Git Extensions Documentation
Release 2.46

Contributors

October 08, 2013

CONTENTS

Git Extensions 1
1.1 Features. e e e e e e e e 1
1.2 Videotutorials L e e 1
1.3 LInKS . . . o o e 1
Getting Started 3
2.1 Installation L e e e 3
2.2 Installation (LINUX) o o o e e e e e e e e e e e e 8
2.3 Installation (Mac) e e e e e e e e e e 8
2.4 0 Settings . . . v o i e e e e e e e e e e e e e e e e e e e 9
2.5 StartPageo e e e e 22
2.6 Clone repoSitory v v v v i i i e e e e e e e e e e e e e e e 23
2.7 Clone SVN 1ePOSItOTY . . o v v v v e 24
2.8 Clone Github repoSItOry v v v i i e 24
2.9 Create new repository v vt i e e e e e e e e e e e e e e 25
Browse Repository 26
3.1 Commit Log Window e e e e e e e e 26
3.2 Searchingand Filtering e e e e 34
3.3 Singefilehistory L L e e e e e e e 36
34 Blame. e e 37
Commit 39
4.1 Commitchanges 39
4.2 Cherry pick commit e e 44
4.3 Revert COMMIt o e e e e e e e e e e e 45
4.4 Stashchanges. o e e e e e e 45
Tag 47
510 Create tag . . o v v v o e 47
5.2 Deletetag . . . o v e e e e e e e e e e e e e e e 48
Branches 49
6.1 Createbranch e 49
6.2 Checkoutbranch e 50
6.3 Mergebranches. L e 51
6.4 Rebasebranch e 52
6.5 Deletebranch L e 54
Patches 55

10

11

12

13

14

15

16

7.1 Createpatch e e e e e e e e e e
7.2 Apply patches e e e e e e e e e e

Remote feature

8.1 Manage remote repoOSItOTIES . . . v v v v v v e
82 Create SSHKey o o e e e e e
8.3 Pullchanges e e e e e e
84 Pushchanges o e e

Merge Conflicts
9.1 Handlemergeconflicts L e

Notes

Submodules

11.1 Manage submodules e e e e e e e e e e e e e
11.2 Addsubmodule e e
11.3 Remove submodule e e

Maintenance

12.1 Compress Gitdatabase o v i e e e e e e e e e e
12.2 Recoverlostobjects e
123 FIX USEI NAMES v v v vt it e
12.4 TIgnorefiles o i e e e e

Translations
13.1 Changelanguage L e e e e e e e e e
13.2 Translate Git EXtENSIOns o v i e e e e e e e e

Integration
14.1 Visual Studio oL e e e e e e e
142 Windows Explorer e e

Command line
15.1 GitExtensionscommand line e e

Appendix
16.1 GitCheat Sheet o . e e e e e e e
162 Menumap o i e e e e e e e e e e e e e e e

58
58
59
64
66

68
68

70

72
72
73
73

74
74
74
76
71

79
79
79

81
81
83

85
85

CHAPTER
ONE

GIT EXTENSIONS

Git Extensions is a toolkit aimed at making working with Git under Windows more intuitive (note that Git Extensions
is also available on Linux and Macintosh OS X using Mono). The shell extension will integrate in Windows Explorer
and presents a context menu on files and directories. There is also a Visual Studio plug-in to use Git from the Visual
Studio IDE.

1.1

1.2

Features

Windows Explorer integration for Git

Visual Studio (2005/2008/2010/2012) plug-in for Git

Feature rich user interface for Git

Single installer installs Git, Git Extensions and the merge tool KDiff3
32bit and 64bit support

Runs under Linux or Mac OS X using Mono

Video tutorials

There are video tutorials for some basic functions on YouTube.

1.

AR

1.3

Clone

Commit changes

Push changes

Pull changes

Handle merge conflicts

Install Git Extensions on Ubuntu 11.04

Links

See the following links for the Git Extensions download page, source code and documentation.

* Download page: https://sourceforge.net/projects/gitextensions/

http://www.mono-project.com
http://www.youtube.com/watch?v=TlZXSkJGKF8
http://www.youtube.com/watch?v=B8uvje6X7lo
http://www.youtube.com/watch?v=JByfXdbVAiE
http://www.youtube.com/watch?v=9g8gXPsi5Ko
http://www.youtube.com/watch?v=Kmc39RvuGM8
http://www.youtube.com/watch?v=zk2MMUQuW4s
https://sourceforge.net/projects/gitextensions/

Git Extensions Documentation, Release 2.46

* Source Code: https://github.com/gitextensions/gitextensions

* Source Code Issue tracker: https://github.com/gitextensions/gitextensions/issues

* Documentation: https://github.com/gitextensions/GitExtensionsDoc

* Documentation Issue tracker: https://github.com/gitextensions/GitExtensionsDoc/issues
» Wiki: https://github.com/gitextensions/gitextensions/wiki

Please feel free to raise any issues with Git Extensions or its documentation at the appropriate Issue tracker link as
shown above.

1.3. Links 2

https://github.com/gitextensions/gitextensions
https://github.com/gitextensions/gitextensions/issues
https://github.com/gitextensions/GitExtensionsDoc
https://github.com/gitextensions/GitExtensionsDoc/issues
https://github.com/gitextensions/gitextensions/wiki

CHAPTER
TWO

GETTING STARTED

This section is primarily written for Windows users. There are extra sections about installing Git Extensions on Linux
and Mac OS X.

2.1 Installation

There is a single click installer that installs MsysGit, Kdiff3 and Git Extensions. The installer will detect if 32bit
and/or 64bit versions should be installed. The installer can be found here.

(341 Git Extensions 2.43 Setu EENEE)
P

Welcome to the Git Extensions 2.43
Setup Wizard

The Setup Wizard allows you to change the way Git
Extensions 2.43 features are installed on your
computer or to remove it from your computer. Click
Mext to continue or Cancel to exit the Setup Wizard.

Back [Mext J | Cancel

http://code.google.com/p/gitextensions/

Git Extensions Documentation, Release 2.46

i ™
ﬁ Git Extensions 2.43 Setup [e |—*—J
Required Software e l—
Install the additional software required to run Git Extensions ‘5 d
MsysGit 1.8.0
MsysGit is the native version of Git for Windows that .
powers Git Extensions. You must have a version of [nstal MsysGit
MsysGit installed for Git Extensions to function property.
KDiff3 0.9.97
KDiff is a diff/merge tool that Git Extensions calls upon .
when it encounters a merge conflict. If you already have [Install KDiff
a diff/merge tool that works with Git then you don't
need to install this.
Back Mext | | Cancel
e =

Figure 2.1: Git Extensions depends heavily on MsysGit. When MsysGit is not installed, ensure the “Install MsysGit”
checkbox is checked. Kdiff3 is optional, but is advised as a merge tool.

2.1. Installation 4

Git Extensions Documentation, Release 2.46

)
) Git Extensions 243 Setup (o= o S

Destination Folder - E

Click Mext to install to the default folder or click Change to choos... G

Install Git Extensions 2.43 to:

|E:\Prugmm Files (x86)\GitExtensions),

Back MNext Cancel

2.1. Installation 5

Git Extensions Documentation, Release 2.46

)
) Git Extensions 2.43 Setup ESREE

Custom Setup i E

Select the way you want features to be installed. (5

Click the icons in the tree below to change the way features wil be installed.

(- =) = | Plugins

--------- X_~| Extra application icons

--------- =0 ~ | Custaom merge scripts

[+ =) -| Speling dictionaries

[+ &3 = | Translations

--------- = - | Windows Explorer integration

--------- - X _~| Visual Studio 2005 integration

--------- = ~| Visual Studio 2008 integration 5

| Browse...

Back MNext | Cancel

Figure 2.2: Choose the options to install.

2.1. Installation 6

Git Extensions Documentation, Release 2.46

=

rﬁ Git Extensions 2.43 Setup [e |-""'—‘

Select the 55H client that will be used by Git Extensions ‘5

Select SSH Client e la

) OpenSSH
OpenSSH is the Git default.

@ PuTTY (plink.exe)
PuTTY has better integration with Windows.

Back]| Mext | | Cancel

Figure 2.3: Choose the SSH client to use. PuTTY is the default because it has better Windows integration.

2.1. Installation 7

Git Extensions Documentation, Release 2.46

rﬁ Git Extensions 2.43 Setup = ilﬁ-‘l

F
Ready to install Git Extensions 2.43 a d

Click Install to beqin the instalation. Click Back to review or change any of
your instaliation settings. Click Cancel to exit the wizard.

Back L Hy Install Cancel

2.2 Installation (Linux)

You can watch this video as a starting point: Install Git Extensions on Ubuntu 11.04

For further help go to https://groups.google.com/forum/?fromgroups=#!forum/gitextensions

2.3 Installation (Mac)

First, make sure you have the latest mono version on your Mac. This section will cover installation of mono 2.10.11
on a Mac.

1. Download mono latest version. You can always check for this here: http://www.go-mono.com/mono-
downloads/download.html

. After you have completed the download, you will see a .dmg file. Double click it to open the package.
. Inside the .dmg file you will have MonoFramework-{ version}.pkg. Double click to start the installation process.

. Follow the wizard until it’s completion.

| L S I

. If everything went okay, you should open your terminal and check mono version:

2.2. Installation (Linux) 8

http://www.youtube.com/watch?v=zk2MMUQuW4s
https://groups.google.com/forum/?fromgroups=#!forum/gitextensions
http://www.go-mono.com/mono-downloads/download.html
http://www.go-mono.com/mono-downloads/download.html

Git Extensions Documentation, Release 2.46

$ mono —--version
Mono JIT compiler version 2.10.11 (mono-2-10/2baeee2 Wed Jan 16 16:40:16 EST 2013)
Copyright (C) 2002-2012 Novell, Inc, Xamarin, Inc and Contributors. www.mono-project.com

TLS: normal

SIGSEGV: normal

Notification: kqgqueue

Architecture: x86

Disabled: none

Misc: softdebug

LLVM: yes (2.9svn—-mono)

GC: Included Boehm (with typed GC)

6. Now download GitExtensions latest version from https://code.google.com/p/gitextensions/downloads/list. Re-
member to select the appropriate package otherwise you could have problems.

7. Browse into the folder where you extracted the package and just run mono command, like the example below:

S mono GitExtensions.exe

This is the minimal setup you need in order to run Git Extensions.

2.4 Settings

All settings will be verified when Git Extensions is started for the first time. If Git Extensions requires any settings to
be changed, the Settings dialog will be shown. All incorrect settings will be marked in red. You can ask Git Extensions
to try to fix the setting for you by clicking on it. When installing Git Extensions for the first time (and you do not have
Git already installed on your system), you will normally be required to configure your username and email address.

The settings dialog can be invoked at any time by selecting Sett ings from the Settings menu option.

2.4. Settings 9

https://code.google.com/p/gitextensions/downloads/list

Git Extensions Documentation, Release 2.46

Checklist
= Git Extenzions The checklist below validates the basic settings needed for GitExtensions to work properly,

Checklist . X

Git 1.8.1 is found on your computer,
Git
Git Extenzions A username and an email address are configured,
Appearance KDifF3 is configured as mergetoal,
Colors

KDiff3 is configured as difftoal,
Start Page e
Global zettings Shell extensions registered properly,

Local zettings
S5H

Scripts GitExtensions is properly registered.,

Linw tools ¢sh) Found on your computer,

Hotkeys 55H client PUTTY is configured propetly.

Shell extension
B sdvanced The configured language is English.

+- Plugins Git credential helper is installed.

[] Check settings at startup (disables autamatically if all settings are correct) Save and rescan

Changes made on this page will be saved instantly, ’

Thus the Cancel and Discard button will have no effect for this page. Ok] ’ Cancel] [Discard] ’ Apply]

The following buttons are always available on any page of the Settings dialog. Sometimes the Cancel and Discard
buttons have no effect for the page - this will be noted on the page in the area next to the buttons.

Button Description

OK Save any entered changes made in any settings page and close the Settings dialog.

Cancel Any entered changes in any settings page are not saved. The Settings dialog is closed.

Discard | Any entered changes in any settings page are discarded i.e. they are reset back to their original values.
Apply Any entered changes in any settings page are saved.

All settings that are specific to Git Extensions will be stored in the Windows registry. The settings that are used by
Git are stored in the configuration files of Git. The global settings are stored in a file called . gitconfig in the user
directory. The local settings are stored in the . git \config file of the repository.

2.4.1 Checklist

This page is a visual overview of the minimal settings that Git Extensions requires to work properly. Any items
highlighted in red should be configured by clicking on the highlighted item.

This page contains the following settings and buttons.

Setting Description

Check settings at startup Forces Git Extensions to re-check the minimal set of required settings the

(disables automatically if all next time Git Extensions is started. If all settings are ‘green’ this will be

settings are correct) automatically unchecked.

Save and rescan Button Saves any setting changes made and re-checks the settings to see if the
minimal requirements are now met.

2.4. Settings 10

Git Extensions Documentation, Release 2.46

2.4.2 Git

This page contains the settings needed to access git repositories. The repositories will be accessed using external tools.
For Windows usually MsysGit or cygwin are used. Git Extensions will try to configure these settings automatically.

Group

Setting

Description

Git

Path to Linux
tools (sh).
Leave empty
when it is in the
path.

Command used to run git (git.cmd or git.exe)

A few linux tools are used by Git Extensions.
When MsysGit is installed, these tools are
located in the bin directory of MsysGit. Use
the Browse button to find the directory on
your file system.

Needed for Git Extensions to run Git
commands. Set the full command used to run
git (MsysGit or cygwin). Use the Browse
button to find the executable on your file
system.

Environment

Change HOME Button

This button opens a dialog where the HOME
directory can be changed.

The global configuration file used by git will be put in the HOME directory. On some systems the home directory is
not set or is pointed to a network drive. Git Extensions will try to detect the optimal setting for your environment.
When there is already a global git configuration file, this location will be used. If you need to relocate the home
directory for git, click the Change HOME button to change this setting. Otherwise leave this setting as the default.

2.4.3 Git Extensions

This page contains general settings for Git Extensions.

2.4. Settings

11

Git Extensions Documentation, Release 2.46

Group Setting Description
Show repository status in browse dialog When enabled, the number of pending
(number of changes in toolbar, restart commits are shown on the toolbar as a
required) figure in parentheses next to the Commit
Performance

Show current working
dir changes in revision
graph

When enabled, two extra revisions are
added to the revision graph. The first
shows the current working directory
status. The second shows the staged
files. This option can cause slowdowns
when browsing large repositories.

button. Git Extensions must be stopped
and restarted to activate changes to this
option.

Use FileSystemWatcher
to check if index is
changed

Using the FileSystemWatcher to check
index state improves the performance in
some cases. Turn this off if you
experience refresh problems in commit
log.

Show stash count on
status bar in browse
window

When you use the stash a lot, it can be
useful to show the number of stashed
items on the toolbar. This option causes
serious slowdowns in large repositories
and is turned off by default.

Check for uncommitted
changes in checkout
branch dialog

Git Extensions will not allow you to
checkout a branch if you have
uncommitted changes on the current
branch. If you select this option, Git
Extensions will display a dialog where
you can decide what to do with
uncommitted changes before swapping
branches.

Limit number of
commits that will be
loaded in list at start-up

This number specifies the maximum
number of commits that Git Extensions
will load when it is started. These
commits are shown in the Commit Log
window. To see more commits than are
loaded, then this setting will need to be
adjusted and Git Extensions restarted.

Behadomsole window
when executing git
process

Close Process dialog when process is
succeeded

Git Extensions uses command line tools
to access the git repository. In some
environments it might be useful to see
the command line dialog when a process
is executed. An option on the command
line dialog window displayed allows this
setting to to be turned off.

When a process is finished, close the
process dialog automatically. Leave this
option off if you want to see the result of
processes. When a process has failed, the
dialog will automatically remain open.

Use patience diff
algorithm

Use the Git ‘patience diff” algorithm
instead of the default. This algorithm is
useful in situations where two files have
diverged significantly and the default
algorithm may become ‘misaligned’,

2.4. Settings

T+ + tatall I} Hiat
TCSUTHITE T a totdally tHIuS aDTCCOTHITCT

file.

