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CHAPTER 1

Introduction

Sparse-plex is a MATLAB library for solving sparse representation problems.

Currently the library is broken as it is going through massive changes. Will update later.

The library website is : http://indigits.github.io/sparse-plex/.

Online documentation is hosted at: http://sparse-plex.readthedocs.org/en/latest/.

The project is hosted on GITHUB at: https://github.com/indigits/sparse-plex.

It contains implementations of many state of the art algorithms. Some implementations are simple and straight-forward
while some have taken extra efforts to optimize the speed.

In addition to these, the library provides implementations of many other algorithms which are building blocks for the
sparse recovery algorithms.

The library aims to solve:

• Single vector sparse recovery or sparse approximation problems

• Multiple vector joint sparse recovery or sparse approximation problems

The library provides

• Various simple dictionaries and sensing matrices

• Implementations of pursuit algorithms

– Matching pursuit

– Orthogonal matching pursuit

– Compressive sampling matching pursuit

– Basis pursuit

• Some joint recovery algorithms

– Cluster orthogonal matching pursuit

• Some clustering algorithms

3
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– Spectral clustering

– Sparse subspace clustering using l_1 minimization

– Sparse subspace clustering using orthogonal matching pursuit

• Various utilities for working with matrices, signals, norms, distances, signal comparison, vector spaces

• Some visualization utilities

• Some combinatoric systems

• Various constructions for synthetic sparse signals

• Some optimization algorithms

– steepest descent

– conjugate gradient descent

• Detection and estimation algorithms

– Compressive binary detector

The documentation contains several how-to-do tutorials. They are meant to help beginners in the area ramp up quickly.
The documentation is not really a user manual. It doesn’t describe all parameters and behavior of a function in detail.
Rather, it provides various code examples to explain how things work. Users are requested to read through the source
code and relevant papers to get a deeper understanding of the methods.

4 Chapter 1. Introduction



CHAPTER 2

Getting Started

2.1 Requirements

While much of the library can be used on stock MATLAB distribution with standard toolboxes, some parts of the
library are dependent on some specific third party libraries. These dependencies are explained below.

MATLAB toolboxes

• Signal processing toolbox

• Image processing toolbox

• Statistics toolbox

• Optimization toolbox

Third party library dependencies

• CVX http://cvxr.com/cvx/

• LRS library https://github.com/andrewssobral/lrslibrary

• Wavelab http://statweb.stanford.edu/~wavelab/

•

We repeat that only some parts of the library and examples depend on the third party libraries. You can install them
on need basis. You don’t need to install them in advance.

2.2 Installation

• Download sparse-plex library from http://indigits.github.io/sparse-plex/.

• Unzip it in a suitable folder.

• Add following commands to your MATLAB startup script:

– Change directory to the root directory of sparse-plex.

5
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– Run spx_setup function.

– Change back to whatever directory you want to be in.

Note: Make sure that MATLAB has write permissions to the directory in which you install sparse-plex. Some
functions in sparse-plex create some MAT files for caching of intermediate results. Moreover, the sparse-plex setup
script also creates a local settings file. For creating these files, write access is needed.

2.3 Getting acquainted

The online library documentation includes a number of step-by-step demonstrations. Follow these tutorials to get
familiar with the library.

2.4 Running examples

• Change directory to the root directory of sparse-plex.

• Go into examples directory.

• Browse the examples.

• Run the example you want.

2.5 Checking the source code

• Change directory to the root directory of sparse-plex.

• Go into library directory.

• Browse the source code.

– The source code for spx library is maintained in +spx directory.

– Unit-tests for the library are maintained in tests directory.

2.6 Verifying the installation

You will require MATLAB XUnit test framework to run the unit tests included with the library.

• Change directory to the root directory of sparse-plex.

• Move to the directory library\\tests.

• Execute the runalltests.m script.

• Verify that all unit tests pass.

6 Chapter 2. Getting Started
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2.7 Configuring test data directories

Several examples in sparse-plex are developed on top of standard data sets. These include (but not limited to):

• Standard test images

• Yale Extended B Faces database (cropped images)

In order to execute these examples, access to the data is needed. The data is not distributed along with this software.
You can download data and store it on your computer wherever you wish. In order to provide access to this data, you
need to tell sparse-plex where does the data lie. This can be done by changing spx_local.ini file. When you
download and unzip the library, this file doesn’t exist. When you run spx_setup, spx_defaults.ini is copied
into spx_local.ini.

All you need to do is to point to the right directories which hold the test datasets.

Specific settings in spx_local.ini are:

• standard_test_images_dir

• yale_faces_db_dir

For more information, read the file.

2.8 Building documentation

Only if you really want to do it!

You will require Python Sphinx and other related packages like Pygments library etc. to build the documentation from
scratch.

• Change directory to the root directory of sparse-plex.

• Go into docs directory.

• Build the documentation using Sphinx tool chain.

2.7. Configuring test data directories 7
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CHAPTER 3

Demos

3.1 Dirac DCT Tutorial

This tutorial is based on examples\\ex_dirac_dct_two_ortho_basis.m.

In this tutorial we will:

• Construct a DCT basis

• Construct a Dirac-DCT dictionary.

• Construct a signal which is a mixture of few impulses and a few sinusoids.

• Construct its representation in the DCT basis.

• Recover its representation in Dirac-DCT dictionary using following sparse recovery algorithms

– Matching Pursuit

– Orthogonal Matching Pursuit

– Basis Pursuit

• Measure the recovery error for different sparse recovery algorithms.

Signal space dimension:

N = 256;

Dirac basis:

I = eye(N);

DCT basis:

Psi = dctmtx(N)';

Visualizing the DCT basis:

9
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imagesc(Psi) ;
colormap(gray);
colorbar;
axis image;
title('\Psi');

Combining the Dirac and DCT orthonormal bases to form a two-ortho dictionary:

Phi = [I Psi];

Visualizing the dictionary:

imagesc(Phi) ;
colormap(gray);
colorbar;
axis image;
title('\Phi');
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Constructing a signal which is a combination of impulses and cosines:

alpha = zeros(2*N, 1);
alpha(20) = 1;
alpha(30) = -.4;
alpha(100) = .6;
alpha(N + 4) = 1.2;
alpha(N + 58) = -.8;
x = Phi * alpha;
K = 5;

3.1. Dirac DCT Tutorial 11
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Finding the representation in DCT basis:

x_dct = Psi' * x;

12 Chapter 3. Demos
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Sparse representation in the Dirac DCT dictionary

3.1. Dirac DCT Tutorial 13
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Obtaining the sparse representation using matching pursuit algorithm:

solver = spx.pursuit.single.MatchingPursuit(Phi, K);
result = solver.solve(x);
mp_solution = result.z;
mp_diff = alpha - mp_solution;
% Recovery error
mp_recovery_error = norm(mp_diff) / norm(x);
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Matching pursuit recovery error: 0.0353.

Obtaining the sparse representation using orthogonal matching pursuit algorithm:

solver = spx.pursuit.single.OrthogonalMatchingPursuit(Phi, K);
result = solver.solve(x);
omp_solution = result.z;
omp_diff = alpha - omp_solution;
% Recovery error
omp_recovery_error = norm(omp_diff) / norm(x);

3.1. Dirac DCT Tutorial 15
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Orthogonal Matching pursuit recovery error: 0.0000.

Obtaining a sparse approximation via basis pursuit:

solver = spx.pursuit.single.BasisPursuit(Phi, x);
result = solver.solve_l1_noise();
l1_solution = result;
l1_diff = alpha - l1_solution;
% Recovery error
l1_recovery_error = norm(l1_diff) / norm(x);

16 Chapter 3. Demos
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l_1 recovery error: 0.0010.

3.2 Basic CS Tutorial

This tutorial is based on examples\\ex_simple_compressed_sensing_demo.m.

In this tutorial we will:

• Create sparse signals (with Gaussian and bi-uniform distributed non-zero samples).

• Look at how to identify support of a signal.

• Construct a Gaussian sensing matrix.

• Visualize the sensing matrix.

• Compute random measurements on the sparse signal with the sensing matrix.

• Add measurement noise to the measurements.

• Recover the sparse vector using following sparse recovery algorithms

– Matching Pursuit

– Orthogonal Matching Pursuit

– Basis Pursuit

3.2. Basic CS Tutorial 17
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• Measure the recovery error for different sparse recovery algorithms.

