
SmartThings Classic Developer
Documentation

Release latest

SmartThings

April 10, 2019

What’s New

I Latest Updates 1

1 July 07 2017 3

2 June 08 2017 5

3 May 04 2017 7

4 April 20 2017 9

5 March 22 2017 11

6 March 08 2017 13

7 March 02 2017 15

8 February 10 2017 17

9 February 08 2017 19

10 January 23 2017 21

11 January 03 2017 23

12 December 08 2016 25

13 November 30 2016 27

14 November 17 2016 29

15 November 15 2016 31

16 November 14 2016 33

17 November 10 2016 35

18 November 03 2016 37

19 October 26 2016 39

20 October 17 2016 41

i

21 October 13 2016 43

22 October 11 2016 45

23 October 06 2016 47

24 October 05 2016 49

25 September 23 2016 51

26 September 14 2016 53

27 September 09 2016 55

28 September 02 2016 (3) 57

29 September 02 2016 (2) 59

30 September 02 2016 61

31 August 17 2016 63

32 August 16 2016 65

33 August 15 2016 67

34 August 04 2016 69

35 July 28 2016 71

36 July 25 2016 73

37 July 21 2016 75

38 July 07 2016 77

39 June 23 2016 79

40 June 17 2016 81

41 June 13 2016 83

42 June 9 2016 85

43 May 27 2016 87

44 May 23 2016 89

II Overview 91

45 Developer highlights 95

46 How it works 97
46.1 SmartApps . 97
46.2 Device Handlers . 97

47 An open platform 99

ii

48 What’s next 101

III Up and Running 103

49 Register 107

50 Explore 109
50.1 Account management . 109
50.2 IDE and Simulator . 109

51 Next steps 111

IV Groovy Basics 113

52 Overview 117

53 Installing Groovy 119

54 Optional semicolons 121

55 Comments 123

56 Objects 125

57 Optionally typed 127

58 Operators 129

59 Strings 131

60 Lists and Maps 133

61 Control structures 135

62 Calling methods 137

63 Getters and setters 139

64 Defining methods 141

65 Exception handling 143

66 Closures 145

67 Groovy truth 149

68 Default imports 151

69 What about classes? 153

70 Further reading 155

71 Next steps 157

iii

V Groovy With SmartThings 159

72 How it works 163

73 Language simplifications 165
73.1 Classes and JARs . 165
73.2 Restricted methods . 165
73.3 Global variables . 166

73.3.1 Constants . 166
73.3.2 Mutable variables . 166

73.4 Other notable restrictions . 166

74 Allowed classes 167

75 Summary and next steps 171

VI Writing Your First SmartApp 173

76 Goals 177

77 Prerequisites 179

78 Create a SmartApp 181

79 Editor 183

80 Simulator 185

81 SmartApp basics 187

82 Definition 189

83 Preferences 191
83.1 Capabilities . 192

84 Events and callback methods 193

85 Event Handler methods 195

86 Controlling devices 197

87 Using the Simulator 199

88 Publishing and installing 203

89 Turn off when motion inactive 207

90 Going further–adding flexibility 209

91 Complete code listing 213

92 How the switch turns on (or off) 215

93 Summary 217

94 Next steps 219
94.1 More about SmartApps . 219

iv

94.2 Fork it! . 219
94.3 Device Handler development . 219

VII Getting Help 221

95 Developer documentation 225

96 Community 227

97 SmartThings developer support 229

VIII Architecture 231

98 Big picture 235
98.1 Devices . 235
98.2 Hub . 236
98.3 Connectivity management . 236
98.4 Device Handler execution . 236
98.5 Subscription management . 236
98.6 SmartApp execution . 236
98.7 Web UI and IDE . 237

99 Important concepts 239
99.1 Asynchronous and eventually consistent programming . 239
99.2 Containers . 239
99.3 Accounts . 239
99.4 Locations and users . 241
99.5 Groups . 241

100Capability taxonomy 243
100.1 Attributes and events . 243
100.2 Commands . 243
100.3 Custom capabilities . 243

101SmartThings cloud 245

102Hubs and Locations 247
102.1 Consequences of sharding . 247

IX Tools and IDE 249

103Account Managment 253
103.1 Locations . 253
103.2 Hubs . 253
103.3 Devices . 254
103.4 SmartApps . 254
103.5 Device Handlers . 255
103.6 Publication requests . 255
103.7 Live logging . 255

104Editor and Simulator 257
104.1 Creating a new SmartApp . 257
104.2 Creating a new Device Handler . 258

v

104.3 Using the editor . 258
104.4 Using the Simulator . 259

105Logging 261
105.1 Overview . 261
105.2 Logging levels . 261
105.3 Logging exceptions . 261
105.4 Logging examples . 262

106GitHub Integration 265
106.1 Overview . 265
106.2 Setup . 266

106.2.1 Step 1 - Enable GitHub integration . 266
106.2.2 Step 2 - Connect your GitHub account to SmartThings . 266
106.2.3 Step 3 - Create a fork . 267
106.2.4 Step 4 - Clone the forked repository . 268
106.2.5 Step 5 - Configure Git to sync fork with SmartThings . 269

106.3 Repository structure . 269
106.4 GitHub integration IDE tour . 270

106.4.1 Color-coded names . 270
106.4.2 GitHub actions buttons . 270

Commit Changes . 271
Update from Repo . 271
Settings . 271

106.5 How to . 271
106.5.1 Add files from repository to the IDE . 271
106.5.2 Get latest code from SmartThingsPublic repository . 272
106.5.3 Commit changes in the IDE . 273
106.5.4 Keep your cloned repo in sync with origin . 273

106.6 Best practices . 273
106.6.1 Sync with upstream repository frequently . 273

106.7 FAQ . 274
106.8 Getting help . 274

X SmartApps 277

107Anatomy and Life Cycle of a SmartApp 281
107.1 Types of SmartApps . 281

107.1.1 Event Handler SmartApps . 281
107.1.2 Solution Module SmartApps . 281
107.1.3 Service Manager SmartApps . 281

107.2 SmartApp structure . 282
107.2.1 Definition . 282
107.2.2 Preferences . 282
107.2.3 Pre-defined callbacks . 282
107.2.4 Event Handlers . 283

107.3 SmartApp execution . 283
107.4 Device preferences . 283
107.5 Event subscriptions . 284
107.6 SmartApp sandboxing . 284
107.7 Execution location . 284

108Preferences and Settings 285
108.1 Preferences overview . 285

vi

108.2 Page definition . 286
108.3 Section definition . 287
108.4 Single preferences page . 287
108.5 Multiple preferences pages . 290
108.6 Preference elements and inputs . 291

108.6.1 paragraph . 291
108.6.2 icon . 293
108.6.3 href . 297
108.6.4 mode . 300
108.6.5 label . 302
108.6.6 app . 304
108.6.7 input . 304
108.6.8 Using device-specific inputs . 306

108.7 Hide when empty . 307
108.7.1 Working with other input types . 308

108.8 Custom Remove button . 308
108.9 Dynamic preferences . 310

108.9.1 dynamicPage() options . 312
108.10Private settings . 312
108.11Examples . 313

109Storing Data With State 315
109.1 Quick example . 315
109.2 State and Atomic State overview . 316
109.3 Persistence model . 316
109.4 How State works . 317
109.5 State and potential race conditions . 317
109.6 How Atomic State works . 318
109.7 Choosing between State and Atomic State . 318
109.8 What can be stored in State and Atomic State . 319

109.8.1 Supported types . 319
109.8.2 Other object types . 320

109.9 Working with the state object . 320
109.9.1 Adding values . 321
109.9.2 Retrieving values . 321
109.9.3 Updating values . 321
109.9.4 Removing values . 321
109.9.5 Iterating over state . 321
109.9.6 Working with collections . 322

109.10Working with the atomicState object . 322
109.10.1Adding values . 322
109.10.2Updating values . 322
109.10.3Removing values . 323
109.10.4Iterating over all values . 323
109.10.5Working with collections . 323

109.11Storage size limits . 323
109.12State in parent-child relationships . 324
109.13Summary . 324

110Events and Subscriptions 325
110.1 Subscribe to specific device Events . 325
110.2 Subscribe to all device Events . 326
110.3 Subscribe to multiple devices . 326
110.4 Subscribe to Location Events . 326

vii

110.5 The Event object . 327
110.6 See also . 327

111Working with Devices 329
111.1 Device overview . 329
111.2 Preferences–selecting the devices . 329
111.3 Interacting with devices . 330
111.4 Device attributes . 330
111.5 Device commands . 330
111.6 Getting device current values . 330
111.7 Querying event history . 331
111.8 Sending commands . 332
111.9 Interacting with multiple devices . 332
111.10See also . 333

112Modes 335
112.1 Overview . 335
112.2 Getting the current Mode . 335
112.3 Getting all Modes . 335
112.4 Setting the Mode . 336
112.5 Allowing users to select Modes . 336
112.6 Mode events . 336
112.7 Example . 337
112.8 Further reading . 337

113Routines 339
113.1 Overview . 340
113.2 Get available Routines . 341
113.3 Execute Routines . 341
113.4 Allowing users to select Routines . 341
113.5 Routine Events . 342
113.6 Example . 342
113.7 Further reading . 344

114Scheduling 345
114.1 Overview . 345
114.2 Schedule from now–runIn() . 345
114.3 Run once in the future–runOnce() . 346
114.4 Run on a recurring schedule . 347

114.4.1 Schedule once per day . 347
114.4.2 Schedule every X minutes or hours . 348
114.4.3 Schedule using cron . 349

114.5 Passing data to the handler method . 350
114.6 Removing scheduled executions . 351
114.7 Viewing schedules in the IDE . 352
114.8 Best practices . 352

114.8.1 Avoid chained runIn() calls . 353
114.8.2 Prefer runEvery*() over cron . 353
114.8.3 Execution time may not be in exact seconds . 353
114.8.4 Do not aggressively schedule . 353
114.8.5 unschedule() is expensive . 353
114.8.6 Number of scheduled executions limit . 354

114.9 Examples . 354

115Working With Time 355

viii

115.1 Taking action within a time window . 355
115.2 Execute only on certain days . 356
115.3 Working with time zones . 357

116Sunset and Sunrise 359
116.1 Sunrise and sunset Events . 359

116.1.1 Taking action at sunrise or sunset . 359
116.1.2 Taking action before or after . 359

116.2 Looking up sunrise or sunset directly . 361
116.3 Polling for sunrise or sunset . 361
116.4 Examples . 361

117App Touch 363
117.1 Subscribe to app . 363

118Making Synchronous External HTTP Requests 365
118.1 HTTP methods . 365
118.2 Configuring the request . 366
118.3 Handling the response . 366
118.4 Host and timeout limitations . 368

118.4.1 Host and IP address restrictions . 368
118.4.2 Request timeout limit . 368

118.5 Try it out . 368
118.6 See also . 369

119Making Asynchronous External HTTP Requests (Beta) 371
119.1 Overview . 371
119.2 Quick example . 372
119.3 Synchronous versus asynchronous . 372
119.4 The include Statement . 374
119.5 Configuring the request . 374

119.5.1 URI and path . 375
119.5.2 Request headers . 375
119.5.3 Query parameters . 375
119.5.4 Request body . 376

119.6 Handling the response . 377
119.6.1 Response status code . 377
119.6.2 Response headers . 378
119.6.3 Error responses . 378
119.6.4 JSON responses . 379
119.6.5 XML responses . 379
119.6.6 Getting the raw response . 380

119.7 Passing data to the request handler . 380
119.8 Available methods . 381
119.9 Host, timeout, response, and data size limits . 381

119.9.1 Host and IP address restrictions . 381
119.9.2 Request timeout limit . 381
119.9.3 Response size limit . 382
119.9.4 Data size limit . 382

119.10Using asynchronous HTTP in parent-child relationships . 382
119.11When to use asynchronous HTTP requests . 382
119.12Refactoring to asynchronous HTTP requests . 382

119.12.1Find high-value opportunities . 382
119.12.2Refactoring strategies . 383

119.13Example . 384

ix

119.14Related documentation . 384

120Sending Notifications 385
120.1 Send notifications with Contact Book . 385

120.1.1 Selecting Contacts to notify . 385
120.1.2 Send notifications to Contacts . 386
120.1.3 Handling disabled Contact Book . 387
120.1.4 Complete example . 387

120.2 Send push notifications . 388
120.3 Send SMS notifications . 389
120.4 Send both push and SMS notifications . 390
120.5 Only display message in the notifications feed . 391
120.6 Examples . 391
120.7 Related API documentation . 391

121Parent-Child SmartApps 393
121.1 Overview . 393
121.2 The parent SmartApp . 394
121.3 The child SmartApp . 394
121.4 Communicating between parent and children . 395
121.5 Preventing more than one parent instance . 395
121.6 Example . 395
121.7 Tips and best practices . 400
121.8 Summary . 401

122Example: Bon Voyage 403
122.1 Bon Voyage . 403
122.2 SmartApp preferences . 403
122.3 Monitor and react . 404
122.4 Related documentation . 407
122.5 Complete source code . 407

