
Git Extensions Documentation
Release 2.46

Contributors

October 08, 2013

CONTENTS

1 Git Extensions 1
1.1 Features . 1
1.2 Video tutorials . 1
1.3 Links . 1

2 Getting Started 3
2.1 Installation . 3
2.2 Installation (Linux) . 8
2.3 Installation (Mac) . 8
2.4 Settings . 9
2.5 Start Page . 22
2.6 Clone repository . 23
2.7 Clone SVN repository . 24
2.8 Clone Github repository . 24
2.9 Create new repository . 25

3 Browse Repository 26
3.1 Commit Log Window . 26
3.2 Searching and Filtering . 34
3.3 Singe file history . 36
3.4 Blame . 37

4 Commit 39
4.1 Commit changes . 39
4.2 Cherry pick commit . 44
4.3 Revert commit . 45
4.4 Stash changes . 45

5 Tag 47
5.1 Create tag . 47
5.2 Delete tag . 48

6 Branches 49
6.1 Create branch . 49
6.2 Checkout branch . 50
6.3 Merge branches . 51
6.4 Rebase branch . 52
6.5 Delete branch . 54

7 Patches 55

i

7.1 Create patch . 55
7.2 Apply patches . 56

8 Remote feature 58
8.1 Manage remote repositories . 58
8.2 Create SSH key . 59
8.3 Pull changes . 64
8.4 Push changes . 66

9 Merge Conflicts 68
9.1 Handle merge conflicts . 68

10 Notes 70

11 Submodules 72
11.1 Manage submodules . 72
11.2 Add submodule . 73
11.3 Remove submodule . 73

12 Maintenance 74
12.1 Compress Git database . 74
12.2 Recover lost objects . 74
12.3 Fix user names . 76
12.4 Ignore files . 77

13 Translations 79
13.1 Change language . 79
13.2 Translate Git Extensions . 79

14 Integration 81
14.1 Visual Studio . 81
14.2 Windows Explorer . 83

15 Command line 85
15.1 Git Extensions command line . 85

16 Appendix 88
16.1 Git Cheat Sheet . 88
16.2 Menu map . 89

ii

CHAPTER

ONE

GIT EXTENSIONS

Git Extensions is a toolkit aimed at making working with Git under Windows more intuitive (note that Git Extensions
is also available on Linux and Macintosh OS X using Mono). The shell extension will integrate in Windows Explorer
and presents a context menu on files and directories. There is also a Visual Studio plug-in to use Git from the Visual
Studio IDE.

1.1 Features

• Windows Explorer integration for Git

• Visual Studio (2005/2008/2010/2012) plug-in for Git

• Feature rich user interface for Git

• Single installer installs Git, Git Extensions and the merge tool KDiff3

• 32bit and 64bit support

• Runs under Linux or Mac OS X using Mono

1.2 Video tutorials

There are video tutorials for some basic functions on YouTube.

1. Clone

2. Commit changes

3. Push changes

4. Pull changes

5. Handle merge conflicts

6. Install Git Extensions on Ubuntu 11.04

1.3 Links

See the following links for the Git Extensions download page, source code and documentation.

• Download page: https://sourceforge.net/projects/gitextensions/

1

http://www.mono-project.com
http://www.youtube.com/watch?v=TlZXSkJGKF8
http://www.youtube.com/watch?v=B8uvje6X7lo
http://www.youtube.com/watch?v=JByfXdbVAiE
http://www.youtube.com/watch?v=9g8gXPsi5Ko
http://www.youtube.com/watch?v=Kmc39RvuGM8
http://www.youtube.com/watch?v=zk2MMUQuW4s
https://sourceforge.net/projects/gitextensions/

Git Extensions Documentation, Release 2.46

• Source Code: https://github.com/gitextensions/gitextensions

• Source Code Issue tracker: https://github.com/gitextensions/gitextensions/issues

• Documentation: https://github.com/gitextensions/GitExtensionsDoc

• Documentation Issue tracker: https://github.com/gitextensions/GitExtensionsDoc/issues

• Wiki: https://github.com/gitextensions/gitextensions/wiki

Please feel free to raise any issues with Git Extensions or its documentation at the appropriate Issue tracker link as
shown above.

1.3. Links 2

https://github.com/gitextensions/gitextensions
https://github.com/gitextensions/gitextensions/issues
https://github.com/gitextensions/GitExtensionsDoc
https://github.com/gitextensions/GitExtensionsDoc/issues
https://github.com/gitextensions/gitextensions/wiki

CHAPTER

TWO

GETTING STARTED

This section is primarily written for Windows users. There are extra sections about installing Git Extensions on Linux
and Mac OS X.

2.1 Installation

There is a single click installer that installs MsysGit, Kdiff3 and Git Extensions. The installer will detect if 32bit
and/or 64bit versions should be installed. The installer can be found here.

3

http://code.google.com/p/gitextensions/

Git Extensions Documentation, Release 2.46

Figure 2.1: Git Extensions depends heavily on MsysGit. When MsysGit is not installed, ensure the “Install MsysGit”
checkbox is checked. Kdiff3 is optional, but is advised as a merge tool.

2.1. Installation 4

Git Extensions Documentation, Release 2.46

2.1. Installation 5

Git Extensions Documentation, Release 2.46

Figure 2.2: Choose the options to install.

2.1. Installation 6

Git Extensions Documentation, Release 2.46

Figure 2.3: Choose the SSH client to use. PuTTY is the default because it has better Windows integration.

2.1. Installation 7

Git Extensions Documentation, Release 2.46

2.2 Installation (Linux)

You can watch this video as a starting point: Install Git Extensions on Ubuntu 11.04

For further help go to https://groups.google.com/forum/?fromgroups=#!forum/gitextensions

2.3 Installation (Mac)

First, make sure you have the latest mono version on your Mac. This section will cover installation of mono 2.10.11
on a Mac.

1. Download mono latest version. You can always check for this here: http://www.go-mono.com/mono-
downloads/download.html

2. After you have completed the download, you will see a .dmg file. Double click it to open the package.

3. Inside the .dmg file you will have MonoFramework-{version}.pkg. Double click to start the installation process.

4. Follow the wizard until it’s completion.

5. If everything went okay, you should open your terminal and check mono version:

2.2. Installation (Linux) 8

http://www.youtube.com/watch?v=zk2MMUQuW4s
https://groups.google.com/forum/?fromgroups=#!forum/gitextensions
http://www.go-mono.com/mono-downloads/download.html
http://www.go-mono.com/mono-downloads/download.html

Git Extensions Documentation, Release 2.46

$ mono --version
Mono JIT compiler version 2.10.11 (mono-2-10/2baeee2 Wed Jan 16 16:40:16 EST 2013)
Copyright (C) 2002-2012 Novell, Inc, Xamarin, Inc and Contributors. www.mono-project.com

TLS: normal
SIGSEGV: normal
Notification: kqueue
Architecture: x86
Disabled: none
Misc: softdebug
LLVM: yes(2.9svn-mono)
GC: Included Boehm (with typed GC)

6. Now download GitExtensions latest version from https://code.google.com/p/gitextensions/downloads/list. Re-
member to select the appropriate package otherwise you could have problems.

7. Browse into the folder where you extracted the package and just run mono command, like the example below:

$ mono GitExtensions.exe

This is the minimal setup you need in order to run Git Extensions.

2.4 Settings

All settings will be verified when Git Extensions is started for the first time. If Git Extensions requires any settings to
be changed, the Settings dialog will be shown. All incorrect settings will be marked in red. You can ask Git Extensions
to try to fix the setting for you by clicking on it. When installing Git Extensions for the first time (and you do not have
Git already installed on your system), you will normally be required to configure your username and email address.

The settings dialog can be invoked at any time by selecting Settings from the Settings menu option.

2.4. Settings 9

https://code.google.com/p/gitextensions/downloads/list

Git Extensions Documentation, Release 2.46

The following buttons are always available on any page of the Settings dialog. Sometimes the Cancel and Discard
buttons have no effect for the page - this will be noted on the page in the area next to the buttons.

Button Description
OK Save any entered changes made in any settings page and close the Settings dialog.
Cancel Any entered changes in any settings page are not saved. The Settings dialog is closed.
Discard Any entered changes in any settings page are discarded i.e. they are reset back to their original values.
Apply Any entered changes in any settings page are saved.

All settings that are specific to Git Extensions will be stored in the Windows registry. The settings that are used by
Git are stored in the configuration files of Git. The global settings are stored in a file called .gitconfig in the user
directory. The local settings are stored in the .git\config file of the repository.

2.4.1 Checklist

This page is a visual overview of the minimal settings that Git Extensions requires to work properly. Any items
highlighted in red should be configured by clicking on the highlighted item.

This page contains the following settings and buttons.

Setting Description
Check settings at startup
(disables automatically if all
settings are correct)

Forces Git Extensions to re-check the minimal set of required settings the
next time Git Extensions is started. If all settings are ‘green’ this will be
automatically unchecked.

Save and rescan Button Saves any setting changes made and re-checks the settings to see if the
minimal requirements are now met.

