
Thumbor Documentation
Release 7.7.4

Bernardo Heynemann

Mar 04, 2024

CONTENTS

1 Whats Thumbor? 3

2 Contents 5
2.1 Installing . 5
2.2 Getting Started . 6
2.3 Usage . 8
2.4 Imaging . 13
2.5 Customizing Thumbor . 64
2.6 Administration . 77
2.7 Upload . 111
2.8 Contributors & Users . 117

3 Indices and tables 123

Python Module Index 125

Index 127

i

ii

Thumbor Documentation, Release 7.7.4

CONTENTS 1

Thumbor Documentation, Release 7.7.4

2 CONTENTS

CHAPTER

ONE

WHATS THUMBOR?

Thumbor is a smart imaging service. It enables on-demand crop, resizing and flipping of images.

It features a VERY smart detection of important points in the image for better cropping and resizing, using state-of-
the-art face and feature detection algorithms (more on that in Detection Algorithms).

Using thumbor is very easy (after it is running). All you have to do is access it using an URL for an image, like this:

http://thumbor-server/unsafe/300x200/smart/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor
→˓%2Fraw%2Fmaster%2Fexample.jpg

That URL would show an image of the Big Brother Brasil participants in 300x200 using smart crop. There are several
other options to the image URL configuration. You can check them in the Usage page. For more details on the /unsafe
part of the URL, check the Security page.

The safe url for the above URL would look like (check Security for more details):

http://thumbor-server/K97LekICOXT9MbO3X1u8BBkrjbu5/300x200/smart/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Warning: Release 7.0.0 introduces a major breaking change due to the migration to python 3 and the modernization
of our codebase. Please read the release notes for details on how to upgrade.

3

https://github.com/thumbor/thumbor/releases/tag/7.0.0

Thumbor Documentation, Release 7.7.4

4 Chapter 1. Whats Thumbor?

CHAPTER

TWO

CONTENTS

2.1 Installing

Installing thumbor is really easy because it supports the distutils form of packaging (http://docs.python.org/distutils/
setupscript.html).

Warning: Thumbor v7.0.0 and later only supports python 3.7+. This change was important to improve our
codebase and ensure it’s easier to change in future releases. More breaking changes will come, but we do not
anticipate any as big as this one. Please refer to release notes for details on how to upgrade.

2.1.1 Stable

The latest stable version of thumbor is always published in the Python Package Index (http://pypi.python.org/pypi), so
it can be easily installed using pip install thumbor or easy_install thumbor.

2.1.2 Ubuntu/Debian using aptitude (apt-get)

There’s now an officially supported ppa for thumbor if you are using aptitude.

To install using aptitude, add the following lines to your sources list:

deb http://ppa.launchpad.net/thumbor/ppa/ubuntu <your release> main
deb-src http://ppa.launchpad.net/thumbor/ppa/ubuntu <your release> main

If you are using ubuntu 12.10 (quantal), it would be:

deb http://ppa.launchpad.net/thumbor/ppa/ubuntu quantal main
deb-src http://ppa.launchpad.net/thumbor/ppa/ubuntu quantal main

Or you can add the repository to you sources list via the command line:

sudo add-apt-repository ppa:thumbor/ppa

After that just update your sources:

sudo aptitude update

And install using plain old aptitude install:

5

http://docs.python.org/distutils/setupscript.html
http://docs.python.org/distutils/setupscript.html
https://github.com/thumbor/thumbor/releases
http://pypi.python.org/pypi

Thumbor Documentation, Release 7.7.4

sudo aptitude install thumbor

A service will be created for you that gets started when the machine starts up (using upstart).

By default thumbor will be disabled. Open /etc/default/thumbor and change (or remove) the flag enabled to 1 or
use the command sudo service thumbor start force=1 (force_start=1 for thumbor<3.7.0) to temporarily start
thumbor. You can also override other defaults like the location of the configuration file by editing /etc/default/
thumbor.

The configuration for thumbor will be at /etc/thumbor.conf and the security key at /etc/thumbor.key. There
will be one instance running at http://localhost:8888.

If you want to run many instances of thumbor you’ll need to run it in many ports. That means you’ll need to use some
form of load balancing (NGINX, Apache, Varnish, Haproxy, etc).

Running many instances of thumbor is as simple as editing /etc/default/thumbor and changing the port key to
as many ports as you want, comma-separated: port=8888,8889,8890 (for thumbor>3.7.0).

If you need more detail head to https://launchpad.net/~thumbor/+archive/ppa.

2.1.3 From the source of a stable release

Download the latest stable source-code version here on GitHub or PyPI and decompress it.

In the path you decompressed, execute pip install . or python setup.py install.

2.1.4 From the latest version of the source

Clone thumbor’s repository and install it using one of the following:

pip install git+git://github.com/thumbor/thumbor.git

or

git clone git://github.com/thumbor/thumbor.git

cd thumbor

python setup.py install

2.2 Getting Started

If you just want to give thumbor a try, it is pretty easy to get started. It won’t take more than a minute.

Just install it with pip install thumbor and start the process with thumbor in a console. That’s all you need to
start transforming images.

The image we’ll be using in most of our examples is a Creative Commons licensed image by Snapwire:

https://github.com/thumbor/thumbor/raw/master/example.jpg

6 Chapter 2. Contents

https://launchpad.net/~thumbor/+archive/ppa
https://www.pexels.com/@snapwire

Thumbor Documentation, Release 7.7.4

If you want to use a different image, go ahead. Any image will work for the remainder of the docs.

Note: Thumbor only understands properly encoded URIs. In order to use the URI above (or any other for that matter),
we first need to encode it. This can be easily achieved by going to any modern browser’s developer console and typing:

window.encodeURIComponent(
"https://github.com/thumbor/thumbor/raw/master/example.jpg"

)

And the output will be:

https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

That’s the URL we’ll be using in our examples!

2.2.1 Problems installing thumbor locally

No worries! If you have a docker host accessible, just run:

$ docker run -p 8888:80 ghcr.io/minimalcompact/thumbor:latest

After downloading the image and running it, thumbor will be accessible at http://localhost:8888/.

For more details check the MinimalCompact thumbor docker image.

2.2. Getting Started 7

https://github.com/MinimalCompact/thumbor

Thumbor Documentation, Release 7.7.4

2.2.2 Changing its size

Go to your browser and enter in the url:

http://localhost:8888/unsafe/300x200/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw
→˓%2Fmaster%2Fexample.jpg

You should see the image with 300𝑝𝑥 of width and 200𝑝𝑥 of height. Just play with it in the url to see the image change.

If you just want it to be proportional to the width, enter a height of 0, like:

http://localhost:8888/unsafe/300x0/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw
→˓%2Fmaster%2Fexample.jpg

2.2.3 Flipping the image

How about seeing it backwards? Or upside down?

Go to your browser and enter in the url:

http://localhost:8888/unsafe/-0x-0/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw
→˓%2Fmaster%2Fexample.jpg

You should see the waterfall backwards and upside down.

2.2.4 Filters

What if I want to change contrast or brightness?

Go to your browser and enter in the url:

http://localhost:8888/unsafe/filters:brightness(10):contrast(30)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

There are many more filters to explore. Check the Filters page for more details.

2.2.5 What now?

Ok, now that you know how amazing thumbor is, there’s actually A LOT more to it. Go check the rest of the docs to
learn how to get even more from your new imaging server.

2.3 Usage

Using thumbor is really straightforward. thumbor offers one endpoint for retrieving the image and a very similar
endpoint to retrieve metadata.

8 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

2.3.1 Image Endpoint

/hmac/trim/AxB:CxD/(adaptive-)(full-)fit-in/-Ex-F/HALIGN/VALIGN/smart/
→˓filters:FILTERNAME(ARGUMENT):FILTERNAME(ARGUMENT)/*IMAGE-URI*

• hmac is the signature that ensures Security ;

• trim removes surrounding space in images using top-left pixel color unless specified otherwise;

• AxB:CxD means manually crop the image at left-top point AxB and right-bottom point CxD;

• fit-in means that the generated image should not be auto-cropped and otherwise just fit in an imaginary box
specified by ExF. If a full fit-in is specified, then the largest size is used for cropping (width instead of height, or
the other way around). If adaptive fit-in is specified, it inverts requested width and height if it would get a better
image definition;

• -Ex-F means resize the image to be ExF of width per height size. The minus signs mean flip horizontally and
vertically;

• HALIGN is horizontal alignment of crop;

• VALIGN is vertical alignment of crop;

• smart means using smart detection of focal points;

• filters can be applied sequentially to the image before returning;

• IMAGE-URI is the encoded URI for the image you want resized.

Trim

Removing surrounding space in images can be done using the trim option.

Unless specified trim assumes the top-left pixel color and no tolerance (more on tolerance below).

To use it, just add a /trim part to your URL.

If you need to specify the orientation from where to get the pixel color, just use /trim:top-left for the top-left pixel
color or /trim:bottom-right for the bottom-right pixel color.

Trim also supports color tolerance. The euclidean distance between the colors of the reference pixel and the surrounding
pixels is used. If the distance is within the tolerance they’ll get trimmed. For a RGB image the tolerance would be
within the range 0-442.

Manual Crop

The manual crop is entirely optional. This is very useful for applications that provide custom real-time cropping
capabilities to their users.

The manual crop part of the url takes two points as arguments, separated by a colon. The first point is the left-top point
of the cropping rectangle. The second point is the right-bottom point.

This crop is performed before the rest of the operations, so it can be used as a prepare step before resizing and smart-
cropping. It is very useful when you just need to get that celebrity face on a big picture full of people, as an example.

2.3. Usage 9

Thumbor Documentation, Release 7.7.4

Fit in

The fit-in argument specifies that the image should not be auto-cropped and auto-resized to be EXACTLY the specified
size, and should be fit in an imaginary box of “E” width and “F” height, instead.

Consider an image of 800𝑝𝑥 x 600𝑝𝑥, and a fit of 300𝑝𝑥 x 200𝑝𝑥. This is how thumbor would resize it:

Consider an image of 400𝑝𝑥 x 600𝑝𝑥, and a fit of 300𝑝𝑥 x 200𝑝𝑥. This is how thumbor would resize it:

This is very useful when you need to fit an image somewhere, but you have no idea about the original image dimensions.

If a full fit-in is used, instead of using the largest size for cropping it uses the smallest one, so in the above scenarios:

For the image of 800𝑝𝑥 x 600𝑝𝑥, with a full fit-in of 300𝑝𝑥 x 200𝑝𝑥, we would get an image of 300𝑝𝑥 x 225𝑝𝑥.

For the image of 400𝑝𝑥 x 600𝑝𝑥, with a full fit-in of 300𝑝𝑥 x 200𝑝𝑥, we would get an image of 300𝑝𝑥 x 450𝑝𝑥.

10 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Image Size

The image size argument specifies the size of the image that will be returned by the service. Thumbor uses smart Crop
and Resize Algorithms

If you omit one of the dimensions or use zero as a value (as in 300𝑥, 300𝑥0, 𝑥200, 0𝑥200, and so on), Thumbor will
determine that dimension as to be proportional to the original image. Say you have an 800𝑥600 image and ask for a
400𝑥0 image. Thumbor will infer that since 400 is half of 800, then the height you are looking for is half of 600, which
is 300𝑝𝑥.

If you use 0𝑥0, Thumbor will use the original size of the image and thus won’t do any cropping or resizing.

If you specify one of the dimensions as the string “orig” (as in 𝑜𝑟𝑖𝑔𝑥100, 100𝑥𝑜𝑟𝑖𝑔, 𝑜𝑟𝑖𝑔𝑥𝑜𝑟𝑖𝑔), thumbor will interpret
that you want that dimension to remain the same as in the original image. Consider an image of 800𝑥600. If you ask
for a 300𝑥𝑜𝑟𝑖𝑔 version of it, thumbor will interpret that you want a 300𝑥600 image. If you instead ask for a 𝑜𝑟𝑖𝑔𝑥300
version, thumbor will serve you an 800𝑥300 image.

If you use 𝑜𝑟𝑖𝑔𝑥𝑜𝑟𝑖𝑔, Thumbor will use the original size of the image and thus won’t do any cropping or resizing.

The default value (in case it is omitted) for this option is to use proportional size (0) to the original image.

Horizontal Align

As was explained above, unless the image is of the same proportion as the desired size, some cropping will need to
occur.

The horizontal align option controls where the cropping will occur if some width needs to be trimmed (unless some
feature detection occurs - more on that later).

So, if we need to trim 300𝑝𝑥 of the width and the current horizontal align is “left”, then we’ll trim 0px of the left of
the image and 300𝑝𝑥 of the right side of the image.

The possible values for this option are:

• left - only trims the right side;

• center - trims half of the width from the left side and half from the right side;

• right - only trims the left side.

It is important to notice that this option is useless in case of the image being vertically trimmed, since Thumbor’s
cropping algorithm only crops in one direction.

The default value (in case it is omitted) for this option is “center”.

Vertical Align

The vertical align option is analogous to the horizontal one, except that it controls height trimming.

So, if we need to trim 300𝑝𝑥 of the height and the current vertical align is “top”, then we’ll trim 0𝑝𝑥 of the top of the
image and 300𝑝𝑥 of the bottom side of the image.

The possible values for this option are:

• top - only trims the bottom;

• middle - trims half of the height from the top and half from the bottom;

• bottom - only trims the top.

2.3. Usage 11

Thumbor Documentation, Release 7.7.4

It is important to notice that this option is useless in case of the image being horizontally trimmed, since Thumbor’s
cropping algorithm only crops in one direction.

The default value (in case it is omitted) for this option is “middle”.

Smart Cropping

Thumbor uses some very advanced techniques for obtaining important points of the image (referred to as Focal Points
in the rest of this documentation).

Even though Thumbor comes with facial recognition of Focal Points as well as feature recognition, you can easily
implement your own detectors as you’ll see further in the docs.

There’s not much to this option, since we’ll cover it in the Detection Algorithms page. If you use it in the url, smart
cropping will be performed and will override both horizontal and vertical alignments if it finds any Focal Points.

The default value (in case it is omitted) for this option is not to use smart cropping.

Filters

Thumbor allows for usage of a filter pipeline that will be applied sequentially to the image. Filters are covered in the
Filters page if you want to know more.

To use filters add a filters: part in your URL. Filters are like function calls filter_name(argument,
argument2, etc) and are separated using the : character, like filters:filter_name():other_filter().

Image URI

This is the image URI. The format of this option depends heavily on the image loader you are using. Thumbor comes
pre-packaged with an HTTP loader and a Filesystem loader.

If you use the HTTP loader, this option corresponds to the image complete URI.

If you use the Filesystem loader, this option corresponds to the path of the image from the images root.

You can learn more about the loaders in the Image loader page.

2.3.2 Metadata Endpoint

The metadata endpoint has ALL the options that the image one has, but instead of actually performing the operations
in the image, it just simulates the operations.

Since it has the same options as the other endpoint, we won’t repeat all of them. To use the metadata endpoint, just add
a /meta in the beginning of the url.

Say we have the following crop URL:

http://my-server.thumbor.org/unsafe/-300x-200/left/top/smart/path/to/my/nice/image.jpg

If we want the metadata on what thumbor would do, just change the url to be

http://my-server.thumbor.org/unsafe/meta/-300x-200/left/top/smart/path/to/my/nice/image.jpg

After the processing is finished, thumbor will return a json object containing metadata on the image and the operations
that would have been performed.

The json looks like this:

12 Chapter 2. Contents

http://my-server.thumbor.org/unsafe/-300x-200/left/top/smart/path/to/my/nice/image.jpg
http://my-server.thumbor.org/unsafe/meta/-300x-200/left/top/smart/path/to/my/nice/image.jpg

Thumbor Documentation, Release 7.7.4

{
thumbor: {

source: {
url: "path/to/my/nice/image.jpg",
width: 800,
height: 600

},
operations: [

{
type: "crop",
left: 10,
top: 10,
right: 300,
bottom: 200

},
{

type: "resize",
width: 300,
height: 200

},
{ type: "flip_horizontally" },
{ type: "flip_vertically" }

]
}

}

2.4 Imaging

2.4.1 Crop and Resize Algorithms

Note: thumbor performs the least amount of cropping possible to resize your image to the exact size you specified,
without changing it’s aspect ratio.

Cropping the image

Before resizing the image, thumbor crops it so it has the same aspect as the desired dimensions. Let’s see an example
to clarify this concept.

Consider an 800𝑥600 (width x height, in pixels) image and say we want a 400𝑥150 thumbnail of it. The first thing
thumbor needs to do is calculate the proportion of the images:

𝑤𝑖𝑑𝑡ℎ : 800600 = 1.333

ℎ𝑒𝑖𝑔ℎ𝑡 : 400150 = 2.666

Now that they don’t match, thumbor defines if the image needs horizontal or vertical cropping. We never crop both
ways, since it’s not needed.

2.4. Imaging 13

Thumbor Documentation, Release 7.7.4

So, in our example to get an image of the same proportion of the target one, we need to get the picture height to be
300𝑝𝑥 (using the proportional height):

ℎ = 800𝑥150400 = 300

Now all we need to do is cropping 300𝑝𝑥 of the picture height. To determine whether to crop from the top, bottom or
both we use the focal points or the horizontal alignment. If any focal points have been specified we’ll use those to find
the center of mass of the image (more on that in Detection Algorithms). Otherwise we’ll use the horizontal and vertical
alignments.

Let’s say that for this image no focal points were found, so we’ll use the vertical alignment to crop the height. Since
we specified middle alignment for this example, we’ll crop off 150𝑝𝑥 from the top and 150𝑝𝑥 from the bottom of the
image, similarly to this image:

Here’s an example of how thumbor would crop width or height using centered alignment:

14 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Resizing the Image

Now that the image has the same proportion as the image we want, it’s just a matter of resizing it to the desired
dimensions.

Flipping the Image

If the desired dimensions feature negative numbers, thumbor will flip them around that direction. This means that
negative width specifies horizontal flip, while negative height specifies vertical flip.

2.4.2 Filters

How Filters Work

Thumbor handles filters in a pipeline. This means that they run sequentially in the order they are specified! Given an
original image with size 60𝑥40 and the following transformations:

http://localhost:8888/fit-in/100x100/filters:watermark(..):blur(..):fill(red,
→˓1):upscale()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

The resulting image will first check if it can fit into a 100𝑥100. Since it does, the filter pipeline will kick in and:

• add the watermark in the image;

• blur the whole image (including the watermark);

• Fill the outer parts of the image with red (so it will fit in 100𝑥100);

• Then it will try to upscale. This will have no effect, since at this point the image is already 100𝑥100.

Available Filters

AutoJPG

Usage: autojpg(enabled)

2.4. Imaging 15

Thumbor Documentation, Release 7.7.4

Description

This filter overrides AUTO_PNG_TO_JPG config variable.

Arguments

• enabled - Passing True, which is the default value, you will override the AUTO_PNG_TO_JPG config variable and
False to keep the default behavior of thus config.

Example

http://localhost:8888/unsafe/300x300/filters:autojpg()/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Background Color

Usage: background_color(color)

Description

The background_color filter sets the background layer to the specified color. This is specifically useful when converting
transparent images (PNG) to JPEG

Arguments

• color - the color name (like in HTML) or hexadecimal rgb expression without the “#” character (see https:
//en.wikipedia.org/wiki/Web_colors for example). If color is “auto”, a color will be smartly chosen (based on
the image pixels) to be the filling color.

Example

The original image is:

16 Chapter 2. Contents

https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/Web_colors

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/fit-in/300x300/filters:background_color(blue)/https%3A%2F
→˓%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fdocs%2Fimages%2Fdice_transparent_
→˓background.png

http://localhost:8888/unsafe/fit-in/300x300/filters:background_color(f00)/https%3A%2F
→˓%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fdocs%2Fimages%2Fdice_transparent_
→˓background.png

http://localhost:8888/unsafe/fit-in/300x300/filters:background_color(add8e6)/https%3A%2F
→˓%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fdocs%2Fimages%2Fdice_transparent_
→˓background.png

2.4. Imaging 17

Thumbor Documentation, Release 7.7.4

Blur

Usage: blur(radius [, sigma])

Description

This filter applies a gaussian blur to the image.

