
Tarrasque Documentation
Release 0.1

Laurie Clark-Michalek

January 04, 2014

Contents

1 An Introduction to Tarrasque 3
1.1 Tarrasque concepts for people who know what an ehandle is . 4
1.2 Tarrasque concepts for people who don’t know what an ehandle is 4

2 Guides 5
2.1 Analysing game end states . 5

3 API 7
3.1 Stream Binding . 7
3.2 Creep Manager . 9
3.3 Dota Entity . 9
3.4 Player . 10
3.5 Game Info . 11
3.6 Ability . 13
3.7 Base NPC . 14
3.8 Hero . 15
3.9 Game Events . 16
3.10 Combat Log . 16
3.11 Item . 17

4 Indices and tables 19

Python Module Index 21

i

ii

Tarrasque Documentation, Release 0.1

Contents:

Contents 1

Tarrasque Documentation, Release 0.1

2 Contents

CHAPTER 1

An Introduction to Tarrasque

Tarrasque is a library, build around Skadi, to allow the easy and straightforward analysis of Dota 2 replays. While
Skadi provides only the raw data, Tarrasque allows you to deal in objects and relationships. A comparison will show
this best.

This code uses Skadi to print out the names of the players in the replay, along with the name of the hero they are
playing

import io
from skadi.engine import world as w
from skadi.replay import demo as rd

demo = rd.construct("./demo.dem")
for tick, string_tables, world in demo.stream(tick=5000):

ehandle, player_resource = world.find_by_dt(player_resource_dt)

for i in range(31):
player_name_key = ("DT_DOTA_PlayerResource", "m_iszPlayerNames.%40s" % i)
player_name = player_resource[player_name_key]
if not player_name:

break
hero_ehandle_key = ("DT_DOTA_PlayerResource", "m_hSelectedHero")
hero_ehandle = player_resource[hero_ehandle_key]
hero_dt = world.recv_tables[world.classes[hero_ehandle]].dt
hero_name = hero_dt.replace("DT_DOTA_Unit_Hero_", "").replace("_", " ")
print hero_name

break

Using Tarrasque, this could be written as

import tarrasque

replay = tarrasque.StreamBinding.from_file("demo.dem")
for player in replay.players:

print player.name
print player.hero.name

The code speaks for itself. Tarrasque makes it simple, easy and even fun to analyse Dota 2 replays.

3

https://github.com/onethirtyfive/skadi

Tarrasque Documentation, Release 0.1

1.1 Tarrasque concepts for people who know what an ehandle is

Tarrasque is a mapper between Dota2 entities (DT classes) and Python classes. Every Tarrasque class that represents
an entity has a dt_key property that specifies the DT class that it represents, and once instantiated, every Tarrasque
class has a ehandle property that is used to get information from the world. The current world can be accessed via
world, and the results of world.find(self.ehandle) via properties. All this and more is documented
on DotaEntity.

1.2 Tarrasque concepts for people who don’t know what an ehandle
is

Think of Tarrasque as an ORM for Dota2, except the models are already maintained, and you don’t have to worry
about the database. You don’t have to mess about writing code to deal with the (disgusting) stuff that Dota2 does
in its replays, as Tarrasque exposes the data to you in a manner that follows Python conventions; you’ll get a None
object instead of -1, and the string "radiant" instead of the integer 2 (where appropriate. Tarrasque understands
that values have special meanings only in specific contexts). This allows you to just use the data, and not need to worry
about the stuff underneath.

The one major difference between a database ORM and Tarrasque is that while most ORM models are statefull (that is,
when the database changes, the model stays the same until reloaded), Tarrasque models contain no state, other than that
which is needed to uniquely identify the instance (and now you know what an ehandle is). This means that you never
have to do hero.update(tick_number) or similar; all that is handled automatically via the StreamBinding/
DotaEntity abstraction.