2.4. Settings 10

Git Extensions Documentation, Release 2.46

2.4.2 Git

This page contains the settings needed to access git repositories. The repositories will be accessed using external tools.
For Windows usually MsysGit or cygwin are used. Git Extensions will try to configure these settings automatically.

Group Setting Description

Git Command used to run git (git.cmd or git.exe) Needed for Git Extensions to run Git
commands. Set the full command used to run
git (MsysGit or cygwin). Use the Browse
button to find the executable on your file
system.

Path to Linux
tools (sh).
Leave empty
when it is in the
path.

A few linux tools are used by Git Extensions.
When MsysGit is installed, these tools are
located in the bin directory of MsysGit. Use
the Browse button to find the directory on
your file system.

Environment Change HOME Button This button opens a dialog where the HOME
directory can be changed.

The global configuration file used by git will be put in the HOME directory. On some systems the home directory is
not set or is pointed to a network drive. Git Extensions will try to detect the optimal setting for your environment.
When there is already a global git configuration file, this location will be used. If you need to relocate the home
directory for git, click the Change HOME button to change this setting. Otherwise leave this setting as the default.

2.4.3 Git Extensions

This page contains general settings for Git Extensions.

2.4. Settings 11

Git Extensions Documentation, Release 2.46

Group Setting Description

Performance

Show repository status in browse dialog
(number of changes in toolbar, restart
required)

When enabled, the number of pending
commits are shown on the toolbar as a
figure in parentheses next to the Commit
button. Git Extensions must be stopped
and restarted to activate changes to this
option.

Show current working
dir changes in revision
graph

When enabled, two extra revisions are
added to the revision graph. The first
shows the current working directory
status. The second shows the staged
files. This option can cause slowdowns
when browsing large repositories.

Use FileSystemWatcher
to check if index is
changed

Using the FileSystemWatcher to check
index state improves the performance in
some cases. Turn this off if you
experience refresh problems in commit
log.

Show stash count on
status bar in browse
window

When you use the stash a lot, it can be
useful to show the number of stashed
items on the toolbar. This option causes
serious slowdowns in large repositories
and is turned off by default.

Check for uncommitted
changes in checkout
branch dialog

Git Extensions will not allow you to
checkout a branch if you have
uncommitted changes on the current
branch. If you select this option, Git
Extensions will display a dialog where
you can decide what to do with
uncommitted changes before swapping
branches.

Limit number of
commits that will be
loaded in list at start-up

This number specifies the maximum
number of commits that Git Extensions
will load when it is started. These
commits are shown in the Commit Log
window. To see more commits than are
loaded, then this setting will need to be
adjusted and Git Extensions restarted.

Behaviour

Close Process dialog when process is
succeeded

When a process is finished, close the
process dialog automatically. Leave this
option off if you want to see the result of
processes. When a process has failed, the
dialog will automatically remain open.

Show console window
when executing git
process

Git Extensions uses command line tools
to access the git repository. In some
environments it might be useful to see
the command line dialog when a process
is executed. An option on the command
line dialog window displayed allows this
setting to to be turned off.

Use patience diff
algorithm

Use the Git ‘patience diff’ algorithm
instead of the default. This algorithm is
useful in situations where two files have
diverged significantly and the default
algorithm may become ‘misaligned’,
resulting in a totally unusable conflict
file.

Show errors when
staging files

If an error occurs when files are
staged(in the Commit dialog), then the
process dialog showing the results of the
git command is shown if this setting is
checked.

Include untracked files in
stash

If checked, when a stash is performed as
a result of any action except a manual
stash request, e.g. checking out a new
branch and requesting a stash then any
files not tracked by git will also be saved
to the stash.

Follow renames in file
history (experimental)

Try to follow file renames in the file
history.

Open last working dir on
startup

When starting Git Extensions, open the
last used repository (bypassing the Start
Page).

Play Special Startup
Sound

Play a sound when starting Git
Extensions. It will put you in a good
moooooood!

Compose commit
messages in Commit
dialog (otherwise the
message will be
requested during
commit)

If this is unchecked, then commit
messages cannot be entered in the
commit dialog. When the Commit button
is clicked, a new editor window is
opened where the commit message can
be entered.

Revision grid quick
search timeout [ms]

The timeout (milliseconds) used for the
quick search feature in the revision
graph. The quick search will be enabled
when you start typing and the revision
graph has the focus.

Smtp server for sending
patches by email

Smtp server to use for sending patches.

2.4. Settings 12

Git Extensions Documentation, Release 2.46

2.4.4 Appearance

This page contains settings that affect the appearance of the application.

2.4. Settings 13

Git Extensions Documentation, Release 2.46

Group Setting Description

General

Show relative date instead of full date Show relative date, e.g. 2 weeks ago,
instead of full date. Displayed on
the commit tab on the main Commit
Log window.

Show current branch in Visual Studio Determines whether or not the cur-
rently checked out branch is dis-
played on the Git Extensions toolbar
within Visual Studio.

Auto scale user interface when high
dpi is used

Automatically resize controls and
their contents according to the current
system resolution of the display, mea-
sured in dots per inch (DPI).

Truncate long filenames This setting affects the display of file-
names in a component of a window
e.g. in the Diff tab of the Commit
Log window. The three options that
can be selected are:

None: no truncation occurs; a
horizontal scroll bar is used to see
the whole filename.
Compact: no horizontal scroll bar.
Filenames are truncated at both start
and end to fit into the width of the
display component.
Trimstart: no horizontal scroll bar.
Filenames are truncated at the start
only.

Author images

Get author image from gravatar.com If checked, gravatar will be accessed
to retrieve an image for the author of
commits. This image is displayed on
the commit tab on the main Commit
Log window.

Image size The display size of the user image.
Cache images The number of days to elapse before

gravatar is checked for any changes
to an authors image.

No image service If the author has not set up their own
image, then gravatar can return an
image based on one of these services.

Clear image cache button Clear the cached avatars.

Fonts Code font Change the font used for the display
of file contents.

Application font Change the font used on Git Exten-
sions windows and dialogs.

Language Language (restart required) Choose the language for the Git Ex-
tensions interface.

Dictionary for spelling checker Choose the dictionary to use for the
spelling checker in the Commit dia-
log.

2.4. Settings 14

http://gravatar.com/

Git Extensions Documentation, Release 2.46

2.4.5 Colors

This page contains settings to define the colors used in the application.

Group Setting Description

Revision graph

Multicolor branches Displays branch commits in different colors if
checked. If unchecked, all branches are shown in
the same color. This color can be selected.

Striped
branch
change

When a new branch is created from an
existing branch, the common part of the
history is shown in a ‘hatch’ pattern.

Draw
branch
borders

Outlines branch commits in a black border
if checked.

Draw non
relatives
graph gray

Show commit history in gray for branches
not related to the current branch.

Draw non
relatives
text gray

Show commit text in gray for branches not
related to the current branch.

Color tag Color to show tags in.
Color
branch

Color to show branch names in.

Color
remote
branch

Color to show remote branch names in.

Color other
label

Color to show other labels in.

Application IconIcon style Change icons. Useful for recognising various open
instances.

Icon color Changes color of the selected icons.

Difference View

Color removed line Highlight color for lines that have been removed.
Color
added line

Highlight color for lines that have been
added.

Color
removed
line high-
lighting

Highlight color for characters that have
been removed in lines.

Color
added line
highlight-
ing

Highlight color for characters that have
been added in lines.

Color
section

Highlight color for a section.

2.4.6 Start Page

This page allows you to add/remove or modify the Categories and repositories that will appear on the Start Page when
Git Extensions is launched. Per Category you can either configure an RSS feed or add repositories. The order of both
Categories, and repositories within Categories, can be changed using the context menus in the Start Page. See Start
Page for further details.

2.4. Settings 15

Git Extensions Documentation, Release 2.46

Setting Description
Categories Lists all the currently defined Categories. Click the Add button to add a new empty Category. The

default name is ‘new’. To remove a Category select it and click Remove. This will delete the
Category and any repositories belonging to that Category.

Caption This is the Category name displayed on the Start Page.
Type Specify the type: an RSS feed or a repository.
RSS Feed Enter the URL of the RSS feed.
Path/Title/DescriptionFor each repository defined for a Category, shows the path, title and description. To add a new

repository, click on a blank line and type the appropriate information. The contents of the Path
field are shown on the Start Page as a link to your repository if the Title field is blank. If the Title
field is non-blank, then this text is shown as the link to your repository. Any text in the
Description field is shown underneath the repository link on the Start Page.

An RSS Feed can be useful to follow repositories on GitHub for example. See this page on GitHub:
https://help.github.com/articles/viewing-your-feeds. You can also follow commits on public GitHub repositories by

1. In your browser, navigate to the public repository on GitHub.

2. Select the branch you are interested in.

3. Click on the Commits tab.

4. You will find a RSS icon next to the words “Commit History”.

5. Copy the link

6. Paste the link into the RSS Feed field in the Settings - Start Page as shown above.

Your Start Page will then show each commit - clicking on a link will open your browser and take you to the commit
on GitHub.

2.4.7 Global Settings

This page contains the following global Git settings. These settings will affect all repositories.