12

Show errors when
staging files

If an error occurs when files are
staged(in the Commit dialog), then the
process dialog showing the results of the

Git Extensions Documentation, Release 2.46

2.4.4 Appearance

This page contains settings that affect the appearance of the application.

2.4. Settings 13

Git Extensions Documentation, Release 2.46

Show current branch in Visual Studio

Determines whether or not the cur-
rently checked out branch is dis-
played on the Git Extensions toolbar
within Visual Studio.

the commit tab on the main Commit
Log window.

Group Setting Description ‘
Show relative date instead of full date | Show relative date, e.g. 2 weeks ago,
instead of full date. Displayed on
General

Auto scale user interface when high
dpi is used

Automatically resize controls and
their contents according to the current
system resolution of the display, mea-
sured in dots per inch (DPI).

Truncate long filenames

This setting affects the display of file-
names in a component of a window
e.g. in the Diff tab of the Commit
Log window. The three options that
can be selected are:

None: no truncation occurs; a
horizontal scroll bar is used to see
the whole filename.

Compact: no horizontal scroll bar.
Filenames are truncated at both start
and end to fit into the width of the
display component.

Trimstart: no horizontal scroll bar.
Filenames are truncated at the start
only.

Author images

Image size

Get author image from gravatar.com

The display size of the user image.

If checked, gravatar will be accessed
to retrieve an image for the author of
commits. This image is displayed on
the commit tab on the main Commit
Log window.

Cache images

The number of days to elapse before
gravatar is checked for any changes
to an authors image.

No image service

If the author has not set up their own
image, then gravatar can return an
image based on one of these services.

Clear image cache button

Clear the cached avatars.

Fonts

Application font

Code font

Change the font used on Git Exten-
sions windows and dialogs.

Change the font used for the display
of file contents.

Language

Dictionary for spelling checker

Language (restart required)

Choose the dictionary to use for the
spelling checker in the Commit dia-
log.

Choose the language for the Git Ex-
tensions interface.

2.4. Settings

14

http://gravatar.com/

Git Extensions Documentation, Release 2.46

2.4.5 Colors

This page contains settings to define the colors used in the application.

Group Setting Description
Multicolor branches Displays branch commits in different colors if

checked. If unchecked, all branches are shown in
the same color. This color can be selected.

Striped When a new branch is created from an

WRancdion graplexisting branch, the common part of the

change history is shown in a ‘hatch’ pattern.

Draw Outlines branch commits in a black border

branch if checked.

borders

Draw non Show commit history in gray for branches

relatives not related to the current branch.

graph gray

Draw non Show commit text in gray for branches not

relatives related to the current branch.

text gray

Color tag Color to show tags in.

Color Color to show branch names in.

branch

Color Color to show remote branch names in.

remote

branch

Color other
label

Color to show other labels in.

Application 1

Icon color

(I)(I:lon style

Changes color of the selected icons.

Change icons. Useful for recognising various open
instances.

Color removed line

Highlight color for lines that have been removed. \

Color Highlight color for lines that have been
ddiitdrbinec Viemdded.

Color Highlight color for characters that have
removed been removed in lines.

line high-

lighting

Color Highlight color for characters that have
added line been added in lines.

highlight-

ing

Color Highlight color for a section.

section

2.4.6 Start Page

This page allows you to add/remove or modify the Categories and repositories that will appear on the Start Page when
Git Extensions is launched. Per Category you can either configure an RSS feed or add repositories. The order of both
Categories, and repositories within Categories, can be changed using the context menus in the Start Page. See Start
Page for further details.

2.4. Settings

15

Git Extensions Documentation, Release 2.46

Setting Description

Categories Lists all the currently defined Categories. Click the Add button to add a new empty Category. The
default name is ‘new’. To remove a Category select it and click Remove. This will delete the
Category and any repositories belonging to that Category.

Caption This is the Category name displayed on the Start Page.

Type Specify the type: an RSS feed or a repository.

RSS Feed Enter the URL of the RSS feed.

Path/Title/Descijoti@ach repository defined for a Category, shows the path, title and description. To add a new
repository, click on a blank line and type the appropriate information. The contents of the Path
field are shown on the Start Page as a link to your repository if the Title field is blank. If the Title
field is non-blank, then this text is shown as the link to your repository. Any text in the
Description field is shown underneath the repository link on the Start Page.

An RSS Feed can be useful to follow repositories on GitHub for example. See this page on GitHub:

https://help.github.com/articles/viewing-your-feeds. You can also follow commits on public GitHub repositories by

1. In your browser, navigate to the public repository on GitHub.

A I

Select the branch you are interested in.
Click on the Commits tab.
You will find a RSS icon next to the words “Commit History”.

Copy the link

6. Paste the link into the RSS Feed field in the Settings - Start Page as shown above.

Your Start Page will then show each commit - clicking on a link will open your browser and take you to the commit

on GitHub.

2.4.7 Global Settings

This page contains the following global Git settings. These settings will affect all repositories.

2.4. Settings

16

https://help.github.com/articles/viewing-your-feeds

Git Extensions Documentation, Release 2.46

Group Setting Description ‘
User name User name shown in commits and patches. ‘
User User email shown in commits and patches.
email
Editor Editor that git.exe opens (e.g. for editing commit
message). This is not used by Git Extensions,
only when you call git.exe from the command
line. By default Git will use the built in editor.
Merge- Merge tool used to solve merge conflicts. Git
tool Extensions will search for common merge tools
on your system.
Path to Path to merge tool. Git Extensions will search for
merge- common merge tools on your system.
tool
Merge- Command that Git uses to start the merge tool.
tool Git Extensions will try to set this automatically
com- when a merge tool is chosen. This setting can be
mand left empty when Git supports the mergetool (e.g.
kdiff3).
Keep Check to save the state of the original file before
backup modifying to solve merge conflicts. Refer to Git
(.orig) configuration setting
after ‘mergetool.keepBackup .
merge
Difftool Diff tool that is used to show differences between
source files. Git Extensions will search for
common diff tools on your system.
Path to The path to the diff tool. Git Extensions will
difftool search for common diff tools on your system.
DiffTool | Command that Git uses to start the diff tool. This
com- setting should only be filled in when Git doesn’t
mand support the diff tool.
Path to A path to a file whose contents are used to
commit pre-populate the commit message in the commit
template | dialog.
Line Checkout/commit radio buttons Choose how git should handle line endings
endings when checking out and checking in files. Refer
to https://help.github.com/articles/dealing-with-
line-endings#platform-all
Files content encoding The default encoding for file contents.

2.4.8 Local Settings

This page contains the Git settings for a repository. These settings are only required if you wish to override the global
Git settings for this specific repository.

2.4. Settings

17

https://help.github.com/articles/dealing-with-line-endings#platform-all
https://help.github.com/articles/dealing-with-line-endings#platform-all

Git Extensions Documentation, Release 2.46

Group Setting Description ‘
User name User name shown in commits and patches. ‘
User User email shown in commits and patches.
email
Editor Editor that git.exe opens (e.g. for editing commit
message). This is not used by Git Extensions,
only when you call git.exe from the command
line. By default Git will use the command line
text editor vi.
Merge- Merge tool used to solve merge conflicts. Git
tool Extensions will search for common merge tools
on your system.
Keep Check to save the state of the original file before
backup modifying to solve merge conflicts. Refer to Git
(.orig) configuration setting
after ‘mergetool.keepBackup .
merge
Line Checkout/commit radio buttons Choose how git should handle line endings
endings when checking out and checking in files. Refer
to https://help.github.com/articles/dealing-with-
line-endings#platform-all
Files content encoding Choose the encoding you want GitExtensions to
use.
2.4.9 SSH

This page allows you to configure the SSH client you want Git to use. Git Extensions is optimized for PuTTY. Git
Extensions will show command line dialogs if you do not use PuTTY and user input is required (unless you have
configured SSH to use authentication with key instead of password). Git Extensions can load SSH keys for PuTTY
when needed.

Group Setting Description
PuTTY radio button Use PuTTY as SSH
Specify which ssh client to use client.
OpenSSH radio | Use OpenSSH as SSH client.
button
Other ssh client | Use another SSH client. Enter the path to the SSH client you wish to
use.
Path to plink.exe Enter the path to the
. plink.exe
Configure PuTTY executable.
Path to puttygen | Enter the path to the puttygen.exe executable.
Path to pageant | Enter the path to the pageant.exe executable.
Automatically If an SSH key has been configured, then when accessing a remote
start repository the key will automatically be used by the SSH client if this
authentication is checked.

2.4.10 Scripts

This page allows you to configure specific commands to run before/after Git actions or to add a new command to the
User Menu. The top half of the page summarises all of the scripts currently defined. If a script is selected from the
summary, the bottom half of the page will allow modifications to the script definition.

2.4. Settings 18

https://help.github.com/articles/dealing-with-line-endings#platform-all
https://help.github.com/articles/dealing-with-line-endings#platform-all

Git Extensions Documentation, Release 2.46

A hotkey can also be assigned to execute a specific script. See Hotkeys.

Setting Description

Add Button Adds a new script. Complete the details in the bottom half of the screen.
Remove Button Removes a script.

Up/Down Arrows Changes order of scripts.

Name The name of the script.

Enabled checkbox If checked, the script is active and will be performed at the appropriate time (as

determined by the On Event setting).

Ask for confirmation
checkbox

If checked, then a popup window is displayed just before the script is run to confirm
whether or not the script is to be run. Note that this popup is not displayed when the
script is added as a command to the User Menu (On Event setting is
ShowInUserMenuBar).

Add to revision grid
context menu

on a line in the Commit Log page.

If checked, the script is added to the context menu that is displayed when right-clicking

checkbox

Command Enter the command to be run. This can be any command that your system can run e.g.
an executable program, a .bat script, a Python command, etc. Use the *Browse button
to find the command to run.

Arguments Enter any arguments to be passed to the command that is run. The *Help * button
displays items that will be resolved by Git Extensions before executing the command
e.g. {cBranch} will resolve to the currently checked out branch, {UserInput} will
display a popup where you can enter data to be passed to the command when it is run.

On Event Select when this command will be executed, either before/after certain Git commands,

or displayed on the User Menu bar.

2.4.11 Hotkeys

This page allows you to define keyboard shortcuts to actions when specific pages of Git Extensions are displayed. The
HotKeyable Items identifies a page within Git Extensions. Selecting a Hotkeyable Item displays the list of commands
on that page that can have a hotkey associated with them.

The Hotkeyable Items consist of the following pages

1. Commit: the page displayed when a Commit is requested via the ‘Commit ' User Menu button or the
‘Commands/Commit * menu option.

2
3
4,
5

. Browse: the Commit Log page (the page displayed after a repository is selected from the Start Page).
. RevisionGrid: the list of commits on the Commit Log page.
FileViewer: the page displayed when viewing the contents of a file.

. FormMergeConflicts: the page displayed when merge conflicts are detected that need correcting.

6. Scripts: shows scripts defined in Git Extensions and allows shortcuts to be assigned. Refer Scripts.

Setting Description

Hotkey After selecting a Hotkeyable Item and the Command, the current keyboard shortcut
associated with the command is displayed here. To alter this shortcut, just press the
keyboard combination required. This field will be updated to reflect the keys pressed.

Apply button Click to apply the entered keyboard combination to the Command.

Clear button Sets the keyboard shortcut for the Command to ‘None’.

Reset all Hotkeys Resets all keyboard shortcuts to the defaults (i.e. the values when Git Extensions was first

to defaults button installed).

2.4. Settings

19

Git Extensions Documentation, Release 2.46

2.4.12 Shell Extension

When installed, Git Extensions adds items to the context menu when a file/folder is right-clicked within Windows
Explorer. One of these items is ‘Git Extensions‘ from which a further(cascaded) menu can be opened. This

settings page identifies what items will appear on that cascaded menu.

Note: what is displayed also depends on what item is being right-clicked in Windows Explorer; a file or a folder(and
whether the folder is a Git repository or not).

2.4.13 Advanced

This page allows advanced settings to be modified. Clicking on the ‘+’ symbol on the tree of settings will display
further settings. Refer Confirmations.

Group

Setting

Description

Checkout

Use last chosen
“local changes”
action as
default action.

Always show checkout dialog

This setting works in conjunction with the ‘Git
Extensions/Check for uncommitted changes in
checkout branch dialog’ setting. If the ‘Check
for uncommitted changes’ setting is checked,
then the Checkout Branch dialog is shown only
if this setting is unchecked. If this setting is
checked, then no dialog is shown and the last
chosen action is used.

Always show the Checkout Branch dialog
when swapping branches. This dialog is
normally only shown when uncommitted
changes exist on the current branch

General

Don’t show help images

In the Pull dialog, images can be displayed
to explain different scenarios. If checked,
these Help images will not be displayed.

2.4.14 Confirmations

This page allows you to turn off certain confirmation popup windows.

2.4. Settings

20

Git Extensions Documentation, Release 2.46

Group Setting Description

Amend last commit

Don’t ask to confirm to

Apply stashed | In the Pull dialog, if *Auto stash is checked,
changes then any changes will be stashed before the pull is
performed. Any stashed changes are then
re-applied after the pull is complete. If this setting
is checked, the stashed changes are applied with no
confirmation popup.

If checked, do not display the popup
warning about the rewriting of history
when you have elected to amend the last
committed change.

Push a new When pushing a new branch that does not exist on
branch for the | the remote repository, a confirmation popup will
remote normally be displayed. If this setting is checked,

then the new branch will be pushed with no
confirmation popup.

Add a tracking | When you push a local branch to a remote and it

reference for doesn’t have a tracking reference, you are asked to
newly pushed confirm whether you want to add such a reference.
branch If this setting is checked, a tracking reference will

always be added if it does not exist.

2.4.15 Plugins

Plugins provide extra functionality for Git Extensions.

Plugin

Setting

Enabled. (trpe/false)

This plugin is used by Git Extensions to check for updates to the Git Extensions s
Enable or disable the check.

Chsck overy B days

Check for updates after this number of days have elapsed since the last check.

Last check (yyyy/M/dd)

Shows date of the last check.

This plugin proposes (confirmation required) that you automatically build subme
Enter true to enable the plugin, or false to disable.

Epabled (true/false), .

Enter the path to the msbuild.exe executable.

msbuild.exe arguments

Enter any arguments to msbuild.

Create local tracking branches

This plugin will create local tracking branches for all branches on a remote repo:

IDxdbtte gl tteremudiessolder than (days)

This plugin allows you to delete obsolete branches i.e. those branches that are ful
Select branches created greater than the specified number of days ago.

Branch where all branches should be merged

The name of the branch where a branch must have been merged into to be considered

Fimhiarze LSy soer than (Mb)

Finds large files in the repository and allows you to delete them.
Specify what size is considered a ‘large’ file.

Gerrit Code Review

The Gerrit plugin provides integration with Gerrit for GitExtensions. This plugi

(S}Atlllltlfleoken

This plugin will create an OAuth token so that some common GitHub actions car
The token generated and retrieved from GitHub.

Impact Graph This plugin shows in a graphical format the number of commits and counts of ch
This plugin provides various statistics (and a pie chart) about the current Git re
ode files Specifies extensions of files that are considered code files.

fatictiog

Directories to ignore (EndsWith)

Ignore these directories when calculating statistics.

Ignore submodules (true/false)

Ignore submodules when calculating statistics.

Rawhree “gource”

Gource is a software version control visualization tool.
Enter the path to the gource software.

2.4. Settings

21

Git Extensions Documentation, Release 2.46

Table 2.1 - ¢

Plugin Setting
Arguments Enter any arguments to gource.