4 Chapter 1. An Introduction to Tarrasque

CHAPTER 2

Guides

2.1 Analysing game end states

One of the most common ways to get information about a game is to look at the state of the game when the ancient
has died. Finding that time can be a fairly annoying process, but Tarrasque makes it quite easy. This example moves
to the final tick of the game and then prints out statistics for the players:

import tarrasque

replay = tarrasque.StreamBinding.from_file("demo.dem", start_tick="postgame")

for player in replay.players:
print "{} - Gold: {} - KDA: {}/{}/{}".format(player.name,

player.earned_gold, player.kills, player.deaths. player.assists)

The instruction to move to the end of the replay is in the start_tick argument to
StreamBinding.from_file. By saying we want to start at the "postgame" tick, we instruct Tarrasque to 1)
locate the tick where the ancient was destroyed, and 2) move to it.

One thing to note is that while you may want to use the GameInfo.game_time attribute to calculate the GPM of a
hero, you should first subtract 90 (1 * 60 + 30) from that value, as while the Dota2 ingame clock counts from the time
the creeps spawn, the replay attribute starts 1 minute 30 seconds earlier. To calculate GPM, you might use something
like this:

import tarrasque

replay = tarrasque.StreamBinding.from_file("demo.dem",
start_tick="postgame")

for player in replay.players:
gpm = player.earned_gold * 60 / (replay.info.game_time - 90)
print "{} - GPM: {}".format(player.name, gpm)

Note also that we multiply by 60, as GameInfo.game_time is in seconds, not minutes.

5

Tarrasque Documentation, Release 0.1

6 Chapter 2. Guides

CHAPTER 3

API

3.1 Stream Binding

class StreamBinding(demo, start_tick=None, start_time=None)
The StreamBinding class is Tarrasque’s metaphor for the replay. Every Tarrasque entity class has a reference to
an instance of this class, and when the tick of the instance changes, the data returned by those classes changes.
This makes it easy to handle complex object graphs without explicitly needing to pass the Skadi demo object
around.

Note: Where methods on this class take absolute tick values (i.e. the start and end arguments to
iter_ticks()), special string arguments may be passed. These are:

•"start" - The start of the replay

•"draft" - The start of the draft

•"pregame" - The end of the draft phase

•"game" - The time when the game clock hits 0

•"postgame" - The time the ancient is destroyed

•"end" - The last tick in the replay

These values will not be 100% accurate, but should be good +-50 ticks

buildings
The BuildingManager object for the replay.

creeps
The CreepManager object for the replay.

demo
The Skadi demo object that the binding is reading from.

static from_file(filename, *args, **kwargs)
Loads the demo from the filename, and then initialises the StreamBinding with it, along with any other
passed arguments.

game_events
The game events in the current tick.

7

Tarrasque Documentation, Release 0.1

go_to_state_change(state)
Moves to the time when the GameInfo.game_state changed to the given state. Valid values are equal
to the possible values of :att:‘~GameInfo.game_state‘, along with "start" and "end" which signify
the first and last tick in the replay, respectively.

Returns the tick moved to.

go_to_tick(tick)
Moves to the given tick, or the nearest tick after it. Returns the tick moved to.

go_to_time(time)
Moves to the tick with the given game time. Could potentially overshoot, but not by too much. Will not
undershoot.

Returns the tick it has moved to.

info
The GameInfo object for the replay.

iter_full_ticks(start=None, end=None)
A generator that iterates through the demo’s ‘full ticks’; sync points that occur once a minute. Should be
much faster than :method:‘iter_ticks‘.

The start argument may take the same range of values as the start argument of :method:‘iter_ticks‘.
The first full tick yielded will be the next full tick after the position obtained via self.go_to_tick(start).

The end tick may either be a tick value or a game state. The last full

tick yielded will be the first full tick after the tick value/game state change.

iter_ticks(start=None, end=None, step=1)
A generator that iterates through the demo’s ticks and updates the StreamBinding to that tick. Yields
the current tick.

The start parameter defines the tick to iterate from, and if not set, the current tick will be used instead.