2.4. Settings 16

https://help.github.com/articles/viewing-your-feeds

Git Extensions Documentation, Release 2.46

Group Setting Description
User name User name shown in commits and patches.

User
email

User email shown in commits and patches.

Editor Editor that git.exe opens (e.g. for editing commit
message). This is not used by Git Extensions,
only when you call git.exe from the command
line. By default Git will use the built in editor.

Merge-
tool

Merge tool used to solve merge conflicts. Git
Extensions will search for common merge tools
on your system.

Path to
merge-
tool

Path to merge tool. Git Extensions will search for
common merge tools on your system.

Merge-
tool
com-
mand

Command that Git uses to start the merge tool.
Git Extensions will try to set this automatically
when a merge tool is chosen. This setting can be
left empty when Git supports the mergetool (e.g.
kdiff3).

Keep
backup
(.orig)
after
merge

Check to save the state of the original file before
modifying to solve merge conflicts. Refer to Git
configuration setting
‘mergetool.keepBackup‘.

Difftool Diff tool that is used to show differences between
source files. Git Extensions will search for
common diff tools on your system.

Path to
difftool

The path to the diff tool. Git Extensions will
search for common diff tools on your system.

DiffTool
com-
mand

Command that Git uses to start the diff tool. This
setting should only be filled in when Git doesn’t
support the diff tool.

Path to
commit
template

A path to a file whose contents are used to
pre-populate the commit message in the commit
dialog.

Line
endings

Checkout/commit radio buttons Choose how git should handle line endings
when checking out and checking in files. Refer
to https://help.github.com/articles/dealing-with-
line-endings#platform-all

Files content encoding The default encoding for file contents.

2.4.8 Local Settings

This page contains the Git settings for a repository. These settings are only required if you wish to override the global
Git settings for this specific repository.

2.4. Settings 17

https://help.github.com/articles/dealing-with-line-endings#platform-all
https://help.github.com/articles/dealing-with-line-endings#platform-all

Git Extensions Documentation, Release 2.46

Group Setting Description
User name User name shown in commits and patches.

User
email

User email shown in commits and patches.

Editor Editor that git.exe opens (e.g. for editing commit
message). This is not used by Git Extensions,
only when you call git.exe from the command
line. By default Git will use the command line
text editor vi.

Merge-
tool

Merge tool used to solve merge conflicts. Git
Extensions will search for common merge tools
on your system.

Keep
backup
(.orig)
after
merge

Check to save the state of the original file before
modifying to solve merge conflicts. Refer to Git
configuration setting
‘mergetool.keepBackup‘.

Line
endings

Checkout/commit radio buttons Choose how git should handle line endings
when checking out and checking in files. Refer
to https://help.github.com/articles/dealing-with-
line-endings#platform-all

Files content encoding Choose the encoding you want GitExtensions to
use.

2.4.9 SSH

This page allows you to configure the SSH client you want Git to use. Git Extensions is optimized for PuTTY. Git
Extensions will show command line dialogs if you do not use PuTTY and user input is required (unless you have
configured SSH to use authentication with key instead of password). Git Extensions can load SSH keys for PuTTY
when needed.

Group Setting Description

Specify which ssh client to use
PuTTY radio button Use PuTTY as SSH

client.
OpenSSH radio
button

Use OpenSSH as SSH client.

Other ssh client Use another SSH client. Enter the path to the SSH client you wish to
use.

Configure PuTTY

Path to plink.exe Enter the path to the
plink.exe
executable.

Path to puttygen Enter the path to the puttygen.exe executable.
Path to pageant Enter the path to the pageant.exe executable.
Automatically
start
authentication

If an SSH key has been configured, then when accessing a remote
repository the key will automatically be used by the SSH client if this
is checked.

2.4.10 Scripts

This page allows you to configure specific commands to run before/after Git actions or to add a new command to the
User Menu. The top half of the page summarises all of the scripts currently defined. If a script is selected from the
summary, the bottom half of the page will allow modifications to the script definition.

2.4. Settings 18

https://help.github.com/articles/dealing-with-line-endings#platform-all
https://help.github.com/articles/dealing-with-line-endings#platform-all

Git Extensions Documentation, Release 2.46

A hotkey can also be assigned to execute a specific script. See Hotkeys.

Setting Description
Add Button Adds a new script. Complete the details in the bottom half of the screen.
Remove Button Removes a script.
Up/Down Arrows Changes order of scripts.
Name The name of the script.
Enabled checkbox If checked, the script is active and will be performed at the appropriate time (as

determined by the On Event setting).
Ask for confirmation
checkbox

If checked, then a popup window is displayed just before the script is run to confirm
whether or not the script is to be run. Note that this popup is not displayed when the
script is added as a command to the User Menu (On Event setting is
ShowInUserMenuBar).

Add to revision grid
context menu
checkbox

If checked, the script is added to the context menu that is displayed when right-clicking
on a line in the Commit Log page.

Command Enter the command to be run. This can be any command that your system can run e.g.
an executable program, a .bat script, a Python command, etc. Use the ‘Browse button
to find the command to run.

Arguments Enter any arguments to be passed to the command that is run. The ‘Help‘ button
displays items that will be resolved by Git Extensions before executing the command
e.g. {cBranch} will resolve to the currently checked out branch, {UserInput} will
display a popup where you can enter data to be passed to the command when it is run.

On Event Select when this command will be executed, either before/after certain Git commands,
or displayed on the User Menu bar.

2.4.11 Hotkeys

This page allows you to define keyboard shortcuts to actions when specific pages of Git Extensions are displayed. The
HotKeyable Items identifies a page within Git Extensions. Selecting a Hotkeyable Item displays the list of commands
on that page that can have a hotkey associated with them.

The Hotkeyable Items consist of the following pages

1. Commit: the page displayed when a Commit is requested via the ‘Commit‘ User Menu button or the
‘Commands/Commit‘ menu option.

2. Browse: the Commit Log page (the page displayed after a repository is selected from the Start Page).

3. RevisionGrid: the list of commits on the Commit Log page.

4. FileViewer: the page displayed when viewing the contents of a file.

5. FormMergeConflicts: the page displayed when merge conflicts are detected that need correcting.

6. Scripts: shows scripts defined in Git Extensions and allows shortcuts to be assigned. Refer Scripts.

Setting Description
Hotkey After selecting a Hotkeyable Item and the Command, the current keyboard shortcut

associated with the command is displayed here. To alter this shortcut, just press the
keyboard combination required. This field will be updated to reflect the keys pressed.

Apply button Click to apply the entered keyboard combination to the Command.
Clear button Sets the keyboard shortcut for the Command to ‘None’.
Reset all Hotkeys
to defaults button

Resets all keyboard shortcuts to the defaults (i.e. the values when Git Extensions was first
installed).

2.4. Settings 19

Git Extensions Documentation, Release 2.46

2.4.12 Shell Extension

When installed, Git Extensions adds items to the context menu when a file/folder is right-clicked within Windows
Explorer. One of these items is ‘Git Extensions‘ from which a further(cascaded) menu can be opened. This
settings page identifies what items will appear on that cascaded menu.

Note: what is displayed also depends on what item is being right-clicked in Windows Explorer; a file or a folder(and
whether the folder is a Git repository or not).

2.4.13 Advanced

This page allows advanced settings to be modified. Clicking on the ‘+’ symbol on the tree of settings will display
further settings. Refer Confirmations.

Group Setting Description

Checkout Always show checkout dialog Always show the Checkout Branch dialog
when swapping branches. This dialog is
normally only shown when uncommitted
changes exist on the current branch

Use last chosen
“local changes”
action as
default action.

This setting works in conjunction with the ‘Git
Extensions/Check for uncommitted changes in
checkout branch dialog’ setting. If the ‘Check
for uncommitted changes’ setting is checked,
then the Checkout Branch dialog is shown only
if this setting is unchecked. If this setting is
checked, then no dialog is shown and the last
chosen action is used.

General Don’t show help images In the Pull dialog, images can be displayed
to explain different scenarios. If checked,
these Help images will not be displayed.

2.4.14 Confirmations

This page allows you to turn off certain confirmation popup windows.

2.4. Settings 20

Git Extensions Documentation, Release 2.46

Group Setting Description

Don’t ask to confirm to

Amend last commit If checked, do not display the popup
warning about the rewriting of history
when you have elected to amend the last
committed change.

Apply stashed
changes

In the Pull dialog, if ‘Auto stash‘ is checked,
then any changes will be stashed before the pull is
performed. Any stashed changes are then
re-applied after the pull is complete. If this setting
is checked, the stashed changes are applied with no
confirmation popup.

Push a new
branch for the
remote

When pushing a new branch that does not exist on
the remote repository, a confirmation popup will
normally be displayed. If this setting is checked,
then the new branch will be pushed with no
confirmation popup.

Add a tracking
reference for
newly pushed
branch

When you push a local branch to a remote and it
doesn’t have a tracking reference, you are asked to
confirm whether you want to add such a reference.
If this setting is checked, a tracking reference will
always be added if it does not exist.

2.4.15 Plugins

Plugins provide extra functionality for Git Extensions.

