
Testmunk Documentation
Release 0.1

Testmunk team

February 29, 2016

Contents

1 Android 3
1.1 Installation . 3

1.1.1 Install Calabash gem . 3
1.1.2 Download and Install Android SDK . 4
1.1.3 Configure Bash profile . 4
1.1.4 Download the Testmunk sample application . 5

1.2 Preparing testcases . 5
1.2.1 Inspect app for elements . 5
1.2.2 Writing testcases . 7

1.3 Calabash Ruby API . 7
1.3.1 Useful methods . 8

1.4 Running testruns . 9
1.4.1 General . 9
1.4.2 Running locally on the emulator . 9
1.4.3 Running on your local device . 9
1.4.4 Running on multiple Android devices . 9

1.5 Image Comparison in Calabash . 9

2 iOS 13
2.1 Installation . 13

2.1.1 Prerequisites . 13
2.1.2 Install Calabash gem . 14
2.1.3 Installing framework in Xcode project . 14

2.2 Preparing testcases . 21
2.2.1 Inspect app for elements . 21
2.2.2 Writing testcases . 22

2.3 Calabash Ruby API . 23
2.3.1 Useful methods . 23

2.4 Running testruns . 25
2.4.1 General . 25
2.4.2 Running locally on the simulator . 25
2.4.3 Running locally on a device . 25
2.4.4 Running on multiple iOS devices . 26

2.5 Updating Calabash . 26
2.5.1 Check the version of Calabash you have installed . 27
2.5.2 Update process . 27

3 Teststep library 29

i

3.1 Touching . 29
3.2 Assertions . 36
3.3 Input . 42
3.4 Waiting . 47
3.5 Buttons . 54
3.6 Gestures . 55

4 REST API 61
4.1 API Overview . 61

4.1.1 Introduction . 61
4.1.2 Schema . 61
4.1.3 Authentication . 62
4.1.4 Versioning . 62
4.1.5 Errors . 62
4.1.6 Error codes . 63
4.1.7 Email notifications . 63

4.2 App API . 63
4.2.1 List current apps for your organisation . 63
4.2.2 Create a new App . 64

4.3 Devices API . 64
4.3.1 Get available devices . 64

4.4 Testruns API . 65
4.4.1 Create a new testrun . 65
4.4.2 Selecting Devices to Test On . 66
4.4.3 Start an existing testrun . 66
4.4.4 Get testrun status . 67
4.4.5 Get list of testruns . 68

4.5 Continuous Integration . 69
4.5.1 Jenkins . 69

5 Slack Integration 75
5.1 Setup Guide . 75

ii

Testmunk Documentation, Release 0.1

Contents:

Contents 1

Testmunk Documentation, Release 0.1

2 Contents

CHAPTER 1

Android

Testmunk Android enable you to write automated functional testcases that you can run on various Android devices
with different OS versions. Our goal is that you are able to reduce your manual testing time tremendeously. Following
the installation you will be able to write testcases and let them run locally on your emulator and Android device as
well as on a variety of Android devices over the cloud in the Testmunk device lab.

1.1 Installation

1.1.1 Install Calabash gem

In order to get started with Testmunk, you need to install the Calabash gem. Simply open your terminal window and
execute:

$ gem install calabash-android

In case you don’t have the right permissions, please execute:

$ sudo gem install calabash-android

Hint: Calabash is a framework that allows you to write automated mobile application tests for iOS and Android. It
provides APIs for mimicking input to the devices, and reading its output.

What is Calabash?

Danger: If you get an error that reads ...can’t find header files for ruby at /System/...,
that means you do not have the Xcode command-line tools correctly installed. Make sure you have Xcode installed
(or download it here) and then run this command in Terminal:

$ xcode-select --install

Header files can’t be found

3

https://itunes.apple.com/us/app/xcode/id497799835

Testmunk Documentation, Release 0.1

Danger: If you are getting an error that says “clang: error: unknown argument: ‘-multiply_definedsuppress”’,
you must run these 2 commands instead:

$ sudo -i

$ ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future gem install calabash-android

This error is due to deprecated arguments for the clang executable that gem calls when installing certain exten-
sions.
‘clang error’

1.1.2 Download and Install Android SDK

The Android SDK is the essential tool to build Android apps; by downloading it you will have access to a few tools
that you need to test the app.

Download the latest Android SDK

After your download please copy paste both folders (sdk and eclipse) into your Applications folder.

1.1.3 Configure Bash profile

The Bash profile .bash_profile is a hidden file in your personal folder that you will need to configure for your Android
SDK. After having moved the sdk and eclipse folder in your Applications folder, you can copy paste the following 2
lines into your .bash_profile:

export ANDROID_HOME=/Applications/sdk
export PATH=$PATH:$ANDROID_HOME:$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools:$ANDROID_HOME/add-ons

After you have configured your bash profile, please close all terminal windows to affect your changes.

Hint: .bash_profile is a shell script that gets executed every time you open a new Terminal window. It deals with
configuration for all of your Terminal commands. It can be found in your user folder, ~/.

Take into account that this file might not exist; in that case, create a new empty one.

Also consider that, since the filename begins with a period, this file is hidden. In order to see hidden files in a Finder
window, run these commands in OS X Mavericks:

$ defaults write com.apple.finder AppleShowAllFiles TRUE
$ killall Finder

or these commands in OS X versions prior to Mavericks:

$ defaults write com.apple.Finder AppleShowAllFiles TRUE
$ killall Finder

What is a .bash_profile? Where can I find it?

Plug in your Android device

After you have plugged in your android device into your computer, open a new terminal window and execute:

$ adb devices

You should see output similar to the following, which confirmes that your device was recognized:

4 Chapter 1. Android

https://developer.android.com/sdk/index.html

Testmunk Documentation, Release 0.1

List of devices attached
605A000600000001015F3E001200C00B device

In case you don’t see any output please confirm that you activated the “USB debugging” mode for your device. You
can activate it by going to “Settings”.

1.1.4 Download the Testmunk sample application

We provide a simple Android app template for the purposes of this tutorial. To get this app, download or clone this
GitHub repository.

In this tutorial, we will only be using the APK file, but the source code is included so you can take a look if you wish.

1.2 Preparing testcases

After you have downloaded the files open a new terminal window and navigate via cd to the TMSampleAndroid folder
that you just downloaded. Then execute:

$ calabash-android run TestmunkTest_debug.apk --verbose

Danger: If this command returns an error that says “No keystores found. Please create one or run calabash-
android setup to configure calabash-android to use an existing keystore,” then, run the following commands before
continuing:

$ keytool -genkey -v -keystore ~/.android/debug.keystore -alias androiddebugkey -storepass android -keypass android -keyalg RSA -keysize 2048 -validity 10000 -dname "CN=Android Debug,O=Android,C=US"

$ calabash-android run TestmunkTest_debug.apk

No keystores found

You should get prompted to resign the app. Follow the terminal instructions to resign the app. After resigning please
again execute:

$ calabash-android run TestmunkTest_debug.apk --verbose

This should install the app on your device, and after a minute or two it should get launched and our sample testcases
should get executed. It will ca. 3-5 min for the testcases to get completed, you can also exit the terminal to stop the
testrun. Simply enter exit into the terminal.

In the following we’d like to show you how you can easily write your own testcase.

1.2.1 Inspect app for elements

UI Automator Viewer

Please tap on the app on your device so that it is launched. Open a new terminal window and execute:

$ uiautomatorviewer

Hint: In case you need to install an APK file on your device, you can cd into the folder that contains it and use this
command:

1.2. Preparing testcases 5

https://github.com/testmunk/TMSampleAndroid
https://github.com/testmunk/TMSampleAndroid

Testmunk Documentation, Release 0.1

$ adb install NameofTheFile.apk

Installing APKs

On the newly opened window, please click on the device icon on the upper left corner to get an actual screenshot from
the device.

This inspection is important to identify the right elements that you later will need for your testcases. For example the
resource_id is needed when you use the teststep Then I touch view with id....

Important: If you use an Android version lower than API level 18 / Jelly Bean you will not be able to interact with
the resource-id of the element.

Early versions of Android

Calabash console

A more advanced way of inspecting elements on the view is using the console. Open a new terminal window, cd into
the folder that contains your APK file, and enter:

$ calabash-android console TestmunkTest_debug.apk

and then enter these commands:

> start_test_server_in_background

> query("*")

You should see a list of all visible elements.

6 Chapter 1. Android

Testmunk Documentation, Release 0.1

1.2.2 Writing testcases

Within the sample app that you just downloaded, please open the my_first.feature file within the feature
folder. These are some sample testcases that we scripted for a demo application. One testcase looks like this:

Feature: Testapp V.1.2

Scenario: 1) Going to next screen and back
When I enter "Something" into input field number 1
Then I press the "See details" button
Then I wait
Then I should see text containing "Something"
Then I go back
Then I should see text containing "test app"

In order to write a second testcase write a new testscenario. For example:

Scenario: 1) Going to next screen and back
When I enter "Something" into input field number 1
Then I press the "See details" button
Then I wait
Then I should see text containing "Something"
Then I go back
Then I should see text containing "test app"

Scenario: 2) Clear the input field
When I enter "Something" into input field number 1
Then I clear input field number 1
Then I press the "See details" button
Then I should not see "Something"

Once you have writen your testcases, it is necessary to save them. Running a testrun requires the feature folder
(that my_first.feature is in) to be compressed to a .zip file. If you are using the testmunk website to run
testcases, then the .apk file chosen should be your app, and the .zip file chosen should be the feature folder you
just created.

Hint: For writing testcases, we recommend using Sublime Text 2 with the Cucumber syntax highlighting plugin.

Text editor suggestion

In case you were wondering where these steps come from, have a look at the Teststep library. These are all steps that
you can be using right away. In case you’d like to extend and write your own steps, have a look into the .rb file in the
step_definitions folder and the Calabash Ruby API.

1.3 Calabash Ruby API

Calabash offers a Ruby API that we support for defining special teststeps.

A new teststep is defined in the following way:

Define a regular expression to catch the step
Then(/^"(.*?)" radio button should be selected$/) do |arg1|

Use calls to the Calabash API to get information
if(!query("RadioButton text:'#{arg1}'", :checked).first())
Act on that information
fail("The radio button with text #{arg1} should be selected")

1.3. Calabash Ruby API 7

http://www.sublimetext.com/
http://makandracards.com/ninjaconcept/9233-how-to-use-cucumber-together-with-sublime-text-2-editor

Testmunk Documentation, Release 0.1

end
end

A teststep is considered succesful if the execution of its codeblock runs with neither explicit fails nor uncaught errors.

A nice way to try the different commands on this API is to run the Calabash console and test them.

1.3.1 Useful methods

This are some useful functions that the Calabash API provides. You can see more about them on the Calabash GitHub
documentation.

query(uiquery, *args)

Query returns an array with the views on the screen that match it.

> query("FrameLayout index:0")

[
[0] {

"id" => "content",
"enabled" => true,

"contentDescription" => nil,
"class" => "android.widget.FrameLayout",
"rect" => {

"center_y" => 617.0,
"center_x" => 384.0,
"height" => 1134,

"y" => 50,
"width" => 768,

"x" => 0
},

"description" => "android.widget.FrameLayout{41f40dc0 V.E..... 0,50-768,1184 #1020002 android:id/content}"
}

]

Each result is a Ruby hash map object.