Arguments

• radius - Radius used in the gaussian function to generate a matrix, maximum value is 150. The bigger the
radius more blurred will be the image.

• sigma - Optional. Defaults to the same value as the radius. Sigma used in the gaussian function.

18 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Example

http://localhost:8888/unsafe/filters:blur(7)/http%3A%2F%2Fupload.wikimedia.org
→˓%2Fwikipedia%2Fcommons%2Fthumb%2F8%2F8a%2F2006_Ojiya_balloon_festival_011.jpg%2F159px-
→˓2006_Ojiya_balloon_festival_011.jpg

2.4. Imaging 19

Thumbor Documentation, Release 7.7.4

Brightness

Usage: brightness(amount)

Description

This filter increases or decreases the image brightness.

Arguments

• amount - -100 to 100 - The amount (in %) to change the image brightness. Positive numbers make the image
brighter and negative numbers make the image darker.

Example

http://localhost:8888/unsafe/filters:brightness(40)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

20 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Contrast

Usage: contrast(amount)

Description

This filter increases or decreases the image contrast.

Arguments

• amount - −100 to 100 - The amount (in %) to change the image contrast. Positive numbers increase contrast
and negative numbers decrease contrast.

Example

http://localhost:8888/unsafe/filters:contrast(40)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

http://localhost:8888/unsafe/filters:contrast(-40)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

2.4. Imaging 21

Thumbor Documentation, Release 7.7.4

Convolution

Usage: convolution(matrix_items, number_of_columns, should_normalize)

Description

This filter runs a convolution matrix (or kernel) on the image. See Kernel (image processing) for details on the process.
Edge pixels are always extended outside the image area.

Arguments

• matrix_items - Semicolon separated matrix items.

• number_of_columns - Number of columns in the matrix.

• should_normalize - Whether or not we should divide each matrix item by the sum of all items.

Example

Normalized Matrix:

1 2 1
2 4 2
2 1 2

http://localhost:8888/unsafe/filters:convolution(1;2;1;2;4;2;1;2;1,3,true)/http://upload.
→˓wikimedia.org/wikipedia/commons/5/50/Vd-Orig.png

22 Chapter 2. Contents

http://en.wikipedia.org/wiki/Kernel_(image_processing)

Thumbor Documentation, Release 7.7.4

Matrix:

-1 -1 -1
-1 8 -1
-1 -1 -1

http://localhost:8888/unsafe/filters:convolution(-1;-1;-1;-1;8;-1;-1;-1;-1,3,false)/
→˓http://upload.wikimedia.org/wikipedia/commons/5/50/Vd-Orig.png

Cover

Usage: cover()

Description

This filter is used in GIFs to extract their first frame as the image to be used as cover.

Note: This filter will only function when USE_GIFSICLE_ENGINE are set to True in thumbor.conf:

USE_GIFSICLE_ENGINE = True

Arguments

No arguments.

Example

`http://localhost:8888/unsafe/filters:cover()/http://server.my/animated_static.gif`

2.4. Imaging 23

Thumbor Documentation, Release 7.7.4

Equalize

Usage: equalize()

Description

This filter equalizes the color distribution in the image.

Arguments

No arguments.

Example

http://localhost:8888/unsafe/filters:equalize()/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

24 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Extract focal points

Usage: extract_focal()

Description

When cropping, thumbor uses focal points in the image to direct the area of the image that matters most. There are
several ways of finding focal points. To learn more about focal points, visit the Detection Algorithms.

In order to use the extract_focal filter, the original image must be a thumbor URL that features manual cropping.
To learn more about manual cropping, visit the Crop and Resize Algorithms.

Using the original manual cropping points, this filter adds the cropped area (originally in the format /LEFTx-
TOP:RIGHTxBOTTOM/) as a focal point for the new image.

For the new image, thumbor will use as the original the image URL that was the original for the segment with the
manual cropping.

This means that for an URL like:

http://localhost:8888/unsafe/300x100/filters:extract_focal()/localhost:8888/unsafe/
→˓100x150:300x200/https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_
→˓Cat.jpg/546px-Turkish_Van_Cat.jpg

Thumbor will use as original the following image URL:

https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-
→˓Turkish_Van_Cat.jpg

Example

Original Image:

2.4. Imaging 25

Thumbor Documentation, Release 7.7.4

Cat’s eye cropped:

http://localhost:8888/unsafe/100x150:300x200/https://upload.wikimedia.org/wikipedia/
→˓commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_Van_Cat.jpg

A bigger image based on above’s crop with the extract_focal() filter:

http://localhost:8888/unsafe/300x100/filters:extract_focal()/localhost:8888/unsafe/
→˓100x150:300x200/https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_
→˓Cat.jpg/546px-Turkish_Van_Cat.jpg

26 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Without the filter that would be the result:

http://localhost:8888/unsafe/300x100/localhost:8888/unsafe/100x150:300x200/https://
→˓upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_
→˓Van_Cat.jpg

Filling

Usage: fill(color[,fill_transparent])

Description

This filter returns an image sized exactly as requested independently of its ratio. It will fill the missing area with the
specified color. It is usually combined with the “fit-in” or “adaptive-fit-in” options.

Arguments

• color - the color name (like in HTML) or hexadecimal RGB expression without the “#” character (see https:
//en.wikipedia.org/wiki/Web_colors for example).

If color is “transparent” and the image format, supports transparency the filling color is transparent.

Warning: Some engines (like OpenCV engine) do not support transparency.

If color is “auto”, a color is smartly chosen (based on the image pixels) as the filling color.

If color is “blur”, the missing parts are filled with blurred original image.

• fill_transparent - a boolean to specify whether transparent areas of the image should be filled or not. Ac-
cepted values are either true, false, 1 or 0. This argument is optional and the default value is false.

2.4. Imaging 27

https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/Web_colors

Thumbor Documentation, Release 7.7.4

Example #1

The original image is:

http://localhost:8888/unsafe/fit-in/300x300/filters:fill(blue)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

http://localhost:8888/unsafe/fit-in/300x300/filters:fill(f00)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

28 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/fit-in/300x300/filters:fill(add8e6)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

http://localhost:8888/unsafe/fit-in/300x300/filters:fill(auto)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

2.4. Imaging 29

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/fit-in/300x300/filters:fill(blur)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

30 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Example #2

The original image is:

http://localhost:8888/unsafe/fit-in/300x225/filters:fill(blue,1)/https://github.com/
→˓thumbor/thumbor/wiki/dice_transparent_background.png

http://localhost:8888/unsafe/fit-in/300x225/filters:fill(f00,true)/https://github.com/
→˓thumbor/thumbor/wiki/dice_transparent_background.png

2.4. Imaging 31

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/fit-in/300x225/filters:fill(add8e6,1)/https://github.com/
→˓thumbor/thumbor/wiki/dice_transparent_background.png

http://localhost:8888/unsafe/fit-in/300x225/filters:fill(auto,true)/https://github.com/
→˓thumbor/thumbor/wiki/dice_transparent_background.png

http://localhost:8888/unsafe/fit-in/300x225/filters:fill(blur,true)/https://github.com/
→˓thumbor/thumbor/wiki/dice_transparent_background.png

32 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Focal

Usage: focal(<left>x<top>:<right>x<bottom>)

Description

This filter adds a focal point, which is used in later transforms.

Arguments

• left, top, right, bottom: All mandatory arguments in the <left>x<top>:<right>x<bottom> format.

Example

Before cropping with specific focal point:

2.4. Imaging 33

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/400x100/filters:focal(146x206:279x360)/https%3A%2F%2Fgithub.
→˓com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

After specifying the focal point:

Warning: When using this filter together with detectors, extract focal points filter or metadata parameter, unex-
pected behavior may occur.

Format

Usage: format(image-format)

Description

This filter specifies the output format of the image. The output must be one of: “webp”, “jpeg”, “gif”, “png”, “avif” or
“heic”.

Arguments

• image-format - The output format of the resulting image.

Example

http://localhost:8888/unsafe/filters:format(webp)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Grayscale

Usage: grayscale()

34 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Description

This filter changes the image to grayscale.

Arguments

No arguments.

Example

http://localhost:8888/unsafe/filters:grayscale()/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Max bytes

Usage: max_bytes(number-of-bytes)

2.4. Imaging 35

Thumbor Documentation, Release 7.7.4

Description

This filter automatically degrades the quality of the image until the image is under the specified amount of bytes.

Arguments

• number-of-bytes - The maximum number of bytes for the given image.

Example

Compressing the original image to less than 7.5k (ended up with ~7kb):

http://localhost:8888/unsafe/filters:max_bytes(7500)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

36 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

No upscale

Usage: no_upscale()

Description

This filter tells thumbor not to upscale your images.

This means that if an original image is 300𝑝𝑥 width by 200𝑝𝑥 height and you ask for a 600𝑥400 image, thumbor will
still return a 300𝑥200 image.

Arguments

No arguments allowed.

Example

http://localhost:8888/unsafe/filters:no_upscale()/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Noise

Usage: noise(amount)

Description

This filter adds noise to the image.

Arguments

• amount - 0% to 100% - The amount of noise to add to the image.

Example

2.4. Imaging 37

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/filters:noise(40)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Proportion

Usage: proportion(percentage)

Description

This filter applies the specified proportion to the image’s height and width when cropping.

Arguments

• percentage - The float percentage of the proportion (0.0 to 1.0).

Example

http://localhost:8888/unsafe/filters:proportion(0.5)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

38 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Quality

Usage: quality(amount)

Description

This filter changes the overall quality of the JPEG image (does nothing for PNGs or GIFs).

Arguments

• amount - 0 to 100 - The quality level (in %) that the end image will

feature.

Example

http://localhost:8888/unsafe/filters:quality(40)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

2.4. Imaging 39

Thumbor Documentation, Release 7.7.4

Red eye

Not documented yet

RGB

Usage: rgb(rAmount, gAmount, bAmount)

Description

This filter changes the amount of color in each of the three channels.

Arguments

• rAmount - The amount of redness in the picture. Can range from -100 to 100 in percentage.

• gAmount - The amount of greenness in the picture. Can range from -100 to 100 in percentage.

• bAmount - The amount of blueness in the picture. Can range from -100 to 100 in percentage.

Example

40 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/filters:rgb(20,-20,40)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Rotate

Usage: rotate(angle)

Description

This filter rotates the given image according to the angle value passed.

Note: This filter rotates the image according to the engine. For the PIL engine the rotation is done counter-clockwise.

Arguments

• angle - 0 to 359 - The euler angle to rotate the image by. Numbers greater or equal than 360 will be trans-
formed to a equivalent angle between 0 and 359.

Example

2.4. Imaging 41

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/filters:rotate(90)/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Round corners

Usage: round_corner(a|b,r,g,b,[transparent])

Description

This filter adds rounded corners to the image using the specified color as background.

Arguments

• a|b - amount of pixels to use as radius. The argument b is not required, but it specifies the second value for the
ellipsis used for the radius.

• transparent - Optional. If set to true/1, the background will be transparent.

42 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Examples

http://localhost:8888/unsafe/filters:round_corner(20,255,255,255)/https%3A%2F%2Fgithub.
→˓com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

http://localhost:8888/unsafe/filters:round_corner(20|40,0,0,0)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

http://localhost:8888/unsafe/filters:round_corner(30,0,0,0,1)/https%3A%2F%2Fgithub.com
→˓%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

2.4. Imaging 43

Thumbor Documentation, Release 7.7.4

Saturation

Usage: saturation(amount)

Description

This filter increases or decreases the image saturation.

Arguments

• amount - −100 to 100 - The amount (in %) to change the image saturation. Positive numbers increase saturation
and negative numbers decrease saturation.

Example

http://localhost:8888/unsafe/filters:saturation(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%
2Fraw%2Fmaster%2Fexample.jpg

44 Chapter 2. Contents

http://localhost:8888/unsafe/filters:saturation(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg
http://localhost:8888/unsafe/filters:saturation(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Thumbor Documentation, Release 7.7.4

http://localhost:8888/unsafe/filters:saturation(-40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%
2Fraw%2Fmaster%2Fexample.jpg

Sharpen

Usage: sharpen(sharpen_amount,sharpen_radius,luminance_only)

Description

This filter enhances apparent sharpness of the image. It’s heavily based on Marco Rossini’s excellent Wavelet sharpen
GIMP plugin. Check http://registry.gimp.org/node/9836 for details about how it work.

Arguments

• sharpen_amount - Sharpen amount. Typical values are between 0.0 and 10.0.

• sharpen_radius - Sharpen radius. Typical values are between 0.0 and 2.0.

• luminance_only - Sharpen only luminance channel. Values can be true or false.

2.4. Imaging 45

http://localhost:8888/unsafe/filters:saturation(-40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg
http://localhost:8888/unsafe/filters:saturation(-40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg
http://registry.gimp.org/node/9836

Thumbor Documentation, Release 7.7.4

Example 1

http://localhost:8888/unsafe/filters:sharpen(2,1.0,true)/http://videoprocessing.ucsd.edu/
→˓~stanleychan/research/pix/Blurred_foreman_0005.png

46 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Example 2

http://localhost:8888/unsafe/filters:sharpen(1.5,0.5,true)/http://images.
→˓cambridgeincolour.com/tutorials/sharpening_eagle2-original.jpg

Stretch

Usage: stretch()

Description

This filter stretches the image until it fits the required width and height, instead of cropping the image.

Example

http://localhost:8888/unsafe/200x100/filters:stretch()/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

2.4. Imaging 47

Thumbor Documentation, Release 7.7.4

Strip EXIF

Usage: strip_exif()

Description

This filter removes any Exif information in the resulting image. To keep the copyright information you have to set the
configuration PRESERVE_EXIF_COPYRIGHT_INFO = True.

This is useful if you have set the configuration PRESERVE_EXIF_INFO = True but still wish to overwrite this behavior
in some cases (e.g. for image icons)

Arguments

No arguments

Example

http://localhost:8888/unsafe/filters:strip_exif()/http://www.arte.tv/static-epgapi/
→˓057460-011-A.jpg

Strip ICC

Usage: strip_icc()

Description

This filter removes any ICC information in the resulting image. Even though the image might be smaller, removing
ICC information may result in loss of quality.

Arguments

No arguments

48 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Example

http://localhost:8888/unsafe/filters:strip_icc()/http://videoprocessing.ucsd.edu/~
→˓stanleychan/research/pix/Blurred_foreman_0005.png

Upscale

Usage: upscale()

Description

This filter tells thumbor to upscale your images. This only makes sense with “fit-in” or “adaptive-fit-in”.

This means that if an original image is 300𝑝𝑥 width by 200𝑝𝑥 height and you ask for a 600𝑥500 image, the filter will
resize it to 600𝑥400.

Arguments

No arguments allowed.

Example

http://localhost:8888/unsafe/fit-in/600x500/filters:upscale()/https://raw.
→˓githubusercontent.com/thumbor/thumbor/e86324e49d7e53acc2a8057e43f3fdd2ca5cea75/docs/
→˓images/dice_transparent_background.png

Watermark

Usage: watermark(imageUrl, x, y, alpha [, w_ratio [, h_ratio]])

Description

This filter adds a watermark to the image. It can be positioned inside the image with the alpha channel specified and
optionally resized based on the image size by specifying the ratio (see Resizing).

Arguments

• imageUrl - Watermark image URL. It is very important to understand that the same image loader that Thumbor
uses will be used here. If this URL contains parentheses they MUST be url encoded, since these are the characters
Thumbor uses as delimiters for filter parameters.

• x - Horizontal position that the watermark will be in. Positive numbers indicate position from the left and negative
numbers indicate position from the right. If the value is ‘center’ (without the single quotes), the watermark will
be centered horizontally. If the value is ‘repeat’ (without the single quotes), the watermark will be repeated
horizontally. If the value is a positive or negative number followed by a ‘p’ (ex. 20p) it will calculate the value
from the image width as percentage

2.4. Imaging 49

Thumbor Documentation, Release 7.7.4

• y - Vertical position that the watermark will be in. Positive numbers indicate position from the top and negative
numbers indicate position from the bottom. If the value is ‘center’ (without the single quotes), the watermark
will be centered vertically. If the value is ‘repeat’ (without the single quotes), the watermark will be repeated
vertically If the value is a positive or negative number followed by a ‘p’ (ex. 20p) it will calculate the value from
the image height as percentage

• alpha - Watermark image transparency. Should be a number between 0 (fully opaque) and 100 (fully transpar-
ent).

• w_ratio - percentage of the width of the image the watermark should fit-in, defaults to ‘none’ (without the single
quotes) which means it won’t be limited in the width on resizing but also won’t be resized based on this value

• h_ratio - percentage of the height of the image the watermark should fit-in, defaults to ‘none’ (without the
single quotes) which means it won’t be limited in the height on resizing but also won’t be resized based on this
value

Example

http://thumbor-server/filters:watermark(http://my.site.com/img.png,-10,-10,50)/some/
→˓image.jpg

http://thumbor-server/filters:watermark(http://my.site.com/img.png,10p,-20p,50)/some/
→˓image.jpg

50 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Resizing

Resizing is being done by defining borders the watermark needs to fit in or being upscaled to. The ratio of the watermark
will not be changed and will be expanded or shrinked to the size which fits best into the borders.

Some examples are shown below with an original image having width=300 and height=200 and an imaginary watermark
having width=30 and height=40. Borders are shown in red and the watermark drafted in green.

Considering original image to be 300x200:

• watermark(imageUrl, 30, 10, 50, 20)

20% of the width: 300px*0.2 = 60px so the original watermark width is 30px which means it can be resized by
2.

Because the height isn’t limited it can grow to 2x40px which is 80px.

• watermark(imageUrl, 30, 10, 50, none, 15)

15% of the height: 200px*0.15 = 30px so the original watermark height is 40px which means it has to shrink
by 25%.

Because the width isn’t limited it can shrink to 0.75*30px which is 22.5px (rounded to 23px).

2.4. Imaging 51

Thumbor Documentation, Release 7.7.4

• watermark(imageUrl, 30, 10, 50, 30, 30)

30% of the width: 300px*0.3 = 90px

and

30% of the height: 200px*0.3 = 60px

so the original watermark width is 30px but cannot use 90px because then (to keep the ratio) the height would
need to become (40/30)*90px=120px but only 60px is allowed.

Therefor the height is limiting the resizing here and height would become 60px and width would be
(30/40)*60px=45px which fits into the 90px border.

2.4.3 Detectors

Enabling detectors

Out of the box, thumbor does not enable any feature or facial detection. Enabling it is pretty easy, though.

Note: Starting with release 7.0.0 thumbor depends on opencv-python-headless. This means that it should be extremely
easy to use the face and feature detectors.

For information on all built-in detectors check the Available detectors page.

Configuration

In order to tell thumbor what detectors it should run in the original image, you must add them to your thumbor.conf
file in the following key:

DETECTORS = [
'thumbor.detectors.face_detector',
'thumbor.detectors.feature_detector',

]

52 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

The above configuration tells thumbor that it should run both the facial detection and the feature detection. These are
mutually exclusive, meaning that if a face is detected, the feature detector won’t be run.

Using it

After restarting thumbor, it should be as easy as adding a /smart option to your URLs, like:

http://localhost:8888/unsafe/200x400/smart/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor
→˓%2Fraw%2Fmaster%2Fexample.jpg

Note: Whenever you are not sure what thumbor is “seeing”, use the debug mode:

http://localhost:8888/unsafe/debug/200x400/smart/https%3A%2F%2Fgithub.com%2Fthumbor
→˓%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Thumbor will draw a square on all focal points it found. That way you can be sure of why an image was cropped the
way it was.

Lazy Detection

Facial detection can be pretty expensive for thumbor, so it is not advisable to do it synchronously. Please refer to the
Lazy Detection page for instructions on using it.

Available Detectors

A list of available detectors can be found at Available detectors.

Detection Algorithms

If the smart mode of thumbor has been specified in the uri (by the /smart portion of it), thumbor will use it’s smart
detectors to find focal points.

thumbor comes pre-packaged with two focal-point detection algorithms: facial and feature. First it tries to identify
faces and if it can’t find any, it tries to identify features (more on that below).

Facial Detection

For instructions on how to get facial detection coordinates see Metadata Endpoint .