Plugin Setting Description

Check for Updates

This plugin is used by Git Extensions to check for updates to the Git Extensions software.
Enabled (true/false) Enable or disable the check.
Check every # days Check for updates after this number of days have elapsed since the last check.
Last check (yyyy/M/dd) Shows date of the last check.

Auto compile SubModules

This plugin proposes (confirmation required) that you automatically build submodules after they are updated via the GitExtensions Update submodules command.
Enabled (true/false) Enter true to enable the plugin, or false to disable.
Path to msbuild.exe Enter the path to the msbuild.exe executable.
msbuild.exe arguments Enter any arguments to msbuild.
Create local tracking branches This plugin will create local tracking branches for all branches on a remote repository. The remote repository is specified when the plugin is run.

Delete obsolete branches
This plugin allows you to delete obsolete branches i.e. those branches that are fully merged to another branch. It will display a list of obsolete branches for review before deletion.

Delete obsolete branches older than (days) Select branches created greater than the specified number of days ago.
Branch where all branches should be merged The name of the branch where a branch must have been merged into to be considered obsolete.

Find large files Finds large files in the repository and allows you to delete them.
Find large files bigger than (Mb) Specify what size is considered a ‘large’ file.
Gerrit Code Review The Gerrit plugin provides integration with Gerrit for GitExtensions. This plugin has been based on the git-review tool.

Github This plugin will create an OAuth token so that some common GitHub actions can be integrated with Git Extensions.
OAuth Token The token generated and retrieved from GitHub.
Impact Graph This plugin shows in a graphical format the number of commits and counts of changed lines in the repository performed by each person who has committed a change.

Statistics

This plugin provides various statistics (and a pie chart) about the current Git repository. For example, number of commits by author, lines of code per language.
Code files Specifies extensions of files that are considered code files.
Directories to ignore (EndsWith) Ignore these directories when calculating statistics.
Ignore submodules (true/false) Ignore submodules when calculating statistics.

gource
Gource is a software version control visualization tool.

Path to “gource” Enter the path to the gource software.
Continued on next page

2.4. Settings 21

Git Extensions Documentation, Release 2.46

Table 2.1 – continued from previous page
Plugin Setting Description

Arguments Enter any arguments to gource.

Proxy Switcher

This plugin can set/unset the value for the http.proxy git config file key as per the settings entered here.
Username The user name needed to access the proxy.
Password The password attached to the username.
HttpProxy Proxy Server URL.
HttpProxyPort Proxy Server port number.
Release Notes Generator This plugin will generate ‘release notes’. This involves summarising all commits between the specified from and to commit expressions when the plugin is started. This output can be copied to the clipboard in various formats.

2.5 Start Page

The start page contains the most common tasks, recently opened repositories and favourites. The left side of the start
page (Common Actions and Recent Repositories) is static. The right side of the page is where favourite repositories
can be added, grouped under Category headings.

Recent Repositories can be moved to favourites using the repository context menu. Choose Move to category
/ New category to create a new category and add the repository to it, or you can add the repository to an existing
category (e.g. ‘Currents’ as shown below).

2.5. Start Page 22

Git Extensions Documentation, Release 2.46

A context menu is available for both the category and the repositories listed underneath it.

Entries on Category context menu

Move
Up

Move the category (and any repositories under it) higher on the page.

Move
Down

Move the category (and any repositories under it) lower on the page.

Remove Remove the category (and any repositories under it) from the page. Note: Git repositories are not
physically removed either locally or remotely.

Edit Shows the Start Page settings window where both category and repository details can be modified.
See Start Page.

Entries on repository context menu

Move to
category

Move the repository to a new or existing category.

Move up Move the repository higher (within the category).
Move down Move the repository lower (within the category).
Remove Remove the repository from the category. Note: the repository is not physically removed either

locally or remotely.
Edit Shows the Start Page settings window where both category and repository details can be

modified. See Start Page.
Show current
branch

Toggles the display of the branch name next to the repository name. This identifies the currently
checked out branch for the repository.

To open an existing repository, simply click the link to the repository under Recent Repositories or within the Cate-
gories that you have set up, or select Open repository (from where you can select a repository to open from your local
file system).

To create a new repository, one of the following options under Common Actions can be selected.

2.6 Clone repository

You can clone an existing repository using this option. It displays the following dialog.

2.6. Clone repository 23

Git Extensions Documentation, Release 2.46

The repository you want to clone could be on a network share or could be a repository that is accessed through an
internet or intranet connection. Depending on the protocol (http or ssh) you might need to load a SSH key into PuTTY.
You also need to specify where the cloned repository will be created and the initial branch that is checked out. If the
cloned repository contains submodules, then these can be initialised using their default settings if required.

There are two different types of repositories you can create when making a clone. A personal repository contains
the complete history and also contains a working copy of the source tree. A central repository is used as a public
repository where developers push the changes they want to share with others to. A central repository contains the
complete history but does not have a working directory like personal repositories.

2.7 Clone SVN repository

You can clone an existing SVN repository using this option, which creates a Git repository from the SVN repository
you specify. For further information refer to the Pro Git book.

2.8 Clone Github repository

This option allows you to

1. Fork a repository on GitHub so it is created in your personal space on GitHub.

2. Clone any repositories on your personal space on GitHub so that it becomes a local repository on your machine.

You can see your own personal repositories on GitHub, and also search for repositories using the Search for
repositories tab.

2.7. Clone SVN repository 24

http://git-scm.com/book/en/Git-and-Other-Systems-Migrating-to-Git

Git Extensions Documentation, Release 2.46

2.9 Create new repository

When you do not want to work on an existing project, you can create your own repository using this option.

Select a directory where the repository is to be created. You can choose to create a Personal repository or a Central
repository.

A personal repository looks the same as a normal working directory but has a directory named .git at the root level
containing the version history. This is the most common repository.

Central repositories only contain the version history. Because a central repository has no working directory you cannot
checkout a revision in a central repository. It is also impossible to merge or pull changes in a central repository. This
repository type can be used as a public repository where developers can push changes to or pull changes from.

2.9. Create new repository 25

CHAPTER

THREE

BROWSE REPOSITORY

You can browse a repository by starting Git Extensions and selecting the repository to open from the Start Page. The
Commit Log window is then displayed, which is the main window in Git Extensions. You can also open this window
from the shell extensions and from the Visual Studio IDE.

3.1 Commit Log Window

The Commit Log window consists of a standard Windows Menu Bar, a Toolbar and the main window, which is split
into two parts

• the commit history and graph that shows branches and merges

• three Tabs: Commit, File tree and Diff that display information about the currently highlighted commit(s) in the
commit history

The commit history shows every commit to the repository (or the number of commits specified by the Git Extensions
Setting that limits the number of commits, whichever is the lower).

26

Git Extensions Documentation, Release 2.46

3.1.1 Toolbar

The Toolbar consists of a number of buttons and text fields as described below. The items on the Toolbar and their
positions are fixed and are not user-configurable.

Refresh, Refresh (Repository is ‘dirty’)

This is the first button on the toolbar and you will see one of the above icons. Its function is to force Git
Extensions to look at the Git repository and refresh itself based on any commits, index changes etc. that
have been done outside of the Git Extensions GUI (e.g. via the command line).

Note: the ‘dirty’ icon will only be shown for index changes if you have enabled the Git Extensions ‘Use
FileSystemWatcher’ setting.

Alternatives to this button:

• pressing the F5 key

• selecting File → Refresh from the Menu Bar.

Go to superproject TODO

Refer to the Submodules chapter for further information.

3.1. Commit Log Window 27

Git Extensions Documentation, Release 2.46

Change working directory

This button displays the repository that Git Extensions is currently working with. Clicking on this button
will display a dropdown menu where you can

• swap to recent repositories you have accessed

• open the Open local repository dialog to search for a local repository

• configure this dropdown menu

Alternatives to this button:

• pressing the Ctrl+O key combination to open the Open local repository dialog

• selecting File → Open from the Menu Bar to open the Open local repository dialog

• selecting File → Close from the Menu Bar to close this repository and return you to the Start Page
where a new repository can be selected

• selecting File → Recent Repositories from the Menu Bar where a list of recent repositories will be
presented

Configuring this dropdown menu will present you with the following configuration options:

Group Setting Description
Maximum number of most
recent repositories

Sets the maximum number of recent repositories.

Sort most
recent
repositories
alphabeti-
cally

Sorts entries in Most recent
repositories combobox in
alphabetic order.

Sort less
recent
repositories
alphabeti-
cally

Sorts entries in Less recent
repositories combobox in
alphabetic order.

Shortening strategy
Do not shorten Do not shorten the repository path as shown on the

toolbar button.
The most
significant
directory

Displays the last entry in the
path on the toolbar button.
This will be the repository
name.

Replace
middle part
with dots

Shows the first and last parts
of the repository path, with
the middle bit replaced with
dots.
Combobox minimum width Allows you to specify the width of the part of this

dialog that shows the Most/Less recent repositories
comboboxes. Specifying 0 means this dialog box
will expand horizontally to the largest of the
repository paths.

