<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Documentation</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Tutorial</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>Examples</td>
<td>136</td>
</tr>
<tr>
<td>4</td>
<td>Theory</td>
<td>137</td>
</tr>
<tr>
<td>5</td>
<td>FAQ</td>
<td>138</td>
</tr>
<tr>
<td>6</td>
<td>Contact</td>
<td>140</td>
</tr>
</tbody>
</table>
Spatial

Productive application accelerator design for FPGAs and CGRAs

Spatial is a domain-specific language for describing hardware accelerators for use on FPGAs and other supported spatial architectures. The language is intended to be both higher level than hardware description languages (HDLs) like Verilog, VHDL, and Chisel, while also being easier to use than Altera’s OpenCL or high level synthesis (HLS) languages like Xilinx’s Vivado.

Language features of Spatial include:

- Tunable, hardware specific templates
- User specified and implicitly created design parameters
- Design runtime and area analysis
- Automatic parameter tuning
- Automatic memory banking and buffering
The Spatial API is divided into three components: **Acceleratable** data structures and syntax can be used in the acceleration scope, while **Host** operations can only be used within the host code. Operations which are often used for either within the accelerator definition or in the host code are grouped under the **Common** category.

Documentation for running the Spatial compiler is provided under **Compiler**.

Common

This section lists operations and types which are available for use both on the CPU and in hardware **Accel** scopes.

Data Structures

This subsection lists data structures which are available for use both on the CPU and in hardware **Accel** scopes.

Range

Range represents a sequence of 32b integer values from a given **start** (inclusive) to **end** (exclusive) with a non-zero step size. Range also has an optional parallelization factor, which is used to determine physical unrolling in hardware.

In Accel scopes, Range instances can be implicitly converted to **Counter**.

Ranges can be created using two different syntax flavors. When unspecified, the default value for **start** is 0, and the default value for **step** and **par** are both 1.

Form 1:

```plaintext
val range1 = max by step  // start of 0, step by 1, parallelization of 1
val range2 = start until max // start of 0, step by 1, parallelization of 1
val range3 = start until max by step par p
```

Form 2:
Form 1 is typically used for specifying the domain of a loop, while Form 2 is used for Matlab-like syntax when selecting a range of elements from a memory.

Ranges can also be used to create Scala-like for loops on the CPU:

```scala
for (i <- 0 until max by 2) {
  ..
}
```

This loop will run for all even integers from [0, max). Note that this syntax is only usable on the CPU or in simulation.

Infix methods

class Range

- `def length: Index
 Returns the length of this Range.

- `def by(step: Index): Range
 Creates a Range with this Range’s start and end but with the given step size.

- `def par(p: Index): Range
 Creates a Range with this Range’s start, end, and stride, but with the given par parallelization factor.

- `def ::(start2: Index): Range
 Creates a Range with this Range’s end, with the previous start as the step size, and the given start. Note that this operator is right-associative.

- `def foreach(func: Index => Unit): Unit
 Iterates over all integers in this range, calling func on each.

 NOTE: This method is unsynthesizable, and can be used only on the CPU or in simulation.
Implicit methods

```scala
def rangeToCounter(range: Range): Counter
    Implicitly creates a hardware Counter from this Range.
```

Structs

Custom structs can be created in Spatial using the `@struct` macro.

For example:

```scala
@struct MyData(x: Int, y: Double)
```

creates a struct which contains an `Int` and a `Double`. An instance of this struct can be created using:

```scala
val data = MyData(32, 45.0f)
```

Note that this instance is immutable - its fields cannot be updated. Mutable custom struct instances are currently not supported, but may be added in the future.

The fields of a custom struct are accessed using:

```scala
data.x
data.y
```

Defining a custom struct also implicitly adds evidence of the `Bits` and `Arith` type classes. This allows syntax like:

```scala
val rand2 = random[MyData]
val rand1 = random[MyData](MyData(32, 2.0f))
val a = rand2 + rand1
val b = rand2 - rand1
```

Tuple2

Tuple2[A,B] is a simple data structure used to hold a pair of staged values.

Note that this name shadows the unstaged Scala type. For the unstaged type, use the full name scala.Tuple2[A,B]

Infix methods

1.1. Common
class Tuple2[A, B]

 def _1: A
 Returns the first field in this Tuple2.

 def _2: B
 Returns the second field in this Tuple2.

 def toString: String
 Returns a printable String from this value.

 NOTE: This method is unsynthesizable and can only be used on the CPU or in simulation.

 def ————

 def **Related methods**

 def @table-start

 def NoHeading

 def pack[A: Type, B: Type](t: (A, B)): MTuple2[A, B]
 Returns a staged Tuple2 from the given unstaged Tuple2.

 def pack[A: Type, B: Type](a: A, b: B): MTuple2[A, B]
 Returns a staged Tuple2 from the given pair of values. Shorthand for **pack((a,b))**.

 1.1. Common pack[A: Type, B: Type](t: MTuple2[A, B]): (A, B)
 Returns an unstaged scala.Tuple2 from this staged Tuple2. Shorthand for **(x._1, x._2)**.
Vector

Vector defines a fixed size collection of scalar values. It is distinct from **Array** in that the size must always be statically determinable. This allows Vector to always be allocated as a bus of wires when implemented in hardware.

Vector is most commonly used for managing parallel accesses to local memories in hardware and for bit-twiddling operations.

To allow static type checking and creation of the **Bits** type class, the Vector type is split into subtypes based on the number of elements it contains. For example, a Vector3[Int] is composed of 3, 32-bit Int values, while a Vector32[Bit] is a single bus of 32 Bit values. Spatial currently defines Vector types from Vector1 up to Vector128.

To work around *limitations with Scala's type system* Spatial also includes a VectorN type for when the vector width cannot be type-encoded. This type generally needs to be annotated with the number of bits the user intended (e.g. `vector.as32b`) before it can be written to memories.

Static methods

object Vector

```scala
def LittleEndian[T: Type: Bits](elem: T*): VectorX[T]
Creates a VectorX from the given X elements, where X is between 1 and 128.
The first element supplied is the most significant (Vector index of X - 1).
The last element supplied is the least significant (Vector index of 0).

Note that this method is actually overloaded 128 times based on the number of supplied arguments.
```

```scala
def BigEndian[T: Type: Bits](elem: T*): VectorX[T]
Creates a VectorX from the given X elements, where X is between 1 and 128.
The first element supplied is the least significant (Vector index of 0).
The last element supplied is the most significant (Vector index of X - 1).

Note that this method is actually overloaded 128 times based on the number of supplied arguments.
```

```scala
def ZeroLast[T: Type: Bits](elem: T*): VectorX[T]
A mnemonic for LittleEndian (with reference to the zeroth element being specified last in order).
```

```scala
def ZeroFirst[T: Type: Bits](elem: T*): VectorX[T]
A mnemonic for BigEndian (with reference to the zeroth element being specified first in order).
```
Spatial also includes an alternate `Vectorize` object which takes a true arbitrary number of elements in all of its functions. As a result, these methods return VectorNs.

```python
object Vectorize

    def LittleEndian[T:Type:Bits](elem: T*): VectorN[T]
    Creates a VectorN from the given elements.
    The first element supplied is the most significant (Vector index of N - 1).
    The last element supplied is the least significant (Vector index of 0).

    def BigEndian[T:Type:Bits](elem: T*): VectorN[T]
    Creates a VectorN from the given elements.
    The first element supplied is the least significant (Vector index of 0).
    The last element supplied is the most significant (Vector index of N - 1).

    def ZeroLast[T:Type:Bits](elem: T*): VectorN[T]
    A mnemonic for LittleEndian (with reference to the zeroth element being specified last in order).

    def ZeroFirst[T:Type:Bits](elem: T*): VectorN[T]
    A mnemonic for BigEndian (with reference to the zeroth element being specified first in order).
```

Infix methods
class Vector[T]

def apply(i: Int): T
Returns the i'th element of this Vector.
Element 0 is always the LSB.

def apply(range: Range)(implicit mT: Type[T], bT: Bits[T]): VectorN[T]
Returns a slice of the elements in this Vector as a VectorN.
The range must be statically determinable with a stride of 1.
The range is inclusive for both the start and end.
The range can be big endian (e.g. 3::0) or little endian (e.g. 0::3).
In both cases, element 0 is always the least significant element.

For example, x(3::0) returns a Vector of the 4 least significant elements of x.

def takeX(offset: scala.Int): VectorX[T]
Returns a slice of N elements of this Vector starting at the given offset from the least significant element.
To satisfy Scala’s static type analysis, each width has a separate method.

For example, x.take3(1) returns the 3 least significant elements of x after the least significant as a Vector3[T].

def !=(that: Vector[T]): MBoolean
Returns true if this Vector and that differ by at least one element, false otherwise.

def ==(that: Vector[T]): MBoolean
Returns true if this Vector and that contain the same elements, false otherwise.

class VectorX[T] extends Vector[T]
class VectorN[T]

 def asVectorX: VectorX[T]
 Casts this VectorN as a VectorX.
 Values of X from 1 to 128 are currently supported.

 If the VectorX type has fewer elements than this value’s type, the most significant elements will be dropped.
 If the VectorX type has more elements than this value’s type, the resulting elements will be zeros.

 def asXb: VectorX[Bit]
 Returns a view of this VectorN’s bits as a X-bit Vector.
 To satisfy Scala’s static analysis, each bit-width has a separate method.
 Conversions between 1 and 128 bits are currently supported.

 If X is smaller than this VectorN’s total bits, the MSBs will be dropped.
 If X is larger than this VectorN’s total bits, the resulting MSBs will be zeros.

Primitive Types

Boolean

Boolean represents a staged single boolean value.

Note that this type shadows the unstaged Scala Boolean. In the case where an unstaged Boolean type is required, use the full scala.Boolean name.

Infix methods
class Boolean

 def unary_!(y: Boolean): Boolean
 Negates the given boolean expression.

 def &&(y: Boolean): Boolean
 Boolean AND.
 Compares two Booleans and returns true if both are true.

 def ||(y: Boolean): Boolean
 Boolean OR.
 Compares two Booleans and returns true if at least one is true.

 def ^(y: Boolean): Boolean
 Boolean exclusive-or (XOR).
 Compares two Booleans and returns true if exactly one is true.

 def !=(y: Boolean): Boolean
 Value inequality (equivalent to exclusive-or).
 Compares two Booleans and returns true if exactly one is true.

 def ==(y: Boolean): Boolean
 Value equality, equivalent to exclusive-nor (XNOR).
 Compares two Booleans and returns true if both are true or both are false

 def toString: String
 Creates a printable String from this value

[NOTE] This method is unsynthesizable, and can be used only on the CPU or in simulation.
FixPt

FixPt[S,I,F] represents an arbitrary precision fixed point representation. FixPt values may be signed or unsigned. Negative values, if applicable, are represented in two’s complement.

The type parameters for FixPt are:

<table>
<thead>
<tr>
<th></th>
<th>BOOL</th>
<th>Signed representation</th>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>INT</td>
<td>Number of integer bits</td>
<td>1 - 64</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>INT</td>
<td>Number of fractional bits</td>
<td>0 - 64</td>
<td></td>
</tr>
</tbody>
</table>

Note that numbers of bits use the underscore prefix as integers cannot be used as type parameters in Scala.

Type Aliases

Specific types of FixPt values can be managed using type aliases. New type aliases can be created using syntax like the following:

```scala
type Q16_16 = FixPt[TRUE,_16,_16]
```

Spatial defines the following type aliases by default:

<table>
<thead>
<tr>
<th>type</th>
<th>IntN</th>
<th>FixPt[TRUE,_N,_0]</th>
<th>Signed, N bit integer (2 - 128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>UlIntN</td>
<td>FixPt[TRUE,_N,_0]</td>
<td>Unsigned, N bit integer (2 - 128)</td>
</tr>
<tr>
<td>type</td>
<td>Char</td>
<td>FixPt[TRUE,_8,_0]</td>
<td>Signed, 8 bit integer</td>
</tr>
<tr>
<td>type</td>
<td>Short</td>
<td>FixPt[TRUE,_16,_0]</td>
<td>Signed, 16 bit integer</td>
</tr>
<tr>
<td>type</td>
<td>Int</td>
<td>FixPt[TRUE,_32,_0]</td>
<td>Signed, 32 bit integer</td>
</tr>
<tr>
<td>type</td>
<td>Index</td>
<td>FixPt[TRUE,_32,_0]</td>
<td>Signed, 32 bit integer (indexing)</td>
</tr>
<tr>
<td>type</td>
<td>Long</td>
<td>FixPt[TRUE,_64,_0]</td>
<td>Signed, 64 bit integer</td>
</tr>
</tbody>
</table>

Note that the Char, Short, Int, and Long types shadow their respective unstaged Scala types. In the case where an unstaged type is required, use the full `scala.*` name.

Infix methods

The following infix methods are defined on all FixPt classes. When the method takes a right hand argument, only values of the same FixPt class can be used for this argument.

```scala
class FixPt[S,I,F]

def unary_-(r): FixPt[S,I,F]
  Returns negation of this fixed point value.
```

```scala
def unary_-~(r): FixPt[S,I,F]
  Returns bitwise inversion of this fixed point value.
```
class FixPt[S,I,F]

 def + (that: FixPt[S,I,F]): FixPt[S,I,F]
 Fixed point addition.

 def - (that: FixPt[S,I,F]): FixPt[S,I,F]
 Fixed point subtraction.

 def * (that: FixPt[S,I,F]): FixPt[S,I,F]
 Fixed point multiplication.

 def / (that: FixPt[S,I,F]): FixPt[S,I,F]
 Fixed point division.

 def % (that: FixPt[S,I,F]): FixPt[S,I,F]
 Fixed point modulus.

 Integer exponentiation, implemented in hardware as a reduction tree with exp inputs.

 def *& (that: FixPt[S,I,F]): FixPt[S,I,F]
 Fixed point multiplication with unbiased rounding.

 After multiplication, probabilistically rounds up or down to the closest representable number.
Table 1.1 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>def /& (that: FixPt[S,I,F]): FixPt[S,I,F]</code></td>
<td>Fixed point division with unbiased rounding. After division, probabilistically rounds up or down to the closest representable number.</td>
</tr>
<tr>
<td><code>def <-> (that: FixPt[S,I,F]): FixPt[S,I,F]</code></td>
<td>Saturating fixed point addition. Addition which saturates at the largest or smallest representable number upon over/underflow.</td>
</tr>
<tr>
<td><code>def <-> (that: FixPt[S,I,F]): FixPt[S,I,F]</code></td>
<td>Saturating fixed point subtraction. Subtraction which saturates at the largest or smallest representable number upon over/underflow.</td>
</tr>
<tr>
<td><code>def <*> (that: FixPt[S,I,F]): FixPt[S,I,F]</code></td>
<td>Saturating fixed point multiplication. Multiplication which saturates at the largest or smallest representable number upon over/underflow.</td>
</tr>
<tr>
<td><code>def </> (that: FixPt[S,I,F]): FixPt[S,I,F]</code></td>
<td>Saturating fixed point division. Division which saturates at the largest or smallest representable number upon over/underflow.</td>
</tr>
</tbody>
</table>
class `FixPt[S,I,F]`

Saturating fixed point multiplication with unbiased rounding.

After multiplication, probabilistically rounds up or down to the closest representable number. After rounding, also saturates at the largest or smallest representable number upon over/underflow.

Saturating fixed point division with unbiased rounding.

After division, probabilistically rounds up or down to the closest representable number. After rounding, also saturates at the largest or smallest representable number upon over/underflow.

def `<` (that: `FixPt[S,I,F]`): MBoolean
Less than comparison.

Returns true if this value is less than that value. Otherwise returns false.

def `<=(that: FixPt[S,I,F])`: MBoolean
Less than or equal comparison.

Returns true if this value is less than or equal to that value. Otherwise returns false.

def `>` (that: `FixPt[S,I,F]`): MBoolean
Greater than comparison

Returns true if this value is greater than that value. Otherwise returns false.
class `FixPt[S,I,F]`

```python
def >= (that: `FixPt[S,I,F]`): MBoolean
    Greater than or equal comparison.
    Returns `true` if this value is greater than or equal to `that` value. Otherwise returns `false`.

def != (that: `FixPt[S,I,F]`): Boolean
    Value inequality comparison.
    Returns `true` if this value is not equal to the right hand side. Otherwise returns `false`.

def != (that: `FixPt[S,I,F]`): Boolean
    Value equality comparison.
    Returns `true` if this value is equal to the right hand side. Otherwise returns `false`.

    Bit-wise AND.

    Bit-wise OR.

    Bit-wise XOR.

def << (that: `FixPt[S,I,0]`): `FixPt[S,I,F]`
    Logical shift left.
```
class `FixPt[S,I,F]`

```scala
    def >>>(that: `FixPt[S,I,0]`): `FixPt[S,I,F]`
    Arithmetic (sign-preserving) shift right.
```

```scala
    def >>>>(that: `FixPt[S,I,0]`): `FixPt[S,I,F]`
    Logical (zero-padded) shift right.
```

```scala
    def `as`[T:`Type:Bits`]: T
    Re-interprets this value’s bits as the given type, without conversion.
```

```scala
    def `apply`(i: scala.Int): `Bit`
    Returns the given bit in this value.
    0 corresponds to the least significant bit (LSB).
```

```scala
    def `apply`(range: `Range`): `Vector[Bit]`
    Returns a vector of bits based on the given range.
    The range must be statically determinable values.
```

```scala
    def `reverse`: `FixPt[S,I,F]`
    Returns a fixed point value with this value’s bits in reverse order.
```

```scala
    def `to`[T:`Type:Bits`]: T
    Converts this value to the given type.
    Currently supported types are `FixPt`, `FltPt`, and `String`.
```
class `FixPt[S,I,F]`

 def toString: String
 Creates a printable String representation of this value.

 NOTE: This method is unsynthesizable, and can be used only on the CPU or in simulation.

Specialized infix methods

These methods are defined on only specific classes of FixPt values.

subclass `Int` (aliases: `Index`, `FixPt[TRUE, _32, _0]`)

 def ::(end: `Int`): `Range`
 Creates a Range with this as the start (inclusive), the given end (noninclusive), and step of 1.

 def by(step: `Int`): `Range`
 Creates a Range with start of 0 (inclusive), this value as the end (noninclusive), and the given step.

 def until(end: `Int`): `Range`
 Creates a Range with this as the start (inclusive), the given end (noninclusive), and step of 1.

FltPt

FltPt[G,E] represents an arbitrary precision, IEEE-754-like representation. FltPt values are always assumed to be signed.

The type parameters for FltPt are:

-----	-----	
G	INT	Number of significand bits, including sign bit
E	INT	Number of exponent bits

Note that numbers of bits use the underscore prefix as integers cannot be used as type parameters in Scala.

Type Aliases

Specific types of FltPt values can be managed using type aliases. New type aliases can be created using::

1.1. Common
type MyType = FltPt[_,_,_]

Spatial defines the following type aliases by default:

<table>
<thead>
<tr>
<th>type</th>
<th>Half</th>
<th>FltPt[11,.5]</th>
<th>IEEE-754 half precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>Float</td>
<td>FltPt[24,.8]</td>
<td>IEEE-754 single precision</td>
</tr>
<tr>
<td>type</td>
<td>Double</td>
<td>FltPt[53,.11]</td>
<td>IEEE-754 double precision</td>
</tr>
</tbody>
</table>

Note that the Float and Double types shadow their respective unstaged Scala types. In the case where an unstaged type is required, use the full `scala.*` name.

Infix methods
class FltPt[G, E]

def unary_-(): FltPt[G, E]
Returns the negation of this floating point value.

def + (that: FltPt[G, E]): FltPt[G, E]
Floating point addition.

def - (that: FltPt[G, E]): FltPt[G, E]
Floating point subtraction.

def * (that: FltPt[G, E]): FltPt[G, E]
Floating point multiplication.

def / (that: FltPt[G, E]): FltPt[G, E]
Floating point division.

def \(^\ast\ast\) (exp: scala.Int): FltPt[G, E]
Integer exponentiation, implemented in hardware as a reduction tree with \(\text{exp}\) inputs.

def < (that: FltPt[G, E]): MBoolean
Less than comparison.

Returns \textbf{true} if this value is less than \textbf{that} value. Otherwise returns \textbf{false}.

def <= (that: FltPt[G, E]): MBoolean
Less than or equal comparison.

Returns \textbf{true} if this value is less than or equal to \textbf{that} value. Otherwise returns \textbf{false}.

1.1. Common
Unit

Like Scala, **Unit** is a type representing no return value in Spatial. It is similar to *void* in Java or C++.

Type Classes

Arith

Type class used to supply evidence that type T has basic arithmetic operations defined on it.