XI Web Services SmartApps 409

123Web Services SmartApps Overview 413
123.1 Introduction . 413
123.2 Concepts . 413
123.3 How it works . 414

123.3.1 OAuth-integrated app installation flow . 414
123.4 The end-user journey . 415

123.4.1 Initiate connection from external system . 415
123.4.2 Authentication and authorization . 415
123.4.3 Application configuration . 416

124Web Services Tutorial–SmartApp 419
124.1 Overview . 419
124.2 Create a new SmartApp . 419
124.3 Define preferences . 419
124.4 Specify endpoints . 420
124.5 GET switch information . 421
124.6 UPDATE the switches . 421
124.7 Self-publish the SmartApp . 422
124.8 Run the SmartApp in the Simulator . 422
124.9 Make API calls to the SmartApp . 422

x

124.10Uninstall the SmartApp . 423
124.11Summary . 423

125Web Services SmartApp Tutorial–Authorization Flow 425
125.1 Overview . 425
125.2 Prerequisites . 426
125.3 Bootstrap the Sinatra app . 426
125.4 Get an authorization code . 427
125.5 Get an access token . 429
125.6 Discover the endpoint . 429
125.7 Make API calls . 430
125.8 Summary . 431

126The SmartApp 433
126.1 Enable OAuth . 433
126.2 Preferences . 434
126.3 Mapping endpoints . 435
126.4 Request handling . 436

126.4.1 Path variables . 436
126.4.2 Query parameters . 437
126.4.3 Request body parameters . 437

126.5 Response handling . 438
126.5.1 Defaults . 438
126.5.2 Automatic JSON serialization . 438
126.5.3 Using render() to control the response . 438

126.6 Error handling . 439
126.6.1 Default errors . 439
126.6.2 Custom errors . 440

127Authorization 441
127.1 Overview . 441
127.2 Get authorization code . 441
127.3 Get access token . 442
127.4 Get SmartApp endpoints . 443
127.5 Make REST calls . 443

128Troubleshooting 445
128.1 General . 445
128.2 Errors during installation . 445

128.2.1 “<clientID> is not associated with a SmartApp in Location” after selecting Location 445
128.2.2 “Please select at least one device to authorize” error after clicking Authorize 446

XII Device Handlers 447

129Quick Start 451
129.1 Create a new Device Handler . 451
129.2 Create a Virtual Device . 453
129.3 Test your Device Handler with Virtual Device . 454
129.4 Next steps . 454

130Overview 459
130.1 Core concepts . 461

130.1.1 Capabilities . 461
130.1.2 Commands . 461

xi

130.1.3 Attributes . 462
130.1.4 Actuator and Sensor . 462

130.2 Protocols . 462
130.3 Execution location . 462

131Simulator 463
131.1 Overview . 463
131.2 Status . 463
131.3 Reply . 465
131.4 Summary . 465

132Definition 467
132.1 Capabilities . 467
132.2 Attributes . 468
132.3 Commands . 468
132.4 Fingerprinting . 469

132.4.1 ZigBee fingerprinting . 469
132.4.2 Z-Wave fingerprinting . 469

Z-Wave raw description . 469
New Z-Wave fingerprint format . 470
Legacy Z-Wave fingeprint format . 471

132.4.3 Fingerprinting best practices . 471
Add multiple fingerprints . 471
Device pairing process . 471
Overly general fingerprints . 472

133Tiles 473
133.1 Overview . 473
133.2 Tiles basics . 475

133.2.1 Main and details tiles configuration . 476
133.2.2 Grid layout . 477
133.2.3 Tile size . 478
133.2.4 Allowing the user to change the icon . 478

133.3 Tiles and Attribute state . 479
133.3.1 State actions . 479
133.3.2 Transition states . 480
133.3.3 State labels . 480
133.3.4 Background color . 481
133.3.5 State selection algorithm . 482
133.3.6 Icons . 482

133.4 Single-Attribute Tiles . 482
133.4.1 Standard Tile . 482
133.4.2 Value Tile . 484
133.4.3 Slider Control Tile . 485
133.4.4 Color Control Tile . 485
133.4.5 Carousel Tile . 486

133.5 Multi-Attribute Tiles . 486
133.5.1 Basics . 487
133.5.2 Multi-Attribute Tile types . 487
133.5.3 Attribute state and control keys . 487
133.5.4 Lighting Multi-Attribute Tile . 488
133.5.5 Thermostat Multi-Attribute Tile . 489
133.5.6 Multimedia Multi-Attribute Tile . 491
133.5.7 Generic Multi-Attribute Tile . 492

xii

133.5.8 Controls summary . 494
133.6 Color standards . 495

133.6.1 Colors . 495
133.6.2 Examples . 496

133.7 Additional information . 496
133.8 Examples . 497

134Preferences 499
134.1 Overview . 499
134.2 Defining preferences . 499
134.3 Device preferences are flat . 499
134.4 Display on setup . 500
134.5 Supported input types . 500
134.6 Getting preference input values . 500
134.7 Example . 501
134.8 Additional notes . 501

135Parse and Events 503
135.1 Overview . 503
135.2 Parse, Events, and Attributes . 504

135.2.1 Creating Events . 504
135.2.2 Multiple Events . 504
135.2.3 Generating Events outside of parse . 505

135.3 Tips . 505

136Z-Wave Primer 507
136.1 Command classes . 507
136.2 Listening and sleepy devices . 508
136.3 Configuration . 508
136.4 Association . 509

137Building Z-Wave Device Handlers 511
137.1 Parsing Events . 511
137.2 Sending commands . 512
137.3 Sending commands in response to Events . 513

138Z-Wave Example 515

139ZigBee Primer 523
139.1 Device Network ID . 523
139.2 Endpoints . 524
139.3 Clusters . 524
139.4 Commands . 524
139.5 Read and Write Attributes . 525
139.6 Configure reporting . 525
139.7 Device discovery . 525
139.8 Useful ZigBee references . 526

140Building ZigBee Device Handlers 527
140.1 Commands . 527

140.1.1 Read . 527
140.1.2 Write . 527
140.1.3 Command . 528
140.1.4 Configure . 528

140.2 ZigBee utilities . 529

xiii

140.3 Best practices . 529
140.4 Using the ZigBee Device Form . 529

140.4.1 What it does . 530
140.4.2 Use it if . 530
140.4.3 How to use . 531

141ZigBee Example 533

142Other Useful Methods 535
142.1 Scheduling . 535
142.2 Storing data . 535
142.3 Making external HTTP requests . 535

143Device Certification Overview 537

XIII Cloud- and LAN-connected Devices 539

144Service Manager Design Pattern 543
144.1 Basic overview . 543
144.2 Cloud-connected devices . 543
144.3 LAN-connected devices . 543

145Building Cloud-connected Device Types 545
145.1 Division of Labor . 545

145.1.1 Service Manager responsibilities . 545
145.1.2 Device Handler responsibilities . 545
145.1.3 How it all works . 545

145.2 Building the Service Manager . 546
145.2.1 Authentication using OAuth . 546

End user experience . 547
Implementation . 551
Initialize endpoint . 552
Callback endpoint . 553
Refreshing the OAuth token . 555

145.2.2 Discovery . 556
Identifying devices in the third-party device cloud . 556
Creating child devices . 556
Getting initial device state . 556

145.2.3 Handling adds, changes, deletes . 557
singleInstance Service Manager . 557
Implicit creation of new child Devices . 557
Implicit removal of child Devices . 558
Changes in Device name . 558
Explicit delete actions . 558

145.3 Building the Device Handler . 558
145.3.1 The Parse method . 558
145.3.2 Sending commands to the third-party cloud . 559
145.3.3 Receiving Events from the third-party cloud . 559
145.3.4 Generating Events at the request of the Service Manager 560

146Building LAN-connected Device Types 561
146.1 Division of Labor . 561

146.1.1 Service Manager responsibilities . 561
146.1.2 Device Handler responsibilities . 561

xiv

146.1.3 How it all works . 562
146.2 Building the Service Manager . 562

146.2.1 Discovery . 563
146.2.2 Verification . 564
146.2.3 Inclusion . 565
146.2.4 Health . 565
146.2.5 Best practices . 566
146.2.6 References and resources . 567

146.3 Building the Device Type . 567
146.3.1 Making outbound HTTP calls with HubAction . 567
146.3.2 Overview . 567
146.3.3 Creating a HubAction object . 567
146.3.4 Parsing the response . 568
146.3.5 Getting the addresses . 568
146.3.6 Wake on LAN (WOL) . 569
146.3.7 REST requests . 570
146.3.8 UPnP/SOAP requests . 570
146.3.9 Subscribing to device Events . 570
146.3.10References and resources . 571

147Automatic LAN Device Discovery 573
147.1 Impact on the developer . 573

147.1.1 Supported LAN-connected Devices . 573

148Capturing and Displaying Camera Pictures 575
148.1 Image Capture Capability . 575
148.2 Tiles for taking and viewing pictures . 575
148.3 Capture and display images . 576

148.3.1 LAN-connected cameras . 576
148.3.2 Cloud-connected cameras . 577

148.4 Retrieving an image . 578
148.5 Image size limits . 579
148.6 Allowed image name characters . 579
148.7 Image storage duration . 579
148.8 Supported image formats . 579
148.9 Related documentation . 580

XIV Composite Devices 581

149Device Handler for a Composite Device 585
149.1 Parent Device Handler . 585
149.2 Child Device Handler . 586

150Deleting a Composite Device 587

151Composite Device Tiles 589
151.1 Example: Simulated refrigerator . 590
151.2 Example composite tile code . 594

XV Arduino ThingShield 595

152Installing the library 599

xv

153Pairing the shield 601

154Changing the Device Handler 603

155Arduino examples 605

XVI Rate Limits 607

156SmartApp and Device Handler rate limits 611
156.1 Execution count limits . 611
156.2 Execution time limits . 611

157Web services rate limit headers 613

158SMS rate limits 615

159Parent-child relationship limit 617

160Avoiding rate limits 619

XVII Publishing Code 621

161For yourself 625
161.1 Ensure proper Location . 625
161.2 Publish . 626

162For public distribution 627
162.1 Review process . 627

XVIII Code Review Guidelines and Best Practices 629

163General 633
163.1 Code should be readable . 633
163.2 Don’t repeat yourself . 633
163.3 Methods should serve a single purpose . 633
163.4 Do not submit unused code . 633
163.5 Do not use offensive, profane, or libelous language . 633
163.6 Comment appropriately . 634
163.7 Handle all if() and switch() cases . 635
163.8 Verify assumptions . 635
163.9 Use consistent return values . 635
163.10Be careful indexing into arrays . 635
163.11Use the Elvis operator correctly . 636
163.12Handle null values . 636
163.13Use Groovy truth correctly . 637

164Using State 639
164.1 state is not an unbounded database . 639
164.2 Understand how state works . 639
164.3 Understand when to use atomicState vs. state . 639
164.4 Take care when storing collections in atomicState . 639

xvi

165Web Services 641
165.1 Document external HTTP requests . 641
165.2 Document any exposed endpoints . 641

166Scheduling 643
166.1 Avoid recurring short schedules . 643
166.2 Avoid chained runIn() calls . 643

167Security considerations 645
167.1 Subscriptions should be clear . 645
167.2 Subscriptions should be specific . 645
167.3 Do not use dynamic method execution . 645
167.4 Do not hard-code SMS messages . 646

168Performance 647
168.1 Do not use busy loops . 647
168.2 Do not use synchronized() . 647

169LAN-specific 649
169.1 Use the device-specific search . 649
169.2 Handle IP change . 649