This plugin can set/unset the value for the http.proxy git config file key as per the
Username The user name needed to access the proxy.
Proxyobdvitcher The password attached to the username.
HttpProxy Proxy Server URL.
HttpProxyPort Proxy Server port number.
Release Notes Generator This plugin will generate ‘release notes’. This involves summarising all commits |

2.5 Start Page

The start page contains the most common tasks, recently opened repositories and favourites. The left side of the start
page (Common Actions and Recent Repositories) is static. The right side of the page is where favourite repositories

can be added, grouped under Category headings.

n
% Git Extensions

o e |

File Gt Cormmands Remotes Github Submodules

L - =§i Eranches:

Open repository
Clone repository
Clene SVM repository
Clone Github repository
I Create new repository

1 4 C\documents\tmp\GitExtensionsDoc!,
45 C\documents\doc\GitExtensionsDoch, master

Develop
Donate
Translate

lssues

Plugins Settings Help

- G- | Filter: &-

Chwampwwwhlnterbasel, master

ChprogrammedirtQthProjects\Roboty, master

Chdocuments\code\projects\LaserGame' master

Chdocuments\code\projects\Crypth, master

=)

l_

Gi+

Recent Repositories can be moved to favourites using the repository context menu. Choose Move to category
/ New category to create a new category and add the repository to it, or you can add the repository to an existing
category (e.g. ‘Currents’ as shown below).

2.5. Start Page

22

Git Extensions Documentation, Release 2.46

ﬁ'i Chdocumentsitmp\ GitExtensiseelio=t

& C\documents\doc\GitExtens

Move to category k m Currents

Move up MNew category

Move down
Remove
Edit

Show current branch

A context menu is available for both the category and the repositories listed underneath it.

Entries on Category context menu

Move Move the category (and any repositories under it) higher on the page.
Up

Move Move the category (and any repositories under it) lower on the page.
Down

Remove | Remove the category (and any repositories under it) from the page. Note: Git repositories are not
physically removed either locally or remotely.

Edit Shows the Start Page settings window where both category and repository details can be modified.
See Start Page.

Entries on repository context menu

Move to Move the repository to a new or existing category.

category

Move up Move the repository higher (within the category).

Move down Move the repository lower (within the category).

Remove Remove the repository from the category. Note: the repository is not physically removed either
locally or remotely.

Edit Shows the Start Page settings window where both category and repository details can be

modified. See Start Page.

Show current
branch

Toggles the display of the branch name next to the repository name. This identifies the currently
checked out branch for the repository.

To open an existing repository, simply click the link to the repository under Recent Repositories or within the Cate-
gories that you have set up, or select Open repository (from where you can select a repository to open from your local

file system).

To create a new repository, one of the following options under Common Actions can be selected.

2.6 Clone repository

You can clone an existing repository using this option. It displays the following dialog.

2.6. Clone repository 23

Git Extensions Documentation, Release 2.46

i ™
K Clone i “ — ﬁ
Repository to clone: git://github.com/martingt/GitEdenzionsDoc.qgit - Browse

Destination: Chdecumentsitmp -

Subdirectory to create: GitExtensionsDoc

Branch: master i

The repository will be cloned to a new directory located here:
Chdocumentsitmph GitEBxtensionsDoc (Mew directony)

Repository type
@ Personal repository

() Public repository, no working dir (--bare)

Initialize all submedules

| Load SSH key Clone

e

The repository you want to clone could be on a network share or could be a repository that is accessed through an
internet or intranet connection. Depending on the protocol (http or ssh) you might need to load a SSH key into PuTTY.
You also need to specify where the cloned repository will be created and the initial branch that is checked out. If the
cloned repository contains submodules, then these can be initialised using their default settings if required.

There are two different types of repositories you can create when making a clone. A personal repository contains
the complete history and also contains a working copy of the source tree. A central repository is used as a public
repository where developers push the changes they want to share with others to. A central repository contains the
complete history but does not have a working directory like personal repositories.

2.7 Clone SVN repository

You can clone an existing SVN repository using this option, which creates a Git repository from the SVN repository
you specify. For further information refer to the Pro Git book.

2.8 Clone Github repository

This option allows you to
1. Fork a repository on GitHub so it is created in your personal space on GitHub.
2. Clone any repositories on your personal space on GitHub so that it becomes a local repository on your machine.

You can see your own personal repositories on GitHub, and also search for repositories using the Search for
repositories tab.

2.7. Clone SVN repository 24

http://git-scm.com/book/en/Git-and-Other-Systems-Migrating-to-Git

Git Extensions Documentation, Release 2.46

Github: Remote repository fork and clone g@

Iy repositories | Search for repositories

Mame Is fork | # Forks Private

GitExtensionsDoc fes 0 Mo

If wou want to fork a repository
owhed by somebody else, go to the
Search for repositories tab.

Clane
Destination folder:
|C:\Ducuments and Settings\someseriy Ducume| [Browse...]
Create directory: Add remote as:

2.9 Create new repository

When you do not want to work on an existing project, you can create your own repository using this option.

i 4
ﬂ Initialize new repository ﬁ

Directory Chdocumentsidod\ GitExtensionsDoc - [Browse l

Repository type

@ Personal repository

(") Central repository, no working dir (--bare --shared=all) ’ Initialize l

e

Select a directory where the repository is to be created. You can choose to create a Personal repository or a Central
repository.
A personal repository looks the same as a normal working directory but has a directory named . git at the root level

containing the version history. This is the most common repository.

Central repositories only contain the version history. Because a central repository has no working directory you cannot
checkout a revision in a central repository. It is also impossible to merge or pull changes in a central repository. This
repository type can be used as a public repository where developers can push changes to or pull changes from.

2.9. Create new repository 25

CHAPTER
THREE

BROWSE REPOSITORY

You can browse a repository by starting Git Extensions and selecting the repository to open from the Start Page. The
Commit Log window is then displayed, which is the main window in Git Extensions. You can also open this window
from the shell extensions and from the Visual Studio IDE.

3.1 Commit Log Window

The Commit Log window consists of a standard Windows Menu Bar, a Toolbar and the main window, which is split
into two parts

¢ the commit history and graph that shows branches and merges

¢ three Tabs: Commit, File tree and Diff that display information about the currently highlighted commit(s) in the
commit history

The commit history shows every commit to the repository (or the number of commits specified by the Git Extensions
Setting that limits the number of commits, whichever is the lower).

26

Git Extensions Documentation, Release 2.46

s — B
v/ GitExtensionsDoc (master) - Git Extensions [E=REERr
File Git Commands Remotes Github Submodules Plugins Settings Help
"'c?g @ + Chdocuments\doc\GitExtensionsDoc, = master - % - @ Commit & - @ = EI[EP Branches: - {é}v Filter: = =
p master [» origin/master | Add and partially update view commit log part martingt 2 minutes ago i
Add clo pository p q 0 go L
Add new repository part martingt 12 minutes ago
f Add a progress file martingt 15 minutes ago
Add appearance screen martingt 23 minutes ago
Complete git extensions setting table martingt 2 hours ago
Start git extensions setting table martingt 16 hours ago
Set copyrights martingt 16 hours ago
&) Commit | [Filetree | +++ Diff (A: parent --» B: selection)
P4 progress.md 1 diff --git a/progress.md b/progress.md -
y‘sourcafgetting_started.rst 2 index 2dd0f07..312cacc 100644
=+ scurcefimages/clone.png 3 --- a/progress.md

4 +++ b/progress.md

5 @@ -8,5 +8,5 @@ Progress

& - [x] 2.1 In=stall

Settings

Start Page

Clone existing repository
Clone existing repository
Create new repository

I

I

=
LIS I S R I
LU S SR P

4 I » H

3.1.1 Toolbar

The Toolbar consists of a number of buttons and text fields as described below. The items on the Toolbar and their
positions are fixed and are not user-configurable.

=
=

=

Refresh, Refresh (Repository is ‘dirty’)

This is the first button on the toolbar and you will see one of the above icons. Its function is to force Git
Extensions to look at the Git repository and refresh itself based on any commits, index changes etc. that
have been done outside of the Git Extensions GUI (e.g. via the command line).

Note: the ‘dirty’ icon will only be shown for index changes if you have enabled the Git Extensions ‘Use
FileSystemWatcher’ setting.

Alternatives to this button:
e pressing the F'5 key

e selecting File — Refresh from the Menu Bar.

Go to superproject TODO

Refer to the Submodules chapter for further information.

3.1. Commit Log Window 27

Git Extensions Documentation, Release 2.46

it Extensions Documenkaktion -

Change working directory

This button displays the repository that Git Extensions is currently working with. Clicking on this button
will display a dropdown menu where you can

* swap to recent repositories you have accessed

 open the Open local repository dialog to search for a local repository

* configure this dropdown menu

Alternatives to this button:

* pressing the Ct r1+0 key combination to open the Open local repository dialog

* selecting File — Open from the Menu Bar to open the Open local repository dialog

* selecting File — Close from the Menu Bar to close this repository and return you to the Start Page
where a new repository can be selected

* selecting File — Recent Repositories from the Menu Bar where a list of recent repositories will be

presented

Configuring this dropdown menu will present you with the following configuration options:

Group Setting Description
Maximum number of most Sets the maximum number of recent repositories.
recent repositories

Sort most Sorts entries in Most recent
recent repositories combobox in
repositories alphabetic order.

alphabeti-

cally

Sort less Sorts entries in Less recent
recent repositories combobox in
repositories alphabetic order.

alphabeti-

cally

Shortening str3

Do not shorten
ategy

Do not shorten the repository path as shown on the
toolbar button.

The most Displays the last entry in the

significant path on the toolbar button.

directory This will be the repository
name.

Replace Shows the first and last parts

middle part of the repository path, with

with dots the middle bit replaced with

dots.

Combobox minimum width

Allows you to specify the width of the part of this
dialog that shows the Most/Less recent repositories
comboboxes. Specifying 0 means this dialog box
will expand horizontally to the largest of the
repository paths.

If you select a repository in either the Most or Less recent repositories combobox, you can right-click to
display a context menu with the following options:

3.1. Commit Log Window

28

Git Extensions Documentation, Release 2.46

Option Description

Anchor to most recent repositories | Moves the repository to the Most recent repositories combobox.
Anchor to less recent repositories | Moves the repository to the Less recent repositories combobox.
Remove anchor If this repository is selected (i.e. highlighted), it un-selects it.
Remove from recent repositories Removes this repository from the combobox.

fixfChapters -

Change current branch

>
L

This button displays the currently checked out branch. Clicking on this button will display a dropdown
menu where you can

* select a new branch to switch to from the displayed list of branches that exist on your local repository.
 open the Checkout branch dialog
Alternatives to this button:
 pressing the Ctr1+. key combination to open the Checkout branch dialog
* selecting Commands — Checkout branch from the Menu Bar to open the Checkout branch dialog

e access the context menu by right-clicking a commit that is in a branch, then selecting Checkout
branch —. The list of branches that commit is in will be displayed and you can select one to
checkout.

Refer to the Branches chapter for further information.

Stash changes

i
.'\—'

This button allows you to work with the Stash. Note that this button also has a dropdown menu that
operates independently from the button. If you click on the button it will open a dialog where the Stash
can be manipulated. If you open the dropdown menu you can

* stash current working directory changes
* pop a saved stash ie restore working directory to contents of the stash

 open the Stash dialog

Note: If you have enabled the Git Extensions ‘Show stash count on status bar’ setting then the number
of saved stashes will be displayed next to this button.

Alternatives to this button:
e selecting Commands — Stash changes from the Menu Bar to open the Stash dialog

Refer to the Commit chapter for further information.

| Cornrnik

) Cammit (5]

Commit, Commit (pending commit)

3.1. Commit Log Window 29

Git Extensions Documentation, Release 2.46

This button will open the Commit dialog where any uncommitted changes can be committed to the repos-

itory.

The first button is displayed when there are no uncommitted changes in the working directory. The

second button style indicates there are uncommitted changes and the number of those changes.

Note:

the number of uncommitted changes is only displayed if you have enabled the Git Extensions

‘Show repository status in browse dialog’ setting.

Alternatives to this button:

* pressing the Ct r1+Space key combination to open the Commit dialog

* selecting Commands — Commit from the Menu Bar to open the Commit dialog

Refer

LIS @

to the Commit chapter for further information.

Open pull dialog, Pull - merge, Pull - rebase, Pull - fetch, Pull - fetch all

This button allows you to retrieve changes from a remote repository and apply them to your local repos-

itory.

When Git Extensions is first installed, the default button displayed on the toolbar is Open pull

dialog which will display the Pull dialog when clicked. This default can be changed. This button also has
a dropdown menu that operates independently from the button, and when opening it you are able to

L]

Merge Fetch changes from a remote repository and merge into your local branch. Before this button
is clicked, you must have checked out the local branch you are pulling to, and that local branch must
be the local tracking branch for the remote repository.

Rebase Fetch changes from a remote repository and rebase any local branch changes on top of the
remote branch changes. As above, the local branch must be checked out and be a local tracking
branch.

Fetch Fetch all changes from a remote repository to your local repository, updating the remote
references. If the currently checked out branch is a remote tracking branch, then the fetch is done
from that remote. If the checked out branch is not a remote tracking branch, then the fetch is done
from the remote called origin (if it exists).

Pull Opens the Pull dialog

Fetch all Fetch all changes from all remote repositories defined in your local repository. All remote
references are updated.

Note

¢ Selecting one of the above options (except the Pull option), either from the dropdown menu or

when it is the default button on the toolbar, causes immediate execution of the command. There is no
confirmation dialog.

Warning: Selecting Rebase may rewrite history on your local repository. This is not recommended
if you have already published that history elsewhere.

3.1. Commit Log Window

30

Git Extensions Documentation, Release 2.46

When selecting an option from the dropdown menu, selecting an item above the divider (i.e. Merge,
Rebase or Fetch) will result in the selection becoming the new default button on the toolbar.

The don’t set as default menu item is a checkbox that only applies to the items below the divider (i.e.
Pull and Fetch all). It behaves as follows:

« if checked, clicking Pull or Fetch all will not result in them becoming the default on the toolbar.

« if unchecked, clicking Pull or Fetch all will result in the selection becoming the default on the toolbar.
Alternatives to this button:

e pressing the Ct r 1 +Down key combination

* selecting Commands — Pull from the Menu Bar to open the Pull dialog

Refer to the Remote feature chapter for further information.

W

Push changes

This button will open the Push dialog where changes on your local repository can be sent to a remote
repository.

Alternatives to this button:
e pressing the Ct r1+Up key combination
* selecting Commands — Push from the Menu Bar to open the Push dialog

Refer to the Remote feature chapter for further information.

Git bash

This button will open a bash window. In Linux, a bash shell is roughly equivalent to the Windows DOS
Command shell. The bash shell allows you to enter git commands directly. For example:

Welcome to Git (version 1.8.3-preview20130601)

Run ’'git help git’ to display the help index.
Run ‘git help <command>’ to display help for specific commands.

user@VBOX-XP ~/My Documents/GitExtensionsDoc (fix/Chapter3)
$ git branch -v

TestDocBuild 0839935 Updated version to 2.46
* fix/Chapter3 3d606e7 working on main window

latest 0839935 Updated version to 2.46

master 6c40f7a Merge branch ’'latest’

user@VBOX-XP ~/My Documents/GitExtensionsDoc (fix/Chapter3)
$

Alternatives to this button:
* pressing the Ct r1+G key combination

* selecting Git — Git bash from the Menu Bar

L]

Settings

3.1. Commit Log Window 31

Git Extensions Documentation, Release 2.46

This button will open the settings dialog window.
Alternatives to this button:
* selecting Settings — Settings from the Menu Bar

Refer to Settings for further information.

Branches: - L:'_; -

Branches filter

This filter consists of a text box and associated dropdown list and a ‘gear’ icon. It is used to filter the
commit history display so that commits that are part of the selected branch are the only ones displayed.
You can either

e type a branch name in the check box or,
* select a branch name from the dropdown list

The branch name entries displayed in the dropdown list are also affected by the item(s) selected from the
dropdown menu associated with the ‘gear’ icon. You can select local and/or remote branches.

Note: The commit history display is not updated until you press the Enter key, regardless of whether
you type in a branch name or select one from the dropdown menu.

Refer to Searching and Filtering for further information.

Filker: 1o~

Filter

=]

This filter consists of a text box and associated ‘gear’ icon. It is used to filter the commit history display
for the matching text entered in the checkbox. The dropdown associated with ‘gear’ icon determines what
component of the commit is searched.

Note: The commit history display is not updated until you press the Enter key.

Refer to Searching and Filtering for further information.

Toggle split view layout

This button toggles between displaying a split screen view or only displaying the commit history and
graph full screen.