Abstract methods

<table>
<thead>
<tr>
<th>Trait</th>
<th>Arith[T]</th>
</tr>
</thead>
</table>
| | def negate(x: T): T
 | Returns the negation of the given value. |
| | def plus(x: T, y: T): T
 | Returns the result of adding x and y. |
| | def minus(x: T, y: T): T
 | Returns the result of subtracting y from x. |
| | def times(x: T, y: T): T
 | Returns the result of multiplying x and y. |
| | def divide(x: T, y: T): T
 | Returns the result of dividing x by y. |

Bits

The Bits type class is used to supply evidence that a type T is representable by a statically known number of bits.
Abstract Methods

```
trait Bits[T]

  def length: scala.Int
  Returns the minimum number of bits required to represent type T.

  def zero: T
  Returns the zero value for type T.

  def one: T
  Returns the one value for type T.

  def random(max: Option[T]): T
  Generates a pseudorandom value uniformly distributed between 0 and max.
  If max is unspecified, type T's default maximum is used instead.
  For FixPt types, the default maximum is the maximum representable number.
  For FltPt types, the default maximum is 1.
  For composite Tuple2 and Struct types, the maximum is determined per component.
```

Related methods
def zero[T:Bits]: T
 Returns the zero value for type T.

def one[T:Bits]: T
 Returns the one value for type T.

def random[T:Bits]: T
 Generates a pseudorandom value uniformly distributed between 0 and the default maximum for type T.

def random[T:Bits](max: T): T
 Generates a pseudorandom value uniformly distributed between 0 and max.

Infix methods

Instances of types which have evidence of Bits also have infix methods defined on them:
def apply(i: Int): Bit
Returns the given bit in this value.
0 corresponds to the least significant bit (LSB).

def apply(range: Range): BitVector
Returns a slice of the bits in this word as a VectorN.
The range must be statically determinable with a stride of 1.
The range is inclusive for both the start and end.
The range can be big endian (e.g. **3::0**) or little endian (e.g. **0::3**).
In both cases, element 0 is always the least significant element.

For example, **x(3::0)** returns a Vector of the 4 least significant bits of **x**.

def as[B: Type:Bits]: B
Re-interprets this value’s bits as the given type, without conversion.
If B has fewer bits than this value’s type, the MSBs will be dropped.
If B has more bits than this value’s type, the resulting MSBs will be zeros.

def reverse: A
Returns a value of the same type with this value’s bits in reverse order.

def takeX(offset: scala.Int): VectorX[Bit]
Returns a slice of X bits of this value starting at the given offset from the LSB.
To satisfy Scala’s static type analysis, each bit-width has a separate method.

For example, **x.take3(1)** returns the 3 least significant bits of x after the LSB as a Vector3[Bit].

def takeXMSB(offset: scala.Int): VectorX[Bit]
Returns a slice of X bits of this value, starting at the given offset from the MSB.
To satisfy Scala’s static type analysis, each bit-width has a separate method.
Slices between 1 and 128 bits are currently supported.

For example, **x.take3MSB(1)** returns the 3 most significant bits of x after the MSB as a Vector3[Bit].
Mem

Type class used to supply evidence that type T is a local memory, potentially with multiple dimensions.

Abstract Methods

```scala
trait Mem[T, C]

  def load(mem: C[T], indices: Seq[Index], en: Bit): T
  Loads an element from mem at the given multi-dimensional address indices with enable en.

  def store(mem: C[T], indices: Seq[Index], data: T, en: Bit): Unit
  Stores data into mem at the given multi-dimensional address indices with enable en.

  def iterators(mem: C[T]): Seq[Counter]
  Returns a Seq of counters which define the iteration space of the given memory mem.

  def par(mem: C[T]): Option[Index]
  Returns the parallelization annotation for this memory.
```

Num

Combination of Arith, Bits, and Order type classes

Abstract Methods
trait Num[T] extends Arith[T] with Bits[T] with Order[T]

 def toFixPt[S:BOOL,I:INT,F:INT](x: T): FixPt[S,I,F]
 Converts x to a FixPt value.

 Converts x to a FltPt value.

 def fromInt(x: scala.Int, force: Boolean = true): T
 Returns the closest representable value of type T to x.
 If force is true, gives a warning when the conversion is not exact.

 def fromLong(x: scala.Long, force: Boolean = true): T
 Returns the closest representable value of type T to x.
 If force is true, gives a warning when the conversion is not exact.

 def fromFloat(x: scala.Float, force: Boolean = true): T
 Returns the closest representable value of type T to x.
 If force is true, gives a warning when the conversion is not exact.

 def fromDouble(x: scala.Double, force: Boolean = true): T
 Returns the closest representable value of type T to x.
 If force is true, gives a warning when the conversion is not exact.

 def maxValue: T
 Returns the largest, finite, positive value representable by type T.

 def minValue: T
 Returns the most negative, finite value representable by type T.
Order

Type class used to supply evidence that type T has basic ordering operations defined on it.

Abstract Methods

<table>
<thead>
<tr>
<th>Trait</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order[T]</td>
<td><code>lessThan(a: T, b: T): MBoolean</code></td>
<td>Returns true if a is less than b, false otherwise.</td>
</tr>
<tr>
<td></td>
<td><code>lessThanOrEqual(a: T, b: T): MBoolean</code></td>
<td>Returns true if a is less than or equal to b, false otherwise.</td>
</tr>
<tr>
<td></td>
<td><code>equal(a: T, b: T): MBoolean</code></td>
<td>Returns true if a is equal to b, false otherwise.</td>
</tr>
</tbody>
</table>

Type

Type class used to supply evidence that type T is representable in the Spatial compiler.

This type class is primarily used to distinguish between unstaged values, i.e. Scala collections and primitives, and staged, Spatial values.

Math

Commonly used mathematical operators

Methods
def abs[T:Type:Num](value: T): T
Returns the absolute value of the supplied numeric value.

def ceil[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Returns the smallest (closest to negative infinity) integer value greater than or equal to x.

def exp[T:Type:Num](x: T)(implicit ctx: SrcCtx): T
Returns the natural exponentiation of x (e raised to the exponent x).

def floor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Returns the largest (closest to positive infinity) integer value less than or equal to x.

Returns the natural logarithm of x.

def mux[T:Type:Bits](select: Bit, a: T, b: T): T
Creates a multiplexer that returns a when select is true, b otherwise.

def min[T:Type:Bits:Order](a: T, b: T): T
Returns the minimum of the numeric values a and b.

def max[T:Type:Bits:Order](a: T, b: T): T
Returns the maximum of the numeric values a and b.
Approximate Methods

Some of the trigonometric functions are not yet supported in the Chisel backend yet. As a placeholder, or to minimize future hardware costs, the following Taylor series approximations are predefined:
def sin_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for trigonometric sine from -pi to pi

def cos_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for trigonometric cosine from -pi to pi

def exp_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for natural exponential

Taylor series expansion for natural exponential

def log_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for natural log to third degree.

Taylor series expansion for natural log to third degree.

def sqrt_approx[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for square root to third degree.

Taylor series expansion for square root to third degree.
Acceleratable

This section lists operations which are primarily used for writing accelerator designs.

Annotations

Bound

The **bound** annotation provides a quick, simple way of annotating the approximate sizes of data consumed by the application. This is primarily useful in automated design space exploration, where the ideal parallelization factor or memory size may depend on the size of the data the accelerator will be processing.

The **bound** annotation is not a guarantee, so no operation optimizations are done as a result of this annotation. It is purely used to help drive runtime estimation.

While **bound** can be used outside of the *Accel* scopes, it currently has no use except in hardware tuning.

To set the bound of a given value, use the syntax:

```
bound(x) = 64
```

This tells the compiler to expect the value `x` to be approximately 64 at runtime.

DSE Parameters

To help drive automated design space exploration, Spatial includes syntax for users to explicitly annotate a value as a design parameter. These values are typically used to set the size of on-chip scratchpads like SRAM memories or to tune the parallelization/unrolling factors of Controllers.

Parameters have two parts: a default value that is used when compiler DSE is not run, and an associated range within which the compiler should explore.

There are two ways of creating explicit parameters in Spatial:

```
param(3)
```

This creates an integer parameter with a default value of 3. The range is left to be determined by the compiler. Alternatively, the user can set the range explicitly using:

```
1 (1 -> 10)
4 (1 -> 2 -> 10)
```

The first example shows a parameter with a default of 1, and a range of [1, 10]. The second example shows a parameter with a default of 4, and a range of {1, 2, 4, 8, 10} (stride of 2, including 1).

Controllers

Fold

Fold is a control node which takes an initial value and many scalar values and combines them into one value using some associative operator. Unless otherwise disabled, the compiler will attempt to automatically pipeline and parallelize **Fold** nodes. A Fold consists of a *map* function, which is responsible for producing the scalar values, and a *reduction* function to describe how the values should be combined.
Calling any form of Fold returns the accumulator which, at the end of the loop, will contain the final result of the reduction.

Static methods
```scala
object Fold

def apply[T](initial: T)(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]
Fold over a one dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.

def apply[T](initial: T)(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Fold over a two dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.

def apply[T](initial: T)(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Fold over a three dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.

def apply[T](initial: T)(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map: List[Int] => T)(reduce: (T,T) => T): Reg[T]
Fold over an 4+ dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

def apply[T](accum: Reg[T])(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]
Fold over a one dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Fold over a two dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Fold over a three dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map: List[Int] => T)(reduce: (T,T) => T): Reg[T]
Fold over an 4+ dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.
```

1.2. Acceleratable
Foreach

The *Foreach* controller is similar to a *for* loop. Significantly, however, unless explicitly told otherwise, the compiler will assume each iteration of *Foreach* is independent, and will attempt to parallelize and pipeline the body. *Foreach* has no usable return value.

Static methods

```python
object Foreach

    def apply(ctr: Counter)(func: Int => Unit): Unit
    Foreach over a one dimensional space.

    def apply(ctr1: Counter, ctr2: Counter)(func: (Int, Int) => Unit): Unit
    Foreach over a two dimensional space.

    def apply(ctr1: Counter, ctr2: Counter, ctr3: Counter)(func: (Int, Int, Int) => Unit): Unit
    Foreach over a three dimensional space.

    def apply(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(func: List[Int] => Unit): Unit
    Foreach over a 4+ dimensional space.
    Note that func is on a List of iterators.
    The number of iterators will be the same as the number of counters supplied.
```

MemFold

MemFold describes the reduction across multiple local memories. It functions essentially the same way as a *MemReduce*, except that it uses the existing value of the accumulator at the start of the reduction as the initial value of the accumulator, rather than resetting. Like MemReduce, unless otherwise disabled, the compiler will try to parallelize both the creation of multiple memories and the reduction of each of these memories into a single accumulator.

Static methods
On-chip memory fold over a one dimensional space.
Returns the accumulator \texttt{accum}.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => C[T])(reduce: (T,T) => T): C[T]
On-chip memory fold over a two dimensional space.
Returns the accumulator \texttt{accum}.

On-chip memory fold over a three dimensional space.
Returns the accumulator \texttt{accum}.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map: List[Int] => C[T])(reduce: (T,T) => T): C[T]
On-chip memory fold over a 4+ dimensional space.
Returns the accumulator \texttt{accum}.
Note that the \texttt{map} function is on a \texttt{List} of iterators.
The number of iterators will be the same as the number of counters supplied.

\textbf{MemReduce}

\textbf{MemReduce} describes the reduction \emph{across} multiple local memories. Like \textbf{Reduce}, MemReduce requires both a \texttt{map} and a \texttt{reduction} function. However, in MemReduce, the \texttt{map} describes the creation and population of a local memory (typically an \texttt{SRAM}). The \texttt{reduction} function still operates on scalars, and is used to combine local memories together element-wise. Unlike Reduce, MemReduce always requires an explicit accumulator. Unless otherwise disabled, the compiler will then try to parallelize both the creation of multiple memories and the reduction of each of these memories into a single accumulator.

\textbf{Static methods}
object MemReduce

On-chip memory reduction over a one dimensional space.
Returns the accumulator *accum*.

 def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => C[T])(reduce: (T,T) => T): C[T]
On-chip memory reduction over a two dimensional space.
Returns the accumulator *accum*.

On-chip memory reduction over a three dimensional space.
Returns the accumulator *accum*.

 def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map: List[Int] => C[T])(reduce: (T,T) => T): C[T]
On-chip memory reduction over a 4+ dimensional space.
Returns the accumulator *accum*.
Note that the *map* function is on a *List* of iterators.
The number of iterators will be the same as the number of counters supplied.

Parallel

Parallel is a control node which informs the compiler to schedule any inner control nodes in a fork-join manner.
Note: Parallel will be soon be deprecated for general use as the scheduling algorithms in the Spatial compiler improve.

Static methods

object Parallel

 def apply(body: => Unit): Unit
Creates a parallel fork-join controller. Waits on completion of all controllers in the body.
Reduce

Reduce is a control node which takes many scalar values and combines them into one value using some associative operator. Unless otherwise disabled, the compiler will attempt to automatically pipeline and parallelize Reduce nodes. A Reduce consists of a map function, which is responsible for producing scalar values, and a reduction function to describe how the values should be combined.

Calling any form of Reduce returns the accumulator which, at the end of the loop, will contain the final result of the reduction.

Static methods
Reduction over a one dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

Reduction over a two dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

Reduction over a three dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

Reduction over an 4+ dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

def apply[T](accum: Reg[T])(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]
Reduction over a one dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Reduction over a two dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Reduction over a three dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map: List[Int] => T)(reduce: (T,T) => T): Reg[T]
Reduction over an 4+ dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

1.2. Acceleratable
Off-Chip Memories

BufferedOut

`BufferedOut` defines an addressable output stream from the accelerator, implemented in hardware as an SRAM buffer which is asynchronously (and implicitly) used to drive a set of output pins.

`BufferedOut` is similar in functionality to `StreamOut`, but allows address and frame-based writing. This is useful, for example, in video processing, when video needs to be processed on a frame-by-frame basis rather than a pixel-by-pixel basis.

In Spatial, `BufferedOut`s are specified outside the `Accel` block, in host code.

Static methods

| `object BufferedOut`
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>def apply[T: <code>Type: Bits</code>][bus: <code>Bus</code>]: <code>BufferedOut[T]</code></td>
</tr>
<tr>
<td>Creates a <code>BufferedOut</code> of type <code>T</code> connected to the specified bus.</td>
</tr>
<tr>
<td>The size of the buffer is currently fixed at 240 x 320 elements.</td>
</tr>
</tbody>
</table>

Infix methods

| `class BufferedOut[T]`
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>def update(row: <code>Index</code>, col: <code>Index</code>, data: <code>T</code>): <code>Unit</code></td>
</tr>
<tr>
<td>Write <code>data</code> to the given two dimensional address.</td>
</tr>
</tbody>
</table>

Bus

In Spatial, **Buses** are predefined input/output pins available on supported FPGA targets. They are accessed using the static `target` object available in Spatial apps.

They currently have no corresponding syntax, and are used only to create `StreamIn` and `StreamOut` ports.

DRAM

DRAMs are pointers to locations in the accelerator’s main memory comprising dense multi-dimensional arrays. They are the primary form of communication of data between the host and the accelerator. Data may be loaded to and from the accelerator in contiguous chunks (Tiles), or by bulk scatter and gather operations (SparseTiles).

Up to to 5-dimensional DRAMs are currently supported. Dimensionality of a DRAM instance is encoded by the subclass of DRAM. DRAM1, for instance represents a 1-dimensional DRAM.

A dense `DRAMDenseTile` can be created from a DRAM either using address range selection or by implicit conversion. When a Tile is created implicitly, it has the same address space as the entire original DRAM.
In Spatial, DRAMs are specified outside the Accel scope in the host code.

Static Methods

<table>
<thead>
<tr>
<th>object DRAM</th>
</tr>
</thead>
</table>

```python
def apply[T: Type: Bits][length: Index]: DRAM1[T]
Creates a reference to a 1-dimensional array in main memory with the given length.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.
```

```python
def apply[T: Type: Bits][d1: Index, d2: Index]: DRAM2[T]
Creates a reference to a 2-dimensional array in main memory with given rows and cols.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.
```

```python
def apply[T: Type: Bits][d1: Index, d2: Index, d3: Index]: DRAM3[T]
Creates a reference to a 3-dimensional array in main memory with given dimensions.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.
```

```python
def apply[T: Type: Bits][d1: Index, d2: Index, d3: Index, d4: Index]: DRAM4[T]
Creates a reference to a 4-dimensional array in main memory with given dimensions.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.
```

```python
def apply[T: Type: Bits][d1: Index, d2: Index, d3: Index, d4: Index, d5: Index]: DRAM5[T]
Creates a reference to a 5-dimensional array in main memory with given dimensions.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.
```

Infix methods
abstract class **DRAM[T]**

 def **address**: Int64
 Returns the 64-bit physical address in main memory of the start of this DRAM

 def **dims**: List[Index]
 Returns a Scala List of the dimensions of this DRAM
```python
class DRAM1[T] extends DRAM[T]

    def size: Index
    Returns the total number of elements in this DRAM1.

    def length: Index
    Returns the total number of elements in this DRAM1.

    def apply(range: Range): DRAMDenseTile1[T]
    Creates a reference to a dense region of this DRAM1 for creating burst loads and stores.

    def apply(addr: SRAM1[Index]): DRAMSparseTile[T]
    Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers using all addresses in `addr`.

    def apply(addr: SRAM1[Index], size: Index): DRAMSparseTile[T]
    Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers using the first `size` addresses in `addr`.

    def apply(addr: FIFO[Index]): DRAMSparseTile[T]
    Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers using all addresses in `addr`.

    def apply(addr: FIFO[Index], size: Index): DRAMSparseTile[T]
    Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers using the first `size` addresses in `addr`.
```
class DRAM2[T] extends DRAM[T]

 def rows: Index
 Returns the number of rows in this DRAM2

 def cols: Index
 Returns the number of columns in this DRAM2

 def size: Index
 Returns the total number of elements in this DRAM2

 def apply(row: Index, cols: Range)
 Creates a reference to a dense slice of a row of this DRAM2 for creating burst loads and stores.

 def apply(rows: Range, col: Index)
 Creates a reference to a dense slice of a column of this DRAM2 for creating burst loads and stores.

 def apply(rows: Range, cols: Range)
 Creates a reference to a 2-dimensional, dense region of this DRAM2 for creating burst loads and stores.

 def store(sram: SRAM2[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this DRAM's region of main memory.

 def store(regs: RegFile2[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this DRAM's region of main memory.
class **DRAM3**[T] extends DRAM[T]

 def **dim0**: Index
 Returns the first dimension for this DRAM3.

 def **dim1**: Index
 Returns the second dimension for this DRAM3.

 def **dim2**: Index
 Returns the third dimension for this DRAM3.

 def **size**: Index
 Returns the total number of elements in this DRAM3.

 def **apply**(p: Index, r: Index, c: Range)
 Creates a reference to a 1-dimensional, dense region of this DRAM3 for creating burst loads and stores.

 def **apply**(p: Index, r: Range, c: Index)
 Creates a reference to a 1-dimensional, dense region of this DRAM3 for creating burst loads and stores.

 def **apply**(p: Range, r: Index, c: Index)
 Creates a reference to a 1-dimensional, dense region of this DRAM3 for creating burst loads and stores.

 def **apply**(p: Index, r: Range, c: Range)
 Creates a reference to a 2-dimensional, dense region of this DRAM3 for creating burst loads and stores.

 def **apply**(p: Range, r: Index, c: Range)
 Creates a reference to a 2-dimensional, dense region of this DRAM3 for creating burst loads and stores.
class DRAM4[T] extends DRAM[T]

 def dim0: Index
 Returns the first dimension of this DRAM4.

 def dim1: Index
 Returns the second dimension of this DRAM4.

 def dim2: Index
 Returns the third dimension of this DRAM4.

 def dim3: Index
 Returns the fourth dimension of this DRAM4.

 def size: Index
 Returns the total number of elements in this DRAM4.

 def apply(q: Index, p: Index, r: Index, c: Range)
 Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Index, p: Index, r: Range, c: Index)
 Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Index, p: Range, r: Index, c: Index)
 Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Range, p: Index, r: Index, c: Index)
 Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Range, p: Range, r: Index, c: Index)
 Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Range, p: Range, r: Range, c: Index)
 Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Range, p: Range, r: Range, c: Range)
 Creates a reference to a 3-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def apply(q: Range, p: Range, r: Range, c: Range)
 Creates a reference to a 4-dimensional, dense region of this DRAM4 for creating burst loads and stores.

 def store(data: SRAM4[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this DRAM's region of main memory.
class DRAM5[T] extends DRAM[T]

 def dim0: Index
 Returns the first dimension of this DRAM5.

 def dim1: Index
 Returns the second dimension of this DRAM5.

 def dim2: Index
 Returns the third dimension of this DRAM5.

 def dim3: Index
 Returns the fourth dimension of this DRAM5.

 def dim4: Index
 Returns the fifth dimension of this DRAM5.

 def size: Index
 Returns the total number of elements in this DRAM5.

 def apply(x: Index, q: Index, p: Index, r: Index, c: Range): DRAMDenseTile1[T]
 Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

1.2. Acceleratable
Table 1.2 – continued from previous page

```python
class DRAM5[T] extends DRAM[T]

def apply(x: Index, q: Index, p: Index, r: Range, c: Index): DRAMDenseTile1[T]
    Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Range, r: Index, c: Index): DRAMDenseTile1[T]
    Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Index, r: Index, c: Index): DRAMDenseTile1[T]
    Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Index, r: Index, c: Index): DRAMDenseTile1[T]
    Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Index, r: Range, c: Range): DRAMDenseTile2[T]
    Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Range, r: Index, c: Range): DRAMDenseTile2[T]
    Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Range, r: Index, c: Range): DRAMDenseTile2[T]
    Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```
class \texttt{DRAM5[T]} extends \texttt{DRAM[T]}