If you select a repository in either the Most or Less recent repositories combobox, you can right-click to
display a context menu with the following options:

3.1. Commit Log Window 28

Git Extensions Documentation, Release 2.46

Option Description
Anchor to most recent repositories Moves the repository to the Most recent repositories combobox.
Anchor to less recent repositories Moves the repository to the Less recent repositories combobox.
Remove anchor If this repository is selected (i.e. highlighted), it un-selects it.
Remove from recent repositories Removes this repository from the combobox.

Change current branch

This button displays the currently checked out branch. Clicking on this button will display a dropdown
menu where you can

• select a new branch to switch to from the displayed list of branches that exist on your local repository.

• open the Checkout branch dialog

Alternatives to this button:

• pressing the Ctrl+. key combination to open the Checkout branch dialog

• selecting Commands → Checkout branch from the Menu Bar to open the Checkout branch dialog

• access the context menu by right-clicking a commit that is in a branch, then selecting Checkout
branch →. The list of branches that commit is in will be displayed and you can select one to
checkout.

Refer to the Branches chapter for further information.

Stash changes

This button allows you to work with the Stash. Note that this button also has a dropdown menu that
operates independently from the button. If you click on the button it will open a dialog where the Stash
can be manipulated. If you open the dropdown menu you can

• stash current working directory changes

• pop a saved stash ie restore working directory to contents of the stash

• open the Stash dialog

Note: If you have enabled the Git Extensions ‘Show stash count on status bar’ setting then the number
of saved stashes will be displayed next to this button.

Alternatives to this button:

• selecting Commands → Stash changes from the Menu Bar to open the Stash dialog

Refer to the Commit chapter for further information.

Commit, Commit (pending commit)

3.1. Commit Log Window 29

Git Extensions Documentation, Release 2.46

This button will open the Commit dialog where any uncommitted changes can be committed to the repos-
itory. The first button is displayed when there are no uncommitted changes in the working directory. The
second button style indicates there are uncommitted changes and the number of those changes.

Note: the number of uncommitted changes is only displayed if you have enabled the Git Extensions
‘Show repository status in browse dialog’ setting.

Alternatives to this button:

• pressing the Ctrl+Space key combination to open the Commit dialog

• selecting Commands → Commit from the Menu Bar to open the Commit dialog

Refer to the Commit chapter for further information.

Open pull dialog, Pull - merge, Pull - rebase, Pull - fetch, Pull - fetch all

This button allows you to retrieve changes from a remote repository and apply them to your local repos-
itory. When Git Extensions is first installed, the default button displayed on the toolbar is Open pull
dialog which will display the Pull dialog when clicked. This default can be changed. This button also has
a dropdown menu that operates independently from the button, and when opening it you are able to

• Merge Fetch changes from a remote repository and merge into your local branch. Before this button
is clicked, you must have checked out the local branch you are pulling to, and that local branch must
be the local tracking branch for the remote repository.

• Rebase Fetch changes from a remote repository and rebase any local branch changes on top of the
remote branch changes. As above, the local branch must be checked out and be a local tracking
branch.

• Fetch Fetch all changes from a remote repository to your local repository, updating the remote
references. If the currently checked out branch is a remote tracking branch, then the fetch is done
from that remote. If the checked out branch is not a remote tracking branch, then the fetch is done
from the remote called origin (if it exists).

• Pull Opens the Pull dialog

• Fetch all Fetch all changes from all remote repositories defined in your local repository. All remote
references are updated.

Note: Selecting one of the above options (except the Pull option), either from the dropdown menu or
when it is the default button on the toolbar, causes immediate execution of the command. There is no
confirmation dialog.

Warning: Selecting Rebase may rewrite history on your local repository. This is not recommended
if you have already published that history elsewhere.

3.1. Commit Log Window 30

Git Extensions Documentation, Release 2.46

When selecting an option from the dropdown menu, selecting an item above the divider (i.e. Merge,
Rebase or Fetch) will result in the selection becoming the new default button on the toolbar.

The don’t set as default menu item is a checkbox that only applies to the items below the divider (i.e.
Pull and Fetch all). It behaves as follows:

• if checked, clicking Pull or Fetch all will not result in them becoming the default on the toolbar.

• if unchecked, clicking Pull or Fetch all will result in the selection becoming the default on the toolbar.

Alternatives to this button:

• pressing the Ctrl+Down key combination

• selecting Commands → Pull from the Menu Bar to open the Pull dialog

Refer to the Remote feature chapter for further information.

Push changes

This button will open the Push dialog where changes on your local repository can be sent to a remote
repository.

Alternatives to this button:

• pressing the Ctrl+Up key combination

• selecting Commands → Push from the Menu Bar to open the Push dialog

Refer to the Remote feature chapter for further information.

Git bash

This button will open a bash window. In Linux, a bash shell is roughly equivalent to the Windows DOS
Command shell. The bash shell allows you to enter git commands directly. For example:

Welcome to Git (version 1.8.3-preview20130601)

Run ’git help git’ to display the help index.
Run ’git help <command>’ to display help for specific commands.

user@VBOX-XP ~/My Documents/GitExtensionsDoc (fix/Chapter3)
$ git branch -v
TestDocBuild 0839935 Updated version to 2.46

* fix/Chapter3 3d606e7 working on main window
latest 0839935 Updated version to 2.46
master 6c40f7a Merge branch ’latest’

user@VBOX-XP ~/My Documents/GitExtensionsDoc (fix/Chapter3)
$

Alternatives to this button:

• pressing the Ctrl+G key combination

• selecting Git → Git bash from the Menu Bar

Settings

3.1. Commit Log Window 31

Git Extensions Documentation, Release 2.46

This button will open the settings dialog window.

Alternatives to this button:

• selecting Settings → Settings from the Menu Bar

Refer to Settings for further information.

Branches filter

This filter consists of a text box and associated dropdown list and a ‘gear’ icon. It is used to filter the
commit history display so that commits that are part of the selected branch are the only ones displayed.
You can either

• type a branch name in the check box or,

• select a branch name from the dropdown list

The branch name entries displayed in the dropdown list are also affected by the item(s) selected from the
dropdown menu associated with the ‘gear’ icon. You can select local and/or remote branches.

Note: The commit history display is not updated until you press the Enter key, regardless of whether
you type in a branch name or select one from the dropdown menu.

Refer to Searching and Filtering for further information.

Filter

This filter consists of a text box and associated ‘gear’ icon. It is used to filter the commit history display
for the matching text entered in the checkbox. The dropdown associated with ‘gear’ icon determines what
component of the commit is searched.

Note: The commit history display is not updated until you press the Enter key.

Refer to Searching and Filtering for further information.

Toggle split view layout

This button toggles between displaying a split screen view or only displaying the commit history and
graph full screen.

Alternatives to this button:

• clicking on and dragging the divider between the two views - this will adjust the size of each view

3.1.2 Commit History and Graph

** TODO **

3.1. Commit Log Window 32

Git Extensions Documentation, Release 2.46

3.1.3 Commit Tab

The commit tab contains information about the commit that is currently selected in the commit history.

cover - image and context menu - author info - commit message - Signed off by - Contained in: branches and tag -
context menu

3.1.4 File Tree Tab

** TODO **

3.1.5 Diff Tab

** TODO **

===== existing doco =======

The full commit history can be browsed. There is a graph that shows branches and merges. You can show the difference
between two revision by selection them using ctrl-click.

In the context menu of the commit log you can enable or disable the revision graph. You can also choose to only show
the current branch instead of showing all branches. The other options will be discussed later.

3.1. Commit Log Window 33

Git Extensions Documentation, Release 2.46

3.2 Searching and Filtering

The history can be searched using regular expressions are basic search terms. The quick filter in the toolbar searches
in the commit message, the author and the committer.

3.2. Searching and Filtering 34

Git Extensions Documentation, Release 2.46

In the context menu of the commit log you can open the advanced filter dialog. The advanced filter dialog allows
you to search for more specific commits. To remove the filter either remove the filter in the toolbar and press enter or
remove the filter in the advanced filter dialog.

3.2. Searching and Filtering 35

Git Extensions Documentation, Release 2.46

3.3 Singe file history

To display the single file history, right click on a file name in the File tree or in the Diff tab and select blame.

The single file history viewer shows all revisions of a single file. You can view the content of the file in after each
commit in the View tab.

You can view the difference report from the commit in the Diff tab.

3.3. Singe file history 36

Git Extensions Documentation, Release 2.46

Note: Added lines are marked with a +, removed lines are marked with a -.

3.4 Blame

There is a blame function in the file history browser. It shows the last person editing a single line.

3.4. Blame 37

Git Extensions Documentation, Release 2.46

Double clicking on a code line shows the full commit introducing the change.

3.4. Blame 38

CHAPTER

FOUR

COMMIT

A commit is a set of changes with some extra information. Every commit contains the follow information:

• Changes

• Committer name and email

• Commit date

• Commit message

• Cryptographically strong SHA1 hash

Each commit creates a new revision of the source. Revisions are not tracked per file; each change creates a new
revision of the complete source. Unlike most traditional source control management systems, revisions are not named
using a revision number. Each revision is named using a SHA1, a 41 long characters cryptographically strong hash.