Alternatives to this button:

* clicking on and dragging the divider between the two views - this will adjust the size of each view

3.1.2 Commit History and Graph

TODO **

3.1. Commit Log Window

32

Git Extensions Documentation, Release 2.46

3.1.3 Commit Tab

The commit tab contains information about the commit that is currently selected in the commit history.

cover - image and context menu - author info - commit message - Signed off by - Contained in: branches and tag -
context menu

3.1.4 File Tree Tab

w5 TODO **

3.1.5 Diff Tab

TODO **

The full commit history can be browsed. There is a graph that shows branches and merges. You can show the difference
between two revision by selection them using ctrl-click.

In the context menu of the commit log you can enable or disable the revision graph. You can also choose to only show
the current branch instead of showing all branches. The other options will be discussed later.

3.1. Commit Log Window 33

Git Extensions Documentation, Release 2.46

| Copyto clipboard b

n Create new tag Ctrl+T

v Create new branch Ctrl+B

Reset current branch to here

&% Rename branch 3
Checkout branch b
Checkout revision

Manipulate commit b

:jl Archive revision

Show branches 3

Show revision graph

Draw non relatives gray

Order revisions by date

Show author date

S AR A A

Show relative date

Show git notes

Set adwvanced filter

3.2 Searching and Filtering

The history can be searched using regular expressions are basic search terms. The quick filter in the toolbar searches
in the commit message, the author and the committer.

3.2. Searching and Filtering 34

Git Extensions Documentation, Release 2.46

, _

File Git Cormmands Remotes Github Submodules Plugins Settings Help

- @ » C\documents\doc\GitExtensionsDoch, » master = @ » () Commit wn $-@ = |17 | Branches: - @ - m =)
p master | [> origin/master] Add and partially update view commit log part martingt EI\I;I_I-I;ITFCS_BQU_ i
Add new repositery part martingt 15 minutes ago
Add a progress file martingt 18 minutes ago
Add appearance screen martingt 26 minutes ago
Complete git extensions setting table martingt 2 hours ago
Start git extensions setting table martingt 16 hours ago
Set copyrights martingt 16 hours ago

@ Commit | [File tree | 313 Diff

Author martingt <m.ki2@laposte.net>

Date: 13 minutes ago (sam. janv. 12 14:00:40 2013)
Commit hash: abd3aee24c] edadifceldcT ecad350041456068
Children: fc90290b6d

Parent(s): 125b952693

Add clone repository part

Contained in branches: master
Contained in no tag

=

In the context menu of the commit log you can open the advanced filter dialog. The advanced filter dialog allows
you to search for more specific commits. To remove the filter either remove the filter in the toolbar and press enter or

remove the filter in the advanced filter dialog.
Copy to clipboard 3 i

¢ @

Create new tag Ctrl+T

P
4

T Createnewbranch Ctrl+B
m_ Merge into current branch 3
L1 Rebase current branch on [
¥ Reset current branch to here _;{ri:ilter - g
% Checkout branch 3] : —
& Checkout revision Since | samedi 12 janvier 2013 |

MsaE Bt it b Until | samedi 12 janvier 2013 |

. .. net>
ﬁ Archive revision 121 Author | |
tha2af

Show branches 4 Committer | |

Show revision graph
. Message | |

Draw non relatives gray

Order revisions by date it L

a i =

Show author date Limit 100000 E
Show relative date File filter | |

Show git notes

- Branches | |

Set advanced filter

]

[¥] Show current branch only

3.2. Searching and Filtering 35

Git Extensions Documentation, Release 2.46

3.3 Singe file history

To display the single file history, right click on a file name in the File tree orinthe Diff tab and select blame.

[— -

p”’gr”‘d 222 Open with difftool F3
source/bro
+ sourcefimag 5] Copyfilenameto clipboard Ctrl+C
=+ sourcefimag Bl Save (B) as... Ctrl+5
sourcefinde) @y peset file(s) to b
{4 File history
{1‘ Elame

Difftocl base < - = local
Difftocl remote < - > local

(1 Open containing folder
& Find Ctrl+F

The single file history viewer shows all revisions of a single file. You can view the content of the file in after each
commlt in the View tab.

MEE—en =

Branches: 67f5c510e65e0df2ab24e: - @v Filter:

Add appearance screen 0 hours age

Complete git extensions setting table martingt 2 hours ago

Start git extensions setting table martingt 16 hours age

Start porting settings martingt 16 heurs ago -

o View | |++; Diff | ¥ E-lame|

Getting Started .

[PV AR

. index::
zingle: Getting Started; Installation

-] N

Installation

kdif3 and Git Extensions. TI

There iz a =2ingle click installer that installs MSyaGic,
if 32bit and/or 64bit wversions should be installed.
The installer can be found “here <http://code.google.com/p/gitextensions/>"_

. figure:: /images/install/installl.png

e I R ey I T -y 'l I S—

L)

You can view the difference report from the commit in the Dif £ tab.

3.3. Singe file history 36

Git Extensions Documentation, Release 2.46

Note: Added lines are marked with a +, removed lines are marked with a —.

ey i <

Branches: 125b952093ad5c1b2f544 @- Filter:

Set copyrights martingt 16 hours ago us
for those without rst?pdf installed. australiensun 18 hours ago £
Change PDF parameters martingt 19 hours ago

Add pdf builder martingt 19 hours ago -

. View | +++ Diff | 4¥ Blame
diff --git a/source/conf.py b/source/conf.. [¢ + - @ q [uUTra - =
index bO00903. .ddb3cSe 100644

--— a/source/conf.py

+++ b/source/conf.py

@@ -25,7 +25,7 @@ import sys, os

(ST S I

[= T Y
m

-]

Ldd any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named 'sphinx.ext.*') or your custom ones.

10 +extensions = ['sphinx.ext.todo'] =

oo

12 # Add any paths that contain templates here, relative to this directory.
3 templates path = ['_templates']

4 L[} k

3.4 Blame

There is a blame function in the file history browser. It shows the last person editing a single line.

3.4. Blame 37

Git Extensions Documentation, Release 2.46

R T

Branches: 7725fd36c1133b94baab3 @v Filter:

for those without rst?pdf installed. australiensun 1 day ago
Change PDF parameters
Add pdf builder

Change theme

Initial commit

. View | ;33 Diff| ¢¥ Blame
“ Author: australiensun <australien@sun>
4 Date: 1 day ago (ven. janv. 11 20:27:35 2013)
Commit hash: 7725fd36c1133b94baab366577207752cTfcf4de
Parent(s): 1a6af0d61d

for those without rst2pdf installed.

Z

If your documentation needs a minimal Sphinx version, state it here.
#needs sphinx = '1.0'

Add any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named 'sphinx.ext.®*') or your custom ones.

australiensun - 11,/01 3 extensions = ['sphinx.ext.todo']

martingt - 11/01/2013
Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

The suffix of source filenames.

L, e — 0 e

LI

Double clicking on a code line shows the full commit introducing the change.

3.4. Blame 38

CHAPTER
FOUR

COMMIT

A commit is a set of changes with some extra information. Every commit contains the follow information:
* Changes
* Committer name and email
e Commit date
e Commit message
* Cryptographically strong SHA1 hash

Each commit creates a new revision of the source. Revisions are not tracked per file; each change creates a new
revision of the complete source. Unlike most traditional source control management systems, revisions are not named
using a revision number. Each revision is named using a SHA1, a 41 long characters cryptographically strong hash.

4.1 Commit changes

Changes can be committed to the local repository. Unlike most other source control management systems you do not
need to checkout files before you start editing. You can just start editing files, and review all the changes you made in
the commit dialog later. When you open de commit dialog, all changes are listed in the top-left.

39

Git Extensions Documentation, Release 2.46

X Commit to master (C\documenis\dodﬁltExhemanO_ El_u

2, | = Working dir changes ~ diff --git a/source/command line.rst b/source/command »

readme.md

index c813160..2d34f94 100644
-—— afsource/command line.rst
+++ b/source/command line.rst
@@ -7,6 +7,8 @R Git Extensions command line i
Most features can be started from the command line. |-
when using from the command line.

A

' 4 source/command _line.rst
+ tmp.dac

-

-1

+It is typically stored in the " "C:\Program Files (=8

I 1 +

l 11 . image:: fimﬂgesfcommand_line_usage .png
12

I 13 . image:: /images/command line.png

l 15 warning: CRLF will be replaced by LF in source/comman
16 The file will have its original line endings in your

@ | 4 Unstage & stage | & Pl I | 3
. . »

[@ Commit] = Commit message Options ~

’ @ Commit & push]

’!’ Reset changes]

[] Amend Commit

There are three kinds of changes:

Un- This file is not yet tracked by Git. This is probably a new file, or a file that has not been committed to
tracked Git before.

Modified | This file is modified since the last commit.

Deleted This file has been deleted.

When you rename or move a file Git will notice that this file has been moved, but currently Git Extensions does not
show this in the commit dialog. Occasionally you will need to undo the file change. This can be done in the context
menu of any unstaged file.

4.1. Commit changes 40

Git Extensions Documentation, Release 2.46

3

Reset file changes

Reset chunk of file
Interactive Add
U View file history

Open
Open with
1+ Openwith difftocl F3
| Open containing folder
< Editfile
Delete file

@ Add file to .gitignore

[;"[Copy filename

During your initial commit there are probably lots of files you do not want to be tracked. You can ignore these files
by not staging them, but they will show every time. You could also add them to the .gitignore file of you repository.
Files that are in the . git ignore file will not show up in the commit dialog again. You can open the .gitignore
editor from the menu Working dir changes by selecting Edit ignored files.

Working dir changes -
9 9

Show ignored files

Show untracked files

Delete selected files

Reset selected files
Reset all (tracked) changes

/|15 13

Edit ignored files
Delete all untracked files

Selection filter

You need to stage the changes you want to commit by pressing the ‘Stage selected files’ button. You also need to stage
deleted files because you stage the change and not the file. When all the changes you want to commit are staged, enter
a commit message and press the commit button.

4.1. Commit changes 4

Git Extensions Documentation, Release 2.46

e et ==

a2, | @Working dir changes - 1 diff --git a/source/commit.rst b/source/commit.rst -
+ 2 index bdedd2d..1773cef 100644
tmp.doc 3 -—— a/source/commit.rst

+++ b/source/commit.rst

@@ -42,7 +42,7 @R unstaged file.

During your initial commit there are probably lots o =
staging them, but they will show every time. You cou
in the "'.gitignore® " file will not show up in the c
- "Working dir changes® .

+* "Working dir changes"" by selecting *‘Edit igmored

1 m

12 .. image:: /images/show_untracked.png

15 warning: CRLF will be replaced by LF in source/commit
The file will have its original line endings in your

@ | @ Unstage ¥ stage | & o i >
readme.md

p’sourcefcommand_line.rst
" source/commit.rst
source/images/commit_dialog.png
source/images/reset_changes.png ’9 Reset changes]
source/images/show_untracked.png

@Commitmessage < Options ~ ”

@ Commit & push

[] Amend Commit

— o S
T

It is also possible to add files to you last commit using the Amend to last commit button. This can be very
useful when you forgot some changes. This function rewrites history; it deletes the last commit and commits it again
including the added changes. Make sure you only use Amend to last commit when the commit is not yet
published to other developers.

There is a build in spelling checker that checks the commit message. Incorrect spelled words are underlined with a red
wave line. By right-clicking on the misspelled word you can choose the correct spelling or one of the other options.

4.1. Commit changes 42

Git Extensions Documentation, Release 2.46

improve
Impro | P

imp roe

impure

empire

umpire

Add to dictionary
Ignore word

Remove word
Cut

Copy

Paste

Delete

Select all

Translate Tmproe’ to English

[Translate entire text to English
Dictionary »

Mark ill formed lines

Git Extensions installs a number of dictionaries by default. You can choose another language in the context menu
of the spelling checker or in the settings dialog. To add a new spelling dictionary add the dictionary file to the
Dictionaries folder inside the Git Extensions installation folder.

4.1. Commit changes 43

Git Extensions Documentation, Release 2.46

Cut
Copy
Paste
Delete
Select all
Translate Tmprove' to English Mone
Translate entire text to English de-DE
Dicticnary 2 en-AU
Mark ill formed lines en-cA
en-GB
| » | en-Us
es-ES
ln1 Cg =MK
— B B
it-IT
nl-ML
ru-RU

4.2 Cherry pick commit

A commit can be recommitted by using the cherry pick function. This can be very useful when you want to make the
same change on multiple branches.

4.2. Cherry pick commit 44

Git Extensions Documentation, Release 2.46

r — —_— —

*# Cherry pick =HECIH X
Select a commit you want to chemy pick. The commit will be recommitted on top of the cument head.
Graph Message Author Date &
Fixed scrollbars Henk wWesthuis Sat Dec 27 11:4%:18 2008 +0100
Loading panels Henk ‘Westhuis Sat Dec 27 11:41:53 2008 +0100
Fixed empty commits Henk Westhuis Fri Dec 26 17:18:15 2008 <0100
Added loading panel and async process Henk \Westhuis Fri Dec 26 17:13:41 2008 +0100
[originfAsync] Fixed some errors Henk \westhuis Thu Dec 25 16:30:52 2008 +0100
Asynec merged Henk ‘Westhuis Thu Dec 25 16:16:04 2008 +0100
Fixed datasource formdiff Henk wWesthuis Tue Dec 9 20:07:24 2008 +0100
Async Henk Westhuis Tue Dec 5 15:56:21 2008 0100
Small changes Henk ‘Westhuis Tue Dec 23 20:35:15 2008 +0100 |E|
Added commits in list limit, for performan Henk \wWesthuis Tue Dec 23 20:27:36 2008 +0100
Fixed ‘registry permissions’ problem Henk ‘Westhuis Mon Dec 22 20:18:45 2008 +0100
Settings checked at startup Henk ‘Westhuis Mon Dec 22 19:32:55 2008 +0100
[0.92] Fixed bug in clone (git cannot worl Henk ‘Westhuis Fri Dec 15 16:37:15 2008 <0100
Forms centered cachedbinesched diff fiv Henk \Westhins Thy Nee 18 03013 008 +0100 i
Automatically create a commit when there are no merge conflicts Chemy pick

4.3 Revert commit

A commit cannot be deleted once it is published. If you need to undo the changes made in a commit, you need to
create a new commit that undoes the changes. This is called a revert commit.

Graph Message Authar Date
[] [master] [GitHubHEAD] [GitHubimaster] [1.50] Added close checkbox to Henk \wWesthuis Sat Feb 21 13:34:28 2009 +0100
L Added basic image viewer “enk Westhuis Sat Feb 21 13:05:05 2009 +0100
: Create new tag :
[Added image support nk \westhuis Sat Feb 21 12:42:45 2005 +0100
Create new branch
L Added waitcursor nk Westhuis Sat Feb 21 10:47:33 2009 +0100
! Added ShowCommandLine option Reset current branch to here nk Westhuis Sat Feb 21 10:34:00 2008 +0100
. Added CoseProcessDialog and a i | nk \nesthuis Fri Feb 20 20:05:02 2009 +0100

4.4 Stash changes

If there are local changes that you do not want to commit yet and not want to throw away either, you can temporarily
stash them. This is useful when working on a feature and you need to start working on something else for a few hours.
You can stash changes away and then reapply them to your working dir again later. Stashes are typically used for very
short periods.

4.3. Revert commit 45

Git Extensions Documentation, Release 2.46

“# Stash - [ERIEE
Tracked changss in working dir Refresh 1 diff --git a/GitCommands/GitCommands/Settings.cs | »
_ _ 2 index 5fd9dS50..clbk44fe 100644 il
anmmands.-‘brtCommnds.-'Settlns.cs 3 ———- a/GitCommands/GitCommands/Settings.cs
GitUl/FormProcess. Designer.cs) . . .

GitU|/FormProcess cs 4 +++ b/GitCommands/GitCommands/Settings.cs
Git Ul/RevisionGrd.Designer cs 5 @@ -36,7 +36,7 @EE namespace GitCommands
GitUl/RevisionGrid cs 6 }

7 ¥

g - private static bool closeProcessDialog =

1 + private static bool closeProcessDialog =
11 public static bool CloseProcessDialog

12 { -
1 get 1

Stash: o
Message:

'] | r
Stash all changes] [Drop selected stash] [Apply selected stash to working dir]

You can create multiple stashes if needed. Stashes are shown in the commit log with the text [stash].