170Parent-child relationships 651
170.1 Use separate files . 651

XIX Capabilities Reference 653

171Introduction 657

172Data Types 659

173Acceleration Sensor 661
173.1 Definition . 661

174Actuator 663
174.1 Definition . 663

175Air Conditioner Mode 665
175.1 Definition . 665

176Air Quality Sensor 667
176.1 Definition . 667

177Alarm 669
177.1 Definition . 669

178Audio Mute 671
178.1 Definition . 671

179Audio Notification 673
179.1 Definition . 673

180Audio Track Data 675
180.1 Definition . 675

xvii

181Audio Volume 677
181.1 Definition . 677

182Battery 679
182.1 Definition . 679

183Beacon 681
183.1 Definition . 681

184Bridge 683
184.1 Definition . 683

185Bulb 685
185.1 Definition . 685

186Button 687
186.1 Definition . 687

187Carbon Dioxide Measurement 689
187.1 Definition . 689

188Carbon Monoxide Detector 691
188.1 Definition . 691

189Color Control 693
189.1 Definition . 693

190Color Temperature 695
190.1 Definition . 695

191Color 697
191.1 Definition . 697

192Color Mode 699
192.1 Definition . 699

193Configuration 701
193.1 Definition . 701

194Consumable 703
194.1 Definition . 703

195Contact Sensor 705
195.1 Definition . 705

196Demand Response Load Control 707
196.1 Definition . 707

197Dishwasher Mode 709
197.1 Definition . 709

198Dishwasher Operating State 711
198.1 Definition . 711

199Door Control 713
199.1 Definition . 713

xviii

200Dryer Mode 715
200.1 Definition . 715

201Dryer Operating State 717
201.1 Definition . 717

202Dust Sensor 719
202.1 Definition . 719

203Energy Meter 721
203.1 Definition . 721

204Estimated Time Of Arrival 723
204.1 Definition . 723

205Execute 725
205.1 Definition . 725

206Fan Speed 727
206.1 Definition . 727

207Filter Status 729
207.1 Definition . 729

208Garage Door Control 731
208.1 Definition . 731

209Geolocation 733
209.1 Definition . 733

210Holdable Button 735
210.1 Definition . 735

211Illuminance Measurement 737
211.1 Definition . 737

212Image Capture 739
212.1 Definition . 739

213Indicator 741
213.1 Definition . 741

214Infrared Level 743
214.1 Definition . 743

215Light 745
215.1 Definition . 745

216Lock Only 747
216.1 Definition . 747

217Lock 749
217.1 Definition . 749

218Media Controller 751
218.1 Definition . 751

xix

219Media Input Source 753
219.1 Definition . 753

220Media Playback Repeat 755
220.1 Definition . 755

221Media Playback Shuffle 757
221.1 Definition . 757

222Media Playback 759
222.1 Definition . 759

223Media Presets 761
223.1 Definition . 761

224Media Track Control 763
224.1 Definition . 763

225Momentary 765
225.1 Definition . 765

226Motion Sensor 767
226.1 Definition . 767

227Music Player 769
227.1 Definition . 769

228Notification 773
228.1 Definition . 773

229Odor Sensor 775
229.1 Definition . 775

230Outlet 777
230.1 Definition . 777

231Oven Mode 779
231.1 Definition . 779

232Oven Operating State 781
232.1 Definition . 781

233Oven Setpoint 785
233.1 Definition . 785

234pH Measurement 787
234.1 Definition . 787

235Polling 789
235.1 Definition . 789

236Power Consumption Report 791
236.1 Definition . 791

237Power Meter 793
237.1 Definition . 793

xx

238Power Source 795
238.1 Definition . 795

239Presence Sensor 797
239.1 Definition . 797

240Rapid Cooling 799
240.1 Definition . 799

241Refresh 801
241.1 Definition . 801

242Refrigeration Setpoint 803
242.1 Definition . 803

243Relative Humidity Measurement 805
243.1 Definition . 805

244Relay Switch 807
244.1 Definition . 807

245Robot Cleaner Cleaning Mode 809
245.1 Definition . 809

246Robot Cleaner Movement 811
246.1 Definition . 811

247Robot Cleaner Turbo Mode 813
247.1 Definition . 813

248Sensor 815
248.1 Definition . 815

249Shock Sensor 817
249.1 Definition . 817

250Signal Strength 819
250.1 Definition . 819

251Sleep Sensor 821
251.1 Definition . 821

252Smoke Detector 823
252.1 Definition . 823

253Sound Pressure Level 825
253.1 Definition . 825

254Sound Sensor 827
254.1 Definition . 827

255Speech Recognition 829
255.1 Definition . 829

256Speech Synthesis 831
256.1 Definition . 831

xxi

257Step Sensor 833
257.1 Definition . 833

258Switch Level 835
258.1 Definition . 835

259Switch 837
259.1 Definition . 837

260Tamper Alert 839
260.1 Definition . 839

261Temperature Measurement 841
261.1 Definition . 841

262Thermostat Cooling Setpoint 843
262.1 Definition . 843

263Thermostat Fan Mode 845
263.1 Definition . 845

264Thermostat Heating Setpoint 847
264.1 Definition . 847

265Thermostat Mode 849
265.1 Definition . 849

266Thermostat Operating State 851
266.1 Definition . 851

267Thermostat Setpoint 853
267.1 Definition . 853

268Thermostat 855
268.1 Definition . 855

269Three Axis 861
269.1 Definition . 861

270Timed Session 863
270.1 Definition . 863

271Tone 865
271.1 Definition . 865

272Touch Sensor 867
272.1 Definition . 867

273Tv Channel 869
273.1 Definition . 869

274Ultraviolet Index 871
274.1 Definition . 871

275Valve 873
275.1 Definition . 873

xxii

276Video Clips 875
276.1 Definition . 875

277Video Stream 877
277.1 Definition . 877

278Voltage Measurement 879
278.1 Definition . 879

279Washer Mode 881
279.1 Definition . 881

280Washer Operating State 883
280.1 Definition . 883

281Water Sensor 887
281.1 Definition . 887

282Window Shade 889
282.1 Definition . 889

XX API Documentation 891

283How to read the docs 895
283.1 Objects . 895
283.2 Object wrappers . 895
283.3 Dynamic methods . 895
283.4 Conventions . 896

284API Contents 897
284.1 SmartApp . 897

284.1.1 installed() . 897
284.1.2 updated() . 898
284.1.3 uninstalled() . 898
284.1.4 <device or capability preference name> . 898
284.1.5 <number or decimal preference name> . 899
284.1.6 <text, mode, or time preference name> . 899
284.1.7 addChildApp() . 900
284.1.8 addChildDevice() . 900
284.1.9 apiServerUrl() . 901
284.1.10atomicState . 901
284.1.11canSchedule() . 902
284.1.12createAccessToken() . 902
284.1.13findAllChildAppsByName() . 902
284.1.14findAllChildAppsByNamespaceAndName() . 903
284.1.15findChildAppByName() . 903
284.1.16findChildAppByNamespaceAndName() . 904
284.1.17getAllChildApps() . 904
284.1.18getChildApps() . 904
284.1.19deleteChildDevice() . 905
284.1.20getAllChildDevices() . 905
284.1.21getApiServerUrl() . 905
284.1.22getChildDevice() . 905
284.1.23getChildDevices() . 905

xxiii

284.1.24getColorUtil() . 906
284.1.25getLocation() . 906
284.1.26getSunriseAndSunset() . 906
284.1.27getTwcConditions() . 907
284.1.28getTwcForecast() . 908
284.1.29getTwcLocation() . 915
284.1.30getTwcAlerts() . 916
284.1.31getTwcAlertDetail() . 918
284.1.32getWeatherFeature() - Deprecated . 920
284.1.33httpDelete() . 920
284.1.34httpError() . 921
284.1.35httpGet() . 921
284.1.36httpHead() . 922
284.1.37httpPost() . 923
284.1.38httpPostJson() . 923
284.1.39httpPut() . 924
284.1.40httpPutJson() . 925
284.1.41nextOccurrence() . 926
284.1.42now() . 926
284.1.43parseJson() . 926
284.1.44parseXml() . 927
284.1.45parseLanMessage() . 927
284.1.46parseSoapMessage() . 927
284.1.47render() . 927
284.1.48revokeAccessToken() . 928
284.1.49runIn() . 928
284.1.50runEvery1Minute() . 929
284.1.51runEvery5Minutes() . 930
284.1.52runEvery10Minutes() . 931
284.1.53runEvery15Minutes() . 931
284.1.54runEvery30Minutes() . 932
284.1.55runEvery1Hour() . 933
284.1.56runEvery3Hours() . 933
284.1.57runOnce() . 934
284.1.58schedule() . 935
284.1.59sendEvent() . 936
284.1.60sendHubCommand() . 936
284.1.61sendLocationEvent() . 937
284.1.62sendNotification() . 938
284.1.63sendNotificationEvent() . 938
284.1.64sendNotificationToContacts() . 938
284.1.65sendPush() . 939
284.1.66sendPushMessage() . 939
284.1.67sendSms() . 940
284.1.68sendSmsMessage() . 940
284.1.69setLocationMode() . 940
284.1.70settings . 941
284.1.71state . 941
284.1.72stringToMap() . 942
284.1.73subscribe() . 942
284.1.74subscribeToCommand() . 943
284.1.75timeOfDayIsBetween() . 943
284.1.76timeOffset() . 944
284.1.77timeToday() . 944

xxiv

284.1.78timeTodayAfter() . 945
284.1.79timeZone() . 946
284.1.80toDateTime() . 946
284.1.81unschedule() . 946
284.1.82unsubscribe() . 947

284.2 Device Handler . 947
284.2.1 <command name>() . 948
284.2.2 parse() . 948
284.2.3 addChildDevice() . 949
284.2.4 apiServerUrl() . 951
284.2.5 attribute() . 951
284.2.6 capability() . 952
284.2.7 carouselTile() . 952
284.2.8 childDeviceTile() . 953
284.2.9 command() . 954
284.2.10controlTile() . 955
284.2.11createEvent() . 955
284.2.12definition() . 956
284.2.13details() . 957
284.2.14device . 957
284.2.15fingerprint() . 958
284.2.16getApiServerUrl() . 958
284.2.17getChildDevices() . 958
284.2.18getColorUtil() . 959
284.2.19getImage() . 959
284.2.20httpDelete() . 959
284.2.21httpGet() . 960
284.2.22httpHead() . 960
284.2.23httpPost() . 961
284.2.24httpPostJson() . 962
284.2.25httpPut() . 962
284.2.26httpPutJson() . 963
284.2.27main() . 964
284.2.28metadata() . 964
284.2.29reply() . 965
284.2.30runEvery1Minute() . 966
284.2.31runEvery5Minutes() . 966
284.2.32runEvery10Minutes() . 967
284.2.33runEvery15Minutes() . 968
284.2.34runEvery30Minutes() . 968
284.2.35runEvery1Hour() . 969
284.2.36runEvery3Hours() . 969
284.2.37runIn() . 970
284.2.38runOnce() . 971
284.2.39schedule() . 971
284.2.40sendEvent() . 972
284.2.41simulator() . 973
284.2.42standardTile() . 974
284.2.43state . 974
284.2.44state() . 975
284.2.45status() . 976
284.2.46storeImage() . 976
284.2.47storeTemporaryImage() . 977
284.2.48tiles() . 979

xxv

284.2.49valueTile() . 979
284.2.50zigbee . 980
284.2.51zwave . 980

284.3 AppState . 981
284.3.1 getDateValue() . 981
284.3.2 getId() . 981
284.3.3 getDescriptionText() . 982
284.3.4 getDoubleValue() . 982
284.3.5 getFloatValue() . 983
284.3.6 getIntegerValue() . 983
284.3.7 getIsoDate() . 984
284.3.8 getJsonValue() . 984
284.3.9 getLastUpdated() . 984
284.3.10getLongValue() . 985
284.3.11getName() . 985
284.3.12getNumberValue() . 985
284.3.13getNumericValue() . 986
284.3.14getUnit() . 986
284.3.15getValue() . 987
284.3.16getXyzValue() . 987

284.4 Async HTTP API (Beta) . 987
284.4.1 delete() . 988
284.4.2 get() . 989
284.4.3 head() . 990
284.4.4 patch() . 990
284.4.5 post() . 991
284.4.6 put() . 992

284.5 AsyncResponse (Beta) . 993
284.5.1 getData() . 994
284.5.2 getErrorData() . 994
284.5.3 getErrorJson() . 994
284.5.4 getErrorMessage() . 995
284.5.5 getErrorXml() . 995
284.5.6 getHeaders() . 995
284.5.7 getJson() . 996
284.5.8 getStatus() . 996
284.5.9 getWarningMessages() . 996
284.5.10getXml() . 997
284.5.11hasError() . 997

284.6 Attribute . 997
284.6.1 getDataType() . 998
284.6.2 getName() . 998
284.6.3 getValues() . 999

284.7 Capability . 999
284.7.1 getAttributes() . 999
284.7.2 getCommands() . 1000
284.7.3 getName() . 1000

284.8 ColorUtilities . 1001
284.8.1 hexToRgb() . 1001
284.8.2 rgbToHex() . 1002

284.9 Command . 1002
284.9.1 getArguments() . 1002
284.9.2 getName() . 1003

284.10Device . 1003

xxvi

284.10.1<attribute name>State . 1004
284.10.2<command name>() . 1004
284.10.3current<Uppercase attribute name> . 1005
284.10.4currentState() . 1006
284.10.5currentValue() . 1006
284.10.6events() . 1007
284.10.7eventsBetween() . 1007
284.10.8eventsSince() . 1008
284.10.9getCapabilities() . 1008
284.10.10getDeviceNetworkId() . 1009
284.10.11getDisplayName() . 1009
284.10.12getHub() . 1009
284.10.13getId() . 1009
284.10.14getLabel() . 1010
284.10.15getLastActivity() . 1010
284.10.16getManufacturerName() . 1010
284.10.17getModelName() . 1010
284.10.18getStatus() . 1011
284.10.19getName() . 1011
284.10.20getSupportedAttributes() . 1011
284.10.21getSupportedCommands() . 1012
284.10.22getTypeName() . 1012
284.10.23hasAttribute() . 1012
284.10.24hasCapability() . 1013
284.10.25hasCommand() . 1014
284.10.26latestState() . 1014
284.10.27latestValue() . 1015
284.10.28statesBetween() . 1015
284.10.29statesSince() . 1016

