ function), 814
sfxDumpSourcesToString (C++ function), 814
SFXEmitter::coneInsideAngle (C++ member), 792
SFXEmitter::coneOutsideAngle (C++ member), 792
SFXEmitter::coneOutsideVolume (C++ member), 792
SFXEmitter::fadeInTime (C++ member), 793
SFXEmitter::fadeOutTime (C++ member), 793
SFXEmitter::fileName (C++ member), 793
SFXEmitter::getSource (C++ function), 792
SFXEmitter::is3D (C++ member), 793
SFXEmitter::isLooping (C++ member), 793
SFXEmitter::isStreaming (C++ member), 793
SFXEmitter::maxDistance (C++ member), 793
SFXEmitter::pitch (C++ member), 793
SFXEmitter::play (C++ function), 792
SFXEmitter::playOnAdd (C++ member), 793
SFXEmitter::referenceDistance (C++ member), 793
SFXEmitter::renderColorInnerCone (C++ member), 818
SFXEmitter::renderColorOuterCone (C++ member), 818
SFXEmitter::renderColorOutsideVolume (C++ member),

818
SFXEmitter::renderColorPlayingInRange (C++ mem-

ber), 818
SFXEmitter::renderColorPlayingOutOfRange (C++

member), 818
SFXEmitter::renderColorRangeSphere (C++ member),

818
SFXEmitter::renderColorStoppedInRange (C++ mem-

ber), 818
SFXEmitter::renderColorStoppedOutOfRange (C++

member), 818

SFXEmitter::renderEmitters (C++ member), 818
SFXEmitter::renderPointDistance (C++ member), 818
SFXEmitter::renderRadialIncrements (C++ member),

818
SFXEmitter::renderSweepIncrements (C++ member),

818
SFXEmitter::scatterDistance (C++ member), 793
SFXEmitter::sourceGroup (C++ member), 793
SFXEmitter::stop (C++ function), 792
SFXEmitter::track (C++ member), 793
SFXEmitter::useTrackDescriptionOnly (C++ member),

793
SFXEmitter::volume (C++ member), 793
SFXEnvironment::airAbsorptionHF (C++ member), 794
SFXEnvironment::decayHFRatio (C++ member), 794
SFXEnvironment::decayLFRatio (C++ member), 794
SFXEnvironment::decayTime (C++ member), 794
SFXEnvironment::density (C++ member), 794
SFXEnvironment::diffusion (C++ member), 794
SFXEnvironment::echoDepth (C++ member), 794
SFXEnvironment::echoTime (C++ member), 794
SFXEnvironment::envDiffusion (C++ member), 794
SFXEnvironment::envSize (C++ member), 794
SFXEnvironment::flags (C++ member), 794
SFXEnvironment::HFReference (C++ member), 794
SFXEnvironment::LFReference (C++ member), 794
SFXEnvironment::modulationDepth (C++ member), 794
SFXEnvironment::modulationTime (C++ member), 794
SFXEnvironment::reflections (C++ member), 794
SFXEnvironment::reflectionsDelay (C++ member), 795
SFXEnvironment::reflectionsPan (C++ member), 795
SFXEnvironment::reverb (C++ member), 795
SFXEnvironment::REVERB_CORE0 (C++ member),

795
SFXEnvironment::REVERB_CORE1 (C++ member),

795
SFXEnvironment::REVERB_DECAYHFLIMIT (C++

member), 795
SFXEnvironment::REVERB_DECAYTIMESCALE

(C++ member), 795
SFXEnvironment::REVERB_ECHOTIMESCALE (C++

member), 795
SFXEnvironment::REVERB_HIGHQUALITYDPL2REVERB

(C++ member), 795
SFXEnvironment::REVERB_HIGHQUALITYREVERB

(C++ member), 795
SFXEnvironment::REVERB_MODULATIONTIMESCALE

(C++ member), 795
SFXEnvironment::REVERB_REFLECTIONSDELAYSCALE

(C++ member), 795
SFXEnvironment::REVERB_REFLECTIONSSCALE

(C++ member), 795
SFXEnvironment::REVERB_REVERBDELAYSCALE

(C++ member), 795

936 Index

Torque 3D Documentation, Release 3.5.1

SFXEnvironment::REVERB_REVERBSCALE (C++
member), 795

SFXEnvironment::reverbDelay (C++ member), 795
SFXEnvironment::reverbPan (C++ member), 795
SFXEnvironment::room (C++ member), 795
SFXEnvironment::roomHF (C++ member), 795
SFXEnvironment::roomLF (C++ member), 795
SFXEnvironment::roomRolloffFactor (C++ member),

795
SFXFMODEvent::fmodGroup (C++ member), 819
SFXFMODEvent::fmodName (C++ member), 819
SFXFMODEvent::fmodParameterRanges (C++ mem-

ber), 819
SFXFMODEvent::fmodParameterValues (C++ member),

819
SFXFMODEventGroup::fmodGroup (C++ member), 820
SFXFMODEventGroup::fmodName (C++ member), 820
SFXFMODEventGroup::fmodProject (C++ member),

820
SFXFMODEventGroup::freeData (C++ function), 819
SFXFMODEventGroup::isDataLoaded (C++ function),

819
SFXFMODEventGroup::loadData (C++ function), 819
SFXFMODProject::fileName (C++ member), 820
SFXFMODProject::mediaPath (C++ member), 820
sfxGetActiveStates (C++ function), 814
sfxGetAvailableDevices (C++ function), 814
sfxGetDeviceInfo (C++ function), 814
sfxGetDistanceModel (C++ function), 814
sfxGetDopplerFactor (C++ function), 814
sfxGetRolloffFactor (C++ function), 814
SFXParameter::channel (C++ member), 797
SFXParameter::defaultValue (C++ member), 797
SFXParameter::description (C++ member), 797
SFXParameter::getParameterName (C++ function), 796
SFXParameter::onUpdate (C++ function), 797
SFXParameter::range (C++ member), 797
SFXParameter::reset (C++ function), 797
SFXParameter::value (C++ member), 797
sfxPlay (C++ function), 815
SFXPlayList::delayTimeIn (C++ member), 799
SFXPlayList::delayTimeInVariance (C++ member), 799
SFXPlayList::delayTimeOut (C++ member), 799
SFXPlayList::delayTimeOutVariance (C++ member),

799
SFXPlayList::fadeTimeIn (C++ member), 799
SFXPlayList::fadeTimeInVariance (C++ member), 799
SFXPlayList::fadeTimeOut (C++ member), 799
SFXPlayList::fadeTimeOutVariance (C++ member), 799
SFXPlayList::loopMode (C++ member), 799
SFXPlayList::maxDistance (C++ member), 799
SFXPlayList::maxDistanceVariance (C++ member), 799
SFXPlayList::numSlotsToPlay (C++ member), 799
SFXPlayList::pitchScale (C++ member), 799

SFXPlayList::pitchScaleVariance (C++ member), 799
SFXPlayList::random (C++ member), 799
SFXPlayList::referenceDistance (C++ member), 799
SFXPlayList::referenceDistanceVariance (C++ member),