Basic setup:

% Signal space
N = 1000;
% Number of measurements
M = 200;
% Sparsity level
K = 8;

Choosing the support randomly:

Omega = randperm(N, K);

Constructing a sparse vector with Gaussian entries:

% Initializing a zero vector
x = zeros(N, 1);
% Filling it with non-zero Gaussian entries at specified support
x(Omega) = 4 * randn(K, 1);

Constructing a bi-uniform sparse vector:

a = 1;
b = 2;
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% unsigned magnitudes of non-zero entries
xm = a + (b-a).*rand(K, 1);
% Generate sign for non-zero entries randomly
sgn = sign(randn(K, 1));
% Combine sign and magnitude
x(Omega) = sgn .* xm;

Identifying support:

find(x ~= 0)'
% 98 127 277 544 630 815 905 911

Constructing a Gaussian sensing matrix:

Phi = randn(M, N);
% Make sure that variance is 1/sqrt(M)
Phi = Phi ./ sqrt(M);

Computing norm of each column:

column_norms = sqrt(sum(Phi .* conj(Phi)));

Norm histogram

3.2. Basic CS Tutorial 19
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Constructing a Gaussian dictionary with normalized columns:

for i=1:N
v = column_norms(i);
% Scale it down
Phi(:, i) = Phi(:, i) / v;

end

Visualizing the sensing matrix:

imagesc(Phi) ;
colormap(gray);
colorbar;
axis image;
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Making random measurements from sparse high dimensional vector:

y0 = Phi * x;

3.2. Basic CS Tutorial 21
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Adding some measurement noise:

SNR = 15;
snr = db2pow(SNR);
noise = randn(M, 1);
% we treat each column as a separate data vector
signalNorm = norm(y0);
noiseNorm = norm(noise);
actualNormRatio = signalNorm / noiseNorm;
requiredNormRatio = sqrt(snr);
gain_factor = actualNormRatio / requiredNormRatio;
noise = gain_factor .* noise;

Measurement vector with noise:

y = y0 + noise;

22 Chapter 3. Demos
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Sparse recovery using matching pursuit:

solver = spx.pursuit.single.MatchingPursuit(Phi, K);
result = solver.solve(y);
mp_solution = result.z;

Recovery error:

mp_diff = x - mp_solution;
mp_recovery_error = norm(mp_diff) / norm(x);

3.2. Basic CS Tutorial 23
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Matching pursuit recovery error: 0.1612.

Sparse recovery using orthogonal matching pursuit:

solver = spx.pursuit.single.OrthogonalMatchingPursuit(Phi, K);
result = solver.solve(y);
omp_solution = result.z;
omp_diff = x - omp_solution;
omp_recovery_error = norm(omp_diff) / norm(x);
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Orthogonal Matching pursuit recovery error: 0.0301.

Sparse recovery using l_1 minimization:

solver = spx.pursuit.single.BasisPursuit(Phi, y);
result = solver.solve_l1_noise();
l1_solution = result;
l1_diff = x - l1_solution;
l1_recovery_error = norm(l1_diff) / norm(x);

3.2. Basic CS Tutorial 25
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l_1 recovery error: 0.1764.
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CHAPTER 4

Library Classes

Contents:

4.1 Sparse recovery pursuit algorithms

Contents:

4.1.1 Matching pursuit

Constructing the solver with dictionary and expected sparsity level:

solver = spx.pursuit.single.MatchingPursuit(Dict, K)

Using the solver to obtain the sparse representation of one vector:

result = solver.solve(y)

Using the solver to obtain the sparse representations of all vectors in the signal matrix Y independently:

result = solver.solve_all(Y)

4.1.2 Orthogonal matching pursuit

Constructing the solver with dictionary and expected sparsity level:

solver = spx.pursuit.single.OrthogonalMatchingPursuit(Dict, K)

Using the solver to obtain the sparse representation of one vector:

result = solver.solve(y)

27
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There are several ways of solving the least squares problem which is an intermediate step in the orthogonal matching
pursuit algorithm. Some of these are described below.

Using the solver to obtain the sparse representation of one vector with incremental QR decomposition of the subdic-
tionary for the least squares step:

result = solver.solve_qr(y)

Using the solver to obtain the sparse representations of all vectors in the signal matrix Y independently:

result = solver.solve_all(Y)

Using the solver to obtain the sparse representations of all vectors in the signal matrix Y independently using the
linsolve method for least squares:

result = solver.solve_all_linsolve(Y)

4.1.3 Basis pursuit and its variations

Basis pursuit is a way of solving the sparse recovery problem via ℓ1 minimization. We provide multiple implementa-
tions for different variations of the problem.

Note: These algorithms are dependent on the CVX toolbox. Please make sure to install them before using the
algorithms.

Constructing the solver with dictionary and set of signals to be solved arranged in a signal matrix:

solver = spx.pursuit.single.BasisPursuit(Dict, Y)

Solving using LASSO method:

result = solver.solve_lasso(lambda)
result = solver.solve_lasso()

Solving using ℓ1 minimization assuming that signals are exact sparse:

result = solver.solve_l1_exact()

Solving using ℓ1 minimization assuming that signals are noisy:

result = solver.solve_l1_noise()

4.1.4 Compressive sampling matching pursuit

Constructing the solver with dictionary and expected sparsity level:

solver = spx.pursuit.single.CoSaMP(Dict, K)

Using the solver to obtain the sparse representation of one vector:

result = solver.solve(y)

Using the solver to obtain the sparse representations of all vectors in the signal matrix Y independently:

28 Chapter 4. Library Classes
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result = solver.solve_all(Y)

4.1.5 Joint recovery algorithms

Cluster orthogonal matching pursuit

Warning: This is new algorithm under research.

solver = spx.pursuit.joint.ClusterOMP(Dict, K)
result = solver.solve(Y)

Subspace clustering matching pursuit

Warning: This is new algorithm under research.

solver = SPX_SCluMP(Phi, K, options)
solver.recover(Y)
solver.cluster(Y)

4.1.6 Introduction

This section focuses on methods which solve the sparse recovery or sparse approximation problems for one vector at
a time. A subsection on joint recovery algorithms focuses on solving problems where multiple vectors which have
largely common supports can be solved jointly.

For each algorithm, there is a solver. The solver should be constructed first with the dictionary / sensing matrix and
some other parameters like sparsity level as needed by the algorithm.

The solver can then be used for solving one problem at a time.

4.2 Common utilities

Contents:

4.2.1 Signals

Our focus is usually on finite dimensional signals. Such signals are usually stored as column vectors in MATLAB. A
set of signals with same dimensions can be stored together in the form of a matrix where each column of the matrix is
one signal. Such a matrix of signals is called a signal matrix.

In this section we describe some helper utility functions which provide extra functionality on top of existing support
in MATLAB.

4.2. Common utilities 29
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General

Constructing unit (column) vector in a given co-ordinate:

>> N = 8; i = 2;
>> spx.commons.vector.unit_vector(N, i)'
0 1 0 0 0 0 0 0

Sparsification

Finding the K-largest indices of a given signal:

>> x = [0 0 0 1 0 0 -1 0 0 -2 0 0 -3 0 0 7 0 0 4 0 0 -6];
>> K=4;
>> spx.commons.signals.largest_indices(x, K)'
16 22 19 13

Constructing the sparse approximation of x with K largest indices:

>> spx.commons.signals.sparseApproximation(x, K)'
0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0
→˓ 7 0 0 4 0 0 -6

Searching

spx.commons.signals.find_first_signal_with_energy_le finds the first signal in a signal matrix
X with an energy less than or equal to a given threshold energy:

[x, i] = spx.commons.signals.find_first_signal_with_energy_le(X, threshold);

x is the first signal with energy less than the given threshold. i is the index of the column in X holding this signal.

4.2.2 Working with matrices

Simple checks on matrices

Let us create a simple matrix:

A = magic(3);

Checking whether the matrix is a square matrix:

spx.commons.matrix.is_square(A)

Checking if it is symmetric:

spx.commons.matrix.is_symmetric(A)

Checking if it is a Hermitian matrix:

spx.commons.matrix.is_hermitian(A)

Checking if it is a positive definite matrix:
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spx.commons.matrix.is_positive_definite(A)

Matrix utilities

spx.commons.matrix.off_diagonal_elements returns the off-diagonal elements of a given matrix in a
column vector arranged in column major order.

A = magic(3);
spx.commons.matrix.off_diagonal_elements(A)'
ans =

3 4 1 9 6 7

spx.commons.matrix.off_diagonal_matrix zeros out the diagonal entries of a matrix and returns the
modified matrix:

spx.commons.matrix.off_diagonal_matrix(A)
ans =

0 1 6
3 0 7
4 9 0

spx.commons.matrix.off_diag_upper_tri_matrix returns the off diagonal part of the upper triangular
part of a given matrix and zeros out the remaining entries:

spx.commons.matrix.off_diag_upper_tri_matrix(A)

ans =

0 1 6
0 0 7
0 0 0

spx.commons.matrix.off_diag_upper_tri_elements returns the elements in the off diagonal part of
the upper triangular part of a matrix arranged in column major order:

spx.commons.matrix.off_diag_upper_tri_elements(A)'

ans =

1 6 7

spx.commons.matrix.nonzero_density returns the ratio of total number of non-zero elements in a matrix
with the size of the matrix:

spx.commons.matrix.nonzero_density(A)
ans = 1

diagonally dominant matrices

Checking whether a matrix is diagonally dominant:

spx.commons.matrix.is_diagonally_dominant(A)

4.2. Common utilities 31
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Making a matrix diagonally dominant:

A = spx.commons.matrix.make_diagonally_dominant(A)

Both these functions have an extra parameter named strict. When set to true, strict diagonal dominance is consid-
ered / enforced.

4.2.3 Norms and distances

Distance measurement utilities

Let X be a matrix. Treat each column of X as a signal.

Euclidean distance between each signal pair can be computed by:

spx.commons.distance.pairwise_distances(X)

If X contains N signals, then the result is an N x N matrix whose (i, j)-th entry contains the distance between i-th and
j-th signal. Naturally, the diagonal elements are all zero.