> query("FrameLayout index:0").first.keys

[
[0] "id",
[1] "enabled",
[2] "contentDescription",
[3] "class",
[4] "rect",
[5] "description"

]

> query("FrameLayout index:0")[0]["id"]

"content"

wait_for_elements_exist(elements_arr, options={})

Waits for all queries in the elements_arr array to return results before continuing the test.

8 Chapter 1. Android

https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md

Testmunk Documentation, Release 0.1

wait_for_elements_exist(["button marked:'OK'", "* marked:'Cancel'"], :timeout => 2)

touch(uiquery, options={})

Touches the first result of the query uiquery.

touch("FrameLayout index:0")
touch(query("FrameLayout"))

1.4 Running testruns

1.4.1 General

Testmunk Android enables you to run your testcases on:

1. the virtual emulator

2. on your plugged in Android device

3. on a variety of Android devices with different OS versions in the Testmunk device lab.

1.4.2 Running locally on the emulator

Go to applications and start “Eclipse”. In the menu bar click click on Window > Android Virtual Device Manager and
create an emulator you want to test on.

1.4.3 Running on your local device

Ensure that your device is being recognised by starting a terminal window and executing adb devices.

In order to run your tests on your device, please navigate via cd to your project folder and execute:

$ calabash-android run sample.apk --verbose

Your testrun should get executed on your device. It’s important that you use an apk file that is in debug mode.

1.4.4 Running on multiple Android devices

In order to run your testcases on Testmunk’s devices and see a report with your test results and screenshots, simply
create an account, upload your apk file and testcases.

1.5 Image Comparison in Calabash

The goal of this post is to show how we can do basic image recognition using Calabash Android library.

Image comparison is another way that allows you to assert your tests using Calabash. However, Calabash does not
support it by default. So, we have created some custom steps that you can include in your features folder, and you’ll
have image comparison working in a short time.

1.4. Running testruns 9

Testmunk Documentation, Release 0.1

Image comparison is a tricky topic. Some comparisons are as simple as pixel by pixel checking; very advanced
scenarios may compare a small image within a bigger image, or even images which are slightly shifted or compressed.

We’ve chosen the simple approach for now, which means a pixel by pixel check. This check uses a difference blend,
which is the same thing Github uses to diff images.

If we have pixelation, or an image that is slightly lighter or darker, the steps will still be able to make the comparison.
Another benefit is that it returns a more realistic readout of percentage changed, and allows us to set maximum
thresholds while testing.

If you want to compare an image (local or remote) with the current screen shot, it needs to match the resolution in
order to be effective. The best use case is testing the app on a device that you already have the screenshots for.

To get up and running, we will need to install an extra gem to handle the image manipulation. We can do that using:

$ gem install oily_png

This is in addition to the calabash-android gem, which should already be installed and configured.

Once you have the gem installed, create a new file under features/step_definitions folder (with any name). Paste in the
following code:

require 'oily_png'
require 'open-uri'
include ChunkyPNG::Color

def starts_with(item, prefix)
prefix = prefix.to_s
item[0, prefix.length] == prefix

end

compares two images on disk, returns the % difference
def compare_image(image1, image2)
images = [
ChunkyPNG::Image.from_file("screens/#{image1}"),
ChunkyPNG::Image.from_file("screens/#{image2}")

]
count=0
images.first.height.times do |y|
images.first.row(y).each_with_index do |pixel, x|

images.last[x,y] = rgb(
r(pixel) + r(images.last[x,y]) - 2 * [r(pixel), r(images.last[x,y])].min,
g(pixel) + g(images.last[x,y]) - 2 * [g(pixel), g(images.last[x,y])].min,
b(pixel) + b(images.last[x,y]) - 2 * [b(pixel), b(images.last[x,y])].min

)
if images.last[x,y] == 255

count = count + 1
end

end
end

100 - ((count.to_f / images.last.pixels.length.to_f) * 100);
end

find the file
def get_screenshot_name(folder, fileName)
foundName = fileName
Dir.foreach('screens/') do |item|
next if item == '.' or item == '..'

10 Chapter 1. Android

Testmunk Documentation, Release 0.1

if item.start_with? fileName.split('.')[0]
foundName = item

end
end

foundName
end

def setup_comparison(fileName, percentageVariance, forNotCase = false)
screenshotFileName = "compare_#{fileName}"
screenshot({ :prefix => "screens/", :name => screenshotFileName })

screenshotFileName = get_screenshot_name("screens/", screenshotFileName)
changed = compare_image(fileName, screenshotFileName)
FileUtils.rm("screens/#{screenshotFileName}")

assert = true
if forNotCase
assert = changed.to_i < percentageVariance

else
assert = changed.to_i > percentageVariance

end

if assert
fail(msg="Error. The screen shot was different from the source file. Difference: #{changed.to_i}%")

end

end

def setup_comparison_url(url, percentageVariance)
fileName = "tester.png"
open("screens/#{fileName}", 'wb') do |file|
file << open(url).read

end

setup_comparison(fileName, percentageVariance)
FileUtils.rm("screens/#{fileName}")

end

Then(/^I compare the screen with "(.*?)"$/) do |fileName|
setup_comparison(fileName, 0)

end

Then(/^I compare the screen with url "(.*?)"$/) do |url|
setup_comparison_url(url, 0)

end

Then(/^the screen should not match with "(.*?)"$/) do |fileName|
setup_comparison(fileName, 0, true)

end

Then(/^I expect atmost "(.*?)" difference when comparing with "(.*?)"$/) do |percentageVariance, fileName|
setup_comparison(fileName, percentageVariance.to_i)

end

Then(/^I expect atmost "(.*?)" difference when comparing with url "(.*?)"$/) do |percentageVariance, url|
setup_comparison_url(url, percentageVariance.to_i)

end

1.5. Image Comparison in Calabash 11

Testmunk Documentation, Release 0.1

If you are using local screen shots, add the source images to a “screens” folder at the same level as the features folder.
You will use the name of these images in your test steps.

The following steps are available after injecting the library:

Then I compare the screen with "login_screen.png"
Then I expect atmost "2%" difference when comparing with "login_screen_fail.png"

Then I compare the screen with url "http://testmunk.com/login_screen.png"
Then I expect atmost "2%" difference when comparing with url "http://testmunk.com/login_screen_fail.png"

Then the screen should not match with "screen2.png"

You have three different types of steps. One asserts an exact match, another asserts an approximate match (i.e. up to
2%), and the final one reads if the image does not match (asserting if a particular view-changing action has happened
or not). You can also use local files (which should be present in the /screens folder) or remotely uploaded files.

If there is a match failure, you will get the percentage difference in the output so you know how much of the screenshot
was to the source.

Sources:

• http://jeffkreeftmeijer.com/2011/comparing-images-and-creating-image-diffs/

Note:

• This will work with Calabash iOS as well. However, for games using OpenGL, the screenshot utility of Calabash
does not work.

12 Chapter 1. Android

http://jeffkreeftmeijer.com/2011/comparing-images-and-creating-image-diffs/

CHAPTER 2

iOS

Testmunk iOS enables you to write automated functional testcases that you can run on various iOS devices with
different OS versions. Our goal is that you are able to reduce your manual testing time tremendeously. Following the
installation you will be able to write testcases and let them run locally on your simulator and iOS device as well as on
a variety of iOS devices over the cloud in the testmunk device lab.

2.1 Installation

This section will guide you on how to prepare your environment and Xcode project for running Calabash tests on iOS
apps locally, and deploy them to testmunk for testing on multiple devices. For this tutorial, we recommend you use
our sample app project (just clone the repository or download the ZIP file).

Hint: Calabash is a framework that allows you to write automated mobile application tests for iOS and Android. It
provides APIs for mimicking input to the devices, and reading its output.

What is calabash?

2.1.1 Prerequisites

You must be using a machine with Mac OS X. This machine must also have Xcode with its command line tools, and
Ruby installed.

Hint: Download Xcode from here. Once you have Xcode installed, run this command in Terminal to install the
command-line tools:

$ xcode-select --install

How do I install Xcode and its command line tools?

Hint: Your machine must have at least version 1.8.7 for Ruby to ensure compatibility for the gems we will install in
the next section. By default, your Mac OS X 10.8 installation comes with Ruby 1.8.7 installed. You can check your
version by running ruby -v in Terminal. If you still need to upgrade, you can try the following steps:

1. Start Terminal. This can be found in the Applications folder -> Utilities folder.

2. Check if you have RVM. This can be done by typing rvm into the Terminal and pressing Enter.

13

https://github.com/testmunk/TMSample/
https://itunes.apple.com/us/app/xcode/id497799835

Testmunk Documentation, Release 0.1

3. If you do not have RVM, install RVM using the following command in Terminal: curl -L get.rvm.io |
bash -s

4. If you have RVM, install a newer version of Ruby using the following command: rvm install 1.9.3.

5. Once Ruby is installed, you can verify the update using ruby -v in Terminal.

How do I install Ruby?

2.1.2 Install Calabash gem

In order to get started with testmunk, you need to install the calabash gem. Simply open your terminal window and
execute:

$ gem install calabash-cucumber

In case you don’t have the right permissions, please execute:

$ sudo gem install calabash-cucumber

Danger: If you get an error that reads ...can’t find header files for ruby at /System/...,
that means you do not have the Xcode command-line tools correctly installed. Make sure you have Xcode installed
(or download it here) and then run this command in Terminal:

$ xcode-select --install

Header files can’t be found

Danger: If you are getting an error that says “clang: error: unknown argument: ‘-multiply_definedsuppress”’,
you must run these 2 commands instead:

$ sudo -i

$ ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future gem install calabash-cucumber

This error is due to deprecated arguments for the clang executable that gem calls when installing certain exten-
sions.
‘clang error’

2.1.3 Installing framework in Xcode project

Creating a new build target

1. Open the testmunk sample project in Xcode.

2. Select your project (from the File Navigator).

3. Right click your target in the list of targets. If you do not see the list of targets, you need to press this button:

14 Chapter 2. iOS

https://itunes.apple.com/us/app/xcode/id497799835

Testmunk Documentation, Release 0.1

4. From the dropdown menu, select “Duplicate”.

5. Rename the new target from “TestmunkDemo copy” to “TestmunkDemo-tm” by clicking on it and pressing
Enter.

6. Click in the toolbar where it says TestmunkDemo, and from the dropdown menu, select “Manage Schemes”.

2.1. Installation 15

Testmunk Documentation, Release 0.1

7. Rename the new scheme from “TestmunkDemo copy” to “TestmunkDemo-tm” by clicking on it and pressing
Enter. Then press OK.

8. Click on “Build Settings” and under Packaging set the “Product Name” to “TestmunkDemo-tm”

16 Chapter 2. iOS

Testmunk Documentation, Release 0.1

Hint: You want to build your app with the Calabash framework only if you are building your app for testing purposes.
That is why we are setting up a target specifically for running tests.

Why are we creating a new build target?