Graph Message Author
[stash]WIP on Refactor: Obbabed... Added image support Henk \Westhuis
index on Refactor: Ob5abed. .. Added image support Henk \westhuis
[Refactor] Added image support Henk ‘westhuis
Added waitcursor Henk 'westhuis

The stash is especially useful when pulling remote changes into a dirty working directory. If you want a more perma-
nent stash, you should create a branch.

4.4. Stash changes 46

CHAPTER
FIVE

TAG

Tags are used to mark a specific version. Usually a tag will not be moved anymore. The image below shows the
commit log of Git Extensions with two tags indicating version [1.08] and [1.06].

Graph

Message

Author

Date

Fixed open working dir with spaces from V5 and shell extensions and adde: Henk \westhuis

Added plugin to setup

[1_08]Mincr changes for version 1.08

Added archive function

Fixed using ~ (quote) in commit message

Fixed commits per user and added "show files to add”

Fixed directory select clone form
Added progress dialog to stash
Fixed formatpatch dialog

Added setting to locate git.cmd

Added dll's to make it easier for others to compile
[PATCH] Quote path when calling regedit.
[1.06]Fixed reset hard and fixed checkout dialog

Deleted mailmap... it was just there to test

5.1 Create tag

Henk \Westhuis
Henk \westhuis
Henk \Westhuis
Henk \westhuis
Henk \Westhuis
Henk \westhuis
Henk \Westhuis
Henk \westhuis
Henk \Westhuis
Henk \westhuis
Henk \Westhuis
Henk \westhuis
Henk \Westhuis

Thu Jan 8 15:04:51 2009 +0100
‘wed Jan 7 20:23:30 2009 +0100
Tue Jan 6 19:27:35 2009 +0100
Tue Jan & 1%:22:50 2009 +0100
Tue Jan 6 18:51:50 2009 +0100
Tue Jan & 18:48:57 2009 +0100
Tue Jan 6 18:27:10 2009 +0100
Mon Jan 5 19:58:12 2009 +0100
Mon Jan 5 15:46:37 2009 +0100
Mon Jan 5 19:25:43 2009 +0100
Mon Jan 5 15:25:15 2009 +0100
Mon Jan 5 17:52:52 2009 +0100
Sun Jan 4 16:16:16 2009 +0100
Sun Jan 4 15:36:24 2009 +0100

In Git Extensions you can tag a revision by choosing Create new tag in the commit log context menu. A dialog
will prompt for the name of the tag. You can also choose Create tag from the Commands menu, which will show
a dialog to choose the revision and enter the tag name.

L4

p master I[} LI ES g Port and improve search history martingt 7 hours ago
H

Update commit diff view

Copy to clipboard

Add and partially update view commit log part -

Add clone repository part
Add new repository part
Add a progress file

Add appearance screen

Complete git extensions setting table

Create new tag Ctrl+T

Create new branch Ctrl+B

Reset current branch to here
Rename branch

Checkout branch

Checkout revision

Manipulate commit

martingt 7 hours ago
martingt 7 hours ago
martingt 7 hours ago
martingt 7 hours ago
martingt 7 hours ago
martingt 8 hours ago
martingt 9 hours ago

Once a tag is created, it cannot be moved again. You need to delete the tag and create it again to move it.

47

Git Extensions Documentation, Release 2.46

5.2 Delete tag

For some operation it is very useful to create tags for temporary usage. Git uses SHA1 hashes to name each commit.
When you want to merge with an unnamed branch it is good practise to tag the unnamed branch, merge with the tag
and then delete the tag again.

TR ..

Select tag HTMLHelpFile - Delete

Delete from ‘cngin’

‘< |

5.2.1 Re-Tag?

Read about “What should you do when you tag a wrong commit and you would want to re-tag?” here:
https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

5.2. Delete tag 48

https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

CHAPTER
SIX

BRANCHES

Branches are used to commit changes separate from other commits. It is very common to create a branch when you
start working on a feature and you are not sure if this feature will be finished in time for the next release. The image
on the right illustrates a branch created on top of commit B.

In Git branches are created very often. Creating a branch is very easy to do and it is recommended to create a branch
very often. In fact, when you make a commit to a cloned repository you start a new branch. I will explain this in the
pull chapter.

You can check on what branch you are working in the toolbar.

- @ - Chdocuments\doc\GitExtensionsDoc\, v t‘ -) Commit @ ¥ -@ =K Branches: l:l]c,v Filter:

@
]

6.1 Create branch

In Git Extensions there are multiple ways to create a new branch. In the image below I create a new branch from the
context menu in the commit log. This will create a new branch on the revision that is selected.

» master I[) TG EC T Port start page section |5 Copyto cliphoard 3 martingt 6 minutes ago
Update command line usage image i Create new tag Ctrl+T martingt 16 minutes ago
Improve getting started rst "y Createnewbranch Ctrl+B ‘ martingt 12 hours age
Update create repository image ¥1 Reset current branch to here martingt 12 hours age

I will create a new branch called Refactor. In this branch I can do whatever I want without considering others. In
the Create branch dialog there is a checkbox you can check if you want to checkout this branch immediate after
the branch is created.

49

Git Extensions Documentation, Release 2.46

Create branch at this revision bﬂBlEESa or choose another one,

Branch name Refactor [&5 Create branch]

Checkout after create

Orphan

[Create arphan Clear working dir and index

B Help

When the branch is created you will see the new branch Refactor in the commit log. If you chose to checkout this

branch the next commit will be committed to the new branch.
master | p Refactor || origin/master [TgdeTediEh a0l 20 minutes ago

Update command line usage image martingt 40 minutes ago

Creating branches in Git requires only 41 bytes of space in the repository. Creating a new branch is very easy and is
very fast. The complete work flow of Git is optimized for branching and merging.

6.1.1 Orphan branches

In special cases it is helpful to have orphan branches (see for example
https://www.google.com/search?q=why+use+orphan+branches+in+git). ~ Check the “Create orphan” checkbox
to create an orphan branch (-—orphan option in git).

The newly created branch will have no parent commits.

The option “Clear working dir and index” (git rm -rf) is active by default. So the working dir and index will be
cleared. If you uncheck the last option then the working dir and index will not be touched.

6.2 Checkout branch

You can switch from the current branch to another branch using the checkout command. Checkout a branch sets the
current branch and updates all sources in the working directory. Uncommitted changes in the working directory can
be overwritten, make sure your working directory is clean.

r %§ Checkout branch EM

@ Local branch (") Remote branch

Select branch BN - Checkout

6.2. Checkout branch 50

https://www.google.com/search?q=why+use+orphan+branches+in+git

Git Extensions Documentation, Release 2.46

6.3 Merge branches

In the image below there are two branches, [Refactor] and [master]. We can merge the commits from the
master branch into the Refactor. If we do this, the Refactor branch will be up to date with the master branch, but not
the other way around. As long as we are working on the Refactor branch we cannot tough the master branch itself. We
can merge the sources of master into our branch, but cannot make any change to the master branch.

Graph Message Author Date

|] [Refactor] Namespace renamed to GitExtensions * Henk westhuis Sun Feb 22 12:28:12 2009 +0100

[Sources moved to subdir Henk ‘westhuis Sun Feb 22 12:27:54 2009 +0100

L Removed unused projects Henk Wwesthuis Sun Feb 22 12:27:40 2009 +0100
[master] Added close checkbox to process dialog Henk Westhuis Sat Feb 21 13:34:28 2005 +0100
Added basic image viewer Henk Westhuis Sat Feb 21 13:05:05 2005 +0100
Added image support Henk Westhuis Sat Feb 21 12:42:45 2009 +0100
Added waitcursor Henk ‘westhuis Sat Feb 21 10:47:33 2009 +0100
Added ShowCommandLine option and added doubleclick to commit dialog Henk westhuis Sat Feb 21 10:34-00 2005 +0100
Added CoseProcessDialog and added ShowRevisionGraph options Henk Westhuis Fri Feb 20 20:05:02 2009 +0100

L Fixed crash on some repos Henk Wwesthuis Thu Feb 19 21:38:07 2009 +0100

[Added changelog Henk westhuis Thu Feb 15 20:01:54 2005 +0100

To merge the Refactor branch into the master branch, we need to switch to the master branch first.

Graph Message Author Date

[[Refactor] Namespace renamed to GitExtensions ™ Henk Sun Feb 22 12:28:12 2005 +0100

L Sources moved to subdir Henk Sun Feb 22 12:27:54 2009 +0100

L Removed unused projects Henk Sun Feb 22 12:27:40 20093 +0100
[master] Added close checkbox to process dialog Henk ‘Westhuis Sat Feb 21 13:34:28 2009 +0100
Added basic image viewer Henk ‘Westhuis Sat Feb 21 13:05:05 2009 +0100
Added image support Henk ‘westhuis Sat Feb 21 12:42:45 2009 +0100
Added waitcursor Henk \Westhuis Sat Feb 21 10:47:23 2009 +0100
Added ShowCommandLine option and added doubleclick to commit dialog Henk \wWesthuis Sat Feb 21 10:34:00 2005 +0100
Added CoseProcessDialog and added ShowRevisionGraph options Henk ‘wWesthuis Fri Feb 20 20:05:02 2009 +0100

L Fixed crash on some repos Henk ‘westhuis Thu Feb 19 21:38:07 2009 +0100

L Added changelog Henk \Westhuis Thu Feb 19 20:01:54 2003 +0100

Once we are on the master branch we can choose merge by choosing Merge branches from the Commands menu.
In the merge dialog you can check the branch you are working on. After selected the branch to merge with, click the

Merge button.

6.3. Merge branches 51

Git Extensions Documentation, Release 2.46

- -

*# Merge branches — = | B |

Merge
Merge cument branch with another branch

Curmrent branch: master

Merge with Refactor -

. E Merge |

After the merge the commit log will show the new commit containing the merge. Notice that the Refactor branch is
not changed by this merge. If you want to continue working on the Refactor branch you can merge the Refactor branch
with master. You could also delete the Refactor branch if it is not used anymore.

Graph Message Authar Date
[master] Merge branch ‘Refactor’ Henk \Westhuis Sun Feb 22 12:44:15 2005 +0100
[Refacior] Namespace renamed to GitExtensions * Henk \Westhuis Sun Feb 22 12:28:12 2009 +0100
Sources moved to subdir Henk \westhuis Sun Feb 22 12:27:54 2009 +0100
Removed unused projects Henk \Westhuis Sun Feb 22 12:27.40 2009 +0100
Added close checkbox to process dialog Henk ‘\Westhuis Sat Feb 21 13:34:28 2009 +0100

Note: When you need to merge with on unnamed branch you can use a tag to give it a temporary name.

6.4 Rebase branch

The rebase command is the most complex command in Git. The rebase command is very similar to the merge com-
mand. Both rebase and merge are used to get a branch up-to-date. The main difference is that rebase can be used to
keep the history linear contrary to merges.

6.4. Rebase branch 52

Git Extensions Documentation, Release 2.46

Graph Message Author Date

n [Refactor] Mamespace renamed to GitExtensions ™ Henk ‘westhuis Sun Feb 22 12:28:12 2009 +0100

[Sources moved to subdir Henk \westhuis Sun Feb 22 12:27:54 2009 +0100

[Removed unused projects Henk Westhuis Sun Feb 22 12:27:40 2009 +0100
[master] Added close checkbox to process dialog Henk Westhuis Sat Feb 21 13:34:28 2009 +0100
Added basic image viewer Henk westhuis Sat Feb 21 13:05:05 2009 +0100
Added image support Henk Westhuis Sat Feb 21 12-42:45 2000 +0100
Added waitcursor Henk ‘westhuis Sat Feb 21 10:47:23 2009 +0100
Added ShowCommandLine option and added doubleclick to commit dialog Henk Wwesthuis Sat Feb 21 10:34:00 2009 +0100
Added CoseProcessDizslog and added ShowRevisionGraph options Henk Westhuis Fri Feb 20 20:05:02 2005 +0100

[Fixed crash on some repos Henk Westhuis Thu Feb 19 21:38:07 2009 +0100

L Added changelog Henk Westhuis Thu Feb 19 20:01:54 2009 +0100

A rebase of Refactor on top of master will perform the following actions:

* All commits specific to the Refactor branch will be stashed in a temporary location

The branch Refactor will be removed
¢ The branch Refactor will be recreated on the master branch

¢ All commits will be recommitted in the new Refactor branch

During a rebase merge conflicts can occur. You need to solve the merge conflicts for each commit that is rebased. The

rebase function in Git Extensions will guide you through all steps needed for a successful rebase.

[oo]
19 Rebase | ———e— m———

Rebase cument branch on top of another branch
Current branch: Refactor

Rebase on master - FRebase
Commits to re-apply:
Name Subject Awuthar Date Status Solve conflicts

Add files

Continue rebase

Skip thiz commit

Abort

it

= e we e aaaa

|

The image below shows the commit log after the rebase. Notice that the history is changed and is seems like the

commits on the Refactor branch are created after the commits on the master branch.

6.4. Rebase branch

[$)]

3

Git Extensions Documentation, Release 2.46

Graph Message

[Refactor] Namespace renamed to GitExtensions ™
Sources moved to subdir

Removed unused projects

[master] Added close checkbox to process dialog
Added basic image viewer

Ldded image support

Added waitcursor

Author

Henk Westhuis
Henk \Westhuis
Henk \Westhuis
Henk \Westhuis
Henk Westhuis
Henk \Westhuis
Henk \Westhuis

Added ShowCommandLine option and added doubleclick to commit dialog Henk \Westhuis

Added CoseProcessDialog and added ShowRevisionGraph options

Fixed crash on some repos

Added changelog

Henk Westhuis
Henk Westhuis
Henk \Westhuis

Date
Sun Feb 22 13:21:26 2003 +0100
Sun Feb 22 12:27:54 2009 +0100
Sun Feb 22 12:27:40 2003 +0100
Sat Feb 21 13:34:28 2008 0100
Sat Feb 21 13:05:05 2009 +0100
Sat Feb 21 12:42:45 2008 0100
Sat Feb 21 10:47:33 2009 +0100
Sat Feb 21 10:34:00 2009 +0100
Fri Feb 20 20:05:02 2009 +0100
Thu Feb 19 21:38:07 2003 +0100
Thu Feb 15 20:01:54 2008 +0100

Warning: Because this function rewrites history you should only use this on branches that are not published to
other repositories yet. When you rebase a branch that is already pushed it will be harder to pull or push to that
remote. If you want to get a branch up-to-date that is already published you should merge.

6.5 Delete branch

It is very common to create a lot of branches. You can delete branches when they are not needed anymore and you
do not want to keep the work done in that branch. When you delete a branch that is not yet merged, all commits will
be lost. When you delete a branch that is already merged with another branch, the merged commits will not be lost

because they are also part of another branch.

You can delete a branch using Delete branch in Commands menu. If you want to delete a branch that is not

merged into another branch, you need to check the Force delete checkbox.
r

*§ Delete branch

(= [[t

You can only delete branches when they are fully merged in HEAD.

When you delete a branch the commits can get lost because nothing point to them.
When you want to delete a notfully merged branch, you can ovemide

this using force delete”.

Select branch [ENE
| Force delete

6.5. Delete branch

54

CHAPTER
SEVEN

PATCHES

Every commit contains a change-set, a commit date, the committer name, the commit message and a cryptograph
SHAT1 hash. Local commits can be published by pushing it to a remote repository. To be able to push you need to have
sufficient rights and you need to have access to the remote repository. When you cannot push directly you can create
patches. Patches can be e-mailed to someone with access to the repository. Each patch contains an entire commit
including the commit message and the SHATL.

1|]:":crr. E8c02ecd4701c84c6T71a4lelebds0c582 1f Mon Sep 17 00:00:00 2001
2 From: Russell Luk>

3 Date: Sun, 17 Apr 2005

4 Subject: [PATCH 000213/1 LEM: h3600_irda set speed arguments
5

6 h3600_irda set_speed() had the wrong type for the "speed" argument.

T Fix this.