An additional second argument can be provided to specify the distance measure to be used. See the documentation of
MATLAB pdist function for supported distance functions.

For example, for measuring city-block distance between each pair of signals, use:

spx.commons.distance.pairwise_distances(X, 'cityblock')

Following dedicated functions are faster.

Squared ℓ2 distances between all pairs of columns of X:

spx.commons.distance.sqrd_l2_distances_cw(X)

Squared ℓ2 distances between all pairs of rows of X:

spx.commons.distance.sqrd_l2_distances_rw(X)

Norm utilities

These functions help in computing norm or normalizing signals in a signal matrix.

Compute ℓ1 norm of each column vector:

spx.norm.norms_l1_cw(X)

Compute ℓ2 norm of each column vector:

spx.norm.norms_l2_cw(X)

Compute ℓ∞ norm of each column vector:

spx.norm.norms_linf_cw(X)

Normalize each column vector w.r.t. ℓ1 norm:

spx.norm.normalize_l1(X)
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Normalize each column vector w.r.t. ℓ2 norm:

spx.norm.normalize_l2(X)

Normalize each row vector w.r.t. ℓ2 norm:

spx.norm.normalize_l2_rw(X)

Normalize each column vector w.r.t. ℓ∞ norm:

spx.norm.normalize_linf(X)

Scale each column vector by a separate factor:

spx.norm.scale_columns(X, factors)

Scale each row vector by a separate factor:

spx.norm.scale_rows(X, factors)

Compute the inner product of each column vector in A with each column vector in B:

spx.norm.inner_product_cw(A, B)

4.2.4 Sparse signals

Working with signal support

Let’s create a sparse vector:

>> x = [0 0 0 1 0 0 -1 0 0 -2 0 0 -3 0 0 7 0 0 4 0 0 -6];

Sparse support for a vector:

>> spx.commons.sparse.support(x)
4 7 10 13 16 19 22

ℓ0 “norm” of a vector:

>> spx.commons.sparse.l0norm(x)
7

Let us create one more signal:

>> y = [3 0 0 0 0 0 0 0 0 4 0 0 -6 0 0 -5 0 0 -4 0 8 0];
>> spx.commons.sparse.l0norm(y)
6
>> spx.commons.sparse.support(y)
1 10 13 16 19 21

Support intersection ratio:

>> spx.commons.sparse.support_intersection_ratio(x, y)
0.1364
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It is the ratio between the size of common indices in the supports of x and y and maximum of the sizes of supports of
x and y.

Average support similarity of a reference signal with a set of signals X (each signal as a column vector):

spx.commons.sparse.support_similarity(X, reference)

Support similarities between two sets of signals (pairwise):

spx.commons.sparse.support_similarities(X, Y)

Support detection ratios

spx.commons.sparse.support_detection_rate(X, trueSupport)

K largest indices over a set of vectors:

spx.commons.sparse.dominant_support_merged(data, K)

Sometimes it’s useful to identify and arrange the non-zero entries in a signal in descending order of their magnitude:

>> spx.commons.sparse.sorted_non_zero_elements(x)
16 22 19 13 10 4 7
7 -6 4 -3 -2 1 -1

Given a signal x, the function spx.commons.sparse.sorted_non_zero_elements returns a two row ma-
trix where the first row contains the locations of non-zero elements sorted by their magnitude and second row contains
their magnitude. If the magnitude of two non-zero elements is same, then the original order is maintained. The sorting
is stable.

4.2.5 Comparing signals

Comparing sparse or approximately sparse signals

spx.commons.SparseSignalsComparison class provides a number of methods to compare two sets of sparse
signals. It is typically used to compare a set of original sparse signals with corresponding recovered sparse signals.

Let us create two signals of size (N=256) with sparsity level (K=4) with the non-zero entries having magnitude chosen
uniformly between [1,2]:

N = 256;
K = 4;
% Constructing a sparse vector
% Choosing the support randomly
Omega = randperm(N, K);
% Number of signals
S = 2;
% Original signals
X = zeros(N, S);
% Choosing non-zero values uniformly between (-b, -a) and (a, b)
a = 1;
b = 2;
% unsigned magnitudes of non-zero entries
XM = a + (b-a).*rand(K, S);
% Generate sign for non-zero entries randomly
sgn = sign(randn(K, S));
% Combine sign and magnitude
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XMS = sgn .* XM;
% Place at the right non-zero locations
X(Omega, :) = XMS;

Let us create a noisy version of these signals with noise only in the non-zero entries at 15 dB of SNR:

% Creating noise using helper function
SNR = 15;
Noise = spx.data.noise.Basic.createNoise(XMS, SNR);
Y = X;
Y(Omega, :) = Y(Omega, :) + Noise;

Let us create an instance of sparse signal comparison class:

cs = spx.commons.SparseSignalsComparison(X, Y, K);

Norms of difference signals [X - Y]:

cs.difference_norms()

Norms of original signals [X]:

cs.reference_norms()

Norms of estimated signals [Y]:

cs.estimate_norms()

Ratios between signal error norms and original signal norms:

cs.error_to_signal_norms()

SNR for each signal:

cs.signal_to_noise_ratios()

In case the signals X and Y were not truly sparse, then spx.commons.SignalsComparison has the ability to
sparsify them by choosing the K largest (magnitude) entries for each signal in reference signal set and estimated signal
set. K is an input parameter taken by the class.

We can access the sparsified reference signals:

cs.sparse_references()

We can access the sparsified estimated signals:

cs.sparse_estimates()

We can also examine the support index set for each sparsified reference signal:

cs.reference_sparse_supports()

Ditto for the supports of sparsified estimated signals:

cs.estimate_sparse_supports()

We can measure the support similarity ratio for each signal
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cs.support_similarity_ratios()

We can find out which of the signals have a support similarity above a specified threshold:

cs.has_matching_supports(1.0)

Overall analysis can be easily summarized and printed for each signal:

cs.summarize()

Here is the output

Signal dimension: 256
Number of signals: 2
Combined reference norm: 4.56207362
Combined estimate norm: 4.80070407
Combined difference norm: 0.81126416
Combined SNR: 15.0000 dB
Specified sparsity level: 4

Signal: 1
Reference norm: 2.81008750
Estimate norm: 2.91691022
Error norm: 0.49971207
SNR: 15.0000 dB
Support similarity ratio: 1.00

Signal: 2
Reference norm: 3.59387311
Estimate norm: 3.81292464
Error norm: 0.63909106
SNR: 15.0000 dB
Support similarity ratio: 1.00

Signal space comparison

For comparing signals which are not sparse, we have another helper utility class spx.commons.
SignalsComparison.

Assuming X is a signal matrix (with each column treated as a signal), and Y is its noisy version, we created the signal
comparison instance as:

cs = spx.commons.SignalsComparison(X, Y);

Most functions are similar to what we had for spx.commons.SparseSignalsComparison:

cs.difference_norms()
cs.reference_norms()
cs.estimate_norms()
cs.error_to_signal_norms()
cs.signal_to_noise_ratios()
cs.summarize()
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4.2.6 Working with Numbers

Some algorithms from number theory are useful at times.

Finding integer factors closest to square root:

>> [a,b] = spx.discrete.number.integer_factors_close_to_sqr_root(120)
a = 10
b = 12

4.2.7 Printing utilities

Sparse signals

Printing a sparse signal as pairs of locations and values:

>> x = [0 0 0 1 0 0 -1 0 0 -2 0 0 -3 0 0 7 0 0 4 0 0 -6];
>> spx.io.print.sparse_signal(x)
(4,1) (7,-1) (10,-2) (13,-3) (16,7) (19,4) (22,-6) N=22, K=7

Printing the non-zero entries in a signal in descending order of magnitude with location and value:

>> spx.io.print.sorted_sparse_signal(x)
Index: Value

16: 7.000000
22: -6.000000
19: 4.000000
13: -3.000000
10: -2.000000
4: 1.000000
7: -1.000000

Latex

Printing a vector in a format suitable for Latex:

>> spx.io.latex.printVector([1, 2, 3, 4])
\begin{pmatrix}
1 & 2 & 3 & 4
\end{pmatrix}

Printing a matrix in a format suitable for Latex:

>> spx.io.latex.printMatrix(randn(3, 4))
\begin{bmatrix}
-0.340285 & 1.13915 & 0.65748 & 0.0187744\\
-0.925848 & 0.427361 & 0.584246 & -0.425961\\
0.00532169 & 0.181032 & -1.61645 & -2.03403
\end{bmatrix}

Printing a vector as a set in Latex:

>> spx.io.latex.printSet([1, 2, 3, 4])
\{ 1 , 2 , 3 , 4 \}
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SciRust

SciRust is a related scientific computing library developed by us. Some helper functions have been written to convert
MATLAB data into SciRust compatible Rust source code.