```python
def apply(x: \texttt{Index}, q: \texttt{Range}, p: \texttt{Index}, r: \texttt{Index}, c: \texttt{Range}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```

```

def apply(x: \texttt{Index}, q: \texttt{Range}, p: \texttt{Index}, r: \texttt{Range}, c: \texttt{Index}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```

```

def apply(x: \texttt{Index}, q: \texttt{Range}, p: \texttt{Range}, r: \texttt{Index}, c: \texttt{Index}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```

```

def apply(x: \texttt{Range}, q: \texttt{Index}, p: \texttt{Index}, r: \texttt{Index}, c: \texttt{Range}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```

```

def apply(x: \texttt{Range}, q: \texttt{Index}, p: \texttt{Index}, r: \texttt{Range}, c: \texttt{Index}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```

```

def apply(x: \texttt{Range}, q: \texttt{Range}, p: \texttt{Index}, r: \texttt{Index}, c: \texttt{Index}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```

```

def apply(x: \texttt{Range}, q: \texttt{Range}, p: \texttt{Range}, r: \texttt{Index}, c: \texttt{Index}): \texttt{DRAMDenseTile2[T]}

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.
```
class DRAM5[T] extends DRAM[T]

def apply(x: Index, q: Index, p: Range, r: Range, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Index, r: Range, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Range, r: Index, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Range, r: Range, c: Index): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Index, r: Range, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Range, r: Index, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Range, r: Range, c: Index): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.
| def apply(x: Range, q: Range, p: Index, r: Index, c: Range): DRAMDenseTile3[T] |
|---|---|
| Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores. |

| def apply(x: Range, q: Range, p: Index, r: Range, c: Index): DRAMDenseTile3[T] |
|---|---|
| Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores. |

| def apply(x: Range, q: Range, p: Range, r: Index, c: Range): DRAMDenseTile4[T] |
|---|---|
| Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores. |

| def apply(x: Range, q: Range, p: Index, r: Range, c: Range): DRAMDenseTile4[T] |
|---|---|
| Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores. |

| def apply(x: Range, q: Range, p: Range, r: Index, c: Range): DRAMDenseTile4[T] |
|---|---|
| Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores. |

| def apply(x: Range, q: Range, p: Range, r: Range, c: Range): DRAMDenseTile4[T] |
|---|---|
| Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores. |

1.2. Acceleratable
class DRAM5[T] extends DRAM[T]

 def apply(x: Range, q: Range, p: Range, r: Range, c: Index): DRAMDenseTile4[T]
 Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores.

 def apply(x: Range, q: Range, p: Range, r: Range, c: Range): DRAMDenseTile5[T]
 Creates a reference to a 5-dimensional, dense region of this DRAM5 for creating burst loads and stores.

 def store(data: SRAM5[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.

Implicit methods
def createTile1[T](dram: DRAM1[T]): DRAMDenseTile1[T]
Implicitly converts a DRAM1 to a DRAMDenseTile1 with the same address space.

def createTile2[T](dram: DRAM2[T]): DRAMDenseTile2[T]
Implicitly converts a DRAM2 to a DRAMDenseTile2 with the same address space.

def createTile3[T](dram: DRAM3[T]): DRAMDenseTile3[T]
Implicitly converts a DRAM3 to a DRAMDenseTile3 with the same address space.

def createTile4[T](dram: DRAM4[T]): DRAMDenseTile4[T]
Implicitly converts a DRAM4 to a DRAMDenseTile4 with the same address space.

def createTile2[T](dram: DRAM5[T]): DRAMDenseTile5[T]
Implicitly converts a DRAM5 to a DRAMDenseTile5 with the same address space.

DRAMDenseTile

A DRAMDenseTile describes a contiguous slice of a DRAM memory’s address space which can be loaded onto the accelerator for processing or which can be updated with results once FPGA computation is complete.

Infix methods

```python
class DRAMDenseTile
```
class DRAMDenseTile1[T] extends DRAMDenseTile[T]

 def store(data: SRAM1[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.

 def store(data: FIFO[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.

 def store(data: FILO[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.

 def store(data: RegFile1[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.

class DRAMDenseTile2[T] extends DRAMDenseTile[T]

 def store(data: SRAM2[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.

 def store(data: RegFile2[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.

class DRAMDenseTile3[T] extends DRAMDenseTile[T]

 def store(data: SRAM3[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tile's region of main memory.
class DRAMDenseTile4[T] extends DRAMDenseTile[T]

 def store(data: SRAM4[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

class DRAMDenseTile5[T] extends DRAMDenseTile[T]

 def store(data: SRAM5[T]): Unit
 Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

DRAMSparseTile

A DRAMSparseTile describes a sparse section of a DRAM memory which can be loaded onto the accelerator using a gather operation, or which can be updated using a scatter operation.

Infix methods

class DRAMSparseTile

 def scatter(data: SRAM1[T]): Unit
 Creates a sparse transfer from the given on-chip data to this sparse region of main memory.

 def scatter(data: FIFO[T]): Unit
 Creates a sparse transfer from the given on-chip data to this sparse region of main memory.

 def scatter(data: FILO[T]): Unit
 Creates a sparse transfer from the given on-chip data to this sparse region of main memory.

StreamIn

StreamIn defines a hardware bus used to receive streaming data from outside of the FPGA. StreamIns may not be written to. For streaming outputs, use StreamOut. StreamIns are specified using a Bits - based type and a target Bus. In Spatial, StreamIns are specified outside the Accel block, in host code.
Static methods

object StreamIn

```python
def apply[T: Type: Bits](bus: Bus): StreamIn[T]
```

Creates a StreamIn of type T connected to the specified bus pins.

Infix methods

class StreamIn[T]

```python
def value: T
```

Returns the current value of this StreamIn.
Equivalent in hardware to connecting a wire to the StreamIn’s bus.

Implicit methods

```python
def readStream[T](stream: StreamIn[T]): T
```

Implicitly creates a wire connecting to the StreamIn’s bus.

StreamOut

StreamOut defines a hardware bus used to output streaming data from the FPGA. StreamOuts may not be read from. For streaming inputs, use **StreamIn**. StreamOuts are specified using a Bits-based type and a target Bus.

In Spatial, StreamOuts are specified outside the Accel block, in host code.

Static methods

object StreamOut

```python
def apply[T: Type: Bits](bus: Bus): StreamOut[T]
```

Creates a StreamOut of type T connected to the specified target bus pins.

Infix methods
On-Chip Memories

Spatial includes a variety of on-chip memory templates for use in accelerator design. Unless otherwise specified, the size of a specified on-chip memory allocation must always be a statically calculable number in order to map it to hardware resources.

Additionally, on-chip allocations follow traditional software scoping rules. Allocations done within the scope of **Controllers**, for example, logically create new memories on each loop iteration. Unless otherwise specified, the contents of on-chip memories are undefined upon allocation in order to minimize unnecessary memory initialization.

Counter

Counter is a single hardware counter with an associated start (inclusive), end (exclusive), step size, and parallelization factor. By default, the parallelization factor is assumed to be a design parameter. Counters can be chained together using **CounterChain**, but this is typically done implicitly when creating controllers.

It is generally recommended to create a **Range** and allow the compiler to implicitly convert this to a Counter, as Range provides slightly better syntax sugar.

Static Methods

```python
class StreamOut[T]

    def :=(data: T): Unit
    Connect the given data to this StreamOut.

    def :=(data: T, en: Bit): Unit
    Connect the given data to this StreamOut with enable en.
```

object `Counter`

```python
def apply(end: Index): Counter
    Creates a Counter with start of 0, given end, and step size of 1.
```

```python
def apply(start: Index, end: Index): Counter
    Creates a Counter with given start and end, and step size of 1.
```

```python
def apply(start: Index, end: Index, step: Index): Counter
    Creates a Counter with given start, end, and step size.
```

```python
def apply(start: Index, end: Index, step: Index, par: Index): Counter
    Creates a Counter with given start, end, step, and par parallelization factor.
```

CounterChain

CounterChain describes a set of chained hardware counters, where a given counter increments only when the counter below it wraps around. Order is specified as outermost counter first to innermost counter last.

CounterChains are generally created implicitly for small numbers of counters, and need only be created explicitly for more than 3 chained counters.

Static methods

object `CounterChain`

```python
def apply(counters: Counter*): CounterChain
    Creates a chain of counters. Order is specified as outermost on the left to innermost on the right.
```

FIFO

FIFOs (first-in, first-out) are on-chip scratchpads with additional control logic for address-less enqueue/dequeue operations. FIFOs preserve the ordering between elements as they are enqueued. A FIFO’s `deq` operation always returns the oldest `enqueued` element which has not yet been dequeued.

1.2. Acceleratable
Static methods

```python
def apply[T:Type:Bits](depth: Int): FIFO[T]
```

Creates a FIFO with given depth.

Depth must be a statically determinable signed integer.

Infix methods
class `FIFO[T]`

```python
def par(p: Index): `FIFO[T]` = { val x = `FIFO`(s); x.p
Annotates that addresses in this FIFO can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.
```

def empty(): `Bit`
Returns true when this FIFO contains no elements, false otherwise.

```python
def full(): `Bit`
Returns true when this FIFO cannot fit any more elements, false otherwise.
```

def almostEmpty(): `Bit`
Returns true when this FIFO contains exactly one element, false otherwise.

```python
def almostFull(): `Bit`
Returns true when this FIFO can fit exactly one more element, false otherwise.
```

def numel(): `Index`
Returns the number of elements currently in this FIFO.

```python
def enq(data: T): `Unit`
Creates an enqueue (write) port of data to this FIFO.
```

def enq(data: T, en: `Bit`): `Unit`
Creates an enqueue (write) port of data to this FIFO, enabled by en.
```

1.2. Acceleratable
FILOs (first-in, last-out) are on-chip scratchpads with additional control logic for address-less enqueue/dequeue operations. FILOs acts as a Stack, reversing the order of elements it receives. A FILO’s pop operation always returns the most recently pushed element.

Static methods

<table>
<thead>
<tr>
<th>object FILO</th>
</tr>
</thead>
<tbody>
<tr>
<td>def apply[T:TypeBits][size: Index]: FILO[T]</td>
</tr>
<tr>
<td>Creates a FILO with given depth.</td>
</tr>
<tr>
<td>Depth must be a statically determinable signed integer.</td>
</tr>
</tbody>
</table>

Infix methods
class **FILO**[T]

```python
def par(p: Index): FILO[T] = { val x = FILO(s); x.p
Annotates that addresses in this FIFO can be read in parallel by factor p.
Used when creating references to sparse regions of DRAM.
```

```python
def empty(): Bit
Returns true when this FILO contains no elements, false otherwise.
```

```python
def full(): Bit
Returns true when this FILO cannot fit any more elements, false otherwise.
```

```python
def almostEmpty(): Bit
Returns true when this FILO contains exactly one element, false otherwise.
```

```python
def almostFull(): Bit
Returns true when this FILO can fit exactly one more element, false otherwise.
```

```python
def numel(): Index
Returns the number of elements currently in this FILO.
```

```python
def push(data: T): Unit
Creates a push (write) port to this FILO of data.
```

```python
def push(data: T, en: Bit): Unit
Creates a conditional push (write) port to this FILO of data enabled by en.
```

```python
def pop(): T
Creates a pop (destructive read) port to this FILO.
```

### 1.2. Acceleratable

```python
def pop(): T
```
LineBuffers are two dimensional, on-chip scratchpads with a fixed size. LineBuffers act as a FIFO on input, supporting only queued writes, but support addressed reading like SRAMs. For writes, the current row buffer and column is maintained using an internal counter. This counter resets every time the controller containing the enqueue completes execution.

The contents of LineBuffers are persistent across loop iterations, even when they are declared in an inner scope. Up to 5-dimensional LineBuffers are currently supported.

**Static methods**

```scala
object LineBuffer

 def apply[T:Type:Bits](rows: Index, cols: Index): LineBuffer[T]
 Allocates a LineBuffer with given rows and cols.
 The contents of this LineBuffer are initially undefined.
 rows and cols must be statically determinable integers.

 def strided[T:Type:Bits](rows: Index, cols: Index, stride: Index): LineBuffer[T]
 Allocates a LineBuffer with given number of rows and cols, and with given stride.
 The contents of this LineBuffer are initially undefined.
 rows, cols, and stride must be statically determinable integers.
```

**Infix methods**
class LineBuffer[T]

    def apply(row: Index, col: Index): T
    Creates a load port to this LineBuffer at the given row and col.

    def apply(row: Index, cols: Range)(implicit ctx: SrcCtx): Vector[T]
    Creates a vectorized load port to this LineBuffer at the given row and cols.

    def apply(rows: Range, col: Index)(implicit ctx: SrcCtx): Vector[T]
    Creates a vectorized load port to this LineBuffer at the given rows and col.

    def enq(data: T): Unit
    Creates an enqueue (write) port of data to this LineBuffer.

    def enq(data: T, en: Bit): Unit
    Creates an enqueue (write) port of data to this LineBuffer, enabled by en.

    def load(dram: DRAMDenseTile1[T])(implicit ctx: SrcCtx): Unit
    Creates a dense transfer from the given region of DRAM to this on-chip memory.

LUT

LUTs are on-chip, read-only memories of fixed size. LUTs can be specified as 1 to 5 dimensional.

LUTs can be created from files using the fromFile methods in the LUT object. This file reading is currently done at compilation time.

Static methods
def apply[T:Type:Bits](dim: Int)(elems: T*): LUT1[T]
Creates a 1-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int)(elems: T*): LUT2[T]
Creates a 2-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int)(elems: T*): LUT3[T]
Creates a 3-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int, dim4: Int)(elems: T*): LUT4[T]
Creates a 4-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int, dim4: Int, dim5: Int)(elems: T*): LUT5[T]
Creates a 5-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int)(filename: String): LUT1[T]
Creates a 1-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int, dim2: Int)(filename: String): LUT2[T]
Creates a 2-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

Creates a 3-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

1.2. Acceleratable

Creates a 4-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

Creates a 5-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.
Infix methods

abstract class LUT[T]

class LUT1[T] extends LUT[T]

    def apply(i: Index): T
    Returns the element at the given address i.

class LUT2[T] extends LUT[T]

    def apply(r: Index, c: Index): T
    Returns the element at the given address r, c.

class LUT3[T] extends LUT[T]

    def apply(r: Index, c: Index, p: Index): T
    Returns the element at the given 3-dimensional address.

class LUT4[T] extends LUT[T]

    def apply(r: Index, c: Index, p: Index, q: Index): T
    Returns the element at the given 4-dimensional address.

class LUT5[T] extends LUT[T]

    def apply(r: Index, c: Index, p: Index, q: Index, m: Index): T
    Returns the element at the given 5-dimensional address.

Reg

Reg defines a hardware register used to hold a scalar value. The default reset value for a Reg is the numeric zero value for it’s specified type.

ArgIn, ArgOut, and HostIO are specialized forms of Reg which are used to transfer scalar values to and from the accelerator. ArgIns and ArgOuts are used for setup values at the initialization of the FPGA. ArgIns may not be written.
to, while ArgOuts generally should not be read from. HostIOs are for values which may be continuously changed or read by the host during FPGA execution.

In Spatial, ArgIns, ArgOuts, and HostIO registers are specified outside the Accel block, in host code.

### Static methods

<table>
<thead>
<tr>
<th>object</th>
<th>Reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>def apply[T:Type:Bits]: Reg[T]</td>
<td></td>
</tr>
<tr>
<td>Creates a register of type T with a reset value of zero.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>object</th>
<th>ArgIn</th>
</tr>
</thead>
<tbody>
<tr>
<td>def apply[T:Type:Bits]: Reg[T]</td>
<td></td>
</tr>
<tr>
<td>Creates an input argument register of type T with a reset value of zero.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>object</th>
<th>ArgOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>def apply[T:Type:Bits]: Reg[T]</td>
<td></td>
</tr>
<tr>
<td>Creates an output argument register of type T with a reset value of zero.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>object</th>
<th>HostIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>def apply[T:Type:Bits]: Reg[T]</td>
<td></td>
</tr>
<tr>
<td>Creates a host I/O register of type T with a reset value of zero.</td>
<td></td>
</tr>
</tbody>
</table>

### Infix methods
class `Reg[T]`

```python
def value: T
 Returns the value currently held by this register.

def :=(data: T): Unit
 Writes the given `data` to this register.

def reset: Unit
 Resets the value of this register back to its reset value.

def reset(cond: Bit): Unit
 Conditionally resets the value of this register back to its reset value if `cond` is true.
```

Implicit methods

```python
def readReg[T](reg: Reg[T]): T
 Implicitly reads the value of this register.
```

RegFile

RegFiles are on-chip arrays of registers with fixed size. RegFiles currently can be specified as one or two dimensional. Like other memories in Spatial, the contents of RegFiles are persistent across loop iterations, even when they are declared in an inner scope.

Using the `<<=` operator, RegFiles can be used as shift registers. 2-dimensional RegFiles must select a specific row or column before shifting using `regfile(row, *)` or `regfile(*, col)`, respectively.

Static methods
def apply[T:TypeBits][length: Index]: RegFile1[T]
Allocates a 1-dimensional Regfile with specified length.

def apply[T:TypeBits][length: Int, inits: List[T]$: RegFile1[T]
Allocates a 1-dimensional RegFile with specified length and initial values inits.

The number of initial values must be the same as the total size of the RegFile.

def apply[T:TypeBits][rows: Index, cols: Index]: RegFile2[T]
Allocates a 2-dimensional RegFile with specified rows and cols.

def apply[T:TypeBits][rows: Int, cols: Int, inits: List[T]]: RegFile2[T]
Allocates a 2-dimensional RegFile with specified rows and cols and initial values inits.

The number of initial values must be the same as the total size of the RegFile.

def apply[T:TypeBits][dim0: Index, dim1: Index, dim2: Index]: RegFile3[T]
Allocates a 3-dimensional RegFile with specified dimensions.

def apply[T:TypeBits][dim0: Int, dim1: Int, dim2: Int, inits: List[T]$: RegFile3[T]
Allocates a 3-dimensional RegFile with specified dimensions and initial values inits.

The number of initial values must be the same as the total size of the RegFile.

Infix methods
abstract class `RegFile[T]`

```python
def reset: Unit
 Resets this RegFile to its initial values (or zeros, if unspecified).
```

```python
def reset(cond: Bit: Unit
 Conditionally resets this RegFile based on cond to its initial values (or zeros if unspecified).
```

1.2. Acceleratable
class RegFile1[T] extends RegFile[T]

    def apply(i: Index): T
    Returns the value held by the register at address i.

    def update(i: Index, data: T): Unit
    Updates the register at address i to hold data.

    def <<= (data: T): Unit
    Shifts in data into the first register, shifting all other values over by one position.

    def <<= (data: Vector[T]): Unit
    Shifts in data into the first N registers, where N is the size of the given Vector.
    All other elements are shifted by N positions.

    def load(dram: DRAM1[T]): Unit
    Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

    def load(dram: DRAMDenseTile1[T]): Unit
    Creates a dense, burst load from the specified region of DRAM to this on-chip memory.
class `RegFile2[T]` extends `RegFile[T]`

    def apply(r: `Index`, c: `Index`): `T`
    Returns the value held by the register at row `r`, column `c`.

    def update(r: `Index`, c: `Index`, data: `T`): `Unit`
    Updates the register at row `r`, column `c` to hold the given `data`.

    def apply(i: `Index`, y: `Wildcard`)
    Returns a view of row `i` of this `RegFile`.

    def apply(y: `Wildcard`, i: `Index`)
    Returns a view of column `i` of this `RegFile`.

    def load(dram: `DRAM2[T]`): `Unit`
    Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

    def load(dram: `DRAMDenseTile2[T]`): `Unit`
    Creates a dense, burst load from the specified region of DRAM to this on-chip memory.
```python
class RegFile3[T] extends RegFile[T]

 def apply(dim0: Index, dim1: Index, dim2: Index): T
 Returns the value held by the register at the given 3-dimensional address.

 def update(dim0: Index, dim1: Index, dim2: Index, data: T): Unit
 Updates the register at the given 3-dimensional address to hold the given data.

 def apply(i: Index, j: Index, y: Wildcard)
 Returns a 1-dimensional view of part of this RegFile3.

 def apply(i: Index, y: Wildcard, j: Index)
 Returns a 1-dimensional view of part of this RegFile3.

 def apply(y: Wildcard, i: Index, j: Index)
 Returns a 1-dimensional view of part of this RegFile3.

 def load(dram: DRAM3[T]): Unit
 Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

 def load(dram: DRAMDenseTile3[T]): Unit
 Creates a dense, burst load from the specified region of DRAM to this on-chip memory.
```

**SRAM**

SRAMs are on-chip scratchpads with fixed size. SRAMs can be specified as multi-dimensional, but the underlying addressing in hardware is always flat. The contents of SRAMs are persistent across loop iterations, even when they are declared in an inner scope. Up to 5-dimensional SRAMs are currently supported.