Note: thumbor uses OpenCV (http://opencv.org) to detect faces. OpenCV returns the rectangle coordinates for the
faces it identifies. You can specify the HAAR file Thumbor should use for identification.

2.4. Imaging 53

http://opencv.org

Thumbor Documentation, Release 7.7.4

Original image

Image after detection

Notice how red rectangles show the areas identified as faces:

After retrieving these squares from OpenCV, thumbor calculates the center of mass of the image using weighted average.

Consider that OpenCV returned 3 squares at (10, 10, 100, 100), (150, 100, 100, 100), (300, 300, 80, 50), being (x, y,
width, height), as such:

54 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

In order to find the center of mass for all the faces, we must first find the center and weight of each rectangle. We define
weight in this scenario as the area of the rectangle.

So, for the faces in our example (*x*,*y* being the coordinates of the rectangle’s center and *z* the rectangle weight):

Face 1:

• 𝑥 = (10 + 100)2 = 55

• 𝑦 = (10 + 100)2 = 55

• 𝑧 = 100 * 100 = 10000

Face 2:

• 𝑥 = (150 + 100)2 = 125

• 𝑦 = (100 + 100)2 = 100

• 𝑧 = 100 * 100 = 10000

Face 3:

• 𝑥 = (300 + 80)2 = 190

• 𝑦 = (300 + 50)2 = 175

• 𝑧 = 80 * 50 = 4000

In order to find the center of mass we’ll do a weighted average of the X and Y coordinates of the faces using:

2.4. Imaging 55

Thumbor Documentation, Release 7.7.4

Horizontal Axis - X: ((55 * 10000) + (125 * 10000) + (190 * 4000))24000 = 106

Vertical Axis - Y: ((55 * 10000) + (100 * 10000) + (175 * 4000))24000 = 93

So for the faces found by OpenCV in that image we have the center of mass of the picture being 106𝑥93.

Using Focal Points for Cropping

After finding the center of mass we can use it as the focal point for cropping. Given an image of 800𝑥600 and a focal
point at 106𝑥93, we need to determine the percentage that needs to be cropped from the top, bottom, left and right
sides of the image.

To determine the percentage we use simple math to figure how far from the top and the left side the center of mass is:

From the left - 𝑙𝑒𝑓𝑡 = 106800 * 100 = 13.25%

From the top - 𝑡𝑜𝑝 = 93600 * 100 = 15.50%

Using the same example from the Crop and Resize Algorithms page, we need to crop 300𝑝𝑥 out of the height of the
image. In possession of the percentages of crop above, we can calculate how much we need to crop out of the top and
bottom with:

Top - 𝑡𝑜𝑝 = 300 * 0.155 = 46

Bottom - just subtract top 46𝑝𝑥 from the amount of crop (300px): 𝑏𝑜𝑡𝑡𝑜𝑚 = 300− 46 = 254

So, now we now we have to remove 46𝑝𝑥 out of the top of the picture and 254𝑝𝑥 out of the bottom of the picture. In
an 800𝑥600 picture, that means cropping from (0, 46) to (800, 346), resulting in an 800𝑥300𝑝𝑥 image.

Assuming we would crop 300𝑝𝑥 horizontally, the cropping would be:

Left - 𝑙𝑒𝑓𝑡 = 300 * 0.135 = 40

Right - just subtract left 40𝑝𝑥 from the amount of crop (300px): 𝑟𝑖𝑔ℎ𝑡 = 300− 40 = 260

In an image of 800𝑥600, that means cropping from (40, 0) to (540, 600), resulting in a 500𝑥600𝑝𝑥 image. This would
not be the case for this image, though.

Feature Detection

If no faces are found in the picture, we still try to find important features in the image, provided by the Good Features
to Track Algorithm in OpenCV (http://bit.ly/evAU95).

According to OpenCV documentation, this algorithm finds “important” corners in the image. It then returns a list of
(x, y) values.

We can see the detection taking place in the following images:

56 Chapter 2. Contents

http://bit.ly/evAU95

Thumbor Documentation, Release 7.7.4

The points identified by the good features algorithm:

The cropping based in these features is analogous to the face one, except that all points have a weight of *1.0* and are
already their centers.

Let’s consider that we found 3 feature points: 10x15, 30x40, 25x60. To find the center of mass we would do ((10 + 30
+ 25) / 3 ~= 22) to find the horizontal component and ((15 + 40 + 60) / 3 ~= 39) for the vertical one. This means that
our center of mass in this scenario is *22x39*.

Given an image of 800x600 and a center of mass of 22x39, let’s find the left and top percentages:

From the left - 22/800 * 100 = 2.75%

From the top - 93/600 * 100 = 6.50%

Assuming we are cropping 300px of the height, we’ll crop top and bottom according to:

Top - 300 * 0.0275 = 9

Bottom - just subtract top (9px) from the amount of crop (300px) - 300− 9 = 291

In an image of 800x600, that means cropping from (0, 9) to (800, 309), resulting in a 800x300px image.

If we were cropping 300px of the width instead, we would crop left and right according to:

Left - 300 * 0.065 = 20

Right - just subtract left (20px) from the amount of crop (300px) - 300− 20 = 280

In an image of 800x600, that means cropping from (20, 0) to (520, 600), resulting in a 500x600px image.

2.4. Imaging 57

Thumbor Documentation, Release 7.7.4

Available detectors

Face Detector

thumbor.detectors.face_detector

It detects faces, It considers the frontal part of the face for detection.

Feature Detector

thumbor.detectors.feature_detector

Detector used to find relevant focal points in the image. “Features” in this case and in other cases such as machine
learning, are pieces of information (in this case, pieces of the image) that are relevant to solving a computational
problem. For Thumbor we use this set of focal points to identify faces, for example. We use the first 10 set of points
found.

Glasses Detector

thumbor.detectors.glasses_detector

It detects glasses on the faces.

Profile Detector

thumbor.detectors.profile_detector

It detects faces, It considers the side part of the face for detection.

Queued Detector

thumbor.detectors.queued_detector

Detector used to allow face detection process asynchronously.

Lazy Detection

Rationale

Thumbor performs pipeline detection of focal points for a given image. What this means is that it tries to determine
one detection at a time, only skipping to the next if the current one fails.

We could configure it to run frontal face detection, then if it fails, try profile face detection and if it fails, best features
detection.

As you can imagine, this is a cumbersome process and can take up precious cpu time from your server(s), eventually
leading it to starvation of CPU. This is why we’ve implemented what we call Queued Detection.

58 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Queued Detection

Configuring thumbor for lazy detecting is as simple as specifying a detector that supports queued detection.

Thumbor ships with three such detectors, called:

• thumbor.detectors.queued_detector.queued_complete_detector

• thumbor.detectors.queued_detector.queued_face_detector

• thumbor.detectors.queued_detector.queued_feature_detector

These are responsible, respectively, for pipeline detection of face and feature, only face or only feature.

You can check what additional configuration you need to add to your configuration file (thumbor.conf) in order to have
the bundled detectors working.

How thumbor deals with queued detection?

When an image request arrives with a flag of “smart” detection, a call is made to the queued detector and it tells thumbor
to skip smart detection and to serve the image with non-smart cropping (much faster).

The call to the queued detector places a message in a Redis Queue that will later be processed in order to detect focal
points in the image.

The next time a request arrive for the same image and with a flag of “smart” detection, if information on detection is
already available (if the message in the queue has already been processed), thumbor uses that info to do smart cropping
and serves the result.

If the image still hasn’t been processed, the same process from before applies, except thumbor won’t place another
message in the queue. This is intended as a way not to flood the queue with requests for the same image.

Redis Support

Thumbor supports Redis single node. and Redis sentinel.

2.4.4 Image loader

Pre-packaged loaders

thumbor comes pre-packaged with http and filesystem loaders.

Http loader

The http loader gets the original image portion of the URI and performs an HTTP GET to it. It then returns the image’s
string representation.

The http loader uses the ALLOWED_SOURCES configuration to determine whether or not an image is from a trusted
source and can thus be loaded.

You can specify the maximum size of the source image to be loaded. The http loader first gets the image size (without
loading its contents), checks against your specified size and returns 404 if the source image size is larger than the max
size. The max size option is MAX_SOURCE_SIZE and the default is no maximum size.

To use it you should set the LOADER configuration to ‘thumbor.loaders.http_loader’.

2.4. Imaging 59

https://redis.io/docs/getting-started/
https://redis.io/docs/manual/sentinel/

Thumbor Documentation, Release 7.7.4

Https loader

The https loader works the same way as the http loader, except that it defaults to https instead of http.

To use it you should set the LOADER configuration to ‘thumbor.loaders.https_loader’.

Strict https loader

The strict https loader works the same way as the http loader, except that it only allows to load images over https.

To use it you should set the LOADER configuration to ‘thumbor.loaders.strict_https_loader’.

File loader

The file loader gets the original image portion of the URI and retrieves the file from the file system from a known path
specified by the FILE_LOADER_ROOT_PATH configuration.

It joins the specified path with the configured root path and reads the image file if it exists.

To use it you should set the LOADER configuration to ‘thumbor.loaders.file_loader’.

File loader with http loader fallback

In some environments you need both kinds of file loading. For this use case you can use as loader with built-in fallback.

This loader will try to load images from local file storage. In case of an error the loader retry to load image with
http_loader. If both attempts failed you’ll get an error.

To use it you should set the LOADER configuration to ‘thumbor.loaders.file_loader_http_fallback’.

Compatibility Loader

The compatibility loader allows you to use legacy loaders (that do not support AsyncIO) in order to make it easier to
transition to thumbor’s Python 3 version.

To use it you should set the LOADER configuration to ‘thumbor.compatibility.loader’.

You also need to specify what’s the legacy loader that the compatibility loader will use. Just set the COMPATIBIL-
ITY_LEGACY_LOADER configuration to the full name of the legacy loader you want to use. i.e.: COMPATIBIL-
ITY_LEGACY_LOADER = ‘tc_aws.loaders.s3_loader’

2.4.5 Image storage

thumbor uses image storages to perform less retrievals of images from the sources, thus potentially saving expensive
resources (such as outbound network).

60 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Pre-Packaged Storages

thumbor comes with filesystem and a mixed storage. There’s also a nostorage storage for debugging or benchmarking
purposes.

Filesystem Storage

thumbor can store original images in the filesystem.

The file storage uses the FILE_STORAGE_ROOT_PATH configuration to save the images. It then joins the original
image part of the URI to create the proper path to store the image in the filesystem.

There’s a STORAGE_EXPIRATION_SECONDS option that will determine the time in seconds that a file is consid-
ered to be expired. When a file is expired, thumbor will try to retrieve the file using the specified Image loader.

To use the filesystem storage set the configuration option of STORAGE to ‘thumbor.storages.file_storage’.

NoStorage Storage

This is a storage intended for debugging or benchmarking purposes. It does not store any images and always returns
None when thumbor asks for an image.

In order to use this storage set the configuration option of STORAGE to ‘thumbor.storages.no_storage’.

MixedStorage Storage

This is a storage intended for scenarios where you want to store the original images files one way and the security key
another (or detector information).

A good example would be storing files in the filesystem, while storing security keys in a database.

In order to use this storage set the configuration option of STORAGE to ‘thumbor.storages.mixed_storage’.

You must specify the MIXED_STORAGE_FILE_STORAGE, MIXED_STORAGE_CRYPTO_STORAGE and
MIXED_STORAGE_DETECTOR_STORAGE options to define the original images storage, the security key storage
and the detector results storage, respectively. Here’s a sample configuration:

MIXED_STORAGE_FILE_STORAGE = 'thumbor.storages.file_storage'
MIXED_STORAGE_CRYPTO_STORAGE = 'thumbor.storages.redis_storage'
MIXED_STORAGE_DETECTOR_STORAGE = 'thumbor.storages.redis_storage'

FILE_STORAGE_ROOT_PATH = '/tmp/mypath'

REDIS_STORAGE_SERVER_HOST = 'localhost'
REDIS_STORAGE_SERVER_PORT = 6379
REDIS_STORAGE_SERVER_DB = 0

As you can see, you still have to tell thumbor the specific configurations for each storage you choose.

2.4. Imaging 61

Thumbor Documentation, Release 7.7.4

Compatibility Storage

The compatibility storage allows you to use legacy storages (that do not support AsyncIO) in order to make it easier to
transition to thumbor’s Python 3 version.

To use it you should set the STORAGE configuration to ‘thumbor.compatibility.storage’.

You also need to specify what’s the legacy storage that the compatibility storage will use. Just set the COMPATIBIL-
ITY_LEGACY_STORAGE configuration to the full name of the legacy storage you want to use. i.e.: COMPATI-
BILITY_LEGACY_STORAGE = ‘tc_aws.storages.s3_storage’

2.4.6 Result Storage

thumbor uses a result storage to improve the speed of responding subsequent requests for the same image.

When a request for a given image with a set of parameters arrive, thumbor processes the request and before returning
it, asks for the result storage to store it.

The next time the same request arrives, it will get it from the result storage and return it, thus saving a lot of processing.

Pre-packaged result storages

thumbor comes pre-packaged with a filesystem result storage.

Filesystem

The file system result storage, as the name implies, stores images in the filesystem.

Images are stored in whatever path is specified in the RESULT_STORAGE_FILE_STORAGE_ROOT_PATH, and conse-
quently retrieved from the same path.

By default, the file system result storage keeps images forever. You are allowed to specify an expiration, though, using
the RESULT_STORAGE_EXPIRATION_SECONDS configuration. Again, as the name implies, it specifies the number of
seconds with which files expire.

To use it you should set the RESULT_STORAGE configuration to 'thumbor.result_storages.file_storage'.

Compatibility Result Storage

The compatibility result storage allows you to use legacy result storages (that do not support AsyncIO) in order to make
it easier to transition to thumbor’s Python 3 version.

To use it you should set the RESULT_STORAGE configuration to ‘thumbor.compatibility.result_storage’.

You also need to specify what’s the legacy result storage that the compatibility result storage will use. Just set the
COMPATIBILITY_LEGACY_RESULT_STORAGE configuration to the full name of the legacy result storage you
want to use. i.e.: COMPATIBILITY_LEGACY_RESULT_STORAGE = ‘tc_aws.result_storages.s3_storage’

62 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

2.4.7 Optimizers

Optimizers are utilities that will fine-tune some aspect of the result image thumbor generates.

Even though optimizers can change images in any way, the usual use cases for these are:

• Reduce image weight in bytes;

• Improve image quality.

Built-in Optimizers

jpegtran

Jpegtran is a lossless jpeg optimizer which can make your jpegs smaller by optimizing DCT coefficients. Information
on jpegtran can be a bit difficult to find but the linux man page is pretty good: https://linux.die.net/man/1/jpegtran

Jpegtran can be used in conjunction with Thumbor. If the optimizer has been activated, Thumbor will first process
your jpeg normally then it will hand the jpeg off to jpegtran for further optimizations before Thumbor returns the final
image.

To use jpegtran with Thumbor you must first install jpegtran, various linux distros often provide a package by the same
name or it can be installed from source. You should make sure that jpegtran is in PATH, do a which jpegtran and you
should see an absolute path where the jpegtran resides. It is also possible to use mozjpeg’s version of jpegtran as a
drop-in replacement of libjpeg-turbo’s version.

You also need to enable the Thumbor jpegtran optimizer in your thumbor.conf, like so:

OPTIMIZERS = [
'thumbor.optimizers.jpegtran'

]

You can also manually specify the jpegtran path, like this:

JPEGTRAN_PATH=/usr/local/bin/jpegtran

Once activated, no extra url parameters are needed - jpegtran will run on all jpegs automatically. If you have opted to
use progressive jpegs via the PROGRESSIVE_JPEG option, jpegtran will also honor and product progressive jpegs.

It is possible to supply progressive scans file via JPEGTRAN_SCANS_FILE config option.

gifv

The gifv optimizer is able to convert gifs to mp4 or webm videos, often resulting in dramatically smaller sized files.

Gifv is categorized as experimental and should be used with caution. It uses ffmpeg to convert gifs to videos and so
it’s sensitive to changes with ffmpeg. It’s recommended to lock your ffmpeg version with a fixed version (chef, docker,
etc) and if updating make sure to check that the update doesn’t break gifv. FFmpeg version 3.2.4 is the current
recommended version. Later version, such as 3.3 will break the proper conversion of gif delays to frame durations in
videos . . . meaning videos will not be the same length as equivelant gifs.

To enable gifv, ensure ffmpeg is in PATH and enable the optimizer in your config:

OPTIMIZERS = [
'thumbor.optimizers.gifv',

]

2.4. Imaging 63

https://linux.die.net/man/1/jpegtran

Thumbor Documentation, Release 7.7.4

Once activated, you must add the gifv() option to your filters list. An example request might look like this:

http://localhost:8888/unsafe/filters:gifv()/http://localhost/livingroom.gif

The above example will default to using the mp4 video container with h264 video. You can also be explicit:

http://localhost:8888/unsafe/filters:gifv(mp4)/http://localhost/livingroom.gif

or use explicitly specify webm

http://localhost:8888/unsafe/filters:gifv(webm)/http://localhost/livingroom.gif

Because videos (in mp4 or webm format) cannot contain alpha transparency a background color will be automatically
added. The default color is white. You can also specify a background color:

http://localhost:8888/unsafe/filters:gifv():background_color(ff00ff)/http://localhost/
→˓livingroom.gif

http://localhost:8888/unsafe/filters:gifv():background_color(f0f)/http://localhost/
→˓livingroom.gif

http://localhost:8888/unsafe/filters:gifv():background_color(magenta)/http://localhost/
→˓livingroom.gif

The color must be specified in 6 character hex, 3 character hex or color name. But 6 or 3 character hex are the preferred
formats. Including a # symbol in your color will break the url if not url encoded and thumbor will error on the request.
The recommendation is to not use them at all which also makes urls shorter. But if you must a leading %23 will
probably work.

2.5 Customizing Thumbor

2.5.1 Custom Storages

If the built-in storages do not suit your needs, you can always implement your own storage and use it in the STORAGE
configuration.

All you have to do is create a class called Storage that inherits from BaseStorage in your module, as can be seen in
https://github.com/thumbor/thumbor/blob/master/thumbor/storages/file_storage.py.

2.5.2 Custom Image Loaders

If thumbor image loaders do not meet your needs you can implement a new image loader.

The structure of the module you should implement can be seen in the http loader at https://github.com/thumbor/
thumbor/blob/master/thumbor/loaders/http_loader.py.

The only required method to implement is the one that receives the portion of the URI that has the original image path,
named load. This method also receives a callback and should call the callback with the results of reading the image.

Another example can be seen in the filesystem loader at https://github.com/thumbor/thumbor/blob/master/thumbor/
loaders/file_loader.py.

You can optionally implement a validate(URI) method that thumbor will call to make sure that your loader can accept
the user required URI.

64 Chapter 2. Contents

https://github.com/thumbor/thumbor/blob/master/thumbor/storages/file_storage.py
https://github.com/thumbor/thumbor/blob/master/thumbor/loaders/http_loader.py
https://github.com/thumbor/thumbor/blob/master/thumbor/loaders/http_loader.py
https://github.com/thumbor/thumbor/blob/master/thumbor/loaders/file_loader.py
https://github.com/thumbor/thumbor/blob/master/thumbor/loaders/file_loader.py

Thumbor Documentation, Release 7.7.4

2.5.3 Custom Result Storages

In order to implement your own result storage, you have to implement a few methods. A reference implementation can
be found at the File Storage.

The required methods are put, get, validate_path and normalize_path.

2.5.4 Custom Filters

Filters are an easy way to transform images using a pipeline. Creating a new filter is very simple, as we’ll see.

The first step is creating a filter class that inherits from thumbor.filters.BaseFilter and naming it Filter:

from thumbor.filters import BaseFilter

class Filter(BaseFilter):
pass

The next step is actually implementing the filter. Let’s say we want to create the quality(99) filter, a filter that takes
a number parameter and sets the image quality to that parameter.