The end parameter defines the point to stop iterating; if not set, the iteration will continue until the end of
the replay.

The step parameter is the number of ticks to consume before yielding the tick; the default of one means
that every tick will be yielded. Do not assume that the step is precise; the gap between two ticks will
always be larger than the step, but usually not equal to it.

modifiers
The Skadi modifiers object for the tick.

players
A list of Player objects, one for each player in the game. This excludes spectators and other non-hero-
controlling players.

prologue
The prologue of the replay.

string_tables
The string_table provided by Skadi.

tick
The current tick.

user_messages
The user messages for the current tick.

world
The Skadi wold object for the current tick.

8 Chapter 3. API

Tarrasque Documentation, Release 0.1

3.2 Creep Manager

class CreepManager(stream_binding)
A general object that allows the user to access the creeps in the game.

couriers
Returns all couriers on the map

lane
Returns all the living lane creeps on the map.

neutrals
Returns all the living neutral creeps on the map.

3.3 Dota Entity

class DotaEntity(stream_binding, ehandle)
A base class for all Tarrasque entity classes.

If you plan to manually initialise this class or any class inheriting from it (and I strongly recommend against it),
pass initialisation arguments by name.

ehandle
The ehandle of the entity. Used to identify the entity across ticks.

exists
True if the ehandle exists in the current tick’s world. Examples of this not being true are when a Hero
entity that represents an illusion is killed, or at the start of a game when not all heroes have been chosen.

classmethod get_all(binding)
This method uses the class’s dt_key attribute to find all instances of the class in the stream binding’s
current tick, and then initialise them and return them as a list.

While this method seems easy enough to use, prefer other methods where possible. For example, using
this function to find all Player instances will return 11 or more players, instead of the usual 10, where
as StreamBinding.players returns the standard (and correct) 10.

modifiers
A list of the entitiy’s modifiers. While this does not make sense on some entities, as modifiers can be
associated with any entity, this is implemented here.

name
The name of an entity. This will either be equal to the DotaEntity.raw_name or be overridden to be a
name an end user might be more familiar with. For example, if raw_name is "dt_dota_nevermore",
this value might be set to "Nevermore" or "Shadow Field".

owner
The “owner” of the entity. For example, a :class:BaseAbility the hero that has that ability as its owner.

properties
Return the data associated with the handle for the current tick.

raw_name
The raw name of the entity. Not very useful on its own.

stream_binding
The StreamBinding object that the entity is bound to. The source of all information in a Tarrasque
entity class.

3.2. Creep Manager 9

Tarrasque Documentation, Release 0.1

team
The team that the entity is on. Options are

•"radiant"

•"dire"

tick
The current tick number.

world
The world object for the current tick. Accessed via :attr:stream_binding.

create_entity(ehandle, stream_binding)
Finds the correct class for the ehandle and initialises it.

find_entity_class(dt_name)
Returns the class that should be used to represent the ehandle with the given dt name.

register_entity(dt_name)
Register a class that Tarrasque will use to represent dota entities with the given DT key. This class decorator
automatically sets the :attr:~DotaEntity.dt_key attribute.

register_entity_wildcard(regexp)
Similar to register_entity, will register a class, but instead of specifying a specific DT, use a regular
expression to specify a range of DTs. For example, Hero uses this to supply a model for all heroes, i.e.:

from tarrasque.entity import *

@register_entity_wildcard("DT_DOTA_Unit_Hero_(.*)")
class Hero(DotaEntity):

def __new__(cls, *args, **kwargs):
Use __new__ to dynamically generate individual hero classes
See tarrasque/hero.py for actual implementation
return cls(*args, **kwargs)

A wildcard registration will not override a specific DT registration via register_entity.

3.4 Player

class Player(stream_binding, ehandle)
Inherits from DotaEntity.

Represents a player in the game. This can be a player who is controlling a hero, or a “player” that is spectating.

assists
The number of assists the player has.

buyback_cooldown_time
The game time that the buyback will come off cooldown. If this is 0, the player has not bought back.

deaths
The number of times the player has died.

denies
The number of denies on creeps that the player has.

earned_gold
The total earned gold by the user. This is not net worth; it should be used to calculate gpm and stuff.