284.11Event . 1017
284.11.1getData() . 1017
284.11.2getDate() . 1017
284.11.3getDateValue() . 1018
284.11.4getDescription() . 1018
284.11.5getDescriptionText() . 1018
284.11.6getDevice() . 1018
284.11.7getDisplayName() . 1019
284.11.8getDeviceId() . 1019
284.11.9getId() . 1019
284.11.10getDoubleValue() . 1019
284.11.11getFloatValue() . 1020
284.11.12getHubId() . 1020
284.11.13getInstalledSmartAppId() . 1021
284.11.14getIntegerValue() . 1021
284.11.15getIsoDate() . 1021
284.11.16getJsonValue() . 1022
284.11.17getLinkText() . 1022
284.11.18getLocation() . 1022
284.11.19getLocationId() . 1022
284.11.20getLongValue() . 1023
284.11.21getName() . 1023
284.11.22getNumberValue() . 1023
284.11.23getNumericValue() . 1024
284.11.24getSource() . 1024

xxvii

284.11.25getStringValue() . 1025
284.11.26getUnit() . 1025
284.11.27getValue() . 1025
284.11.28getXyzValue() . 1026
284.11.29isDigital() . 1026
284.11.30isPhysical() . 1026
284.11.31isStateChange() . 1027

284.12Hub . 1027
284.12.1getFirmwareVersionString() . 1027
284.12.2getId() . 1028
284.12.3getLocalIP() . 1028
284.12.4getLocalSrvPortTCP() . 1028
284.12.5getName() . 1028
284.12.6getType() . 1029
284.12.7getZigbeeEui() . 1029
284.12.8getZigbeeId() . 1029

284.13HubAction . 1029
284.14InstalledSmartApp . 1031

284.14.1currentState() . 1031
284.14.2getAccountId() . 1031
284.14.3getAllChildApps() . 1032
284.14.4getAppSettings() . 1032
284.14.5getChildApps() . 1032
284.14.6getChildDevices() . 1033
284.14.7getExecutionIsModeRestricted() . 1033
284.14.8getExecutableModes() . 1033
284.14.9getId() . 1033
284.14.10getInstallationState() . 1033
284.14.11getLabel() . 1034
284.14.12getName() . 1034
284.14.13getNamespace() . 1034
284.14.14getParent() . 1034
284.14.15getSubscriptions() . 1034
284.14.16statesBetween() . 1035
284.14.17statesSince() . 1035
284.14.18updateLabel() . 1036

284.15Location . 1036
284.15.1getContactBookEnabled() . 1036
284.15.2getCurrentMode() . 1036
284.15.3getId() . 1037
284.15.4getHubs() . 1037
284.15.5getLatitude() . 1037
284.15.6getLongitude() . 1037
284.15.7getMode() . 1038
284.15.8getModes() . 1038
284.15.9getName() . 1038
284.15.10setMode() . 1038
284.15.11getTemperatureScale() . 1039
284.15.12getTimeZone() . 1039
284.15.13getZipCode() . 1039

284.16Mode . 1039
284.16.1getId() . 1040
284.16.2getName() . 1040

284.17State . 1040

xxviii

284.17.1getDate() . 1041
284.17.2getDateValue() . 1041
284.17.3getDoubleValue() . 1041
284.17.4getFloatValue() . 1041
284.17.5getId() . 1042
284.17.6getIntegerValue() . 1042
284.17.7getIsoDate() . 1043
284.17.8getJsonValue() . 1043
284.17.9getLongValue() . 1043
284.17.10getName() . 1044
284.17.11getNumberValue() . 1044
284.17.12getNumericValue() . 1044
284.17.13getStringValue() . 1045
284.17.14getUnit() . 1045
284.17.15getValue() . 1045
284.17.16getXyzValue() . 1045

284.18ZigBee Reference . 1046
284.18.1Parse methods . 1047

zigbee.getEvent() . 1047
284.18.2Low level commands . 1048

additionalParams . 1048
zigbee.command() . 1048
zigbee.readAttribute() . 1049
zigbee.writeAttribute() . 1049
zigbee.configureReporting() . 1050

284.18.3ZigBee Capabilities . 1050
zigbee.on() . 1051
zigbee.off() . 1051
zigbee.setLevel() . 1052
zigbee.setColorTemperature() . 1052

284.18.4ZigBee helper commands . 1052
zigbee.parseDescriptionAsMap() . 1052
zigbee.convertToHexString() . 1052
zigbee.convertHexToInt() . 1053
zigbee.hexNotEqual() . 1053
zigbee.parseZoneStatus() . 1053

284.18.5Additional ZigBee classes . 1053
ZoneStatus . 1053

Accessing a Property/attribute . 1054
DataType . 1056

DataType constants . 1056
DataType.getLength() . 1058
DataType.isVariableLength() . 1058
DataType.isDiscrete() . 1058
DataType.pack() . 1058

284.19Z-Wave Reference . 1059

XXI Contributing to the Docs 1061

285Writing Style Guide 1063
285.1 Titles and headings . 1063

285.1.1 Avoid framing as questions . 1063
285.1.2 Avoid italics (emphasis) . 1064

xxix

285.1.3 Document titles . 1064
285.1.4 What not to capitalize in title . 1064
285.1.5 What to capitalize in title . 1064
285.1.6 Section headings . 1064

285.2 UI elements . 1065
285.3 List elements . 1065
285.4 Page structure . 1066

285.4.1 Page title . 1067
285.4.2 Headings . 1067

285.5 reStructuredText syntax . 1067
285.5.1 Links . 1067
285.5.2 Lists . 1068
285.5.3 Inline markup . 1068
285.5.4 Code examples . 1068
285.5.5 Images . 1069
285.5.6 Admonitions . 1069
285.5.7 Tables . 1070

285.6 API reference documents . 1071
285.6.1 Organization . 1071
285.6.2 Introduction . 1071
285.6.3 Method documentation . 1072

Signature . 1072
Parameters . 1072
Returns . 1073
Throws . 1073
Example . 1073

285.7 Miscellaneous tips . 1073
285.8 SmartThings glossary . 1074
285.9 Further reading . 1074

XXII Samsung SmartThings Hub FAQ 1075

xxx

Part I

Latest Updates

1

CHAPTER 1

July 07 2017

Changes to the thermostatCoolingSetpoint Capability:

• coolingSetpointMin and coolingSetpoingMax attributes replaced with
coolingSetpointRange.

Changes to the thermostatFanMode Capability:

• supportedThermostatFanModes attribute added.

Changes to the thermostatHeatingSetpoint Capability:

• heatingSetpointMin and heatingSetpointMax attributes replaced with
heatingSetpointRange.

Changes to the thermostatMode Capability:

• supportedThermostatModes attribute added.

Changes to the thermostatSetpoint Capability:

• thermostatSetpointMin and thermostatSetpointMax attributes replaced with
thermostatSetpointRange.

Changes to the thermostat Capability:

• coolingSetpointMin and coolingSetpointMax attributes replaced with
coolingSetpointRange.

• heatingSetpointMin and heatingSetpointMax attributes replaced with
heatingSetpointRange.

• thermostatSetpointMin and thermostatSetpointMax attributes replaced with
thermostatSetpointRange.

• supportedThermostatFanModes attribute added.

• supportedThermostatModes attribute added.

GitHub Release Tag

3

https://github.com/SmartThingsCommunity/Documentation/releases/tag/07-July-2017

SmartThings Classic Developer Documentation, Release latest

4 Chapter 1. July 07 2017

CHAPTER 2

June 08 2017

• HubAction reference documentation (page 1029) updated to clarify that HOST parameter is part of the headers
map.

GitHub Release Tag

5

https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-June-2017

SmartThings Classic Developer Documentation, Release latest

6 Chapter 2. June 08 2017

CHAPTER 3

May 04 2017

• Asynchronous HTTP requests now support optional response handler methods. For cases when you just need to
make a request, but don’t care about the response, just pass null for the response handler. Docs updated here
(page 987).

• Creating a Composite Device Handler? Check out the new Composite Device Tiles (page 589) documentation!

• Some changes and additions to several Capabilities:

– getAllActivities() and getCurrentActivity() Commands removed from mediaCon-
troller Capability.

– startActivity() Command updated to accept the ID of the activity, instead of the name.

– Optional coolingSetpointMin and coolingSetpointMax attributes added to the ther-
mostatCoolingSetpoint Capability.

– Optional heatingSetpointMin and heatingSetpointMax attributes added to the ther-
mostatHeatingSetpoint Capability.

– Optional thermostatSetpointMin and thermostatSetpointMax attributes added to the
thermostatSetpoint Capability.

– Optional coolingSetpointMin, coolingSetpointMax, heatingSetpointMin,
heatingSetpointMax, thermostatSetpointMin, and thermostatSetpointMax
attributes added to the thermostat Capability.

GitHub Release Tag

7

https://github.com/SmartThingsCommunity/Documentation/releases/tag/04-May-2017

SmartThings Classic Developer Documentation, Release latest

8 Chapter 3. May 04 2017

CHAPTER 4

April 20 2017

• Image capturing and viewing documentation (page 575) is here! Learn how to store, retrieve, and display images
from a LAN- or Cloud-connected camera device.

• Updated Rate Limiting documenation (page 609) with new child SmartApp and Device Handler limits, as well
as clarify existing rate limits.

GitHub Release Tag

9

https://github.com/SmartThingsCommunity/Documentation/releases/tag/20-April-2017

SmartThings Classic Developer Documentation, Release latest

10 Chapter 4. April 20 2017

CHAPTER 5

March 22 2017

• Composite Devices are here! Composite Devices allow developers to better model devices through a parent-
child relationship between Device Handlers. Check out the documentation (page 583) and leverage this new
design pattern for your composite devices!

• SmartThings has a new set of color standards for Device Handler Tiles. The Color standards (page 495) docu-
mentation covers all the new color standards.

• Updates to the Writing Style Guide (page 1063) and existing documentation to conform to new guidelines.

GitHub Release Tag

11

https://github.com/SmartThingsCommunity/Documentation/releases/tag/22-March-2017

SmartThings Classic Developer Documentation, Release latest

12 Chapter 5. March 22 2017

CHAPTER 6

March 08 2017

• Do you have custom LAN device integrations? If so, check out the Automatic LAN Device Discovery (page 573)
documentation to see what (if any) impact this has on your custom code.

GitHub Release Tag

13

https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-March-2017

SmartThings Classic Developer Documentation, Release latest

14 Chapter 6. March 08 2017

CHAPTER 7

March 02 2017

• Does your SmartApp or Device Handler need to execute every minute? Instead of writing your own cron
expression, use the new runEvery1Minute() (page 929)!

• Need to convert color values between hexadecimal and RGB? The ColorUtilities (page 1001) class has what
you need.

• If you are writing a parent-child SmartApp, check out the expanded and clarified documentation (page 394) for
using the app() input type.

• A new capability, bridge, allows devices to declare they act as a bridge to other devices.

• A new attribute, held, has been added to the button capability!

• The Writing Style Guide (page 1063) has been updated with guidelines for document title and headings capital-
ization and formatting. If you are a contributor to these docs, make sure you check it out!

GitHub Release Tag

15

https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-March-2017

SmartThings Classic Developer Documentation, Release latest

16 Chapter 7. March 02 2017

CHAPTER 8

February 10 2017

• Did you notice? We’ve updated the docs homepage (page ??) to help readers quickly identify and navigate to
common areas of interest.

GitHub Release Tag

17

https://github.com/SmartThingsCommunity/Documentation/releases/tag/10-February-2017

SmartThings Classic Developer Documentation, Release latest

18 Chapter 8. February 10 2017

CHAPTER 9

February 08 2017

• Z-Wave fingerprinting updates! The Z-Wave fingerprinting (page 469) documentation has been expanded and
updated with the latest information.

• Get information about a Device’s status and last activity using the new getStatus() (page 1011) and getLastAc-
tivity() (page 1010) methods.

• New to Device Handler development, or looking for a refresher? We’ve overhauled our Quick Start (page 451)
to ensure you can get up and running quickly and pain-free.

• Do you use cron to create recurring schedules? Have you seen if you could replace that often-difficult to
understand, write, and maintain cron expression with any of our runEvery* (page 348) methods? We’ve updated
the documentation (page 347) to highlight these methods and encourage their use, instead of using cron.

• Did you know you can copy code examples right to your clipboard? We updated the UX to increase the visibility
of this handy feature.

GitHub Release Tag

19

https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-February-2017

SmartThings Classic Developer Documentation, Release latest

20 Chapter 9. February 08 2017

CHAPTER 10

January 23 2017

• Search, discover and communicate with the devices in your network with the HubAction class. Check out the
new reference document for HubAction (page 1029).

• If you need to get the account ID associated with an installed SmartApp, check out the getAccountId()
(page 1031) method available on the InstalledSmartApp (page 1031) object!

• We’ve updated the Editor and Simulator (page 257) guide to clarify that you need to ensure you are on the
correct shard when creating SmartApps or Device Handlers.

• A new Capability, infraredLevel, is now available!

GitHub Release Tag

21

https://github.com/SmartThingsCommunity/Documentation/releases/tag/23-January-2017

SmartThings Classic Developer Documentation, Release latest

22 Chapter 10. January 23 2017

CHAPTER 11

January 03 2017

• Thinking about setting up a regular on and off schedule for your SmartThings? See our latest update, with
examples, in Schedule using cron (page 349).