Note: Yep, this filter already exists and is built-in, but it is simple enough that we can talk on how to do it. Let’s get
on with it.

from thumbor.filters import BaseFilter

class Filter(BaseFilter):
@filter_method(BaseFilter.PositiveNumber)
async def quality(self, value):

self.context.request.quality = value

Let’s analyse it:

• The filter_method decorator takes as parameters any number of types (more on types below) you want to have
as arguments to your filter;

• The filter method should be named according to how you want it to be invoked by thumbor (a.k.a the URL part).
In our example, our filter will be invoked with quality(99);

• The filter method is just an async function that you can do whatever you need with the image.

And that’s it, we got our filter. In order to use it, we need to put it in our thumbor.conf:

from thumbor.filters import BUILTIN_FILTERS

FILTERS = BUILTIN_FILTERS + [
'mylib.filters.quality',

]

2.5. Customizing Thumbor 65

https://github.com/thumbor/thumbor/blob/master/thumbor/result_storages/file_storage.py

Thumbor Documentation, Release 7.7.4

Available Filter Argument Types

Each parameter type has a regular expression that matches arguments of the given type, as well as a python type.

For more details on each of the types, check BaseFilter class in thumbor’s codebase.

• BaseFilter.PositiveNumber;

• BaseFilter.PositiveNonZeroNumber;

• BaseFilter.NegativeNumber;

• BaseFilter.Number;

• DecimalNumber;

• Boolean;

• String.

2.5.5 Custom Engines

TBW.

2.5.6 Custom detection

If you need more detection than the pre-packaged detectors are able to give you (i.e.: you need to detect glasses), you
can always implement your own detectors.

If your detector can be found using python’s import mechanism, thumbor will be able to use it. Just add its full name
to the detectors Configuration.

Creating a Custom Detector

As you can see here https://github.com/thumbor/thumbor/blob/master/thumbor/detectors/face_detector/__init__.py it
is pretty easy to implement your own custom detector.

All you have to do is create a class that inherits from BaseDetector and implement a detect method that receives a
context dictionary.

In the context dictionary there’s a key called “focal_points” to which you should append any focal points you found in
the picture (using the FocalPoint class).

If your detector does not find any points, simple call the next() method passing in the context, so further detection can
occur.

2.5.7 Custom Image Optimizers

TBW.

66 Chapter 2. Contents

https://github.com/thumbor/thumbor/blob/master/thumbor/filters/__init__.py#L91
https://github.com/thumbor/thumbor/blob/master/thumbor/detectors/face_detector/__init__.py

Thumbor Documentation, Release 7.7.4

2.5.8 Custom Error Handlers

Writing your own error handler is very simple. Just create a class called ErrorHandler, like the one below:

Class that lives in mylib.error_handling
class ErrorHandler:

def __init__(self, config):
perform any initialization needed
pass

def handle_error(self, context, handler, exception):
do your thing here
context is thumbor's context for the current request
handler is tornado's request handler for the current request
exception is the error that occurred

When you have your handler done, just put it’s full name in thumbor.conf and make sure thumbor can import it (it’s
somewhere in PYTHONPATH). You also need to set USE_CUSTOM_ERROR_HANDLING to True.

USE_CUSTOM_ERROR_HANDLING = True
ERROR_HANDLER_MODULE = 'mylib.error_handling'

2.5.9 Custom Handler Lists

Handler Lists are responsible for adding new handlers to thumbor.

Even thumbor’s own handlers (other than the default image crop handler) are added using handler lists(healthcheck,
blacklist. . .).

Built-in Handler Lists

Thumbor comes with three handler lists built-in:

• thumbor.handler_lists.healthcheck;

• thumbor.handler_lists.blacklist;

• thumbor.handler_lists.upload.

The healthcheck handler list adds a handler at whatever is in the HEALTHCHECK_ROUTE config.

The blacklist handler list adds a /blacklist handler that can be used to blacklist images.

The upload handler list adds two handlers for uploading and retrieving uploaded images.

Writing a new Handler List

Creating your own handler list is as simple as creating a new module with a get_handlers method:

from typing import Any, cast

from thumbor.handler_lists import HandlerList

from my.handlers.index import IndexHandler
(continues on next page)

2.5. Customizing Thumbor 67

Thumbor Documentation, Release 7.7.4

(continued from previous page)

def get_handlers(context: Any) -> HandlerList:
something_enabled = cast(bool, self.context.config.SOMETHING_ENABLED)
if not something_enabled:

return []
return [

(r"/my-url/?", IndexHandler, {"context": self.context}),
]

After your handler list can be imported with python (check with python -c 'import <<your handler list
module>>'), just add it to thumbor’s config:

from thumbor.handler_lists import BUILTIN_HANDLERS

Two things worth noticing here:
1) The handler list order indicates precedence, so whatever matches first will be␣
→˓executed;
2) Please do not forget thumbor's built-ins or you'll kill thumbor functionality.
HANDLER_LISTS = BUILTIN_HANDLERS + [

"my.handler_list',
]

2.5.10 Plugins

With its pluggable architecture, thumbor provides extension points for a myriad of plug-in: storages, loaders, detectors,
filters.

If your plug-in is not listed here, please create an issue with the details and we’ll add it here.

Storages

thumbor_aws (by Thumbor Community)

Thumbor is a smart imaging service. It enables on-demand crop, resizing and flipping of images.

AWS is a cloud service, providing - among other things - storage capabilities.

This module provides support for AWS S3 interconnection, as a loader, a storage and/or a result storage.

• URL: https://github.com/thumbor-community/aws

• Installing: pip install tc_aws

To get exhaustive details about configuration options & setting it up, go to the documentation of the plugin.

68 Chapter 2. Contents

https://github.com/thumbor/thumbor/wiki
https://aws.amazon.com/
https://github.com/thumbor-community/aws
https://github.com/thumbor-community

Thumbor Documentation, Release 7.7.4

thumbor_hbase (by Damien Hardy)

Thumbor is a smart imaging service. It enables on-demand crop, resizing and flipping of images.

Hbase is a column oriented database from the hadoop ecosystem.

This module provide support for Hadoop Hbase as large auto replicant key/value backend storage for images in Thum-
bor.

• URL: https://github.com/dhardy92/thumbor_hbase

• Installing: pip install thumbor_hbase

Using it is simple, just change your configuration in thumbor.conf:

HBASE_STORAGE_SERVER_HOST = "localhost"
HBASE_STORAGE_SERVER_PORT = 9000
HBASE_STORAGE_TABLE = "storage-table"
HBASE_STORAGE_FAMILY = "storage-family"

If you want to use thumbor_hbase for loading original images, change your thumbor.conf to read:

LOADER = "thumbor_hbase.loader"

If you want to use thumbor_hbase for storage of original images, change your thumbor.conf to read:

STORAGE = "thumbor_hbase.storage"

thumbor_mongodb (by Damien Hardy)

Thumbor is a smart imaging service. It enables on-demand crop, resizing and flipping of images.

MongoDB is a document oriented NoSQL database.

This plugin for Thumbor is a loader that can reach images from a mongodb collection based on its Object(_id).

• URL: https://github.com/dhardy92/thumbor_mongodb

• Installing: pip install thumbor_mongodb

Using it is simple, just change your configuration in thumbor.conf:

LOADER = 'thumbor_mongodb.loader'
MONGO_LOADER_CNX_STRING = 'mongodb://mongodbserver01,mongodbserver02:27017'
MONGO_LOADER_SERVER_DB = 'thumbor'
MONGO_LOADER_SERVER_COLLECTION = 'images'
MONGO_LOADER_DOC_FIELD = 'content'

2.5. Customizing Thumbor 69

https://github.com/thumbor/thumbor/wiki
https://hbase.apache.org/
https://github.com/dhardy92/thumbor_hbase
https://github.com/thumbor/thumbor/wiki
http://www.mongodb.org/
https://github.com/dhardy92/thumbor_mongodb

Thumbor Documentation, Release 7.7.4

thumbor_riak (by Damien Hardy)

Riak is a distributed document oriented database implementing the consistent hashing algorithm from the Dynanmo
publication by Amazon.

This module provide support for Riak as a large auto replicant key/value backend storage for images in Thumbor.

• URL: https://github.com/dhardy92/thumbor_riak

• Installing: pip install thumbor_riak (require thumbor)

Using it is simple, just change your configuration in thumbor.conf:

Use riak for storage.
STORAGE = 'thumbor_riak.storage'

Put the url for your riak install here
RIAK_STORAGE_BASEURL = "http://my-riak-install-base-url"

thumbor_rackspace (by David Mann)

This plugin allows users to store objects in the Rackspace cloud for result storage.

• URL: https://github.com/CodingNinja/thumbor_rackspace

• Installing: pip install thumbor_rackspace

Using it is simple, just change your configuration in thumbor.conf:

Use rackspace for result storage.
For more info on result storage: https://github.com/thumbor/thumbor/wiki/Result-storage
RESULT_STORAGE = 'thumbor_rackspace.result_storages.cloudfile_storage'

Pyrax Rackspace configuration file location
RACKSPACE_PYRAX_CFG = /var/thumbor/.pyrax.cfg

Result Storage options
RACKSPACE_RESULT_STORAGE_EXPIRES = True # Set TTL on cloudfile objects
RACKSPACE_RESULT_STORAGES_CONTAINER = "cloudfile-container-name"
RACKSPACE_RESULT_STORAGES_CONTAINER_ROOT = "/"

thumbor_ceph (by Laurent Barbe)

Ceph a distributed object store designed to provide excellent performance, reliability and scalability.

This module provide support for Ceph RADOS as backend storage for images.

• URL: https://github.com/ksperis/thumbor_ceph

• Installing: apt-get install python-ceph && pip install thumbor_ceph

Configuration in thumbor.conf:

################################# File Storage #################################
STORAGE = 'thumbor_ceph.storages.ceph_storage'
CEPH_STORAGE_POOL = 'thumbor'

(continues on next page)

70 Chapter 2. Contents

http://basho.com/riak/
https://github.com/dhardy92/thumbor_riak
https://github.com/CodingNinja/thumbor_rackspace
https://ceph.com/
https://github.com/ksperis/thumbor_ceph

Thumbor Documentation, Release 7.7.4

(continued from previous page)

#################################### Upload ####################################
UPLOAD_PHOTO_STORAGE = 'thumbor_ceph.storages.ceph_storage'

################################ Result Storage ################################
RESULT_STORAGE = 'thumbor_ceph.result_storages.ceph_storage'
CEPH_RESULT_STORAGE_POOL = 'thumbor'

For monitors and keys, the values used are those defined in the configuration file ceph.conf.

thumbor_spaces (by Siddhartha Mukherjee)

This plugin allows users to store objects in the DigitalOcean Spaces for result storage.

• URL: https://github.com/siddhartham/thumbor_spaces

• Installing: pip install thumbor_spaces

Using it is simple, just change your configuration in thumbor.conf:

Use DigitalOcean Spaces for result storage.
For more info on result storage: https://github.com/thumbor/thumbor/wiki/Result-storage
RESULT_STORAGE = 'thumbor_spaces.result_storages.spaces_storage'

SPACES_REGION='xxx'

SPACES_ENDPOINT='xxx'

SPACES_KEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

SPACES_SECRET='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

SPACES_BUCKET='your-bucket-name'

Metrics

thumbor_prometheus (by Simon Effenberg)

Prometheus a monitoring and alerting toolkit.

This module provide support for Prometheus as metrics collector.

• URL: https://github.com/thumbor-community/prometheus

• Installing: pip install tc_prometheus

Configuration in thumbor.conf:

################################# Extensibility #################################
METRICS = 'tc_prometheus.metrics.prometheus_metrics'

optional with defaults
PROMETHEUS_SCRAPE_PORT = 8000 # Port the prometheus client should listen on

2.5. Customizing Thumbor 71

https://github.com/siddhartham/thumbor_spaces
https://prometheus.io/
https://github.com/thumbor-community/prometheus

Thumbor Documentation, Release 7.7.4

Extensions

thumborshortener (by Thumbor Community)

Thumbor is a smart imaging service. It enables on-demand crop, resizing and flipping of images.

This module provides URL shortening capabilities for Thumbor. It will create an API that can shorten a thumbor URL,
and then routing capabilities to reroute the shortened URL to the correct image.

The shortened URL / real URL mapping is stored within redis.

• URL: https://github.com/thumbor-community/shortener

• Installing: pip install tc_shortener

To get exhaustive details about configuration options & setting it up, go to the documentation of the plugin.

Engines

thumbor-video-engine (by The Atlantic)

This engine extends thumbor so that it can read, crop, and transcode audio-less video files using FFmpeg. It supports
input and output of animated GIF, animated WebP, WebM (VP9) video, and MP4 (H.264 and H.265).

• URL: https://github.com/theatlantic/thumbor-video-engine

• Installing: pip install thumbor-video-engine

Configuration in thumbor.conf:

ENGINE = 'thumbor_video_engine.engines.video'
FILTERS = [

Enables transcoding between video formats (in addition to the image
formats already supported by thumbor.filters.format)
'thumbor_video_engine.filters.format',
Allows outputting a still frame from a video as an image
'thumbor_video_engine.filters.still',

]

optional, if you are already using a custom image engine
IMAGING_ENGINE = 'opencv_engine'

For a full list of configuration options and filters, read the project’s documentation.

2.5.11 Libraries

Even though the process of generating safe image URLs is explained in the Security page, we’ll try to provide libraries
in each programming language to ease this process.

72 Chapter 2. Contents

https://github.com/thumbor/thumbor/wiki
https://github.com/thumbor-community/shortener
http://thumbor-shortener.readthedocs.io/en/latest/
https://github.com/theatlantic/thumbor-video-engine
https://thumbor-video-engine.readthedocs.io/

Thumbor Documentation, Release 7.7.4

Available Libraries

Python

• libthumbor - Python’s extensions to thumbor. These are used to generate safe urls among others.

• django-thumbor - A django app with templatetags for resizing images with thumbor (by ricobl).

• django-thumborstorage - A Django custom storage for Thumbor backend (by Stanislas Guerra).

Node.js

• ThumborJS - Javascript’s extension to thumbor. These are used to generate safe urls, encrypted urls among others
(by Rafael Carício).

• ThumborUrlBuilder - Thumbor client for Node JS (by David Caramelo).

• thumbor - Thumbor client for Node JS (by PolicyMic).

Ruby

• ruby-thumbor - Ruby’s gem to interact with thumbor server.

• thumbor_rails - Ruby’s gem to make easier to generate urls in Rails projects.

Java

• Pollexor - Java client for the Thumbor image service which allows you to build URIs in an expressive fashion
using a fluent API.

• thumbor-enterprise-edition - Java library to enable generating encrypted URLs. This library is deprecated in
favor of Pollexor.

PHP

• Thumbor-PHP - PHP implementation of URL generator for Thumbor. It also supports Laravel Framework.

• Phumbor - A minimal PHP client for generating Thumbor URLs.

• Phumbor for Laravel - A Laravel package providing a facade for Phumbor.

• Phumbor for Symfony2 - A Symfony2 Bundle providing a facade for Phumbor.

Swift

• Bumbo - A swifty client for Thumbor

2.5. Customizing Thumbor 73

https://github.com/heynemann/libthumbor
https://github.com/ricobl/django-thumbor
https://github.com/ricobl
https://github.com/Starou/django-thumborstorage
https://github.com/Starou
https://github.com/rafaelcaricio/ThumborJS
https://github.com/rafaelcaricio
https://github.com/dcaramelo/ThumborUrlBuilder
https://github.com/dcaramelo
https://github.com/policymic/thumbor
https://github.com/PolicyMic
https://rubygems.org/gems/ruby-thumbor
https://github.com/rafaelcaricio/thumbor_rails
http://square.github.com/pollexor
https://github.com/heynemann/thumbor-enterprise-edition
http://square.github.com/pollexor
https://github.com/beeyev/thumbor-php
https://github.com/99designs/phumbor
https://github.com/ceejayoz/laravel-phumbor
https://github.com/jbouzekri/PhumborBundle
https://github.com/guilhermearaujo/Bumbo

Thumbor Documentation, Release 7.7.4

Objective-C

• OCThumbor - Objective-C for the Thumbor image service which allows you to build URIs in an expressive
fashion using a fluent API.

.NET

• DotNetThumbor - DotNet client for the Thumbor image service. Provides an expressive fluent API.

Delphi

• DelphiThumbor - Delphi class to thumbor. These are used to generate safe urls among others (by Marlon Nardi).

Implementing a library

If you want to provide a library to enable easy usage of thumbor in your favorite programming language, please send
an e-mail to thumbor@googlegroups.com and we’ll add it here.

Below are all the scenarios we think are worth testing automatically so you can guarantee compatibility with thumbor.
Please note that this is not meant to be a replacement for TDD or for any other testing methodology you might want to
use. These are just helper scenarios that we thought would help any library developers.

Library Tests - Generating HMAC of the URLs

We sincerely advise you to have thumbor installed in your machine, so you can implement a method in your tests that
has thumbor generate a signature for your URL so you can compare with your own signature. This way you can make
sure your url formatting and signing are working properly.

Here’s how it was implemented in Ruby:

def sign_in_thumbor(key, str)
#bash command to call thumbor's decrypt method
command = "python3 -c 'from libthumbor.url_signers.base64_hmac_sha1 import UrlSigner;

→˓ signer = UrlSigner(\"" << key << "\"); print(signer.signature(\"" << str << "\").
→˓decode(\"utf-8\"))'"

#execute it in the shell using ruby's popen mechanism
result = Array.new
IO.popen(command) { |f| result.push(f.gets) }

result.join('')
end

You should be able to implement this easily in any modern programming language. It makes for very reliable tests.

74 Chapter 2. Contents

https://github.com/DanielHeckrath/OCThumbor
https://github.com/mi9/DotNetThumbor
https://github.com/marlonnardi/DelphiThumbor
https://github.com/marlonnardi

Thumbor Documentation, Release 7.7.4

Library Tests - Scenarios

Remember that these are in pseudo-code (BDD-like) language, and not in any programming language specifically.

Encryption Testing

These scenarios assume that you separate the logic of composing the url to be signed into a different “module”, that is
to be tested with the URL Testing Scenarios after these scenarios.

Scenario 1 - Signing of a known url results

Given
A security key of 'my-security-key'
And an image URL of "my.server.com/some/path/to/image.jpg"
And a width of 300
And a height of 200

When
I ask my library for a signed url

Then
I get '/8ammJH8D-7tXy6kU3lTvoXlhu4o=/300x200/my.server.com/some/path/to/image.jpg'␣

→˓as url

Scenario 2 - Thumbor matching of signature with my library signature

Given
A security key of 'my-security-key'
And an image URL of "my.server.com/some/path/to/image.jpg"
And a width of 300
And a height of 200

When
I ask my library for an encrypted URL

Then
I get the proper url (/8ammJH8D-7tXy6kU3lTvoXlhu4o=/300x200/my.server.com/some/path/

→˓to/image.jpg)

Scenario 3 - Thumbor matching of signature with my library signature with meta

Given
A security key of 'my-security-key'
And an image URL of "my.server.com/some/path/to/image.jpg"
And the meta flag

When
I ask my library for an encrypted URL

Then
I get the proper url (/Ps3ORJDqxlSQ8y00T29GdNAh2CY=/meta/my.server.com/some/path/to/

→˓image.jpg)

2.5. Customizing Thumbor 75

Thumbor Documentation, Release 7.7.4

Scenario 4 - Thumbor matching of signature with my library signature with smart

Given
A security key of 'my-security-key'
And an image URL of "my.server.com/some/path/to/image.jpg"
And the smart flag

When
I ask my library for an encrypted URL

Then
I get the proper url (/-2NHpejRK2CyPAm61FigfQgJBxw=/smart/my.server.com/some/path/to/

→˓image.jpg)

Scenario 5 - Thumbor matching of signature with my library signature with fit-in

Given
A security key of 'my-security-key'
And an image URL of "my.server.com/some/path/to/image.jpg"
And the fit-in flag

When
I ask my library for an encrypted URL

Then
I get the proper url (/uvLnA6TJlF-Cc-L8z9pEtfasO3s=/fit-in/my.server.com/some/path/

→˓to/image.jpg)

Scenario 6 - Thumbor matching of signature with my library signature with filters

Given
A security key of 'my-security-key'
And an image URL of "my.server.com/some/path/to/image.jpg"
And a 'quality(20)' filter
And a 'brightness(10)' filter

When
I ask my library for an encrypted URL

Then
I get the proper url (/ZZtPCw-BLYN1g42Kh8xTcRs0Qls=/

→˓filters:brightness(10):contrast(20)/my.server.com/some/path/to/image.jpg)

You should test the same kind of tests for horizontal and vertical flip, horizontal and vertical alignment and manual
cropping.