10 Chapter 3. API

Tarrasque Documentation, Release 0.1

has_buyback
Can the player buyback (regardless of their being alive or dead).

hero
The Hero that the player is playing in the tick. May be None if the player has yet to choose a hero. May
change when the game_state is "pre_game", due to players swapping their heroes.

index
The index of the player in the game. i.e. 0 is the first player on the radiant team, 9 is the last on the dire

This is None for the undefined player, which should be ignored.

kills
The number of times the player has killed an enemy hero.

last_buyback_time
The game_time that the player bought back.

last_hits
The number of last hits on creeps that the player has.

name
The Steam name of the player, at the time of the game being played.

reliable_gold
The player’s reliable gold.

steam_id
The Steam ID of the player.

streak
The current kill-streak the player is on

team
The player’s team. Possible values are

•"radiant"

•"dire"

•"spectator"

total_gold
The sum of the player’s reliable and unreliable gold.

unreliable_gold
The player’s unreliable gold.

3.5 Game Info

class GameInfo(stream_binding, ehandle)
Inherits from DotaEntity

The GameInfo contains the macro state of the game; the stage of the game that the tick is in, whether the tick is
in day or night, the length of the game, etc etc.

active_team
The team that is currently banning/picking.

banned_heroes
List of currently banned heroes. 0-4 are radiant picks, 5-9 dire. Bans that have not yet been done have
value None.

3.5. Game Info 11

Tarrasque Documentation, Release 0.1

captain_ids
IDs of the picking players (captains)

draft_start_time
The time that the game_state changed to draft.

extra_time
Extra time left for both teams. Index 0 is radiant, index 1 is dire

game_end_time
The time that the game_state changed to postgame.

game_mode
The mode of the dota game. Possible values are:

•"none"

•"all pick"

•"captain’s mode"

•"random draft"

•"single draft"

•"all random"

•"intro"

•"diretide"

•"reverse captain’s mode"

•"greeviling"

•"tutorial"

•"mid only"

•"least played"

•"new player pool"

•"compendium matchmaking"

game_start_time
The time that the game_state changed to game.

game_state
The state of the game. Potential values are:

•"loading" - Players are loading into the game

•"draft" - The draft state has begun

•"strategy" - Unknown

•"pregame" - The game has started but creeps have not been spawned

•"game" - The main game, between the first creep spawn and the ancient being destroyed

•"postgame" - After the ancient has been destroyed

•"disconnect" - Unknown

game_time
The time in seconds of the current tick.

12 Chapter 3. API

Tarrasque Documentation, Release 0.1

game_winner
The winner of the game.

load_time
The time that the game_state changed to loading.

match_id
The unique match id, used by the Steam API and stuff (i.e. DotaBUff and friends).

pausing_team
The team that is currently pausing. Will be None if the game is not paused, otherwise either "radiant"
or "dire".

pick_state
The current pick/ban that is happening. None if no pick or ban is happening. If the game_mode is not
"captain’s mode", the possible values are:

•"all pick"

•"single draft"

•"random draft"

•"all random"

Otherwise, the current pick and ban is returned in a tuple of the type of draft action and the index. For
example, if the current tick was during the 5th ban of a captains mode game, the value of pick_state
would be ("ban", 5). active_team could then be used to work out who is banning. Alternatively,
if it was the 2nd pick of the game, it would be ("pick", 2).

pregame_start_time
The time that the game_state changed to pregame.

replay_length
The length in seconds of the replay.

selected_heroes
List of currently picked heroes. 0-4 are radiant picks, 5-9 dire. Picks that have not yet been done have
value None.

starting_team
The team that begins the draft.