• Confused about sharding and where to publish your SmartApp or Device Handler? Here is a big picture view
that clarifies Publishing Custom Code (page 623).

• Did you know there’s a default delay between commands when you send a sequence of them to the Hub? See
sendHubCommand() (page 936) reference documentation for details.

GitHub Release Tag

23

https://github.com/SmartThingsCommunity/Documentation/releases/tag/03-January-2017

SmartThings Classic Developer Documentation, Release latest

24 Chapter 11. January 03 2017

CHAPTER 12

December 08 2016

• Quick, how do you know what Capabilities are supported by SmartThings? Checkout out the new generated
Capabilities Reference (page 655), now live.

• Don’t know much about ZigBee? We got you covered with our updated ZigBee documentation in the ZigBee
Primer (page 523) and ZigBee Reference (page 1046) guides.

• What you, as a developer, must know while working with the SmartThings IDE. Checkout latest in the Hubs
and Locations (page 247) guide.

GitHub Release Tag

25

https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-December-2016

SmartThings Classic Developer Documentation, Release latest

26 Chapter 12. December 08 2016

CHAPTER 13

November 30 2016

• Did you know you can refresh any page of the SmartApp on the mobile device with a set interval? See the
dynamicPage() options (page 312) guide.

GitHub Release Tag

27

https://github.com/SmartThingsCommunity/Documentation/releases/tag/30-November-2016

SmartThings Classic Developer Documentation, Release latest

28 Chapter 13. November 30 2016

CHAPTER 14

November 17 2016

• Changed code blocks to use the monokai dark theme.

GitHub Release Tag

29

https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-November-2016

SmartThings Classic Developer Documentation, Release latest

30 Chapter 14. November 17 2016

CHAPTER 15

November 15 2016

• Added ability to copy code blocks to the clipboard.

GitHub Release Tag

31

https://github.com/SmartThingsCommunity/Documentation/releases/tag/15-November-2016

SmartThings Classic Developer Documentation, Release latest

32 Chapter 15. November 15 2016

CHAPTER 16

November 14 2016

GitHub Release Tag

• Added documentation for working with time zones (page 357).

• Fixed warnings related to lexical parsing of code blocks.

33

https://github.com/SmartThingsCommunity/Documentation/releases/tag/14-November-2016_2

SmartThings Classic Developer Documentation, Release latest

34 Chapter 16. November 14 2016

CHAPTER 17

November 10 2016

GitHub Release Tag

• Documented new getModelName() (page 1010) and getManufacturerName() (page 1010).

• Styling and organiational changes to the left-hand navigation.

• Internal build error fixes.

35

https://github.com/SmartThingsCommunity/Documentation/releases/tag/10-November-2016

SmartThings Classic Developer Documentation, Release latest

36 Chapter 17. November 10 2016

CHAPTER 18

November 03 2016

GitHub Release Tag

• Revised timeTodayAfter() method description in the SmartApp (page 897) Guide

• Added Working With Time (page 355) guide to the SmartApp Developers Guide

• Fixed up scheduling reference docs in Device Handler (page 947), and SmartApp (page 897) Guides

• Clarify getting latest device state in Device (page 1003), and Working with Devices (page 329)

• Corrected timeZone() method description in the SmartApp (page 897) Guide

37

https://github.com/SmartThingsCommunity/Documentation/releases/tag/03-November-2016

SmartThings Classic Developer Documentation, Release latest

38 Chapter 18. November 03 2016

CHAPTER 19

October 26 2016

GitHub Release Tag

• Documentation for nextOccurrence() (page 926).

• Documentation for getAllChildApps() (page 904), findAllChildAppsByName() (page 902), findAllChildAppsBy-
NamespaceAndName() (page 903), findChildAppByNamespaceAndName() (page 904), and getAllChildApps()
(page 904).

• Updated documentation for getChildApps() (page 904) to reflect that only “complete” child app installations
will be returned.

• Changed reference API docs to use getter forms instead of property access.

• New attribute values added for the lock capability.

• Typo fixes and other copy edits.

39

https://github.com/SmartThingsCommunity/Documentation/releases/tag/26-October-2016

SmartThings Classic Developer Documentation, Release latest

40 Chapter 19. October 26 2016

CHAPTER 20

October 17 2016

GitHub Release Tag

• Documentation for beta asynchronous HTTP APIs (page 371)

• Typo fixes and other copy edits

41

https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-October-2016

SmartThings Classic Developer Documentation, Release latest

42 Chapter 20. October 17 2016

CHAPTER 21

October 13 2016

GitHub Release Tag

• Moved rate limiting documentation into its own guide (page 609)

• Typo fixes and other copy edits

43

https://github.com/SmartThingsCommunity/Documentation/releases/tag/13-October-2016

SmartThings Classic Developer Documentation, Release latest

44 Chapter 21. October 13 2016

CHAPTER 22

October 11 2016

GitHub Release Tag

• Documented SMS rate limits (page 615)

• Fixed typos

45

https://github.com/SmartThingsCommunity/Documentation/releases/tag/11-October-2016

SmartThings Classic Developer Documentation, Release latest

46 Chapter 22. October 11 2016

CHAPTER 23

October 06 2016

GitHub Release Tag

• Added instructions for creating a simple code example when creating a developer support ticket (page 229).

• Added documentation (page 308) for specifying a custom Remove button for preferences.

47

https://github.com/SmartThingsCommunity/Documentation/releases/tag/06-October-2016

SmartThings Classic Developer Documentation, Release latest

48 Chapter 23. October 06 2016

CHAPTER 24

October 05 2016

GitHub Release Tag

• Added documentation for passing data to schedule handler methods (page 350).

• Added best practices (page 651) for parent-child relationships.

• Updated the repository’s README with pull request guidelines.

• Added scheduling APIs to the Device Handler (page 947) reference documentation (including all runEvery*
APIs, which are now supported in Device Handlers).

• Fixed broken cron tutorial link the Scheduling (page 345) guide.

• Added note to the first SmartApp tutorial (page 175) and Editor and Simulator (page 257) that the Simulator is
inconsistent with the mobile application.

49

https://github.com/SmartThingsCommunity/Documentation/releases/tag/05-October-2016

SmartThings Classic Developer Documentation, Release latest

50 Chapter 24. October 05 2016

CHAPTER 25

September 23 2016

GitHub Release Tag

• Added link to the Z-Wave public spec on the following Z-Wave pages: Building Z-Wave Device Handlers
(page 511) and Z-Wave Primer (page 507)

• Updated the Color Control capability to correctly reflect the capability definition.

• Updated Jinja template to add some more features for the ongoing generated capability documentation project.

• Fixed minor grammatical errors.

51

https://github.com/SmartThingsCommunity/Documentation/releases/tag/23-September-2016

SmartThings Classic Developer Documentation, Release latest

52 Chapter 25. September 23 2016

CHAPTER 26

September 14 2016

GitHub Release Tag

• Update to the State and Atomic State documentation (page 315) to reorganize, clarify, and expand content.

53

https://github.com/SmartThingsCommunity/Documentation/releases/tag/14-September-2016

SmartThings Classic Developer Documentation, Release latest

54 Chapter 26. September 14 2016

CHAPTER 27

September 09 2016

GitHub Release Tag

• Removed Occupancy capability

• Fixed unschedule() (page 946) docs to clarify that a specific handler method name can be passed to
unschedule().

55

https://github.com/SmartThingsCommunity/Documentation/releases/tag/09-September-2016

SmartThings Classic Developer Documentation, Release latest

56 Chapter 27. September 09 2016

CHAPTER 28

September 02 2016 (3)

GitHub Release Tag

• Fixing RTD build

57

https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-September-2016-03

SmartThings Classic Developer Documentation, Release latest

58 Chapter 28. September 02 2016 (3)

CHAPTER 29

September 02 2016 (2)

GitHub Release Tag

• Fixing RTD build

59

https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-September-2016-02

SmartThings Classic Developer Documentation, Release latest

60 Chapter 29. September 02 2016 (2)

CHAPTER 30

September 02 2016

GitHub Release Tag

• Typos and spelling fixes

• Added more around the generated capabilities documentation framework

• Added Troubleshooting (page 445) document to the SmartApp Web Services guide

• Fixed colorControl example code in the capabilities reference

61

https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-September-2016

SmartThings Classic Developer Documentation, Release latest

62 Chapter 30. September 02 2016

CHAPTER 31

August 17 2016

GitHub Release Tag

• Fix documentation (page 943) for subscribeToCommand() (only takes a Device argument, not a list of
Devices)

• Typos and spelling fixes

63

https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-August-2016

SmartThings Classic Developer Documentation, Release latest

64 Chapter 31. August 17 2016

CHAPTER 32

August 16 2016

GitHub Release Tag

• Documentation (page 261) for the ability to pass a Throwable to logging methods to get more logging details
about the exception shown in the logs.

65

https://github.com/SmartThingsCommunity/Documentation/releases/tag/16-August-2016

SmartThings Classic Developer Documentation, Release latest

66 Chapter 32. August 16 2016

CHAPTER 33

August 15 2016

GitHub Release Tag

• Make edits to Makefile as a first step in getting generated capabilities documentation integrated into the docu-
mentation build.

67

https://github.com/SmartThingsCommunity/Documentation/releases/tag/15-August-2016

SmartThings Classic Developer Documentation, Release latest

68 Chapter 33. August 15 2016

CHAPTER 34

August 04 2016

GitHub Release Tag

• Added zigbee.parseZoneStatus() (page 1053) documentation

• Added documentation for Additional ZigBee classes (page 1053)

• Clarified findChildAppByName() (page 903) API documentation

• Added documentation (page 535) to Device Handler Guide for other useful APIs available to Device Handlers,
including Scheduling, HTTP Requests, and State.

• Fixed documentation for Event.dateValue (page 1018) to indicate that it returns null if date cannot be parsed

• Various fixes for reStructuredText formatting and legal syntax warnings

• Moved this documentation change log to top of navigation

69

https://github.com/SmartThingsCommunity/Documentation/releases/tag/04-August-2016

SmartThings Classic Developer Documentation, Release latest

70 Chapter 34. August 04 2016

CHAPTER 35

July 28 2016

GitHub Release Tag

• Document the new hideWhenEmpty (page 307) preferences option.

71

https://github.com/SmartThingsCommunity/Documentation/releases/tag/28-July-2016

SmartThings Classic Developer Documentation, Release latest

72 Chapter 35. July 28 2016

CHAPTER 36

July 25 2016

GitHub Release Tag

• Add a strong warning to the State documentation (page 315) to emphasize the importance of never mixing
atomicState and state in the same SmartApp.

73

https://github.com/SmartThingsCommunity/Documentation/releases/tag/25-July-2016

SmartThings Classic Developer Documentation, Release latest

74 Chapter 36. July 25 2016

CHAPTER 37

July 21 2016

GitHub Release Tag

• Documented (page 433) the new redirect URI field on OAuth SmartApps

75

https://github.com/SmartThingsCommunity/Documentation/releases/tag/21-July-2016

SmartThings Classic Developer Documentation, Release latest

76 Chapter 37. July 21 2016

CHAPTER 38

July 07 2016

GitHub Release Tag

• Added documentation for working with collections in State (page 322) and Atomic State (page 323).

• Added documentation for AppState (page 981)

• Added documentation for InstalledSmartApp (page 1031)

• Added clarification (page 422) that the callable URL for Web Services SmartApps will vary by installed location

• Updated developer call schedule

77

https://github.com/SmartThingsCommunity/Documentation/releases/tag/07-July-2016

SmartThings Classic Developer Documentation, Release latest

78 Chapter 38. July 07 2016

CHAPTER 39

June 23 2016

GitHub Release Tag

• Splitting the Music Player capability into three capabilities

– Audio Notification

– Music Player

– Tracking Music Player

79

https://github.com/SmartThingsCommunity/Documentation/releases/tag/23-June-2016
http://docs.smartthings.com/en/latest/capabilities-reference.html

SmartThings Classic Developer Documentation, Release latest

80 Chapter 39. June 23 2016

CHAPTER 40

June 17 2016

GitHub Release Tag

• Adding WOL (Wake On Lan) documentation

81

https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-June-2016
http://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/building-lan-connected-device-types/building-the-device-type.html#wake-on-lan-wol

SmartThings Classic Developer Documentation, Release latest

82 Chapter 40. June 17 2016

CHAPTER 41

June 13 2016

GitHub Release Tag

• Adding Code Review Guidelines and Best Practices (page 631) for SmartApps and Device Handlers.

83

https://github.com/SmartThingsCommunity/Documentation/releases/tag/13-June-2016

SmartThings Classic Developer Documentation, Release latest

84 Chapter 41. June 13 2016

CHAPTER 42

June 9 2016

GitHub Release Tag

• Fix spelling of “capability” in Attribute (page 997) docs

• Fix capitalization of “localIP” in Hub (page 1027) docs

• Document the SmartThings developer support (page 229) form

• Document Device Handler Preferences (page 499)

• Document device-specific preference inputs (page 306)

• Clarify GitHub Integration (page 265) only available in the US

85

https://github.com/SmartThingsCommunity/Documentation/releases/tag/09-June-2016

SmartThings Classic Developer Documentation, Release latest

86 Chapter 42. June 9 2016

CHAPTER 43

May 27 2016

• Add additionalParams argument for ZigBee library. Docs (page 1046) | GitHub PR

87

https://github.com/SmartThingsCommunity/Documentation/pull/315

SmartThings Classic Developer Documentation, Release latest

88 Chapter 43. May 27 2016

CHAPTER 44

May 23 2016

• Updated and expanded Device Handler tiles docs. Docs (page 473) | GitHub PR.