Link the Calabash framework

1. Open terminal and run calabash-ios download to download the latest calabash.framework file.

2. Run the command open . in Terminal.

3. Drag calabash.framework from its current location to the project’s Frameworks folder in Xcode.

2.1. Installation 17

Testmunk Documentation, Release 0.1

4. In the pop up window that appears, select Copy items into destination group’s folder (if needed) and make sure
“TestmunkDemo-tm” is the only selected target.

5. Select the “TestmunkDemo-tm” target, go to “Build Phases”, and in the “Link Binary With Libraries” section,
make sure that calabash.framework is present. Link the CFNetwork framework so that Calabash can
communicate with your app, by clicking ‘+’, and selecting CFNetwork.framework.

18 Chapter 2. iOS

Testmunk Documentation, Release 0.1

2.1. Installation 19

Testmunk Documentation, Release 0.1

Configure the build target

1. Select “Build Settings”

2. Change the filter from “Basic” to “All”

3. Make sure that “Other Linker Flags” contains: -force_load "$(SRCROOT)/calabash.framework/calabash"
-lstdc++

20 Chapter 2. iOS

Testmunk Documentation, Release 0.1

Test the configuration

Build and run your application on the simulator. You should be getting console output similar to this:

2014-05-30 16:08:07.882 TestmunkDemo-tm[3088:60b] Creating the server: <LPHTTPServer: 0xa0970d0>
2014-05-30 16:08:07.883 TestmunkDemo-tm[3088:60b] Calabash iOS server version: CALABASH VERSION: 0.9.169
2014-05-30 16:08:07.889 TestmunkDemo-tm[3088:60b] Started LPHTTP server on port 37265
2014-05-30 16:08:08.810 TestmunkDemo-tm[3088:1903] Bonjour Service Published: domain(local.) type(_http._tcp.) name(Calabash Server)

2.2 Preparing testcases

After your Xcode project has been set up, and you have ran your app on the simulator for the first time, you are ready
to make and run your own testcases.

2.2.1 Inspect app for elements

Accessibility Inspector

To be able to test, you need to have a way to reference different elements in your application. iOS devices have been
setting new, improved usability standards for impaired users, since Accessibility functions help them navigate through
the app. These Accessibility functions come in very handy for test automation. Test cases become more robust and
easier to maintain. You can enable the Accessibility Inspector by starting the Simulator, then going Settings ->
General and setting Accessibility Inspector to ON.

Once the Accessibility Inspector is enabled, you can switch between two modes, inspection and navigation. If the
Accessibility Inspector is minimized, then the app is in navigation mode. This means that you can tap on buttons to
perform actions.

However, once you click on the X button, the window enlarges – then you are in inspection mode. Now clicking on
the button will show its accessibility details.

To go back to the navigation mode, simply click the X again to minimize the Accessibility Inspector.

Calabash console

A more advanced way of inspecting elements on the view is using the Calabash console to see a list of the app’s visible
elements. Inside the folder you downloaded, go to TMSample/ and run this Terminal command:

$ calabash-ios console
> start_test_server_in_background

2.2. Preparing testcases 21

Testmunk Documentation, Release 0.1

This will start our test application in the iOS simulator. then enter:

> query("*")

You should see a list of all visible elements.

[
[0] {

"class" => "UIWindow",
"id" => nil,

"rect" => {
"center_x" => 160,

"y" => 0,
"width" => 320,

"x" => 0,
"center_y" => 284,
"height" => 568

},
"frame" => {

"y" => 0,
"width" => 320,

"x" => 0,
"height" => 568

},
"label" => nil,

"description" => "<UIWindow: 0xb26fc60; frame = (0 0; 320 568); gestureRecognizers = <NSArray: 0xb2723a0>; layer = <UIWindowLayer: 0xb271d50>>"
},
[1] {

"class" => "UIView",
"id" => nil,

"rect" => {
"center_x" => 160,

"y" => 0,
"width" => 320,

"x" => 0,
"center_y" => 284,
"height" => 568

},
"frame" => {

"y" => 0,
"width" => 320,

"x" => 0,
"height" => 568

},
"label" => nil,

"description" => "<UIView: 0x9eb3610; frame = (0 0; 320 568); autoresize = RM+BM; layer = <CALayer: 0x9eb37e0>>"
},
...

]

2.2.2 Writing testcases

We have installed a feature folder in your project folder. Inside the folder you downloaded, go to
TMSample/features/, and open the myfirst.feature file to write your testcases. You can ignore the folders
step_definitions and support at this point.

The my_first.feature file is structured in the following way:

22 Chapter 2. iOS

Testmunk Documentation, Release 0.1

Scenario name
Scenario: Login

Given I am on the Welcome Screen # Teststeps
Then I touch the "Email" input field
Then I use the keyboard and type "test@testname.com"
Then I touch the "Password" input field
Then I use the keyboard and type "testmunk"
Then I touch "SIGN IN"
Then I wait
Then I should see "Hello world"

Hint: For writing testcases, we recommend using Sublime Text 2 with the Cucumber syntax highlighting plugin.

Text editor suggestion

You can write as many testcases as you want in your myfirst.feature file. Don’t delete the feature title line,
since it is needed for a successful execution of your testcase.

Good to know: Ensure that each testcase starts from the beginning. We call it testcase independency. When you run
your app on our devices, we clear the app data before each testcase. So, if your app always starts with the login process,
you will need to have teststeps that cover the login process at the beginning of each testcase. Testcase independency
makes your testcases more robust, and it means every testcase can be tested independently.

Our teststep library can come in handy as a reference as you’re writing your testcases.

If you run your app over our device lab, we automatically take screenshots after each teststep – you don’t need to
worry about it at all.

2.3 Calabash Ruby API

Calabash offers a Ruby API that we support for defining special teststeps.

A new teststep is defined in the following way:

Define a regular expression to catch the step
Then(/^"(.*?)" radio button should be selected$/) do |arg1|

Use calls to the Calabash API to get information
if(!query("RadioButton text:'#{arg1}'", :checked).first())
Act on that information
fail("The radio button with text #{arg1} should be selected")

end
end

A teststep is considered succesful if the execution of its codeblock runs with neither explicit fails nor uncaught errors.

A nice way to try the different commands on this API is to run the Calabash console and test them.

2.3.1 Useful methods

This are some useful functions that the Calabash API provides. You can see more about them on the Calabash GitHub
documentation.

2.3. Calabash Ruby API 23

http://www.sublimetext.com/
http://makandracards.com/ninjaconcept/9233-how-to-use-cucumber-together-with-sublime-text-2-editor
https://github.com/calabash/calabash-ios/wiki/03.5-Calabash-iOS-Ruby-API
https://github.com/calabash/calabash-ios/wiki/03.5-Calabash-iOS-Ruby-API

Testmunk Documentation, Release 0.1

query(uiquery, *args)

Query returns an array with the views on the screen that match it.

> query("UIButton")

[
[0] {

"class" => "FUIButton",
"id" => nil,

"rect" => {
"center_x" => 160,

"y" => 194,
"width" => 300,

"x" => 10,
"center_y" => 216,
"height" => 44

},
"frame" => {

"y" => 194,
"width" => 300,

"x" => 10,
"height" => 44

},
"label" => "SIGN IN",

"description" => "<FUIButton: 0x9f909e0; baseClass = UIButton; frame = (10 194; 300 44); opaque = NO; layer = <CALayer: 0x9f90bf0>>"
}

]

Each result is a Ruby hash map object.

> query("UIButton").first.keys

[
[0] "class",
[1] "id",
[2] "rect",
[3] "frame",
[4] "label",
[5] "description"

]

> query("UIButton")[0]["label"]

"SIGN IN"

wait_for_elements_exist(elements_arr, options={})

Waits for all queries in the elements_arr array to return results before continuing the test.

wait_for_elements_exist(["button marked:'OK'", "* marked:'Cancel'"], :timeout => 2)

touch(uiquery, options={})

Touches the first result of the query uiquery.

24 Chapter 2. iOS

Testmunk Documentation, Release 0.1

touch("UIButton index:0")
touch(query("UIButton"))

2.4 Running testruns

2.4.1 General

Testmunk iOS enables you to run your testcases on:

1. the virtual simulator

2. on a variety of iOS devices with different OS versions in the testmunk device lab.

2.4.2 Running locally on the simulator

Inside the folder you downloaded, go to TMSample/, where the Xcode project resides, and run the following com-
mand:

$ cucumber -v

That will initiate the testruns on your simulator.

Hint: The -v argument launches Cucumber in verbose mode, which means that it will print more detailed information
to the console while running. We run it this way to know exactly what went wrong or right with the testing.

Why ‘-v’?

Danger: If you are getting an error that reads tool ’xcodebuild’ requires Xcode, but active
developer directory ..., then open Xcode, and go to Xcode > Preferences > Locations and in the Com-
mand Line Tools dropdown menu select Xcode.
‘xcodebuild’ error

Danger: If cucumber -v dosen’t work, try this fixes one at a time:
• Manually run your app on the simulator through Xcode, and then close and stop it.
• Make sure Xcode is not executing any projects at the time.
• Have only one instance of Xcode open, with the project you are trying to run, and hte scheme you want to

build selected.
• Make sure you have the same version of Calabash in your Terminal tool and the framework you are linking

in your project.
• Choose the Reset content and settings option in your iOS simulator.

Other errors

2.4.3 Running locally on a device

If you want to run a test locally in your device, you need to:

• Connect your device to your computer with a USB cable

• Connect your device and computer to the same LAN

2.4. Running testruns 25

Testmunk Documentation, Release 0.1

• Deploy the app to your device using Xcode, making sure to deploy the target that has the Calabash framework
linked to it (a.k.a. the ”...-tm” target).

• cd to the directory that contains your .app file and your features folder

• Use this command:

$ RESET_BETWEEN_SCENARIOS=1 DEVICE_ENDPOINT=http://192.168.1.43:37265 DEVICE_TARGET=97da4f58c9a95b7286c760372fd3d27be85a17cf BUNDLE_ID=com.sample.TestmunkDemo-copy APP_BUNDLE_PATH="TestmunkDemo.app" cucumber -v

Make sure to replace 192.168.1.43 with your device’s LAN IP address,
97da4f58c9a95b7286c760372fd3d27be85a17cf with your device’s UDID,
com.sample.TestmunkDemo-copy with your application’s Bundle Identifier, and
TestmunkDemo.app with your .app filename.

Hint: The RESET_BETWEEN_SCENARIOS=1 variable will make your tests start with a fresh install of your
application. We recommend this method to keep tests independant, as opposed to relying on each other, to make them
easier to debug. Testmunk servers will always reinstall your app after every testcase.

What is ‘RESET_BETWEEN_SCENARIOS=1’?

Danger: If you are getting an error that reads tool ’xcodebuild’ requires Xcode, but active
developer directory ..., then open Xcode, and go to Xcode > Preferences > Locations and in the Com-
mand Line Tools dropdown menu select Xcode.
‘xcodebuild’ error

Danger: If the command dosen’t work, try this fixes one at a time:
• Manually run your app on the simulator through Xcode, and then close and stop it.
• Make sure Xcode is not executing any projects at the time.
• Have only one instance of Xcode open, with the project you are trying to run, and the scheme you want to

build selected.
• Make sure you have the same version of Calabash in your Terminal tool and the framework you are linking

in your project.
Other errors

2.4.4 Running on multiple iOS devices

In order to run your testcases on testmunk’s devices and see a report with your test results and screenshots, simply
create an account, upload your IPA file and testcases.