4.1 Commit changes

Changes can be committed to the local repository. Unlike most other source control management systems you do not
need to checkout files before you start editing. You can just start editing files, and review all the changes you made in
the commit dialog later. When you open de commit dialog, all changes are listed in the top-left.

39

Git Extensions Documentation, Release 2.46

There are three kinds of changes:

Un-
tracked

This file is not yet tracked by Git. This is probably a new file, or a file that has not been committed to
Git before.

Modified This file is modified since the last commit.
Deleted This file has been deleted.

When you rename or move a file Git will notice that this file has been moved, but currently Git Extensions does not
show this in the commit dialog. Occasionally you will need to undo the file change. This can be done in the context
menu of any unstaged file.

4.1. Commit changes 40

Git Extensions Documentation, Release 2.46

During your initial commit there are probably lots of files you do not want to be tracked. You can ignore these files
by not staging them, but they will show every time. You could also add them to the .gitignore file of you repository.
Files that are in the .gitignore file will not show up in the commit dialog again. You can open the .gitignore
editor from the menu Working dir changes by selecting Edit ignored files.

You need to stage the changes you want to commit by pressing the ‘Stage selected files’ button. You also need to stage
deleted files because you stage the change and not the file. When all the changes you want to commit are staged, enter
a commit message and press the commit button.

4.1. Commit changes 41

Git Extensions Documentation, Release 2.46

It is also possible to add files to you last commit using the Amend to last commit button. This can be very
useful when you forgot some changes. This function rewrites history; it deletes the last commit and commits it again
including the added changes. Make sure you only use Amend to last commit when the commit is not yet
published to other developers.

There is a build in spelling checker that checks the commit message. Incorrect spelled words are underlined with a red
wave line. By right-clicking on the misspelled word you can choose the correct spelling or one of the other options.

4.1. Commit changes 42

Git Extensions Documentation, Release 2.46

Git Extensions installs a number of dictionaries by default. You can choose another language in the context menu
of the spelling checker or in the settings dialog. To add a new spelling dictionary add the dictionary file to the
Dictionaries folder inside the Git Extensions installation folder.

4.1. Commit changes 43

Git Extensions Documentation, Release 2.46

4.2 Cherry pick commit

A commit can be recommitted by using the cherry pick function. This can be very useful when you want to make the
same change on multiple branches.

4.2. Cherry pick commit 44

Git Extensions Documentation, Release 2.46

4.3 Revert commit

A commit cannot be deleted once it is published. If you need to undo the changes made in a commit, you need to
create a new commit that undoes the changes. This is called a revert commit.

4.4 Stash changes

If there are local changes that you do not want to commit yet and not want to throw away either, you can temporarily
stash them. This is useful when working on a feature and you need to start working on something else for a few hours.
You can stash changes away and then reapply them to your working dir again later. Stashes are typically used for very
short periods.

4.3. Revert commit 45

Git Extensions Documentation, Release 2.46

You can create multiple stashes if needed. Stashes are shown in the commit log with the text [stash].

The stash is especially useful when pulling remote changes into a dirty working directory. If you want a more perma-
nent stash, you should create a branch.

4.4. Stash changes 46

CHAPTER

FIVE

TAG

Tags are used to mark a specific version. Usually a tag will not be moved anymore. The image below shows the
commit log of Git Extensions with two tags indicating version [1.08] and [1.06].

5.1 Create tag

In Git Extensions you can tag a revision by choosing Create new tag in the commit log context menu. A dialog
will prompt for the name of the tag. You can also choose Create tag from the Commands menu, which will show
a dialog to choose the revision and enter the tag name.

Once a tag is created, it cannot be moved again. You need to delete the tag and create it again to move it.

47

Git Extensions Documentation, Release 2.46

5.2 Delete tag

For some operation it is very useful to create tags for temporary usage. Git uses SHA1 hashes to name each commit.
When you want to merge with an unnamed branch it is good practise to tag the unnamed branch, merge with the tag
and then delete the tag again.

5.2.1 Re-Tag?

Read about “What should you do when you tag a wrong commit and you would want to re-tag?” here:
https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

5.2. Delete tag 48

https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

CHAPTER

SIX

BRANCHES

Branches are used to commit changes separate from other commits. It is very common to create a branch when you
start working on a feature and you are not sure if this feature will be finished in time for the next release. The image
on the right illustrates a branch created on top of commit B.

In Git branches are created very often. Creating a branch is very easy to do and it is recommended to create a branch
very often. In fact, when you make a commit to a cloned repository you start a new branch. I will explain this in the
pull chapter.

You can check on what branch you are working in the toolbar.

6.1 Create branch

In Git Extensions there are multiple ways to create a new branch. In the image below I create a new branch from the
context menu in the commit log. This will create a new branch on the revision that is selected.

I will create a new branch called Refactor. In this branch I can do whatever I want without considering others. In
the Create branch dialog there is a checkbox you can check if you want to checkout this branch immediate after
the branch is created.

49

Git Extensions Documentation, Release 2.46

When the branch is created you will see the new branch Refactor in the commit log. If you chose to checkout this
branch the next commit will be committed to the new branch.

Creating branches in Git requires only 41 bytes of space in the repository. Creating a new branch is very easy and is
very fast. The complete work flow of Git is optimized for branching and merging.

6.1.1 Orphan branches

In special cases it is helpful to have orphan branches (see for example
https://www.google.com/search?q=why+use+orphan+branches+in+git). Check the “Create orphan” checkbox
to create an orphan branch (--orphan option in git).

The newly created branch will have no parent commits.

The option “Clear working dir and index” (git rm -rf) is active by default. So the working dir and index will be
cleared. If you uncheck the last option then the working dir and index will not be touched.

6.2 Checkout branch

You can switch from the current branch to another branch using the checkout command. Checkout a branch sets the
current branch and updates all sources in the working directory. Uncommitted changes in the working directory can
be overwritten, make sure your working directory is clean.

6.2. Checkout branch 50

https://www.google.com/search?q=why+use+orphan+branches+in+git

Git Extensions Documentation, Release 2.46

6.3 Merge branches

In the image below there are two branches, [Refactor] and [master]. We can merge the commits from the
master branch into the Refactor. If we do this, the Refactor branch will be up to date with the master branch, but not
the other way around. As long as we are working on the Refactor branch we cannot tough the master branch itself. We
can merge the sources of master into our branch, but cannot make any change to the master branch.

To merge the Refactor branch into the master branch, we need to switch to the master branch first.

Once we are on the master branch we can choose merge by choosing Merge branches from the Commandsmenu.
In the merge dialog you can check the branch you are working on. After selected the branch to merge with, click the
Merge button.

6.3. Merge branches 51

Git Extensions Documentation, Release 2.46

After the merge the commit log will show the new commit containing the merge. Notice that the Refactor branch is
not changed by this merge. If you want to continue working on the Refactor branch you can merge the Refactor branch
with master. You could also delete the Refactor branch if it is not used anymore.

Note: When you need to merge with on unnamed branch you can use a tag to give it a temporary name.

6.4 Rebase branch

The rebase command is the most complex command in Git. The rebase command is very similar to the merge com-
mand. Both rebase and merge are used to get a branch up-to-date. The main difference is that rebase can be used to
keep the history linear contrary to merges.

6.4. Rebase branch 52

Git Extensions Documentation, Release 2.46

A rebase of Refactor on top of master will perform the following actions:

• All commits specific to the Refactor branch will be stashed in a temporary location

• The branch Refactor will be removed

• The branch Refactor will be recreated on the master branch

• All commits will be recommitted in the new Refactor branch

During a rebase merge conflicts can occur. You need to solve the merge conflicts for each commit that is rebased. The
rebase function in Git Extensions will guide you through all steps needed for a successful rebase.

The image below shows the commit log after the rebase. Notice that the history is changed and is seems like the
commits on the Refactor branch are created after the commits on the master branch.

6.4. Rebase branch 53

Git Extensions Documentation, Release 2.46

Warning: Because this function rewrites history you should only use this on branches that are not published to
other repositories yet. When you rebase a branch that is already pushed it will be harder to pull or push to that
remote. If you want to get a branch up-to-date that is already published you should merge.

6.5 Delete branch

It is very common to create a lot of branches. You can delete branches when they are not needed anymore and you
do not want to keep the work done in that branch. When you delete a branch that is not yet merged, all commits will
be lost. When you delete a branch that is already merged with another branch, the merged commits will not be lost
because they are also part of another branch.

You can delete a branch using Delete branch in Commands menu. If you want to delete a branch that is not
merged into another branch, you need to check the Force delete checkbox.

6.5. Delete branch 54

CHAPTER

SEVEN

PATCHES

Every commit contains a change-set, a commit date, the committer name, the commit message and a cryptograph
SHA1 hash. Local commits can be published by pushing it to a remote repository. To be able to push you need to have
sufficient rights and you need to have access to the remote repository. When you cannot push directly you can create
patches. Patches can be e-mailed to someone with access to the repository. Each patch contains an entire commit
including the commit message and the SHA1.

7.1 Create patch

Format a single patch or patch series using the format patch dialog. You need to select the newest commit first and then
select the oldest commit using ctrl-click. You can also select an interrupted patch series, but this is not recommended
because the files will not be numbered.