76 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

More Information

• Security

2.6 Administration

2.6.1 Configuration

thumbor’s configuration file is just a regular python script that gets loaded by thumbor.

In order to get a commented configuration file, just run:

thumbor-config > ./thumbor.conf

Override config through environment variable

It is possible override string configs through environment variables. This is possible because thumbor uses derpconf
to abstract loading configuration and derpconf allows this.

Extensibility Section

LOADER

The loader is responsible for retrieving the source image that thumbor will work with. This configuration defines the
module that thumbor will use for it. This must be a full namespace module (a.k.a. python has to be able to *import*
it).

LOADER = 'thumbor.loaders.http_loader'

STORAGE

The storage is responsible for storing the source image bytes and related metadata (face-detection, encryption and such)
so that we don’t keep loading it every time. This must be a full namespace module (a.k.a. python has to be able to
import it).

STORAGE = 'thumbor.storages.file_storage'

MIXED_STORAGE_FILE_STORAGE

If you are using thumbor’s mixed storage (thumbor.storages.mixed_storage), this is where you specify the storage
that will be used to store images. This must be a full namespace module (a.k.a. python has to be able to *import*
it).

MIXED_STORAGE_FILE_STORAGE = 'thumbor.storages.file_storage'

2.6. Administration 77

https://github.com/globocom/derpconf

Thumbor Documentation, Release 7.7.4

MIXED_STORAGE_CRYPTO_STORAGE

If you are using thumbor’s mixed storage (thumbor.storages.mixed_storage), this is where you specify the storage
that will be used to store cryptography information. This must be a full namespace module (a.k.a. python has to be
able to *import* it).

MIXED_STORAGE_CRYPTO_STORAGE = 'thumbor.storages.file_storage'

MIXED_STORAGE_DETECTOR_STORAGE

If you are using thumbor’s mixed storage (thumbor.storages.mixed_storage), this is where you specify the storage
that will be used to store facial and feature detection results. This must be a full namespace module (a.k.a. python
has to be able to *import* it).

MIXED_STORAGE_DETECTOR_STORAGE = 'thumbor.storages.file_storage'

RESULT_STORAGE

The result storage is responsible for storing the resulting image with the specified parameters (think of it as a cache),
so that we don’t keep processing it every time a request comes in. This must be a full namespace module (a.k.a.
python has to be able to *import* it).

RESULT_STORAGE = 'thumbor.result_storages.file_storage'

ENGINE

The engine is responsible for transforming the image. This must be a full namespace module (a.k.a. python has to
be able to *import* it).

Currently, thumbor ships with only the thumbor.engines.pil imaging engine. A few years ago we conducted a
comparison between the engines and there was no clear winner. Given PIL was the engine we were using at the time,
we decided to stick with it. Other open source engines exist and you can find more about them in the plug-in section
of the docs.

ENGINE = 'thumbor.engines.pil'

URL_SIGNER

The url signer is responsible for validation and signing of requests to prevent url tampering, which could lead to denial
of service (example: filling the result_storage by specifying a different size). This must be a full namespace module
(a.k.a. python has to be able to *import* it).

URL_SIGNER = 'libthumbor.url_signers.base64_hmac_sha1'

78 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Filters Section

In order to specify the filters that thumbor will use, you need a configuration key called FILTERS. This is a regular
python list with the full names (names that python can import) of the filter modules you want to use.

i.e.:

FILTERS = [
'thumbor.filters.brightness',
'thumbor.filters.contrast',
'thumbor.filters.rgb',
'thumbor.filters.round_corner',
'thumbor.filters.quality',
'thumbor.filters.noise',
'thumbor.filters.watermark',

]

Metadata Section

META_CALLBACK_NAME

If you want thumbor to use JSONP for image metadata instead of using JSON, just set this variable to the callback
name you want.

META_CALLBACK_NAME = 'thumbor_callback' # Or None for no callback

Face and Feature Detection Section

DETECTORS

This options specifies the detectors that should run the image to check for focal points.

i.e.:

DETECTORS = [
'thumbor.detectors.face_detector',
'thumbor.detectors.feature_detector'

]

Cascade Files

This option specifies the cascade (XML) file paths to train openCV to find faces or other objects.

The cascade file that opencv will use to detect faces.
FACE_DETECTOR_CASCADE_FILE = 'haarcascade_frontalface_alt.xml'

The cascade file that opencv will use to detect glasses.
GLASSES_DETECTOR_CASCADE_FILE = 'haarcascade_eye_tree_eyeglasses.xml'

The cascade file that opencv will use to detect profile faces.
PROFILE_DETECTOR_CASCADE_FILE = 'haarcascade_profileface.xml'

2.6. Administration 79

Thumbor Documentation, Release 7.7.4

Imaging Section

ALLOWED_SOURCES

This configuration defines the source of the images that thumbor will load. This is only used in the HttpLoader (check
the LOADER configuration above).

ALLOWED_SOURCES=['http://s.glbimg.com']

Another example with wildcards:

ALLOWED_SOURCES=['.+\.globo\.com', '.+\.glbimg\.com']

This is to get any images that are in *.globo.com or *.glbimg.com and it will fail with any other domains.

ACCESS_CONTROL_ALLOW_ORIGIN_HEADER

This allows to send the ACCESS_CONTROL_ALLOW_ORIGIN header. For example, if you want to tell the browser
to allow code from any origin to access your thumbor resources:

ACCESS_CONTROL_ALLOW_ORIGIN_HEADER = '*'

If you want restrict access to a certain resource:

ACCESS_CONTROL_ALLOW_ORIGIN_HEADER = 'https://www.example.com'

Not set by default.

MAX_WIDTH and MAX_HEIGHT

These define the box that the resulting image for thumbor must fit-in. This means that no image that thumbor generates
will have a width larger than MAX_WIDTH or height larger than MAX_HEIGHT. It defaults to 0, which means
there is not limit. If the original image is larger than MAX_WIDTH x MAX_HEIGHT, it is proportionally resized to
MAX_WIDTH x MAX_HEIGHT.

MAX_WIDTH = 1200
MAX_HEIGHT = 800

MIN_WIDTH and MIN_HEIGHT

These define the box that the resulting image for thumbor must fit-in. This means that no image that thumbor generates
will have a width smaller than MIN_WIDTH or height smaller than MIN_HEIGHT. It defaults to 1. If the original
image is smaller than MIN_WIDTH x MIN_HEIGHT, it is proportionally resized to MIN_WIDTH x MIN_HEIGHT.

MIN_WIDTH = 1
MIN_HEIGHT = 1

80 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

QUALITY

This option defines the quality that JPEG images will be generated with. It defaults to 80.

QUALITY = 90

MAX_AGE

This option defines the number of seconds that images should remain in the browser’s cache. It relates directly with
the Expires and Cache-Control headers.

MAX_AGE = 24 * 60 * 60 # A day of caching

MAX_AGE_TEMP_IMAGE

When an image has some error in its detection or it has deferred queueing, it’s convenient to set a much lower expiration
time for the image cache. This way the browser will request the proper image faster.

This option defines the number of seconds that images in this scenario should remain in the browser’s cache. It relates
directly with the Expires and Cache-Control headers.

MAX_AGE_TEMP_IMAGE = 60 # A minute of caching

RESPECT_ORIENTATION

If this option is set to True, thumbor will reorient the image according to it’s EXIF Orientation tag (if one can be found).
This options defaults to False.

The operations performed in the image are as follow (considering the value of the Orientation EXIF tag):

1. Nothing

2. Flips the image horizontally

3. Rotates the image 180 degrees

4. Flips the image vertically

5. Flips the image vertically and rotates 270 degrees

6. Rotates the image 270 degrees

7. Flips the image horizontally and rotates 270 degrees

8. Rotates the image 90 degrees

RESPECT_ORIENTATION = False

2.6. Administration 81

Thumbor Documentation, Release 7.7.4

ALLOW_ANIMATED_GIFS

This option indicates whether animated gifs should be supported.

ALLOW_ANIMATED_GIFS = True

USE_GIFSICLE_ENGINE

This option indicates whether gifsicle should be used for all gif images, instead of the actual imaging engine. This
defaults to False.

When using gifsicle thumbor will generate proper animated gifs, as well as static gifs with the smallest possible
size.

USE_GIFSICLE_ENGINE = True

WARNING: When using gifsicle engine, filters will be skipped, except for cover() filter. thumbor will not do smart
cropping as well.

AUTO_*

These configurations indicates that thumbor will try to automatically convert the image format to a lighter image format,
according to this compression order: WEBP, AVIF, JPG, HEIF, PNG — from highest (WEBP) to lowest (PNG) priority.

AUTO_WEBP

This option indicates whether thumbor should send WebP images automatically if the request comes with an “Accept”
header that specifies that the browser supports “image/webp”.

AUTO_WEBP = True

AUTO_AVIF

This option indicates whether thumbor should send Avif images automatically if the request comes with an “Accept”
header that specifies that the browser supports “image/avif” and pillow-avif-plugin is enabled.

AUTO_AVIF = True

AUTO_PNG_TO_JPG

This option indicates whether thumbor should transform PNG images automatically to JPEG. If the image is a PNG
without transparency and the numpy dependency is installed, thumbor will transform from png to jpeg. In the most of
cases the image size will decrease.

WARNING: Depending on case, this is not a good deal. This transformation maybe causes distortions or the size of
image can increase. Images with texts, for example, the result image maybe will be distorted. Dark images, for example,
the size of result image maybe will be bigger. You have to evaluate the majority of your use cases to take a decision
about the usage of this conf.

82 Chapter 2. Contents

http://www.lcdf.org/gifsicle/man.html

Thumbor Documentation, Release 7.7.4

AUTO_PNG_TO_JPG = True

AUTO_JPG

This option indicates whether thumbor should send JPG images automatically if the request comes with an “Accept”
header that specifies that the browser supports “/ ”, “image/jpg” or “image/jpeg”.

AUTO_JPG = True

AUTO_PNG

This option indicates whether thumbor should send PNG images automatically if the request comes with an “Accept”
header that specifies that the browser supports “image/png”.

AUTO_PNG = True

AUTO_HEIF

This option indicates whether thumbor should send Heif images automatically if the request comes with an “Accept”
header that specifies that the browser supports “image/heif” and pillow-heif is enabled.

AUTO_HEIF = True

Queueing - Redis Single Node

REDIS_QUEUE_MODE

Redis operation mode ‘single_node’ or ‘sentinel’

REDIS_QUEUE_MODE = 'single_node'

REDIS_QUEUE_SERVER_HOST

Server host for the queued redis detector.

REDIS_QUEUE_SERVER_HOST = 'localhost'

2.6. Administration 83

Thumbor Documentation, Release 7.7.4

REDIS_QUEUE_SERVER_PORT

Server port for the queued redis detector.

REDIS_QUEUE_SERVER_PORT = 6379

REDIS_QUEUE_SERVER_DB

Server database index for the queued redis detector

REDIS_QUEUE_SERVER_DB = 0

REDIS_QUEUE_SERVER_PASSWORD

Server password for the queued redis detector

REDIS_QUEUE_SERVER_PASSWORD = None

Queueing - Redis Sentinel

REDIS_QUEUE_MODE

Redis operation mode ‘single_node’ or ‘sentinel’

REDIS_QUEUE_MODE = 'sentinel'

REDIS_QUEUE_SENTINEL_INSTANCES

Sentinel server instances for the queued redis detector.

REDIS_QUEUE_SENTINEL_INSTANCES = 'localhost:23679,localhost:23680'

REDIS_QUEUE_SENTINEL_PASSWORD

Sentinel server password for the queued redis detector.

REDIS_QUEUE_SENTINEL_PASSWORD = None

84 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

REDIS_QUEUE_SENTINEL_MASTER_INSTANCE

Sentinel server master instance for the queued redis detector.

REDIS_QUEUE_SENTINEL_MASTER_INSTANCE = 'masterinstance'

REDIS_QUEUE_SENTINEL_MASTER_PASSWORD

Sentinel server master password for the queued redis detector.

REDIS_QUEUE_SENTINEL_MASTER_PASSWORD = None

REDIS_QUEUE_SENTINEL_MASTER_DB

Sentinel server master database index for the queued redis detector.

REDIS_QUEUE_SENTINEL_MASTER_DB = 0

REDIS_QUEUE_SENTINEL_SOCKET_TIMEOUT

Sentinel server socket timeout for the queued redis detector.

REDIS_QUEUE_SENTINEL_SOCKET_TIMEOUT = 10.0

Queueing - Amazon SQS

This queue will be removed in an upcoming release in favor of the open source AWS plug-ins for thumbor.

SQS_QUEUE_KEY_ID

Amazon AWS key id.

SQS_QUEUE_KEY_ID = None

SQS_QUEUE_KEY_SECRET

Amazon AWS key secret.

SQS_QUEUE_KEY_SECRET = None

2.6. Administration 85

Thumbor Documentation, Release 7.7.4

SQS_QUEUE_REGION

Amazon AWS SQS region.

SQS_QUEUE_REGION = 'us-east-1'

Security Section

SECURITY_KEY

This option specifies the security key that thumbor uses to sign secure URLs.

1234567890123456

ALLOW_UNSAFE_URL

This option specifies that the /unsafe url should be available in this thumbor instance. It is boolean (True or False).

Warning: It is STRONGLY recommended that you turn off this flag in production environments as this can lead
to DDoS attacks against thumbor.

ALLOW_UNSAFE_URL = False

Loader Options Section

FILE_LOADER_ROOT_PATH

In case you are using thumbor’s built-in file loader, this is the option that allows you to specify where to find the images.

FILE_LOADER_ROOT_PATH = "/home/thumbor/images"

HTTP_LOADER_DEFAULT_USER_AGENT

This option allows users to specify the default user-agent that thumbor will send when requesting images with the HTTP
Loader. Defaults to ‘thumbor/’ (like thumbor/7.0.0).

HTTP_LOADER_DEFAULT_USER_AGENT = 'thumbor/7.0.0'

86 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

HTTP_LOADER_FORWARD_USER_AGENT

This option tells thumbor to forward the request user agent when requesting images using the HTTP Loader. Defaults
to False.

HTTP_LOADER_FORWARD_USER_AGENT = False

Storage Options Section

STORAGE_EXPIRATION_SECONDS

This options specifies the default expiration time in seconds for the storage.

STORAGE_EXPIRATION_SECONDS = 60 # 1 minute

STORES_CRYPTO_KEY_FOR_EACH_IMAGE

This option specifies whether thumbor should store the key for each image (thus allowing the image to be found even
if the security key changes). This is a boolean flag (True or False).

Warning: If this flag is set to False, it essentially means that whenever you change the security key, for whatever
reason, you just invalidated every single image that’s been generated before.

That may be ok if you have another service fetching stored images instead of allowing thumbor to do it (as many of
thumbor users do).

STORAGE_CRYPTO_KEY_FOR_EACH_IMAGE = True

File Storage Section

FILE_STORAGE_ROOT_PATH

In case you are using thumbor’s built-in file storage, this is the option that allows you to specify where to save the
images.

FILE_STORAGE_ROOT_PATH = '/home/thumbor/storage'

Result Storage Section

RESULT_STORAGE_EXPIRATION_SECONDS

Expiration in seconds of generated images in the result storage.

RESULT_STORAGE_EXPIRATION_SECONDS = 0

2.6. Administration 87

Thumbor Documentation, Release 7.7.4

RESULT_STORAGE_FILE_STORAGE_ROOT_PATH

Path where the Result storage will store generated images.

RESULT_STORAGE_FILE_STORAGE_ROOT_PATH = '/tmp/thumbor/result_storage'

RESULT_STORAGE_STORES_UNSAFE

Indicates whether unsafe requests should also be stored in the Result Storage.

RESULT_STORAGE_STORES_UNSAFE = False

Healthcheck

HEALTHCHECK_ROUTE

The URL path to a healthcheck. This will return a 200 and the text ‘WORKING’.

HEALTHCHECK_ROUTE = '/status'

Will put the healthcheck response on http://host:port/status

The default route is /healthcheck.

Logging

THUMBOR_LOG_FORMAT

This option specifies the format to be used by logging messages sent from thumbor.

THUMBOR_LOG_FORMAT = '%(asctime)s %(name)s:%(levelname)s %(message)s'

THUMBOR_LOG_DATE_FORMAT

This option specifies the date format to be used by logging messages sent from thumbor.

THUMBOR_LOG_DATE_FORMAT = '%Y-%m-%d %H:%M:%S'

Error Handling

USE_CUSTOM_ERROR_HANDLING

This configuration indicates whether thumbor should use a custom error handler.

USE_CUSTOM_ERROR_HANDLING = False

88 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

ERROR_HANDLER_MODULE

Error reporting module. Needs to contain a class called ErrorHandler with a handle_error(context, handler, exception)
method.

ERROR_HANDLER_MODULE = 'thumbor.error_handlers.sentry'

Error Handling - Sentry

SENTRY_DSN_URL

Sentry thumbor project dsn. i.e.: http://5a63d58ae7b94f1dab3dee740b301d6a:
73eea45d3e8649239a973087e8f21f98@localhost:9000/2

SENTRY_DSN_URL = ''

SENTRY_ENVIRONMENT

Sentry thumbor environment.

SENTRY_ENVIRONMENT = 'staging'

Upload

UPLOAD_MAX_SIZE

Max size in bytes for images uploaded to thumbor.

UPLOAD_MAX_SIZE = 0

UPLOAD_ENABLED

Indicates whether thumbor should enable File uploads.

UPLOAD_ENABLED = False

UPLOAD_PHOTO_STORAGE

The type of storage to store uploaded images with.

UPLOAD_PHOTO_STORAGE = 'thumbor.storages.file_storage'

2.6. Administration 89

http://5a63d58ae7b94f1dab3dee740b301d6a:73eea45d3e8649239a973087e8f21f98@localhost:9000/2
http://5a63d58ae7b94f1dab3dee740b301d6a:73eea45d3e8649239a973087e8f21f98@localhost:9000/2

Thumbor Documentation, Release 7.7.4

UPLOAD_DELETE_ALLOWED

Indicates whether image deletion should be allowed.

UPLOAD_DELETE_ALLOWED = False

UPLOAD_PUT_ALLOWED

Indicates whether image overwrite should be allowed.

UPLOAD_PUT_ALLOWED = False

UPLOAD_DEFAULT_FILENAME

Default filename for image uploaded.

UPLOAD_DEFAULT_FILENAME = 'image'

GC_INTERVAL

Set manual garbage collection interval in seconds. Defaults to None (no manual garbage collection). Try this if your
thumbor is running out of memory. May cause an increase in CPU load.

GC_INTERVAL = 60

Example of Configuration File

################################### Logging ####################################

Logging configuration as json
Defaults to: None
#THUMBOR_LOG_CONFIG = None

Log Format to be used by thumbor when writing log messages.
Defaults to: '%(asctime)s %(name)s:%(levelname)s %(message)s'
#THUMBOR_LOG_FORMAT = '%(asctime)s %(name)s:%(levelname)s %(message)s'

Date Format to be used by thumbor when writing log messages.
Defaults to: '%Y-%m-%d %H:%M:%S'
#THUMBOR_LOG_DATE_FORMAT = '%Y-%m-%d %H:%M:%S'

##

################################### Imaging ####################################

Max width in pixels for images read or generated by thumbor
Defaults to: 0

(continues on next page)

90 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

#MAX_WIDTH = 0

Max height in pixels for images read or generated by thumbor
Defaults to: 0
#MAX_HEIGHT = 0

Max pixel count for images read by thumbor
Defaults to: 75000000.0
#MAX_PIXELS = 75000000.0

Min width in pixels for images read or generated by thumbor
Defaults to: 1
#MIN_WIDTH = 1

Min width in pixels for images read or generated by thumbor
Defaults to: 1
#MIN_HEIGHT = 1

Allowed domains for the http loader to download. These are regular
expressions.
Defaults to: [
#]

#ALLOWED_SOURCES = [
#]

Quality index used for generated JPEG images
Defaults to: 80
#QUALITY = 80

Exports JPEG images with the `progressive` flag set.
Defaults to: True
#PROGRESSIVE_JPEG = True

Specify subsampling behavior for Pillow (see `subsampling` in
http://pillow.readthedocs.org/en/latest/handbook/image-file-
formats.html#jpeg).Be careful to use int for 0,1,2 and string for "4:4:4"
notation. Will ignore `quality`. Using `keep` will copy the original file's
subsampling.
Defaults to: None
#PILLOW_JPEG_SUBSAMPLING = None

Specify quantization tables for Pillow (see `qtables` in
http://pillow.readthedocs.org/en/latest/handbook/image-file-
formats.html#jpeg). Will ignore `quality`. Using `keep` will copy the
original file's qtables.
Defaults to: None
#PILLOW_JPEG_QTABLES = None

Specify resampling filter for Pillow resize method.One of LANCZOS, NEAREST,
BILINEAR, BICUBIC, HAMMING (Pillow>=3.4.0).