799
SFXPlayList::repeatCount (C++ member), 799
SFXPlayList::replay (C++ member), 800
SFXPlayList::state (C++ member), 800
SFXPlayList::stateMode (C++ member), 800
SFXPlayList::trace (C++ member), 800
SFXPlayList::track (C++ member), 800
SFXPlayList::transitionIn (C++ member), 800
SFXPlayList::transitionOut (C++ member), 800
SFXPlayList::volumeScale (C++ member), 800
SFXPlayList::volumeScaleVariance (C++ member), 800
sfxPlayOnce (C++ function), 815, 816
SFXProfile::fileName (C++ member), 801
SFXProfile::getSoundDuration (C++ function), 801
SFXProfile::preload (C++ member), 801
sfxSetDistanceModel (C++ function), 816
sfxSetDopplerFactor (C++ function), 816
sfxSetRolloffFactor (C++ function), 817
SFXSound::getDuration (C++ function), 801
SFXSound::getPosition (C++ function), 801
SFXSound::isReady (C++ function), 801
SFXSound::setPosition (C++ function), 802
SFXSource::addMarker (C++ function), 804
SFXSource::addParameter (C++ function), 804
SFXSource::description (C++ member), 807
SFXSource::getAttenuatedVolume (C++ function), 804
SFXSource::getFadeInTime (C++ function), 804
SFXSource::getFadeOutTime (C++ function), 804
SFXSource::getParameter (C++ function), 804
SFXSource::getParameterCount (C++ function), 805
SFXSource::getPitch (C++ function), 805
SFXSource::getStatus (C++ function), 805
SFXSource::getVolume (C++ function), 805
SFXSource::isPaused (C++ function), 805
SFXSource::isPlaying (C++ function), 805
SFXSource::isStopped (C++ function), 805
SFXSource::onParameterValueChange (C++ function),

805
SFXSource::onStatusChange (C++ function), 805
SFXSource::pause (C++ function), 805
SFXSource::removeParameter (C++ function), 806
SFXSource::setCone (C++ function), 806
SFXSource::setFadeTimes (C++ function), 806
SFXSource::setPitch (C++ function), 806
SFXSource::setTransform (C++ function), 806
SFXSource::setVolume (C++ function), 806
SFXSource::statusCallback (C++ member), 807
SFXSource::stop (C++ function), 806
SFXSpace::edge (C++ member), 807
SFXSpace::plane (C++ member), 807

Index 937

Torque 3D Documentation, Release 3.5.1

SFXSpace::point (C++ member), 807
SFXSpace::soundAmbience (C++ member), 807
SFXState::activate (C++ function), 808
SFXState::deactivate (C++ function), 808
SFXState::disable (C++ function), 808
SFXState::enable (C++ function), 808
SFXState::excludedStates (C++ member), 808
SFXState::includedStates (C++ member), 808
SFXState::isActive (C++ function), 808
SFXState::isDisabled (C++ function), 808
SFXState::onActivate (C++ function), 808
SFXState::onDeactivate (C++ function), 808
sfxStop (C++ function), 817
sfxStopAndDelete (C++ function), 817
SFXTrack::description (C++ member), 809
SFXTrack::parameters (C++ member), 809
ShaderData::defines (C++ member), 854
ShaderData::DXPixelShaderFile (C++ member), 855
ShaderData::DXVertexShaderFile (C++ member), 855
ShaderData::OGLPixelShaderFile (C++ member), 855
ShaderData::OGLVertexShaderFile (C++ member), 855
ShaderData::pixVersion (C++ member), 855
ShaderData::reload (C++ function), 854
ShaderData::useDevicePixVersion (C++ member), 855
ShapeBase::applyDamage (C++ function), 567
ShapeBase::applyImpulse (C++ function), 567
ShapeBase::applyRepair (C++ function), 567
ShapeBase::blowUp (C++ function), 567
ShapeBase::canCloak (C++ function), 568
ShapeBase::changeMaterial (C++ function), 568
ShapeBase::destroyThread (C++ function), 568
ShapeBase::dumpMeshVisibility (C++ function), 568
ShapeBase::getAIRepairPoint (C++ function), 568
ShapeBase::getCameraFov (C++ function), 568
ShapeBase::getControllingClient (C++ function), 568
ShapeBase::getControllingObject (C++ function), 568
ShapeBase::getDamageFlash (C++ function), 568
ShapeBase::getDamageLevel (C++ function), 568
ShapeBase::getDamagePercent (C++ function), 569
ShapeBase::getDamageState (C++ function), 569
ShapeBase::getDefaultCameraFov (C++ function), 569
ShapeBase::getEnergyLevel (C++ function), 569
ShapeBase::getEnergyPercent (C++ function), 569
ShapeBase::getEyePoint (C++ function), 569
ShapeBase::getEyeTransform (C++ function), 569
ShapeBase::getEyeVector (C++ function), 569
ShapeBase::getImageAltTrigger (C++ function), 569
ShapeBase::getImageAmmo (C++ function), 569
ShapeBase::getImageGenericTrigger (C++ function), 569
ShapeBase::getImageLoaded (C++ function), 570
ShapeBase::getImageScriptAnimPrefix (C++ function),

570
ShapeBase::getImageSkinTag (C++ function), 570
ShapeBase::getImageState (C++ function), 570

ShapeBase::getImageTarget (C++ function), 570
ShapeBase::getImageTrigger (C++ function), 570
ShapeBase::getLookAtPoint (C++ function), 570
ShapeBase::getMaxDamage (C++ function), 570
ShapeBase::getModelFile (C++ function), 570
ShapeBase::getMountedImage (C++ function), 571
ShapeBase::getMountSlot (C++ function), 571
ShapeBase::getMuzzlePoint (C++ function), 571
ShapeBase::getMuzzleVector (C++ function), 571
ShapeBase::getPendingImage (C++ function), 571
ShapeBase::getRechargeRate (C++ function), 571
ShapeBase::getRepairRate (C++ function), 571
ShapeBase::getShapeName (C++ function), 571
ShapeBase::getSkinName (C++ function), 571
ShapeBase::getSlotTransform (C++ function), 572
ShapeBase::getTargetCount (C++ function), 572
ShapeBase::getTargetName (C++ function), 572
ShapeBase::getVelocity (C++ function), 572
ShapeBase::getWhiteOut (C++ function), 572
ShapeBase::hasImageState (C++ function), 572
ShapeBase::isAIControlled (C++ member), 578
ShapeBase::isCloaked (C++ function), 572
ShapeBase::isDestroyed (C++ function), 572
ShapeBase::isDisabled (C++ function), 572
ShapeBase::isEnabled (C++ function), 572
ShapeBase::isHidden (C++ function), 572
ShapeBase::isImageFiring (C++ function), 572
ShapeBase::isImageMounted (C++ function), 573
ShapeBase::mountImage (C++ function), 573
ShapeBase::pauseThread (C++ function), 573
ShapeBase::playAudio (C++ function), 573
ShapeBase::playThread (C++ function), 573
ShapeBase::setAllMeshesHidden (C++ function), 574
ShapeBase::setCameraFov (C++ function), 574
ShapeBase::setCloaked (C++ function), 574
ShapeBase::setDamageFlash (C++ function), 574
ShapeBase::setDamageLevel (C++ function), 574
ShapeBase::setDamageState (C++ function), 574
ShapeBase::setDamageVector (C++ function), 574
ShapeBase::setEnergyLevel (C++ function), 574
ShapeBase::setHidden (C++ function), 574
ShapeBase::setImageAltTrigger (C++ function), 574
ShapeBase::setImageAmmo (C++ function), 575
ShapeBase::setImageGenericTrigger (C++ function), 575
ShapeBase::setImageLoaded (C++ function), 575
ShapeBase::setImageScriptAnimPrefix (C++ function),