8

9 Signed-off-by: Russell Hing <rmkfarm.linux.org.uk>

10 ——-

11 arch/arm/mach-=2al100,/h3600.c | 2 +-

12 1 file= changed, 1 insertions(+), 1 deletions(-)

13

14 diff --git afarch/arm/mach-=2al1100,/h3600.c bfarch/arm/mach-sal1100/h3600.c
15 index 9788d3a..84cB654 100644

16 -—- afarch/farm/mach-=al1100/h3600.c

17 +++ bfarch/arm/mach-=al1100/h3600.c

18 @@ -130,7 +130,7 @G static int h3600 irda set power(struct device *dev, unszigned int state)
139 return 0;

20

21

22 -static void h3600_ irda set_ speed(struct device *dev, int speed)
253 +static void h3600_irda set_speed(struct device *dev, unsigned int speed)
24 {

25 if (speed < 4000000) {
26 clr_n3600_egpic (IPAQ EGPIC_IR_FSEL);
2755

281.6.1.9.g97c34

7.1 Create patch

Format a single patch or patch series using the format patch dialog. You need to select the newest commit first and then
select the oldest commit using ctrl-click. You can also select an interrupted patch series, but this is not recommended
because the files will not be numbered.

55

Git Extensions Documentation, Release 2.46

-
=¢ Format patch - = | B |
(") Save patches in directaory

@ Mail patches to henk_westhuis @hatmail.com -
Subject Added shortcuts
Body Added shortcuts keys to varous dialogs
Graph Message Author Date o
[master] [1.70] Updated changelog Henk Westhuis 20 minutes ago L
Added shortcuts for Create Branch (ctrl+b) and Cre Henk \Westhuis 36 minutes ago
Fixed bug in FormRemotes Henk \westhuis 44 minutes ago
[l Added shortcuts Henk \westhuis 53 minutes ago
1 Added default buttons to Commit and FormProcess Henk Wwesthuis 70 minutes ago
Added default buttons to FormRezolveConflicts an Henk \westhuis 2 hours ago
Added support for mergeconflict on submodules Henk Wwesthuis 25 hours ago
Settings file created for GitUI Wwilbert van Dolleweerd 28 hours ago
AutoCRLF input option added to local settings scre'wilbert van Dolleweerd 28 hours ago
[1.69] Fixed updating submodules recursive when Henk \westhuis 3 weeks ago
Added toda's Henk \westhuis 3 weeks ago 5
Curment branch: master Create patchigs)

e

When the patches are created successfully the following dialog will appear.

Patch result ﬁ

g

f:/temp/0001 -Fixed-crash-on-some-repos.patch
fi/temp,/0002-Added-CoseProcessDialog-and-added-ShowRevisionGraph.patch
f:/temp/0003-Added-5howCommandLine-option-and-added-doubleclick-t.patc
h

fi/temp/0004-Added-waitcursor.patch

OK

7.2 Apply patches

It is possible to apply a single patch file or all patches in a directory. When there are merge conflicts applying the patch
you need to resolve them before you can continue. Git Extensions will help you applying all patches by marking the
next recommended step.

7.2. Apply patches 56

Git Extensions Documentation, Release 2.46

(% Browse l=[E] %)
File Git Commands Remotes Settings Help
i =, [7] F\GitExtensions\, %% master | &) Commit &) %% | = Gitbash (77 | Filter: f
.“:’ Apply patch (F\GitExtensions) . il - "‘:'i —
() Patch file [Browse | ! Apply patch |
@ Patchdr |fltemp || Browse |
I
MName Subject Author Date Status A >Solve conflicts< ’
Qo0 ged 0 005 159 0 i
i | D002 [PATCH 1/3] Fixed reset hard and fix... | Henk Westhuis Sun, 4 Jan 2009 16:16:16
Ml oooz [PATCH] Fixed TestConsele/Progra... | Henk Westhuis Sun, 25 Jan 2009 12:21:14
I ¥ ono4 [PATCH 1/8] Minor changes Henk Westhuis Sat. 31 Jan 2009 14:15:12
1|0005 | [PATCH 2/3] * Added x64 Release | arBmind Sun, 4 Jan 2009 17:24:26]| | Conficts msolved |
0006 | [PATCH 2/6] Added +/- dif highlighti... | Henk Westhuis Thu, 5 Feb 2009 18:45:17 [scppacn |
0007 [PATCH 2/8] Improved performance ... | Henk Westhuis Tue, 3 Feb 2009 19:37.42
000 [PATCH 3/6] Auto close windows Henk Westhuis Sat, 7 Feb 2009 15:09:34
0009 [PATCH 3/8] Changed version numb ... | Henk Westhuis Tue, 3 Feb 2005 19:56:40
0010 [PATCH 3/3] ignore key files arBmind Sun, 4 Jan 2005 18:38:26 fié] |
0011 [PATCH 4/8] Added +/- diff highlighti... [Henk Westhuis Thu, 5 Feb 2009 18:45:17
0012 [PATCH 4/8] Mare autoclose Henk Westhuis Sat, 7 Feb 2009 15:16:58
0013 [PATCH 5/6] Added fitter feature. Im... | Henk Westhuis Sat, 7 Feb 2009 15:16:58 5
G- Patch
SimpleExt
i amow_refresh png = -
sy e '““";;}" - < i I F

7.2. Apply patches

57

CHAPTER
EIGHT

REMOTE FEATURE

Git is a distributed source control management system. This means that all changes you make are local. When you
commit changes, you only commit them to your local repository. To publish your local changes you need to push. In
order to get changes committed by others, you need to pull.

8.1 Manage remote repositories

You can manage the remote repositories in the Remotes menu.

File Git Commands | Remotes | Settings Help
= f\gitextensions, | Manage remote repositories |I
Graph EP PuTTY b

When you cloned your repository from a public repository, this remote is already configured. You can rename each
remote for easy recognition. The default name after cloning a remote is origin. If you use PuTTY as SSH client
you can also enter the private key file for each remote. Git Extensions will load the key when needed. How to create a
private key file is described in the next paragraph.

.
%# Remote repositories I-EIE'&J

Details
Mame GitHub
1 gt @github com:spdré70/gitextensions gt -
PuTTY S5H
Private key file C:/Users/Henl/GitHub_GitExtensions ppk
[@ Load S55H key] ['@Test connection l
[Delete] [Mew l [Save l

In the Default pull behaviour tab you can configure the branches that need to be pulled and merged by
default. If you configure this correctly you will not need to choose a branch when you pull or push. There are two
buttons on this dialog:

Prune remote branches Throw away remote branches that do not exist on the remote anymore.
Update all remote branch info | Fetch all remote branch information.

58

Git Extensions Documentation, Release 2.46

% Remote repositories E@g

| Remote repositories | Default pull behaviour fetch &merge}|
Local branch name Remote repository Defaultt merge with Local branch name -

Remote repositany origin - ||
SpellChecker

Default ith igin.’
et ault merge wi origin,/Async -
master origin master
tralala

Prune remote branches] [Update all remote branch infa

After cloning a repository you do not need to configure all remote branches manually. Instead you can checkout the
remote branch and choose to create a local tracking branch.

8.2 Create SSH key

Git uses SSH for accessing private repositories. SSH uses a public/private key pair for authentication. This means you
need to generate a private key and a public key. The private key is stored on your computer locally and the public key
can be given to anyone. SSH will encrypt whatever you send using your secret private key. The receiver will then use
the public key you send to decrypt the data.

This encryption will not protect the data itself but it protects the authenticity. Because the private key is only available
to the sender, the receiver can be sure about the origin of the data. In practise the key pair is only used for the
authentication process. The data itself will be encrypted using a key that is exchanged during this initial phase.

8.2.1 PuTTY and github

PuTTY is SSH client that for Windows that is a bit more user friendly then OpenSSH. Unfortunately PuTTY does not
work with all servers. In this paragraph I will show how to generate a key for github using putty.

First make sure GitExtensions is configured to use PuTTY and all paths are correct.

8.2. Create SSH key 59

Git Extensions Documentation, Release 2.46

E Settings) x|

Ehecklistl Git ewtensionsl Appearancel Global settingsl Lacal setiings 3sh |

— Specify which zsh clignt to use

Path to plink. exe |I::\F'n:|gram Files\Henk \GiItE stenzionshPuT Tplink. exe

Path to puttygen |E:\Program FileshHenk \GitE stenszionshPuT Ty puttygen. exe

Path to pageant |E:\F'ru:ugram Filez\Henk \GItE stenzionshPuT Tvhpageant. exe

= PuTTY OpenSSH is a commandline toal. PuT T iz more userfriendly to use for windows users,
but requires the PUTTY authentication client ta run in the background.
I | | |
) BrensSH Wwhen OpenS5H iz uzed, command line dialogs are shownl
" Other ssh client [Brovse
— Configure PuT T

Browse

Brovse

Browse

T

v Automatically start suthentication client when a private key iz configured for a remote

=
x GitExtensionzDoc (latest) - Git Extenzions

.

B

Merge pull request #3 from feinstaub/topic_appendix

Janusz Biztobrzewski

File Git Commands | Remotes | Github Submodules Plugins Settings Help

% | @ - Cdocuments\dd «f Manage remote repositories 2 Commit & - @ B 17 | Branches: ~ (&}~ | Filter o~ (=]
master | origin/mast L PuTTY 4 B Start authentication agent martingt 1 day ago ol
readme.md: add section about view the doc onlmeatreadthedog Generate or import key | australiensun 8 days age "
Merge pull request #6 from martingt/remove_bash Janusz Biztobrzewski 7 days age
Merge pull request £5 from martingt/fix_jpg Janusz Biatobrzewski 7 days age
origin/remove_bash | Read the doc don't support custom roles martingt 7 days ago
origin/fix_jpg | Convert jpg to png for pdf generation martingt 7 days age

I 2.43 I) latest Ioriginf2.43 Ioriginﬂatest Corrected source location link janusz 8 days ago

8 days age

Commit | = File tree | ;73 Diff

Author: janusz <janusz@biu.pl>

| Date: 1 week ago (lun. janv. 21 21:24:42 2013)
 Commithash: 9c297a97achde7abefd78436fba3551 b645791 b0
Children: 3064d2¢35b 07687 c5cad 2efl d2abed
Parent(s): 31081057
i
| Corrected source location link
(|
{ Contained in branches: 2.43, |atest, master

Contained in no tag

can choose Generate or import key to start the key generator.

8.2. Create SSH key

60

Git Extensions Documentation, Release 2.46

B PuTTY Key Generator x| & PuTTY Key Generator L3 x|

File Key Conversions Help File Key Conversions Help

Key
Public key for pazsting into OpenSSH authorized_keys file:

Key
Pleaze generate some randomness by moving the mouse over the blank area.

sshrsa ;I
_ Add4E AN zaCl yoZEALAAR AAAIBF2E y'39-aCOiiE3E dR gt3BB AR T HEGE IYDISY2

(B v GyoBReABE 1 9gpwnT InSls9002wk) 222 85xAudMZn2S 67M avViFwD HivAPgtLg2b
FhBP4&MEFTHgbeflashCD 21 Fud+1 GLApLL4MM appkinl<sel v 3l dcapyhl Biw'sSgw==

b rsa-key-20091 206 -
K.ey fingerprint: Isshrrsa 1023 3b:b7:72:34:73:34:82.da: 09:6F. 8b: de: ca 26: 5ac af
Key comment: Irsa-kay-20091 208

Key passphraze: I

Confirm pazsphiase: I

 Actions i~ Actions

Generate a public/private key pair Generate a public/private key pair
Load an existing private key file Load | Load an existing private key file Load |

Save the generated key Save public key | Save private key | Save the generated key Save public key | Save private key |

—P. | —P, h
F F

Tupe of key to generate: Type of key to generate:
€ G5H-1 (ASA) = S5H-2REL S5H2 5L " 55H-1[RSA) ' 35H-2RSA " 55H-2054

Murmber of bits in & generated key: I'I 024 Mumber of bits in a generated key: |1 024

PuTTY will ask you to move the mouse around to generate a more random key. When the key is generated you can
save the public and the private key in a file. You can choose to protect the private key with a password but this is not

necessary.

Now you have a key pair you need to give github the public key. This can be done in Account Settings in the
tab SSH Public Keys. You can add multiple keys here, but you only need one key for all repositories.

. h b mspdrsm Dashboard Inbox B8] Account Settings = Log Out

SOCIAL CODING Explore GitHub Gist Blog Help (q,

Account Settings View Your Public Profile —

Account Overview Plans & Biling Repositories Overview

SSH Public Keys file Plan Usage

You are currently on the Free plan

3

We use these to give you access to your git repositories. Need help with public keys?
Disk Space 0.10GE0.30GB

» myown (edit) . I ——
b Upgrade to add private repositories and collaborators!
Title 551 Disabled Change your plan
DemoKey
Key L . .
Administrative Information

ssh-rsa -

SNzaClycZERRRRBRIQRRRTRFzEyY99KaC0j163BdRgt 3BBAXTtH4 JEGBSYDISYZVEw

WCyoBE/18B19gywnTInS1s90gZwkIz2Z85xRu4MIn2 SE7MaVi FwDHI VAPt LoZbFhBD4RM ame spdra70 rename
tT7THgbeflAshCDZ1Tud+1GC4pLO4MNaypEirJisel /M3ldcgpyhl{Ws3qw== rsa-key- FdEAEE change
z0031z08

;l Global git config information Cancel your account

Addkey grcancel

Our RSAfingerprintis 16:27:aca5:76:28:2d:36:63:1b:56:4d eb:df.a6:48

8.2. Create SSH key 61

Git Extensions Documentation, Release 2.46

After telling github what public key to use to decrypt, you need to tell GitExtensions what private key to use to encrypt.
In the clone dialog there is a Load SSH key button to load the private key into the PuTTY authentication agent.
This can also be done manually by starting the PuTTY authentication agent and choose add key in the context menu
in the system tray.

x|
1C
Reposzitary to clane Igit@githuh.mm:spdrE?D.-’gite:-:tensiuns.git j Browse |

Destination IEZ"~D evelopment, j Browse |
F Load PuTTY S5H key into authentication agent x|
Frivate key file Iuments and Settingz\HenksMy DocumentshD emDKey.pij Browse
‘@ Load

T FErEohal [eposiang

" Central repositony, no working dir [--bare]

e
LR Load 55H key Cone |

GitExtensions can load the private keys automatically for you when communicating with a remote. You need to
configure the private key for the remote.

Py
(]

This is done in the Manage remote repositories dialog.

8.2.2 OpenSSH and github

When you choose to use OpenSSH you need to configure GitExtensions as shown in the screenshot below.

8.2. Create SSH key 62

Git Extensions Documentation, Release 2.46

T Settings X

Eheckli&tl Git e:-:ten&iu:unal Appearancel Global Settingxl Local settings Ssh I

— Specify which ssh client to uze
= PUTTY OpenSSH iz a commandine toal. PuTTY iz mare userfiendly to use for windows users,
but requires the PuT T authentication client to run in the background.
h A i
& OpenSSH ‘when OpenS5H iz used, command line dialogs are shownl
 Other ssh client | Browse |
— Configure PuT T
Path to plink.exe |I::\F'n:|gram Filez\Henk \GitE stenzions PuT T plink. exe Browse |
Fath to puttygen IEZ'\PIDQ[EIITI Filez\Henk \GIE stensions\PuT T puttygen. exe Browse |
Path to pageant |I::\F'n:|gram Filez\Henk \GItE stenzions PuT T pageant exe Browse |
~ Butomatizally start authentication zlient when a private key & configured for a remote

0k |

OpenSSH is the best SSH client there is but it lacks Windows support. Therefore it is slightly more complex to use.
Another drawback is that GitExtensions cannot control OpenSSH and needs to show the command line dialogs when
OpenSSH might be used. GitExtensions will show the command line window for every command that might require
a SSH connection. For this reason PuTTY is the prefered SSH client in GitExtensions.

To generate a key pair in OpenSSH you need to go to the command line. I recommend to use the git bash because the
path to OpenSSH is already set.

File Git Commands Remotes Github Submodules Plugins Settings Help

=,) » C\documents\doc\GitExtensionsDoc\, = latest = +__+ - () Commit m - (B

Type the following command: ssh-keygen -C "your@email.com" -t rsa Use the same email address
as the email address used in git. You will be asked where if you want to protect the private key with a pass-
word. This is not necessary. By default the public and private keys are stored in c:\Documents and
Settings\ [User]\.ssh\orc:\Users\ [user]\.ssh\.