---

1.2. Acceleratable 71
Static methods

**object SRAM**

```scala
def apply[T:TypeBits](length: Index): SRAM1[T]
Allocates a 1-dimensional SRAM with the specified length.
```

```scala
def apply[T:TypeBits](rows: Index, cols: Index): SRAM2[T]
Allocates a 2-dimensional SRAM with the specified number of rows and cols.
```

```scala
def apply[T:TypeBits](p: Index, r: Index, c: Index): SRAM3[T]
Allocates a 3-dimensional SRAM with the specified dimensions.
```

```scala
def apply[T:TypeBits](q: Index, p: Index, r: Index, c: Index): SRAM4[T]
Allocates a 4-dimensional SRAM with the specified dimensions.
```

```scala
def apply[T:TypeBits](m: Index, q: Index, p: Index, r: Index, c: Index): SRAM5[T]
Allocates a 5-dimensional SRAM with the specified dimensions.
```

Infix methods

**abstract class SRAM[T]**

```scala
def dims: List[Index]
Returns a Scala List of the dimensions of this DRAM
```

1.2. Acceleratable
class **SRAM1[T]** extends **SRAM[T]**

    def **length**: **Index**
    Returns the total size of this SRAM1.

    def **size**: **Index**
    Returns the total size of this SRAM1.

    def **par**(p: **Index**): **SRAM1[T]** = { val x = **SRAM1**[s]; x.p
    Annotates that addresses in this SRAM1 can be read in parallel by factor \( p \).
    Used when creating references to sparse regions of DRAM.

    def **apply**(a: **Index**): **T**
    Returns the value in this SRAM1 at the given address \( a \).

    def **update**(a: **Index**, data: **T**): **Unit**
    Updates the value in this SRAM1 at the given address \( a \) to \( \text{data} \).

    def **gather**(dram: **DRAMSparseTile[T]**): **Unit**
    Create a sparse load from the given sparse region of DRAM to this on-chip memory.
    Elements will be gathered and stored contiguously in this memory.

    def **load**(dram: **DRAM1[T]**): **Unit**
    Create a dense, burst load from the given region of DRAM to this on-chip memory.

    def **load**(dram: **DRAMDenseTile1[T]**): **Unit**
    Create a dense, burst load from the given region of DRAM to this on-chip memory.
class `SRAM2[T]` extends `SRAM[T]`

    def rows: `Index`
    Returns the number of rows in this SRAM2.

    def cols: `Index`
    Returns the number of columns in this SRAM2.

    def size: `Index`
    Returns the total size of this SRAM2.

    def apply(row: `Index`, col: `Index`): `T`
    Returns the value in this SRAM2 at the given row and col.

    def update(row: `Index`, col: `Index`, data: `T`): `Unit`
    Updates the value in this SRAM2 at the given row and col to data.

    def par(p: `Index`): `SRAM2[T]`
    = { val x = SRAM2(s); x.p
        Annotates that addresses in this SRAM2 can be read in parallel by factor p.
        Used when creating references to sparse regions of DRAM.

    def load(dram: `DRAM2[T]`): `Unit`
    Create a dense, burst load from the given region of DRAM to this on-chip memory.

    def load(dram: `DRAMDenseTile2[T]`): `Unit`
    Create a dense, burst load from the given region of DRAM to this on-chip memory.
class **SRAM3[T]** extends **SRAM[T]**

```python
def *dim0*: **Index**
Returns the first dimension of this SRAM3.
```

```python
def *dim1*: **Index**
Returns the second dimension of this SRAM3.
```

```python
def *dim2*: **Index**
Returns the third dimension of this SRAM3.
```

```python
def *size*: **Index**
Returns the total size of this SRAM3.
```

```python
def *apply*(a: **Index**, b: **Index**, c: **Index**): **T**
Returns the value in this SRAM3 at the given 3-dimensional address a, b, c.
```

```python
def *update*(a: **Index**, b: **Index**, c: **Index**, data: **T**):
Updates the value in this SRAM3 at the given 3-dimensional address to data.
```

```python
def *par*(p: **Index**): **SRAM3[T]** =
 { val x = **SRAM3**(s); x.p
Annotates that addresses in this SRAM2 can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.
```

```python
def *load*(dram: **DRAM3[T])**: **Unit**
Create a dense, burst load from the given region of DRAM to this on-chip memory.
```

1.2. *Acceleratable*

```python
def *load*(dram: **DRAMDenseTile3[T])**: **Unit**
Create a dense, burst load from the given region of DRAM to this on-chip memory.
```
class `SRAM4[T]` extends `SRAM[T]`

```python
def dim0: `Index`
Returns the first dimension of this SRAM4.

def dim1: `Index`
Returns the second dimension of this SRAM4.

def dim2: `Index`
Returns the third dimension of this SRAM4.

def dim3: `Index`
Returns the fourth dimension of this SRAM4.

def size: `Index`
Returns the total size of this SRAM4.

def apply(a: `Index`, b: `Index`, c: `Index`, d: `Index`): `T`
Returns the value in this SRAM4 at the 4-dimensional address `a`, `b`, `c`, `d`.

def update(a: `Index`, b: `Index`, c: `Index`, d: `Index`, data: `T`): `Unit`
Updates the value in this SRAM4 at the 4-dimensional address to `data`.

def load(dram: `DRAM4[T]`): `Unit`
Create a dense, burst load from the given region of DRAM to this on-chip memory.

def load(dram: `DRAMDenseTile4[T]`): `Unit`
Create a dense, burst load from the given region of DRAM to this on-chip memory.
```
class \texttt{SRAM5[T]} extends \texttt{SRAM[T]}

    def \texttt{dim0}: \texttt{Index}
    Returns the first dimension of this SRAM5.

    def \texttt{dim1}: \texttt{Index}
    Returns the second dimension of this SRAM5.

    def \texttt{dim2}: \texttt{Index}
    Returns the third dimension of this SRAM5.

    def \texttt{dim3}: \texttt{Index}
    Returns the fourth dimension of this SRAM5.

    def \texttt{dim4}: \texttt{Index}
    Returns the fifth dimension of this SRAM5.

    def \texttt{size}: \texttt{Index}
    Returns the total size of this SRAM5.

    def \texttt{apply}(a: \texttt{Index}, b: \texttt{Index}, c: \texttt{Index}, d: \texttt{Index}, e: \texttt{Index}): \texttt{T}
    Returns the value in this SRAM5 at the 5-dimensional address \texttt{a}, \texttt{b}, \texttt{c}, \texttt{d}, \texttt{e}.

    def \texttt{update}(a: \texttt{Index}, b: \texttt{Index}, c: \texttt{Index}, d: \texttt{Index}, e: \texttt{Index}, data: \texttt{T}): \texttt{Unit}
    Updates the value in this SRAM5 at the 5-dimensional address to \texttt{data}.

    def \texttt{load}(dram: \texttt{DRAM5[T]}): \texttt{Unit}
    Creates a dense, burst load from the given region of DRAM to this on-chip memory.
Scheduling Directives

While much of Spatial’s scheduling is automated, users wishing to fine tune or annotate their applications can do so using several scheduling directives when declaring loops and controllers.

Pipe

Pipe is the default scheduling directive in Spatial, and doesn’t usually need to be specified. This directive tells the compiler that the stages of the controller can be overlapped in a pipelined fashion. If the controller contains other controllers within it, this means that these inner controllers will be executed using coarse-grained pipeline scheduling.

Static methods

```object Pipe

 def apply(func: => Unit): Unit
 Creates a Unit Pipe, akin to a Foreach with one iteration.

 def Fold: Fold
 References the Fold object with pipelining specified as the scheduling directive.

 def Foreach: Foreach
 References the Foreach object with pipelining specified as the scheduling directive.

 def MemFold: MemFold
 References the MemFold object with pipelining specified as the scheduling directive.

 def MemReduce: MemReduce
 References the MemReduce object with pipelining specified as the scheduling directive.

 def Reduce: Reduce
 References the Reduce object with pipelining specified as the scheduling directive.
```
**Sequential**

**Sequential** is a scheduling directive which tells the compiler not to attempt to parallelize or to pipeline inner computation. In this scheduling mode, the controller’s counter will only increment when it’s last stage is complete. This directive is needed primarily when the algorithm contains long loop-carry dependencies that cannot be optimized away.

---

**Static methods**

<table>
<thead>
<tr>
<th>object</th>
<th>Sequential</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>def</th>
<th><strong>apply</strong>(func: =&gt; <em>Unit</em>): <em>Unit</em></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Creates a Unit Pipe, akin to a Foreach with one iteration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>def</th>
<th><strong>Fold</strong>: Fold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References the Fold object with sequential execution specified as the scheduling directive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>def</th>
<th><strong>Foreach</strong>: Foreach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References the Foreach object with sequential execution specified as the scheduling directive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>def</th>
<th><strong>MemFold</strong>: MemFold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References the MemFold object with sequential execution specified as the scheduling directive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>def</th>
<th><strong>MemReduce</strong>: MemReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References the MemReduce object with sequential execution specified as the scheduling directive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>def</th>
<th><strong>Reduce</strong>: Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References the Reduce object with sequential execution specified as the scheduling directive.</td>
</tr>
</tbody>
</table>
Stream

Stream is a scheduling directive which tells the compiler to overlap inner computation in a fine-grained, streaming fashion. In controllers which contain multiple control stages, this implies that communication is being done through FIFO memories, at an element-wise level.

Communication across stages within Stream controllers through any memory except FIFOs is currently disallowed. Note that this may change as the language evolves.

Static methods

```object Stream

 def apply(func: => Unit): Unit
 Creates a streaming Unit Pipe, akin to a Foreach with one iteration.

 def Fold: Fold
 References the Fold object with streaming specified as the scheduling directive.

 def Foreach: Foreach
 References the Foreach object with streaming specified as the scheduling directive.

 def MemFold: MemFold
 References the MemFold object with streaming specified as the scheduling directive.

 def MemReduce: MemReduce
 References the MemReduce object with streaming specified as the scheduling directive.

 def Reduce: Reduce
 References the Reduce object with streaming specified as the scheduling directive.
```

1.2. Acceleratable
Host Code

This section lists types and methods which are non-acceleratable, i.e. only available on the CPU or in simulation.

Array

Class and companion object for managing one dimensional arrays on the CPU.

Note that this type shadows the unstaged Scala Array. In the case where an unstaged Array type is required, use the full `scala.Array` name.

Constructor

The following syntax is available for constructing Arrays from indexed functions:

```
(0::32){i => func(i) }
```

This returns an Array of size 32 with elements defined by `func(i)`. More general `Range` forms can also be used, including strided (e.g. `0::2::8`) and offset (e.g. `32::64`). The iterator `i` will iterate over all values in the supplied range.

Static methods
def tabulate[T:Type](size: Index)(func: Index => T): Array[T]
Returns an immutable Array with the given size and elements defined by func.

def **

def fill[T:Type](size: Index)(func: => T): Array[T] = this.tabulate(size){ _
Returns an immutable Array with the given size and elements defined by func.
Note that while func does not depend on the index, it is still executed size times.

def empty[T:Type](size: Index): Array[T]
Returns an empty, mutable Array with the given size.

def apply[T:Type](elements: T[]): Array[T]
Returns an immutable Array with the given elements.

Infix methods
class `Array[T]`

```scala
def length: Index
Returns the size of this Array.
```

```scala
def apply(i: Index): T
Returns the element at index i.
```

```scala
def update[A](i: Index, data: A)(implicit lift: Lift[A,T]): Unit
Updates the element at index i to data.
```

```scala
def foreach(func: T => Unit):
Applies the function func on each element in the Array.
```

```scala
def map[R: Type](func: T => R): Array[R]
Returns a new Array created using the mapping func over each element in this Array.
```

```scala
def zip[S: Type,R: Type](that: Array[S])(func: (T,S) => R): Array[R]
Returns a new Array created using the pairwise mapping func over each element in this Array and the corresponding element in that.
```

```scala
def reduce(rfunc: (T,T) => T): T
Reduces the elements in this Array into a single element using associative function rfunc.
```

```scala
def fold(init: T)(rfunc: (T,T) => T): T
Reduces the elements in this Array and the given initial value into a single element using associative function rfunc.
```

1.3. Host Code

```scala
def filter(cond: T => MBoolean): Array[T]
Returns a new Array with all elements in this Array which satisfy the given predicate cond.
```
Debugging Operations

These operations are available for use on the CPU and during simulation to aid runtime debugging.

Methods
def assert(cond: MBoolean, msg: String): Unit
Checks that the given condition cond is true at runtime.
If not, exits the program with the given message.

def assert(cond: MBoolean): Unit
Checks that the given condition cond is true at runtime.
If not, exits the program with a generic exception.

def println(): Unit
Prints an empty line to the console.

def print[T: Type](x: T): Unit
Prints a String representation of the given value to the console.

def println[T: Type](x: T): Unit
Prints a String representation of the given value to the console followed by a linebreak.

def print(x: String): Unit
Prints the given String to the console.

def println(x: String): Unit
Prints the given String to the console, followed by a linebreak.

def printArray[T: Type](array: Array[T], heading: String = ""): Unit
Prints the given Array to the console, preceded by an optional heading.

def printMatrix[T: Type](matrix: Matrix[T], heading: String = ""): Unit
Prints the given Matrix to the console, preceded by an optional heading.
File I/O

File I/O operations are available for use on the host PU and during simulation.

Methods

```scala
def loadCSV1D[T: Type](filename: String, delimiter: String)(implicit cast: Cast[String, T]): Array[T]
 Loads the CSV at `filename` as an `Array` using the supplied `delimiter` for parsing.
 The delimiter defaults to a comma if none is supplied.

def loadCSV2D[T: Type](filename: String, delimiter: String)(implicit cast: Cast[String, T]): Matrix[T]
 Loads the CSV at `filename` as a `Matrix`, using the supplied element delimiter and linebreaks across rows.

def writeCSV1D[T: Type](array: Array[T], filename: String, delimiter: String):
 Writes the given `Array` to the file at `filename` using the given `delimiter`.
 If no delimiter is given, defaults to comma.

def writeCSV2D[T: Type](matrix: Matrix[T], filename: String, delimiter: String):
 Writes the given `Matrix` to the file at `filename` using the given element `delimiter`.
 If no element delimiter is given, defaults to comma.
```

Under development

The following methods are not yet fully supported. If you need support for these methods, please contact the Spatial group.

```scala
def loadBinary[T: Type: Num](filename: String): Array[T]
 Loads the given binary file at `filename` as an `Array`.

def writeBinary[T: Type: Num](array: Array[T], filename: String): Unit
 Saves the given `Array` to disk as a binary file at `filename`.
```
HashMap

Class and companion object for an immutable map on the host CPU.

Infix methods

```scala
class HashMap[K, V]

 def size: Int
 Returns the number of key-value pairs stored in this HashMap.

 def keys: Array[K]
 Returns an Array of all keys stored in this HashMap.

 def values: Array[V]
 Returns an Array of all values stored in this HashMap.

 def apply(key: K): V
 Returns the value associated with the given key.
 Throws an exception if the given key is not stored in this HashMap.

 def contains(key: K): Boolean
 Returns the value associated with the given key.
 Throws an exception if the given key is not stored in this HashMap.
```

Matrix

Class and companion object for dense matrices on the CPU.
Constructor

The following syntax is available for constructing Matrix instances from indexed functions:

\[
(0::16, 0::32)((i,j) \mapsto \text{func}(i,j))
\]

This returns a Matrix with 16 rows and 32 columns, with elements defined by \( \text{func}(i,j) \). More general \textit{Range} forms can also be used, including strided (e.g. 0::2::8) and offset (e.g. 32::64). The iterators \( i \) and \( j \) will iterate over all values in their respective ranges.

Static methods

\textbf{object \textit{Matrix}}

\begin{verbatim}
def \textbf{tabulate}[T:Type](rows: Index, cols: Index)(func: (Index, Index) => T): Matrix[T]
    Returns an immutable Matrix with the given \textit{rows} and \textit{cols} and elements defined by \textit{func}.

def \textbf{fill}[T:Type](rows: Index, cols: Index)(func: => T): Matrix[T] = this.tabulate(rows, cols){(_,_)}
    Returns an immutable Matrix with the given \textit{rows} and \textit{cols} and elements defined by \textit{func}.
    Note that while \textit{func} does not depend on the index, it is still executed \textit{rows}*****\textit{cols} times.
\end{verbatim}

Infix methods
class Matrix

    def rows: Index
    Returns the number of rows in this Matrix.

    def cols: Index
    Returns the number of columns in this Matrix.

    def apply(i: Index, j: Index): T
    Returns the element at the given two-dimensional address (i, j).

    def update(i: Index, j: Index, elem: T): Unit
    Updates the element at the given two dimensional address to elem.

    def flatten: Array[T]
    Returns a flattened, immutable Array view of this Matrix’s data.

    def foreach(func: T => Unit): Unit
    Applies the function func on each element in this Matrix.

    def map[R: Type](func: T => R): Matrix[R]
    Returns a new Matrix created using the mapping func over each element in this Matrix.

    def zip[S: Type, R: Type](that: Matrix[S])(func: (T, S) => R): Matrix[R]
    Returns a new Matrix created using the pairwise mapping func over each element in this Matrix and the corresponding element in that.

    def reduce(rfunc: (T, T) => T): T
    Reduces the elements in this Matrix into a single element using associative function rfunc.
**String**

Staged type representing arbitrary length Strings. Note that this type shadows the respective unstaged Scala type. In the case where an unstaged type is required, use the full name `java.lang.String`.

**Infix methods**

```scala
class String

 def to[T]: T
 Converts this String to the specified type

 [NOTE] This method is currently defined for:

 - FixPt[_,_,_]
 - FltPt[_,_]
 - Boolean
```

**Tensor**

Tensors are multi-dimension, dense arrays with more than 2 dimensions. Currently 3 - 5 dimension Tensors are supported.

Like `Array` and `Matrix`, Tensors can only be used in host code. In accelerator code, use `DRAM` (for off-chip) or `SRAM` (on-chip) memories for multi-dimensional array support.

**Constructors**

Spatial includes syntax for constructing Tensor instances from indexed functions.

The following returns a 16 x 32 x 8 Tensor3, with elements defined by `func(i,j,k)`:  

```
(0::16, 0::32, 0::8){(i,j,k) => func(i,j,k) }
```

A Tensor4 can be constructed in a similar way:

```
(0::4, 0::16, 0::8, 0::32){(a,b,c,d) => func(a,b,c,d) }
```

As can a Tensor5:

```
(0::2, 0::4, 0::5, 0::3, 0::32){(a,b,c,d,e) => func(a,b,c,d,e) }
```

More general `Range` forms can also be used, including strided (e.g. 0::2::8) and offset (e.g. 32::64). Iterators (e.g. `i, j, k` in the above examples) will iterate over all values in their respective ranges.

**Static methods**

1.3. Host Code
object Tensor3

def tabulate[T:Type](dim0: Index, dim1: Index, dim2: Index)(func: (Index, Index, Index) => T): Tensor3[T]
Returns an immutable Tensor3 with the given dimensions and elements defined by func.

def fill[T:Type](dim0: Index, dim1: Index, dim2: Index)(func: => T): Tensor3[T]
Returns an immutable Tensor3 with the given dimensions and elements defined by func.
Note that while func does not depend on the index, it is still executed multiple times.

object Tensor4

def tabulate[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index)(func: (Index, Index, Index, Index) => T): Tensor4[T]
Returns an immutable Tensor4 with the given dimensions and elements defined by func.

def fill[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index)(func: => T): Tensor4[T]
Returns an immutable Tensor4 with the given dimensions and elements defined by func.
Note that while func does not depend on the index, it is still executed multiple times.

object Tensor5

def tabulate[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index, dim4: Index)(func: (Index, Index, Index, Index, Index) => T): Tensor5[T]
Returns an immutable Tensor5 with the given dimensions and elements defined by func.

def fill[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index, dim4: Index)(func: => T): Tensor5[T]
Returns an immutable Tensor5 with the given dimensions and elements defined by func.
Note that while func does not depend on the index, it is still executed multiple times.