89

https://github.com/SmartThingsCommunity/Documentation/pull/314

SmartThings Classic Developer Documentation, Release latest

90 Chapter 44. May 23 2016

Part II

Overview

91

SmartThings Classic Developer Documentation, Release latest

SmartThings is the open developer platform for the Internet of Things.

With SmartThings, developers can:

• Create applications that let users connect devices, actions, and external services to create automations.

• Integrate new devices into the SmartThings ecosystem.

• Publish applications and device integrations to the SmartThings catalog.

93

SmartThings Classic Developer Documentation, Release latest

94

CHAPTER 45

Developer highlights

SmartThings was built to be developer-friendly. Some of the key developer features:

• A simple programming framework using the Groovy programming language. Don’t know Groovy? No worries.
We’ve written a tutorial (page 115) to get you up to speed.

• An architecture that allows developers to control hardware with simple software. Turning a switch on is as easy
as switch.on().

• A web-based IDE for developing SmartThings solutions.

• A Simulator for testing your code, even if you don’t have specific devices you are developing for.

• An active and growing community of SmartThings developers.

95

https://community.smartthings.com/

SmartThings Classic Developer Documentation, Release latest

96 Chapter 45. Developer highlights

CHAPTER 46

How it works

There are two primary ways that developers can create with SmartThings.

46.1 SmartApps

def someoneArrived(evt) {
lights.on()
sendPush("Someone has arrived!")

}

SmartApps are small programs that allow users to connect their devices to make their home more intelligent. As the
world around us becomes more and more connected, it is the intelligence between these devices that makes our world
smart. SmartApps allow developers to control hardware with simple software.

SmartApps can typically be summarized by what they do. Some example SmartApps:

• “Turn the lights off after a certain time when no motion is detected”

• “Notify me if a door opens when I’m not home”

• “Turn my thermostat down when I leave home”

SmartThings ships with many SmartApps already available. Almost all automations that you configure with your
SmartThings mobile application are SmartApps. If you’ve set up your lights to come on when motion is detected, or
to receive a notification if your door opens when you aren’t home, you’ve used SmartApps.

Of course, SmartApps are capable of much more than the above examples. SmartApps can communicate with external
web services, send push and SMS notifications, expose their own REST endpoints, and more.

46.2 Device Handlers

def on() {
zigbee.on()

}

Developers can also integrate new devices into the SmartThings ecosystem by creating Device Handlers. These
Groovy programs encapsulate the details of communication between SmartThings and the physical devices. In the
SmartApp code example above, we turned the lights on by simply calling lights.on(). The Device Handler is
responsible for physically turning the light on (don’t worry about the details of this just yet).

97

SmartThings Classic Developer Documentation, Release latest

98 Chapter 46. How it works

CHAPTER 47

An open platform

SmartThings was built by developers, for developers. We recognized that only by creating an open development
platform, will the power of the IoT be fully unleashed.

Our web-based IDE and simulator (page 251) allows developers to create, edit, test, and publish their SmartThings
code. SmartApps and Device Handlers are hosted in our public GitHub Repository, and our web-based IDE and
Simulator is integrated with GitHub (page 265).

Our vibrant developer community is a great place to learn, collaborate, and help each other.

99

https://github.com/SmartThingsCommunity/SmartThingsPublic
https://community.smartthings.com/c/developers

SmartThings Classic Developer Documentation, Release latest

100 Chapter 47. An open platform

CHAPTER 48

What’s next

To start developing with SmartThings, you will need to create a developer account and become familiar with the
developer tools. This is covered next in the Up and Running (page 105).

SmartThings uses the Groovy programming language. Don’t know Groovy? Check out our Groovy Basics (page 115)
and Groovy With SmartThings (page 161) tutorials.

Then, take a deep dive into developing with SmartThings by writing your first SmartApp, using the Writing Your First
SmartApp (page 175).

101

SmartThings Classic Developer Documentation, Release latest

102 Chapter 48. What’s next

Part III

Up and Running

103

SmartThings Classic Developer Documentation, Release latest

SmartThings offers a rich toolset to develop, test, and publish custom code.

Don’t have a SmartThings Hub or any devices yet? Carry on! You can still create an account and even develop without
any hardware, by using our online IDE and Simulator.

Of course, you’ll want to have the hardware sooner than later, but you can start developing with SmartThings with
nothing more than the free SmartThings mobile app, a web browser, and an internet connection.

105

SmartThings Classic Developer Documentation, Release latest

106

CHAPTER 49

Register

If you already have the SmartThings mobile app, you can access the developer IDE at https://graph.api.smartthings.
com, using the same email and password.

If you don’t have the mobile app, you can register for an account by visiting https://account.samsung.com/account/
signUp.do. You can then download the free SmartThings mobile app for iOS, Android, or Windows.

107

https://graph.api.smartthings.com
https://graph.api.smartthings.com
https://account.samsung.com/account/signUp.do
https://account.samsung.com/account/signUp.do
https://geo.itunes.apple.com/us/app/smartthings-mobile/id590800740?mt=8
https://play.google.com/store/apps/details?id=com.smartthings.android
https://www.microsoft.com/en-us/store/apps/smartthings-mobile/9wzdncrdszmq

SmartThings Classic Developer Documentation, Release latest

108 Chapter 49. Register

CHAPTER 50

Explore

The Tools and IDE (page 251) guide discusses the developer tools in more detail, but for now, let’s look at a few key
features to get you comfortable.

50.1 Account management

You can use the tools available to view and manage the Locations, Hubs, and Devices, as well as view a live log for
locations where you are listed as the owner.

50.2 IDE and Simulator

109

SmartThings Classic Developer Documentation, Release latest

At the top of the page, you’ll notice links for My SmartApps and My Device Handlers. This is where any custom code
will be listed. Clicking on any SmartApp or Device Handler will bring you to the code editor, where you can view,
edit, test, and publish your custom code.

As a new SmartThings developer, you won’t have any SmartApps or Device Handlers yet. We will guide you through
creating one later in the Writing Your First SmartApp (page 175).

110 Chapter 50. Explore

CHAPTER 51

Next steps

Now that you know what the SmartThings developer platform offers, you can dive in to the fun stuff.

If you’re new to Groovy, we recommend that you read through the Groovy Basics (page 115) tutorial. You’ll learn
about Groovy, and how SmartThings uses it for development. The Groovy With SmartThings (page 161) tutorial
discusses some key differences between regular Groovy and Groovy with SmartThings.

Once you’ve completed that (or maybe you’re the adventurous sort and just want to dive right in to some SmartApp
code), check out the Writing Your First SmartApp (page 175) tutorial.

111

SmartThings Classic Developer Documentation, Release latest

112 Chapter 51. Next steps

Part IV

Groovy Basics

113

SmartThings Classic Developer Documentation, Release latest

SmartThings uses the Groovy programming language. If you’ve programmed before, you can learn Groovy.

The Groovy programming language is documented at http://www.groovy-lang.org/documentation.html. This tutorial
will familiarize you with Groovy and its use in SmartThings, but is not a complete reference for the language.

Tip: If you already know Groovy, or prefer to learn as you go, you can skip this tutorial and refer to this page as
a mini-reference of sorts. It is important, however, that you understand how Groovy is used in SmartThings. That is
discussed in the Groovy With SmartThings (page 161) tutorial.

To develop with SmartThings, you do not need to be an expert in Groovy. The SmartThings development environment
was created to be easy-to-use, so that it does not require someone to be proficient in Groovy (or any other language).
That said, having a basic understanding of some of the core concepts of Groovy will help you be most productive in
your development.

115

http://www.groovy-lang.org/documentation.html

SmartThings Classic Developer Documentation, Release latest

116

CHAPTER 52

Overview

Groovy is an object-oriented programming language for the Java platform. It is a dynamic language with features
similar to those of Python, Ruby, Perl, and Smalltalk.

If you are familiar with languages like Java, C/C++, Python, Ruby, or JavaScript, you will see many similarities in
Groovy.

Groovy code is compiled to byte code that is executed by the Java Virtual Machine (JVM). We choose Groovy as the
SmartThings programming language for its simplicity and flexibility, as well as the performance and stability of the
JVM.

Because Groovy is compiled to byte code that runs on the JVM Java Virtual Machine (JVM), 99% of Java code is
valid Groovy. The standard Java libraries are available to Groovy programs. Groovy extends Java in many useful
ways, which we’ll learn about here.

117

SmartThings Classic Developer Documentation, Release latest

118 Chapter 52. Overview

CHAPTER 53

Installing Groovy

The best way to get familiar with Groovy is by installing it and experimenting. SmartThings development does not
require you to have a copy of Groovy installed, since SmartThings code is executed within SmartThings infrastructure,
but having a local copy of Groovy is useful for learning.

Head over to the Groovy Documentation site and follow the Getting Started guides for downloading and installing
Groovy (the rest of the Getting Started material is pretty awesome too, and definitely worth a read).

We make heavy use of the Groovy Console to test things out, and recommend you do to.

Note: In the code snippets below, you’ll see a method assert() used often. This method is built in to Groovy, and
we use it to verify assumptions. If the value passed to assert() is not true, the program will terminate. This lets us
test out our code easily.

For example, assert true is valid, and the program will continue. Anything that evaluates to false will cause the
program to halt, so assert false will terminate with an informative message.

While useful for learning, it’s important to note that assert() is not available for you to use in SmartThings code.
Neither is the method println(), for that matter. For security and performance reasons, SmartThings runs in a
sandboxed environment that restricts access to certain features. The sandboxed environment is discussed further in the
Groovy With SmartThings (page 161) tutorial.

119

http://www.groovy-lang.org/documentation.html

SmartThings Classic Developer Documentation, Release latest

120 Chapter 53. Installing Groovy

CHAPTER 54

Optional semicolons

Semicolons are optional in Groovy, and generally not used:

def someString = "this statement has a semicolon";
def someOtherString = "this one does not"

121

SmartThings Classic Developer Documentation, Release latest

122 Chapter 54. Optional semicolons

CHAPTER 55

Comments

Groovy supports single line comments:

// this is a single line comment
// each line requires slashes
def myNum = 2 // comments can also come at the end of a statement

Multiline comments are also supported:

/* this is a comment that
spans multiple lines.*/

def myNum = 2

123

SmartThings Classic Developer Documentation, Release latest

124 Chapter 55. Comments

CHAPTER 56

Objects

In Groovy, everything is an object. Objects have methods and properties.

Methods are the things the object can do, and similar to other languages, are optionally (more on that later) invoked
with parentheses () that may contain arguments.

// calling method doSomething on someObject
someObject.doSomething()

// calling method doSomethingElse with one argument
someObject.doSomethingElse("a string argument")

// get the property named someProperty on someObject
someObject.someProperty

125

SmartThings Classic Developer Documentation, Release latest

126 Chapter 56. Objects

CHAPTER 57

Optionally typed

Groovy is an optionally typed language. The following are both valid Groovy:

// explicit typing
Person person = new Person()

// using def
def person2 = new Person()

In Groovy, we can use def in place of an explicit type. The exact type of object that will be assigned will vary when
using def.

Why use def instead of explicit types? While not required, def is commonly used in Groovy (and in SmartThings)
because it provides greater flexibility and readability.

Consider this strongly typed example:

String addThem(String str1, String str2) {
return str1 + str2

}

String added = addThem("Smart", "Things");
assert "SmartThings" == added

In the example above, addThem() is defined to accept two String parameters. Groovy supports operator over-
loading, so using the + operator concatenates the two strings.

What happens when we try to invoke addThem() with two numbers?

// fails!
assert 3 == addThem(1, 2)

This results in an exception like this:

groovy.lang.MissingMethodException: No signature of method: Script1.addThem() is applicable for argument types: (java.lang.Integer, java.lang.Integer) values: [1, 2]
Possible solutions: addThem(java.lang.String, java.lang.String)
at Script1.run(Script1.groovy:7)

Because addThem() is defined to accept two String parameters, we get a MissingMethodException when
calling addThem(1, 2), since there is no method named addThem that accepts two numbers.

If we use def instead of an explicit type, we can take advantage of something called duck typing. Put simply, duck
typing is the principle that if it walks like a duck and quacks like a duck, then it’s a duck. In programming terms, this
means that if an object supports certain properties or methods, then we can use those regardless of its type.

To illustrate this with an example, consider the above example refactored to use def:

127

https://en.wikipedia.org/wiki/Duck_typing

SmartThings Classic Developer Documentation, Release latest

def addThem(str1, str2) {
// strings and numbers support the + operator
return str1 + str2

}

def added = addThem("Smart", "Things")
assert added == "SmartThings"

def added2 = addThem(4, 2)
assert added2 == 6

Omitting the explicit type information in favor of def allows us to build flexible programs without getting bogged
down in ensuring we have all our typing information correct. This is particularly useful for smaller programs, which
is what you will be writing with SmartThings.