(continues on next page)

2.6. Administration 91

Thumbor Documentation, Release 7.7.4

(continued from previous page)

Defaults to: 'LANCZOS'
#PILLOW_RESAMPLING_FILTER = 'LANCZOS'

Quality index used for generated WebP images. If not set (None) the same level
of JPEG quality will be used. If 100 the `lossless` flag will be used.
Defaults to: None
#WEBP_QUALITY = None

Compression level for generated PNG images.
Defaults to: 6
#PNG_COMPRESSION_LEVEL = 6

Indicates if final image should preserve indexed mode (P or 1) of original
image
Defaults to: True
#PILLOW_PRESERVE_INDEXED_MODE = True

Specifies whether WebP format should be used automatically if the request
accepts it (via Accept header)
Defaults to: False
#AUTO_WEBP = False

Specifies whether a PNG image should be used automatically if the png image
has no transparency (via alpha layer). WARNING: Depending on case, this is
not a good deal. This transformation maybe causes distortions or the size
of image can increase. Images with texts, for example, the result image
maybe will be distorted. Dark images, for example, the size of result image
maybe will be bigger. You have to evaluate the majority of your use cases
to take a decision about the usage of this conf.
Defaults to: False
#AUTO_PNG_TO_JPG = False

Specify the ratio between 1in and 1px for SVG images. This is only used
whenrasterizing SVG images having their size units in cm or inches.
Defaults to: 150
#SVG_DPI = 150

Max AGE sent as a header for the image served by thumbor in seconds
Defaults to: 86400
#MAX_AGE = 86400

Indicates the Max AGE header in seconds for temporary images (images with
failed smart detection)
Defaults to: 0
#MAX_AGE_TEMP_IMAGE = 0

Indicates whether thumbor should rotate images that have an Orientation EXIF
header
Defaults to: False
#RESPECT_ORIENTATION = False

Ignore errors during smart detections and return image as a temp image (not

(continues on next page)

92 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

saved in result storage and with MAX_AGE_TEMP_IMAGE age)
Defaults to: False
#IGNORE_SMART_ERRORS = False

Sends If-Modified-Since & Last-Modified headers; requires support from result
storage
Defaults to: False
#SEND_IF_MODIFIED_LAST_MODIFIED_HEADERS = False

Sends the Access-Control-Allow-Origin header
#ACCESS_CONTROL_ALLOW_ORIGIN_HEADER = '*'

Preserves exif information in generated images. Increases image size in
kbytes, use with caution.
Defaults to: False
#PRESERVE_EXIF_INFO = False

Indicates whether thumbor should enable the EXPERIMENTAL support for animated
gifs.
Defaults to: True
#ALLOW_ANIMATED_GIFS = True

Indicates whether thumbor should use gifsicle engine. Please note that smart
cropping and filters are not supported for gifs using gifsicle (but won't
give an error).
Defaults to: False
#USE_GIFSICLE_ENGINE = False

Indicates whether thumbor should enable blacklist functionality to prevent
processing certain images.
Defaults to: False
#USE_BLACKLIST = False

Size of the thread pool used for image transformations. The default value is 0
(don't use a threadpoool. Increase this if you are seeing your IOLoop
getting blocked (often indicated by your upstream HTTP requests timing out)
Defaults to: 0
#ENGINE_THREADPOOL_SIZE = 0

##

################################# Extensibility #################################

The metrics backend thumbor should use to measure internal actions. This must
be the full name of a python module (python must be able to import it)
Defaults to: 'thumbor.metrics.logger_metrics'
#METRICS = 'thumbor.metrics.logger_metrics'

The loader thumbor should use to load the original image. This must be the
full name of a python module (python must be able to import it)
Defaults to: 'thumbor.loaders.http_loader'

(continues on next page)

2.6. Administration 93

Thumbor Documentation, Release 7.7.4

(continued from previous page)

#LOADER = 'thumbor.loaders.http_loader'

The file storage thumbor should use to store original images. This must be the
full name of a python module (python must be able to import it)
Defaults to: 'thumbor.storages.file_storage'
#STORAGE = 'thumbor.storages.file_storage'

The result storage thumbor should use to store generated images. This must be
the full name of a python module (python must be able to import it)
Defaults to: None
#RESULT_STORAGE = None

The imaging engine thumbor should use to perform image operations. This must
be the full name of a python module (python must be able to import it)
Defaults to: 'thumbor.engines.pil'
#ENGINE = 'thumbor.engines.pil'

The gif engine thumbor should use to perform image operations. This must be
the full name of a python module (python must be able to import it)
Defaults to: 'thumbor.engines.gif'
#GIF_ENGINE = 'thumbor.engines.gif'

The url signer thumbor should use to verify url signatures.This must be the
full name of a python module (python must be able to import it)
Defaults to: 'libthumbor.url_signers.base64_hmac_sha1'
#URL_SIGNER = 'libthumbor.url_signers.base64_hmac_sha1'

##

################################### Security ###################################

The security key thumbor uses to sign image URLs
Defaults to: 'MY_SECURE_KEY'
#SECURITY_KEY = 'MY_SECURE_KEY'

Indicates if the /unsafe URL should be available
Defaults to: True
#ALLOW_UNSAFE_URL = True

##

##################################### HTTP #####################################

Enables automatically generated etags
Defaults to: True
#ENABLE_ETAGS = True

##

(continues on next page)

94 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

################################### Storage ####################################

Set maximum id length for images when stored
Defaults to: 32
#MAX_ID_LENGTH = 32

##

################################# Performance ##################################

Set garbage collection interval in seconds
Defaults to: None
#GC_INTERVAL = None

##

################################# Healthcheck ##################################

Healthcheck route.
Defaults to: '/healthcheck'
#HEALTHCHECK_ROUTE = '/healthcheck'

##

################################### Metrics ####################################

Host to send statsd instrumentation to
Defaults to: None
#STATSD_HOST = None

Port to send statsd instrumentation to
Defaults to: 8125
#STATSD_PORT = 8125

Prefix for statsd
Defaults to: None
#STATSD_PREFIX = None

##

################################# File Loader ##################################

The root path where the File Loader will try to find images
Defaults to: '/home/heynemann'
#FILE_LOADER_ROOT_PATH = '/home/heynemann'

##

(continues on next page)

2.6. Administration 95

Thumbor Documentation, Release 7.7.4

(continued from previous page)

################################# HTTP Loader ##################################

The maximum number of seconds libcurl can take to connect to an image being
loaded
Defaults to: 5
#HTTP_LOADER_CONNECT_TIMEOUT = 5

The maximum number of seconds libcurl can take to download an image
Defaults to: 20
#HTTP_LOADER_REQUEST_TIMEOUT = 20

Indicates whether libcurl should follow redirects when downloading an image
Defaults to: True
#HTTP_LOADER_FOLLOW_REDIRECTS = True

Indicates the number of redirects libcurl should follow when downloading an
image
Defaults to: 5
#HTTP_LOADER_MAX_REDIRECTS = 5

The maximum number of simultaneous HTTP connections the loader can make before
queuing
Defaults to: 10
#HTTP_LOADER_MAX_CLIENTS = 10

Indicates whether thumbor should forward the user agent of the requesting user
Defaults to: False
#HTTP_LOADER_FORWARD_USER_AGENT = False

Indicates whether thumbor should forward the headers of the request
Defaults to: False
#HTTP_LOADER_FORWARD_ALL_HEADERS = False

Indicates which headers should be forwarded among all the headers of the
request
Defaults to: [
#]

#HTTP_LOADER_FORWARD_HEADERS_WHITELIST = [
#]

Default user agent for thumbor http loader requests
Defaults to: 'Thumbor/6.7.1'
#HTTP_LOADER_DEFAULT_USER_AGENT = 'Thumbor/6.7.1'

The proxy host needed to load images through
Defaults to: None
#HTTP_LOADER_PROXY_HOST = None

The proxy port for the proxy host

(continues on next page)

96 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

Defaults to: None
#HTTP_LOADER_PROXY_PORT = None

The proxy username for the proxy host
Defaults to: None
#HTTP_LOADER_PROXY_USERNAME = None

The proxy password for the proxy host
Defaults to: None
#HTTP_LOADER_PROXY_PASSWORD = None

The filename of CA certificates in PEM format
Defaults to: None
#HTTP_LOADER_CA_CERTS = None

Validate the server’s certificate for HTTPS requests
Defaults to: None
#HTTP_LOADER_VALIDATE_CERTS = None

The filename for client SSL key
Defaults to: None
#HTTP_LOADER_CLIENT_KEY = None

The filename for client SSL certificate
Defaults to: None
#HTTP_LOADER_CLIENT_CERT = None

If the CurlAsyncHTTPClient should be used
Defaults to: False
#HTTP_LOADER_CURL_ASYNC_HTTP_CLIENT = False

##

################################### General ####################################

If HTTP_LOADER_CURL_LOW_SPEED_LIMIT and HTTP_LOADER_CURL_ASYNC_HTTP_CLIENT are
set, then this is the time in seconds as integer after a download should
timeout if the speed is below HTTP_LOADER_CURL_LOW_SPEED_LIMIT for that
long
Defaults to: 0
#HTTP_LOADER_CURL_LOW_SPEED_TIME = 0

If HTTP_LOADER_CURL_LOW_SPEED_TIME and HTTP_LOADER_CURL_ASYNC_HTTP_CLIENT are
set, then this is the limit in bytes per second as integer which should
timeout if the speed is below that limit for
HTTP_LOADER_CURL_LOW_SPEED_TIME seconds
Defaults to: 0
#HTTP_LOADER_CURL_LOW_SPEED_LIMIT = 0

Custom app class to override ThumborServiceApp. This config value is
overridden by the -a command-line parameter.

(continues on next page)

2.6. Administration 97

Thumbor Documentation, Release 7.7.4

(continued from previous page)

Defaults to: 'thumbor.app.ThumborServiceApp'
#APP_CLASS = 'thumbor.app.ThumborServiceApp'

##

################################# File Storage #################################

Expiration in seconds for the images in the File Storage. Defaults to one
month
Defaults to: 2592000
#STORAGE_EXPIRATION_SECONDS = 2592000

Indicates whether thumbor should store the signing key for each image in the
file storage. This allows the key to be changed and old images to still be
properly found
Defaults to: False
#STORES_CRYPTO_KEY_FOR_EACH_IMAGE = False

The root path where the File Storage will try to find images
Defaults to: '/tmp/thumbor/storage'
#FILE_STORAGE_ROOT_PATH = '/tmp/thumbor/storage'

##

#################################### Upload ####################################

Max size in bytes for images uploaded to thumbor
Aliases: MAX_SIZE
Defaults to: 0
#UPLOAD_MAX_SIZE = 0

Indicates whether thumbor should enable File uploads
Aliases: ENABLE_ORIGINAL_PHOTO_UPLOAD
Defaults to: False
#UPLOAD_ENABLED = False

The type of storage to store uploaded images with
Aliases: ORIGINAL_PHOTO_STORAGE
Defaults to: 'thumbor.storages.file_storage'
#UPLOAD_PHOTO_STORAGE = 'thumbor.storages.file_storage'

Indicates whether image deletion should be allowed
Aliases: ALLOW_ORIGINAL_PHOTO_DELETION
Defaults to: False
#UPLOAD_DELETE_ALLOWED = False

Indicates whether image overwrite should be allowed
Aliases: ALLOW_ORIGINAL_PHOTO_PUTTING
Defaults to: False
#UPLOAD_PUT_ALLOWED = False

(continues on next page)

98 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

Default filename for image uploaded
Defaults to: 'image'
#UPLOAD_DEFAULT_FILENAME = 'image'

##

################################# Mixed Storage #################################

Mixed Storage file storage. This must be the full name of a python module
(python must be able to import it)
Defaults to: 'thumbor.storages.no_storage'
#MIXED_STORAGE_FILE_STORAGE = 'thumbor.storages.no_storage'

Mixed Storage signing key storage. This must be the full name of a python
module (python must be able to import it)
Defaults to: 'thumbor.storages.no_storage'
#MIXED_STORAGE_CRYPTO_STORAGE = 'thumbor.storages.no_storage'

Mixed Storage detector information storage. This must be the full name of a
python module (python must be able to import it)
Defaults to: 'thumbor.storages.no_storage'
#MIXED_STORAGE_DETECTOR_STORAGE = 'thumbor.storages.no_storage'

##

##################################### Meta #####################################

The callback function name that should be used by the META route for JSONP
access
Defaults to: None
#META_CALLBACK_NAME = None

##

################################### Detection ###################################

List of detectors that thumbor should use to find faces and/or features. All
of them must be full names of python modules (python must be able to import
it)
Defaults to: [
#]

#DETECTORS = [
#]

The cascade file that opencv will use to detect faces.
Defaults to: 'haarcascade_frontalface_alt.xml'

(continues on next page)

2.6. Administration 99

Thumbor Documentation, Release 7.7.4

(continued from previous page)

#FACE_DETECTOR_CASCADE_FILE = 'haarcascade_frontalface_alt.xml'

The cascade file that opencv will use to detect glasses.
Defaults to: 'haarcascade_eye_tree_eyeglasses.xml'
#GLASSES_DETECTOR_CASCADE_FILE = 'haarcascade_eye_tree_eyeglasses.xml'

The cascade file that opencv will use to detect profile faces.
Defaults to: 'haarcascade_profileface.xml'
#PROFILE_DETECTOR_CASCADE_FILE = 'haarcascade_profileface.xml'

##

################################## Optimizers ##################################

List of optimizers that thumbor will use to optimize images
Defaults to: [
#]

#OPTIMIZERS = [
#]

Path for the jpegtran binary
Defaults to: '/usr/bin/jpegtran'
#JPEGTRAN_PATH = '/usr/bin/jpegtran'

Path for the progressive scans file to use with jpegtran optimizer. Implies
progressive jpeg output
Defaults to: ''
#JPEGTRAN_SCANS_FILE = ''

Path for the ffmpeg binary used to generate gifv(h.264)
Defaults to: '/usr/local/bin/ffmpeg'
#FFMPEG_PATH = '/usr/local/bin/ffmpeg'

##

################################### Filters ####################################

List of filters that thumbor will allow to be used in generated images. All of
them must be full names of python modules (python must be able to import
it)
Defaults to: [
'thumbor.filters.brightness',
'thumbor.filters.colorize',
'thumbor.filters.contrast',
'thumbor.filters.rgb',
'thumbor.filters.round_corner',
'thumbor.filters.quality',
'thumbor.filters.noise',

(continues on next page)

100 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

'thumbor.filters.watermark',
'thumbor.filters.equalize',
'thumbor.filters.fill',
'thumbor.filters.sharpen',
'thumbor.filters.strip_exif',
'thumbor.filters.strip_icc',
'thumbor.filters.frame',
'thumbor.filters.grayscale',
'thumbor.filters.rotate',
'thumbor.filters.format',
'thumbor.filters.max_bytes',
'thumbor.filters.convolution',
'thumbor.filters.blur',
'thumbor.filters.extract_focal',
'thumbor.filters.focal',
'thumbor.filters.no_upscale',
'thumbor.filters.saturation',
'thumbor.filters.max_age',
'thumbor.filters.curve',
'thumbor.filters.background_color',
'thumbor.filters.upscale',
'thumbor.filters.proportion',
'thumbor.filters.stretch',
#]

#FILTERS = [
'thumbor.filters.brightness',
'thumbor.filters.colorize',
'thumbor.filters.contrast',
'thumbor.filters.rgb',
'thumbor.filters.round_corner',
'thumbor.filters.quality',
'thumbor.filters.noise',
'thumbor.filters.watermark',
'thumbor.filters.equalize',
'thumbor.filters.fill',
'thumbor.filters.sharpen',
'thumbor.filters.strip_exif',
'thumbor.filters.strip_icc',
'thumbor.filters.frame',
'thumbor.filters.grayscale',
'thumbor.filters.rotate',
'thumbor.filters.format',
'thumbor.filters.max_bytes',
'thumbor.filters.convolution',
'thumbor.filters.blur',
'thumbor.filters.extract_focal',
'thumbor.filters.focal',
'thumbor.filters.no_upscale',
'thumbor.filters.saturation',
'thumbor.filters.max_age',
'thumbor.filters.curve',

(continues on next page)

2.6. Administration 101

Thumbor Documentation, Release 7.7.4

(continued from previous page)

'thumbor.filters.background_color',
'thumbor.filters.upscale',
'thumbor.filters.proportion',
'thumbor.filters.stretch',
#]

##

################################ Result Storage ################################

Expiration in seconds of generated images in the result storage
Defaults to: 0
#RESULT_STORAGE_EXPIRATION_SECONDS = 0

Path where the Result storage will store generated images
Defaults to: '/tmp/thumbor/result_storage'
#RESULT_STORAGE_FILE_STORAGE_ROOT_PATH = '/tmp/thumbor/result_storage'

Indicates whether unsafe requests should also be stored in the Result Storage
Defaults to: False
#RESULT_STORAGE_STORES_UNSAFE = False

##

############################# Queued Redis Detector #############################

Server host for the queued redis detector
Defaults to: 'localhost'
#REDIS_QUEUE_SERVER_HOST = 'localhost'

Server port for the queued redis detector
Defaults to: 6379
#REDIS_QUEUE_SERVER_PORT = 6379

Server database index for the queued redis detector
Defaults to: 0
#REDIS_QUEUE_SERVER_DB = 0

Server password for the queued redis detector
Defaults to: None
#REDIS_QUEUE_SERVER_PASSWORD = None

##

############################# Queued SQS Detector ##############################

AWS key id
Defaults to: None

(continues on next page)

102 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

(continued from previous page)

#SQS_QUEUE_KEY_ID = None

AWS key secret
Defaults to: None
#SQS_QUEUE_KEY_SECRET = None

AWS SQS region
Defaults to: 'us-east-1'
#SQS_QUEUE_REGION = 'us-east-1'

##

#################################### Errors ####################################

This configuration indicates whether thumbor should use a custom error
handler.
Defaults to: False
#USE_CUSTOM_ERROR_HANDLING = False

Error reporting module. Needs to contain a class called ErrorHandler with a
handle_error(context, handler, exception) method.
Defaults to: 'thumbor.error_handlers.sentry'
#ERROR_HANDLER_MODULE = 'thumbor.error_handlers.sentry'

File of error log as json
Defaults to: None
#ERROR_FILE_LOGGER = None

File of error log name is parametrized with context attribute
Defaults to: False
#ERROR_FILE_NAME_USE_CONTEXT = False

##

############################### Errors - Sentry ################################

Sentry thumbor project dsn. i.e.: http://5a63d58ae7b94f1dab3dee740b301d6a:73ee
a45d3e8649239a973087e8f21f98@localhost:9000/2
Defaults to: ''
#SENTRY_DSN_URL = ''

Sentry environment i.e.: staging
Defaults to: None
#SENTRY_ENVIRONMENT = None

##

#################################### Server ####################################

(continues on next page)

2.6. Administration 103

Thumbor Documentation, Release 7.7.4

(continued from previous page)

The amount of time to wait before shutting down the server, i.e. stop
accepting requests.
Defaults to: 0
#MAX_WAIT_SECONDS_BEFORE_SERVER_SHUTDOWN = 0

The amount of time to waut before shutting down all io, after the server has
been stopped
Defaults to: 0
#MAX_WAIT_SECONDS_BEFORE_IO_SHUTDOWN = 0

##

2.6.2 Automated Error Handling

For many companies it make a lot of sense to have a centralized solution for handling errors in production, like sentry
or squash.