Infix methods
class Tensor3[T]

def dim0: Index
Returns the first dimension of this Tensor3.

def dim1: Index
Returns the second dimension of this Tensor3.

def dim2: Index
Returns the third dimension of this Tensor3.

def apply(i: Index, j: Index, k: Index): T
Returns the element in this Tensor3 at the given 3-dimensional address.

def update(i: Index, j: Index, k: Index, elem: T):
Updates the element at the given 3-dimensional address to elem.

def flatten: Array[T]
Returns a flattened, immutable Array view of this Tensor3’s data.

def foreach(func: T => Unit): Unit
Applies the function func on each element in this Tensor3.

def map[R: Type](func: T => R): Tensor3[R]
Returns a new Tensor3 created using the mapping func over each element in this Tensor3.

def zip[S,R: Type](that: Tensor3[S])(func: (T,S) => R): Tensor3[R]
Returns a new Tensor3 created using the pairwise mapping func over each element in this Tensor3 and the corresponding element in that.
class Tensor4[T]

def dim0: Index
    Returns the first dimension of this Tensor4.

def dim1: Index
    Returns the second dimension of this Tensor4.

def dim2: Index
    Returns the third dimension of this Tensor4.

def dim3: Index
    Returns the fourth dimension of this Tensor4.

def apply(i: Index, j: Index, k: Index, l: Index): T
    Returns the element in this Tensor4 at the given 4-dimensional address.

def update(i: Index, j: Index, k: Index, l: Index, elem: T):
    Updates the element at the given 4-dimensional address to elem.

def flatten: Array[T]
    Returns a flattened, immutable Array view of this Tensor4’s data.

def foreach(func: T => Unit): Unit
    Applies the function func on each element in this Tensor4.

def map[R: Type](func: T => R): Tensor4[R]
    Returns a new Tensor4 created using the mapping func over each element in this Tensor4.
class Tensor5[T]

    def dim0: Index
    Returns the first dimension of this Tensor5.

    def dim1: Index
    Returns the second dimension of this Tensor5.

    def dim2: Index
    Returns the third dimension of this Tensor5.

    def dim3: Index
    Returns the fourth dimension of this Tensor5.

    def dim4: Index
    Returns the fifth dimension of this Tensor5.

    def apply(i: Index, j: Index, k: Index, l: Index, m: Index): T
    Returns the element in this Tensor5 at the given 5-dimensional address.

    def update(i: Index, j: Index, k: Index, l: Index, m: Index, elem: T): Unit
    Updates the element at the given 5-dimensional address to elem.

    def flatten: Array[T]
    Returns a flattened, immutable Array view of this Tensor5’s data.

    def foreach(func: T => Unit): Unit
    Applies the function func on each element in this Tensor5.
Transfer Operations

These operations are used to transfer scalar values and arrays between the CPU host and the hardware accelerator. They must be specified explicitly in the host code (not in Accel scopes).

Methods
def `setArg[T](reg: Reg[T], value: T): Unit`
Transfer a scalar value from the host to the accelerator through the register `reg`.
`reg` should be allocated as the HostIO or ArgIn methods.

def `getArg[T: Type: Bits](reg: Reg[T]): T`
Transfer a scalar value from the accelerator to the host through the register `reg`.
`reg` should be allocated using the HostIO or ArgIn methods.

def `setMem[T: Type: Bits](dram: DRAM[T], data: Array[T]): Unit`
Transfers the given `Array` of `data` from the host’s memory to `dram`’s region of accelerator DRAM.

def `getMem[T: Type: Bits](dram: DRAM[T]): Array[T]`
Transfers `dram`’s region of accelerator DRAM to the host’s memory and returns the result as an `Array`.

def `setMem[T: Type: Bits](dram: DRAM[T], data: Matrix[T]): Unit`
Transfers the given `Matrix` of `data` from the host’s memory to `dram`’s region of accelerator DRAM.

def `getMatrix[T: Type: Bits](dram: DRAM2[T])(implicit ctx: SrcCtx): Matrix[T]`
Transfers `dram`’s region of accelerator DRAM to the host’s memory and returns the result as a `Matrix`.

def `setMem[T: Type: Bits](dram: DRAM[T], tensor3: Tensor3[T]): Unit`
Transfers the given Tensor3 of `data` from the host’s memory to `dram`’s region of accelerator DRAM.

def `getTensor3[T: Type: Bits](dram: DRAM3[T])(implicit ctx: SrcCtx): Tensor3[T]`
Transfers `dram`’s region of accelerator DRAM to the host’s memory and returns the result as a Tensor3.

def `setMem[T: Type: Bits](dram: DRAM[T], tensor4: Tensor4[T]): Unit`
Transfers the given Tensor4 of `data` from the host’s memory to `dram`’s region of accelerator DRAM.
The Spatial Compiler

Compilation

The Spatial Compiler is run using:

```
bin/spatial <Application Name> [flags]
```

where `<Application Name>` is the name of the Spatial application object.

Compiler Flags

The following compiler flags are available in the Spatial compiler:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–sim</td>
<td>Turns on the Scala backend for functional simulation.</td>
</tr>
<tr>
<td>–synth</td>
<td>Turns on the Chisel RTL backend for cycle-accurate simulation and/or synthesis.</td>
</tr>
<tr>
<td>–instrument</td>
<td>Enables RTL instrumentation hooks for manual pipeline balancing analyses</td>
</tr>
<tr>
<td>–retime</td>
<td>Enables RTL retiming to meet higher clock speeds.</td>
</tr>
<tr>
<td>–syncMem</td>
<td>Enables synchronous memory operations for all SRAMs to use fewer resources. Also enables –retime.</td>
</tr>
<tr>
<td>–out &lt;dir&gt;</td>
<td>Specifies an output directory to place generated code. Default directory is gen/&lt;app name&gt;.</td>
</tr>
</tbody>
</table>

Advanced Compiler Flags

These flags are primarily for use in development of the Spatial compiler.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–cheapFifos</td>
<td>Uses “cheap” FIFOs if there are no FIFOs with lane-dependent enqueues or dequeues.</td>
</tr>
<tr>
<td>–multifile</td>
<td>TBA</td>
</tr>
<tr>
<td>–naming</td>
<td>TBA</td>
</tr>
<tr>
<td>–dse</td>
<td>Run compiler design space exploration. Interactivity is planned, but currently just generates a data file.</td>
</tr>
</tbody>
</table>

More to be added...
This section provides a user’s introduction to Spatial to help you get started using the language. Feel free to skip around using this index or to follow the tutorial step by step. The tutorial is structured as a sequence of applications, each demonstrating additional complexity and APIs available in Spatial.

0. Getting Started

Prerequisites

First, make sure to download and install the following prerequisites:

- Scala SBT
- Java JDK
- VCS ** NOTE: License is required **

While it’s not at all required, it may be easier to learn to use Spatial if you’ve had experience with Scala or a similar functional programming language in the past. Knowledge of Scala will allow you to use meta-programming to assist your Spatial designs.

If you’d like, check out this Scala tutorial.

Finally, please sign up for the Spatial users google group if you have any questions.

Installation (From Source)

Run the following (bash) commands to clone and update the spatial-lang repository:

```
git clone https://github.com/stanford-ppl/spatial-lang.git
cd spatial-lang
git submodule update --init
```
This will pull Spatial’s submodules argon, apps, and scala-virtualized.

You may need to export your JAVA_HOME environment variable to point to your Java installation (usually /usr/bin)

You are now ready to compile the language. Run the following:

```bash
cd spatial-lang # Navigate to root of spatial-lang repository
sbt compile
```

A good habit would be to pull from these repositories often and run sbt compile in your spatial-lang directory.

That’s it! Up next, you will learn how to use the language by working through a series of examples. The concepts you will learn in these tutorials are listed below. Feel free to skip around the apps as you find convenient:

- Hello, World!
- Application skeleton (import statements, application creation, accel scope, host scope)
- ArgIn
- ArgOut
- HostIO
- DRAM
- SRAM
- Reg
- Typing system
- Data transfer between host and accel (setArg, setMem, getArg, getMem, load, store, gather, scatter)
- Basic debugging hooks
- Compiling an app
- Dot Product
- Tiling
- Reduce and Fold
- Sequential execution and Coarse-grain pipelining
- Parallelization
- Basic buffering and banking
- General Matrix Multiply (GEMM)
- MemReduce and MemFold
- Debugging with instrumentation
- Advanced banking
- Advanced buffering
- Differentiator & Sobel Filter
- LineBuffer
- ShiftRegister
- LUT
- Spatial Functions and Multifile Projects
1. Hello, Spatial!

Catalog of Features

In this section, you will learn about the following components in Spatial:

- Application skeleton (import statements, application creation, accel scope, host scope)
- DRAM
- SRAM
- ArgIn
- ArgOut
- HostIO
- Reg
- Typing system
- Data transfer between host and accel (setArg, setMem, getArg, getMem, load, store, gather, scatter)
- Basic debugging hooks
- Compiling an app

Application Overview

In this section, you will see how to put together the bare-minimum Spatial application. While the code does not do any “meaningful” work, it demonstrates the basic primitives that almost all applications have and is intended to be the “Hello, world!” program for hardware. You will start by generating input and output registers to get the accelerator and host to interact with each other, and then add tile transfers between the off-chip DRAM and on-chip SRAM. You will then learn what functions are provided to test functionality and utilize the host. Finally, you will learn the basic compilation flows for testing the functionality of the algorithm, cycle-accurate simulation of the generated RTL, and bitstream generation to deploy to a supported FPGA or architecture.

Below is a visualization of what we will be doing in this tutorial. We start with a host and an FPGA, both connected to DRAM. We will then instantiate all of the different ways you can get the two processors to interact with each other. We will create an RTL that will sit inside the FPGA, as well as some C++ code that will sit inside the host. Spatial automatically instantiates a box called “Fringe,” which is an FPGA-agnostic hardware design that allows the RTL to interact with peripherals, DRAM, PCIe buses, and whatever else is available on a given SoC or FPGA board.
Application Template

All Spatial programs have a few basic components. The following code example shows each of those components for an application that is called HelloSpatial:

```
import spatial.dsl._
import org.virtualized._

object HelloSpatial extends SpatialApp {

 @virtualize
 def main() {

 Accel {

 }
 }

}
```

Compiling

We will use the above template to learn the process for compiling, simulating, and synthesizing a design. While this template is empty, you can use this same flow freely as you build your applications in the tutorials below.

Currently, you should edit and place apps inside of your `spatial-lang/apps/src/` directory. Copy-paste the above template into a new file in this directory and you are ready to compile.

There are currently two backend targets that you can compile to: Scala and RTL.

The Scala backend is the fastest way to check the correctness of your application. It does not simulate parallelization and pipelining as they would execute in hardware so any race conditions or loop-carry dependency issues will not be caught in this backend, but it is a very useful tool for early and rapid development.

The RTL backend can be both simulated on a cycle-accurate simulator and synthesized to generate a bitstream for an FPGA. The RTL simulation is the most accurate way to test your design, but takes on the order of minutes to compile.

Compiling to Scala

Targeting Scala is the quickest way to simulate your app and test for basic functional correctness. You should use this backend if you are debugging things at the algorithm level. In order to compile and simulate for the Scala backend, run:

```
cd spatial-lang/ # Navigate to Spatial base directory
bin/spatial <app name> --sim # + :doc:`other options <../compiler>`
```

The “<app name>” refers to the name of the `object`. In our app above, for example, the app name is “HelloSpatial”.

See the “Running” section below for a guide on how to test the generated app.

Compiling to RTL

Targeting Chisel will let you compile your app down into Berkeley’s Chisel language, which eventually compiles down to Verilog. It also allows you to debug your app at the clock-cycle resolution. In order to compile with the Chisel backend, run the following:

```
cd spatial-lang/ # Navigate to Spatial base directory
bin/spatial <app name> --synth # + :doc:`other options <../compiler>`
```
Synthesizing and Testing

After you have used the bin/spatial script to compile the app, navigate to the generated code directory to test the app. By default, this is spatial-lang/gen/<app name>. You will see some files and directories in this folder that correspond to the code that Spatial created for the various target platforms. For the RTL backend, here is a rough breakdown of what the important files are:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chisel/RootController.scala</td>
<td>Main trait where all of the controller and dataflow connections are made</td>
</tr>
<tr>
<td>chisel/x###.scala</td>
<td>Nested traits where more controller and dataflow connections are made</td>
</tr>
<tr>
<td>chisel/OModule.scala</td>
<td>Interface between FPGA accelerator and CPU</td>
</tr>
<tr>
<td>chisel/BufferControlCxns</td>
<td>Connections for all N-buffered memories in the design</td>
</tr>
<tr>
<td>chisel/resources/*.scala</td>
<td>Files for all of the fundamental building blocks of a Spatial app</td>
</tr>
<tr>
<td>cpp/TopHost.scala</td>
<td>Contains the Application method where all CPU code is generated</td>
</tr>
<tr>
<td>controller_tree.html</td>
<td>Helpful diagram for showing the hierarchy of control nodes in your app</td>
</tr>
</tbody>
</table>

In order to finally test this code, you must compile the backend code itself. In order to do so, run the following:

```bash
cd gen/<app name>
Choose ONE of the following
make sim # If you chose the Scala backend
make vcs # Cycle-accurate RTL simulation
make aws-F1 # Synthesize for Amazon F1
make zynq # Synthesize for Xilinx Zynq ZC706 or ZC702
make de1soc # Synthesize for Altera DE1SoC
Run simulation executable if one of the first two options were chosen
bash run.sh "<arguments>"
```

NOTE: The “<arguments>” should be a space-separated list, fully enclosed in quotes. For example, an app that takes arguments 192 96 should be run with:

```bash
bash run.sh "192 96"
```

After running an RTL simulation, you can see the waveforms generated in the test_run_dir/app. Launcher#### folder, with the .vcd extension for further debugging

** Synthesized bitstream process TBA **

DRAM Transfers

We will now continue developing a Spatial app based on the above skeleton. Please see the end of this section for a complete, copy-paste version of the code outlined below.

We will now add the code that will allow us to 1) create data inside the host, 2) transfer this data to DRAM where it can be accessed by the FPGA, 3) load the data, 4) interact with the data in on-chip SRAM, and 5) store the data back to DRAM where it can be accessed by the host.

First, let’s create a few data structures inside main, above the Accel block:

```scala
val data1D = Array.tabulate(64){i => i * 3} // Create 1D array with 64 elements, each element being index * 3
val data1D_longer = Array.tabulate(1024){i => i} // Create 1D array with 1024 elements
val data2D = (0::64, 0::64){(i,j) => i*100 + j} // Create 64x64 2D, where each element is row * 100 + col
val data5D = (0:2, 0:2, 0:2, 0:2, 0:16){(i,j,k,l,m) => random[Int](5)} // Create 5D tensor, the highest dimension tensor currently supported in Spatial, with each element a random Int between 0 and 5
```
Now, let’s allocate space in DRAM to memcpy this data to, so that the FPGA can read it later. This code also lives above the `Accel` block:

```scala
val dram1D = DRAM[Int](64)
val dram1D_longer = DRAM[Int](1024)
val dram2D = DRAM[Int](64,64)
val dram5D = DRAM[Int](2,2,2,2,16)
```

Next, we can transfer our generated data into these DRAM allocations, still above the `Accel` block:

```scala
setMem(dram1D, data1D)
setMem(dram1D_longer, data1D_longer)
setMem(dram2D, data2D)
setMem(dram5D, data5D)
```

We can also create a few DRAMs that will be written to by the Accel:

```scala
val dram_result2D = DRAM[Int](32,32)
val dram_scatter1D = DRAM[Int](1024)
```

Now, we will move into the `Accel` block to create some SRAMs to catch and hold data on-chip:

```scala
val sram1D = SRAM[Int](64)
val sram2D = SRAM[Int](32,32)
val sram5D = SRAM[Int](2,2,2,2,16)
```

With these SRAMs declared, we can load data into them. DRAM is burst-addressable, relatively slow memory. The Fringe module manages the command and data streams that connect the FPGA to DRAM:

```scala
sram1D load dram1D // Load data from a DRAM of matching dimension
sram2D load dram2D(32::64, 0::32 par 16) // Load region from DRAM. In this case, we load the bottom-left quadrant of data from dram2D
sram5D load dram5D // Load 5D tensor
```

In the above snippet, notice that you can parallelize these operations. Parallelization of the leading dimension of the load into the 2D SRAM means that rather than funnelling a 512-bit burst (consisting of 16 ints that are 32 bits each) into 1 element at a time, we can store 16 elements at a time (the entire burst) into SRAM at once with each incoming burst.

Storing data from SRAM back into DRAM is straightforward, and can also have parallelization:

```scala
dram_result2D(0::32, 0::32 par 8) store sram2D
```

The Fringe module also makes it very straightforward to do scatter and gather operations from DRAM. Because DRAM is burst-addressable, it can be very inefficient to interact with individual, non-consecutive addresses. The scatter and gather templates instantiate the control logic, caches, and other support required to efficiently coalesce, manage, and interact with DRAM at the word level.

```scala
val gathered_sram = SRAM[Int](64) // Create SRAM to hold data gathered_sram gather
dram1D_longer(sram1D par 1, 64) // Use the first 64 elements in sram1D as the addresses in dram1D_longer to collect, and store them into gathered_sram
```

We can also scatter this data back into DRAM

```scala
dram_scatter1D(sram1D par 1, 64) scatter gathered_sram // For the first 64 elements, place element i of gathered_sram into the address indicated by the i’th element of sram1D
```

Now, let’s move outside the Accel and load our data back into the host to check if it is correct:

```scala
val result_scattered = getMem(dram_scatter1D)
val result2D = getMatrix(dram_result2D) // Collect 2D dram as a "Matrix." Likewise, 3, 4, and 5D regions use "getTensor3", "getTensor4", and "getTensor5"
```
Finally, let’s check if the data is correct and print the results. Note that while print lines inside the host code will print for both the Scala and RTL backends, print lines inside the Accel will only print in the Scala backend and will be ignored in RTL, since there is no straightforward print for FPGAs:

```scala
val gold_2D = (32::64, 0::32){(i,j) => i*100 + j} // Remember we took bottom-left corner
val cksum_2D = gold_2D.zip(result2D){_==_}.reduce{_&&_} // Zip the gold with the result and check if they are all equal
val cksum_scattered = Array.tabulate(64){i => result_scattered(3*i) == 3*i}.reduce{_&&_} // Check if every 3 entries is equal to the index
println("2D pass? " + cksum_2D)
println("scatter pass? " + cksum_scattered)
```

Congratulations! You have completed the DRAM section of the tutorial. Please reference the Compiling and Synthesizing and Testing sections above for a refresher on how to test your app.

Below is a copy-pastable version of the code outlined above:

```scala
import spatial.dsl._
import org.virtualized._

object HelloSpatial extends SpatialApp {

 @virtualize
 def main() {

 val data1D = Array.tabulate(64){i => i * 3} // Create 1D array with 64 elements, each element being index * 3
 val data1D_longer = Array.tabulate(1024){i => i} // Create 1D array with 1024 elements
 val data2D = (0::64, 0::64){(i,j) => i *100 + j} // Create 64x64 2D, where each element is row * 100 + col
 val data5D = (0::2, 0::2, 0::2, 0::2, 0::16){(i,j,k,l,m) => random[Int](5)} // Create 5D tensor, the highest dimension tensor currently supported in Spatial, with each element a random Int between 0 and 5
 val dram1D = DRAM[Int](64)
 val dram1D_longer = DRAM[Int](1024)
 val dram2D = DRAM[Int](64,64)
 val dram5D = DRAM[Int](2,2,2,2,16)
 setMem(dram1D, data1D)
 setMem(dram1D_longer, data1D_longer)
 setMem(dram2D, data2D)
 setMem(dram5D, data5D)

 val dram_result2D = DRAM[Int](32,32)
 val dram_scatter1D = DRAM[Int](1024)

 Accel {
 val sram1D = SRAM[Int](64)
 val sram2D = SRAM[Int](32,32)
 val sram5D = SRAM[Int](2,2,2,2,16)
 sram1D load dram1D // Load data from a DRAM of matching dimension
 sram2D load dram2D(32::64, 0::32 par 16) // Load region from DRAM. In this case, we load the bottom-left quadrant of data from dram2D
 sram5D load dram5D // Load 5D tensor
 dram_result2D(0::32, 0::32 par 8) store sram2D
 val gathered_sram = SRAM[Int](64) // Create SRAM to hold data
 gathered_sram gather dram1D_longer(sram1D par 1, 64) // Use the first 64 elements in sram1D as the addresses in dram1D_longer to collect, and store them into gathered_sram
 dram_scatter1D(sram1D par 1, 64) scatter gathered_sram // For the first 64 elements, place element i of gathered_sram into the address indicated by the i'th element of sram1D
 }

 }
}
```

2.2. Hello, Spatial!
\begin{verbatim}
val result_scattered = getMem(dram_scatter1D)
val result2D = getMatrix(dram_result2D) // Collect 2D dram as a "Matrix." Likewise, 3, 4, ...
and 5D regions use "getTensor3D", "getTensor4D", and "getTensor5D"

printMatrix(result2D, "Result 2D: ")
printArray(result_scattered, "Result Scattered: ")
val gold_2D = (32::64, 0::32) { (i,j) => i*100 + j } // Remember we took bottom-left corner
val cksum_2D = gold_2D.zip(result2D) { _==_ }.reduce{_&&_} // Zip the gold with the result and
    check if they are all equal
val cksum_scattered = Array.tabulate(64) { i => result_scattered(3*i) == 3*i }.reduce{_&&_} //
    Check if every 3 entries is equal to the index
println("2D pass? "+ cksum_2D)
println("scatter pass? "+ cksum_scattered)
\end{verbatim}

### ArgIn/Out Interfaces and Typing

We will now continue developing our Spatial app above and add ArgIns, ArgOuts, HostIOs, and Regs.