575
ShapeBase::setImageTarget (C++ function), 575
ShapeBase::setImageTrigger (C++ function), 575
ShapeBase::setInvincibleMode (C++ function), 576
ShapeBase::setMeshHidden (C++ function), 576
ShapeBase::setRechargeRate (C++ function), 576
ShapeBase::setRepairRate (C++ function), 576
ShapeBase::setShapeName (C++ function), 576

938 Index

Torque 3D Documentation, Release 3.5.1

ShapeBase::setSkinName (C++ function), 576
ShapeBase::setThreadDir (C++ function), 576
ShapeBase::setThreadPosition (C++ function), 576
ShapeBase::setThreadTimeScale (C++ function), 576
ShapeBase::setVelocity (C++ function), 577
ShapeBase::setWhiteOut (C++ function), 577
ShapeBase::skin (C++ member), 578
ShapeBase::startFade (C++ function), 577
ShapeBase::stopAudio (C++ function), 577
ShapeBase::stopThread (C++ function), 577
ShapeBase::unmountImage (C++ function), 577
ShapeBase::validateCameraFov (C++ function), 577
ShapeBaseData::cameraCanBank (C++ member), 580
ShapeBaseData::cameraDefaultFov (C++ member), 580
ShapeBaseData::cameraMaxDist (C++ member), 580
ShapeBaseData::cameraMaxFov (C++ member), 580
ShapeBaseData::cameraMinDist (C++ member), 580
ShapeBaseData::cameraMinFov (C++ member), 580
ShapeBaseData::checkDeployPos (C++ function), 578
ShapeBaseData::computeCRC (C++ member), 580
ShapeBaseData::cubeReflectorDesc (C++ member), 580
ShapeBaseData::Debris (C++ member), 580
ShapeBaseData::debrisShapeName (C++ member), 580
ShapeBaseData::density (C++ member), 580
ShapeBaseData::destroyedLevel (C++ member), 580
ShapeBaseData::disabledLevel (C++ member), 580
ShapeBaseData::drag (C++ member), 580
ShapeBaseData::Explosion (C++ member), 580
ShapeBaseData::firstPersonOnly (C++ member), 580
ShapeBaseData::getDeployTransform (C++ function),

578
ShapeBaseData::inheritEnergyFromMount (C++ mem-

ber), 581
ShapeBaseData::isInvincible (C++ member), 581
ShapeBaseData::mass (C++ member), 581
ShapeBaseData::maxDamage (C++ member), 581
ShapeBaseData::maxEnergy (C++ member), 581
ShapeBaseData::mountedImagesBank (C++ member),

581
ShapeBaseData::observeThroughObject (C++ member),

581
ShapeBaseData::onCollision (C++ function), 578
ShapeBaseData::onDamage (C++ function), 579
ShapeBaseData::onDestroyed (C++ function), 579
ShapeBaseData::onDisabled (C++ function), 579
ShapeBaseData::onEnabled (C++ function), 579
ShapeBaseData::onEndSequence (C++ function), 579
ShapeBaseData::onForceUncloak (C++ function), 579
ShapeBaseData::onImpact (C++ function), 579
ShapeBaseData::onTrigger (C++ function), 580
ShapeBaseData::renderWhenDestroyed (C++ member),

581
ShapeBaseData::repairRate (C++ member), 581
ShapeBaseData::shadowEnable (C++ member), 581

ShapeBaseData::shadowMaxVisibleDistance (C++ mem-
ber), 581

ShapeBaseData::shadowProjectionDistance (C++ mem-
ber), 581

ShapeBaseData::shadowSize (C++ member), 581
ShapeBaseData::shadowSphereAdjust (C++ member),

581
ShapeBaseData::shapeFile (C++ member), 581
ShapeBaseData::underwaterExplosion (C++ member),

581
ShapeBaseData::useEyePoint (C++ member), 581
ShapeBaseImageData::accuFire (C++ member), 586
ShapeBaseImageData::animateAllShapes (C++ member),

586
ShapeBaseImageData::animateOnServer (C++ member),

586
ShapeBaseImageData::camShakeAmp (C++ member),

587
ShapeBaseImageData::camShakeFreq (C++ member),

587
ShapeBaseImageData::casing (C++ member), 587
ShapeBaseImageData::cloakable (C++ member), 587
ShapeBaseImageData::computeCRC (C++ member), 587
ShapeBaseImageData::correctMuzzleVector (C++ mem-

ber), 587
ShapeBaseImageData::correctMuzzleVectorTP (C++

member), 587
ShapeBaseImageData::emap (C++ member), 587
ShapeBaseImageData::eyeOffset (C++ member), 587
ShapeBaseImageData::eyeRotation (C++ member), 587
ShapeBaseImageData::firstPerson (C++ member), 587
ShapeBaseImageData::imageAnimPrefix (C++ member),

587
ShapeBaseImageData::imageAnimPrefixFP (C++ mem-

ber), 587
ShapeBaseImageData::lightBrightness (C++ member),

587
ShapeBaseImageData::lightColor (C++ member), 587
ShapeBaseImageData::lightDuration (C++ member), 587
ShapeBaseImageData::lightRadius (C++ member), 587
ShapeBaseImageData::lightType (C++ member), 587
ShapeBaseImageData::mass (C++ member), 587
ShapeBaseImageData::maxConcurrentSounds (C++

member), 587
ShapeBaseImageData::minEnergy (C++ member), 588
ShapeBaseImageData::mountPoint (C++ member), 588
ShapeBaseImageData::offset (C++ member), 588
ShapeBaseImageData::onMount (C++ function), 586
ShapeBaseImageData::onUnmount (C++ function), 586
ShapeBaseImageData::Projectile (C++ member), 588
ShapeBaseImageData::rotation (C++ member), 588
ShapeBaseImageData::scriptAnimTransitionTime (C++

member), 588
ShapeBaseImageData::shakeCamera (C++ member), 588

Index 939

Torque 3D Documentation, Release 3.5.1

ShapeBaseImageData::shapeFile (C++ member), 588
ShapeBaseImageData::shapeFileFP (C++ member), 588
ShapeBaseImageData::shellExitDir (C++ member), 588
ShapeBaseImageData::shellExitVariance (C++ member),