Thumbor must support this type of error handling in order to better integrate itself to it’s users environments.

Enabling Custom Error Handling

Enabling it is as simple as setting the configuration USE_CUSTOM_ERROR_HANDLING to True.

After that you need to set the custom error handler you want to use with the ERROR_HANDLER_MODULE configuration.
Please note that this is the module full name, not the class full name.

Thumbor comes pre-packaged with sentry’s custom error handler: thumbor.error_handlers.sentry. If you decide
to use it, please read below on how to configure it.

Sentry - thumbor.error_handlers.sentry

If you choose to use sentry custom error handler, all you need to do is fill the SENTRY_DSN_URL configuration with
sentry’s DSN URL, which can be found in the admin page for your sentry project, like the one in the image below:

104 Chapter 2. Contents

https://github.com/getsentry/sentry
http://squash.io

Thumbor Documentation, Release 7.7.4

2.6.3 Hosting

Let’s see how would you run thumbor in different environments.

Development Environment

For running it locally you just need to get a proper Configuration file. You can put it at /etc/thumbor.conf, ~/
thumbor.conf (home folder) or specify it when starting thumbor.

To verify if you have thumbor, just type:

thumbor --version

It should return the version you’ve installed. Starting thumbor is as easy as:

thumbor

For more options check the Configuration page.

Production Environment

Other than having the proper Configuration file for your environment, we have some recommendations on how to run
thumbor in production.

Our first recommendation is to run more than one instance of it. You can specify different ports using thumbor easily.
This will make sure that your service stays responsive even if one of the processes die.

We also recommend having some form of load balance that distributes the load between the aforementioned processes.
We are using NGINX to do it, but there are more sophisticated load balance softwares around. thumbor supports health
checking under the /healthcheck URI if you need to use it.

Other than that, you run it using the thumbor console app specifying the arguments, like this:

thumbor --port=8888 --conf="~/mythumbor.conf"

We recommend using an application such as Supervisor (http://supervisord.org/index.html) to monitor your services.
An example of a supervisord.conf file would be:

[supervisord]
logfile = /home/thumbor/logs/supervisord.log
logfile_maxbytes = 50MB
logfile_backups=10
loglevel = info
pidfile = /home/thumbor/supervisord.pid
user = thumbor

[program:thumbor]
command=thumbor --port=800%(process_num)s --conf=/etc/thumbor800%(process_num)s.conf
process_name=thumbor800%(process_num)s
numprocs=4
user=thumbor
directory=/home/thumbor/
autostart=true
autorestart=true
startretries=3

(continues on next page)

2.6. Administration 105

http://supervisord.org/index.html

Thumbor Documentation, Release 7.7.4

(continued from previous page)

stopsignal=TERM
stdout_logfile=/home/thumbor/logs/thumbor800%(process_num)s.stdout.log
stdout_logfile_maxbytes=1MB
stdout_logfile_backups=10
stderr_logfile=/home/thumbor/logs/thumbor800%(process_num)s.stderr.log
stderr_logfile_maxbytes=1MB
stderr_logfile_backups=10

This configuration file makes sure that supervisor starts 4 processes of thumbor on the 8000, 8001, 8002 and 8003 ports,
each with a different configuration file (thumbor8000.conf, thumbor8001.conf, thumbor8002.conf, thumbor8003.conf
all under /etc folder). The other settings are optional, but if you need help with supervisor’s settings it has extensive
documentation online (http://supervisord.org/introduction.html).

Thumbor in the Cloud

Running with Docker

Running thumbor with docker is as easy as:

$ docker run -p 8888:80 ghcr.io/minimalcompact/thumbor:latest
...
$ curl http://localhost:8888/healthcheck
WORKING%

For more details check the MinimalCompact thumbor docker image.

Thumbor on OpenShift

Warning: This may be outdated since thumbor moved to python 3.

There’s a project showing how to deploy a working version on OpenShift https://github.com/rafaelcaricio/
thumbor-openshift-example

Thumbor behind CloudFront

Warning: This may be outdated since thumbor moved to python 3.

The awesome people at yipit are using thumbor behind the CloudFront CDN at Amazon.

The detailed information on how to do it can be seen at this blog post.

106 Chapter 2. Contents

http://supervisord.org/introduction.html
https://github.com/MinimalCompact/thumbor
https://www.openshift.com/
https://github.com/rafaelcaricio/thumbor-openshift-example
https://github.com/rafaelcaricio/thumbor-openshift-example
http://yipit.com
http://en.wikipedia.org/wiki/Content_delivery_network
http://tech.yipit.com/2013/01/03/how-yipit-scales-thumbnailing-with-thumbor-and-cloudfront/

Thumbor Documentation, Release 7.7.4

2.6.4 Logging

thumbor uses the built-in Python logging mechanisms. In order to configure log-level check the Running thumbor
server page.

Configuring log format

Configuring the log format is as easy as including these keys in your thumbor.conf file:

THUMBOR_LOG_FORMAT

Log Format to be used by thumbor when writing log messages.

Defaults to: %(asctime)s %(name)s:%(levelname)s %(message)s

THUMBOR_LOG_DATE_FORMAT

Date Format to be used by thumbor when writing log messages.

Defaults to: %Y-%m-%d %H:%M:%S

2.6.5 Running thumbor server

Running thumbor server is as easy as typing “thumbor” (considering you went through the proper Installing proce-
dures).

The Server application takes some parameters that will help you tailor the thumbor Server to your needs. If you want
to find out what the thumbor Server arguments are, just type:

thumbor --help

-i or –ip

The address that Tornado will listen for incoming request. It defaults to 0.0.0.0 (listening on localhost and current IP).

-p or –port

The port that Tornado will listen for incoming request. It defaults to 8888.

-c or –conf

The full path for the configuration file for this server.

2.6. Administration 107

Thumbor Documentation, Release 7.7.4

-k or –keyfile

The full path for the file containing the security key to be used for this server.

-l or –log-level

The log level to be used. Possible values are: debug, info, warning, error, critical or notset. More on that at http:
//docs.python.org/library/logging.html. It defaults to warning.

–processes

Number of processes to run. By default equals 1 and means no forks created. Set to 0 to detect the number of cores
available on this machine. Set > 1 to start that specified number of processes.

-a or –app

Allows the user to specify the application class to be used. This is a very advanced usage of thumbor. This argument
is specified like: “namespace1.namespace2.class_name” as in “myproj.thumbor_support.MyProjThumborApp”.

Signing thumbor urls

To help users create signed URLs (mostly for debugging purposes, since we recommend using the Libraries), thumbor
comes with an application called thumbor-url.

In order to use it, type thumbor-url -h and it will present all options available.

2.6.6 Image Metadata

Thumbor uses piexif to read and write image metadata.

The image metadata is available in engine.metadata.

Reading and writing Metadata

Let’s retrieve a list of all the available EXIF tags available in the image:

>>> engine.metadata
{
'0th': {

271: b'Canon',
272: b'Canon EOS 5D Mark III',
282: (300, 1),
283: (300, 1),
296: 2,
305: b'Adobe Photoshop Lightroom 4.4 (Macintosh)',
306: b'2016:06:24 14:45:44',
34665: 216

},
'Exif': {

33434: (1, 100),
(continues on next page)

108 Chapter 2. Contents

http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html
https://github.com/hMatoba/Piexif

Thumbor Documentation, Release 7.7.4

(continued from previous page)

33437: (56, 10),
34850: 1,
34855: 640,
34864: 2,
34866: 640,
36864: b'0230',
36867: b'2016:06:23 13:18:05',
36868: b'2016:06:23 13:18:05',
37377: (6643856, 1000000),
37378: (4970854, 1000000),
37380: (0, 1),
37381: (3, 1),
37383: 5,
37385: 16,
37386: (123, 1),
37521: b'91',
37522: b'91',
41486: (5242880, 32768),
41487: (5242880, 32768),
41488: 4,
41985: 0,
41986: 1,
41987: 1,
41990: 0,
42033: b'042024004240',
42034: ((70, 1), (200, 1), (0, 0), (0, 0)),
42036: b'EF70-200mm f/2.8L IS II USM',
42037: b'0000c139be'},

'GPS': {},
'Interop': {},
'1st': {},
'thumbnail': None

}

The reference to the values can be found here Exif values <https://github.com/hMatoba/Piexif/blob/master/piexif/_exif.py>

>>> tag = metadata["Exif"][piexif.ExifIFD.DateTimeOriginal]
"2016:06:23 13:18:05"

piexif API reference

2.6.7 Security

thumbor’s team is very concerned about security and vulnerabilities of the service. Even though the team strives to
cover most scenarios, if you find any flaws or vulnerabilities, please contact the team or create an issue.

2.6. Administration 109

https://github.com/thumbor/thumbor/issues

Thumbor Documentation, Release 7.7.4

URL Tampering

Consider the following URL for an image: http://some.server.com/unsafe/300x300/smart/path/to/
image.jpg.

Now let’s say that some malicious user wants to overload your service. He can easily ask for other sizes in loops or
worse, like:

http://some.server.com/unsafe/300x301/smart/path/to/image.jpg
http://some.server.com/unsafe/300x302/smart/path/to/image.jpg
http://some.server.com/unsafe/300x303/smart/path/to/image.jpg
...
http://some.server.com/unsafe/300x9999/smart/path/to/image.jpg
...
http://some.server.com/unsafe/9999x9999/smart/path/to/image.jpg

And that’s not even counting varying the available options.

Other than that, the user can ask for images that do not exist, thus forcing us to perform useless http GET operations or
filesystem operations.

We classified both scenarios above as URL Tampering.

Stopping Tampering

In order to prevent users from tampering with the URL, thumbor provides a configuration called SECURITY_KEY. This
is the key used to generate a hash-based message authentication code.

The process is very straightforward. The web server that has the page using thumbor’s image generates an authentication
code for the options and image url, using the SECURITY_KEY.

When end-users access the page and thus load the image, thumbor generates an authentication code for the same options
and image url, using the same SECURITY_KEY. If both authentication codes match, thumbor processes it.

The secure endpoint looks like this: /<authentication code with 28 characters>/300x200/smart/path/
to/image.jpg.

HMAC method

We intend to supply toolkits in many languages that automate the signing process, but we might need help from the
community in this direction.

thumbor uses standard HMAC with SHA1 signing.

Let’s use as an example the url http://some.server.com/unsafe/300x200/smart/path/to/image.jpg.

In order to convert that to a “safe” url, we must sign the part 300x200/smart/path/to/image.jpg:

1. Generate a signature of that part using HMAC-SHA1 with the SECURITY_KEY.

2. Encode the signature as base64. thumbor uses urlsafe_b64encode method of the native python’s base64
module. This method replaces some characters in the base64 string so it becomes more url friendly.

3. Append the encoded_signature to the beginning of the URL, like: /1234567890123456789012345678/
300x200/smart/path/to/image.jpg.

That last part gives you the new url: http://thumbor-server/1234567890123456789012345678/300x200/smart/path/to/
image.jpg. Notice that the url includes the options part 300x200/smart. That’s required for thumbor to generate an
authentication code to match the one that signs the image (1234567890123456789012345678).

110 Chapter 2. Contents

http://en.wikipedia.org/wiki/Hash-based_message_authentication_code
http://thumbor-server/1234567890123456789012345678/300x200/smart/path/to/image.jpg
http://thumbor-server/1234567890123456789012345678/300x200/smart/path/to/image.jpg

Thumbor Documentation, Release 7.7.4

The code included in this documentation is illustrational and should not be used for any purposes.

The description of the base64 method is: reference

base64.urlsafe_b64encode(s)
Encode string s using a URL-safe alphabet, which substitutes
- instead of + and _ instead of / in the standard Base64 alphabet.
The result can still contain =.

Loading Images over HTTPS

The default http_loader loads images by default over http. To change the default to https, use the https_loader instead.
To enforce https, use the strict_https_loader. Check the Image loader page for more details.

Libraries

There are implementations of url generators in various languages, take a look at the Libraries page to find information
about them.

2.7 Upload

Warning: The upload module will be removed from thumbor’s codebase soon and ported to an extension.

2.7.1 How to upload Images

Thumbor provides a /image REST end-point to upload your images and manage it.

This way you can send thumbor your original images by doing a simple post to its urls.

Configuration

The table below show all configuration parameters to manage image upload:

Configuration parameter Default Description
UPLOAD_ENABLED False Indicates whether thumbor should enable File up-

loads
UPLOAD_PUT_ALLOWED False Indicates whether image overwrite should be al-

lowed
UP-
LOAD_DELETE_ALLOWED

False Indicates whether image deletion should be al-
lowed

UPLOAD_PHOTO_STORAGE thum-
bor.storages.file_storage

The type of storage to store uploaded images with

UP-
LOAD_DEFAULT_FILENAME

image Default filename for image uploaded

UPLOAD_MAX_SIZE 0 Max size in Kb for images uploaded to thumbor
MIN_WIDTH 1 Min width in pixels for images uploaded
MIN_HEIGHT 1 Min height in pixels for images uploaded

2.7. Upload 111

http://docs.python.org/library/base64.html

Thumbor Documentation, Release 7.7.4

Thumbor comes with the /image REST end-point to upload disabled by default. In order to enable it, just set the
UPLOAD_ENABLED configuration in your thumbor.conf file to True.

Thumbor will then use the storage specified in the UPLOAD_PHOTO_STORAGE configuration to save your images. You
can use an existing storage (filesystem, redis, mongo, hbase. . .) or create your own storage if needed .

You can manage image putting and deletions simply set the configuration parameters UPLOAD_PUT_ALLOWED and
UPLOAD_DELETE_ALLOWED to True. This parameters are set to False by default for security reasons.

Finally the upload constraints (max size, image width and height) will be controlled by UPLOAD_MAX_SIZE, MIN_WIDTH
and MIN_HEIGHT parameters.

API Usage

The Thumbor /image REST end-point supports the commons HTTP methods :

• POST : to upload a new image

• GET : to display an image uploaded

• PUT : to replace an image uploaded by another preserving the URI

• DELETE : to remove an image uploaded from storage

By default, PUT and DELETE methods are disabled as explained above. This is done to tighten thumbor’s security.

Posting

Posting is the only method allowed by default when you activate the upload module. It allows new images to be sent to
Thumbor.

In order to upload a new image, you have two choices:

• send an HTTP POST to the /image end-point with the image as payload (REST style)

• send an HTTP POST to the /image end-point with a multi-part form with a file field called media (Form
style).

In the REST style mode you may add an optional Slug header to define the image filename, which is useful for SEO rea-
sons. Not specifying a Slug causes the server to use the default filename for the image (UPLOAD_DEFAULT_FILENAME
parameter) .

The HTTP response will return a Location header pointing on the uploaded image. The URI presented in Location
header may be used to update or delete the image uploaded (see below).

For examples, see the Upload an image via the REST API or Upload an image via a form sections.

HTTP status code

The status code returned will be :

• 201 Created (success)

• 415 Unsupported Media Type (image type is not allowed)

• 412 Precondition Failed (image is too small or the file is not an image)

112 Chapter 2. Contents

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Thumbor Documentation, Release 7.7.4

Putting

Putting is a little more dangerous if you don’t have strict control of who can access the /image end-point. This is
because whatever is sent using this method gets saved to storage, overwriting the previous entry.

In order to replace an existing image, all you have to do is send an HTTP PUT request to the /image end-point with
the new image content as payload. The new image will replace the original image preserving the URI.

As for the POST method you may add an optional Slug header to define the image filename.

The HTTP response will return a Location header pointing on the modified image. The URI presents in Location
header may be used to update again the image or delete it.

For an example see the Modifying an image section.

HTTP status code

The status code returned will be :

• 204 No Content (success)

• 405 Method Not Allowed (if thumbor’s configuration disallows putting images)

• 415 Unsupported Media Type (image type is not allowed)

• 412 Precondition Failed (image is too small or file is not an image)

Deleting

Deleting can be very dangerous, thus is disabled by default.

If you do enable it, in order to delete an image, all you have to do is send an HTTP DELETE request to the /image
end-point.

For an example, see the Deleting an image section.

HTTP status code

• 204 No Content (success)

• 404 Not Found (image doesn’t exists)

• 405 Method Not Allowed (if thumbor’s configuration disallows deleting images)

Example

Assuming the thumbor server is located at : http://thumbor-server

2.7. Upload 113

Thumbor Documentation, Release 7.7.4

Upload an image via the REST API

When using the /image REST end-point to upload your image via the REST API :

curl -i -H "Content-Type: image/jpeg" -H "Slug: photo.jpg"
-XPOST http://thumbor-server/image --data-binary "@tests/fixtures/images/20x20.

→˓jpg"

the HTTP POST request was send to the server :

POST /image
Content-Type: image/jpeg
Content-Length: 822
Slug : photo.jpg

and the Thumbor server should return:

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Location: /image/05b2eda857314e559630c6f3334d818d/photo.jpg
Server: TornadoServer/2.1.1

The image is created at http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/photo.jpg.
It can be retrieved, modified or deleted via this URI.

The optional Slug HTTP header specifies the filename to use for the image uploaded.

Upload an image via a form

When using the /image REST end-point to upload your images via a form, the user is free to choose the filename of
the image via the filename field :

curl -i -XPOST http://thumbor-server/image
-F "media=@tests/fixtures/images/20x20.jpg;type=image/jpeg;filename=croco.jpg"

the HTTP POST request was send to the server :

POST /image
Content-Type: multipart/form-data; boundary=----------------------------11df125d8b12
Content-Length: 822

and the Thumbor server should return:

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Location: /image/05b2eda857314e559630c6f3334d818d/croco.jpg

The image is created at http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/croco.jpg.
It can be retrieve, modify or delete via this URI using the REST API.

114 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

Modifying an image

To replace the previously uploaded image by another we use:

curl -i -H "Content-Type: image/jpeg" -H "Slug: modified_image.jpg"
-XPUT http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/photo.jpg --

→˓data-binary "@tests/fixtures/images/20x20.jpg"

the HTTP PUT request was send to the server :

PUT /image/05b2eda857314e559630c6f3334d818d/photo.jpg
Content-Type: image/jpeg
Content-Length: 822
Slug : modified_image.jpg

and the Thumbor server should return:

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Location: /image/05b2eda857314e559630c6f3334d818d/modified_image.jpg
Server: TornadoServer/2.1.1

Deleting an image

Finally to delete the uploaded image we use:

curl -i -XDELETE http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/modified_
→˓image.jpg

the HTTP DELETE request was send to the server :

DELETE /image/05b2eda857314e559630c6f3334d818d/modified_image.jpg

and the Thumbor server should return:

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Server: TornadoServer/2.1.1

2.7.2 Posting, Putting and Deleting

thumbor original photo uploading end-point supports three different http verbs: put, post and delete.

By default, put and delete are disabled. This is done to tighten thumbor’s security. If you wish to enable them, please
refer to the How to upload Images page.

2.7. Upload 115

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Thumbor Documentation, Release 7.7.4

Posting

Posting is the only allowed by default method. It allows new images to be sent to thumbor. If the same image is sent
again, thumbor will raise an exception.

This is done so users can’t overwrite images with other images, possibly defacing your website.

In order to post a new image, all you have to do is send a multi-part form with a file field called media and action of
http://{thumbor-server}/image and method of POST.

HTTP status code

• 201 Created (success)

• 409 Conflict (image already exists)

• 412 Precondition Failed (image is too small or the file is not an image)

Putting

Putting is a little more dangerous if you don’t have strict control of who can access the /image route. This is because
whatever is sent using this method gets saved to storage, overwriting the previous entry.

In order to put a new image, all you have to do is send a multi-part form with a file field called media and action of
http://{thumbor-server}/image and method of PUT.

HTTP status code

• 201 Created (success)

• 405 Method Not Allowed (if thumbor’s configuration disallows putting images)

• 412 Precondition Failed (image is too small or file is not an image)

Deleting

Deleting can be very dangerous, thus is disabled by default.