Hint: To export the IPA file for your app, open your Xcode project, make sure to select the ”...-tm” scheme and “iOS
Device” as your target device. Then, in the title bar and go to Product > Archive. In the Archives window that pops
up, press the Distribute... button, select Save for Enterprise or Ad Hoc Deployment, choose the Provisioning Profile
you sign your app with, and export the file. Leave the Save for Enterprise Distribution checkbox unchecked.

How do I export my IPA file?

2.5 Updating Calabash

For your tests to run in both your machine and the Testmunk servers, you need to have the same version of Calabash
as we do (currently it is 0.9.169). You can achieve this by updating your Calabash installation.

26 Chapter 2. iOS

Testmunk Documentation, Release 0.1

In order for your tests to run, you need to have the same version of Calabash in both the Calabash Ruby gem and the
Objective-C framework you link with the ”...-tm” build of your iOS application.

2.5.1 Check the version of Calabash you have installed

Ruby gem version

Run this command on your Terminal:

$ calabash-ios version

Framework version

Run in the simulator the app for which you want to check the version, and then run this commands in Terminal:

$ calabash-ios console # this opens the Calabash console
> server_version['version'] # this queries the Calabash server running in your application for its version

2.5.2 Update process

First, download the updated Ruby gem by running:

$ gem install calabash-cucumber

Then, for each Xcode project containing a build target with the Calabash framework, do this:

1. In Terminal, cd into the folder that contains the calabash.framework file, and run this command:

$ calabash-ios download

2. Open the project in Xcode.

3. Press Shift + Option + Command + K to clean your Xcode project.

4. Delete the app from any iOS devices or simulators that have it.

5. Rebuild your app.

6. Go through the commands in the “Check the version of Calabash you have installed” section above to make sure
your framework was properly updated.

Hint: You can also check the verison of your app’s Calabash framework by looking at the console output in Xcode.

2.5. Updating Calabash 27

Testmunk Documentation, Release 0.1

Alternative method for checking framework version

28 Chapter 2. iOS

CHAPTER 3

Teststep library

3.1 Touching

teststep ios

Touches any element with the accessibility label “label”. This is usually the title of the element, or can be set manually
in Xcode.

Examples:

Then I touch "login"
Then I touch "settings_button"

Implementation:

Then /^I (?:press|touch) "([^\"]*)"$/ do |name|
touch("view marked:'#{name}'")
sleep(STEP_PAUSE)

end

Then I touch “accLabel”

teststep ios

Touches the button with the accessibility label “label”. This is usually the button [UIButton] title, or can be set
manually in Xcode.

Examples:

Then I touch the "login" button

Related Teststeps:

• Then I touch button number 1

• Then I touch “label”

Implementation:

Then /^I (?:press|touch) the "([^\"]*)" button$/ do |name|
touch("button marked:'#{name}'")
sleep(STEP_PAUSE)

end

29

Testmunk Documentation, Release 0.1

Then I touch the “login” button

teststep ios

Touches the first button [UIButton] it can find. If there is no button on that index, it will return an error.

Examples:

Then I touch button number 1

Implementation:

Then /^I (?:press|touch) button number (\d+)$/ do |index|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
touch("button index:#{index-1}")
sleep(STEP_PAUSE)

end

Then I touch button number 1

teststep ios

Touches (and activates) the input field [UITextField] with the label string passed.

Examples:

Then I touch the "Email Address" input field

Implementation:

Then /^I (?:press|touch) the "([^\"]*)" (?:input|text) field$/ do |name|
placeholder_query = "textField placeholder:'#{name}'"
marked_query = "textField marked:'#{name}'"
if !query(placeholder_query).empty?
touch(placeholder_query)

elsif !query(marked_query).empty?
touch(marked_query)

else
screenshot_and_raise "could not find text field with placeholder '#{name}' or marked as '#{name}'"

end
sleep(STEP_PAUSE)

end

Then I touch the “placeholder” input field

teststep ios

Touches the table cell [UITableViewCell] by number. It only works on visible cells.

Examples:

Then I touch list item number 1

Implementation:

30 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then /^I (?:press|touch) list item number (\d+)$/ do |index|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
touch("tableViewCell index:#{index-1}")
sleep(STEP_PAUSE)

end

Then I touch list item number 1

teststep ios

Toggles the switch (UISwitch) available in the current view. This macro only works if there is one switch in view.
[See related for multiple switches]

Examples:

Then I touch the switch

Related Teststeps:

• Then I toggle the “label” switch

Implementation:

Then /^I toggle the switch$/ do
touch("switch")
sleep(STEP_PAUSE)

end

Then I toggle the switch

teststep ios

Toggles the switch which is tagged by the label provided.

Examples:

Then I toggle the "Weekly Reminder" switch

Implementation:

Then /^I toggle the "([^\"]*)" switch$/ do |name|
touch("switch marked:'#{name}'")
sleep(STEP_PAUSE)

end

Then I toggle the “accLabel” switch

teststep ios

Touches the done button on the keyboard.

Examples:

Then I touch done

Implementation:

3.1. Touching 31

Testmunk Documentation, Release 0.1

Then /^I (?:touch|press) (?:done|search)$/ do
done
sleep(STEP_PAUSE)

end

Then I touch done

teststep ios

Touches the user’s pin – the blue dot [MKUserLocation].

Examples:

Then I touch the user location

Implementation:

Then /^I touch (?:the)? user location$/ do
touch("view:'MKUserLocationView'")
sleep(STEP_PAUSE)

end

Then I touch the user location

teststep ios

This macro will attempt to touch the screen on the points provided. Please be careful when using this as elements’
positions may change on different devices.

Examples:

Then I touch on screen 200 from the left and 100 from the top

Implementation:

Then /^I (?:press|touch) on screen (\d+) from the left and (\d+) from the top$/ do |x, y|
touch(nil, {:offset => {:x => x.to_i, :y => y.to_i}})
sleep(STEP_PAUSE)

end

Then I touch on screen 100 from the left and 250 from the top

teststep android

Taps the button containing the specified text.

Examples:

Given I press the "login" button

Implementation:

Given /^I press the "([^\"]*)" button$/ do |text|
tap_when_element_exists("android.widget.Button {text CONTAINS[c] '#{text}'}")

end

32 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Given I press the “login” button

teststep android

Taps the button with the specified index.

Examples:

Then I press button number 1

Implementation:

Then /^I press button number (\d+)$/ do |index|
tap_when_element_exists("android.widget.Button index:#{index.to_i-1}")

end

Then I press button number 1

teststep android

Taps the image button with the specified index.

Examples:

Then I press image button number 2

Implementation:

Then /^I press image button number (\d+)$/ do |index|
tap_when_element_exists("android.widget.ImageButton index:#{index.to_i-1}")

end

Then I press image button number 2

teststep android

Taps the view with the given ID.

Examples:

Then I press view with id "home_button"

Implementation:

Then /^I press view with id "([^\"]*)"$/ do |id|
tap_when_element_exists("* id:'#{id}'")

end

Then I press view with id “home_button”

teststep android

Taps the view marked by the specified identifier.

Examples:

3.1. Touching 33

Testmunk Documentation, Release 0.1

Then I press “signup"

Implementation:

Then /^I press "([^\"]*)"$/ do |identifier|
tap_when_element_exists("* marked:'#{identifier}'")

end

Then I press “signup”

teststep android

Taps the specified text.

Examples:

Then I touch the “welcome" text

Implementation:

Then /^I touch the "([^\"]*)" text$/ do |text|
tap_when_element_exists("* {text CONTAINS[c] '#{text}'}")

end

Then I touch the “welcome” text

teststep android

Taps the list item with the specified index in the first visible list.

Examples:

Then I press list item number 1

Implementation:

Then /^I press list item number (\d+)$/ do |index|
tap_when_element_exists("android.widget.ListView index:0 android.widget.TextView index:#{index.to_i-1}")

end

Then I press list item number 1

teststep android

Long presses the list item with the specified index in the first visible list.

Examples:

Then I long press list item number 1

Implementation:

Then /^I long press list item number (\d+)$/ do |index|
long_press_when_element_exists("android.widget.ListView index:0 android.widget.TextView index:#{index.to_i-1}")

end

34 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then I long press list item number 1

teststep android

Taps the screen at the specified location.

Examples:

Then I click on screen 20% from the left and 30% from the top

Implementation:

Then /^I click on screen (\d+)% from the left and (\d+)% from the top$/ do |x, y|
perform_action('click_on_screen', x, y)

end

Then I click on screen 20% from the left and 30% from the top

teststep android

Toggles the checkbox with the specified index.

Examples:

Then I toggle checkbox number 1

Implementation:

Then /^I toggle checkbox number (\d+)$/ do |index|
tap_when_element_exists("android.widget.CheckBox index:#{index.to_i-1}")

end

Then I toggle checkbox number 1

teststep android

Long presses the view containing the specified text.

Examples:

Then I long press “login"

Implementation:

Then /^I long press "([^\"]*)"$/ do |text|
long_press_when_element_exists("* {text CONTAINS[c] '#{text}'}")

end

Then I long press “login”

teststep android

Long presses the view containing the specified text and then selects an item from the menu that appears.

Examples:

3.1. Touching 35

Testmunk Documentation, Release 0.1

Then I long press “signup"
Then I select "item number 1" from the menu

Implementation:

Then /^I long press "([^\"]*)"$/ do |text|
long_press_when_element_exists("* {text CONTAINS[c] '#{text}'}")

end

Then /^I select "([^\"]*)" from the menu$/ do |identifier|
select_options_menu_item(identifier)

end

Then I long press “signup” and select item number 1

teststep android

Long presses the view containing the specified text and then selects an item from the menu that appears.

Examples:

Then I long press “login"
Then I select "welcome" from the menu

Implementation:

Then /^I long press "([^\"]*)"$/ do |text|
long_press_when_element_exists("* {text CONTAINS[c] '#{text}'}")

end

Then /^I select "([^\"]*)" from the menu$/ do |identifier|
select_options_menu_item(identifier)

end

Then I long press “login” and select “welcome”

3.2 Assertions

teststep ios android

This teststep will check the view for the provided parameter as an accessibility label or text in a UILabel. If calabash
is unable to find the label or text, then this teststep fails.

Examples:

Then I should see "Welcome"

Implementation iOS:

Then /^I should see "([^\"]*)"$/ do |expected_mark|
res = (element_exists("view marked:'#{expected_mark}'") or

element_exists("view text:'#{expected_mark}'"))
if not res

screenshot_and_raise "No element found with mark or text: #{expected_mark}"
end

end

36 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Implementation Android:

Then /^I should see "([^\"]*)"$/ do |text|
wait_for_text(text, timeout: 10)

end

Then I should see “text or label”

teststep ios android

This is the inverse of the “Then I should see text”, this will check all the views to make sure that this particular label
is not in the view. If it is, this teststep will fail. It is useful if you want to make sure you have left a certain screen.