Printing a matrix for consumption in SciRust source code:

>> spx.io.scirust.printMatrix(magic(3))
matrix_rw_f64(3, 3, [

8.0, 1.0, 6.0,
3.0, 5.0, 7.0,
4.0, 9.0, 2.0
]);

4.2.8 Sparse recovery

Estimate for the required number of measurements for sparse signals in N and sparsity level K based on paper by
Donoho and Tanner:

M = spx.commons.sparse.phase_transition_estimate_m(N, K);

Example:

>> spx.commons.sparse.phase_transition_estimate_m(1000, 4)
60

4.3 Synthetic Signals

4.3.1 Some easy to setup recovery problems

General approach:

m = 64;
n = 121;
k = 4;
dict = spx.dict.simple.gaussian_dict(m, n);
gen = spx.data.synthetic.SparseSignalGenerator(n, k);
% create a sparse vector
rep = gen.biGaussian();
signal = dict*rep;
problem.dictionary = dict;
problem.representation_vector = rep;
problem.sparsity_level = k;
problem.signal_vector = signal;

The problems:

problem = spx.data.synthetic.recovery_problems.problem_small_1()
problem = spx.data.synthetic.recovery_problems.problem_large_1()
problem = spx.data.synthetic.recovery_problems.problem_barbara_blocks()
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4.3.2 Sparse signal generation

Create generator:

N = 256; K = 4; S = 10;
gen = spx.data.synthetic.SparseSignalGenerator(N, K, S);

Uniform signals:

result = gen.uniform();
result = gen.uniform(1, 2);
result = gen.uniform(-1, 1);

Bi-uniform signals:

result = gen.biUniform();
result = gen.biUniform(1, 2);

Gaussian signals:

result = gen.gaussian();

BiGuassian signals:

result = gen.biGaussian();
result = gen.biGaussian(2.0);
result = gen.biGaussian(10.0, 1.0);

4.3.3 Compressible signal generation

We can use randcs function by Cevher, V. for constructing compressible signals:

N = 100;
q = 1;
x = randcs(N, q);
plot(x);
plot(randcs(100, .9));
plot(randcs(100, .8));
plot(randcs(100, .7));
plot(randcs(100, .6));
plot(randcs(100, .5));
plot(randcs(100, .4));
lambda = 2;
x = randcs(N, q, lambda);
dist = 'logn';
x = randcs(N, q, lambda, dist);

4.3.4 Multi-subspace signal generation

Signals with disjoint supports:

% Dimension of representation space
N = 80;
% Number of subspaces
P = 8;
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% Number of signals per subspace
SS = 10;
% Sparsity level of each signal (subspace dimension)
K = 4;
% Create signal generator
sg = spx.data.synthetic.MultiSubspaceSignalGenerator(N, K);
% Create disjoint supports
sg.createDisjointSupports(P);
sg.setNumSignalsPerSubspace(SS);
% Generate signal representations
sg.biUniform(1, 4);
% Access signal representations
X = sg.X;
% Corresponding supports
qs = sg.Supports;

4.4 Graphics and visualization

In this section we cover:

• Some utility classes which help in specific visualization tasks

• Some external open source libraries / functions which have been integrated in sparse-plex to make visual-
ization tasks easier

• Some general techniques for specific visualization tasks

Create a full screen figure:

spx.graphics.figure.full_screen;

Multiple figures:

mf = spx.graphics.Figures();
mf.new_figure('fig 1');
mf.new_figure('fig 2');
mf.new_figure('fig 3');

All these figures will be created with same width and height. They will be placed one after another in a stacked manner.

Controlling size of multiple figures:

width = 1000;
height = 400;
mf = spx.graphics.Figures(width, height);

Display a Gram matrix for a given dictionary Phi:

spx.graphics.display.display_gram_matrix(Phi);

4.4.1 Canvas of a grid of images

Sometimes we wish to show a set of small images in the form of a grid. These images may be patches from a larger
image or may be small independent images themselves.

spx.graphics.canvas helps in combining the images in the form of a grid on a canvas image.
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We provide all the images to be displayed in the form of a matrix where each column consists of one image.

Creating a canvas of image patches:

% Let us create some random images of size 50x50
width = 50;
height = 50;
rows = 10;
cols = 10;
images = 255* rand(width*height, rows*cols);
% Let's create a canvas of these images formed into a
% 10 x 10 grid.
canvas = spx.graphics.canvas.create_image_grid(images, rows, cols, ...

height, width);
% Let's convert the canvas to UINT8 image
canvas = uint8(canvas);
% Let's show the image
imshow(canvas);
% Let's set the proper colormap.
colormap(gray);
% Axis sizing etc.
axis image;
axis off;

4.4.2 Displaying a set of signals in the form of a matrix

While working on joint signal recovery problems, we need to visualize a set of signals together. They can be put
together in a signal matrix where each column is one (finite dimensional) signal. It is straightforward to create a
visualization for these signals:

num_signals = 100;
signal_size = 80;
signal_matrix = randn(signal_size, num_signals);
% Let's create a canvas and put all the signals on it.
canvas = spx.graphics.canvas.create_signal_matrix_canvas(signal_matrix);
% Let's show the image
imshow(canvas);
% Let's set the proper colormap.
colormap(gray);
% Axis sizing etc.
axis image;
axis off;

4.4.3 Some third party open source libraries

Put a title over all subplots:

spx.graphics.suptitle(title);

This function is by Drea Thomas.

RGB code for given colorname:

c = spx.graphics.rgb('DarkRed')
c = spx.graphics.rgb('Green')
plot(x,y,'color',spx.graphics.rgb('orange'))
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This function is by Kristján Jónasson and is in public domain.

Supported colors:

%White colors
'FF','FF','FF', 'White'
'FF','FA','FA', 'Snow'
'F0','FF','F0', 'Honeydew'
'F5','FF','FA', 'MintCream'
'F0','FF','FF', 'Azure'
'F0','F8','FF', 'AliceBlue'
'F8','F8','FF', 'GhostWhite'
'F5','F5','F5', 'WhiteSmoke'
'FF','F5','EE', 'Seashell'
'F5','F5','DC', 'Beige'
'FD','F5','E6', 'OldLace'
'FF','FA','F0', 'FloralWhite'
'FF','FF','F0', 'Ivory'
'FA','EB','D7', 'AntiqueWhite'
'FA','F0','E6', 'Linen'
'FF','F0','F5', 'LavenderBlush'
'FF','E4','E1', 'MistyRose'
%Grey colors'
'80','80','80', 'Gray'
'DC','DC','DC', 'Gainsboro'
'D3','D3','D3', 'LightGray'
'C0','C0','C0', 'Silver'
'A9','A9','A9', 'DarkGray'
'69','69','69', 'DimGray'
'77','88','99', 'LightSlateGray'
'70','80','90', 'SlateGray'
'2F','4F','4F', 'DarkSlateGray'
'00','00','00', 'Black'
%Red colors
'FF','00','00', 'Red'
'FF','A0','7A', 'LightSalmon'
'FA','80','72', 'Salmon'
'E9','96','7A', 'DarkSalmon'
'F0','80','80', 'LightCoral'
'CD','5C','5C', 'IndianRed'
'DC','14','3C', 'Crimson'
'B2','22','22', 'FireBrick'
'8B','00','00', 'DarkRed'
%Pink colors
'FF','C0','CB', 'Pink'
'FF','B6','C1', 'LightPink'
'FF','69','B4', 'HotPink'
'FF','14','93', 'DeepPink'
'DB','70','93', 'PaleVioletRed'
'C7','15','85', 'MediumVioletRed'
%Orange colors
'FF','A5','00', 'Orange'
'FF','8C','00', 'DarkOrange'
'FF','7F','50', 'Coral'
'FF','63','47', 'Tomato'
'FF','45','00', 'OrangeRed'
%Yellow colors
'FF','FF','00', 'Yellow'
'FF','FF','E0', 'LightYellow'
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'FF','FA','CD', 'LemonChiffon'
'FA','FA','D2', 'LightGoldenrodYellow'
'FF','EF','D5', 'PapayaWhip'
'FF','E4','B5', 'Moccasin'
'FF','DA','B9', 'PeachPuff'
'EE','E8','AA', 'PaleGoldenrod'
'F0','E6','8C', 'Khaki'
'BD','B7','6B', 'DarkKhaki'
'FF','D7','00', 'Gold'
%Brown colors
'A5','2A','2A', 'Brown'
'FF','F8','DC', 'Cornsilk'
'FF','EB','CD', 'BlanchedAlmond'
'FF','E4','C4', 'Bisque'
'FF','DE','AD', 'NavajoWhite'
'F5','DE','B3', 'Wheat'
'DE','B8','87', 'BurlyWood'
'D2','B4','8C', 'Tan'
'BC','8F','8F', 'RosyBrown'
'F4','A4','60', 'SandyBrown'
'DA','A5','20', 'Goldenrod'
'B8','86','0B', 'DarkGoldenrod'
'CD','85','3F', 'Peru'
'D2','69','1E', 'Chocolate'
'8B','45','13', 'SaddleBrown'
'A0','52','2D', 'Sienna'
'80','00','00', 'Maroon'
%Green colors
'00','80','00', 'Green'
'98','FB','98', 'PaleGreen'
'90','EE','90', 'LightGreen'
'9A','CD','32', 'YellowGreen'
'AD','FF','2F', 'GreenYellow'
'7F','FF','00', 'Chartreuse'
'7C','FC','00', 'LawnGreen'
'00','FF','00', 'Lime'
'32','CD','32', 'LimeGreen'
'00','FA','9A', 'MediumSpringGreen'
'00','FF','7F', 'SpringGreen'
'66','CD','AA', 'MediumAquamarine'
'7F','FF','D4', 'Aquamarine'
'20','B2','AA', 'LightSeaGreen'
'3C','B3','71', 'MediumSeaGreen'
'2E','8B','57', 'SeaGreen'
'8F','BC','8F', 'DarkSeaGreen'
'22','8B','22', 'ForestGreen'
'00','64','00', 'DarkGreen'
'6B','8E','23', 'OliveDrab'
'80','80','00', 'Olive'
'55','6B','2F', 'DarkOliveGreen'
'00','80','80', 'Teal'
%Blue colors
'00','00','FF', 'Blue'
'AD','D8','E6', 'LightBlue'
'B0','E0','E6', 'PowderBlue'
'AF','EE','EE', 'PaleTurquoise'
'40','E0','D0', 'Turquoise'
'48','D1','CC', 'MediumTurquoise'
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'00','CE','D1', 'DarkTurquoise'
'E0','FF','FF', 'LightCyan'
'00','FF','FF', 'Cyan'
'00','FF','FF', 'Aqua'
'00','8B','8B', 'DarkCyan'
'5F','9E','A0', 'CadetBlue'
'B0','C4','DE', 'LightSteelBlue'
'46','82','B4', 'SteelBlue'
'87','CE','FA', 'LightSkyBlue'
'87','CE','EB', 'SkyBlue'
'00','BF','FF', 'DeepSkyBlue'
'1E','90','FF', 'DodgerBlue'
'64','95','ED', 'CornflowerBlue'
'41','69','E1', 'RoyalBlue'
'00','00','CD', 'MediumBlue'
'00','00','8B', 'DarkBlue'
'00','00','80', 'Navy'
'19','19','70', 'MidnightBlue'
%Purple colors
'80','00','80', 'Purple'
'E6','E6','FA', 'Lavender'
'D8','BF','D8', 'Thistle'
'DD','A0','DD', 'Plum'
'EE','82','EE', 'Violet'
'DA','70','D6', 'Orchid'
'FF','00','FF', 'Fuchsia'
'FF','00','FF', 'Magenta'
'BA','55','D3', 'MediumOrchid'
'93','70','DB', 'MediumPurple'
'99','66','CC', 'Amethyst'
'8A','2B','E2', 'BlueViolet'
'94','00','D3', 'DarkViolet'
'99','32','CC', 'DarkOrchid'
'8B','00','8B', 'DarkMagenta'
'6A','5A','CD', 'SlateBlue'
'48','3D','8B', 'DarkSlateBlue'
'7B','68','EE', 'MediumSlateBlue'
'4B','00','82', 'Indigo'
%Gray repeated with spelling grey
'80','80','80', 'Grey'
'D3','D3','D3', 'LightGrey'
'A9','A9','A9', 'DarkGrey'
'69','69','69', 'DimGrey'
'77','88','99', 'LightSlateGrey'
'70','80','90', 'SlateGrey'
'2F','4F','4F', 'DarkSlateGrey'