588
ShapeBaseImageData::shellVelocity (C++ member), 588
ShapeBaseImageData::stateAllowImageChange (C++

member), 588
ShapeBaseImageData::stateAlternateFire (C++ member),

588
ShapeBaseImageData::stateDirection (C++ member),

588
ShapeBaseImageData::stateEjectShell (C++ member),

588
ShapeBaseImageData::stateEmitter (C++ member), 589
ShapeBaseImageData::stateEmitterNode (C++ member),

589
ShapeBaseImageData::stateEmitterTime (C++ member),

589
ShapeBaseImageData::stateEnergyDrain (C++ member),

589
ShapeBaseImageData::stateFire (C++ member), 589
ShapeBaseImageData::stateIgnoreLoadedForReady

(C++ member), 589
ShapeBaseImageData::stateLoadedFlag (C++ member),

589
ShapeBaseImageData::stateName (C++ member), 589
ShapeBaseImageData::stateRecoil (C++ member), 589
ShapeBaseImageData::stateReload (C++ member), 589
ShapeBaseImageData::stateScaleAnimation (C++ mem-

ber), 589
ShapeBaseImageData::stateScaleAnimationFP (C++

member), 589
ShapeBaseImageData::stateScaleShapeSequence (C++

member), 589
ShapeBaseImageData::stateScript (C++ member), 589
ShapeBaseImageData::stateSequence (C++ member),

589
ShapeBaseImageData::stateSequenceNeverTransition

(C++ member), 590
ShapeBaseImageData::stateSequenceRandomFlash (C++

member), 590
ShapeBaseImageData::stateSequenceTransitionIn (C++

member), 590
ShapeBaseImageData::stateSequenceTransitionOut (C++

member), 590
ShapeBaseImageData::stateSequenceTransitionTime

(C++ member), 590
ShapeBaseImageData::stateShapeSequence (C++ mem-

ber), 590
ShapeBaseImageData::stateSound (C++ member), 590
ShapeBaseImageData::stateSpinThread (C++ member),

590
ShapeBaseImageData::stateTimeoutValue (C++ mem-

ber), 590
ShapeBaseImageData::stateTransitionGeneric0In (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric0Out (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric1In (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric1Out (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric2In (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric2Out (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric3In (C++

member), 590
ShapeBaseImageData::stateTransitionGeneric3Out (C++

member), 590
ShapeBaseImageData::stateTransitionOnAltTriggerDown

(C++ member), 590
ShapeBaseImageData::stateTransitionOnAltTriggerUp

(C++ member), 591
ShapeBaseImageData::stateTransitionOnAmmo (C++

member), 591
ShapeBaseImageData::stateTransitionOnLoaded (C++

member), 591
ShapeBaseImageData::stateTransitionOnMotion (C++

member), 591
ShapeBaseImageData::stateTransitionOnNoAmmo (C++

member), 591
ShapeBaseImageData::stateTransitionOnNoMotion (C++

member), 591
ShapeBaseImageData::stateTransitionOnNoTarget (C++

member), 591
ShapeBaseImageData::stateTransitionOnNotLoaded

(C++ member), 591
ShapeBaseImageData::stateTransitionOnNotWet (C++

member), 591
ShapeBaseImageData::stateTransitionOnTarget (C++

member), 591
ShapeBaseImageData::stateTransitionOnTimeout (C++

member), 591
ShapeBaseImageData::stateTransitionOnTriggerDown

(C++ member), 591
ShapeBaseImageData::stateTransitionOnTriggerUp (C++

member), 591
ShapeBaseImageData::stateTransitionOnWet (C++ mem-

ber), 591
ShapeBaseImageData::stateWaitForTimeout (C++ mem-

ber), 591
ShapeBaseImageData::useEyeNode (C++ member), 591
ShapeBaseImageData::useRemainderDT (C++ member),

591
ShapeBaseImageData::usesEnergy (C++ member), 591
shellExecute (C++ function), 778

940 Index

Torque 3D Documentation, Release 3.5.1

SimDataBlock::reloadOnLocalClient (C++ function),
510

SimObject::assignFieldsFrom (C++ function), 502
SimObject::assignPersistentId (C++ function), 502
SimObject::call (C++ function), 502
SimObject::canSave (C++ member), 507
SimObject::canSaveDynamicFields (C++ member), 507
SimObject::className (C++ member), 507
SimObject::clone (C++ function), 502
SimObject::deepClone (C++ function), 502
SimObject::dump (C++ function), 502
SimObject::dumpClassHierarchy (C++ function), 502
SimObject::dumpGroupHierarchy (C++ function), 502
SimObject::dumpMethods (C++ function), 502
SimObject::getCanSave (C++ function), 503
SimObject::getClassName (C++ function), 503
SimObject::getClassNamespace (C++ function), 503
SimObject::getDebugInfo (C++ function), 503
SimObject::getDeclarationLine (C++ function), 503
SimObject::getDynamicField (C++ function), 503
SimObject::getDynamicFieldCount (C++ function), 503
SimObject::getField (C++ function), 503
SimObject::getFieldCount (C++ function), 503
SimObject::getFieldType (C++ function), 503
SimObject::getFieldValue (C++ function), 503
SimObject::getFilename (C++ function), 504
SimObject::getGroup (C++ function), 504
SimObject::getId (C++ function), 504
SimObject::getInternalName (C++ function), 504
SimObject::getName (C++ function), 504
SimObject::getSuperClassNamespace (C++ function),

504
SimObject::hidden (C++ member), 507
SimObject::internalName (C++ member), 507
SimObject::isChildOfGroup (C++ function), 504
SimObject::isEditorOnly (C++ function), 504
SimObject::isExpanded (C++ function), 504
SimObject::isField (C++ function), 504
SimObject::isInNamespaceHierarchy (C++ function),

504
SimObject::isMemberOfClass (C++ function), 505
SimObject::isMethod (C++ function), 505
SimObject::isNameChangeAllowed (C++ function), 505
SimObject::isSelected (C++ function), 505
SimObject::locked (C++ member), 507
SimObject::name (C++ member), 507
SimObject::parentGroup (C++ member), 507
SimObject::persistentId (C++ member), 507
SimObject::save (C++ function), 505
SimObject::schedule (C++ function), 505
SimObject::setCanSave (C++ function), 505
SimObject::setClassNamespace (C++ function), 505
SimObject::setEditorOnly (C++ function), 505
SimObject::setFieldType (C++ function), 505

SimObject::setFieldValue (C++ function), 506
SimObject::setFilename (C++ function), 506
SimObject::setHidden (C++ function), 506
SimObject::setInternalName (C++ function), 506
SimObject::setIsExpanded (C++ function), 506
SimObject::setIsSelected (C++ function), 506
SimObject::setLocked (C++ function), 506
SimObject::setName (C++ function), 506
SimObject::setNameChangeAllowed (C++ function), 506
SimObject::setSuperClassNamespace (C++ function),

506
SimObject::superClass (C++ member), 507
SimpleMessageEvent::msg (C++ function), 766
SimpleNetObject::setMessage (C++ function), 766
SimSet::acceptsAsChild (C++ function), 507
SimSet::add (C++ function), 508
SimSet::bringToFront (C++ function), 508
SimSet::callOnChildren (C++ function), 508
SimSet::callOnChildrenNoRecurse (C++ function), 508
SimSet::clear (C++ function), 508
SimSet::deleteAllObjects (C++ function), 508
SimSet::findObjectByInternalName (C++ function), 508
SimSet::getCount (C++ function), 508
SimSet::getFullCount (C++ function), 508
SimSet::getObject (C++ function), 508
SimSet::getObjectIndex (C++ function), 508
SimSet::getRandom (C++ function), 509
SimSet::isMember (C++ function), 509
SimSet::listObjects (C++ function), 509
SimSet::onObjectAdded (C++ function), 509
SimSet::onObjectRemoved (C++ function), 509
SimSet::pushToBack (C++ function), 509
SimSet::remove (C++ function), 509
SimSet::reorderChild (C++ function), 509
SimSet::sort (C++ function), 509
SimXMLDocument::addComment (C++ function), 339
SimXMLDocument::addData (C++ function), 339
SimXMLDocument::addHeader (C++ function), 339
SimXMLDocument::addNewElement (C++ function),