55

Git Extensions Documentation, Release 2.46

When the patches are created successfully the following dialog will appear.

7.2 Apply patches

It is possible to apply a single patch file or all patches in a directory. When there are merge conflicts applying the patch
you need to resolve them before you can continue. Git Extensions will help you applying all patches by marking the
next recommended step.

7.2. Apply patches 56

Git Extensions Documentation, Release 2.46

7.2. Apply patches 57

CHAPTER

EIGHT

REMOTE FEATURE

Git is a distributed source control management system. This means that all changes you make are local. When you
commit changes, you only commit them to your local repository. To publish your local changes you need to push. In
order to get changes committed by others, you need to pull.

8.1 Manage remote repositories

You can manage the remote repositories in the Remotes menu.

When you cloned your repository from a public repository, this remote is already configured. You can rename each
remote for easy recognition. The default name after cloning a remote is origin. If you use PuTTY as SSH client
you can also enter the private key file for each remote. Git Extensions will load the key when needed. How to create a
private key file is described in the next paragraph.

In the Default pull behaviour tab you can configure the branches that need to be pulled and merged by
default. If you configure this correctly you will not need to choose a branch when you pull or push. There are two
buttons on this dialog:

Prune remote branches Throw away remote branches that do not exist on the remote anymore.
Update all remote branch info Fetch all remote branch information.

58

Git Extensions Documentation, Release 2.46

After cloning a repository you do not need to configure all remote branches manually. Instead you can checkout the
remote branch and choose to create a local tracking branch.

8.2 Create SSH key

Git uses SSH for accessing private repositories. SSH uses a public/private key pair for authentication. This means you
need to generate a private key and a public key. The private key is stored on your computer locally and the public key
can be given to anyone. SSH will encrypt whatever you send using your secret private key. The receiver will then use
the public key you send to decrypt the data.

This encryption will not protect the data itself but it protects the authenticity. Because the private key is only available
to the sender, the receiver can be sure about the origin of the data. In practise the key pair is only used for the
authentication process. The data itself will be encrypted using a key that is exchanged during this initial phase.

8.2.1 PuTTY and github

PuTTY is SSH client that for Windows that is a bit more user friendly then OpenSSH. Unfortunately PuTTY does not
work with all servers. In this paragraph I will show how to generate a key for github using putty.

First make sure GitExtensions is configured to use PuTTY and all paths are correct.

8.2. Create SSH key 59

Git Extensions Documentation, Release 2.46

can choose Generate or import key to start the key generator.

8.2. Create SSH key 60

Git Extensions Documentation, Release 2.46

PuTTY will ask you to move the mouse around to generate a more random key. When the key is generated you can
save the public and the private key in a file. You can choose to protect the private key with a password but this is not
necessary.

Now you have a key pair you need to give github the public key. This can be done in Account Settings in the
tab SSH Public Keys. You can add multiple keys here, but you only need one key for all repositories.

8.2. Create SSH key 61

Git Extensions Documentation, Release 2.46

After telling github what public key to use to decrypt, you need to tell GitExtensions what private key to use to encrypt.
In the clone dialog there is a Load SSH key button to load the private key into the PuTTY authentication agent.
This can also be done manually by starting the PuTTY authentication agent and choose add key in the context menu
in the system tray.

GitExtensions can load the private keys automatically for you when communicating with a remote. You need to
configure the private key for the remote.

This is done in the Manage remote repositories dialog.

8.2.2 OpenSSH and github

When you choose to use OpenSSH you need to configure GitExtensions as shown in the screenshot below.

8.2. Create SSH key 62

Git Extensions Documentation, Release 2.46

OpenSSH is the best SSH client there is but it lacks Windows support. Therefore it is slightly more complex to use.
Another drawback is that GitExtensions cannot control OpenSSH and needs to show the command line dialogs when
OpenSSH might be used. GitExtensions will show the command line window for every command that might require
a SSH connection. For this reason PuTTY is the prefered SSH client in GitExtensions.

To generate a key pair in OpenSSH you need to go to the command line. I recommend to use the git bash because the
path to OpenSSH is already set.

Type the following command: ssh-keygen -C "your@email.com" -t rsa Use the same email address
as the email address used in git. You will be asked where if you want to protect the private key with a pass-
word. This is not necessary. By default the public and private keys are stored in c:\Documents and
Settings\[User]\.ssh\ or c:\Users\[user]\.ssh\.

8.2. Create SSH key 63

Git Extensions Documentation, Release 2.46

You do not need to tell GitExtensions about the private key because OpenSSH will load it for you. Now open the
public key using notepad and copy the key to github. This can be done in Account Settings in the tab SSH
Public Keys on GitHub.

8.3 Pull changes

You can get remote changes using the pull function. Before you can pull remote changes you need to make sure there
are no uncommitted changes in your local repository. If you have uncommitted changes you should commit them or
stash them during the pull. You can read about how to use the stash in the Stash chapter.

In order to get your personal repository up-to-date, you need to fetch changes from a remote repository. You can do
this using the Pull dialog. When the dialog starts the default remote for the current branch is set. You can choose

8.3. Pull changes 64

http://www.github.com

Git Extensions Documentation, Release 2.46

another remote or enter a custom url if you like. When the remote branches configured correctly, you do not need to
choose a remote branch.

If you just fetch the commits from the remote repository and you already committed some changes to your local
repository, the commits will be in a different branch. In the pull dialog this is illustrated in the image on the left. This
can be useful when you want to review the changes before you want to merge them with your own changes.

When you choose to merge the remote branch after fetching the changes a branch will be created, and will be merged
you’re your commit. Doing this creates a lot of branches and merges, making the history harder to read.

Instead of merging the fetched commits with your local commits, you can also choose to rebase your commits on top
of the fetched commits. This is illustrated on the left in the image below. A rebase will first undo your local commits
(c and d), then fetch the remote commits (e) and finally recommit your local commits. When there is a merge conflict
during the rebase, the rebase dialog will show.

8.3. Pull changes 65

Git Extensions Documentation, Release 2.46

Next to the pull button there are some buttons that can be useful:

Solve
conflicts

When there are merge conflicts, you can solve them by pressing this button.

Stash
changes

When the working dir contains uncommitted changes, you need to stash them before pulling.

Auto
stash

Check this checkbox if you want to stash before pulling. The stash will be reapplied after pulling.

Load
SSH key

This button is only available when you use PuTTY as SSH client. You can press this button to load the
key configured for the remote. If no key is set, a dialog will prompt for the key.

8.4 Push changes

In the browse window you can check if there are local commits that are not pushed to a remote repository yet. In the
image below the green labels mark the position of the master branch on the remote repository. The red label marks the
position of the master branch on the local repository. The local repository is ahead three commits.

To push the changes press Push in the toolbar.

The push dialog allows you to choose the remote repository to push to. The remote repository is set to the remote of
the current branch. You can choose another remote or choose a url to push to. You can also specify a branch to push.

8.4. Push changes 66

Git Extensions Documentation, Release 2.46

Tags are not pushed to the remote repository. If you want to push a tag you need to open the Tags tab in the dialog.
You can choose to push a singe tag or all tags. No commits will be pushed when the Tags tab is selected, only tags.

You can not merge your changes in the remote repository. Merging must be done locally. This means that you cannot
push your changes before the commits are merged locally. In practice you need to pull before you can push most of
the times.

8.4. Push changes 67

CHAPTER

NINE

MERGE CONFLICTS

When merging branches or commits you can get merge conflicts. Git will try to resolve these, but some conflicts need
to be resolved manually. Git Extensions will show warnings when there is a merge conflict.

9.1 Handle merge conflicts

To solve merge conflicts just click on a warning or open the merge conflict dialog from the menu. A dialog will prompt
showing all conflicts. You can solve a conflict by double-click on a filename.

There are three kinds of conflicts:

File deleted and changed Use modified or deleted file?
File deleted and created Use created or deleted file?
File changed both locally and remotely Start merge tool.

If the file is deleted in one commit and changed in another commit, a dialog will ask to keep the modified file or delete
the file. When there is a conflicting change the merge tool will be started. You can configure the tool you want to use

68

Git Extensions Documentation, Release 2.46

for merge conflicts. The image below shows Perforce P4Merge a free to use merge tool. Git Extensions is packaged
with KDiff3, an open source merge tool.

In the merge tool you will see four versions of the same file:

Base The latest version of the file that exist in both repositories
Local The latest local version of the file
Remote The latest remote version of the file
Merged The result of the merge

Caution: When you are in the middle of a merge the file named local represents your file. When you are in the
middle of a rebase the file named remote represents your file. This can be confusing, so double check if you are in
doubt.

9.1. Handle merge conflicts 69

CHAPTER

TEN

NOTES

Notes can be added to a commit. Notes will be stored separately and will not be pushed. To add a new note choose
add notes in the context menu of the commit information box.

The editor that has been configured in the settings dialog will be used to enter or edit the notes. The Git Extensions
editor is advised.

70

Git Extensions Documentation, Release 2.46

71

CHAPTER

ELEVEN

SUBMODULES

Large projects can be split into smaller parts using submodules. A submodule contains the name, url and revision of
another repository. To create a submodule in an existing git repository you need to add a link to another repository
containing the files of the submodule.