4.5 Dictionaries

4.5.1 Basic Dictionaries

Some simple dictionaries can be constructed using library functions.

The dictionaries are available in two flavors:

1. As simple matrices
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2. As objects which implement the spx.dict.Operator abstraction defined below.

The functions returning the dictionary as a simple matrix have a suffix “mtx”. The functions returning the dictionary
as a spx.dict.Operator have the suffix “dict” at the end.

These functions can also be used to construct random sensing matrices which are essentially random dictionaries.

Dirac Fourier Dictionary

spx.dict.simple.dirac_fourier_dict(N)

Dirac DCT Dictionary:

spx.dict.simple.dirac_dct_dict(N)

Gaussian Dictionary:

spx.dict.simple.gaussian_dict(N, D, normalized_columns)

Rademacher Dictionary:

Phi = spx.dict.simple.rademacher_dict(N, D);

Partial Fourier Dictionary:

Phi = spx.dict.simple.partial_fourier_dict(N, D);

Over complete 1-D DCT dictionary:

spx.dict.simple.overcomplete1DDCT(N, D)

Over complete 2-D DCT dictionary:

spx.dict.simple.overcomplete2DDCT(N, D)

Dictionaries from SPIE2011 paper:

spx.dict.simple.spie_2011(name) % ahoc, orth, rand, sine

4.5.2 Sensing matrices

Gaussian sensing matrix:

Phi = spx.dict.simple.gaussian_mtx(M, N);

Rademacher sensing matrix:

Phi = spx.dict.simple.rademacher_mtx(M, N);

Partial Fourier matrix:

Phi = spx.dict.simple.partial_fourier_mtx(M, N);
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4.5.3 Operators

In simple terms, a (finite) dictionary is implemented as a matrix whose columns are atoms of the dictionary. This
approach is not powerful enough. A dictionary Φ usually acts on a sparse representation 𝛼 to obtain a signal 𝑥 =
Φ𝛼. During sparse recovery, the Hermitian transpose of the dictionary acts on the signal [or residual] to compute
Φ𝐻𝑥 or Φ𝐻𝑟. Thus, the fundamental operations are multiplication by Φ and Φ𝐻 . While, these operations can be
directly implemented by using a matrix representation of a dictionary, they are slow and require a large storage for
the dictionary. For random dictionaries, this is the only option. But for structured dictionaries and sensing matrices,
the whole of dictionary need not be held in memory. The multiplication by Φ and Φ𝐻 can be implemented using fast
functions.

Also multiple dictionaries can be combined to construct a composite dictionary, e.g. ΦΨ.

In order to take care of these scenarios, we define the notion of a generic operator in an abstract class spx.dict.
Operator. All operators support following methods.

Constructing a matrix representation of the operator:

op.double()

Computing Φ𝑥:

op.mtimes(x)

The transpose operator:

op.transpose()

By default it is constructed by computing the matrix representation of the transpose of the operator. But specialized
dictionaries can implement it smartly.

The Hermitian transpose operator:

op.ctranspose()

By default it is constructed by computing the matrix representation of the Hermitian transpose of the operator. But
specialized dictionaries can implement it smartly.

Obtaining specific columns from the operator:

op.columns(columns)

Note that this doesn’t require computing the complete matrix representation of the operator.

op.apply_columns(vectors, columns)

Constructing an operator which uses only the specified columns from this dictionary:

op.columns_operator(columns)

A specific column of the dictionary:

op.column(index)

Printing the contents of the dictionary:

disp(op)

46 Chapter 4. Library Classes



sparse-plex , Release 0.1

4.5.4 Matrix operators

Matrix operators are constructed by wrapping a given matrix into spx.dict.MatrixOperator which is a sub-
class of spx.dict.Operator.

Constructing the matrix operator from a matrix A:

op = spx.dict.MatrixOperator(A)

The matrix operator holds references to the matrix as well as its Hermitian transpose:

op.A
op.AH

4.5.5 Composite Operators

A composite operator can be created by combining two or more operators:

co = spx.dict.CompositeOperator(f, g)

4.5.6 Unitary/Orthogonal matrices

spx.dict.unitary.uniform_normal_qr(n)
spx.dict.unitary.analyze_rr(O)
spx.dict.unitary.synthesize_rr(rotations, reflections)
spx.dict.unitary.givens_rot(a, b)

4.5.7 Dictionary Properties

dp = spx.dict.Properties(Dict)

dp.gram_matrix()
dp.abs_gram_matrix()
dp.frame_operator()
dp.singular_values()
dp.gram_eigen_values()
dp.lower_frame_bound()
dp.upper_frame_bound()
dp.coherence()

Coherence of a dictionary:

mu = spx.dict.coherence(dict)

Babel function of a dictionary:

mu = spx.dict.babel(dict)

Spark of a dictionary (for small sizes):

[ K, columns ] = spx.dict.spark( Phi )
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4.5.8 Equiangular Tight Frames

spx.dict.etf.ss_to_etf(M)
spx.dict.etf.is_etf(F)
spx.dict.etf.ss_etf_structure(k, v)

4.5.9 Grassmannian Frames

spx.dict.grassmannian.minimum_coherence(m, n)
spx.dict.grassmannian.n_upper_bound(m)
spx.dict.grassmannian.min_coherence_max_n(ms)
spx.dict.grassmannian.max_n_for_coherence(m, mu)
spx.dict.grassmannian.alternate_projections(dict, options)

4.6 Vector Spaces

Our work is focused on finite dimensional vector spaces R𝑁 or C𝑁 . We represent a vector space by a basis in the vector
space. In this section, we describe several useful functions for working with one or more vector spaces (represented
by one basis per vector space).

Basis for intersection of two subspaces:

result = spx.la.spaces.insersection_space(A, B)

Orthogonal complement of A in B:

result = spx.la.spaces.orth_complement(A, B)

Principal angles between subspaces spanned by A and B:

result = spx.la.spaces.principal_angles_cos(A, B);
result = spx.la.spaces.principal_angles_radian(A, B);
result = spx.la.spaces.principal_angles_degree(A, B);

Smallest principal angle between subspaces spanned by A and B:

result = spx.la.spaces.smallest_angle_cos(A, B);
result = spx.la.spaces.smallest_angle_rad(A, B);
result = spx.la.spaces.smallest_angle_deg(A, B);

Principal angle between two orthogonal bases:

result = spx.la.spaces.principal_angles_orth_cos(A, B)
result = spx.la.spaces.smallest_angle_orth_cos(A, B);

Smallest angles between subspaces:

result = spx.la.spaces.smallest_angles_cos(subspaces, d)
result = spx.la.spaces.smallest_angles_rad(subspaces, d)
result = spx.la.spaces.smallest_angles_deg(subspaces, d)

Distance between subspaces based on Grassmannian space:
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result = spx.la.spaces.subspace_distance(A, B)

This is computed as the operator norm of the difference between projection matrices for two subspaces.