If you do enable it, in order to delete an image, all you have to do is send a request to http://{thumbor-server}/
image with a method of DELETE and a field called file_path with the same path that was used when uploading the
image.

HTTP status code

• 200 OK (success)

• 405 Method Not Allowed (if thumbor’s configuration disallows deleting images)

116 Chapter 2. Contents

Thumbor Documentation, Release 7.7.4

2.7.3 Creating my own Storage

In order to create your own original photo storage, all you have to do is implement a class called Storage that inherits
from thumbor.storages.BaseStorage and has three simple methods: put, exists and remove.

put is the method that actually stores the image somewhere. It could send the picture to a remote storage like Amazon’s
S3 or it could just save the picture to the local filesystem. This method should have a signature of put(path, bytes)
and it should return the file path (for future reference).

exists should return if the file in the given path already exists. This method should have a signature of exists(path)
and it should return a boolean stating if the file exists.

remove should just remove the file in the given path. This method must be idempotent, meaning that if the file has
already been removed (or does not exist for that matter) it shouldn’t do anything on subsequent calls. This method
should have a signature of remove(path) and does not need to return anything.

After your class has been created (and hopefully tested, lol), you just need to modify the ORIGINAL_PHOTO_STORAGE
configuration option in your thumbor.conf file to the module where you implemented your Storage class. Please note
that thumbor must be able to import this module, so it should be somewhere in the PYTHONPATH you started thumbor
with.

2.8 Contributors & Users

2.8.1 The team

These are the people that created, that work or worked in thumbor across the releases:

Founders / Committers

• @heynemann - Founder and active committer

• @cezarsa - Committer

• @fabiomcosta - Founder and committer

Contributors

Contributors can be found in the Contributors page.

2.8.2 Whos using it

http://www.globo.com - globo.com uses thumbor to generate dynamic images through all products across the portal.
Around 15 billion images served per month.

http://www.properati.com.ar/ - properati is also using thumbor to generate several different sizes of their properties
photos, using smart cropping to get the best possible thumbnails.

2.8. Contributors & Users 117

https://github.com/heynemann/
https://github.com/cezarsa/
https://github.com/fabiomcosta/
https://github.com/thumbor/thumbor/graphs/contributors
http://www.globo.com
http://www.properati.com.ar/

Thumbor Documentation, Release 7.7.4

Thumbor made our lives better.

At Properati.com.ar we care a lot about user experience.

When our design team came up with a beautiful design that included thumbnails of 5 different sizes and
specific cropping specs, instead of enhancing our home-made, simple thumbnail-generator process we
moved to Thumbor and now, we cannot live without it.

Thanks a lot!

http://yipit.com/ - yipit now uses thumbor behind the CloudFront CDN at Amazon. Their detailed experience with
setting up thumbor can be seen at this blog post.

Thumbor allows Yipit to iterate quickly on new designs without having to worry about introducing new
image sizes.

On demand image generation was just too slow when integrated into our application servers, but Thumbor
makes it possible.

No more going through old images and creating new thumbnails before we can roll out a new design!

Our initial Thumbor installation took less than an hour to set up, and we haven’t had to spend much time
thinking about it since then.

Zach Smith - CTO

http://oony.com is using thumbor to serve thumbnail images behind Amazon’s Cloudfront CDN.

We’ve previously adapted the size of the thumbnails to what was required by our design team, forcing us
to have many different versions of the images we have on our site.

With Thumbor we don’t have to worry about this anymore, and we can quickly iterate and make changes
to our layouts serving the optimal image format each time.

Thumbor is awesome!

The Viadeo Group owns and operates professional social networks around the world with a total membership base
of over 55 million professionals. Professionals use the networks to enhance their career prospects, discover business
opportunities and build relationships with new contacts as well as to create effective online identities.

With headquarters based in Paris, the Group currently has over 450 staff with offices and teams located in
10 countries.

Viadeo is using Thumbor more and more. We used to have some home-made Java code to deliver images
from http://www.viadeo.com. This code is still alive for some parts of our site.

Since the end of summer 2013, Thumbor is a reality at Viadeo. First via IOS application for member’s
profile photos, then our news platform uses it for new parts of the site, taking more and more place and
also some Android applications.

118 Chapter 2. Contents

http://yipit.com/
http://en.wikipedia.org/wiki/Content_delivery_network
http://tech.yipit.com/2013/01/03/how-yipit-scales-thumbnailing-with-thumbor-and-cloudfront/
http://oony.com
http://viadeo.com
http://www.viadeo.com

Thumbor Documentation, Release 7.7.4

Thumbor helps us in migrating and decoupling applications from our storage backend. We were able to
move from NFS (centralized and very sensitive to high loads) to a distributed storage like HBase, using
a hbase storage plugin. Using the same technique of lazy loading (via Storage cache in thumbor) we can
imagine changing our image’s storage at our convenience should apache HBase start to show deficiencies.
This is really comfortable for Ops.

TypeTees is an easy-to-use iPhone app that lets you speak your mind by putting your super witty slogan into an original
tee and order it immediately.

We use Thumbor to generate mobile thumbnails directly from the same large images that are sent to the
t-shirt garment printer. It requires dealing with masks, feature trimming, transparent images, and replacing
backgrounds to give users an easy-to-see preview of the t-shirt.

Thumbor made this possible and simple without having to write an image processor from scrap.

TypeTees was developed by www.prolificinteractive.com and you can learn more about how thumbor
helped them at their engineering blog post.

Just Watch

At JustWatch, we’re big fans of Thumbor as well.

We’re serving it behind a CloudFront custom origin like many others, and features like WebP and smart
cropping saved us huge amounts of time and bandwidth.

Ridelink

RideLink uses Thumbor to provide the most appropriate, and optimized, image for the platform our cus-
tomer is using.

Setting it up and enhancing it was an easy task thanks to the good documentation and the available plugins.

Thanks to the team behind Thumbor for making our lifes easier!

Cheers! Erico Andrei - CTO

HeyCar

HeyCar is using Thumbor to optimize images for each customers device, taking network and screen sizes
into account.

Our Thumbor instances run on our Kubernetes Cluster, served behind a CloudFront instance for caching
purposes.

Huge Thanks to all Thumbor Contributors!

Marcelo Boeira - Software Engineer

Modalova

Modalova is an online shopping website dedicated to fashion for men and women.

We use Thumbor to generate product thumbnails on our website Modalova, on the grid and also on the
Product Pages.

We serve more than 2,000,000 products to our customers everyday and work with more than 10,000 brands
on the fashion Market.

2.8. Contributors & Users 119

https://github.com/dhardy92/thumbor_hbase
https://www.threadless.com/typetees
http://prolificinteractive.com/blog/2014/05/29/threadless-typetees-neat-and-easy-thumbnails-using-thumbor-and-php/
http://www.justwatch.com
https://ridelink.com/
https://hey.car/
https://www.modalova.fr/

Thumbor Documentation, Release 7.7.4

Our Thumbor instances are running on Heroku, behind the CDN Cloudflare.

Thanks again for this wonderful project,

Cheers!

Gabriel Kaam - CEO & Founder

How to add my site or product here

If you are using thumbor and your site or product is not listed here, please create an issue and we’ll include your logo
and a short description on how you are using it here.

2.8.3 Hacking on Thumbor

So you want to contribute with thumbor? Welcome onboard!

There are a few things you’ll need in order to properly start hacking on it.

First step is to fork it and create your own clone of thumbor.

Dependencies

We seriously advise you to use virtualenv since it will keep your environment clean of thumbor’s dependencies and
you can choose when to “turn them on”.

You’ll also need python >= 3.9 and python poetry.

Installing poetry should be as easy as pip install poetry, but you can find more about it in their website.

Other than that, you’ll also need redis-server <https://redis.io>` installed (for queued detector unit tests).

120 Chapter 2. Contents

http://help.github.com/fork-a-repo/
http://pypi.python.org/pypi/virtualenv
https://python-poetry.org/

Thumbor Documentation, Release 7.7.4

Initializing the Environment

Once you’ve created your virtualenv, and installed poetry, make sure you can use poetry:

$ poetry --version
Poetry version 1.0.3

You should see something similar. After that we just need to download all python packages with:

$ make setup

Running the Tests

Running the tests is as easy as:

$ make test

You should see the results of running your tests after an instant.

If you are experiencing “Too many open files” errors while running the tests, try increasing the number of open files
per process, by running this command:

$ ulimit -S -n 2048

Read http://superuser.com/questions/433746/is-there-a-fix-for-the-too-many-open-files-in-system-error-on-os-x-10-7-1
for more info on this.

Linting your code

Please ensure that your editor is configured to use black, flake8 and pylint.

Even if that’s the case, don’t forget to run make flake pylint before commiting and fixing any issues you find. That
way you won’t get a request for doing so in your PR.

Pull Requests

After hacking and testing your contribution, it is time to make a pull request. Make sure that your code is already
integrated with the master branch of thumbor before asking for a pull request.

To add thumbor as a valid remote for your repository:

$ git remote add thumbor git://github.com/thumbor/thumbor.git

To merge thumbor’s master with your fork:

$ git pull thumbor master

If there was anything to merge, just run your tests again. If they pass, send a pull request.

2.8. Contributors & Users 121

http://superuser.com/questions/433746/is-there-a-fix-for-the-too-many-open-files-in-system-error-on-os-x-10-7-1
https://github.com/psf/black
https://flake8.pycqa.org/en/latest/
https://www.pylint.org/
http://help.github.com/send-pull-requests/

Thumbor Documentation, Release 7.7.4

Introducing a new Dependency

If we introduce a new dependency, the testing docker images need to be updated.

If the new dependency requires changes to the docker image, make sure to update the TestDockerfile36, TestDocker-
file37, TestDockerfile38 and TestDockerfile39 files.

Then build and publish with:

make test-docker-build test-docker-publish

Remember that you must be logged in with your docker hub account and you must be part of the thumbororg
<https://hub.docker.com/repository/docker/thumbororg/thumbor-test> team of administrators.

Running tests in docker

If you do not wish to configure your environment with thumbor’s dependencies, you can use our docker image to run
tests with:

make test-docker-run

Or if you want to run a specific python version with your tests:

make test-docker-39-run

Just replace ‘39’ with the python version you want: 36, 37, 38 or 39.

2.8.4 Licensing

Thumbor is licensed under the MIT License:

The MIT License

Copyright (c) 2011 globo.com thumbor@googlegroups.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

122 Chapter 2. Contents

mailto:thumbor@googlegroups.com

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

123

Thumbor Documentation, Release 7.7.4

124 Chapter 3. Indices and tables

PYTHON MODULE INDEX

p
piexif, 109

125

Thumbor Documentation, Release 7.7.4

126 Python Module Index

INDEX

M
module

piexif, 109

P
piexif

module, 109

127

	Whats Thumbor?
	Contents
	Installing
	Stable
	Ubuntu/Debian using aptitude (apt-get)
	From the source of a stable release
	From the latest version of the source

	Getting Started
	Problems installing thumbor locally
	Changing its size
	Flipping the image
	Filters
	What now?

	Usage
	Image Endpoint
	Trim
	Manual Crop
	Fit in
	Image Size
	Horizontal Align
	Vertical Align
	Smart Cropping
	Filters
	Image URI

	Metadata Endpoint

	Imaging
	Crop and Resize Algorithms
	Cropping the image
	Resizing the Image
	Flipping the Image

	Filters
	How Filters Work
	Available Filters
	AutoJPG
	Description
	Arguments
	Example

	Background Color
	Description
	Arguments
	Example

	Blur
	Description
	Arguments
	Example

	Brightness
	Description
	Arguments
	Example

	Contrast
	Description
	Arguments
	Example

	Convolution
	Description
	Arguments
	Example

	Cover
	Description
	Arguments
	Example

	Equalize
	Description
	Arguments
	Example

	Extract focal points
	Description
	Example

	Filling
	Description
	Arguments
	Example #1
	Example #2

	Focal
	Description
	Arguments
	Example

	Format
	Description
	Arguments
	Example

	Grayscale
	Description
	Arguments
	Example

	Max bytes
	Description
	Arguments
	Example

	No upscale
	Description
	Arguments
	Example

	Noise
	Description
	Arguments
	Example

	Proportion
	Description
	Arguments
	Example

	Quality
	Description
	Arguments
	Example

	Red eye
	RGB
	Description
	Arguments
	Example

	Rotate
	Description
	Arguments
	Example

	Round corners
	Description
	Arguments
	Examples

	Saturation
	Description
	Arguments
	Example

	Sharpen
	Description
	Arguments
	Example 1
	Example 2

	Stretch
	Description
	Example

	Strip EXIF
	Description
	Arguments
	Example

	Strip ICC
	Description
	Arguments
	Example

	Upscale
	Description
	Arguments
	Example

	Watermark
	Description
	Arguments
	Example
	Resizing

	Detectors
	Enabling detectors
	Configuration
	Using it
	Lazy Detection
	Available Detectors

	Detection Algorithms
	Facial Detection
	Original image
	Image after detection
	Using Focal Points for Cropping

	Feature Detection

	Available detectors
	Face Detector
	Feature Detector
	Glasses Detector
	Profile Detector
	Queued Detector

	Lazy Detection
	Rationale
	Queued Detection
	How thumbor deals with queued detection?
	Redis Support

	Image loader
	Pre-packaged loaders
	Http loader
	Https loader
	Strict https loader
	File loader
	File loader with http loader fallback
	Compatibility Loader

	Image storage
	Pre-Packaged Storages
	Filesystem Storage
	NoStorage Storage
	MixedStorage Storage
	Compatibility Storage

	Result Storage
	Pre-packaged result storages
	Filesystem
	Compatibility Result Storage

	Optimizers
	Built-in Optimizers
	jpegtran
	gifv

	Customizing Thumbor
	Custom Storages
	Custom Image Loaders
	Custom Result Storages
	Custom Filters
	Available Filter Argument Types

	Custom Engines
	Custom detection
	Creating a Custom Detector

	Custom Image Optimizers
	Custom Error Handlers
	Custom Handler Lists
	Built-in Handler Lists
	Writing a new Handler List

	Plugins
	Storages
	thumbor_aws (by Thumbor Community)
	thumbor_hbase (by Damien Hardy)
	thumbor_mongodb (by Damien Hardy)
	thumbor_riak (by Damien Hardy)
	thumbor_rackspace (by David Mann)
	thumbor_ceph (by Laurent Barbe)
	thumbor_spaces (by Siddhartha Mukherjee)

	Metrics
	thumbor_prometheus (by Simon Effenberg)

	Extensions
	thumborshortener (by Thumbor Community)

	Engines
	thumbor-video-engine (by The Atlantic)

	Libraries
	Available Libraries
	Python
	Node.js
	Ruby
	Java
	PHP
	Swift
	Objective-C
	.NET
	Delphi

	Implementing a library
	Library Tests - Generating HMAC of the URLs
	Library Tests - Scenarios
	Encryption Testing
	Scenario 1 - Signing of a known url results
	Scenario 2 - Thumbor matching of signature with my library signature
	Scenario 3 - Thumbor matching of signature with my library signature with meta
	Scenario 4 - Thumbor matching of signature with my library signature with smart
	Scenario 5 - Thumbor matching of signature with my library signature with fit-in
	Scenario 6 - Thumbor matching of signature with my library signature with filters

	More Information

	Administration
	Configuration
	Override config through environment variable
	Extensibility Section
	LOADER
	STORAGE
	MIXED_STORAGE_FILE_STORAGE
	MIXED_STORAGE_CRYPTO_STORAGE
	MIXED_STORAGE_DETECTOR_STORAGE
	RESULT_STORAGE
	ENGINE
	URL_SIGNER

	Filters Section
	Metadata Section
	META_CALLBACK_NAME

	Face and Feature Detection Section
	DETECTORS
	Cascade Files

	Imaging Section
	ALLOWED_SOURCES
	ACCESS_CONTROL_ALLOW_ORIGIN_HEADER
	MAX_WIDTH and MAX_HEIGHT
	MIN_WIDTH and MIN_HEIGHT
	QUALITY
	MAX_AGE
	MAX_AGE_TEMP_IMAGE
	RESPECT_ORIENTATION
	ALLOW_ANIMATED_GIFS
	USE_GIFSICLE_ENGINE
	AUTO_*
	AUTO_WEBP
	AUTO_AVIF
	AUTO_PNG_TO_JPG
	AUTO_JPG
	AUTO_PNG
	AUTO_HEIF

	Queueing - Redis Single Node
	REDIS_QUEUE_MODE
	REDIS_QUEUE_SERVER_HOST
	REDIS_QUEUE_SERVER_PORT
	REDIS_QUEUE_SERVER_DB
	REDIS_QUEUE_SERVER_PASSWORD

	Queueing - Redis Sentinel
	REDIS_QUEUE_MODE
	REDIS_QUEUE_SENTINEL_INSTANCES
	REDIS_QUEUE_SENTINEL_PASSWORD
	REDIS_QUEUE_SENTINEL_MASTER_INSTANCE
	REDIS_QUEUE_SENTINEL_MASTER_PASSWORD
	REDIS_QUEUE_SENTINEL_MASTER_DB
	REDIS_QUEUE_SENTINEL_SOCKET_TIMEOUT

	Queueing - Amazon SQS
	SQS_QUEUE_KEY_ID
	SQS_QUEUE_KEY_SECRET
	SQS_QUEUE_REGION

	Security Section
	SECURITY_KEY
	ALLOW_UNSAFE_URL

	Loader Options Section
	FILE_LOADER_ROOT_PATH
	HTTP_LOADER_DEFAULT_USER_AGENT
	HTTP_LOADER_FORWARD_USER_AGENT

	Storage Options Section
	STORAGE_EXPIRATION_SECONDS
	STORES_CRYPTO_KEY_FOR_EACH_IMAGE

	File Storage Section
	FILE_STORAGE_ROOT_PATH

	Result Storage Section
	RESULT_STORAGE_EXPIRATION_SECONDS
	RESULT_STORAGE_FILE_STORAGE_ROOT_PATH
	RESULT_STORAGE_STORES_UNSAFE

	Healthcheck
	HEALTHCHECK_ROUTE

	Logging
	THUMBOR_LOG_FORMAT
	THUMBOR_LOG_DATE_FORMAT

	Error Handling
	USE_CUSTOM_ERROR_HANDLING
	ERROR_HANDLER_MODULE

	Error Handling - Sentry
	SENTRY_DSN_URL
	SENTRY_ENVIRONMENT

	Upload
	UPLOAD_MAX_SIZE
	UPLOAD_ENABLED
	UPLOAD_PHOTO_STORAGE
	UPLOAD_DELETE_ALLOWED
	UPLOAD_PUT_ALLOWED
	UPLOAD_DEFAULT_FILENAME
	GC_INTERVAL

	Example of Configuration File

	Automated Error Handling
	Enabling Custom Error Handling
	Sentry - thumbor.error_handlers.sentry

	Hosting
	Development Environment
	Production Environment
	Thumbor in the Cloud
	Running with Docker

	Thumbor on OpenShift
	Thumbor behind CloudFront

	Logging
	Configuring log format
	THUMBOR_LOG_FORMAT
	THUMBOR_LOG_DATE_FORMAT

	Running thumbor server
	-i or –ip
	-p or –port
	-c or –conf
	-k or –keyfile
	-l or –log-level
	–processes
	-a or –app
	Signing thumbor urls

	Image Metadata
	Reading and writing Metadata
	piexif API reference

	Security
	URL Tampering
	Stopping Tampering
	HMAC method

	Loading Images over HTTPS
	Libraries

	Upload
	How to upload Images
	Configuration
	API Usage
	Posting
	 HTTP status code

	Putting
	HTTP status code

	Deleting
	HTTP status code

	Example
	Upload an image via the REST API
	Upload an image via a form
	Modifying an image
	Deleting an image

	Posting, Putting and Deleting
	Posting
	HTTP status code

	Putting
	HTTP status code

	Deleting
	HTTP status code

	Creating my own Storage

	Contributors & Users
	The team
	Founders / Committers
	Contributors

	Whos using it
	How to add my site or product here

	Hacking on Thumbor
	Dependencies
	Initializing the Environment
	Running the Tests
	Linting your code
	Pull Requests
	Introducing a new Dependency
	Running tests in docker

	Licensing

	Indices and tables
	Python Module Index
	Index