11.1 Manage submodules

The current state of the submodules can be viewed with the Manage submodules function. All submodules are
shown in the list on the left.

72

Git Extensions Documentation, Release 2.46

Add sub-
module

Add a new submodule to the repository

Synchro-
nize

Synchronizes the remote URL configuration setting to the value specified in .gitmodules for the
selected submodule.

Initialize Initialize the selected submodules, i.e. register each submodule name and url found in
.gitmodules into .git/config. The submodule will also be updated.

Update Update the registered submodules, i.e. clone missing submodules and checkout the commit specified
in the index of the containing repository.

11.2 Add submodule

To add a new submodule choose Add submodule in the Manage submodules dialog.

Path to submodule Path to the remote repository to use as submodule.
Local path Local path to this submodule, relative to the root of the current repository.
Branch Branch to track.

11.3 Remove submodule

It is currently not possible to remove a submodule using the Git Extensions user interface. To remove a submodule
you need to manually:

• Delete the relevant line from the .gitmodules file.

• Delete the relevant section from .git/config.

• Run git rm --cached path_to_submodule (no trailing slash).

• Commit and delete the now untracked submodule files.

11.2. Add submodule 73

CHAPTER

TWELVE

MAINTENANCE

In this chapter some of the functions to maintain a repository are discussed.

12.1 Compress Git database

Git will create a lot of files. You can run the Compress git database to pack all small files building up a
repository into one big file. Git will also garbage collect all unused objects that are older then 15 days. When a
database is fragmented into a many small files compressing the database can increase performance.

12.2 Recover lost objects

If you accidently deleted a commit you can try to recover it using the Recover lost objects function. A dialog
will show you all dangling objects and will allow you to review and recover them.

74

Git Extensions Documentation, Release 2.46

Normally Git will not delete files right away when you remove something from your repository. The reason for this is
that you can restore deleted items if you need to. Git will delete removed items when they are older then 15 days and
you run Compress git database.

There are several functions to help you find the lost items. By default Git Extensions will only show commits. To
show all items, just uncheck the Show only commits option. The other options can be checked/unchecked to get
more/less results. Double-click on on item to view the content. When you located the item you want to recover you
can tag it using the Tag selected object button.

Git Extensions also is able to tag all lost objects. Doing this will make all lost objects visible again making it very easy
to locate the commit(s) you would like to recover. After recovering a commit using the Tag all lost commits
button, you can remove all tags using the Delete all LOST_AND_FOUND tags button.

12.2. Recover lost objects 75

Git Extensions Documentation, Release 2.46

12.3 Fix user names

When someone accidentally committed using a wrong username this can be fixed using the Edit .mailmap func-
tion. Git will use the username for an email address when it is set in the .mailmap file.

Fix user name using commit email:

Proper Name <commit@email.xx>

Fix email address using commit email:

12.3. Fix user names 76

Git Extensions Documentation, Release 2.46

<proper@email.xx> <commit@email.xx>

Fix email address and name using commit email:

Proper Name <proper@email.xx> <commit@email.xx>

Fix email address and name using commit name and email:

Proper Name <proper@email.xx> Commit Name <commit@email.xx>

12.4 Ignore files

Git will track all files that are in the working directory. Normally you do not want to exclude all files that are created
by the compiler. You can add files that should be ignored to the .gitignore file. You can use wildcards and regular
expressions. All entries are case sensitive. The button Add default ignoreswill add files that should be ignored
when using Visual Studio.

A short overview of the syntax:

12.4. Ignore files 77

Git Extensions Documentation, Release 2.46

Lines started with # are handled as comments
! Lines started with ! are exclude patterns
[Dd] Characters inside [..] means that 1 of the characters must match
* Wildcard
/ A leading slash matches the beginning of the pathname; for example, /*.c matches cat-file.c but not

mozilla-sha1/sha1.c
/ If the pattern ends with a slash, it is removed for the purpose of the following description, but it would only

find a match with a directory. In other words, foo/ will match a directory foo and paths underneath it, but
will not match a regular file or a symbolic link foo (this is consistent with the way how pathspec works in
general in git).

For more detailed information.

12.4. Ignore files 78

http://www.kernel.org/pub/software/scm/git/docs/gitignore.html

CHAPTER

THIRTEEN

TRANSLATIONS

13.1 Change language

In the settings dialog a translation can be chosen. The translation files are located in a directory located in the Git
Extensions installation directory. The files are readable xml files.

13.2 Translate Git Extensions

The application has a built-in translation tool to help create and edit translations. To open the translation tool choose
Translate in the Help menu.

79

Git Extensions Documentation, Release 2.46

The functions of the translation tool are described in the image below. To contribute any translations you can either
e-mail a patch or send a pull request using github.

13.2. Translate Git Extensions 80

CHAPTER

FOURTEEN

INTEGRATION

During installation you can choose to install the Visual Studio plug-in and shell extensions.

14.1 Visual Studio

There are two options in the context menu on files:

• View the file history by choosing the ‘File history’ option.

• Reset the file changes to the last committed revision.

81

Git Extensions Documentation, Release 2.46

A Git Extensions toolbar allows you to perform the most common actions.

Commit (branch)

Browse

Pull

Push

Stash changes

Settings

Almost all function can be started from the Git menu in Visual Studio.

14.1. Visual Studio 82

Git Extensions Documentation, Release 2.46

14.2 Windows Explorer

The common commands can be started from Windows Explorer using the shell extensions. This option is only avail-
able when Shell Extensions are installed.

14.2. Windows Explorer 83

Git Extensions Documentation, Release 2.46

You can even create or clone a repository in any non git folder.

14.2. Windows Explorer 84

CHAPTER

FIFTEEN

COMMAND LINE

15.1 Git Extensions command line

Most features can be started from the command line. It is recommended to add gitex.cmd to the path when using
from the command line. It is typically stored in the C:\Program Files (x86)\GitExtensions folder.

85

Git Extensions Documentation, Release 2.46

15.1. Git Extensions command line 86

Git Extensions Documentation, Release 2.46

15.1. Git Extensions command line 87

CHAPTER

SIXTEEN

APPENDIX

16.1 Git Cheat Sheet

Action Command
Create new repository $ git init
Create shared repository $ git init —bare —shared=all
Clone repository $ git clone c:/demo1 c:/demo2
Checkout branch $ git checkout <name>
Create branch $ git branch <name>
Delete branch $ git branch -d <name>
Merge branch (from the branch to merge into): $ git merge PDC
Solve conflicts (add –tool=kdiff3 if no mergetool is
specified)

$ git mergetool $ git commit

Create tag $ git tag <name>
Add files/changes (. for all files) $ git add .
Commit added files/changes (–amend to amend to last
commit)

$ git commit –m “Enter commit message”

Discard changes $ git reset –hard
Create patch (-M = detect renames –C = detect copies) $ git format-patch –M –C origin
Apply patch without merging $ git apply c:/patch/01-emp.patch
Merge patch $ git am -–3way —signoff c:/patch/01-emp.patch
Solve conflicts (add –tool=kdiff3 if no mergetool is
specified)

$ git mergetool
$ git am —3way -–resolved

Stash changes $ git stash
Apply stashed changes $ git stash apply
Pull changes (add –rebase to rebase instead of merge) $ git pull c:/demo1 master
Solve conflicts (add –tool=kdiff3 if no mergetool is
specified)

$ git mergetool
$ git commit

Push changes (in branch $ git push c:/demo1 master
master:<new>)

$ git push c:/demo1

Blame $ git blame –M –w <filename>
Help $ git <command> –help

Here are some default names used by Git.

88

Git Extensions Documentation, Release 2.46

Default names
master default branch
origin default upstream repository
HEAD current branch
HEAD^ parent of HEAD
HEAD~4 the great-great grandparent of HEAD

16.2 Menu map

The following image shows GitExtensions’ menu structure at one glance (v2.43):

16.2. Menu map 89

	Git Extensions
	Features
	Video tutorials
	Links

	Getting Started
	Installation
	Installation (Linux)
	Installation (Mac)
	Settings
	Start Page
	Clone repository
	Clone SVN repository
	Clone Github repository
	Create new repository

	Browse Repository
	Commit Log Window
	Searching and Filtering
	Singe file history
	Blame

	Commit
	Commit changes
	Cherry pick commit
	Revert commit
	Stash changes

	Tag
	Create tag
	Delete tag

	Branches
	Create branch
	Checkout branch
	Merge branches
	Rebase branch
	Delete branch

	Patches
	Create patch
	Apply patches

	Remote feature
	Manage remote repositories
	Create SSH key
	Pull changes
	Push changes

	Merge Conflicts
	Handle merge conflicts

	Notes
	Submodules
	Manage submodules
	Add submodule
	Remove submodule

	Maintenance
	Compress Git database
	Recover lost objects
	Fix user names
	Ignore files

	Translations
	Change language
	Translate Git Extensions

	Integration
	Visual Studio
	Windows Explorer

	Command line
	Git Extensions command line

	Appendix
	Git Cheat Sheet
	Menu map