Check if v in range of unitary matrix U:

result = spx.la.spaces.is_in_range_orth(v, U)

Check if v in range of A:

result = spx.la.spaces.is_in_range(v, A)

A basis for matrix A:

result = spx.la.spaces.find_basis(A)

Elementary matrices product and row reduced echelon form:

[E, R] = spx.la.spaces.elim(A)

Basis for null space of A:

result = spx.la.spaces.null_basis(A)

Bases for four fundamental spaces:

[col_space, null_space, row_space, left_null_space] = spx.la.spaces.four_bases(A)
[col_space, null_space, row_space, left_null_space] = spx.la.spaces.four_orth_
→˓bases(A)

4.6.1 Utility for constructing specific examples

Two spaces at a given angle:

[A, B] = spx.data.synthetic.subspaces.two_spaces_at_angle(N, theta)

Three spaces at a given angle:

[A, B, C] = spx.la.spaces.three_spaces_at_angle(N, theta)

Three disjoint spaces at a given angle:

[A, B, C] = spx.la.spaces.three_disjoint_spaces_at_angle(N, theta)

Map data from k dimensions to n dimensions:

result = spx.la.spaces.k_dim_to_n_dim(X, n, indices)

Describing relations between three spaces:

spx.la.spaces.describe_three_spaces(A, B, C);

Usage:
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d = 4;
theta = 10;
n = 20;
[A, B, C] = spx.la.spaces.three_disjoint_spaces_at_angle(deg2rad(theta), d);
spx.la.spaces.describe_three_spaces(A, B, C);
% Put them together
X = [A B C];
% Put them to bigger dimension
X = spx.la.spaces.k_dim_to_n_dim(X, n);
% Perform a random orthonormal transformation
O = orth(randn(n));
X = O * X;

4.7 Combinatorics

4.7.1 Steiner Systems

Steiner system with block size 2:

v = 10;
m = spx.discrete.steiner_system.ss_2(v);

Steiner system with block size 3 (STS Steiner Triple System):

m = spx.discrete.steiner_system.ss_3(v);

Bose construction for STS system for v = 6n + 3

m = spx.discrete.steiner_system.ss_3_bose(v);

Verify if a given incidence matrix is a Steiner system:

spx.discrete.steiner_system.is_ss(M, k)

Latin square construction:

spx.discrete.steiner_system.commutative_idempotent_latin_square(n)

Verify if a table is a Latin square:

spx.discrete.steiner_system.is_latin_square(table)

4.8 Matrix factorization algorithms

Note: Better implementations for these algorithms may be available in stock MATLAB distribution or other third
party libraries. These codes were developed for instructional purposes as variations of these algorithms were needed
in development of other algorithms in this package.
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4.8.1 Various versions of QR Factorization

Gram Schmidt:

[Q, R] = spx.la.qr.gram_schmidt(A)

Householder UR:

[U, R] = spx.la.qr.householder_ur(A)

Householder QR:

[Q, R] = spx.la.qr.householder_qr(A)

Householder matrix for a given vector:

[H, v] = spx.la.qr.householder_matrix(x)

4.9 External Code

almost equal:

isalmost(a,b,tol)

4.9.1 Timing

[t, measurement_overhead, measurement_details] = timeit(f, num_outputs)

4.10 Noise

4.10.1 Noise generation

Gaussian noise:

ng = spx.data.noise.Basic(N, S);
sigma = 1;
mean = 0;
ng.gaussian(sigma, mean);

Creating noise at a specific SNR:

% Sparse signal dimension
N = 100;
% Sparsity level
K = 20;
% Number of signals
S = 4;
% Create sparse signals
signals = spx.data.synthetic.SparseSignalGenerator(N, K, S).gaussian();
% Create noise at specific SNR level.
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snrDb = 10;
noises = spx.data.noise.Basic.createNoise(signals, snrDb);
% add signal to noise
signals_with_noise = signals + noises;
% Verify SNR level
20 * log10 (spx.norm.norms_l2_cw(signals) ./ spx.norm.norms_l2_cw(noises))

4.10.2 Noise measurement

SNR in dB:

result = spx.commons.snr.SNR(signals, noises)

SNR in dB from signal and reconstruction:

reconstructions = signals_with_noise;
result = spx.commons.snr.recSNRdB(signals, reconstructions)

Signal energy in DB

result = spx.commons.snr.energyDB(signals)

Reconstruction SNR as energy ratio:

result = spx.commons.snr.recSNR(signal, reconstruction)

Error energy normalized by signal energy:

result = spx.commons.snr.normalizedErrorEnergy(signal, reconstruction)

Reconstruction SNRs over multiple signals in dB:

result = spx.commons.snr.recSNRsdB(signals, reconstructions)

Reconstruction SNRs over multiple signals as energy ratios:

result = spx.commons.snr.recSNRs(signals, reconstructions)

Signal energies:

result = spx.commons.snr.energies(signals)

Signal energies in dB:

result = spx.commons.snr.energiesDB(signals)

clustering diclearn bht

52 Chapter 4. Library Classes



CHAPTER 5

Exercises

The best way to learn is by doing exercises yourself. In this section, we present a set of computer exercises which help
you learn the fundamentals of sparse representations: algorithms and applications.

Most of these exercises are implemented in some form or other as part of the sparse-plex library. Once you
have written your own implementations, you may hunt the code in library and compare your implementation with the
reference implementation.

The exercises are described in terms of MATLAB programming environment. But they can be easily developed in
other programming environments too.

Throughout these exercises, we will develop a set of functions which are reusable for performing various tasks related
to sparse representation problems. We suggest you to collect such functions developed by you in one place together
so that you can implement the more sophisticated exercises easily later.

5.1 Creating a sparse signal

The first aspect is deciding the support for the sparse signal.

1. Decide on the length of signal N=1024.

2. Decide on the sparsity level K=10.

3. Choose K entries from 1..N randomly as your choice of sparse support. You can use randperm function.

Now, we need to consider the values of non-zero entries in the sparse vector. Typically, they are chosen from a random
distribution. Few of the common choices are:

• Gaussian

• Uniform

• Bi-uniform
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Gaussian

1. Generate K Gaussian random numbers with zero mean and unit standard deviation. You can use randn func-
tion. You may choose to change the standard deviation, but mean should usually be zero.

2. Create a column vector with N zeros.

3. On the entries indexed by the sparse support set, place the K numbers generated above.

Plotting

1. Use stem command to visualize the sparse signal.

Uniform

• Most of the steps are similar to creating a Gaussian sparse vector.

• The rand function generates a number uniformly between 0 and 1.

• In order to generate a number uniformly between a and b, we can use the simple trick of a + (b -a) *
rand

1. Choose a and b (say -4 and 4).

2. Generate K uniformly distributed numbers between a and b.

3. Place them in the N length vector as described above.

4. Plot them.

Bi-uniform

A problem with Gaussian and uniform distributions as described above is that they are prone to generate some non-zero
entries which are much smaller compared to others.

Bi-uniform approach attempts to avoid this situation. It generates numbers uniformly between [-b, -a] and [a, b] where
a and b are both positive numbers with a < b.

1. Choose a and by [say 1 and 2].

2. Generate K uniformly distributed random numbers between a and b (as discussed above). These are the magni-
tudes of the sparse non-zero entries.

3. Generate K Gaussian numbers and apply sign function to them to map them to 1 and -1. Note that with equal
probability, the signs would be 1 or -1.

4. Multiply the signs and magnitudes to generate your sparse non-zero entries.

5. Place them in the N length vector as described above.

6. Plot them.

Following image is an example of how a sparse vector looks.
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5.2 Creating a two ortho basis

Simplest example of an overcomplete dictionary is Dirac Fourier dictionary.

• You can use eye(N) to generate the standard basis of C𝑁 which is also known as Dirac basis.

• dftmtx(N) gives the matrix for forward Fourier transform. Corresponding Fourier basis can be constructed
by taking its transpose.

• The columns / rows of dftmtx(N) are not normalized. Hence, in order to construct an orthonormal basis, we
need to normalize the columns too. This can be easily done by multiplying with 1√

𝑁
.

1. Choose the dimension of the ambient signal space (say N=1024).

2. Construct the Dirac basis for C𝑁 .

3. Construct the orthonormal Fourier basis for C𝑁 .

4. Combine the two to form the two ortho basis (Dirac in left, Fourier in right).

Verification

We assume that the dictionary has been stored in a variable named Phi. We will use the mathematical symbol Φ for
the same.
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• Verify that each column has unit norm.

• Verify that each row has a norm of
√

2.

• Compute the Gram matrix Φ′ * Φ.

• Verify that the diagonal elements are all one.

• Divide the Gram matrix into four quadrants.

• Verify that the first and fourth quadrants are identity matrices.

• Verify that the Gram matrix is symmetric.