Examples:

Then I should not see "Logout"

Implementation iOS:

Then /^I should not see "([^\"]*)"$/ do |expected_mark|
res = query("view marked:'#{expected_mark}'")
res.concat query("view text:'#{expected_mark}'")
unless res.empty?
screenshot_and_raise "Expected no element with text nor accessibilityLabel: #{expected_mark}, found #{res.join(", ")}"
end

end

Implementation Android:

Then /^I should not see "([^\"]*)"$/ do |text|
wait_for_text_to_disappear(text, timeout: 10)

end

Related Teststeps:

• Then I should see “text or label”

Then I should not see “text or label”

teststep ios

Checks all the views to make sure that the view with the provided accessibility label “view” is available. It will fail if
it does not find such a view.

Examples:

Then I see the "Logout"

Implementation:

Then /^I see the "([^\"]*)"$/ do |text|
macro %Q|I should see "#{text}"|

end

Related Teststeps:

• Then I should not see “text or label”

• Then I don’t see the “someview”

3.2. Assertions 37

Testmunk Documentation, Release 0.1

Then I see the “someview”

teststep ios

Checks all the views to make sure that the view with the provided accessibility label “view” is not available. It will
fail if it finds such a view.

Examples:

Then I don't see the "Logout"

Implementation:

Then /^I don't see the "([^\"]*)"$/ do |text|
macro %Q|I should not see "#{text}"|

end

Related Teststeps:

• Then I should not see “text or label”

Then I don’t see the “someview”

teststep ios

Checks the view for the existence of a specified button. If Calabash is unable to find the button, then the teststep fails.

Examples:

Then I should see a "login" button

Implementation:

Then /^I should see a "([^\"]*)" button$/ do |expected_mark|
check_element_exists("button marked:'#{expected_mark}'")

end

Then I should see a “login” button

teststep ios

Checks the view for the existence of a specified button. If Calabash is able to find the button, then the teststep fails.

Examples:

Then I should not see a "login" button

Implementation:

Then /^I should not see a "([^\"]*)" button$/ do |expected_mark|
check_element_does_not_exist("button marked:'#{expected_mark}'")

end

Related teststeps:

• Then I should see a “login” button

38 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then I should not see a “login” button

teststep ios android

Asserts that specified text can be found. If Calabash is not able to find the text, then the teststep fails.

Examples:

Then I see the text "Hello"

Implementation:

Then /^I see the text "([^\"]*)"$/ do |text|
macro %Q|I should see "#{text}"|

end

Then I see the text “some text”

teststep ios android

Asserts that specified text can not be found. If Calabash is able to find the text, then the teststep fails.

Examples:

Then I don't see the text "Hello"

Implementation:

Then /^I don't see the text "([^\"]*)"$/ do |text|
macro %Q|I should not see "#{text}"|

end

Then I don’t see the text “some text”

teststep ios

Looks for a label [UILabel] with text which contains the provided prefix

Examples:

Then I should see text starting with "Welcome"

Implementation:

Then /^I (?:should)? see text starting with "([^\"]*)"$/ do |text|
res = query("view {text BEGINSWITH '#{text}'}").empty?
if res

screenshot_and_raise "No text found starting with: #{text}"
end

end

Related Teststeps:

• Then I should see text ending with “suffix”

• Then I should see text containing “sub text”

3.2. Assertions 39

Testmunk Documentation, Release 0.1

Then I should see text starting with “prefix”

teststep ios android

Will look for a label [UILabel] which contains the text provided

Examples:

Then I should see text containing "available"

Implementation:

Then /^I (?:should)? see text containing "([^\"]*)"$/ do |text|
res = query("view {text LIKE '*#{text}*'}").empty?
if res

screenshot_and_raise "No text found containing: #{text}"
end

end

Related Teststeps:

• Then I should see text ending with “suffix”

• Then I should see text starting with “prefix”

Then I should see text containing “sub text”

teststep ios

Checks all labels [UILabel] for text that ends with the provided suffix

Examples:

Then I should see text ending with "suffix"

Implementation:

Then /^I (?:should)? see text ending with "([^\"]*)"$/ do |text|
res = query("view {text ENDSWITH '#{text}'}").empty?
if res

screenshot_and_raise "No text found ending with: #{text}"
end

end

Related Teststeps:

• Then I should see text containing “sub text”

• Then I should see text starting with “prefix”

Then I should see text ending with “suffix”

teststep ios

Checks to see if the view contains 2 input fields, the input fields can be replaced with buttons, or other elements.

Examples:

40 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then I see 2 buttons

Implementation:

Then /^I see (\d+) (?:input|text) field(?:s)?$/ do |count|
count = count.to_i
cnt = query(:textField).count
if cnt < count

screenshot_and_raise "Expected at least #{count} text/input fields, found #{cnt}"
end

end

Then I see 2 input fields

teststep ios

Checks to see if the view contains an input field with the specified placeholder or accessibilityLabel.

Examples:

Then I should see a "Username" input field

Implementation:

Then /^I should see a "([^\"]*)" (?:input|text) field$/ do |expected_mark|
res = element_exists("textField placeholder:'#{expected_mark}'") ||

element_exists("textField marked:'#{expected_mark}'")
unless res

screenshot_and_raise "Expected textfield with placeholder or accessibilityLabel: #{expected_mark}"
end

end

Related Teststeps:

• Then I should not see a “Username” input field

Then I should see a “Username” input field

teststep ios

Checks to see if the view does not contain an input field with the specified placeholder or accessibilityLabel.

Examples:

Then I should not see a "Username" input field

Implementation:

Then /^I should not see a "([^\"]*)" (?:input|text) field$/ do |expected_mark|
res = query("textField placeholder:'#{expected_mark}'")
res.concat query("textField marked:'#{expected_mark}'")
unless res.empty?

screenshot_and_raise "Expected no textfield with placeholder nor accessibilityLabel: #{expected_mark}, found #{res}"
end

end

Related Teststeps:

• Then I should see a “Username” input field

3.2. Assertions 41

Testmunk Documentation, Release 0.1

Then I should not see a “Username” input field

teststep ios

Checks the views to see if there is a user location (blue dot) [MKUserLocation] inside a map [UIMapView].

Examples:

Then I should see the user location

Implementation:

Then /^I should see (?:the)? user location$/ do
check_element_exists("view:'MKUserLocationView'")

end

Then I should see the user location

teststep ios

This step checks if a mapview is on the screen.

Examples:

Then I should see a map

Implementation

Then /^I should see a map$/ do
check_element_exists("view:'MKMapView'")

end

Then I should see a map

teststep android

Asserts that specified text can not be found. If Calabash is able to find the text, then the teststep fails.

Examples:

Then I don't see "Hello"

Implementation:

Then /^I don't see "([^\"]*)"$/ do |text|
wait_for_text_to_disappear(text, timeout: 10)

end

Then I don’t see “text”

3.3 Input

teststep ios

42 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Enters “text” into the input / text field [UITextField] which has the placeholder text set as “label”

Examples:

Then I enter "user@testmunk.com" into the "Email Address" input field

Implementation:

Then /^I enter "([^\"]*)" into the "([^\"]*)" field$/ do |text_to_type, field_name|
touch("textField marked:'#{field_name}'")
wait_for_keyboard()
keyboard_enter_text text_to_type
sleep(STEP_PAUSE)

end

Then I enter “text to write” into the “placeholder” input field

teststep ios android

Enters “text” into the relevant input / text field [UITextField]. If there are several input fields you will need to check
which input field number is correct.

Examples:

Then I enter "First name" into input field number 1

Implementation iOS:

Then /^I enter "([^\"]*)" into (?:input|text) field number (\d+)$/ do |text, index|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
touch("textField index:#{index-1}")
wait_for_keyboard()
keyboard_enter_text text
sleep(STEP_PAUSE)

end

Implementation Android:

Then /^I enter "([^\"]*)" into input field number (\d+)$/ do |text, index|
enter_text("android.widget.EditText index:#{index.to_i-1}", text)

end

Then I enter “text” into input field number 1

teststep ios android

Clears the text field [UITextField][UITextView].

Examples:

Then I clear "Email Address"

Implementation iOS:

When /^I clear "([^\"]*)"$/ do |name|
msg = "When I clear <name>' will be deprecated because it is ambiguous - what should be cleared?"
_deprecated('0.9.151', msg, :warn)

3.3. Input 43

Testmunk Documentation, Release 0.1

clear_text("textField marked:'#{name}'")
end

Implementation Android:

Then /^I clear input field with id "([^\"]*)"$/ do |id|
clear_text("android.widget.EditText id:'#{id}'")

end

Then I clear “placeholder”

teststep ios android

Clears the text from the specified input / text field [UITextField]. If there are several input fields you will need to check
which input field number is correct.

Examples:

Then I clear input field number 1

Implementation iOS:

Then /^I clear (?:input|text) field number (\d+)$/ do |index|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
clear_text("textField index:#{index-1}")

end

Implementation Android:

Then /^I clear input field with id "([^\"]*)"$/ do |id|
clear_text("android.widget.EditText id:'#{id}'")

end

Then I clear input field number 1

teststep android

Finds the timepicker with the specified index and changes the time.

Examples:

Given I set the time to "14:00" on TimePicker with index "5"

Implementation:

Given /^I set the time to "(\d\d:\d\d)" on TimePicker with index ([^\"]*)$/ do |time, index|
set_time("android.widget.TimePicker index:#{index.to_i-1}", time)

end

Given I set the time to “14:00” on TimePicker with index “5”

teststep android

Finds the timepicker with the specified index and changes the time.

Examples:

44 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Given I set the "timePickerLabel" time to "14:00"

Implementation:

Given /^I set the "([^\"]*)" time to "(\d\d:\d\d)"$/ do |content_description, time|
set_time("android.widget.TimePicker {contentDescription LIKE[c] '#{content_description}'}", time)

end

Given I set the “timePickerLabel” time to “14:00”

teststep android

Finds the datepicker by content description and changes the date.

Examples:

Given I set the "what_is_the_date" date to "31-12-1999"

Implementation:

Given /^I set the "([^\"]*)" date to "(\d\d-\d\d-\d\d\d\d)"$/ do |content_description, date|
set_date("android.widget.DatePicker {contentDescription LIKE[c] '#{content_description}'}", date)

end

Given I set the “datePickerLabel” date to “31-12-1999”

teststep android

Enters the specified text into the input field with the specified id.

Examples:

Then I enter text "Hello" into field with id "type_here"

Implementation:

Then /^I enter text "([^\"]*)" into field with id "([^\"]*)"$/ do |text, id|
enter_text("android.widget.EditText id:'#{id}'", text)

end

Then I enter text “text” into field with id “fieldId”

teststep android

Enters the specified text into the input field that has the specified content description.

Examples:

Then I enter "Hello" as "text"

Implementation:

Then /^I enter "([^\"]*)" as "([^\"]*)"$/ do |text, content_description|
enter_text("android.widget.EditText {contentDescription LIKE[c] '#{content_description}'}", text)

end

3.3. Input 45

Testmunk Documentation, Release 0.1

Then I enter “text” as “fieldId”

teststep android

Enters the specified text into the input field that has the specified content description.