3.6 Ability

class BaseAbility(stream_binding, ehandle)
Base class for all abilities. Currently does not delegate to other classes, but can do so.

cast_range
The distance from the hero’s position that this spell can be cast/targeted at.

cooldown_length
How long the goes on cooldown for every time it is cast.

is_on_cooldown
Uses off_cooldown_time and GameInfo.game_time to calculate if the ability is on cooldown or
not.

is_ultimate
Use’s the abilities position in Hero.abilities to figure out if this is the ultimate ability.

3.6. Ability 13

Tarrasque Documentation, Release 0.1

TODO: Check this is reliable

level
The number of times the ability has been leveled up.

mana_cost
The mana cost of the spell

off_cooldown_time
The time the ability comes off cooldown. Note that this does not reset once that time has been passed.

3.7 Base NPC

class BaseNPC(stream_binding, ehandle)
A base class for all NPCs, even ones controllable by players.

abilities
A list of the NPC’s abilities.

health
The NPC’s current HP.

health_regen
The NPC’s health regen per second.

inventory
A list of the NPC’s items.

is_alive
A boolean to test if the NPC is alive or not.

level
The NPC’s level. See Hero.ability_points for unspent level up ability points.

life_state
The state of the NPC’s life (unsurprisingly). Possible values are:

•"alive" - The hero is alive

•"dying" - The hero is in their death animation

•"dead" - The hero is dead

•"respawnable" - The hero can be respawned

•"discardbody" - The hero’s body can be discarded

"respawnable" and "discardbody" shouldn’t occur in a Dota2 replay

mana
The NPC’s current mana.

mana_regen
The NPC’s mana regen per second.

max_health
The NPC’s maximum HP.

max_mana
The NPC’s maximum mana.

position
The (x, y) position of the NPC in Dota2 map coordinates

14 Chapter 3. API

Tarrasque Documentation, Release 0.1

3.8 Hero

While each hero has a distinct class, not all have classes that are defined in source code. This is because the Hero class
registers itself as a wildcard on the DT regexp "DT_DOTA_Unit_Hero_*", and then dynamically generates hero
classes from the ehandle. The generated classes simply inherit from the Hero and have different values for dt_key
and name.

class Hero(stream_binding, ehandle)
While all hero classes inherit from this class, it is unlikely that this class will ever need to be instantiated.

ability_points
Seems to be the number of ability points the player can assign.

agility
The hero’s agility (from levels, items, and the attribute bonus).

static get_all_heroes(stream_binding)

Overrides DotaEntity.get_all in order to return all heroes with the prefix
‘"DT_DOTA_Unit_Hero"‘, as there is never any results for

‘"DT_DOTA_BaseNPC_Hero"‘, and it also wouldn’t be of any use to devs.

intelligence
The hero’s intelligence (from levels, items, and the attribute bonus).

name = None
The name of the hero. For the base Hero class, this is None, but it is set when a subclass is created in the
__new__ method.

natural_agility
The hero’s agility from levels.

natural_intelligence
The hero’s intelligence from levels.

natural_strength
The hero’s strength from levels.

player
The player that is playing the hero.

recent_damage
The damage taken by the hero recently. The exact time period that classifies as “recently” is around 2/3
seconds.

TODO: Find exact value

replicating_hero
The Hero the current hero is “replicating” [#f1]_. If the instance is not an illusion (which use
the Hero class also), this will be None. There is no guarantee that that this hero will exist (see
DotaEntity.exists) if the hero is someone like Phantom Lancer, who may have an illusion which
creates other illusions, and then dies. However, this is still a useful property for tracking illusion creation
chains

respawn_time
Appears to be the absolute time that the hero respawns. See game_time for the current time of the tick
to compare.

TODO: Check this on IRC

3.8. Hero 15

Tarrasque Documentation, Release 0.1

spawned_at
The time (in game_time units) the hero spawned at.

TODO: Check this in game.

strength
The hero’s strength (from levels, items, and the attribute bonus).

xp
The hero’s experience.