While most data that people want to process reside inside of DRAM data structures, there are times when you may
want to pass individual arguments between the Accel and the host. Some examples include passing parameters to
the Accel, such as a damping factor in an algorithm like PageRank or data structure dimensions in an algorithm like
GEMM, as well as passing parameters to the host in algorithms like Dot Product. Let us define a few of these registers
above the Accel block inside the \texttt{main()} function:

```scala
val argin1 = ArgIn[Int] // Register that is written to by the host and read from by the Accel
val argout1 = ArgOut[Int] // Register that is written to by the Accel and read from by the host
val io1 = HostIO[Int] // Register that can be both written to and read from by the Accel and
 the host
```

By this point, you have probably noticed that we keep specifying everything as an Int in square brackets. These square
brackets are how Scala passes along type arguments. Spatial is a hardware language that supports a few types besides
32-bit integers and you can define them as follows:

```scala
type T = FixPt[FALSE, _16, _16] // 32-bit unsigned integer with 16 whole bits and 16 fractional
 bits.
type Flt = Float // 32-bit standard Float
```

Now we can make another argument using the \texttt{T} type:

```scala
val argin2 = ArgIn[T]
```

Now that we have created these registers, we can load values into them:

```scala
setArg(argin1, args(0).to[Int]) // Set argument with the first command-line value
setArg(argin2, 7.to[T]) // Args do not necessarily need to be set with command-line values
setArg(io1, args(1).to[Int])
```

Let’s move into the Accel and interact with these registers:

```scala
val reg1 = Reg[Int](5) // Create register with initial value of 5
val reg2 = Reg[T] // Default initial value for a Reg is 0
Pipe{reg1 := argin1} // Load from ArgIn
Pipe{reg2 := argin2} // Load from ArgIn
argout1 := reg1 + reg2.value.to[Int] // Cast the value in reg2 to Int and add it to reg1
io1 := reg1
```

### 2.2. Hello, Spatial!
In the snippet above, you may notice that there are two Pipes. This is the first example of where the user must be aware of the hardware to understand what logic is actually getting generated. The compiler scopes code into separate Blocks. Before this point, we have not scoped any code into anything other than the base, global block, meaning all of the hardware we generate will fire at the same time. In this particular example, we want \texttt{reg1} and \texttt{reg2} to be loaded before we sum them up, and therefore we should scope them out with \texttt{Pipe} in order to ensure the top-level controller will execute them one after another. Note that if retiming is turned on (see \textit{compiler flags}), then we would not need to scope these operations out because all primitives inside of a block are retimed appropriately to ensure their values arrive as dictated by the code. Without retiming, however, all primitives can happen simultaneously and give an incorrect result. Later sections will discuss retiming and controller hierarchies further.

Now we can move outside the Accel and read the arg values:

```scala
val result1 = getArg(argout1)
val result2 = getArg(io1)

println("Received " + result1 + " and " + result2)
val cksum = (result1 == {args(0).to[Int] + args(1).to[Int]}) && (result2 == args(0).to[Int]) // The [] brackets are Scala's way of scoping operations
println("ArgTest pass? " + cksum)
```

Congratulations! You have completed the ArgIn/Out section of the tutorial. Please reference the \textit{Compiling} and \textit{Synthesizing and Testing} sections above for a refresher on how to test your app.

### Final Code

Below is a copy-pastable version of the code outlined above:

```scala
import spatial.dsl._
import org.virtualized._

object HelloSpatial extends SpatialApp {

 @virtualize
 def main() {

 val argin1 = ArgIn[Int] // Register that is written to by the host and read from by the Accel
 val argout1 = ArgOut[Int] // Register that is written to by the Accel and read from by the host
 val io1 = HostIO[Int] // Register that can be both written to and read from by the Accel and the host

 type T = FixPt[FALSE, _16, _16] // 32-bit unsigned integer with 16 whole bits and 16 fractional bits.
 type Flt = Float // 32-bit standard Float
 val argin2 = ArgIn[T]

 setArg(argin1, args(0).to[Int]) // Set argument with the first command-line value
 setArg(argin2, 7.to[T]) // Args do not necessarily need to be set with command-line values
 setArg(io1, args(1).to[Int])

 val data1D = Array.tabulate(64){i => i * 3} // Create 1D array with 64 elements, each element being index * 3
 val data1D_longer = Array.tabulate(1024){i => i} // Create 1D array with 1024 elements
 val data2D = (0::64, 0::64){(i,j) => i*100 + j} // Create 64x64 2D, where each element is row * 100 + col
 val data5D = (0::2, 0::2, 0::2, 0::2, 0::16){(i,j,k,l,m) => random[Int](5)} // Create 5D tensor, the highest dimension tensor currently supported in Spatial, with each element a random Int between 0 and 5

 val dram1D = DRAM[Int](64)
 val dram1D_longer = DRAM[Int](1024)

 ... (more code)
 }
}
```

2.2. 1. Hello, Spatial!

106
```scala
val dram2D = DRAM[Int](64,64)
val dram5D = DRAM[Int](2,2,2,2,16)
setMem(dram1D, data1D)
setMem(dram1D_longer, data1D_longer)
setMem(dram2D, data2D)
setMem(dram5D, data5D)

val dram_result2D = DRAM[Int](32,32)
val dram_scatter1D = DRAM[Int](1024)

Accel {
 val sram1D = SRAM[Int](64)
 val sram2D = SRAM[Int](32,32)
 val sram5D = SRAM[Int](2,2,2,2,16)

 sram1D load dram1D // Load data from a DRAM of matching dimension
 sram2D load dram2D(32::64, 0::32 par 16) // Load region from DRAM. In this case, we load
 the bottom-left quadrant of data from dram2D
 sram5D load dram5D // Load 5D tensor

 dram_result2D(0::32, 0::32 par 8) store sram2D

 val gathered_sram = SRAM[Int](64) // Create SRAM to hold data
 gathered_sram gather dram1D_longer(sram1D par 1, 64) // Use the first 64 elements in
 sram1D as the addresses in dram1D_longer to collect, and store them into gathered_sram
 dram_scatter1D(sram1D par 1, 64) scatter gathered_sram // For the first 64 elements, place
 element i of gathered_sram into the address indicated by the i-th element of sram1D

 val reg1 = Reg[Int](5) // Create register with initial value of 5
 val reg2 = Reg[T] // Default initial value for a Reg is 0
 Pipe(reg1 := argin1) // Load from ArgIn
 Pipe(reg2 := argin2) // Load from ArgIn
 argout1 := reg1 + reg2.value.to[Int] // Cast the value in reg2 to Int and add it to reg1
 io1 := reg1
}

val result_scattered = getMem(dram_scatter1D)
val result2D = getMatrix(dram_result2D) // Collect 2D dram as a "Matrix." Likewise, 3, 4,
 and 5D regions use "getTensor3D", "getTensor4D", and "getTensor5D"

printMatrix(result2D, "Result 2D: ")
printArray(result_scattered, "Result Scattered: ")

val gold_2D = (32::64, 0::32){{i,j} => i*100 + j} // Remember we took bottom-left corner
val cksum_2D = gold_2D.zip(result2D){{_==_}.reduce{&&_}} // Zip the gold with the result and
 check if they are all equal
val cksum_scattered = Array.tabulate(64){i => result_scattered(3*i) == 3*i}.reduce{&&_} //
 Check if every 3 entries is equal to the index

println("2D pass? " + cksum_2D)
println("scatter pass? " + cksum_scattered)
```

2.2. 1. Hello, Spatial!
Stream Interfaces

** This section is still under construction **

Finally, you will see how to create stream interfaces with peripheral devices that your FPGA may have access to. Generally, these involve LEDs, switches, buttons, GPIO pins, ADC streams, and sensor interfaces. A stream interface looks like exposed signal pins inside the FPGA and there may or may not be ready/valid signals routed alongside them. For example, switches are input streams that are always valid and LEDs are output streams that are always ready. A pixel buffer that may come with an ADC stream will likely have a valid signal to indicate to the Accel that there is data ready to be dequeued, and the FPGA would need to send back a ready signal to indicate that it is ready to receive and process new data.

These protocols are abstracted away by the compiler and all the user needs to do is instantiate the interfaces and use them in the code inside of the appropriate control structures.

Below are some examples on how to use stream interfaces for some peripherals available on the DE1SoC:

```scala
val imgIn = StreamIn[Pixel16](target.VideoCamera) // Input stream for camera
val imgOut = BufferedOut[Pixel16](target.VGA) // Output VGA display
val switch = target.SliderSwitch
val swInput = StreamIn[sw3](switch)
```

More on stream interfaces TBA.

Next, learn how to build a more complicated Spatial app, Dot Product.

1. Vector Inner Product

Catalog of Features

In this section, you will learn about the following components in Spatial:

- Tiling
- Reduce and Fold
- Sequential execution and Coarse-grain pipelining
- Parallelization
- Basic buffering and banking

Application Overview

Inner product (also called dot product) is an extremely simple linear algebra kernel, defined as the sum of the element-wise products between two vectors of data. For this example, we’ll assume that the data in this case are 32-bit signed fixed point numbers with 8 fractional bits. You could, however, also do the same operations with custom struct types.

Data Setup and Validation

Let’s start by creating the data structures above the Accel that we will compute the dot product on. We will expose the length of these vectors as a command-line argument. We will also write the code below the Accel to ensure we have the correct result:
import spatial.dsl._
import org.virtualized._

object DotProduct extends SpatialApp {

  @virtualize
  def main() {

    type T = FixPt[TRUE, _24, _8]

    val N = args(0).to[Int]
    val length = ArgIn[Int]
    setArg(length, N)
    val result = ArgOut[T]

    val vector1_data = Array.tabulate(N){i => random[T](5)}
    val vector2_data = Array.tabulate(N){i => random[T](5)}

    val vector1 = DRAM[T](length) // DRAMs can be sized by ArgIns
    val vector2 = DRAM[T](length)

    setMem(vector1, vector1_data)
    setMem(vector2, vector2_data)

    Accel {}

    val result_dot = getArg(result)
    val gold_dot = vector1_data.zip(vector2_data){_*_}.reduce{_+_}
    val cksum = gold_dot == result_dot

    println("Received "+ result_dot +", wanted "+ gold_dot)
    println("Pass? "+ cksum)

  }
}

Tiling and Reduce/Fold

Now we will focus our attention on writing the accelerator code. We must first figure out how to process a variable-sized vector on a fixed hardware design. To do this, we use tiling. Let’s create a val for the tileSize just inside the main() method:

    val tileSize = 64

Now we can break the vectors into 64-element chunks, and then process these chunks locally on the FPGA using the Reduce construct:

    Accel {
      result := Sequential.Reduce(Reg[T](0))(length by tileSize){tile => // Returns Reg[T], writes
        + to ArgOut
          val tile1 = SRAM[T](tileSize)
          val tile2 = SRAM[T](tileSize)

          tile1 load vector1(tile :: tile + tileSize)
          tile2 load vector2(tile :: tile + tileSize)

          val local_accum = Reg[T](0)
          Reduce(local_accum)(tileSize by 1){i => tile1(i) * tile2(i)}{+_+} // Accumulates directly
            into local_accum
            local_accum
          }{+_+}
    }

It might seem a bit odd at first that we have the line /_+_/ twice in this app. This is because the inner reduce accumulates over a tile, and the outer reduce accumulates each result we get from each tile. The Reduce construct
assumes that the register that is doing the accumulation will effectively reset on each iteration of its parent controller. This means that on the first iteration of the innermost reduce, the hardware will write the first product directly to the register. On the second iteration of this innermost reduce, it will write the current value of local_accum PLUS the next product. This means that if local_accum were declared to have an initial value of 5, reducing on top of it will start at 0, not 5.

Also, notice the Sequential modifier on the outer reduce loop. This ensures that everything inside of this loop will happen sequentially and without coarse-grained pipelining. We will play more with this parameter in the next section, Pipelining and Parallelization.

The Reduce construct takes four pieces of information: 1) an existing Reg or a new Reg in which to accumulate, 2) a range and step for its counter to scan, 3) a map function, and 4) a reduce function. If a new Reg is declared inside the Reduce, then the structure returns this register. Importantly, note that a declaration of val local_accum = Reg[T](0) does not mean that local_accum is reset on every iteration. This is a declaration of hardware and is always present. It is the contract implicit with the Reduce construct that effectively resets the register. You can manually reset the register in the code with local_accum.reset.

Alternatively, you can express the Accel for dot product using a Fold. This is similar to a Reduce, except the Reg is persistent and not reset unless explicitly reset by the user. In the case where a Reg was declared to have an initial value of 5, the Fold on top of this Reg would start at 5 and not 0. The code would look like this:

```scala
Accel {
 val accum = Reg[T](0)
 Sequential.Foreach(length by tileSize){tile =>
 val tile1 = SRAM[T](tileSize)
 val tile2 = SRAM[T](tileSize)

 tile1 load vector1(tile :: tile + tileSize)
 tile2 load vector2(tile :: tile + tileSize)

 Fold(accum)(tileSize by 1){i => tile1(i) * tile2(i)}{+}
 _
 }

 result := accum
}
```

Let’s take a look at the hardware we have generated. The animation below demonstrates how this code will synthesize and execute.

While the above code appears to be correct, there is a problem when handling edge-cases. If the user inputs a vector size that is not a multiple of our tileSize, then we will have an issue with the above code on the final iteration.

To fix this, we need to keep track of how many elements we actually want to reduce over each time we execute the inner pipe:

```scala
Accel {
 val accum = Reg[T](0)
 Sequential.Foreach(length by tileSize){tile =>
 val numel = min(tileSize.to[Int], length - tile)
 val tile1 = SRAM[T](tileSize)
 val tile2 = SRAM[T](tileSize)

 tile1 load vector1(tile :: tile + numel)
 tile2 load vector2(tile :: tile + numel)

 Fold(accum)(numel by 1){i => tile1(i) * tile2(i)}{+}
 _
 }

 result := accum
}
```
Pipelining and Parallelization

Now we will look into ways to speed up the application we have written above.

The first technique is to pipeline the algorithm. In the animation in the previous section, you will notice that the entire hardware is working on one tile at a time. It is possible to pipeline this algorithm at a coarse level such that we overlap the tile loading with the computation. While this boils down to a “prefetching” operation in this particular design, Spatial allows you to arbitrarily pipeline any operations you have in your algorithm and at any level and over any depth.

In order to exploit this technique, you simply need to remove the Sequential modifier on the outer loop. By default, all controllers will pipeline their children controllers if no modifiers are added. In this dot product, there are two child stages inside the outer pipe (parallel load of tiles 1 and 2 is the first stage, and reduction over the tiles is the second stage). This kind of coarse-grain pipeline is implemented using asynchronous handshaking signals between each child stage and their respective parent. The resulting code looks like this:

```scala
Accel {
 val accum = Reg(T)(0)
 For each (length by tileSize)(tile =>
 val numel = min(tileSize.to[Int], length - tile)
 val tile1 = SRAM[T](tileSize)
 val tile2 = SRAM[T](tileSize)
 tile1 load vector1(tile :: tile + numel)
 tile2 load vector2(tile :: tile + numel)
 Fold(accum)(numel by 1)(i => tile1(i) * tile2(i))
)
 result := accum
}
```

This code is expressed in the following animation. Notice that the on-chip SRAM is now larger as it consists of a double buffer. This buffer is what protects one stage of the pipeline from the next. In order to load the next tile into memory, we must retain the data from the previous tile in such a way that the second stage can consume it. While this pipelining improves performance, it consumes more area. Spatial will automatically buffer all SRAMs, Regs, and RegFiles for the user up to whatever depth is required to guarantee correctness. Note that while it is not shown in the animation, the accumulating register is also duplicated, such that one of the duplicates is a double buffer to guarantee correctness for its reader.

We will now look at parallelization as another technique to speed up the algorithm. We will return to the version that uses two Reduce nodes rather than the version that uses the Fold, and this switch will make sense by the end of the tutorial.

You can think of parallelization of a controller as extending the counter value to hold multiple consecutive values at once. Specifically, if we parallelize the innermost controller, whose counter value is captured by the variable `i`, then this `i` no longer holds a single value. It becomes a vector of consecutive values. If the parallelization is set to 4, then it will hold 4 consecutive values and the controller will complete its execution in a quarter of the time.

Because `i` is used to index into our SRAMs, we need to physically bank our memories in order to ensure that we can read all of the requested values at the same time. The scratchpad memories on-chip have a single write port and a single read port, but the language allows the user to read and write to a memory at will. The Spatial compiler figures out the physical banking, muxing, and duplication of memories that is necessary to ensure the user gets the correct logical behavior specified in the application. The compiler also generates the necessary reduction tree and parallel hardware required to feed the reduction loop. The animation below demonstrates this innermost parallelization.

Finally, the language also exposes parallelization at controllers beyond the innermost ones. In this particular application, the outer Reduce can be parallelized, enabling us to operate on multiple tiles at the same time in parallel.
When loops containing other controllers and operations are parallelized, the compiler automatically unrolls the body and duplicates whatever hardware is necessary. It routes the proper lanes of the counter to each of the unrolled bodies and executes them in parallel. Below is an animation depicting this mode of operation.

Notice that the accumulator in stage 2 is now double-buffered. This is because the final reduction stage of the outer reduce is actually viewed as a third stage in the hierarchical control scheme. This means that we need to protect whatever value is in the accumulator when the buffer switches and the third stage prepares to reduce and consume the partial sums.

The reason we could not use the Fold version with outer parallelization is because it would require us to have multiple controllers all competing to write to the same register. When there is outer-level parallelization, anything declared inside the body of the controller goes along for the ride when unrolled. This is why we must declare the SRAMs inside of the outer loop. In the case of the Fold app, we had to declare the accumulator above the outer loop so that it is visible at the end when we write the result to the ArgOut. Using an outer reduce lets us work on multiple tiles in parallel and merge their results in the final stage of the controller.

**Final Code**

Finally, below is the complete app that includes all of the performance-oriented features outlined in this page of the tutorial. Refer back to the ‘Compiling’ and ‘Synthesizing and Testing’ (TODO: fix links) sections on the previous page for a refresher on how to test your app:

```scala
import spatial.dsl._
import org.virtualized._

object DotProduct extends SpatialApp {
 @virtualize
def main() {
 type T = FixPt[TRUE, _24, _8]
 val tileSize = 64
 val N = args(0).to[Int]
 val length = ArgIn[Int]
 setArg(length, N)
 val result = ArgOut[T]

 val vector1_data = Array.tabulate(N){i => random[T](5)}
 val vector2_data = Array.tabulate(N){i => random[T](5)}

 val vector1 = DRAM[T](length) // DRAMs can be sized by ArgIns
 val vector2 = DRAM[T](length)

 setMem(vector1, vector1_data)
 setMem(vector2, vector2_data)

 Accel {
 result := Reduce(Reg[T](0))(length by tileSize par 2){tile =>
 val numel = min(tileSize.to[Int], length - tile)
 val tile1 = SRAM[T](tileSize)
 val tile2 = SRAM[T](tileSize)

 tile1 load vector1(tile :: tile + numel)
 tile2 load vector2(tile :: tile + numel)

 Reduce(Reg[T](0))(numel by 1 par 4){i => tile1(i) * tile2(i)}{+_+}
 }
 }
}
```

2.3. 1. Vector Inner Product
When you understand the concepts introduced in this page, you may move on to the next example, 3. General Matrix Multiply (GEMM), where you will learn to perform reductions on memories, include instrumentation hooks to help balance your pipeline, and see more complicated examples of banking.

3. General Matrix Multiply (GEMM)

Catalog of Features

In this section, you will learn about the following components in Spatial:

- MemReduce and MemFold
- Instrumentation Hooks
- Advanced Banking
- Advanced Buffering

Application Overview

General Matrix Multiply (GEMM) is a common algorithm in linear algebra, machine learning, statistics, and many other domains. It provides a more interesting trade-off space than the previous tutorial, as there are many ways to break up the computation. This includes using blocking, inner products, outer products, and systolic array techniques. In this tutorial, we will demonstrate how to build a blocked GEMM app that uses outer products, and leave it to the user to try and build a GEMM version that uses inner products. Later tutorials will show how to use shift registers and systolic arrays in other applications, but the same techniques can be retroactively applied to this tutorial on GEMM as well.

Data Setup and Validation

Let’s start by creating the data structures above the Accel that we will set up the matrices and compute the gold check. We will expose the dimensions of the matrices as command-line arguments.
Notice that we create an initial matrix for the result and set all values to 0. This is necessary because GEMM using outer products computes part of a tile of the result and accumulates this on top of what was previously in that tile. This means we will need to fetch a tile from off-chip DRAM and accumulate a new result on top of that, then write this new tile back.

**MemReduce and MemFold**

The animation below shows how to compute GEMM without tiling, using outer products.

Because we cannot create hardware to handle variable-sized matrices, we must tile the problem. The animation below shows one valid scheme for doing so. We will set our tile sizes in the M, N, and K dimensions above the Accel as follows:

```
val tileM = 16
val tileN = 16
val tileK = 16
```

Note that this is not necessarily the most efficient implementation of this algorithm. It is simply meant to be an implementation that demonstrates features of Spatial.

Now let’s write the code to implement this computation. The large arrows and boxes represent matrix multiplies on the highlighted tiles using outer products. There will be six nested loops: one for each dimension of tiling and one for each dimension within the tile.