Examples:

Then I enter "Hello" into "type_here"

Implementation:

Then /^I enter "([^\"]*)" into "([^\"]*)"$/ do |text, content_description|
enter_text("android.widget.EditText {contentDescription LIKE[c] '#{content_description}'}", text)

end

Then I enter “text” into “fieldId”

teststep android

Clears the text of the input field with the specified id.

Examples:

Then I clear input field with id "type_here"

Implementation:

Then /^I clear input field with id "([^\"]*)"$/ do |id|
clear_text("android.widget.EditText id:'#{id}'")

end

Then I clear input field with id “fieldId”

teststep android

Finds the spinner marked by the specified ‘spinner_identifier’ or has a childview marked by the specified ‘spin-
ner_identifier’. It then selects the menu item marked by the specified ‘item_identifier’.

Examples:

Then I select "Hello" from "spinner"

Implementation:

Then /^I select "([^\"]*)" from "([^\"]*)"$/ do |item_identifier, spinner_identifier|
spinner = query("android.widget.Spinner marked:'#{spinner_identifier}'")

if spinner.empty?
tap_when_element_exists("android.widget.Spinner * marked:'#{spinner_identifier}'")

else
touch(spinner)

end

tap_when_element_exists("android.widget.PopupWindow$PopupViewContainer * marked:'#{item_identifier}'")
end

46 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then I select “item text” from “spinnerLabel”

3.4 Waiting

teststep ios

Makes the testrun wait until the label [UILabel] with the text appears, or any other element eg. button [UIButton]
appears.

Examples:

Then I wait to see "Welcome"
Then I wait to see "Please log in:"

Implementation:

Then /^I wait to see "([^\"]*)"$/ do |expected_mark|
wait_for(WAIT_TIMEOUT) { view_with_mark_exists(expected_mark) }

end

Related Teststeps:

• Then I wait for “text or label” to appear

Then I wait to see “text or label”

teststep ios

Waits until the label [UILabel] with the text appears, or any other element eg. button [UIButton] appears.

Examples:

Then I wait for "Welcome" to appear

Implementation:

Then /^I wait for "([^\"]*)" to appear$/ do |name|
macro %Q|I wait to see "#{name}"|

end

Related Teststeps:

• Then I wait to see “text or label”

Then I wait for “text or label” to appear

teststep ios

This will wait until an element with the label or text provided has disappeared.

Examples:

Then I wait until I don't see "loading..."

Implementation:

3.4. Waiting 47

Testmunk Documentation, Release 0.1

Then /^I wait until I don't see "([^\"]*)"$/ do |expected_mark|
sleep 1## wait for previous screen to disappear
wait_for(WAIT_TIMEOUT) { not element_exists("view marked:'#{expected_mark}'")}

end

Related Teststeps:

• Then I wait to not see “text or label”

Then I wait until I don’t see “text or label”

teststep ios

Waits until an element with the label or text provided has disappeared.

Examples:

Then I wait to not see "loading..."

Implementation:

Then /^I wait to not see "([^\"]*)"$/ do |expected_mark|
macro %Q|I wait until I don't see "#{expected_mark}"|

end

Related Teststeps:

• Then I wait until I don’t see “text or label”

Then I wait to not see “text or label”

teststep ios

Waits for a button with the specified accessibility label to apprear.

Examples:

Then I wait for the "login" button to appear

Implementation:

Then /^I wait for the "([^\"]*)" button to appear$/ do |name|
wait_for(WAIT_TIMEOUT) { element_exists("button marked:'#{name}'") }

end

Then I wait for the “login” button to appear

teststep ios

Waits until the title in the navgation bar [UINavigationBar] changes to the provided text (ie. when the view changes),
or the timeout occurs.

Examples:

Then I wait to see a navigation bar titled "Welcome"
Then I wait to see a navigation bar titled "Login"

Implementation:

48 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then /^I wait to see a navigation bar titled "([^\"]*)"$/ do |expected_mark|
msg = "waited for '#{WAIT_TIMEOUT}' seconds but did not see the navbar with title '#{expected_mark}'"
wait_for(:timeout => WAIT_TIMEOUT,

:timeout_message => msg) do
all_items = query("navigationItemView marked:'#{expected_mark}'")
button_items = query("navigationItemButtonView")
non_button_items = all_items.delete_if { |item| button_items.include?(item) }
!non_button_items.empty?

end
end

Then I wait to see a navigation bar titled “title”

teststep ios

Waits until the specified input field appears.

Examples:

Then I wait for the "Username" input field

Implementation:

Then /^I wait for the "([^\"]*)" (?:input|text) field$/ do |placeholder_or_view_mark|
wait_for(WAIT_TIMEOUT) {
element_exists("textField placeholder:'#{placeholder_or_view_mark}'") ||

element_exists("textField marked:'#{placeholder_or_view_mark}'")
}

end

Then I wait for the “label” input field

teststep ios

Waits until the relevant number of textfields are loaded.

Examples:

Then I wait for 2 input fields

Implementation:

Then /^I wait for (\d+) (?:input|text) field(?:s)?$/ do |count|
count = count.to_i
wait_for(WAIT_TIMEOUT) { query(:textField).count >= count }

end

Then I wait for 2 input fields

teststep ios

Waits for X seconds

Examples:

3.4. Waiting 49

Testmunk Documentation, Release 0.1

Then I wait for 1 second
Then I wait for 2 seconds
Then I wait for 2.4 seconds

Implementation:

Then /^I wait for ([\d\.]+) second(?:s)?$/ do |num_seconds|
num_seconds = num_seconds.to_f
sleep num_seconds

end

Then I wait for X seconds

teststep ios android

Waits for 2 seconds.

Examples:

Then I wait

Implementation:

Then /^I wait$/ do
sleep 2

end

Then I wait

teststep android

Waits until there are no more progress bars.

Examples:

Then I wait for progress

Implementation:

Then /^I wait for progress$/ do
wait_for_element_does_not_exist("android.widget.ProgressBar")

end

Then I wait for progress

teststep android

Description coming soon!

Then I wait for dialog to close

teststep android

This teststep will make the testrun wait until the label [UILabel] with the text appears, or any other element eg. button
[UIButton] appears.

50 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Examples:

Then I wait to see "Welcome"
Then I wait to see "Please log in:"

Implementation:

Then /^I wait to see "([^\"]*)"$/ do |text|
wait_for_text(text)

end

Then I wait to see “text or label”

teststep android

Waits until the label [UILabel] with the text appears, or any other element eg. button [UIButton] appears.

Examples:

Then I wait for "Hello" to appear

Implementation:

Then /^I wait for "([^\"]*)" to appear$/ do |text|
wait_for_text(text)

end

Then I wait for “text or label” to appear

teststep android

Waits up to 5 seconds for the specified text, or any other element e.g. [UIButton], to appear.

Examples:

Then I wait up to 5 seconds for "Click me" to appear

Implementation:

Then /^I wait up to (\d+) seconds for "([^\"]*)" to appear$/ do |timeout, text|
wait_for_text(text, timeout: timeout.to_i)

end

Related Teststeps:

• Then I wait up to 5 seconds to see “text or label”

Then I wait up to 5 seconds for “text or label” to appear

teststep android

Waits up to 5 seconds for the specified text, or any other element e.g. [UIButton], to appear.

Examples:

Then I wait up to 5 seconds to see "Click me"

Implementation:

3.4. Waiting 51

Testmunk Documentation, Release 0.1

Then /^I wait up to (\d+) seconds to see "([^\"]*)"$/ do |timeout, text|
wait_for_text(text, timeout: timeout.to_i)

end

Related Teststeps:

• Then I wait up to 5 seconds for “text or label” to appear

Then I wait up to 5 seconds to see “text or label”

teststep android

Waits for a button with the specified accessibility label to apprear.

Examples:

Then I wait for the "login" button to appear

Implementation:

Then /^I wait for the "([^\"]*)" button to appear$/ do |identifier|
wait_for_element_exists("android.widget.Button marked:'#{identifier}'");

end

Then I wait for the “id” button to appear

teststep android

Waits for a screen with the specified id to apprear.

Examples:

Then I wait for the "home" screen to appear

Implementation:

Then /^I wait for the "([^\"]*)" screen to appear$/ do |activity_name|
wait_for_activity(activity_name)

end

Then I wait for the “id” screen to appear

teststep android

Waits for the view with the specified viewID to appear

Examples:

Then I wait for the view with id "checkout" to appear

Implementation:

Then /^I wait for the view with id "([^\"]*)" to appear$/ do |id|
wait_for_element_exists("* id:'#{id}'")

end

52 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Then I wait for the view with id “viewId” to appear

teststep android

Waits up to 5 seconds for the screen with the specified id to appear (the test will move on if id is found before 5 seconds
is up).

Examples:

Then I wait up to 5 seconds for the "checkout" screen to appear

Implementation:

Then /^I wait upto (\d+) seconds for the "([^\"]*)" screen to appear$/ do |timeout, activity_name|
wait_for_activity(activity_name, timeout: timeout.to_i)

end

Related Teststeps:

• Then I wait for the view with id “viewId” to appear

Then I wait up to 5 seconds for the “id” screen to appear

teststep android

Waits for 1 second.

Examples:

Then I wait for a second

Implementation:

Then /^I wait for 1 second$/ do
sleep 1

end

Related Teststeps:

• Then I wait for 5 seconds

Then I wait for a second

teststep android

Waits for X seconds.

Examples:

Then I wait for 1 second
Then I wait for 2 seconds
Then I wait for 2.4 seconds

Implementation:

Then /^I wait for (\d+) seconds$/ do |seconds|
sleep(seconds.to_i)

end

3.4. Waiting 53

Testmunk Documentation, Release 0.1

Related Teststeps:

• Then I wait for a second

Then I wait for X seconds

3.5 Buttons

teststep ios android

Simulates the user pressing the back button

Examples:

Then I go back

Implementation iOS:

Then /^I go back$/ do
touch("navigationItemButtonView first")
sleep(STEP_PAUSE)

end

Implementation Android:

Then /^I go back$/ do
press_back_button

end

Then I go back

teststep android

Simulates the user pressing the menu key

Examples:

Then I press the menu key

Implementation:

Then /^I press the menu key$/ do
press_menu_button

end

Then I press the menu key

teststep android

Simulates the user pressing the enter button

Examples:

Then I press the enter button

54 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Implementation:

Then /^I press the enter button$/ do
perform_action('send_key_enter')

end

Then I press the enter button

3.6 Gestures

teststep ios android

Performs a swipe gesture arbitrarily on the screen.

Examples:

Then I swipe left

Implementation iOS:

Then /^I swipe (left|right|up|down)$/ do |dir|
swipe(dir)
sleep(STEP_PAUSE)

end

Implementation Android:

Then /^I swipe left$/ do
perform_action('swipe', 'left')

end

Options:

You can use left, right up or down as parameters.

Then I swipe left/right/up/down

teststep ios

Swipes a scroll view by index/number (and offset), or accessibilityLabel.