8.2. Create SSH key 63

Git Extensions Documentation, Release 2.46

Development

¢ ssh—keygen —C ."henk._ll.-:esthu:i.sl'_‘hﬁtmai.l.cum" —t rsa
Generating public/private rsa key pair.
Enter file in which to save the key {(/c/Documents and Settings-sHenk/.ssh/id_wrsad

Enter passphrase (empty for no passphrasel:

Enter same passphrase again:

Your identification has bheen saved in sc/Documents and Settings/Henk/.ssh-sid_vr=sa
Your public key has heen saved in Ac/Documents and SettingssHenks.ssh/id_wrsa.pub
ihe key fingerprint is:

d?:35:4b:51:41:3c:delc:5f :8b: 55 @1 508 6a:fatce henk westhuizfBhotmail.com

S -

You do not need to tell GitExtensions about the private key because OpenSSH will load it for you. Now open the
public key using notepad and copy the key to github. This can be done in Account Settings in the tab SSH
Public Keys on GitHub.

fress I_; C:\Docurments and SettingsiHenld,, ssh j ﬂ Go

ders ¥ id_rsa id_rsa

Jesktop El File L. | PUEFie
2 KB =0 1ke

) My Documents

4 My Computer known_hosts
!} 34 Floppy (8 aaa| | File
B P id_rsa - Notepad b =] 3

File Edit Format Yiew Help
Esh-rsa AMABENzaclyczEAAAABIWAAAQEAm4FTcrKSUgyBxS?nnkNHm?uxAmTtquJBQ'T,’pKr‘Ir‘mRPXAQS,/HZﬂ

8.3 Pull changes

You can get remote changes using the pull function. Before you can pull remote changes you need to make sure there
are no uncommitted changes in your local repository. If you have uncommitted changes you should commit them or
stash them during the pull. You can read about how to use the stash in the Stash chapter.

File Git Commands Remotes Settings Help

= fihgitextensionsh, rmaster Commit

Graph Message Pull

- r " WEFSCLEE B m U ArRra B0 B8

In order to get your personal repository up-to-date, you need to fetch changes from a remote repository. You can do
this using the Pull dialog. When the dialog starts the default remote for the current branch is set. You can choose

8.3. Pull changes 64

http://www.github.com

Git Extensions Documentation, Release 2.46

another remote or enter a custom url if you like. When the remote branches configured correctly, you do not need to
choose a remote branch.

If you just fetch the commits from the remote repository and you already committed some changes to your local
repository, the commits will be in a different branch. In the pull dialog this is illustrated in the image on the left. This
can be useful when you want to review the changes before you want to merge them with your own changes.

[44 pull (\gitextensionsy) | G e |

Pull from

@ Remote repository GitHub -

S

Branch

Remate branch -

Merge options
1 Merge remote branch to cument branch

-, Rebase remote branch to cument branch, creates linear history. It is recommeded to choose
a remote branch when using rebase. (use with caution)

@ Do not merge, only fetch remote branch

Solve conflicts] [Stash changes] [] Auto stash [,@ Load 55H key] [Pull

When you choose to merge the remote branch after fetching the changes a branch will be created, and will be merged
you’re your commit. Doing this creates a lot of branches and merges, making the history harder to read.

¥4 Pull (F\gitextensinn<i) ESI™)

Pull from
@ Remote repository GitHub -
= L
Branch
. Remote branch -
Merge options
i@ Merge remote branch to cumrent branch
-, Rebase remote branch to cument branch, creates linear history. It is recommeded to choose
a remote branch when using rebase. (use with caution)
.) Do not merge, only fetch remote branch
Solve corflicts] [Stash changes] [[] Muto stash [,@ Load S5H key] [Pull

Instead of merging the fetched commits with your local commits, you can also choose to rebase your commits on top
of the fetched commits. This is illustrated on the left in the image below. A rebase will first undo your local commits
(c and d), then fetch the remote commits (e) and finally recommit your local commits. When there is a merge conflict
during the rebase, the rebase dialog will show.

8.3. Pull changes 65

Git Extensions Documentation, Release 2.46

F 5

=g Pull (f\gitextensions\) = | B |-

) Pull from
@ Remote repository GitHub -

B ©u
Branch

* Remate branch -
Merge options

(") Merge remate branch to cument branch

i@ Hebase remote branch to cument branch, creates linear history. 1 is recommeded to choose
" aremote branch when using rebase. (use with caution)

() Do not merge, only fetch remote branch

Solve conflicts] [Stash changes] [] Auto stash [,@ Load 55H key] [Pull

Next to the pull button there are some buttons that can be useful:

Solve When there are merge conflicts, you can solve them by pressing this button.

conflicts

Stash When the working dir contains uncommitted changes, you need to stash them before pulling.

changes

Auto Check this checkbox if you want to stash before pulling. The stash will be reapplied after pulling.
stash

Load This button is only available when you use PuTTY as SSH client. You can press this button to load the
SSH key | key configured for the remote. If no key is set, a dialog will prompt for the key.

8.4 Push changes

In the browse window you can check if there are local commits that are not pushed to a remote repository yet. In the
image below the green labels mark the position of the master branch on the remote repository. The red label marks the
position of the master branch on the local repository. The local repository is ahead three commits.

Graph Message Author Date
Imaster][1.50] Added close checkbox to process dialog Henk Westhuis Sat Feb 21 13:34:28 2009 +0100
Added basic image viewer Henk wWesthuis Sat Feb 21 13:05:05 2009 +0100
Added image support Henk westhuis Sat Feb 21 12:42:49 2009 +0100
[originHEAD] [origin/master] Added waitcursor Henk Westhuis Sat Feb 21 10:47:33 2009 +0100

To push the changes press Push in the toolbar.

File Git Ceommands Remotes Settings Help
= fi\gitextensions', master |) Commit G =

Graph Message

The push dialog allows you to choose the remote repository to push to. The remote repository is set to the remote of
the current branch. You can choose another remote or choose a url to push to. You can also specify a branch to push.

8.4. Push changes 66

Git Extensions Documentation, Release 2.46

"

“f Push (f\gitextensions\)

=Na=N X

Push to
@ Remote repository origin

I U

Branches | Tags |

- [Manage remotes]

Branch

Branch to push

[] Push all branches

Full

|

P Push |

Tags are not pushed to the remote repository. If you want to push a tag you need to open the Tags tab in the dialog.
You can choose to push a singe tag or all tags. No commits will be pushed when the Tags tab is selected, only tags.

You can not merge your changes in the remote repository. Merging must be done locally. This means that you cannot
push your changes before the commits are merged locally. In practice you need to pull before you can push most of

the times.

8.4. Push changes

67

CHAPTER
NINE

MERGE CONFLICTS

When merging branches or commits you can get merge conflicts. Git will try to resolve these, but some conflicts need
to be resolved manually. Git Extensions will show warnings when there is a merge conflict.

‘:" Browse fi\temphgitextensions) - mm “ [E=NACIH |

File Git Commands Remotes Settings Help

"?' Ef:\temp\gi‘textensions\ % (no branch) |@ Commit 4} |E ﬂ'ﬂ? | Filter: _

9.1 Handle merge conflicts

To solve merge conflicts just click on a warning or open the merge conflict dialog from the menu. A dialog will prompt
showing all conflicts. You can solve a conflict by double-click on a filename.

4"_‘ Resclve merge conflicts E@u
Unrezsolved merge conflicts (doubleclick on row to solve) [Fun mergetool]
Filename [Solve selected corflict]

Git U/Commit cs

| GitUI/RevisionGrid cs

|

| SimpleBd/SimpleExt h

il

l L
|

tl

|

= |
There are three kinds of conflicts:

File deleted and changed Use modified or deleted file?
File deleted and created Use created or deleted file?
File changed both locally and remotely | Start merge tool.

If the file is deleted in one commit and changed in another commit, a dialog will ask to keep the modified file or delete
the file. When there is a conflicting change the merge tool will be started. You can configure the tool you want to use

68

Git Extensions Documentation, Release 2.46

for merge conflicts. The image below shows Perforce P4Merge a free to use merge tool. Git Extensions is packaged
with KDiff3, an open source merge tool.

In the merge tool you will see four versions of the same file:

Base The latest version of the file that exist in both repositories
Local The latest local version of the file

Remote | The latest remote version of the file

Merged | The result of the merge

Caution: When you are in the middle of a merge the file named local represents your file. When you are in the
middle of a rebase the file named remote represents your file. This can be confusing, so double check if you are in

= | B i) |

doubt.
(% GitCommands.cs - Perforce PAMerge
File Edit View Search Help
T H D a @D » PR

102 diffs {Ignore line ending differences)

Base: GitCommands.cs.BASE

Left: GitCommands.cs.LOCAL

Right: GitCommands.cs.REMOTE
. Merge: GitCommands.cs

Q ommands/GitCommands/Git/GitCommands.cs.LOCAL

PIUGESS.oLalLl);

catch
{

public void Run(string cmd,

arguments = argumen

Settings.GitLog +=

firrnrass nasd ta A

\) GitCommands.cs

'y

2.

1=
i=
i=

Tab spacing: 4 | File format { Encoding: System Line endings: Windows)

Differences from base: 83 unique
Differences from base: 9 unique

Conflicts: 7

] iitCommands/GitCommands,/Git/GitCommands.cs.BASE

PIUCESS.oLAlL)7

catch
{

public static void Bun (stri
{
try
{
arguments = argumen

Settings.GitLog +=

firrnrass nasd ra oA

} +3 common to both

-

O mmands/GitCommands,/Git/GitCommands. cs. REMOTE

PIUCESS.oLall |7

catch B
{

public static wvoid Run(stri
{

Try

{

arguments = argumen

Settings.GitLog +=

finrareaas naad tn A

- _d

catch

{
try
{

arguments = arguments.Replace ("\\',

public void Run(string cmd, string arguments)

AN

Settings.GitLlog += cmd + " " 4 arguments + "\n";

a9 -

process nsed to execute external commands

9.1. Handle merge conflicts

69

CHAPTER
TEN

NOTES

Notes can be added to a commit. Notes will be stored separately and will not be pushed. To add a new note choose
add notes in the context menu of the commit information box.

Commit Filetree | 115 Diff
"‘ Author: australiensun <australien@sun>
‘&i“ Date: 1 day ago (ven. janv. 11 20:27:35 2013)
!; “ Commit hash: 7725fd36c1133b94baab3665772b7752c7fcfdde
KLL Children: 158¢199930
h Parent(s): 1abaf0d619
for those without rst2pdf installed. Copy commit info
Show local branches containing this commit
Contained in branches: master Show remote branches containing this commit
Centained in no tag Show remote branches only when no lecal branch centains this commit
Show tags containing this commit
| Add notes ‘

The editor that has been configured in the settings dialog will be used to enter or edit the notes. The Git Extensions
editor is advised.

70

Git Extensions Documentation, Release 2.46

K gnoronss T R ok
1= -

Add a mention in readme.

| »

[T =

Writefedit the notes for the following object:

b

commit 7725fd36cl1133kb94baab6l36657720T7T752cT7fcf44e
Author: australiensun <australien@sun>
Date: Fri Janm 11 20:27:35 2013 40100

=1 o Ln

=R

[

for those without rstZpdf installed.

source/conf.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion{(-)

B L T TolE Lol Ll T Vo T T

=
L B e
m

ks

71

CHAPTER
ELEVEN

SUBMODULES

Large projects can be split into smaller parts using submodules. A submodule contains the name, url and revision of
another repository. To create a submodule in an existing git repository you need to add a link to another repository
containing the files of the submodule.

% Browse D:\DematSubModuleTestisuperi - '

File Git Commands FRemotes WI Settings Help
= = D:\Demo\SubModuleTest"-lsuper| Manage submodules
Graph Message Update all submodules
[master] Adde Initialize all subrmodules
I Added submaod Synchronize all submodules

11.1 Manage submodules

The current state of the submodules can be viewed with the Manage submodules function. All submodules are
shown in the list on the left.

“:” Submodules — _—_— Elﬁu
P —
Mame Status z::gs
GitCam Upto-date GitLl I
GitPlugin Up4o-date AR d:/demo./SubModule Test/Git Ul
Local path Gitll
— cobf 5 4abbalc242221af 12446362 1hdbeSatbed
Branch heads/master
Status Up+o-date
| Synchronize | | nisize | | Update |

72

Git Extensions Documentation, Release 2.46

Add sub- | Add a new submodule to the repository

module
Synchro- | Synchronizes the remote URL configuration setting to the value specified in . gitmodules for the
nize selected submodule.

Initialize Initialize the selected submodules, i.e. register each submodule name and url found in
.gitmodules into .git/config. The submodule will also be updated.

Update Update the registered submodules, i.e. clone missing submodules and checkout the commit specified
in the index of the containing repository.

11.2 Add submodule

To add a new submodule choose Add submodule in the Manage submodules dialog.

*# Add submodule I -— l =HAC |ﬁ]1

Path to submodule D:*Demo'.SubModule Test \Git U h
Local path Git I
Branch master -

Path to submodule | Path to the remote repository to use as submodule.
Local path Local path to this submodule, relative to the root of the current repository.
Branch Branch to track.

11.3 Remove submodule

It is currently not possible to remove a submodule using the Git Extensions user interface. To remove a submodule
you need to manually:

* Delete the relevant line from the . gitmodules file.
* Delete the relevant section from .git/config.
* Rungit rm --cached path_to_submodule (no trailing slash).

¢ Commit and delete the now untracked submodule files.

11.2. Add submodule 73

CHAPTER
TWELVE

MAINTENANCE

In this chapter some of the functions to maintain a repository are discussed.

12.1 Compress Git database

Git will create a lot of files. You can run the Compress git database to pack all small files building up a
repository into one big file. Git will also garbage collect all unused objects that are older then 15 days. When a
database is fragmented into a many small files compressing the database can increase performance.

Submodules

A\ = graphs - +__+'

Plugins

Settings | Help

- : :
& I::;'ZI Git maintenance

Edit .gitignore
Edit .gitattributes
Edit .mailmap
Edit .gitreview

ﬂ'i? Settings

2

Compress git database

Recover lost objects

Delete index.lock

12.2 Recover lost objects

If you accidently deleted a commit you can try to recover it using the Recover lost objects function. A dialog
will show you all dangling objects and will allow you to review and recover them.

“f Browse fi\gitextensions),

R i -

e B gy i e

File

= [fAgitextensions',

Git Commands

Remotes

Settings | Help

rnaster L;|EEII Git maintenance

k

Cormpress git database

Graph

:

Message Edit .gitignore
[master] [Des Edit .mailmap
Improved usa 4 Settings

Recover lost objects

improvemer Henk \Westhuis
Henk Westhuis

74

Git Extensions Documentation, Release 2.46

Normally Git will not delete files right away when you remove something from your repository. The reason for this is
that you can restore deleted items if you need to. Git will delete removed items when they are older then 15 days and

yourun Compress git database.
L=

J
T Verfydatabaze s — —

By default anly unreferenced objects that are older than :

2 weeks are removed when cleaning up the database. All Eim, i

other object are only deleted when you run "Remaove all Do not consider commits that are referenced only by an entry in a
dangling objects”. reflog to be reachable. oy Y

To recover a lost commit, tag the commit and it will appear A Print out objects that exist but that aren't readable from any of the reference
in the browse dizlog again. nodes.

Check not just objects in GIT_OBJECT_DIRECTORY (2GIT_DIR/objects),

Double-click on a row containing a shal to view object. O but alsa the ones found in altemate object pools.

dangling commit Sdb8e /0877 /ab58f 1b1d31268fdc 73596 7040cc 0] -> Henk Westhuis, Changelog 23 13:45:31 2003 +0200

[Tag selected object] [Taag all lost objects] [Tag all lost commits] [Remove all dangling objects]
| Deleteal LOST_AND_FOUNDtags | | View selected object | | Save objectsto git/lostfound |
fo— — = e = &= —

There are several functions to help you find the lost items. By default Git Extensions will only show commits. To
show all items, just uncheck the Show only commits option. The other options can be checked/unchecked to get
more/less results. Double-click on on item to view the content. When you located the item you want to recover you
can tag it using the Tag selected object button.