3.9 Game Events

class GameEvent(stream_binding, name, properties)
Base class for all game events. Handles humanise and related things.

name = None
The name of the GameEvent. i.e. "dota_combatlog", "dota_chase_hero".

create_game_event(stream_binding, data)
Creates a new GameEvent object from a stream binding and the un-humanized game event data.

find_game_event_class(event_name)
Given the name of an event, finds the class that should be used to represent it.

register_event(event_name)
Register a class as the handler for a given event.

register_event_wildcard(event_pattern)
Same as register_event() but uses a regex pattern to match, instead of a static game event name.

3.10 Combat Log

class CombatLogMessage(stream_binding, name, properties)
A message in the combat log.

attacker_name
The name of the attacker in the event.

health
The health of the unit being attacked, for ‘heal’ and ‘damage’ events.

inflictorname
The name of the “inflictor” (wtf is that?). Used to id modifiers.

source_name
The name of the source of the event.

target_name
The name of the entity that was targeted in the event. Note that this is not the dt name or “pretty” name, this
is the DotaEntity.raw_name. So for a message where Shadow Field is being attacked, this would be
"dt_dota_nevermore".

timestamp
The timestamp this combat log message corresponds to.

type
The type of event this message signifies. Options are:

16 Chapter 3. API

Tarrasque Documentation, Release 0.1

•"damage" - One entity is damaging another

•"heal" - One entity is healing another

•"modifier added" - A modifier is being added to an entity

•"modifier removed" - A modifier is being removed from an entity

•"death" - An entity has died.

value
The value of the event. Can have various different meanings depending on the type.

3.11 Item

class Item(stream_binding, ehandle)
Item class

alertable
Presumably whether you can right-click ‘Alert allies’ with it (ex: Smoke, Arcane Boots, ‘Gather for Arcane
Boots here!’)

cooldown_length
These are all the same as the functions in the ability class, I’m lazy, go read them, they are fairly self-
explanatory :D

current_charges
Presumably the item’s current charges (ex: 7 for Diffusal if used once)

disassemblable
Presumably whether you can disassemble the item (ex: Arcane Boots)

droppable
Presumably if the item is droppable (ex: not Aegis)

initial_charges
Presumably charges when item is bought (ex: 8 for diffusal)

killable
Presumably whether the item can be denied (ex: not Gem)

off_cooldown_time
The time when the item will come off cooldown

permanent
Seems to be if the item will disappear when it runs out of stacks (i.e consumable. Ex: Tango, not Diffusal)

purchasable
Presumably whether you can buy the item or not (ex: not Aegis)

purchase_time
The time when the item was purchased

purchaser
The hero object of the purchaser of the item

recipe
Presumably whether the item is a recipe or not (ex: any Recipe)

requires_charges
Presumably whether the item needs charges to work (ex: Diffusal)

3.11. Item 17

Tarrasque Documentation, Release 0.1

sellable
Presumably whether the item can be sold or not (ex: Not BKB)

sharability
Presumably whether the item can be shared (ex: Tango, RoH)

stackable
Presumably whether the item can be stacked (ex: Wards)

18 Chapter 3. API

CHAPTER 4

Indices and tables

• genindex

• search

19

Tarrasque Documentation, Release 0.1

20 Chapter 4. Indices and tables

Python Module Index

t
tarrasque.ability, 13
tarrasque.basenpc, 14
tarrasque.binding, 7
tarrasque.combatlog, 16
tarrasque.creeps.manager, 9
tarrasque.entity, 9
tarrasque.gameevents, 16
tarrasque.gameinfo, 11
tarrasque.hero, 15
tarrasque.item, 17
tarrasque.player, 10

21

	An Introduction to Tarrasque
	Tarrasque concepts for people who know what an ehandle is
	Tarrasque concepts for people who don't know what an ehandle is

	Guides
	Analysing game end states

	API
	Stream Binding
	Creep Manager
	Dota Entity
	Player
	Game Info
	Ability
	Base NPC
	Hero
	Game Events
	Combat Log
	Item

	Indices and tables
	Python Module Index