Examples:

Then I swipe left on number 2

Implementation:

Then /^I swipe (left|right|up|down) on number (\d+)$/ do |dir, index|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
swipe(dir, {:query => "scrollView index:#{index-1}"})
sleep(STEP_PAUSE)

end

Then I swipe left on number 2

3.6. Gestures 55

Testmunk Documentation, Release 0.1

teststep ios

Swipes a scroll view by index/number (and offset), or accessibilityLabel at a specified set of coordinates. Note that
the coordinate system is for the element.

Examples:

Then I swipe left on number 2 at x 20 and y 10

Implementation:

Then /^I swipe (left|right|up|down) on number (\d+) at x (\d+) and y (\d+)$/ do |dir, index, x, y|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
swipe(dir, {:offset => {:x => x.to_i, :y => y.to_i}, :query => "scrollView index:#{index-1}"})
sleep(STEP_PAUSE)

end

Then I swipe left on number 2 at x 20 and y 10

teststep ios

Swipes in the direction given, on the object which contains the mentioned accessibility label.

Examples:

Then I swipe right on "Morocco"

Implementation:

Then /^I swipe (left|right|up|down) on "([^\"]*)"$/ do |dir, mark|
swipe(dir, {:query => "view marked:'#{mark}'"})
sleep(STEP_PAUSE)

end

Options:

Direction can be left, right, up and down

Related Teststeps:

• Then I swipe left/right

Then I swipe left/right/up/down on “accLabel”

teststep ios

Swipes a specified table cell by number

Examples:

Then I swipe on cell number 2

Implementation:

Then /^I swipe on cell number (\d+)$/ do |index|
index = index.to_i
screenshot_and_raise "Index should be positive (was: #{index})" if (index<=0)
cell_swipe({:query => "tableViewCell index:#{index-1}"})

56 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

sleep(STEP_PAUSE)
end

Then I swipe on cell number 2

teststep ios

Performs a pinch gesture on the screen.

Examples:

Then I pinch to zoom in
Then I pinch to zoom out

Implementation:

Then /^I pinch to zoom (in|out)$/ do |in_out|
pinch(in_out)
sleep(STEP_PAUSE)

end

Options:

Parameter (zoom in) can also be zoom out

Then I pinch to zoom in

teststep ios

Performs a pinch gesture on the specified element.

Examples:

Then I pinch to zoom in on "image"

Implementation:

Then /^I pinch to zoom (in|out) on "([^\"]*)"$/ do |in_out, name|
pinch(in_out,{:query => "view marked:'#{name}'"})
sleep(STEP_PAUSE)

end

Options:

Parameter (zoom in) can also be zoom out

Then I pinch to zoom in on “accLabel”

teststep ios

Attempts to scroll on the specified accessibility label.

Examples:

Then I scroll down
Then I scroll up

Implementation:

3.6. Gestures 57

Testmunk Documentation, Release 0.1

Then /^I scroll (left|right|up|down) on "([^\"]*)"$/ do |dir,name|
scroll("view marked:'#{name}'", dir)
sleep(STEP_PAUSE)

end

Options:

The last parameter (down) can also be up, left and right.

Then I scroll down on “accLabel”

teststep ios android

Attempts to arbitrarily scroll down on the view.

Examples:

Then I scroll down
Then I scroll up

Implementation iOS:

Then /^I scroll (left|right|up|down)$/ do |dir|
scroll("scrollView index:0", dir)
sleep(STEP_PAUSE)

end

Implementation Android:

Then /^I scroll down$/ do
scroll_down

end

Options:

The parameter (down) can also be up, left or right.

Then I scroll down

teststep android

Selects the option with the specified id from the menu.

Examples:

Then I select "green" from the menu

Implementation:

Then /^I select "([^\"]*)" from the menu$/ do |identifier|
select_options_menu_item(identifier)

end

Then I select “id” from the menu

teststep android

58 Chapter 3. Teststep library

Testmunk Documentation, Release 0.1

Drags from one point on the screen to another. Note the number of steps is a parameter that defines how many steps
are in the swipe between the specified coordinates.

Examples:

Then I drag from 50:100 to 50:250 moving with 20 steps

Implementation:

Then /^I drag from (\d+):(\d+) to (\d+):(\d+) moving with (\d+) steps$/ do |from_x, from_y, to_x, to_y, steps|
perform_action('drag', from_x, to_x, from_y, to_y, steps)

end

Then I drag from 50:100 to 50:250 moving with 20 steps

3.6. Gestures 59

Testmunk Documentation, Release 0.1

60 Chapter 3. Teststep library

CHAPTER 4

REST API

4.1 API Overview

4.1.1 Introduction

The testmunk API provides a RESTful interface (adhering to REST architectural constraints) for your data on test-
munk. It is the starting point for anyone who would like to integrate testmunk into another service, for example
Continuous Integration Servers such as Jenkins or Travis.

You can use the API to interact with:

• Apps

• List current apps for your organisation

• Create a new App

• Devices

• Get available devices

• Testruns

• Create a new testrun

• Start an existing testrun

• Get testrun status

• Get list of testruns

4.1.2 Schema

All API access is over HTTPS and accessed from the api.testmunk.com domain. All API responses are provided in
JSON format. API requests need to be provided with the Content-Type application/json. The only exception is when
you upload an app.

Here the Content-Type is multipart/form-data due to the fact that we receive large files.

Timestamps are returned in ISO 8601 format:

YYYY-MM-DDTHH:MM:SSZ

61

Testmunk Documentation, Release 0.1

4.1.3 Authentication

All API requests are authenticated using your Testmunk API key. You can get the key of your organisation by:

1. Going to your Testmunk Dashboard, and

2. Clicking on the user icon in the navigation bar on the top right > Account Settings > Apps.

We follow the typical HTTP Basic authentication scheme of providing a Base64 encoded hash of your authentication
credentials in the HTTP request header. The credentials are simply your API key.

Apply Base64 strict encoding to your API key and include an HTTP header in your request using the following format:

Authorization: Basic YOUR_BASE64_ENCODED_API_KEY.

If you are using curl you can rest easy – it takes care of the right encoding for you.

$ curl https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/apps/Testmunk/testruns

Hint: In this example, the key is AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW and is specified between the http
protocol and the domain.

API key

4.1.4 Versioning

All API requests are subject to versioning. It is strongly advised that you specify a version when requesting resources
through the API. This is done by supplying an HTTP Accept header with the appropriate version. In case you do not
specify a version or you specify an invalid version, we will use the latest API version (currently v1).

The versioning format is application/vnd.testmunk.v1+json where v1 is the version identifier.

$ curl -H 'Accept: application/vnd.testmunk.v1+json' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/apps/Testmunk/testruns'

4.1.5 Errors

If your request results in an error, the API will respond with an HTTP status code in the 4xx class or 5xx class,
depending on the cause. The body of the response will contain a JSON formatted error message using the following
schema:

{
"message": "A human readable explanation of the problem",
"code": "A unique string identifying the problem e.g. ValidationFailed",
"errors": [// Optional - only on ValidationFailed
{

"field" : "The property which was invalid",
"resource" : "The name of the invalid resource",
"code" : "A unique string identifying what is wrong with the field"

}
]

}

62 Chapter 4. REST API

https://testmunk.com/dashboard

Testmunk Documentation, Release 0.1

4.1.6 Error codes

You can decide how to handle errors in your code based on the HTTP status code. The status codes we respond in case
of an error and what they mean:

• 400 Bad Request: One of your inputs was incorrectly encoded and could not be processed.

• 401 Unauthorized: You need to provide authentication credentials, or your credentials were rejected.

• 422 Record is invalid: One of the values you supplied for an attribute did not pass validation. The
error object tells you more details about it. These are the possible validation error codes:

– MissingField: The required field on a resource has not been set.

– Invalid: The formatting of a field is invalid. The documentation for that resource should be able to give
you more specific information.

– NotExist: The resource does not exist.

– AlreadyExist: Another resource has the same value as this field. This can happen in resources that
must have some unique key (such as App names).

• 500 Internal Server Error: We messed up somewhere. We’ve been notified of the issue, and our
engineering team will look into it.

4.1.7 Email notifications

Results of your testruns will be sent as email notifications. You can specify the recipients within the notifications tab
under your Account Settings on the Testmunk Dashboard.

4.2 App API

4.2.1 List current apps for your organisation

GET /apps

Curl example

curl -X GET \
-H 'Accept: application/vnd.testmunk.v1+json' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/apps'

Output

[
{

"id": "547f90d9a0eed17d87987355",
"createdAt": "2014-12-03T22:38:17Z",
"organisationId": "531df352a4b0c9d6f7b7bdfa",
"name": "IOS-project"

},
{

"id": "54b5a1d4e4b0ed04cd79f654",

4.2. App API 63

https://testmunk.com/dashboard

Testmunk Documentation, Release 0.1

"createdAt": "2015-01-13T22:53:08Z",
"organisationId": "531df352a4b0c9d6f7b7bdfa",
"name": "Android-project"

}
]

4.2.2 Create a new App

Creates a new app based on the provided name.

POST /apps

Curl example

curl -X POST \
-H 'Accept: application/vnd.testmunk.v1+json' \
-H 'Content-Type: application/json' \
-d '{"appName":"My-new-project"}' \
"http://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/api/apps"

Input

• appName (Required): The new name for your app, has to be unique.

Output

The results come in pairs of [device name, OS version]:

{
"id":"54c427a8e4b0dee6ac5d89r4",
"createdAt":"2015-01-24T23:15:52Z",
"organisationId":"531pf381e7b0z9d6f7b7bdfb",
"name":"My-new-project"

}

4.3 Devices API

4.3.1 Get available devices

Will return all available devices for your organisation, in JSON format.

GET /devices

Curl example

curl -X GET \
-H 'Accept: application/vnd.testmunk.v1+json' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/devices?platform=ios'

64 Chapter 4. REST API

Testmunk Documentation, Release 0.1

Input

• platform (Optional): Either ios or android.

Output

The results come in pairs of [device name, OS version]:

[["ipod-5-A","7.1"],["iphone-4s-A","7.1"],["ipad-3-B","8.1"],["iphone-6-A","8.1"]]

4.4 Testruns API

4.4.1 Create a new testrun

Creates a new testrun based on an .ipa or .apk file. The testrun is automatically started if you set the parameter
autoStart=true. Request data needs to be sent as multipart/form-data.

POST /apps/:appName/testruns

Curl example

$ curl \
-H 'Accept: application/vnd.testmunk.v1+json' \
-F 'file=@iphone.ipa' \

-F 'testcases=@features.zip' \
-F 'email=hello@testmunk.com' \
-F 'autoStart=true' \
-F 'public=true' \
-F 'devices=ipod-5-A,iphone-4s-A,iphone-6-A' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/apps/Testmunk/testruns'

Input

• appName (Required): Name of your Testmunk app.

• file (Required): iOS or apk app file. Only the format .ipa and .apk allowed.

• testcases (Required): Zip file containing the features folder. Zip file should contain the zipped features
folder, as you would upload to our website.

• email (Required): An email address that is associated with your testmunk account and API key. This can
either be your primary email that you registered on testmunk or a team member you invited to the account.