• What can you say about the values in 2nd and 3rd quadrant?

5.3 Creating a Dirac-DCT two-ortho basis

While Dirac-DFT two ortho basis has the lowest possible coherence amongst all pairs of orthogonal bases, it is not
restricted to R𝑁 . A good starting point is to consider constructing a Dirac-DCT two ortho basis.

1. Construct the Dirac-DCT two-ortho basis dictionary.

• Replace dftmtx(N) by dctmtx(N).

• Follow steps similar to previous exercise to construct a Dirac-DCT dictionary.

• Notice the differences in the Gram matrix of Dirac-DFT dictionary with Dirac-DCT dictionary.

• Construct the Dirac-DCT dictionary for different values of N=(8, 16, 32, 64, 128, 256).

• Look at the changes in the Gram matrix as you vary N for constructing Dirac-DCT dictionary.

An example Dirac-DCT dictionary has been illustrated in the figure below.
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Note: While constructing the two-ortho bases is nice for illustration, it should be noted that using them directly for
computing Φ𝑥 is not efficient. This entails full cost of a matrix vector multiplication. An efficient implementation
would consider following ideas:

• Φ𝑥 = [𝐼Ψ]𝑥 = 𝐼𝑥1 + Ψ𝑥2 where 𝑥1 and 𝑥2 are upper and lower halves of the vector 𝑥.

• 𝐼𝑥1 is nothing but x_1.

• Ψ𝑥2 can be computed by using the efficient implementations of (Inverse) DFT or DCT transforms with appro-
priate scaling.

• Such implementations would perform the multiplication with dictionary in 𝑂(𝑁 log𝑁) time.

• In fact, if the second basis is a wavelet basis, then the multiplication can be carried out in linear time too.

• You are suggested to take advantage of these ideas in following exercises.

Creating a signal which is a mixture of sinusoids and impulses

If we split the sparse vector 𝑥 into two halves 𝑥1 and 𝑥2 then: * The first half corresponds to impulses from the Dirac
basis. * The second half corresponds to sinusoids from DCT or DFT basis.

It is straightforward to construct a signal which is a mixture of impulses and sinusoids and has a sparse representation
in Dirac-DFT or Dirac-DCT representation.

1. Pick a suitable value of N (say 64).

2. Construct the corresponding two ortho basis.

3. Choose a sparsity pattern for the vector x (of size 2N) such that some of the non-zero entries fall in first half
while some in second half.

4. Choose appropriate non-zero coefficients for x.

5. Compute 𝑦 = Φ𝑥 to obtain a signal which is a mixture of impulses and sinusoids.

Verification

• It is obvious that the signal is non-sparse in time domain.

• Plot the signal using stem function.

• Compute the DCT or DFT representation of the signal (by taking inverse transform).

• Plot the transform basis representation of the signal.

• Verify that the transform basis representation does indeed have some large spikes (corresponding to the non-
zero entries in second half of 𝑥) but the rest of the representation is also full with (small) non-zero terms
(corresponding to the transform representation of impulses).

5.4 Creating a random dictionary

We consider constructing a Gaussian random matrix.

1. Choose the number of measurements 𝑀 say 128.

2. Choose the signal space dimension 𝑁 say 1024.

3. Generate a Gaussian random matrix as Φ = randn(M, N).
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Normalization

There are two ways of normalizing the random matrix to a dictionary.

One view considers that all columns or atoms of a dictionary should be of unit norm.

1. Measure the norm of each column. You may be tempted to write a for loop to do the same. While this is
alright, but MATLAB is known for its vectorization capabilities. Consider using a combination of sum conj
element wise multiplication and sqrt to come up with a function which can measure the column wise norms
of a matrix. You may also explore bsxfun.

2. Divide each column by its norm to construct a normalized dictionary.

3. Verify that the columns of this dictionary are indeed unit norm.

An alternative way considers a probabilistic view.

• We say that each entry in the Gaussian random matrix should be zero mean and variance 1
𝑀 .

• This ensures that on an average the mean of each column is indeed 1 though actual norms of each column may
differ.

• As the number of measurements increases, the likelihood of norm being close to one increases further.

We can apply these ideas as follows. Recall that randn generates Gaussian random variables with zero mean and unit
variance.

1. Divide the whole random matrix by 1√
𝑀

to achieve the desired sensing matrix.

2. Measure the norm of each column.

3. Verify that the norms are indeed close to 1 (though not exactly).

4. Vary M and N to see how norms vary.

5. Use imagesc or imshow function to visualize the sensing matrix.

An example Gaussian sensing matrix is illustrated in figure below.

5.5 Taking compressive measurements

1. Choose a sparsity level (say K=10)

2. Choose a sparse support over 1 . . . 𝑁 of size K randomly using randperm function.

3. Construct a sparse vector with bi uniform non-zero entries.
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4. Apply the Gaussian sensing matrix on to the sparse signal to compute compressive measurement vector 𝑦 =
Φ𝑥 ∈ R𝑀 .

An example of compressive measurement vector is shown in figure below.

In the sequel we will refer to the computation of noiseless measurement vector by the equation 𝑦 = Φ𝑥.

When we make measurement noisy, the equation would be 𝑦 = Φ𝑥 + 𝑒.

Before we jump into sparse recovery, let us spend some time studying some simple properties of dictionaries.

5.6 Measuring dictionary properties

5.6.1 Gram matrix

You have already done this before. The straight forward calculation is 𝐺 = Φ′ * Φ where we are considering the
conjugate transpose of the dictionary Φ.

1. Write a function to measure the Gram matrix of any dictionary.

2. Compute the Gram matrix for all the dictionaries discussed above.

3. Verify that Gram matrix is symmetric.

For most of our purposes, the sign or phase of entries in the Gram matrix is not important. We may use the symbol G
to refer to the Gram matrix in the sequel.
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1. Compute absolute value Gram matrix abs(G).

5.6.2 Coherence

Recall that the coherence of a dictionary is largest (absolute value) inner product between any pair of atoms. Actually
it’s quite easy to read the coherence from the absolute value Gram matrix.

• We reject the diagonal elements since they correspond to the inner product of an atom with itself. For a properly
normalized dictionary, they should be 1 anyway.

• Since the matrix is symmetric we need to look at only the upper triangular half or the lower triangular half
(excluding the diagonal) to read off the coherence.

• Pick the largest value in the upper triangular half.

1. Write a MATLAB function to compute the coherence.

2. Compute coherence of a Dirac-DFT dictionary for different values of N. Plot the same to see how coherence
decreases with N.

3. Do the same for Dirac-DCT.

4. Compute the coherence of Gaussian dictionary (with say N=1024) for different values of M and plot it.

5. In the case of Gaussian dictionary, it is better to take average coherence for same M and N over different
instances of Gaussian dictionary of the specified size.

5.6.3 Babel function

Babel function is quite interesting. While the definition looks pretty scary, it turns out that it can be computed very
easily from the Gram matrix.

1. Compute the (absolute value) Gram matrix for a dictionary.

2. Sort the rows of the Gram matrix (each row separately) in descending order.

3. Remove the first column (consists of all ones in for a normalized dictionary).

4. Construct a new matrix by accumulating over the columns of the sorted Gram matrix above. In other words, in
the new matrix

• First column is as it is.

• Second column consists of sum of first and second column of sorted matrix.

• Third column consists of sum of first to third column of sorted matrix .

• Continue accumulating like this.

5. Compute the maximum for each column.

6. Your Babel function is in front of you.

7. Write a MATLAB function to carry out the same for any dictionary.

8. Compute the Babel function for Dirac-DFT and Dirac-DCT dictionary with (N=256).

9. Compute the Babel function for Gaussian dictionary with N=256. Actually compute Babel functions for many
instances of Gaussian dictionary and then compute the average Babel function.
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5.7 Getting started with sparse recovery

Our first objective will be to develop algorithms for sparse recovery in noiseless case.

The defining equation is 𝑦 = Φ𝑥 where 𝑥 is the sparse representation vector, Φ is the dictionary or sensing matrix and
𝑦 is the signal or measurement vector. In any sparse recovery algorithm, following quantities are of core interest:

• 𝑥 which is unknown to us.

• Φ which is known to us. Sometimes we may know Φ only approximately.

• 𝑦 which is known to us.

• Given Φ and 𝑦, we estimate an approximation of 𝑥 which we will represent as ̂︀𝑥.

• ̂︀𝑥 is (typically) sparse even if 𝑥 may be only approximately sparse or compressible.

• Given an estimate ̂︀𝑥, we compute the residual 𝑟 = 𝑦−Φ̂︀𝑥. This quantity is computed during the sparse recovery
process.

• Measurement or signal error norm ‖𝑟‖2. We strive to reduce this as much as possible.

• Sparsity level 𝐾. We try to come up with an ̂︀𝑥 which is K-sparse.

• Representation error or recovery error 𝑓 = 𝑥 − ̂︀𝑥. This is unknown to us. The recovery process tends to
minimize its norm ‖𝑓‖2 (if it is working correctly !).

Some notes are in order

• K may or may not be given to us. If K is given to us, we should use it in our recovery process. If it is not given,
then we should work with ‖𝑟‖2.