Note: Strict statically typed languages like Java determine the method that will be called at compile time. Groovy
determines the methods to invoke at runtime, using something called multi-methods or dynamic dispatch. You can
read more about multi-methods here in the Groovy documentation.

128 Chapter 57. Optionally typed

http://www.groovy-lang.org/differences.html#_multi_methods

CHAPTER 58

Operators

Groovy supports all the typical operators, such as arithmetic operators, assignment operators, and relational operators:

assert 1 + 2 == 3 // use == for checking equality
assert 1 < 2

def a = 1
def b = a += 2
assert a == 3

def c = 4
def d = c++
assert d == 5

There a few other notable operators that you may not have seen in other languages; one of them is the Safe Navigation
Operator. Using Groovy’s Safe Navigation Operator, you can navigate object structures without fear of getting a
NullPointerException on a null object.

Suppose we have a property named location, that also has a method getHelloHome(). Further, suppose that
the object returned by getHelloHome() has a method named getPhrases(). Ultimately, we want to get the
phrases.

We could do:

def phrases = location.getHelloHome().getPhrases()

But, what if getHelloHome() returns null? We’d then get a NullPointerException at runtime when trying
to call getPhrases() on a null object.

If you’re not familiar with Groovy, you might try something like this to avoid that:

def hh = location.getHelloHome()
def phrases
// recall that non-null objects are "true"
if (hh) {

phrases = hh.getPhrases()
}

That works, and is valid Groovy, but we can do better. Using the safe navigation operator (?.), we can safely traverse
the object graph. If any objects are null, the method simply will not be invoked and null will be returned.

This results in much cleaner code:

def phrases = location.getHelloHome()?.getPhrases()

129

SmartThings Classic Developer Documentation, Release latest

In this example, if getHelloHome() is not null, we’ll call the getPhrases() method on it. If it does return null,
the whole expression simply returns null.

If there’s ever a chance of running into a NullPointerException when navigating an object structure, use the
safe navigation operator to safely (and concisely) avoid it.

There are many more Groovy operators documented here.

130 Chapter 58. Operators

http://docs.groovy-lang.org/latest/html/documentation/#groovy-operators

CHAPTER 59

Strings

Strings can be defined using single, double, or triple quotes:

def a = "some string"
def b = 'another string'
def c = '''Triple quotes

allow multiple
lines'''

Strings defined with double quotes support interpolation. This allows us to substitute any Groovy expression into a
String at the specified location. Interpolation is achieved using the ${} syntax:

def name = "Your Name"
def greeting = "Hello, ${name}"
assert "Hello, Your Name" == greeting

Of course, more interesting interpolations are possible. Any expression can be placed inside the ${}:

def name = "Your Name"
def greeting = "Hello, ${name.toUpperCase()}"
assert "Hello, YOUR NAME" == greeting

You can also use the $ without the {} for simple property substitutions or simple dotted expressions:

def name = "Your Name"

// can omit the {} here
def greeting = "Hello, $name"
assert "Hello, Your Name" == greeting

def person = [firstName: 'Walter', lastName: 'Sobchak']
def greeting = "Hello, $person.firstName $person.lastName"

Note: Dotted expressions are expressions of the form a.b or a.b.c. Expressions that would contain parentheses
like method calls, curly braces for closures, or arithmetic operators, are not dotted expressions and you should use
${}. We recommend always using the ${} notation.

You’ll see String interpolations frequently in SmartThings.

There are some other handy Groovy String features, like the ability to remove part of a string using the - operator:

def lannisters = "A Lannister does not always pays their debts"
def corrected = lannisters - "does not "
assert "A Lannister always pays their debts" == corrected

131

SmartThings Classic Developer Documentation, Release latest

You can read more about Strings here.

132 Chapter 59. Strings

http://docs.groovy-lang.org/latest/html/documentation/#all-strings

CHAPTER 60

Lists and Maps

Groovy supports the typical collection structures like Lists and Maps in an easy-to-use way.

Here are some examples showing how to work with Lists in Groovy:

// simple list of Numbers
def myList = [2, 3, 5, 8, 13, 21]

// use the << operator to append items to a list
myList << 34
assert myList == [2, 3, 5, 8, 13, 21, 34]

// get elements in a list
// first element is at index 0
assert 8 == myList[3]

// can use negative index to start from the end
assert 21 == myList[-2]

// lists can support different types of data
def myMixedList = [1, "two", true]

Maps are similarly straightforward:

// simple map of key/value pairs
def myMap = [key1: "value1", key2: "value2"]

// can get value for a key with the "." notation:
assert "value1" == myMap.key1

// can also get the value using subscript notation:
assert "value2" == myMap['key2']

// a list of maps
def listOfMaps = [[key1: "val1", key2: "val2"],

[key1: "another val", key2: "and another"]]
assert "another val" == listOfMaps[1].key1

While lists and maps are simple in Groovy, there are many powerful methods in the Groovy collections APIs that
extend their power. You are encouraged to read the Groovy documentation for more information, but here are some
cool examples:

def colors = ["red", "green", 42, "blue"]

// remove items from a list with the "-" operator

133

SmartThings Classic Developer Documentation, Release latest

colors = colors - 42
assert ["red", "green", "blue"] == colors

def people = [[first: "Jimmy", last: "James"],
[first: "Bill", last: "McNeal"]]

// The * operator allows us to invoke an action on every item in the
// collection, returning a new list of results.
def firstNames = people*.first
assert ["Jimmy", "Bill"] == firstNames

// this is also useful for invoking the same method on a collection of objects:
def listOfStrings = ["a", "b", "c"]
assert ["A", "B", "C"] == listOfStrings*.toUpperCase()

134 Chapter 60. Lists and Maps

CHAPTER 61

Control structures

Groovy supports the conditional if/else syntax as you’d expect:

if (...) {
...

} else if (...) {
...

} else {
...

}

You can also use the switch statement to handle possible values conditionally:

def deviceDescription = "presence: 1"
def result = ""

switch (deviceDescription) {
case "presence: 0":

result = "not present"
break

case "presence: 1":
result = "present"
break

default:
result = "unknown"

}

assert "present" == result

Looping is also similar to Java or C:

def result = ""
for (int i = 0; i < 3; i++) {

result += "Z"
}
assert "ZZZ" == result

You can also use the for/in loop when working with collections:

def next = 0
for (i in [8, 13]) {

next += i
}
assert next == 21

135

SmartThings Classic Developer Documentation, Release latest

136 Chapter 61. Control structures

CHAPTER 62

Calling methods

When invoking methods, parentheses are sometimes optional. Methods that do not accept any parameters must include
the parentheses.

def myMethod() {
// ...

}

def myOtherMethod(someArg1, someArg2) {
// ...

}

myMethod() // OK
myMethod // error
myOtherMethod(2, 3) // OK
myOtherMethod 4, 5 // OK

137

SmartThings Classic Developer Documentation, Release latest

138 Chapter 62. Calling methods

CHAPTER 63

Getters and setters

Groovy adds in some convenience JavaBean style getter and setter methods. It’s worth being aware of this in case you
see some code that references a property that seemingly isn’t defined anywhere:

def getSomeValue() {
return "got it"

}

assert "got it" == someValue

How did referencing someValue end up invoking the method getSomeValue()? When Groovy sees a reference
to the property named someValue, it first looks to see if it is defined somewhere. In the above example, it is not.
So, Groovy then looks to see if there is a getter method. JavaBean conventions specify that a properties getter method
should be named beginning with “get”, followed by the name of the property (with the first letter of the property
capitalized).

Don’t worry if that’s somewhat confusing; just know that if you a reference to a property name that doesn’t appear to
exist, it might be invoking a getter method.

139

SmartThings Classic Developer Documentation, Release latest

140 Chapter 63. Getters and setters

CHAPTER 64

Defining methods

Methods are generally defined and invoked as in other modern languages, with some notable enhancements.

First, the basics. Method signatures can accept both typed and untyped arguments:

// arguments types are optional:
def asMap(arg1, arg2) {

return [arg1: arg2]
}
assert [key: "val"] == asMap("key", "val")

// can use typed arguments as well
Map asMapWithTypedArgs(String arg1, String arg2) {

return [arg1: arg2]
}
assert [key: "another val"] = asMap("key", "another val")

The return statement is optional in a Groovy method. The value of the last expression evaluated is returned by
default:

def asMap(arg1, arg2) {
// no return statement
[arg1: arg2]

}
assert [key: "val"] == asMap("key", "val")

Methods can also be defined to accept named parameters. This is frequently used in SmartThings, as it allows for
flexible and easily-extendable methods. This is accomplished by accepting a Map parameter (the typing is optional,
but used here for clarity):

def myMethod(Map params) {
"$params.firstName, $params.lastName"

}

// note the lack of parentheses here also
assert "First, Last" == myMethod firstName: "First", lastName: "Last"

Methods can also define default values for parameters. If not passed when calling the method, the default will be used:

def defaultParams(first, last, middle = "") {
"Welcome, $first $middle $last"

}

def greetGeorge = defaultParams("George", "Costanza", "Louis")
def greetKramer = defaultParams("Cosmo", "Kramer")

141

SmartThings Classic Developer Documentation, Release latest

assert "Welcome, George Louis Costanza" == greetGeorge
assert "Welcome, Cosmo Kramer" == greetKramer

Worth noting is that none of the above definitions include any type of explicit visibility modifier information. By
default, when using def, the method is public. Want to make your method private? It’s syntactically allowed, but
actually isn’t respected by Groovy (gasp!). And in SmartThings, this really isn’t necessary since we are not creating
our own classes or object models. So, we typically just omit any visibility modifier for simplicity.

142 Chapter 64. Defining methods

CHAPTER 65

Exception handling

Like other programming languages, Groovy has error conditions, or exceptions. Because Groovy is based on Java,
there are similarities to how Java handles exceptions. The big difference is that Groovy does not require you to handle
so-called checked exceptions. In Groovy, we are always free to handle exceptions if we want, or disregard them and
let them percolate up the call stack.

To handle general exceptions, you can place the potentially exception-causing code in a try/catch block:

try {
someMethodThatMightGoBoom()

} catch (e)
// log the error message, and/or handle in some way

}

By not declaring the type of exception we can catch, any exception will be caught here.

143

SmartThings Classic Developer Documentation, Release latest

144 Chapter 65. Exception handling

CHAPTER 66

Closures

If you are most familiar with languages like C or Java, closures may be something you haven’t heard of or used. You’ll
see a lot of closures being used in Groovy and SmartThings, so it’s worth understanding the basics.

First, consider a simple example. Say we have a List of numbers, and want to do something with each item in the list.
For our purposes, it doesn’t matter what we want to do, only that we want to iterate over every item in the list and do
something.

We could certainly do something like this:

def list = [1, 2, 3, 4]
for (int i = 0; i < list.size(); i++) {

println list[i]
}

That works, but if you think about it, our code shouldn’t have to know the details of the list’s size or control iterating
over its contents. All we really care about is doing something to each item!

Fortunately, because Groovy supports closures, we can rewrite the above code as:

def list [1, 2, 3, 4]
list.each {num ->

println num
}

If you have a Java background, you might be thinking to yourself that Java already solves this with the for/each
statement. And for simple iteration, you’re right - both the for/each statement in Java and the each() method in
Groovy appear to do the same thing. But, closures are much more powerful than just providing more convenient ways
to iterate, as we’ll see next.

Consider an example where given a list of numbers, we want to know which numbers are greater than 50. Without
closures, we would probably write something like this:

def greaterThan50(nums) {
def result = []
for (num in nums) {

if (num > 50) {
result << num

}
}
result

}

def test = greaterThan50([2, 5, 62, 50, 25, 88])
assert 2 == test.size()

145

SmartThings Classic Developer Documentation, Release latest

assert test.contains(62)
assert test.contains(88)

This is valid Groovy, but with the ability to use closures, we can write code that is much more expressive and concise:

def greaterThan50(nums) {
// findAll returns a list of items
// that match the condition specified in the passed-in closure
nums.findAll {

it > 50
}

}

def test = greaterThan50([2, 5, 62, 50, 25, 88])
assert 2 == test.size()
assert test.contains(62)
assert test.contains(88)

This may look very foreign to you, but once you start using and understanding closures, you’ll find them very useful.

Simply put, Groovy Closures are anonymous blocks of code that can be passed to other methods, and those methods
can then call that block of code.

The example above uses the findAll() method that is available on all Groovy collections. The method accepts a
closure (defined within {}) as the argument (when passing closures to methods, it is typical and preferred to not put
parentheses around the parameters).

findAll() works by calling the passed-in closure on every element in the list, and if the item meets the criteria
specified in the closure (greater than 50), adds it to a new list that is returned. The closure ({ it > 50}) is passed
the item - by default, this is available in a variable named it. You can also provide a name if you wish, by using the
-> operator:

nums.findAll {num ->
num > 50

}

To deepen our understanding, we will next look at an example of creating a method that accepts a closure.

Let’s say we want to print all even numbers up to a a specified number 1. While we can do this without closures, using
them will illustrate how they work.