• testrunName (Optional): Name of the new testrun. If not specified, the name will get auto-generated, e.g.
‘Testrun 10’

• autoStart (Optional): true starts the testrun after upload.

• public (Optional): All testruns URLs will automatically be public and can be shared with non testmunk users.
Email notifications will also include the public link.

• devices (Optional): A comma separated list of device names. You can get the device names from the
Devices API endpoint. You only need to set the device names, not the OS version.

4.4. Testruns API 65

Testmunk Documentation, Release 0.1

Response

Status: 201 created

{
"id":"52299330e4b07118a7c2cad8",
"name":"Testrun 10",
"app":"Testmunk",
"status":"NotStarted",
"counts":{

"numSuccess":0,
"numFailed":0,
"numSkipped":0

},
"createdAt":"2015-02-07T00:43:17Z",
"platform":"iOS",
"devices":[

"ipod-5-A,iphone-4s-A,iphone-6-A"
],
"testcases":1,
"stoppedByUser":false

}

4.4.2 Selecting Devices to Test On

To select devices to test on, go to testmunk.com and navigate to Account Settings > REST API. Or you can
also set the devices the moment you create a testrun using the Create a new testrun endpoint.

4.4.3 Start an existing testrun

Starts an existing testrun based on the testrunId. The testrun need to have the status NotStarted (setting au-
toStart=false when creating the testrun).

POST /testruns/:testrunId/run

Curl example

$ curl \
-X POST \
-H 'Accept: application/vnd.testmunk.v1+json' \
-H 'Content-Type: application/json' \
-d '{"email": "hello@testmunk.com"}' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/testruns/52299330e4b07118a7c2cad8/run'

Input

• testrunId (Required).

• email (Required): An email address that is associated with your testmunk account and API key. This can
either be your primary email that you registered on testmunk or a team member you invited to the account.

66 Chapter 4. REST API

Testmunk Documentation, Release 0.1

{
"email": "markus@testmunk.com"

}

Response

Status: 200 Ok

{
"id":"52299330e4b07118a7c2cad8",
"name":"Testrun 10",
"app":"Testmunk",
"status":"Waiting",
"counts":{

"numSuccess":0,
"numFailed":0,
"numSkipped":0

},
"createdAt":"2015-02-07T00:43:17Z",
"platform":"iOS",
"devices":[

"ipod-5-A,iphone-4s-A,iphone-6-A"
],
"testcases":1,
"stoppedByUser":false

}

4.4.4 Get testrun status

Returns information about a testrun with the specified ID, if it exists. Useful to get the status of your testrun (failed,
success)

GET /apps/:appName/testruns/:testrunId

Curl example

$ curl \
-X GET \
-H 'Accept: application/vnd.testmunk.v1+json' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/apps/Testmunk/testruns/54d54fe03004286c71cb99e0'

Input

• testrunId (Required).

• appName (Required): Name of your Testmunk app.

Response

Status: 200 Ok

4.4. Testruns API 67

Testmunk Documentation, Release 0.1

{
"id":"54d54fe03004286c71cb99e0",
"name":"Testrun 100",
"app":"Testmunk",
"status":"Success",
"counts":{

"numSuccess":1,
"numFailed":0,
"numSkipped":0

},
"createdAt":"2015-02-06T23:36:06Z",
"startUserTime":"2015-02-06T23:40:19Z",
"startExecutionTime":"2015-02-06T23:41:09Z",
"endTime":"2015-02-06T23:41:52Z",
"platform":"Android",
"devices":[

"lg-nexus-5-A"
],
"testcases":1,
"stoppedByUser":false

}

4.4.5 Get list of testruns

Returns a list of all the testruns for the given App, if it exists.

GET /apps/:appName/testruns

Curl example

$ curl \
-X GET \
-H 'Accept: application/vnd.testmunk.v1+json' \
'https://AQS0LCTvCv6mTwod5PwtU2i1JVY2J6rW@api.testmunk.com/apps/AppName/testruns'

Input

• appName (Required): Name of your Testmunk app.

Response

Status: 200 Ok

[
{

"id":"54d54fe03004286c71cb99e0",
"name":"Testrun 100",
"app":"Testmunk",
"status":"Success",
"counts":{

"numSuccess":1,

68 Chapter 4. REST API

Testmunk Documentation, Release 0.1

"numFailed":0,
"numSkipped":0

},
"createdAt":"2015-02-06T23:36:06Z",
"startUserTime":"2015-02-06T23:40:19Z",
"startExecutionTime":"2015-02-06T23:41:09Z",
"endTime":"2015-02-06T23:41:52Z",
"platform":"Android",
"devices":[

"lg-nexus-5-A"
],
"testcases":1,
"stoppedByUser":false

},
{

"id":"34d54fe04904286c71cb87a1",
"name":"Testrun 99",
"app":"Testmunk",
"status":"Success",
"counts":{

"numSuccess":2,
"numFailed":0,
"numSkipped":0

},
"createdAt":"2015-01-06T23:36:06Z",
"startUserTime":"2015-01-06T23:40:19Z",
"startExecutionTime":"2015-01-06T23:41:09Z",
"endTime":"2015-01-06T23:41:52Z",
"platform":"Android",
"devices":[

"lg-nexus-5-A"
],
"testcases":2,
"stoppedByUser":false

}
]

4.5 Continuous Integration

Testmunk can easily be integrated into your development process. An example of how to integrate testmunk with
Jenkins is provided below.

4.5.1 Jenkins

Jenkins is a widely used, extensible open source continuous integration server.

Configuration

1. Create new Item

First, we will select Freestyle project as the project template for the Android app that we will checkout
from a GitHub repository.

4.5. Continuous Integration 69

Testmunk Documentation, Release 0.1

2. Configure a repository to get the latest source code of your app

Jenkins can integrate with many different types of source control management systems, such as CVS,
SVN, and Git. For our purpose we will use Git as an example. The TMSample app that we will test is
available in GitHub repository. In the image below, you can see us linking the app. The up to date code
will be taken from the master branch. You can then change it depending on your needs and testing cycle.

70 Chapter 4. REST API

https://github.com/testmunk/TMSampleAndroid

Testmunk Documentation, Release 0.1

Hint:

1. Go to Manage Plugins

2. Switch to Available plugins and find GIT plugin and GIT client plugin

3. Select and install it. Afterwards restart Jenkins (go to: [jenkins_url]/restart)

How to install your Git plugin

4.5. Continuous Integration 71

Testmunk Documentation, Release 0.1

3. Setup build steps

Gradle is the build tool that is suggested by Google. It is used in Android Studio IDE. Here, we use clean
and build tasks to create an .apk that will be later tested on Testmunk.

Hint: You can use xcodebuild to build your iOS app the same way we use gradlew here

4. The last build step calls Testruns API and creates a new testrun with the .apk and features.zip that are in the
folder. Test results will be sent to all team members including lukas@testmunk.com

72 Chapter 4. REST API

mailto:lukas@testmunk.com

Testmunk Documentation, Release 0.1

Hint: It’s common to keep tests in a repository. At Testmunk, we work with GitHub Pull Requests to ensure our test
code retains the best possible quality. All software development best practises apply here as well.

Here is a script (bash) you can use as a build task to get the latest features from your repository, then zip them to
features.zip. Add this build task before starting a new testrun.

fetch_tests()
{

printf "\n## Fetching tests from $GITHUB_URL ##\n"

curl -sL --user "$GITHUB_USERNAME:$GITHUB_PASSWORD" "$GITHUB_URL" > "$TESTS_PATH"
}

prepare_tests()
{

printf "\n## Preparing features.zip ##\n"

4.5. Continuous Integration 73

Testmunk Documentation, Release 0.1

unzip "$TESTS_PATH"
mv "$GITHUB_REPO_NAME/features" "features"
zip -r "$FEATURES_PATH" "features/"

}

fetch_tests
prepare_tests

where the example environment is as follows:

GITHUB_USERNAME="lukas"
GITHUB_PASSWORD="xxx"
GITHUB_URL="https://github.com/testmunk/tm_tests/archive/master.zip"
GITHUB_REPO_NAME="testcases_tm"
TESTS_PATH="tests.zip"
FEATURES_PATH="features.zip"

Getting testcases from GitHub repository

74 Chapter 4. REST API

CHAPTER 5

Slack Integration

Here at testmunk we are big fans of Slack. We use it daily; it makes collaboration easier and work more productive.
We also, of course, spend a lot of time thinking about how we can make the lives of developers and QA engineers
easier, especially when it comes to their mobile app testing.

We are therefore excited to share that, starting today, in addition to our REST API and email notifications, our clients
can report Testmunk test results to a Slack channel as they are executed.

Test results from your test runs can now be directly posted to your specific Slack channel. This means your mobile
development or QA team can stay instantly up to date on the latest test results:

5.1 Setup Guide

Testmunk - Slack integration allows you to post test results from your test runs directly to a specific slack channel.

Slack integration can be set up by accessing Account Settings (top right dropdown) -> Notification Tab.

75

Testmunk Documentation, Release 0.1

The Webhook URL needs to be taken from your Slack account. You need to follow the steps below:

1. Go to the Slack integration settings page: https://<TEAM_ID>.slack.com/apps/manage/custom-integrations

2. Click on Incoming Webhooks

76 Chapter 5. Slack Integration

https:/

Testmunk Documentation, Release 0.1

3. Click on Add Configuration

4. Choose the channel where the notification should be posted, and click Add Incoming WebHooks integration.

5.1. Setup Guide 77

Testmunk Documentation, Release 0.1

5. You can now see the Webbook URL, copy this; then scroll down and click on save settings:

6. Go back to the Testmunk settings page and paste the Webhook URL; then click Enable.

7. Start a test run and get the notification in Slack! It’ll be like the example notification at the top of this post.

8. If you want to disable the notification, simply access the notification tab in settings again and click Disable. You
will no longer be notified of the test runs in slack.

78 Chapter 5. Slack Integration

	Android
	Installation
	Install Calabash gem
	Download and Install Android SDK
	Configure Bash profile
	Download the Testmunk sample application

	Preparing testcases
	Inspect app for elements
	Writing testcases

	Calabash Ruby API
	Useful methods

	Running testruns
	General
	Running locally on the emulator
	Running on your local device
	Running on multiple Android devices

	Image Comparison in Calabash

	iOS
	Installation
	Prerequisites
	Install Calabash gem
	Installing framework in Xcode project

	Preparing testcases
	Inspect app for elements
	Writing testcases

	Calabash Ruby API
	Useful methods

	Running testruns
	General
	Running locally on the simulator
	Running locally on a device
	Running on multiple iOS devices

	Updating Calabash
	Check the version of Calabash you have installed
	Update process

	Teststep library
	Touching
	Assertions
	Input
	Waiting
	Buttons
	Gestures

	REST API
	API Overview
	Introduction
	Schema
	Authentication
	Versioning
	Errors
	Error codes
	Email notifications

	App API
	List current apps for your organisation
	Create a new App

	Devices API
	Get available devices

	Testruns API
	Create a new testrun
	Selecting Devices to Test On
	Start an existing testrun
	Get testrun status
	Get list of testruns

	Continuous Integration
	Jenkins

	Slack Integration
	Setup Guide