340
SimXMLDocument::addText (C++ function), 340
SimXMLDocument::attribute (C++ function), 340
SimXMLDocument::attributeExists (C++ function), 340
SimXMLDocument::attributeF32 (C++ function), 340
SimXMLDocument::attributeS32 (C++ function), 340
SimXMLDocument::clear (C++ function), 341
SimXMLDocument::clearError (C++ function), 341
SimXMLDocument::elementValue (C++ function), 341
SimXMLDocument::firstAttribute (C++ function), 341
SimXMLDocument::getData (C++ function), 341
SimXMLDocument::getErrorDesc (C++ function), 341
SimXMLDocument::getText (C++ function), 341
SimXMLDocument::lastAttribute (C++ function), 342
SimXMLDocument::loadFile (C++ function), 342

Index 941

Torque 3D Documentation, Release 3.5.1

SimXMLDocument::nextAttribute (C++ function), 342
SimXMLDocument::nextSiblingElement (C++ function),

342
SimXMLDocument::parse (C++ function), 342
SimXMLDocument::popElement (C++ function), 342
SimXMLDocument::prevAttribute (C++ function), 342
SimXMLDocument::pushChildElement (C++ function),

342
SimXMLDocument::pushFirstChildElement (C++ func-

tion), 342
SimXMLDocument::pushNewElement (C++ function),

343
SimXMLDocument::readComment (C++ function), 343
SimXMLDocument::removeText (C++ function), 343
SimXMLDocument::reset (C++ function), 343
SimXMLDocument::saveFile (C++ function), 343
SimXMLDocument::setAttribute (C++ function), 343
SimXMLDocument::setObjectAttributes (C++ function),

343
SkyBox::drawBottom (C++ member), 687
SkyBox::fogBandHeight (C++ member), 687
SkyBox::Material (C++ member), 687
SkyBox::postApply (C++ member), 687
snapToggle (C++ function), 498
SpawnSphere::autoSpawn (C++ member), 593
SpawnSphere::indoorWeight (C++ member), 593
SpawnSphere::onAdd (C++ function), 592
SpawnSphere::outdoorWeight (C++ member), 593
SpawnSphere::radius (C++ member), 593
SpawnSphere::spawnClass (C++ member), 593
SpawnSphere::spawnDatablock (C++ member), 593
SpawnSphere::spawnObject (C++ function), 592
SpawnSphere::spawnProperties (C++ member), 593
SpawnSphere::spawnScript (C++ member), 593
SpawnSphere::spawnTransform (C++ member), 593
SpawnSphere::sphereWeight (C++ member), 593
SplashData::acceleration (C++ member), 648
SplashData::colors (C++ member), 648
SplashData::delayMS (C++ member), 648
SplashData::delayVariance (C++ member), 648
SplashData::ejectionAngle (C++ member), 648
SplashData::ejectionFreq (C++ member), 648
SplashData::emitter (C++ member), 648
SplashData::Explosion (C++ member), 648
SplashData::height (C++ member), 648
SplashData::lifetimeMS (C++ member), 648
SplashData::lifetimeVariance (C++ member), 648
SplashData::numSegments (C++ member), 648
SplashData::ringLifetime (C++ member), 648
SplashData::scale (C++ member), 648
SplashData::soundProfile (C++ member), 648
SplashData::startRadius (C++ member), 648
SplashData::texFactor (C++ member), 648
SplashData::texture (C++ member), 648

SplashData::texWrap (C++ member), 648
SplashData::times (C++ member), 648
SplashData::velocity (C++ member), 648
SplashData::width (C++ member), 649
SpotLight::innerAngle (C++ member), 862
SpotLight::outerAngle (C++ member), 862
SpotLight::range (C++ member), 862
StartClientReplication (C++ function), 707
startFileChangeNotifications (C++ function), 353
StartFoliageReplication (C++ function), 707
startsWith (C++ function), 367
startVideoCapture (C++ function), 827
StaticShapeData::dynamicType (C++ member), 594
StaticShapeData::noIndividualDamage (C++ member),

595
stopFileChangeNotifications (C++ function), 353
stopSampling (C++ function), 827
stopVideoCapture (C++ function), 827
strasc (C++ function), 368
strchr (C++ function), 368
strchrpos (C++ function), 368
strcmp (C++ function), 368
StreamObject::copyFrom (C++ function), 344
StreamObject::getPosition (C++ function), 344
StreamObject::getStatus (C++ function), 344
StreamObject::getStreamSize (C++ function), 345
StreamObject::isEOF (C++ function), 345
StreamObject::isEOS (C++ function), 346
StreamObject::readLine (C++ function), 346
StreamObject::readLongString (C++ function), 346
StreamObject::readString (C++ function), 347
StreamObject::readSTString (C++ function), 347
StreamObject::setPosition (C++ function), 347
StreamObject::writeLine (C++ function), 347
StreamObject::writeLongString (C++ function), 348
StreamObject::writeString (C++ function), 348
strformat (C++ function), 368
stricmp (C++ function), 369
strinatcmp (C++ function), 369
stripChars (C++ function), 369
StripMLControlChars (C++ function), 428
stripTrailingNumber (C++ function), 370
strIsMatchExpr (C++ function), 370
strIsMatchMultipleExpr (C++ function), 370
strlen (C++ function), 370
strlwr (C++ function), 370
strnatcmp (C++ function), 371
strpos (C++ function), 371
strrchr (C++ function), 371
strrchrpos (C++ function), 372
strrepeat (C++ function), 372
strreplace (C++ function), 372
strstr (C++ function), 372
strupr (C++ function), 373

942 Index

Torque 3D Documentation, Release 3.5.1

Sun::ambient (C++ member), 687
Sun::animate (C++ member), 687
Sun::apply (C++ member), 687
Sun::attenuationRatio (C++ member), 687
Sun::azimuth (C++ member), 687
Sun::brightness (C++ member), 687
Sun::castShadows (C++ member), 687
Sun::color (C++ member), 687
Sun::cookie (C++ member), 687
Sun::coronaEnabled (C++ member), 687
Sun::coronaMaterial (C++ member), 687
Sun::coronaScale (C++ member), 687
Sun::coronaTint (C++ member), 687
Sun::coronaUseLightColor (C++ member), 688
Sun::elevation (C++ member), 688
Sun::fadeStartDistance (C++ member), 688
Sun::flareScale (C++ member), 688
Sun::flareType (C++ member), 688
Sun::includeLightmappedGeometryInShadow (C++

member), 688
Sun::lastSplitTerrainOnly (C++ member), 688
Sun::logWeight (C++ member), 688
Sun::numSplits (C++ member), 688
Sun::overDarkFactor (C++ member), 688
Sun::representedInLightmap (C++ member), 688
Sun::shadowDarkenColor (C++ member), 688
Sun::shadowDistance (C++ member), 688
Sun::shadowSoftness (C++ member), 688
Sun::shadowType (C++ member), 688
Sun::texSize (C++ member), 688