Considering the tiling loops first, this particular animation shows that we are treating the N dimension as the innermost loop, followed by the M dimension, and finally the K dimension. Below shows the nested loops along with the data structures and their tile transfers required within each scope. Remember that you may add parallelization wherever you please:
Note that we must compute the `numel_*` values to handle the edge cases correct, when the tile dimensions do not evenly divide the full matrices.

Also note that we declare `tileC_sram` as a `.buffer` SRAM. If you do not declare it this way, then the compiler will throw an error about this and explain the issue. You will learn more about this in the [Advanced Buffering](#) section below.

Next, we will implement the full outer product of the tiles that we have brought into the chip:

```accelscript
Accel {
 Foreach(K by tileK){kk =>
 val numel_k = min(tileK.to[Int], K - kk)
 Foreach(M by tileM){mm =>
 val numel_m = min(tileM.to[Int], M - mm)
 val tileA_sram = SRAM[T](tileM, tileK)
 tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
 Foreach(N by tileN){nn =>
 val numel_n = min(tileN.to[Int], N - nn)
 val tileB_sram = SRAM[T](tileK, tileN)
 val tileC_sram = SRAM.buffer[T](tileM, tileN)
 tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n)
 tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)
 MemFold(tileC_sram)(numel_k by 1){k =>
 val tileK_local = SRAM[T](tileM, tileN)
 tileK_local load (i, j) =>
 tileK_local(i, j) = tileA_sram(i, k) * tileB_sram(k, j)
 _}
 c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
 }
}
```

Notice that the code added in the above snippet uses a `MemFold` and creates a new memory called `tileK_local` inside of it. The `MemFold` is similar to the `Fold` used in the previous 1. Vector Inner Product example, except it operates on SRAMs and RegFiles rather than Regs. The SRAM returned in the body of the map function of the `MemFold` must match the dimensions of the accumulating SRAM given to the controller.

There is also a `MemReduce` node, which is analogous to the `Reduce` node for Regs, but this particular node will not
work in this design because we need to accumulate a new partial sum on top of the partial sum that was previously stored for a particular tile in DRAM. The MemReduce controller will directly write the result of the map function on the first iteration of the controller (i.e.- when k == 0), and then respect the lambda function (i.e.- addition) for every iteration after that.

**Advanced Buffering**

This Accel above already implements coarse-grain pipelining at various levels. For example, the controller whose counter is \(nn\) has three stages in it. The first stage loads \(\text{tileB}_\text{sram}\) and \(\text{tileC}_\text{sram}\) in parallel, the second stage performs the MemFold into \(\text{tileC}_\text{sram}\), and the third stage writes the resulting \(\text{tileC}_\text{sram}\) back into the appropriate region of DRAM. This is an example where the compiler will create a triple-buffer for \(\text{tileC}_\text{sram}\) in order to ensure that the correct values are being worked with when this coarse-grain pipeline fills up and executes.

If you had not declared \(\text{tileC}_\text{sram}\) as a .buffer SRAM, then the compiler is suspicious of your code. This is because it is generally very easy when specifying pipelined hardware to accidentally create loop-carry dependency issues. Specifically, in this code, it sees that you write to the SRAM in the first stage, and then write to it again in the second stage. It is very easy, even for advanced users, to write this kind of structure without realizing it and then receive an incorrect result when using a cycle-accurate simulator of the hardware because of values “rotating” through the buffer inadvertently.

The animation below specifically demonstrates the triple buffer \(\text{tileC}_\text{sram}\) in this algorithm.

Note that at the beginning and end of each row, there are a few iterations where parts of the buffer are not being used. This is because of the way the loops are written, such that we step through each tile in the N dimension before we increment the tile for M. If you want to write the app such that there are no wasteful fill and drain iterations, you must combine loops appropriately.

**Advanced Banking**

Let’s now add in more optimizations to improve the performance of this application. Specifically, we will parallelize two of the loops in such a way to expose hierarchical banking. The following code shows the loops for \(k\) and \(j\) parallelized by 2 and 4 respectively.:

```plaintext
Accel {
 Foreach(K by tileK){kk =>
 val numel_k = min(tileK.to[Int], K - kk)
 Foreach(M by tileM){mm =>
 val numel_m = min(tileM.to[Int], M - mm)
 val tileA_sram = SRAM[T](tileM, tileK)
 tileA_sram load a(mm:mm+numel_m, kk::kk+numel_k)
 Foreach(N by tileN){nn =>
 val numel_n = min(tileN.to[Int], N - nn)
 val tileB_sram = SRAM[T](tileK, tileN)
 val tileC_sram = SRAM.buffer[T](tileM, tileN)
 tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n)
 tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)
 MemFold(tileC_sram)(numel_k by 1 par 2){k =>
 val tileK_local = SRAM[T](tileM, tileN)
 Foreach(numel_m by 1, numel_n by 1 par 4){(i,j) =>
 tileK_local(i,j) = tileA_sram(i,k) * tileB_sram(k,j)
 }
 tileK_local
got
 }
 c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
 }
}
```

2.4. 3. General Matrix Multiply (GEMM)
Now let’s look at what happens to tileB_sram. It’s first and second indices are both parallelized. Index \( j \) is vectorized by 4, while index \( k \) is duplicated for two different values of \( k \) when the loop is unrolled by 2. This means we must bank tileB_sram in both the horizontal and vertical dimensions in order to guarantee that all 8 of these accesses will be able to touch unique banks every time we read from this memory. The animation below demonstrates how we hierarchically bank this SRAM.

Let’s consider the situation if we instead decided to parallelize a different way. Below is the code for the application if we chose to parallelize the loading of tileB_sram by 8 while also parallelizing the \( k \) loop by 2:

```scala
Accel {
 Foreach(K by tileK){kk =>
 val numel_k = min(tileK.to[Int], K - kk)
 Foreach(M by tileM){mm =>
 val numel_m = min(tileM.to[Int], M - mm)
 val tileA_sram = SRAM[T](tileM, tileK)
 tileA_sram load a(mm:mm+numel_m, kk:kk+numel_k)
 }
 Foreach(N by tileN){nn =>
 val numel_n = min(tileN.to[Int], N - nn)
 val tileB_sram = SRAM[T](tileK, tileN)
 val tileC_sram = SRAM.buffer[T](tileM, tileN)
 tileB_sram load b(kk:kk+numel_k, nn:nn+numel_n par 8)
 tileC_sram load c(mm:mm+numel_m, nn:nn+numel_n)
 MemFold(tileC_sram)(numel_k by 1 par 2){k =>
 val tileK_local = SRAM[T](tileM, tileN)
 Foreach(numel_m by 1, numel_n by 1){(i,j) =>
 tileK_local(i,j) = tileA_sram(i,k) * tileB_sram(k,j)
 }
 c(mm:mm+numel_m, nn:nn+numel_n) store tileC_sram
 }
 }
 }
}
```

While the hierarchical banking scheme shown above will still work for this case, where we have 2 banks along the rows and 8 banks along the columns, the Spatial compiler will perform a memory-saving optimization called Diagonal Banking. In this example, we need to be able to access 8 elements along the column simultaneously, and later in the app we need to access 2 elements from different rows simultaneously. However, these accesses do not occur at the same time, so we do not need 16 unique banks (as is implied by the previous example) and can get away with 8 banks.

If the parallelizations of the various accesses are not multiples of each other, the compiler will figure out the most minimalistic banking scheme that guarantees correctness.

**Final Code**

Below is the complete GEMM app. See the `HelloWorld` page for a refresher on how to compile and test an app:

```scala
import spatial.dsl._
import org.virtualized._
```
object GEMM extends SpatialApp {
  @virtualize
  def main() {
    type T = FixPt[TRUE, _24, _8]
    val tileM = 16
    val tileN = 16
    val tileK = 16

    val M = ArgIn[Int]
    val N = ArgIn[Int]
    val K = ArgIn[Int]
    setArg(M, args(0).to[Int])
    setArg(N, args(1).to[Int])
    setArg(K, args(2).to[Int])

    val a_data = (0::args(0).to[Int], 0::args(2).to[Int]){(i, j) => random[T](3)}
    val b_data = (0::args(2).to[Int], 0::args(1).to[Int]){(i, j) => random[T](3)}
    val c_init = (0::args(0).to[Int], 0::args(1).to[Int]){(i, j) => 0.to[T]}
    val a = DRAM[T](M, K)
    val b = DRAM[T](K, N)
    val c = DRAM[T](M, N)

    setMem(a, a_data)
    setMem(b, b_data)
    setMem(c, c_init)

    Accel {
      Foreach(K by tileK){kk =>
        val numel_k = min(tileK.to[Int], K - kk)
        Foreach(M by tileM){mm =>
          val numel_m = min(tileM.to[Int], M - mm)
          val tileA_sram = SRAM[T](tileM, tileK)
          tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
          Foreach(N by tileN){nn =>
            val numel_n = min(tileN.to[Int], N - nn)
            val tileB_sram = SRAM.buffer[T](tileK, tileN)
            val tileC_sram = SRAM.buffer[T](tileM, tileN)
            tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n par ...)
            tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)
            MemFold(tileC_sram){numel_k by 1 par 2}{k =>
              tileK_local = SRAM[T](tileM, tileN)
              Foreach(numel_m by 1, numel_n by 1){(i, j) =>
                tileK_local(i, j) = tileA_sram(i, k) ...
              }
            } _+_ } _+_ } _+_ } _+_ } _+_ } _+_ } _+_ }
      c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
    }

    val accel_matrix = getMatrix(c)
    val gold_matrix = (0::args(0).to[Int], 0::args(1).to[Int]){extract}{(i, j) =>
      Array.tabulate(args(2).to[Int]){k => a_data(i, k) * b_data(k)}.reduce(_+_)}
    }
    printMatrix(accel_matrix, "Received: ")
    printMatrix(gold_matrix, "Wanted: ")
  }
}
Instrumentation Hooks

Now that you have finished writing an algorithm, you will want to try to get the best performance possible. In order to get optimal performance, it is important to balance the stages in your pipelines. While you could get a good estimate by eyeballing your code, there is a way to get actual execution cycles on a controller-by-controller basis using a Spatial/special feature called “instrumentation.”

To turn on instrumentation hooks, use the `bin/spatial <app name> --synth --instrument` flag when compiling the app. This flag injects performance counters that count the number of cycles each controller is enabled, as well as the number of times a particular controller is done. Note that performance counters will only be injected in the --synth backend.

Once you compile your app, you should run it normally with the run.sh script. You may notice that there are some extra lines that are spitting out information about the app. Running the run.sh script created a file in your current directory called `instrumentation.txt`, which will be used to populate a visualization of your app. Let’s start by opening up the controller tree:

```
controller_tree.html # Or whatever your favorite browser is (firefox, etc.)
```

You will get a screen that looks like this.

![Controller Diagram for GEMM](image)

2.4. 3. General Matrix Multiply (GEMM)
If you play around with this screen, you will see that this shows you the control hierarchy in your app, and points each box back to the original source code. To make this a more useful tool, we will now inject the instrumentation results into this page. Run the script:

```
bash instrument.sh
```

Now refresh the controller tree page. There should be a lot of red text, similar to the image shown below:

![Instrumentation Diagram for GEMM](image)

You can now play around with this page and look at how the various stages in your pipelines are performing. We leave it up to the user to figure out how to use parallelizations and rewrite portions of the app to figure out how to balance the pipelines and get better performance.

When you understand the concepts introduced in this page, you may move on to the next example, 3. Differentiator & Sobel Filter, where you will learn to perform reductions on memories, include instrumentation hooks to help balance your pipeline, and see more complicated examples of banking.
3. Differentiator & Sobel Filter

Catalog of Features

In this section, you will learn about the following components in Spatial:

- LineBuffer
- ShiftRegister
- LUT
- Spatial Functions and Multifile Projects

Application Overview

Convolution is a common algorithm in linear algebra, machine learning, statistics, and many other domains. The tutorials in this section will demonstrate how to use the building blocks that Spatial provides to do convolutions.

Specifically, we will build a basic differentiator for a time-series using sliding window averaging for an example 1D convolution. The animation below demonstrates this convolution (credit http://pages.jh.edu/~signals/convolve/index.html).

We will then build a Sobel Filter to detect edges on an image for an example of 2D convolution. A Sobel filter is the average of the convolution with the following two kernels:

```
KernelV:
1 2 1
0 0 0
-1 -2 -1

KernelH:
1 0 -1
2 0 -2
1 0 -1
```

While this section will not explore convolutions in more than 2 dimensions, it is possible to combine the Spatial primitives demonstrated in this section and previous sections to build up a higher-dimensional convolution. The animation below demonstrates the 2D convolution with the padding that we will use (credit https://github.com/vdumoulin/conv_arithmetic). Alternatively, Spatial supports 2D convolutions as matrix multiplies. See (TODO: Link to “toeplitz” API) for more details.

TODO: Fix right and bottom padding to match app below

Data Setup and Validation

Let’s start by creating the data structures above the Accel that we will set up the image and filters and compute the gold check. We will expose the rows of the images as command-line arguments.

```
import spatial.dsl._
import org.virtualized._

object DiffAndSobel extends SpatialApp {
 @virtualize
```
```scala
def main() {
 val R = args(0).toInt
 val C = args(1).toInt
 val vec_len = args(2).toInt
 val vec_tile = 64
 val maxcols = 128 // Required for LineBuffer
 val ROWS = ArgIn[Int]
 val COLS = ArgIn[Int]
 val LEN = ArgIn[Int]
 setArg(ROWS, R)
 setArg(COLS, C)
 setArg(LEN, vec_len)

 val window = 16
 val x_t = Array.tabulate(vec_len)(i =>
 val x = i.to[T] * (4.to[T] / vec_len.to[T]).to[T] - 2
 -0.18.to[T] * pow(x, 4) + 0.5.to[T] * pow(x, 2) + 0.8.to[T]
)
 val h_t = Array.tabulate(16)(i => if (i < window/2) 1.to[T] else -1.to[T])
 printArray(x_t, "x_t data:")

 val X_1D = DRAM[T](LEN)
 val H_1D = DRAM[T](window)
 val Y_1D = DRAM[T](LEN)
 setMem(X_1D, x_t)
 setMem(H_1D, h_t)

 val border = 3
 val image = (0::R, 0::C)((i,j) => if (j > border && j < C-border && i > border && i < C - border) (i*16).to[T] else 0.to[T])
 printMatrix(image, "Image:")
 val kernelv = Array[T](1,2,1,0,0,-1,-2,-1)
 val kernelh = Array[T](1,0,-1,2,0,-2,1,0,-1)
 val X_2D = DRAM[T](ROWS, COLS)
 val Y_2D = DRAM[T](ROWS, COLS)
 setMem(X_2D, image)

 Accel{}

 val Y_1D_result = getMem(Y_1D)
 val Y_2D_result = getMatrix(Y_2D)

 val Y_1D_gold = Array.tabulate(vec_len)(i =>
 Array.tabulate(window)(j =>
 val data = if (i - j < 0) 0 else x_t(i-j)
 data * h_t(j)
).reduce{+}
)
 val Y_2D_gold = (0::R, 0::C)((i,j) =>
 val img = if (i-i < 0 || j-j < 0) 0 else image(i-i,j-j)
 img * kernelh((2-i-i)*3+(2-j-j))
)}.flatten.reduce{+}
 val v = Array.tabulate(3)(ii =>
 val img = if (i-i < 0 || j-j < 0) 0 else image(i-i,j-j)
 img * kernelv((2-i-i)*3+(2-j-j))
)}.flatten.reduce{+}
 abs(v) + abs(h)
}
```

2.5. 3. Differentiator & Sobel Filter
Note that there is a val called “maxcols.” In the 2D Convolution section, we will demonstrate how the line buffer works and it will become clear why we must constrain the maximum number of columns in our image for the app to work.

1D Convolution

In order to perform the 1D convolution, we need a pipeline to perform two operations. The first is to load one tile at a time, and the second is to shift data through a window and perform a dot product between this window and the filter. We must also do a one-time load of the filter kernel. The snippet below shows this code:

```
val csum_1D = Y_1D_result.zip(Y_1D_gold){(a, b) => abs(a - b) < margin}.reduce({64_64})
val csum_2D = Y_2D_result.zip(Y_2D_gold){(a, b) => abs(a - b) < margin}.reduce({64_64})
println("1D Pass? " + csum_1D + ", 2D Pass? " + csum_2D)
```

The app above uses familiar concepts described in previous parts of this tutorial, except for the RegFiles. The first RegFile, `filter_data`, is created to hold the filter data. It is equally valid to use an SRAM for this structure, but it is generally more efficient for small memories to use RegFiles, as this reduces the number of wasted addresses in a physical BRAM on-chip. The second RegFile, `sr1D`, is used as a shift register. We use the `<<=` operator to indicate that we want to shift into it from the entry address (i.e.- address 0), and move all the existing data backwards by one address. Later, we will see how to specify strides for shift registers, as well as shift into an entry plane of a multidimensional shift register.

While this app uses tiles to perform convolution, it is possible to use the shift register in the same way to do convolution on streaming data by directly enqueueing to the shift register. Also, it may not seem completely intuitive that we use the shift register at all, since we can just index into the `x_tile` directly. However, if you want to parallelize the reduction, the shift register comes fully banked since it is composed of registers. Parallel accesses to the SRAM directly, with a sliding window, will result in lots of SRAM duplication and inefficiency.

Finally, there is a mux inside the `Reduce` map function. This mux is to check if the data in a particular address of the shift register corresponds to data with a “negative” address in the X_1D data structure.

If you plot the resulting data in a spreadsheet, you should get something that looks like this. We can use these plots as a sanity check for our differentiator kernel.

Input:

```
2.5. 3. Differentiator & Sobel Filter
```

123
Now we will focus on the Sobel filter that will perform a 2D convolution. First, we will introduce a LineBuffer memory structure. A LineBuffer is a special case on an N-buffered 1D SRAM exposed to the user. It allows one or more rows of DRAM to be buffered into on-chip memory while previous rows can be accessed in a logically-rotating way. A LineBuffer is generally coupled with a shift register, and the animation below shows the specific usage of this pair in this tutorial.

Note that in the last frame, the “buffer” row of the line buffer contains row 7 of the image. This is because this line buffer is physically implemented with four SRAMs and uses access redirection to create the logical behavior shown in the animation. After the last row is loaded and we drain the last frame, the buffers inside the line buffer will rotate but no new line will fill the buffer SRAM, leaving behind the data from row 7 even though it will not get used in this particular case. The Spatial compiler will also determine how to bank and duplicate the SRAMs that compose the line buffer automatically, should you choose to have a strided convolution.

It is also possible now to see why we must set a hard cap on the number of columns in the image if we are to use the line buffer - shift register combination. The logic that handles the rotation of the line buffer rows is tied to the controller hierarchy that manages the writes and reads about the line buffer. If we were to try to tile this operation along the columns, then our line buffer would load one tile of the row into the buffer, while row 0 of the line buffer would contain the previous part of that row. This splitting of a single line is semantically incorrect for convolution.

For this 2D convolution, we also introduce the lookup table (LUT). This is a read-only memory whose values are known at compile time. It is implemented using registers and muxes to index into it.

The snippet below shows how to generate an accel that performs the operations shown above:
Accel {
val lb = LineBuffer[T](3, maxcols)
val sr = RegFile[T](3, 3)
val kernelH = LUT[T](3,3)(1.to[T], 2.to[T], 1.to[T],
   0.to[T], 0.to[T], 0.to[T],
   -1.to[T], -2.to[T], -1.to[T])
val kernelV = LUT[T](3,3)(1.to[T], -1.to[T], 2.to[T], 0.to[T], -2.to[T],
   1.to[T], 0.to[T], -1.to[T])
val lineout = SRAM[T](maxcols)

Foreach (ROWS by 1){row =>
   lb load X_2D(row, 0::COLS)
   foreach (COLS by 1){j =>
      foreach (3 by 1 par 3){i =>
         sr(i,*) <<= lb(i,j)
      }
      val accumH = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
         val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else_
            sr(ii, 2 - jj) * kernelH(ii,jj)
      }
      val accumV = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
         val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else_
            sr(ii, 2 - jj) * kernelV(ii,jj)
      }
      lineout(j) = abs(accumV.value) + abs(accumH.value)
   }
   Y_2D(row, 0::COLS) store lineout
}
}

It is possible to improve the performance of this algorithm using parallelization. However, we leave this as an exercise to the user or direct the user to some example apps written in the spatial-apps repository. While parallelizing every loop will speed up this algorithm, some loops will give incorrect results if parallelized while others will maintain the correct result if extra code is added to handle the edge cases appropriately.