• While the recovery algorithm itself doesn’t know about 𝑥 and hence cannot calculate 𝑓 , a controlled testing
environment can carefully choose and 𝑥, compute 𝑦 and pass Φ and 𝑦 to the recovery algorithm. Thus, the
testing environment can easily compute 𝑓 by using the 𝑥 known to it and ̂︀𝑥 given by the recovery algorithm.

Usually the sparse recovery algorithms are iterative. In each iteration, we improve our approximation ̂︀𝑥 and reduce
‖𝑟‖2.

• We can denote the iteration counter by 𝑘 starting from 0 onwards.

• We denote k-th approximation by ̂︀𝑥𝑘 and k-th residual by 𝑟𝑘.

• A typical initial estimate is given by ̂︀𝑥0 = 0 and thus, 𝑟0 = 𝑦.

Objectives of recovery algorithm

There are fundamentally two objectives of a sparse recovery algorithm

• Identification of locations at which ̂︀𝑥 has non-zero entries. This corresponds to the sparse support of 𝑥.

• Estimation of the values of non-zero entries in ̂︀𝑥.

We will use following notation.

• The identified support will be denoted as Λ. It is the responsibility of the sparse recovery algorithm to guess it.

• If the support is identified gradually in each iteration, we can use the notation Λ𝑘.

• The actual support of 𝑥 will be denoted by Ω. Since 𝑥 is unknown to us hence Ω is also unknown to us within
the sparse recovery algorithm. However, the controlled testing environment would know about Ω.
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If the support has been identified correctly, then estimation part is quite easy. It’s nothing but the application of least
squares over the columns of Φ selected by the support set.

Different recovery algorithms vary in how they approach the support identification and coefficient estimations.

• Some algorithms try to identify whole support at once and then estimate the values of non-zero entries.

• Some algorithms identify atoms in the support one at a time and iteratively estimate the non-zero values for the
current support.

Simple support identification

• Write a function which sorts a given vector by the decreasing order of magnitudes of its entries.

• Identify the K largest (magnitude) entries in the sorted vector and their locations in the original vector.

• Collect the locations of K largest entries into a set

Note: [sorted_x, index_vector] = sort(x) in MATLAB returns both the sorted entries and the index
vector such that sorted_x = x[index_vector]. Our interest is usually in the index_vector as we don’t
want to really change the order of entries in x while identifying the largest K entries.

In MATLAB a set can be represented using an array. You have to be careful to ensure that such a set never have any
duplicate elements.

Sparse approximation of a given vector

Given a vector 𝑥 which may not be sparse, its K sparse approximation which is the best approximation in 𝑙𝑝 norm
sense can be obtained by choosing the K largest (in magnitude) entries.

1. Write a MATLAB function to compute the K sparse representation of

any vector.

• Identify the K largest entries and put their locations in the support set Λ.

• Compute Λ𝑐 = {1 . . . 𝑁} ∖ Λ.

• Set the entries corresponding to Λ𝑐 in 𝑥 to zero.

The proxy vector

A very interesting quantity which appears in many sparse recovery algorithms is the proxy vector 𝑝 = Φ′𝑟.

The figure below shows a sparse vector, its measurements and corresponding proxy vector 𝑝0 = Φ𝑟0 = Φ𝑦.
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While the proxy vector may look quite chaotic on first look, it is very interesting to note that it tends to have large
entries at exactly the same location as the sparse vector 𝑥 itself.

if we think about the proxy vector closely, we can notice that each entry in the proxy is the inner product of an atom
in Φ with the residual 𝑟. Thus, each entry in proxy vector indicates how similar an atom in the dictionary is with the
residual.

1. Choose M, N and K and construct a sparse vector 𝑥 with support Ω and Gaussian dictionary Φ.

2. For the measurement vector 𝑦 = Φ𝑥, compute 𝑝 = Φ′𝑦.

3. Identify the K largest entries in 𝑝 and use their locations to make a guess of support as Λ.

4. Compare the sets Ω and Λ. Measure the support identification ratio as |Λ∩Ω|
|Ω| i.e. the ratio of the number of

indices common in Λ and Ω with the number of indices in Ω (which is K).

5. Keep M and N fixed and vary K to see how support identification ratio changes. For this, measure average
support identification ratio for say 100 trials. You may increase the number of trials if you want.

6. Keep K=4, N=1024 and vary M from 10 to 500 to see how support identification ratio changes. Again use the
average value.

Note: The support identification ratio is a critical tool for evaluating the quality of a sparse recovery algorithm. Recall
that if the support has been identified correctly, then reconstructing a sparse vector is a simple least squares problem.
If the support is identified partially, or some of the indices are incorrect, then it can lead to large recovery errors.

If the support identification ratio is 1, then we have correctly identified the support. Otherwise, we haven’t.
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For noiseless recovery, if support is identified correctly, then representation will be recovered correctly (unless Φ is ill
conditioned). Thus, support identification ratio is a good measure of success or failure of recovery. We don’t need to
worry about SNR or norm of recovery error.

In the sequel, for noiseless recovery, we will say that recovery succeeds if support identification ratio is 1.

If we run multiple trials of a recovery algorithm (for a specific configuration of K, M, N etc.) with different data, then
the recovery rate would be the number of trials in which successful recovery happened divided by the total number
of trials.

The recovery rate (on reasonably high number of trials) would be our main tool for measuring the quality of a recovery
algorithm. Note that the recovery rate depends on

• The representation space dimension 𝑁 .

• The number of measurements 𝑀 .

• The sparsity level 𝐾.

• The choice of dictionary Φ.

It doesn’t really depend much on the choice of distribution for the non-zero entries in 𝑥 if the entries are i.i.d. Or the
dependence as such is not very significant.

5.8 Developing the hard thresholding algorithm

Based on the idea of the proxy vector, we can easily compute a sparse approximation as follows.

1. Identify the K largest entries in the proxy and their locations.

2. Put the locations together in your guess for the support Λ.

3. Identify the columns of Φ corresponding to Λ and construct a submatrix ΦΛ.

4. Compute 𝑥Λ = Φ†
Λ𝑦 as the least squares solution of the problem 𝑦 = ΦΛ𝑥Λ.

5. Set the remaining entries in 𝑥 corresponding to Λ𝑐 as zeros.

Put together the algorithm described above in a MATLAB function like x_hat = hard_thresholding(Phi,
y, K).

1. Think and explain why hard thresholding will always succeed if 𝐾 = 1.

2. Say 𝑁 = 256 and 𝐾 = 2. What is the required number of measurements at which the recovery rate will be
equal to 1.

Phase transition diagram

A nice visualization of the performance of a recovery algorithm is via its phase transition diagram. The figure below
shows the phase transition diagram for orthogonal matching pursuit algorithm with a Gaussian dictionary and Gaussian
sparse vectors.

• N is fixed at 64.

• K is varied from 1 to 4.

• M is varied from 1 and 2 to 32 (N/2) with steps of 2.

• For each configuration of K and M, 1000 trials are conducted and recovery rate is measured.

64 Chapter 5. Exercises



sparse-plex , Release 0.1

• In the phase transition diagram, a white cell indicates that for the corresponding K and M, the algorithm is able
to recover successfully always.

• A black cell indicates that the algorithm never successfully recovers any signal for the corresponding K and M.

• A gray cell indicates that the algorithm sometimes recovers successfully while sometimes it may fail.

• Safe zone of operation is the white area in the diagram.

In the figure below, we capture the minimum required number of measurements for different values of K for OMP
algorithm running on Gaussian sensing matrix.
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It is evident that as K increases, the minimum M required for successful recovery also increases.

1. Generate the phase transition diagram for thresholding algorithm with N = 256, K varying from 1 to 16 and M
varying from 2 to 128 and a minimum of 100 trials for each configuration.

2. Use the phase transition diagram data for estimating the minimum M for different values of K and plot it.

5.9 Developing the matching pursuit algorithm

You can read the description of matching pursuit algorithms on Wikipedia. This is a simpler algorithm than orthogonal
matching pursuit. It doesn’t involve any least squares step.

1. Implement the matching pursuit (MP) algorithm in MATLAB.

2. Generate the phase transition diagram for MP algorithm with N = 256, K varying from 1 to 16 and M varying
from 2 to 128 and a minimum of 100 trials for each configuration.

3. Use the phase transition diagram data for estimating the minimum M for different values of K and plot it.

5.10 Developing the orthogonal matching pursuit algorithm

The orthogonal matching pursuit algorithm is described in the figure below.
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1. Implement the orthogonal matching pursuit (OMP) algorithm in MATLAB.

2. Generate the phase transition diagram for OMP algorithm with N = 256, K varying from 1 to 16 and M varying
from 2 to 128 and a minimum of 100 trials for each configuration.

3. Use the phase transition diagram data for estimating the minimum M for different values of K and plot it.

5.11 Sparsifying an image
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CHAPTER 6

Scripts

6.1 Preamble

close all; clear all; clc;

Resetting random numbers:

rng('default');

Export management flag:

export = true;

6.2 Figures

Exporting figures:

if export
export_fig images\figure_name.png -r120 -nocrop;
export_fig images\figure_name.pdf;
end

Typical steps in figures:

xlabel('Principal angle (degrees)');
ylabel('Number of subspace pairs');
title('Distribution of principal angles over subspace pairs in signal space');
grid on;
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CHAPTER 7

Indices and tables

• genindex

• modindex

• search
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