T
TCPObject::connect (C++ function), 768
TCPObject::disconnect (C++ function), 769
TCPObject::listen (C++ function), 769
TCPObject::onConnected (C++ function), 769
TCPObject::onConnectFailed (C++ function), 769
TCPObject::onConnectionRequest (C++ function), 769
TCPObject::onDisconnect (C++ function), 769
TCPObject::onDNSFailed (C++ function), 769
TCPObject::onDNSResolved (C++ function), 769
TCPObject::onLine (C++ function), 769
TCPObject::send (C++ function), 769
telnetSetParameters (C++ function), 308
TerrainBlock::baseTexSize (C++ member), 696
TerrainBlock::castShadows (C++ member), 696
TerrainBlock::createNew (C++ member), 696
TerrainBlock::debugRender (C++ member), 698
TerrainBlock::exportHeightMap (C++ function), 696
TerrainBlock::exportLayerMaps (C++ function), 696
TerrainBlock::import (C++ function), 696
TerrainBlock::lightMapSize (C++ member), 696
TerrainBlock::save (C++ function), 696
TerrainBlock::screenError (C++ member), 696

TerrainBlock::squareSize (C++ member), 696
TerrainBlock::terrainFile (C++ member), 697
TerrainMaterial::detailDistance (C++ member), 716
TerrainMaterial::detailMap (C++ member), 716
TerrainMaterial::detailSize (C++ member), 716
TerrainMaterial::detailStrength (C++ member), 716
TerrainMaterial::diffuseMap (C++ member), 716
TerrainMaterial::diffuseSize (C++ member), 716
TerrainMaterial::macroDistance (C++ member), 716
TerrainMaterial::macroMap (C++ member), 716
TerrainMaterial::macroSize (C++ member), 716
TerrainMaterial::macroStrength (C++ member), 716
TerrainMaterial::normalMap (C++ member), 717
TerrainMaterial::parallaxScale (C++ member), 717
TerrainMaterial::useSideProjection (C++ member), 717
TheoraTextureObject::loop (C++ member), 825
TheoraTextureObject::pause (C++ function), 825
TheoraTextureObject::play (C++ function), 825
TheoraTextureObject::SFXDescription (C++ member),

826
TheoraTextureObject::stop (C++ function), 825
TheoraTextureObject::texTargetName (C++ member),

826
TheoraTextureObject::theoraFile (C++ member), 826
TimeOfDay::addTimeOfDayEvent (C++ function), 717
TimeOfDay::animate (C++ function), 717
TimeOfDay::axisTilt (C++ member), 717
TimeOfDay::azimuthOverride (C++ member), 717
TimeOfDay::dayLength (C++ member), 717
TimeOfDay::dayScale (C++ member), 717
TimeOfDay::nightScale (C++ member), 718
TimeOfDay::play (C++ member), 718
TimeOfDay::setDayLength (C++ function), 717
TimeOfDay::setPlay (C++ function), 717
TimeOfDay::setTimeOfDay (C++ function), 717
TimeOfDay::startTime (C++ member), 718
TimeOfDay::time (C++ member), 718
trace (C++ function), 308
Trigger::enterCommand (C++ member), 595
Trigger::getNumObjects (C++ function), 595
Trigger::getObject (C++ function), 595
Trigger::leaveCommand (C++ member), 595
Trigger::onAdd (C++ function), 595
Trigger::onRemove (C++ function), 595
Trigger::polyhedron (C++ member), 595
Trigger::renderTriggers (C++ member), 625
Trigger::tickCommand (C++ member), 595
TriggerData::clientSide (C++ member), 596
TriggerData::onEnterTrigger (C++ function), 596
TriggerData::onLeaveTrigger (C++ function), 596
TriggerData::onTickTrigger (C++ function), 596
TriggerData::tickPeriodMS (C++ member), 596
trim (C++ function), 373

Index 943

Torque 3D Documentation, Release 3.5.1

TSShapeConstructor::addCollisionDetail (C++ function),
598

TSShapeConstructor::addImposter (C++ function), 599
TSShapeConstructor::addMesh (C++ function), 599
TSShapeConstructor::addNode (C++ function), 600
TSShapeConstructor::addPrimitive (C++ function), 600
TSShapeConstructor::addSequence (C++ function), 601
TSShapeConstructor::addTrigger (C++ function), 601
TSShapeConstructor::adjustCenter (C++ member), 614
TSShapeConstructor::adjustFloor (C++ member), 614
TSShapeConstructor::alwaysImport (C++ member), 614
TSShapeConstructor::alwaysImportMesh (C++ member),

615
TSShapeConstructor::baseShape (C++ member), 615
TSShapeConstructor::dumpShape (C++ function), 602
TSShapeConstructor::forceUpdateMaterials (C++ mem-

ber), 615
TSShapeConstructor::getBounds (C++ function), 602
TSShapeConstructor::getDetailLevelCount (C++ func-

tion), 602
TSShapeConstructor::getDetailLevelIndex (C++ func-

tion), 602
TSShapeConstructor::getDetailLevelName (C++ func-

tion), 602
TSShapeConstructor::getDetailLevelSize (C++ function),

602
TSShapeConstructor::getImposterDetailLevel (C++ func-

tion), 602
TSShapeConstructor::getImposterSettings (C++ func-

tion), 603
TSShapeConstructor::getMeshCount (C++ function), 603
TSShapeConstructor::getMeshMaterial (C++ function),

603
TSShapeConstructor::getMeshName (C++ function), 603
TSShapeConstructor::getMeshSize (C++ function), 603
TSShapeConstructor::getMeshType (C++ function), 604
TSShapeConstructor::getNodeChildCount (C++ func-

tion), 604
TSShapeConstructor::getNodeChildName (C++ func-

tion), 604
TSShapeConstructor::getNodeCount (C++ function), 605
TSShapeConstructor::getNodeIndex (C++ function), 605
TSShapeConstructor::getNodeName (C++ function), 605
TSShapeConstructor::getNodeObjectCount (C++ func-