Spatial Functions and Multifile

Sometimes complicated apps can get very cluttered inside the Accel block so you will want to break your app into multiple functions, possibly across multiple files. Now we will aim to create the following Accel block, where the method calls are defined in a separate file:

Accel {
  Conv1D(Y_1D, X_1D, H_1D, window, vec_tile) // Output DRAM, Input Data, Kernel
  Sobel2D(Y_2D, X_2D, maxcols) // Output DRAM, Input Image
}

We can write the functions used above as follows:

@virtualize
def Conv1D[T:Type:Num](output: DRAM1[T],
   input: DRAM1[T],
   filter: DRAM1[T],
   val filter_data = RegFile[T](window)
   filter_data load filter
   foreach(input.size by vec_tile){i =>
      val numel = min(vec_tile.to[Int], input.size-i)
      val x_tile = SRAM[T](vec_tile)
      val y_tile = SRAM[T](vec_tile)
      x_tile load input(i::i+numel)
   }
   val sr1D = RegFile[T](1,window)
}
Foreach (numel by 1) {j =>
  sr1D(0,*) <<= x_tile(j) // Shift new point into sr1D
  y_tile(j) = Reduce (Reg[T])(window by 1) {k =>
    data = max(i + j - k < 0, 0.to[T], sr1D(0,k)) // Handle edge case
    data * filter_data(k)
  }
}

output(i::i+numel) store y_tile
}

@virtualize
def Sobel2D[T:Type:Num] (output: DRAM2[T],
                        input: DRAM2[T],
                        maxcols: scala.Int): Unit = {
  val lb = LineBuffer[T](3, maxcols)
  val sr = RegFile[T](3, 3)
  val kernelH = LUT[T](3,3)(1.to[T], 2.to[T], 1.to[T],
                           0.to[T], 0.to[T], 0.to[T],
                           -1.to[T],-2.to[T],-1.to[T])
  val kernelV = LUT[T](3,3)(1.to[T], 0.to[T], -1.to[T],
                           2.to[T], 0.to[T], -2.to[T],
                           1.to[T], 0.to[T], -1.to[T])
  val lineout = SRAM[T](maxcols)
  Forexch (input.rows by 1) {row =>
    lb.load input(row, 0::input.cols)
    Forexch (input.cols by 1) {j =>
      Forexch (3 by 1 par 3) {i =>
        sr(i,*) <<= lb(i,j)
      }
      val accumH = Reduce (Reg[T])(0.to[T]) (3 by 1, 3 by 1) {((ii,jj) =>
        val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else_
                   sr(ii, 2 - jj)
                   img * kernelH(ii,jj)
      )
      val accumV = Reduce (Reg[T])(0.to[T]) (3 by 1, 3 by 1) {((ii,jj) =>
        val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else_
                   sr(ii, 2 - jj)
                   img * kernelV(ii,jj)
      )
      lineout(j) = abs(accumV.value) + abs(accumH.value)
    }
    output(row, 0::input.cols) store lineout
  }
}

Notice that instead of using the input arguments, ROWS, COLS, and LEN, we can use properties defined on the DRAMs directly.

You can place these functions anywhere inside of your DiffAndSobel object. If you want to place them inside of a separate file entirely, then you simply need to make the trait that contains the method definitions extend SpatialApp, and then have the next file create an object that extends the first trait:

import org.virtualized._
import spatial.dsl._

object AccelFile extends FunctionsFile {

  @virtualize
  def main() {
    Accel {
      FunctionsFile.fcn_call()
    }
  }
}

2.5. 3. Differentiator & Sobel Filter
import org.virtualized._
import spatial.dsl._

trait FunctionsFile extends SpatialApp{
  @virtualize
  def fcn_call() { /* do things */ }
}

Final Code

Below is the final code for a single-file, functionized version of the two convolutions discussed in this tutorial. See the
HelloWorld page for a refresher on how to compile and test.:  

import spatial.dsl._
import org.virtualized._

object DiffAndSobel extends SpatialApp {
  @virtualize
  def Conv1D[T:Type:Num](output: DRAM1[T],
    input: DRAM1[T],
    filter: DRAM1[T],
    val filter_data = RegFile[T](window)
    filter_data load filter
    Foreach(input.size by vec_tile){i =>
      val numel = min(vec_tile.to[Int], input.size-i)
      val x_tile = SRAM[T](vec_tile)
      val y_tile = SRAM[T](vec_tile)
      x_tile load input(i::i+numel)
      val sr1D = RegFile[T](1,window)
      Foreach(numel by 1){j =>
        sr1D(0,*) <<= x_tile(j) // Shift new point into sr1D
        y_tile(j) = Reduce(Reg[T])(window by 1){k =>
          val data = mux(i + j - k < 0, 0.to[T], sr1D(0,k)) // Handle edge case
          data * filter_data(k)
        }{_+_}
      }
      output(i::i+numel) store y_tile
    }
  }

  @virtualize
  def Sobel2D[T:Type:Num](output: DRAM2[T],
    input: DRAM2[T],
    maxcols: scala.Int): Unit = {
    val lb = LineBuffer[T](3, maxcols)
    val sr = RegFile[T](3, 3)
    val kernelH = LUT[T](3,3)(1.to[T], 2.to[T], 1.to[T],
      0.to[T], 0.to[T], 0.to[T],
      -1.to[T],-2.to[T],-1.to[T])
    val kernelV = LUT[T](3,3)(1.to[T], 0.to[T], -1.to[T],
      2.to[T], 0.to[T], -2.to[T],
      1.to[T], 0.to[T], -1.to[T])
    val lineout = SRAM[T](maxcols)
    Foreach(input.rows by 1){row =>
      lb load input(row, 0::input.cols)
    }
  }
}

2.5. 3. Differentiator & Sobel Filter
Foreach(input.cols by 1){j =>
  Foreach(3 by 1 par 3){i =>
    sr(i,*) <<= lb(i,j)
    val accumH = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
      if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T]
      else sr(ii, 2 - jj)
      img * kernelH(ii,jj)
    }
    val accumV = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
      if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T]
      else sr(ii, 2 - jj)
      img * kernelV(ii,jj)
    }
    lineout(j) = abs(accumV.value) + abs(accumH.value)
  }
  output(row, 0::input.cols) store lineout
}

@virtualize
def main() {
  type T = FixPt[TRUE,_16,_16]
  val R = args(0).to[Int]
  val C = args(1).to[Int]
  val vec_len = args(2).to[Int]
  val vec_tile = 64
  val maxcols = 128 // Required for LineBuffer
  val ROWS = ArgIn[Int]
  val COLS = ArgIn[Int]
  val LEN = ArgIn[Int]
  setArg(ROWS,R)
  setArg(COLS,C)
  setArg(LEN, vec_len)
  val window = 16
  val x_t = Array.tabulate(vec_len){i =>
    val x = i.to[T] * (4.to[T] / vec_len.to[T]).to[T] - 2
    println(" x " + x)
    -0.18.to[T] * pow(x, 4) + 0.5.to[T] * pow(x, 2) + 0.8.to[T]
  }
  val h_t = Array.tabulate(16){i => if (i < window/2) 1.to[T] else -1.to[T]
  }
  printlnArray(x_t, "x_t data:")
  val X_1D = DRAM[T](LEN)
  val H_1D = DRAM[T](window)
  val Y_1D = DRAM[T](LEN)
  setMem(X_1D, x_t)
  setMem(H_1D, h_t)
  val border = 3
  val image = (0::R, 0::C){(i,j) =>
    if (j > border && j < C-border && i > border && i < C -
    border) (i+16).to[T] else 0.to[T]
  }
  printlnMatrix(image, "image:")
  val kernelv = Array[T](1,2,1,0,0,0,-1,-2,-1)
  val kernelh = Array[T](1,0,-1,2,0,-2,1,0,-1)
  val X_2D = DRAM[T](ROWS, COLS)
  val Y_2D = DRAM[T](ROWS, COLS)
  setMem(X_2D, image)
  Accel{
    Conv1D(Y_1D, X_1D, H_1D)
    Sobel2D(Y_2D, X_2D)
  }
  val Y_1D_result = getMem(Y_1D)
4. Needleman-Wunsch (NW)

Catalog of Features

In this section, you will learn about the following components in Spatial:

- FSM
- Branching
- FIFO
- Systolic Arrays
- File IO and text management

Application Overview

The Needleman-Wunsch algorithm is an algorithm used in bioinformatics to align protein or nucleotide sequences. It builds a scoring matrix based on two strings, and then backtraces through the score matrix to determine the alignment of minimum error. For more information on the algorithm’s history and implementations, visit the Wikipedia page (https://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm). The image below (credit Wikipedia) demonstrates a rough overview of how the algorithm works.
Data Setup and Validation

In this algorithm, we will assume that a domain-expert keeps data files of DNA sequences, seqA.txt and seqB.txt. We will create an app that will read whatever text is in these files, pass it to the FPGA, return with the best alignment between the two, and print out the result back into files called alignedA.txt and alignedB.txt. In order to test if our alignments are “correct,” we will aim to have less than 10% of the entries be in error.:
Score Matrix Population

In this first section, we will make a forward pass to fill out the score matrix. In this algorithm, we need to embed two pieces of information in each matrix entry: the score at that entry and the direction to travel to achieve that score (N, W, or NW). We will start by defining a new struct that can contain this tuple up above our main():

```scala
@struct case class nw_tuple(score: Int16, ptr: Int16)
```

As we traverse the score matrix, we check the left, top, and top-left entries, add a score update, and check which path gives us the maximum score for that entry. To determine the additional score when coming from the top-left, we check if the letter at the top of the column (from string A) matches the letter from the left of the row (from string B). If there is a match, then this path is rewarded with an addition of 1. If they do not match, then we penalize this path with a score of -1. We then look at the cost when coming from the left and from the top. These transitions correspond to skipping an entry in B and skipping an entry in A, respectively, and we penalize them as they do not correspond to string matches. This transition is called a “gap.” Let’s now assign vals to keep track of these properties:

```scala
val SKIPB = 0 // move left
val SKIPA = 1 // move up
val ALIGN = 2 // move diagonal
val MATCH_SCORE = 1
val MISMATCH_SCORE = -1
val GAP_SCORE = -1
```
Now, we can write the code that will traverse the matrix from top-left to bottom-right and update each entry of the score matrix. Note that along the left edge and the top edge of the score matrix, we initialize the scores by -1 each for each hop away from the top left corner. Then, for each entry, we first compute if there is a match between the elements in string A and string B. We then proceed to compute the from_left, from_top, and from_diag updates based on these values and choose the smallest of them. When getting this result, we keep the tuple that consists of both the new score and the path taken to achieve this new score. Finally, we update the score matrix so that this new value is available for the next update:

```java
Accel{
val seqa_sram_raw = SRAM[Int8](max_length)
val seqb_sram_raw = SRAM[Int8](max_length)

seqa_sram_raw.load(seqA(0::LEN))
seqb_sram_raw.load(seqB(0::LEN))

val score_matrix = SRAM[nw_tuple](max_length+1, max_length+1)

Foreach(LEN:1 by 1){ r =>
 Sequential.Foreach(0 until LEN:1 by 1) { c =>
 val previous_result = Reg[nw_tuple]
 val update = if (r == 0) (nw_tuple(-c.as[Int16], 0)) else if (c == 0) (nw_tuple(-r, _)) else { val match_score = mux(seqa_sram_raw(c-1) == seqb_sram_raw(r-1), MATCH_SCORE.to[Int16], _)
 val from_top = score_matrix(r-1, c).score + GAP_SCORE
 val from_left = previous_result.score + GAP_SCORE
 val from_diag = score_matrix(r-1, c-1).score + match_score
 mux(from_left >= from_top && from_left >= from_diag, nw_tuple(from_left, SKIPB), _)
 mux(from_top >= from_diag, nw_tuple(from_top, SKIPA), nw_tuple(from_diag, ALIGN))
 }
 previous_result := update
 if (c >= 0) {score_matrix(r,c) = update}
 }
}
While it is possible to parallelize the row updates in this algorithm, it is a little tricky because you should not update any entry until you have all of its three adjacent source entries. See (TODO: link to spatial-apps) for an example on how to safely parallelize across rows.

Score Matrix Traceback

Now we can traverse the score matrix, starting from the bottom right. We will use a FIFO to store the aligned result, and a finite state machine (FSM) to handle the back trace and complete when the FIFOs are filled. The state in the FSM starts at 0, which we use for the state to trace back through the matrix. When we either hit the top edge or the left edge of the score matrix, we jump to state 1 which is used to pad both of the FIFOs until they fill up. Once the FSM detects that they are full, it exits and the results are stored to DRAM. The branch conditions in this FSM demonstrate how we can use if/then/else to arbitrarily execute parts of the hardware.:

```java
val traverseState = 0
val padBothState = 1
val doneState = 2

val seqa_fifo_aligned = FIFO[Int8](max_length*2)
val seqb_fifo_aligned = FIFO[Int8](max_length*2)
val b_addr = Reg[Int](0)
val a_addr = Reg[Int](0)
b_addr := LEN
a_addr := LEN
val done_backtrack = Reg[Bit](false)

FSM[Int](state => state != 2) {
  if (state == traverseState) {
    seqa_fifo_aligned.load(seqa_sram_raw.load(a_addr))
    seqb_fifo_aligned.load(seqb_sram_raw.load(b_addr))
    b_addr := b_addr - 1
    a_addr := a_addr - 1
    done_backtrack := false
  } else if (state == padBothState) {
    seqa_fifo_aligned.load(seqa_sram_raw.load(a_addr))
    seqb_fifo_aligned.load(seqb_sram_raw.load(b_addr))
    done_backtrack := true
  } else if (state == doneState) {
    done_backtrack := false
  }
}
```
if (score_matrix(b_addr,a_addr).ptr == ALIGN.to[Int16]) {
 seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
 seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)
 done_backtrack := b_addr == 1.to[Int] || a_addr == 1.to[Int]
 b_addr := 1
 a_addr := 1
} else if (score_matrix(b_addr,a_addr).ptr == SKIPA.to[Int16]) {
 seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)
 seqa_fifo_aligned.enq(dash, !done_backtrack)
 done_backtrack := b_addr == 1.to[Int]
 b_addr := 1
} else {
 seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
 seqb_fifo_aligned.enq(dash, !done_backtrack)
 done_backtrack := a_addr == 1.to[Int]
 a_addr := 1
}
} else if (state == padBothState) {
 seqa_fifo_aligned.enq(underscore, !seqa_fifo_aligned.full)
 seqb_fifo_aligned.enq(underscore, !seqb_fifo_aligned.full)
} else {
 state =>
 mux(state == traverseState && ((b_addr == 0.to[Int]) || (a_addr == 0.to[Int])), padBothState,
 mux(seqa_fifo_aligned.full || seqb_fifo_aligned.full, doneState, state))
}

seqA_aligned(0::LEN2x) store seqa_fifo_aligned
seqB_aligned(0::LEN2x) store seqb_fifo_aligned

Generally, an FSM is a hardware version of a while loop. It allows you to arbitrarily branch between control structures and selectively execute code until some breaking state condition is reached.

Final Code

Here is the final code for this version of NW:

```scala
import spatial.dsl._
import org.virtualized._

object NW extends SpatialApp {
    @struct case class nw_tuple(score: Int16, ptr: Int16)

    @virtualize
    def main() {
        val SKIPB = 0 // move left
        val SKIPA = 1 // move up
        val ALIGN = 2 // move diagonal
        val MATCH_SCORE = 1
        val MISMATCH_SCORE = -1
        val GAP_SCORE = -1

        val seqA_text = loadCSV1D[MString](`/home/ChrisWunsch/seqA.txt`, ` `).apply(0) // Loads into array with 1 string
        val seqB_text = loadCSV1D[MString](`/home/ChrisWunsch/seqB.txt`, ` `).apply(0) // Loads into array with 1 string

        println("Aligning "+ seqA_text + " and ")
        println(" + seqB_text"

        val seqA_data = argon.lang.String.string2num(seqA_text) // Returns array of Int8
        val seqB_data = argon.lang.String.string2num(seqB_text) // Returns array of Int8

        val seq_length = seqA_data.length
        val LEN = ArgIn[Int]
        val LEN2x = ArgIn[Int]
```
setArg(LEN, seq_length)
setArg(LEN2x, seq_length*2)
val seqA = DRAM[Int8](LEN)
val seqB = DRAM[Int8](LEN)
setMem(seqA, seqA_data)
setMem(seqB, seqB_data)
val seqA_aligned = DRAM[Int8](LEN)
val seqB_aligned = DRAM[Int8](LEN2x)

val max_length = 256
val d = argon.lang.String.char2num("-")
val dash = ArgIn[Int8]
setArg(dash, d)
val u = argon.lang.String.char2num("_")
val underscore = ArgIn[Int8]
setArg(underscore, u)

Accel{
val seqa_sram_raw = SRAM[Int8](max_length)
val seqb_sram_raw = SRAM[Int8](max_length)
seqa_sram_raw load seqA(0::LEN)
seqb_sram_raw load seqB(0::LEN)

val score_matrix = SRAM[nw_tuple](max_length+1, max_length+1)
Foreach(LEN+1 by 1){ r =>
 Sequential.Foreach(0 until LEN+1 by 1) { c =>
 val previous_result = Reg[nw_tuple]
 val update = if (r == 0) (nw_tuple(-c.as[Int16], 0))
 else if (c == 0) (nw_tuple(-r, ...
 as[Int16], 1))
 else {
 val match_score = mux(seqa_sram_raw(c-1) == seqb_sram_raw(r-1), MATCH_SCORE,
 mismatch_score = seqb_sram_raw(r-1) == seqb_sram_raw(r-1), MATCH_SCORE,
 match_score = score_matrix(r, c).score + GAP_SCORE
 }
 }previous_result := update
 if (c >= 0) {score_matrix(r,c) = update}
 }
}
val traverseState = 0
val padBothState = 1
val doneState = 2
val seqa_fifo_aligned = FIFO[Int8](max_length*2)
val seqb_fifo_aligned = FIFO[Int8](max_length*2)
val a_addr = Reg[Int](0)
val b_addr := LEN
val done_backtrack = Reg[Bit](false)
FSM[Int](state => state != 2) { state =>
if (state == traverseState) {
 if (score_matrix(b_addr, a_addr).ptr == ALIGN.to[Int16]) {
 seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
 seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)
 done_backtrack := b_addr := a_addr := 1
 } else if (score_matrix(b_addr, a_addr).ptr == SKIPA.to[Int16]) {
 seqb_fifo_aligned.enq(dash, !done_backtrack)
 }
}

2.6. 4. Needleman-Wunsch (NW)
5. Design Space Exploration with Spatial

Coming Soon!

- David
This section gives some simple annotated applications for learning Spatial by example.

Please visit the latest regression branch of the spatial-apps repository: https://github.com/stanford-ppl/spatial-apps/tree/regression
CHAPTER 4

Theory

This section provides a developer’s introduction to the Spatial compiler to help you develop or modify the language. General users of the language can just look at the tutorial

Introduction

A Spatial program describes a dataflow graph consisting of various kinds of nodes connected to each other by data dependencies. Each node in a Spatial program corresponds to a architectural template. Spatial is represented in-memory as a parameterized, hierarchical dataflow graph.

Templates in Spatial capture parallelism, locality, and access pattern information at multiple levels. This dramatically simplifies coarse-grained pipelining and enables us to explicitly capture and represent a large space of designs which other tools cannot capture. Every template is parameterized. A specific hardware design point is instantiated from a Spatial description by instantiating all the templates in the design with concrete parameter values passed to the program. Spatial heavily uses metaprogramming, so these values are passed in as arguments to the Spatial program. The generated design instance is represented internally as a graph that can be analyzed to provide estimates of metrics such as area and cycle count. The parameters used to create the design instance can be automatically generated by a design space exploration tool.

(More to come)
Simulation

Why does my Scala result not match my RTL simulation result?

This is generally due to loop-carry dependency, pipelining, or parallelization issues. The best way to rule out these is to turn off all pipelining and parallelizations and check if the result is correct. If you have tried this and the results still do not match, it is possible you have exposed a compiler bug and should post to the Spatial users google group.

Why does my Scala result have a bunch of numbers with X’s in them?

This means that this particular value was computed using uninitialized numbers at some point in its history.

Language

Why does Spatial use type classes rather than inheritance for things like Bits and Num?

While inheritance and type classes have many of the same properties, type classes are somewhat more flexible in that they allow simple conditional rules. Spatial views the idea that a type can be represented by a fixed set of Bits as a conditional property, rather than a superclass. Spatial uses type classes because this conditional attribution is not possible with normal inheritance.

For example, with the Tuple2[A,B] type, Spatial can conditionally determine if an instance of this type is representable by a fixed set of Bits based on the types A and B. If A and B both have the Bits property, then that particular instance will as well.

The downside of this is that type classes are based on type information only, not on the instance. This means, for example, that the VectorN type does not implicitly have evidence of being representable by Bits, even though every instance of that class will include a fixed width.

Why does Spatial include the VectorN type?

Unlike C++, Scala does not support template classes which are parameterized by integer values. This means that, for methods where the number of elements in the resulting Vector depends on an argument to
that method, the resulting type of the method cannot be written statically in Scala. However, this width is still statically analyzable. As a workaround, Spatial uses the VectorN type to denote a Vector which needs static analysis of its width.

If you could not find the answer to your question here, head over to the google group.

More to be added...
Spatial is currently being developed in Professor Olukotun’s group as part of the Stanford DAWN project. Questions and issues can be directed either to the Spatial users google group or directly as an issue on the Spatial github.