Git Extensions also is able to tag all lost objects. Doing this will make all lost objects visible again making it very easy
to locate the commit(s) you would like to recover. After recovering a commit using the Tag all lost commits
button, you can remove all tags using the Delete all LOST_AND_FOUND tags button.

12.2. Recover lost objects 75

Git Extensions Documentation, Release 2.46

¥ c:\development} - Git Extensions EI@FZI

File Git Commands Remotes Submodules Plugine Settings Help

i % [leodevelopmenty, + S0 master |0F - @ commit & @ |E 07 | Filter:

Graph Meszage Author Commit D ate -
[master] [ongin/HEAD] [origin/master] Fised null reference exception. Henk ‘Westhuis 28 minutes ago
Added support for ‘wWinkderge as diff tool Henk westhuiz 3 howrs ago
[LOST_FOUND_5]Added support for Wintderge as diff tool Henk “Westhuis 3 howrs ago
Optimized dashboard Henk Westhuiz 19 hours ago
[LOST_FOUND_4] &dded summer cow Henk Westhuis 19 hours ago
[LOST_FOUND_6] &dded summer cow Herk Westhuis 20 hours aga
Added #-mass: cow Herk Westhuis 2 dayz ago
Improved dashboard Henk Westhuis 2 days ago
[LOST_FOUND_9]Improved dashboard Henk Westhuis 2 days ago

1 Improved dazhboard Henk ‘Westhuis 2 days ago b

| Commit | File res Diff

i N n: om
A Gitll /Browse.cs

A Gitll /FormS ettings.cs

Gitll /FormS ettings. Designer.cs

AR -2471,12 +2471,12 B@ nawespace GitCommands A

public static string OpenWithDiffrtool (string filename)

i
- return BunCmd (Settings.GitCommand, "difftool --no-promp
+ recurn RBunCwd (Sectings.GitComoand, "difftool —--gui —--no-

public static string OpenWithbiffrtool (string filename, sStri:
i
- return BunCmd (Settings.GitCommand, "difftool --no-promp
+ return RunCmd (Settings.GitCommand, "difftool --gui —--no-

12.3 Fix user names

When someone accidentally committed using a wrong username this can be fixed using the Edit .mailmap func-
tion. Git will use the username for an email address when it is set in the .mailmap file.

=§ Edit .mailmap = | B |t

Henk Westhuis <nen]-:_west31'ais@notrf.ail . COmm> -

Edit the mailmap.
This file is meant to comect usemames.

Example:

Henk Westhuis <Henk @& {none):
Henk Westhuis <henk_westhuis@hotmail com:

il
Save

4 | n 3

e

Fix user name using commit email:

Proper Name <commit@email.xx>

Fix email address using commit email:

12.3. Fix user names 76

Git Extensions Documentation, Release 2.46

<proper@email.xx> <commit@email.xx>

Fix email address and name using commit email:

Proper Name <proper@email.xx> <commit@email.xx>

Fix email address and name using commit name and email:

Proper Name <proper@email.xx> Commit Name <commit@email.xx>

12.4 Ignore files

Git will track all files that are in the working directory. Normally you do not want to exclude all files that are created
by the compiler. You can add files that should be ignored to the .gitignore file. You can use wildcards and regular
expressions. All entries are case sensitive. The button Add default ignores will add files that should be ignored
when using Visual Studio.

-
“# Edit gitignore - =) E=IGE ™5
F.ob3 . . -
. —_ Specify filepattems you want git to ignore.
.exXe
* html Bxample:
= . exp Hignore thumbnails created by windows
. Thumbs.db
-pdb Hlgnore files build by Visual Studio
*.d1l * ok
* ., usSer = :Eﬁt&:
=l -p
".3ps ~user
*.pch *aps
* .WBpSCC :-P":h
*i.c *.x;'scpscc
= p.C ']:u:
* . neh —S “nch
& o 500
. 5uo “ib
*.tlb *tlh
* _tlh *bak
* . bak :-!fkaﬂ"'e
* cache ‘::ng
#.ilk [Bbin
#.log [E;!E]-ebug‘f
* . htm ‘.slbr
*, zip obj/
[Dd] ebug/ [Hr}elease‘f"*
* 1ib _ReShamper™/
*.sbr
[L1]ib/ i
fi=lolooood f . [Add default ignores] [Save
1 | m 3

A short overview of the syntax:

12.4. Ignore files 7

Git Extensions Documentation, Release 2.46

Lines started with # are handled as comments
! Lines started with ! are exclude patterns
[Dd] Characters inside [..] means that 1 of the characters must match

* Wildcard

/ A leading slash matches the beginning of the pathname; for example, / » . ¢ matches cat-file. c but not
mozilla-shal/shal.c

/ If the pattern ends with a slash, it is removed for the purpose of the following description, but it would only

find a match with a directory. In other words, foo/ will match a directory foo and paths underneath it, but
will not match a regular file or a symbolic link foo (this is consistent with the way how pathspec works in
general in git).

For more detailed information.

12.4. Ignore files 78

http://www.kernel.org/pub/software/scm/git/docs/gitignore.html

CHAPTER
THIRTEEN

TRANSLATIONS

13.1 Change language

In the settings dialog a translation can be chosen. The translation files are located in a directory located in the Git
Extensions installation directory. The files are readable xml files.

T Choose language

Choose wour language

1= 0 e
I P e

Cutch English Italiano lapanese

Spanish

Russian Simplified Chinese

ou can change the language at anvy time in the settings dialog

13.2 Translate Git Extensions

The application has a built-in translation tool to help create and edit translations. To open the translation tool choose
Translate in the Help menu.

79

Git Extensions Documentation, Release 2.46

| Help |

1| Gitcommand log

dh| Commits per user

Liser Manual

1 Changelog

| Translate

Donate
) About

The functions of the translation tool are described in the image below. To contribute any translations you can either
e-mail a patch or send a pull request using github.

Creste nesw translation

Save translation as

¥ Tr-anslate

) M @

Use drop dowwn to open an existing translation

Translation progress

Language code of the current transiation

Al i
FarmT agSmall
Find&ndReplaceFarm
Farriverify
FormSubmadules
FormResetCurrentBranch
FormStatiis

FormGitlgnore
FarmDitfSmall
FarmCaommitCotnt
FarmBrowse

MergePatch
FarmPevertCormmitS mal
FarmFevert

FarmFemates

Farmlnit

YiewPatch

Farml ashboardCategonTi
FarmmChangelogl
FarmBranchSmall
FormaddSubmodule
ForméddFiles

FormTag

FarmFarrmatPath

FormEdit

FarmCheckout
FarmChermPickCanmmitSm:

.3

Gravatar reqisterdtGravata,., | Test Register at gravatar.com | Fegistreer bij gravatar, com
[Gravatar clearlmagecache... | Test Clear image cache Leeq plaaties cache
Gravatar imageSizeToalStr., | Text Image size Farmaat plaatje

FarmT agSmall Fthiz Tewt Create tag tdaak label

FormT agSmall label Text Tag name Label naam

FarmT agSmall Ok Text Create tag tdaak label

FormT agSmall annotate Text Create annaotated tag taak geannoteerd label
FormT agSmall label2 Text Meszage Bericht

FormT agSmall noT agh azzage Text Fleaze enter a tag mezsza... | Woer een label bericht in
FarmT agSmall noRevizionSelact... | Text Select 1 revizion to creat.., | Selacteer eerst een revisie

Refrazh image

FarmFisHarme ervers plaatje

GitLagFarm

FarmiPull Goodle translate

FormtergeBranch

FormFileHiztory b Google all empty
| .1
T

Category to translate IJze google translate to translate current text

Use google transkate to tranzlate all empty translstions (using language code)

13.2. Translate Git Extensions

80

CHAPTER
FOURTEEN

During installation you can choose to install the Visual Studio plug-in and shell extensions.

14.1 Visual Studio

There are two options in the context menu on files:

* View the file history by choosing the ‘File history’ option.
* Reset the file changes to the last committed revision.

Solution Explorer - Solution 'GitCommands' (8 proje.. ~ 1 X

=& | E s

[Solution 'GitCommands' (8 projects)

[i Solution Items
|_:_| _E GitCommands
[+ [=d Properties
[#- [z References
[+ [Patch

..... = app.confit
..... C*_;l Branch.cs
..... #] ChangedF
.....] ChangedF
..... #] Checkout,
..... #] Clone.cs
..... #] Commit.c
.....] Diff.cs

..... “» gitcomma
..... C*_;l Init.cs

..... #] Lane.cs
.....] LaneGraph
.....] LaneGrapt
..... C*_;l LanePoint

----- #] Pull.cs
..... 1 Dich re

.....] AddFiles.c 3

£o [18

X W %

Open

Open With...

File history

Undac file changes
View Code

Wiew Class Diagram
Exclude From Project
Cut

Copy
Delete

Rename

Properties

INTEGRATION

81

Git Extensions Documentation, Release 2.46

A Git Extensions toolbar allows you to perform the most common actions.

D Commit (branch)

Browse

{-'l" Pull
ﬁ Push

[]

S Stash changes

o Settings

7§ GitCommands - Microsoft Visual Studio (Ad

File Edit View Git Project Build De
35S S
OCDmmit_:Gﬁtﬂr;

FormProcess.cs | FormProcess.cs [Design

Jool 54

“i# GitCommands.Settings

Almost all function can be started from the Git menu in Visual Studio.

14.1. Visual Studio 82

Git Extensions Documentation, Release 2.46

®H GitCommands - Microsoft Visual Studio (Administrator)
File Edit View Project Build Debug Data
& ~ i1 - B = Apply patch 5
) Commit [{ Browse

@ Y% | Checkout branch E

Cherry pick
“% GitCommans)
Commit ;

}{l'.'ll'.'||l'.'ll'.'l_|_q}{:

Y% | Create branch
- =} | Clone repository
Edit .gitignore
Format patch 5
B Git bash
% 7| Initialize new repository
Manage remotes
Merge ev
& Pull -
= Push

Rebase

Stash

o

B Settings
Solve mergeconflicts
View changes

o About Git BExtensions

14.2 Windows Explorer

The common commands can be started from Windows Explorer using the shell extensions. This option is only avail-
able when Shell Extensions are installed.

14.2. Windows Explorer 83

Git Extensions Documentation, Release 2.46

GitEx Browse
) GitEx Commit
EE Git Extensions b 4L Pull
if Push
t_'" View stash

1t View changes

o Checkout branch
Checkout revision

Create branch

-
a

Open with difftool

o
43 File history
*3 Reset file changes
-+ Addfiles
Apply patch
0} Seftings
You can even create or clone a repository in any non git folder.

: GitEx Clone

n Gitkx Create new repository

%l Git Extensions b | {0p Settings

14.2. Windows Explorer 84

CHAPTER
FIFTEEN

COMMAND LINE

15.1 Git Extensions command line

Most features can be started from the command line. It is recommended to add gitex . cmd to the path when using
from the command line. It is typically stored in the C: \Program Files (x86)\GitExtensions folder.

85

Git Extensions Documentation, Release 2.46

-~

2 Commandline usage l = | =] |_ﬂh

Supported commandline arguments:

browse [path] [-filter=]
about

add

addfiles

apply [filename]
applypatch [filename]
blame filename

branch

checkout
checkoutbranch
checkoutrevision
cherry

cleanup

clone [path]

commit [--guiet]
filehistory filename
fileeditor filename
formatpatch

gitbash

gitignore

init [path]

merge [--branch name]
mergeconflicts [--quiet]
mergetool [--quiet]
openrepo [path] [-filter=]
pull [--rebase] [--merge] [--fetch] [--quiet] [--remotebranch name]
push [--guiet]

rebasze [--branch name]
remotes

reset

revert filename
cearchfile

settings

ctach

synchronize [--rebase] [--merge] [--fetch] [--quiet]
tag

wviewdiff

viewpatch [filename]

15.1. Git Extensions command line

86

Git Extensions Documentation, Release 2.46

" k|

B MINGW32:/f/GitExtensions = B
lle lcome to Git <version 1.6.1-previewZ2BBB1227>

‘git help git’ to display the help index.
‘git help <command?*’ to display help for szpecific commands.

¢ gitex commit

15.1. Git Extensions command line 87

CHAPTER
SIXTEEN

16.1 Git Cheat Sheet

APPENDIX

Action

Command

Create new repository

$ git init

Create shared repository

$ git init —bare —shared=all

Clone repository

$ git clone c:/demol c:/demo2

Checkout branch

$ git checkout <name>

Create branch

$ git branch <name>

Delete branch

$ git branch -d <name>

Merge branch (from the branch to merge into):

$ git merge PDC

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool $ git commit

Create tag

$ git tag <name>

Add files/changes (. for all files)

$ git add .

Commit added files/changes (—amend to amend to last
commit)

$ git commit —m “Enter commit message”

Discard changes

$ git reset —hard

Create patch (-M = detect renames —C = detect copies)

$ git format-patch -M —C origin

Apply patch without merging

$ git apply c:/patch/01-emp.patch

Merge patch

$ git am -—3way —signoff c:/patch/01-emp.patch

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool
$ git am —3way -—resolved

Stash changes

$ git stash

Apply stashed changes

$ git stash apply

Pull changes (add —rebase to rebase instead of merge)

$ git pull c:/demol master

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool
$ git commit

Push changes (in branch $ git push c:/demol master
master:<new>)

$ git push c:/demol

Blame

$ git blame —-M —w <filename>

Help

$ git <command> —help

Here are some default names used by Git.

88

Git Extensions Documentation, Release 2.46

Default names

master default branch

origin default upstream repository

HEAD current branch

HEADA parent of HEAD

HEAD~4 | the great-great grandparent of HEAD

16.2 Menu map

The following image shows GitExtensions’ menu structure at one glance (v2.43):

GitExt Menu structure v2.43

Repository opened:

File
Open (Cirl+ 0]
Close
Refresh (F5)
Recent Repositories >

File Explorer (Ctrl+5Shift+0)

Exit (Crl+Q)

Dashboard:

File
Open (Ctrl+0)
Close
Refresh (F3)
Recent Repositories >

Excit (Ctrl+Q)

Git
Git bash (Ctrl+ ()
Git GUI
Gitk

Git
Git bash (Ctrl+G)
Git GUI
Gitk

Commands
Archive revision
Cleanup repository
Clone repository
Clone SVN repository
Create new repository

<24 more terms>

Github
Ferk/Clone repository
View pull requests
Create pull request

Github

Fork/Clone re ios itoi

Remotes
Manage remote repositories
PuTTY =

Submodules
Manage submodules
Update all submodules
Synchronize all submodules

Plugins
Settings

<List of plugins=

g
|&

PuTTY >

Plugins
Settings

Check for updates
Github

Settings
Git maintenance >

Compress git database
Recover lost objects
Delete indexlock

Edit .gitignore

Edit gitattributes

Edit .mailmap

Settings

Help
Commits per user
Gitcommand log

<Remaining Help entries>

Gitcommand log

<Remaining Help entries>

16.2. Menu map

89

	Git Extensions
	Features
	Video tutorials
	Links

	Getting Started
	Installation
	Installation (Linux)
	Installation (Mac)
	Settings
	Start Page
	Clone repository
	Clone SVN repository
	Clone Github repository
	Create new repository

	Browse Repository
	Commit Log Window
	Searching and Filtering
	Singe file history
	Blame

	Commit
	Commit changes
	Cherry pick commit
	Revert commit
	Stash changes

	Tag
	Create tag
	Delete tag

	Branches
	Create branch
	Checkout branch
	Merge branches
	Rebase branch
	Delete branch

	Patches
	Create patch
	Apply patches

	Remote feature
	Manage remote repositories
	Create SSH key
	Pull changes
	Push changes

	Merge Conflicts
	Handle merge conflicts

	Notes
	Submodules
	Manage submodules
	Add submodule
	Remove submodule

	Maintenance
	Compress Git database
	Recover lost objects
	Fix user names
	Ignore files

	Translations
	Change language
	Translate Git Extensions

	Integration
	Visual Studio
	Windows Explorer

	Command line
	Git Extensions command line

	Appendix
	Git Cheat Sheet
	Menu map