tion), 605
TSShapeConstructor::getNodeObjectName (C++ func-

tion), 605
TSShapeConstructor::getNodeParentName (C++ func-

tion), 606
TSShapeConstructor::getNodeTransform (C++ function),

606
TSShapeConstructor::getObjectCount (C++ function),

606
TSShapeConstructor::getObjectIndex (C++ function),

606
TSShapeConstructor::getObjectName (C++ function),

606
TSShapeConstructor::getObjectNode (C++ function),

607
TSShapeConstructor::getSequenceBlend (C++ function),

607
TSShapeConstructor::getSequenceCount (C++ function),

607
TSShapeConstructor::getSequenceCyclic (C++ function),

607
TSShapeConstructor::getSequenceFrameCount (C++

function), 607
TSShapeConstructor::getSequenceGroundSpeed (C++

function), 607
TSShapeConstructor::getSequenceIndex (C++ function),

608
TSShapeConstructor::getSequenceName (C++ function),

608
TSShapeConstructor::getSequencePriority (C++ func-

tion), 608
TSShapeConstructor::getSequenceSource (C++ func-

tion), 608
TSShapeConstructor::getTargetCount (C++ function),

608
TSShapeConstructor::getTargetName (C++ function),

608
TSShapeConstructor::getTrigger (C++ function), 609
TSShapeConstructor::getTriggerCount (C++ function),

609
TSShapeConstructor::ignoreNodeScale (C++ member),

615
TSShapeConstructor::lodType (C++ member), 615
TSShapeConstructor::matNamePrefix (C++ member),

615
TSShapeConstructor::neverImport (C++ member), 615
TSShapeConstructor::neverImportMesh (C++ member),

615
TSShapeConstructor::notifyShapeChanged (C++ func-

tion), 609
TSShapeConstructor::onLoad (C++ function), 609
TSShapeConstructor::onUnload (C++ function), 609
TSShapeConstructor::removeDetailLevel (C++ function),

609
TSShapeConstructor::removeImposter (C++ function),

609
TSShapeConstructor::removeMesh (C++ function), 609
TSShapeConstructor::removeNode (C++ function), 610
TSShapeConstructor::removeObject (C++ function), 610
TSShapeConstructor::removeSequence (C++ function),

610
TSShapeConstructor::removeTrigger (C++ function), 610
TSShapeConstructor::renameDetailLevel (C++ function),

610

944 Index

Torque 3D Documentation, Release 3.5.1

TSShapeConstructor::renameNode (C++ function), 611
TSShapeConstructor::renameObject (C++ function), 611
TSShapeConstructor::renameSequence (C++ function),

611
TSShapeConstructor::saveShape (C++ function), 611
TSShapeConstructor::sequence (C++ member), 615
TSShapeConstructor::setBounds (C++ function), 611
TSShapeConstructor::setDetailLevelSize (C++ function),

611
TSShapeConstructor::setMeshMaterial (C++ function),

612
TSShapeConstructor::setMeshSize (C++ function), 612
TSShapeConstructor::setMeshType (C++ function), 612
TSShapeConstructor::setNodeParent (C++ function), 612
TSShapeConstructor::setNodeTransform (C++ function),

613
TSShapeConstructor::setObjectNode (C++ function), 613
TSShapeConstructor::setSequenceBlend (C++ function),

613
TSShapeConstructor::setSequenceCyclic (C++ function),

613
TSShapeConstructor::setSequenceGroundSpeed (C++

function), 614
TSShapeConstructor::setSequencePriority (C++ func-

tion), 614
TSShapeConstructor::singleDetailSize (C++ member),

616
TSShapeConstructor::unit (C++ member), 616
TSShapeConstructor::upAxis (C++ member), 616
TSShapeConstructor::writeChangeSet (C++ function),

614
TSStatic::allowPlayerStep (C++ member), 617
TSStatic::changeMaterial (C++ function), 617
TSStatic::collisionType (C++ member), 617
TSStatic::decalType (C++ member), 617
TSStatic::forceDetail (C++ member), 617
TSStatic::getModelFile (C++ function), 617
TSStatic::getTargetCount (C++ function), 617
TSStatic::getTargetName (C++ function), 617
TSStatic::meshCulling (C++ member), 617
TSStatic::originSort (C++ member), 618
TSStatic::playAmbient (C++ member), 618
TSStatic::renderNormals (C++ member), 618
TSStatic::shapeName (C++ member), 618
TSStatic::skin (C++ member), 618
TurretShape::doRespawn (C++ function), 621
TurretShape::getAllowManualFire (C++ function), 621
TurretShape::getAllowManualRotation (C++ function),

621
TurretShape::getState (C++ function), 621
TurretShape::getTurretEulerRotation (C++ function), 621
TurretShape::respawn (C++ member), 622
TurretShape::setAllowManualFire (C++ function), 621

TurretShape::setAllowManualRotation (C++ function),
621

TurretShape::setTurretEulerRotation (C++ function), 621
TurretShapeData::cameraOffset (C++ member), 622
TurretShapeData::headingRate (C++ member), 622
TurretShapeData::maxHeading (C++ member), 622
TurretShapeData::maxPitch (C++ member), 622
TurretShapeData::minPitch (C++ member), 622
TurretShapeData::onMountObject (C++ function), 622
TurretShapeData::onStickyCollision (C++ function), 622
TurretShapeData::onUnmountObject (C++ function), 622
TurretShapeData::pitchRate (C++ member), 622
TurretShapeData::startLoaded (C++ member), 623
TurretShapeData::weaponLinkType (C++ member), 623
TurretShapeData::zRotOnly (C++ member), 623

U
unitTest_runTests (C++ function), 306
unregisterMessageListener (C++ function), 317
unregisterMessageQueue (C++ function), 317

V
validateMemory (C++ function), 308
VectorAdd (C++ function), 360
VectorCross (C++ function), 360
VectorDist (C++ function), 360
VectorDot (C++ function), 361
VectorLen (C++ function), 361
VectorLerp (C++ function), 361
VectorNormalize (C++ function), 362
VectorOrthoBasis (C++ function), 362
VectorScale (C++ function), 362
VectorSub (C++ function), 363
Vehicle::disableMove (C++ member), 673
Vehicle::workingQueryBoxSizeMultiplier (C++ mem-

ber), 673
Vehicle::workingQueryBoxStaleThreshold (C++ mem-

ber), 674
VehicleData::bodyFriction (C++ member), 675
VehicleData::bodyRestitution (C++ member), 675
VehicleData::cameraDecay (C++ member), 675
VehicleData::cameraLag (C++ member), 675
VehicleData::cameraOffset (C++ member), 675
VehicleData::cameraRoll (C++ member), 675
VehicleData::collDamageMultiplier (C++ member), 675
VehicleData::collDamageThresholdVel (C++ member),

675
VehicleData::collisionTol (C++ member), 675
VehicleData::contactTol (C++ member), 675
VehicleData::damageEmitter (C++ member), 675
VehicleData::damageEmitterOffset (C++ member), 675
VehicleData::damageLevelTolerance (C++ member), 675
VehicleData::dustEmitter (C++ member), 675
VehicleData::dustHeight (C++ member), 675

Index 945

Torque 3D Documentation, Release 3.5.1

VehicleData::exitingWater (C++ member), 676
VehicleData::exitSplashSoundVelocity (C++ member),

676
VehicleData::hardImpactSound (C++ member), 676
VehicleData::hardImpactSpeed (C++ member), 676
VehicleData::hardSplashSoundVelocity (C++ member),

676
VehicleData::impactWaterEasy (C++ member), 676
VehicleData::impactWaterHard (C++ member), 676
VehicleData::impactWaterMedium (C++ member), 676
VehicleData::integration (C++ member), 676
VehicleData::jetEnergyDrain (C++ member), 676
VehicleData::jetForce (C++ member), 676
VehicleData::massBox (C++ member), 676
VehicleData::massCenter (C++ member), 676
VehicleData::maxDrag (C++ member), 676
VehicleData::maxSteeringAngle (C++ member), 676
VehicleData::mediumSplashSoundVelocity (C++ mem-

ber), 676
VehicleData::minDrag (C++ member), 676
VehicleData::minImpactSpeed (C++ member), 676
VehicleData::minJetEnergy (C++ member), 676
VehicleData::minRollSpeed (C++ member), 677
VehicleData::numDmgEmitterAreas (C++ member), 677
VehicleData::onEnterLiquid (C++ function), 674
VehicleData::onLeaveLiquid (C++ function), 674
VehicleData::powerSteering (C++ member), 677
VehicleData::softImpactSound (C++ member), 677
VehicleData::softImpactSpeed (C++ member), 677
VehicleData::softSplashSoundVelocity (C++ member),

677
VehicleData::splashEmitter (C++ member), 677
VehicleData::splashFreqMod (C++ member), 677
VehicleData::splashVelEpsilon (C++ member), 677
VehicleData::steeringReturn (C++ member), 677
VehicleData::steeringReturnSpeedScale (C++ member),

677
VehicleData::triggerDustHeight (C++ member), 677
VehicleData::waterWakeSound (C++ member), 677

W
warn (C++ function), 311
WaterBlock::gridElementSize (C++ member), 690
WaterBlock::gridSize (C++ member), 690
WaterObject::baseColor (C++ member), 690
WaterObject::clarity (C++ member), 690
WaterObject::cubemap (C++ member), 690
WaterObject::density (C++ member), 690
WaterObject::depthGradientMax (C++ member), 690
WaterObject::depthGradientTex (C++ member), 690
WaterObject::distortEndDist (C++ member), 690
WaterObject::distortFullDepth (C++ member), 690
WaterObject::distortStartDist (C++ member), 690
WaterObject::emissive (C++ member), 690

WaterObject::foamAmbientLerp (C++ member), 691
WaterObject::foamDir (C++ member), 691
WaterObject::foamMaxDepth (C++ member), 691
WaterObject::foamOpacity (C++ member), 691
WaterObject::foamRippleInfluence (C++ member), 691
WaterObject::foamSpeed (C++ member), 691
WaterObject::foamTex (C++ member), 691
WaterObject::foamTexScale (C++ member), 691
WaterObject::fresnelBias (C++ member), 691
WaterObject::fresnelPower (C++ member), 691
WaterObject::fullReflect (C++ member), 691
WaterObject::liquidType (C++ member), 691
WaterObject::overallFoamOpacity (C++ member), 691
WaterObject::overallRippleMagnitude (C++ member),

691
WaterObject::overallWaveMagnitude (C++ member), 691
WaterObject::reflectDetailAdjust (C++ member), 691
WaterObject::reflectivity (C++ member), 691
WaterObject::reflectMaxRateMs (C++ member), 691
WaterObject::reflectNormalUp (C++ member), 691
WaterObject::reflectPriority (C++ member), 691
WaterObject::reflectTexSize (C++ member), 691
WaterObject::rippleDir (C++ member), 691
WaterObject::rippleMagnitude (C++ member), 691
WaterObject::rippleSpeed (C++ member), 691
WaterObject::rippleTex (C++ member), 692
WaterObject::rippleTexScale (C++ member), 692
WaterObject::soundAmbience (C++ member), 692
WaterObject::specularColor (C++ member), 692
WaterObject::specularPower (C++ member), 692
WaterObject::underwaterColor (C++ member), 692
WaterObject::useOcclusionQuery (C++ member), 692
WaterObject::viscosity (C++ member), 692
WaterObject::waterFogDensity (C++ member), 692
WaterObject::waterFogDensityOffset (C++ member),

692
WaterObject::waveDir (C++ member), 692
WaterObject::waveMagnitude (C++ member), 692
WaterObject::waveSpeed (C++ member), 692
WaterObject::wetDarkening (C++ member), 692
WaterObject::wetDepth (C++ member), 692
WaterObject::wireframe (C++ member), 693
WaterPlane::gridElementSize (C++ member), 693
WaterPlane::gridSize (C++ member), 693
WayPoint::markerName (C++ member), 718
WayPoint::team (C++ member), 718
WheeledVehicle::getWheelCount (C++ function), 679
WheeledVehicle::setWheelPowered (C++ function), 680
WheeledVehicle::setWheelSpring (C++ function), 680
WheeledVehicle::setWheelSteering (C++ function), 680
WheeledVehicle::setWheelTire (C++ function), 680
WheeledVehicleData::brakeTorque (C++ member), 681
WheeledVehicleData::engineBrake (C++ member), 681
WheeledVehicleData::engineSound (C++ member), 681

946 Index

Torque 3D Documentation, Release 3.5.1

WheeledVehicleData::engineTorque (C++ member), 681
WheeledVehicleData::jetSound (C++ member), 681
WheeledVehicleData::maxWheelSpeed (C++ member),

681
WheeledVehicleData::squealSound (C++ member), 681
WheeledVehicleData::tireEmitter (C++ member), 681
WheeledVehicleData::WheelImpactSound (C++ mem-

ber), 681
WheeledVehicleSpring::antiSwayForce (C++ member),

681
WheeledVehicleSpring::damping (C++ member), 681
WheeledVehicleSpring::force (C++ member), 681
WheeledVehicleSpring::length (C++ member), 681
WheeledVehicleTire::kineticFriction (C++ member), 682
WheeledVehicleTire::lateralDamping (C++ member),

682
WheeledVehicleTire::lateralForce (C++ member), 682
WheeledVehicleTire::lateralRelaxation (C++ member),

682
WheeledVehicleTire::longitudinalDamping (C++ mem-

ber), 682
WheeledVehicleTire::longitudinalForce (C++ member),

682
WheeledVehicleTire::longitudinalRelaxation (C++ mem-

ber), 682
WheeledVehicleTire::mass (C++ member), 682
WheeledVehicleTire::radius (C++ member), 682
WheeledVehicleTire::restitution (C++ member), 682
WheeledVehicleTire::shapeFile (C++ member), 682
WheeledVehicleTire::staticFriction (C++ member), 682
writeFontCache (C++ function), 829

Z
ZipObject::addFile (C++ function), 348
ZipObject::closeArchive (C++ function), 349
ZipObject::closeFile (C++ function), 349
ZipObject::deleteFile (C++ function), 349
ZipObject::extractFile (C++ function), 349
ZipObject::getFileEntry (C++ function), 349
ZipObject::getFileEntryCount (C++ function), 349
ZipObject::openArchive (C++ function), 349
ZipObject::openFileForRead (C++ function), 350
ZipObject::openFileForWrite (C++ function), 350
Zone::ambientLightColor (C++ member), 719
Zone::dumpZoneState (C++ function), 719
Zone::edge (C++ member), 719
Zone::getZoneId (C++ function), 719
Zone::plane (C++ member), 719
Zone::point (C++ member), 719
Zone::soundAmbience (C++ member), 719
Zone::useAmbientLightColor (C++ member), 719
Zone::zoneGroup (C++ member), 719

Index 947

	Introduction
	World Editor
	GUI Editor
	Artists Guide
	Scripting
	Engine
	License