Here’s the code to do this:

def pickEven(n, block) {
for (int i=2; i <= n; i += 2) {

block(i)
}

}

pickEven(10) {
println it

}

The pickEven() method accepts an upper bound (n), and a closure (block). It iterates over all the even numbers
up to the upper bound, and calls the passed-in closure on each (block(i)).

When we call pickEven(), the closure simply calls println() on each item. Running this would result in the
following output:

1 This example is taken from the book Programming Groovy: Dynamic Productivity for the Java Developer by Venkat Subramaniam.

146 Chapter 66. Closures

http://www.amazon.com/Programming-Groovy-Productivity-Developer-Programmers/dp/1934356093/

SmartThings Classic Developer Documentation, Release latest

2
4
6
8
10

A final note about closures, with regards to the use of the optional parentheses. As discussed earlier, parentheses are
optional when calling methods in most cases. This is no different for closures, but convention is to not put parentheses
around closures as arguments to methods.

The above call to findAll() could be written as:

nums.findAll({ num ->
num > 50

})

It is idiomatic Groovy to not surround closure arguments with parentheses. When a method accepts multiple parame-
ters, and the closure is the last parameter, the closure should be outside the parentheses.

// instead of:
pickEven(10 {

println it
})

// prefer:
pickEven(10) {

println it
}

There’s much more to know about closures if you’re curious, but if you understand the above concepts you will know
enough to use them in your SmartThings development.

147

SmartThings Classic Developer Documentation, Release latest

148 Chapter 66. Closures

CHAPTER 67

Groovy truth

Groovy has some special definitions for what is true and what is false. It’s worth understanding these definitions, as
they become very valuable in writing concise, expressive Groovy code.

Boolean values behave as you’d expect:

def t = true
def f = false

assert t
assert !f

If an object reference is null, it will evaluate to false:

def obj
assert !obj

This allows us to remove some boilerplate code around null checks. If you’re familiar with Java, you have probably
seen code like this:

if (obj != null) {
// ...

}

In Groovy, we can simply do:

if (obj) {
// ...

}

Strings also provide some handy truthiness:

def str1 = ""
def str2 = "some string"

assert !str1 // empty strings are false
assert str2

Collections also support reasonable boolean values - empty collections evaluate to false:

def list1 = [1, 2, 3]
def list2 = []
def map1 = ['myKey': 'myValue']
def map2 = [:]

assert list1

149

SmartThings Classic Developer Documentation, Release latest

assert !list2 // empty list is false
assert map1
assert !map2 // empty map is false

Back to Java, you may be familiar with writing code like this:

Map<String, String> myMap = someMethodThatReturnsAMap();
if (myMap != null && !myMap.isEmpty()) {

// ...
}

That’s a lot of noise in the code just to check that the map is not empty. With Groovy, this becomes much more
straightforward:

def myMap = someMethodThatReturnsAMap()
if (myMap) {

// here we know that the map is not null, and contains items.
}

The above should get you through 99% of the code you’ll see and write with SmartThings, but see the Groovy
documentation for more on the Groovy Truth.

150 Chapter 67. Groovy truth

http://docs.groovy-lang.org/latest/html/documentation/#Groovy-Truth

CHAPTER 68

Default imports

Groovy imports several Java and Groovy packages by default. The following packages are imported for us (no need
to explicitly import them via the import statement):

• java.io.*

• java.lang.*

• java.math.BigDecimal

• java.math.BigInteger

• java.net.*

• java.util.*

• groovy.lang.*

• groovy.util.*

151

SmartThings Classic Developer Documentation, Release latest

152 Chapter 68. Default imports

CHAPTER 69

What about classes?

At the beginning of this tutorial, we said that Groovy is an object-oriented language. Yet, we haven’t discussed creating
classes in this tutorial. The reason for this is that in SmartThings, creating your own classes actually isn’t possible. In
SmartThings, each SmartApp or Device Handler is a relatively small, contained piece of code that runs in a sandboxed
environment.

If you want to learn more about classes in Groovy in general or for usage outside of SmartThings, see the Groovy
documentation.

153

SmartThings Classic Developer Documentation, Release latest

154 Chapter 69. What about classes?

CHAPTER 70

Further reading

There are many resources available to learn more about Groovy. As we’ll see in the Groovy With SmartThings
(page 161) tutorial, there are some things about the Groovy programming language that we simplify with Smart-
Things, so a full knowledge of Groovy and all its capabilities is not necessary to develop with SmartThings.

If you want to learn more about Groovy, here are some good resources available online:

• The Groovy Documentation is the official language documentation.

• The Style Guide in the Groovy documentation contains many useful guidelines and recommendations for writing
idiomatic Groovy code.

• Learn Groovy in Y minutes is an excellent, concise, and code-heavy tutorial for getting familiar with Groovy.

• Groovy for Java Developers aims to get Java developers familiar with Groovy quickly.

There are also several books on Groovy. Here are a couple we know and recommend:

• Groovy in Action

• Programming Groovy

155

http://www.groovy-lang.org/documentation.html
http://www.groovy-lang.org/style-guide.html
http://learnxinyminutes.com/docs/groovy
https://www.timroes.de/2015/06/27/groovy-tutorial-for-java-developers/
http://www.amazon.com/Groovy-Action-Dierk-246-nig/dp/1935182447
http://www.amazon.com/Programming-Groovy-Productivity-Developer-Programmers/dp/1937785300

SmartThings Classic Developer Documentation, Release latest

156 Chapter 70. Further reading

CHAPTER 71

Next steps

Now that you know some of the basics of Groovy, head over to our Groovy With SmartThings (page 161) tutorial to
learn how SmartThings uses Groovy in some very specific ways for development.

157

SmartThings Classic Developer Documentation, Release latest

158 Chapter 71. Next steps

Part V

Groovy With SmartThings

159

SmartThings Classic Developer Documentation, Release latest

SmartThings runs Groovy in a sandboxed environment. This means that not all features of the Groovy program-
ming language are available in SmartThings. To understand why, we need to understand where SmartThings code is
executed.

All SmartThings code is executed in, and by, the SmartThings ecosystem. When you write a SmartApp or a Device
Handler, it will ultimately be executed by the SmartThings platform. It may execute on the Hub or in the SmartThings
cloud, but the important thing to note is that it is executed by SmartThings.

Because SmartApps and Device Handlers execute within the SmartThings ecosystem, SmartThings restricts access to
certain methods or features. You can’t create or open a file, for example.

Before we discuss the specifics of what is and what is not available to your SmartApps and Device Handlers, we’ll first
discuss how SmartThings makes several APIs available within your SmartApp or Device Handler. While this is not
strictly necessary to understand to be able to develop with SmartThings, it may help to shed light on what is happening
behind the scenes.

161

SmartThings Classic Developer Documentation, Release latest

162

CHAPTER 72

How it works

One of the first things you’ll notice when starting to develop with SmartThings, is that there are many methods avail-
able to you that do not require any import statements. In fact, it’s rare to see import statements at all in SmartThings.

This is because every SmartApp or Device Handler is actually an instance of an abstract Executor class defined in
the SmartThings platform. This Executor class defines or includes many methods. The result of this is that every
SmartApp or Device Handler has available to it (through inheritance) a large number of methods without importing
anything.

This model provides a simple framework in which you can develop your SmartApps and Device Handlers - all the
necessary methods are simply available to call without needing to import anything.

Now that we understand (at least at a high level) how SmartApps and Device Handlers make various methods available,
let’s look at some of the things that are not allowed within SmartThings code. After that, we’ll look at the entire
whitelist of allowable classes.

163

SmartThings Classic Developer Documentation, Release latest

164 Chapter 72. How it works

CHAPTER 73

Language simplifications

73.1 Classes and JARs

As a SmartApp or Device Handler author, you cannot create your own classes, or import any custom JARs. While at
first this may seem like a significant restriction, in practice you’ll rarely find this to be the case. Because of the nature
of SmartApps and Device Handlers, and the various methods available to you, the need to create your own classes or
object structures is rarely needed.

There may be certain scenarios in which you discover your task would be easier if only you could import some third-
party library or create your own helper class. In cases like these, reach out to us on the forums and let us know your
specific use case. It’s possible there already exists an API to do what you need, and if not, we may be able to get it
added to SmartThings.

73.2 Restricted methods

Because SmartThings code executes within its own ecosystem, there are a few methods that we restrict for security
purposes. Many of these methods deal with Groovy’s advanced metaprogramming concepts. Groovy metaprogram-
ming allows developers to get and modify runtime information for objects. In SmartThings, this isn’t necessary to do
and is a potential security risk, so they are disabled.

Here are the methods that are not available in SmartThings. Trying to access these will result in a
SecurityException at runtime.

• addShutdownHook()

• execute()

• getClass()

• getMetaClass()

• setMetaClass()

• propertyMissing()

• methodMissing()

• invokeMethod()

• mixin()

• print()

• printf()

165

SmartThings Classic Developer Documentation, Release latest

• println()

• sleep()

73.3 Global variables

73.3.1 Constants

Due to the sandboxed nature of SmartApp and Device Handler execution, defining global constant variables like this
will not work:

def MY_CONSTANT = "some constant value"

Defining constants as above is valid Groovy code and will compile, but the value of MY_CONSTANT will be null.

Instead, for any global constants you’d like in your SmartApp or Device Handler, define a no-op getter method that
returns the value:

def getMyConstant() {
return "some constant value"

}

You can then call the method directly, or use some Groovy magic (page 139) to invoke no-arg getters.

73.3.2 Mutable variables

Similarly, creating a global variable and then updating it will not work:

def globalVar = "some value"

def someMethod() {
// update the variable here, but this will not persist across executions!
globalVar = "some updated val"

}

Instead, any information you need persisted between executions needs to be stored the application state (page 315).

73.4 Other notable restrictions

There are a few other notable restrictions in SmartThings worth discussing:

• You cannot create your own threads.

• You cannot use System methods, like System.out()

• You cannot create or access files.

• You cannot define closures outside of a method. Something like def squareItClosure = {it * it}
is not allowed at the top-level, outside of a method body.

166 Chapter 73. Language simplifications

CHAPTER 74

Allowed classes

SmartThings also specifies a whitelist of allowed classes. Only classes included in this whitelist are available for
use within SmartThings. Whenever a method is called (any method), SmartThings first checks to see that the re-
ceiver of the method (the object the method is being called on) is in the allowable types whitelist. If it isn’t, a
SecurityException will be thrown. This same principle applies to the creation of new objects with the new
keyword - if the object being created is not in the whitelist, a SecurityException is also thrown.

Most SmartThings solutions will not need to instantiate any of these classes directly. The majority of objects you work
with will be available to you via callback parameters or injected right into your SmartApp or Device Handler. Here is
the whitelist of available, non-SmartThings-specific types (i.e., Java, Groovy and third party library classes):

Important: Certain methods that update JVM settings are disallowed, even though the usage of the class is permitted.
For example, calling TimeZone.setDefault() is not allowed, and will throw a SecurityException.

This is due to the fact that many SmartThings applications may be executing on a single JVM. Updating system-wide
properties may have unintended consequences on other applications running on the same JVM.

As a general rule-of-thumb, if a method has impact on the underlying JVM, it will not be allowed, for the reasons
discussed above.

• ArrayList

• BigDecimal

• BigInteger

• Boolean

• Byte

• ByteArrayInputStream

• ByteArrayOutputStream

• Calendar

• Closure

• Collection

• Collections

• Date

• DecimalFormat

• Double

167

SmartThings Classic Developer Documentation, Release latest

• Float

• GregorianCalendar

• HashMap

• HashMap.Entry

• HashMap.KeyIterator

• HashMap.KeySet

• HashMap.Values

• HashSet

• Integer

• JsonBuilder

• LinkedHashMap

• LinkedHashMap.Entry

• LinkedHashSet

• LinkedList

• List

• Long

• Map

• MarkupBuilder

• Math

• Random

• Set

• Short

• SimpleDateFormat

• String

• StringBuilder

• StringReader

• StringWriter

• SubList

• TimeCategory

• TimeZone

• TreeMap

• TreeMap.Entry

• TreeMap.KeySet

• TreeMap.Values

• TreeSet

• URLDecoder

168 Chapter 74. Allowed classes

SmartThings Classic Developer Documentation, Release latest

• URLEncoder

• UUID

• XPath

• XPathConstants

• XPathExpressionImpl

• XPathFactory

• XPathFactoryImpl

• XPathImpl

• ZoneInfo

• com.amazonaws.services.s3.model.S3Object

• com.amazonaws.services.s3.model.S3ObjectInputStream

• com.sun.org.apache.xerces.internal.dom.DocumentImpl

• com.sun.org.apache.xerces.internal.dom.ElementImpl

• groovy.json.JsonOutput

• groovy.json.JsonSlurper

• groovy.util.Node

• groovy.util.NodeList

• groovy.util.XmlParser

• groovy.util.XmlSlurper

• groovy.xml.XmlUtil

• java.net.URI

• java.util.RandomAccessSubList

• org.apache.commons.codec.binary.Base64

• org.apache.xerces.dom.DocumentImpl

• org.apache.xerces.dom.ElementImpl

• org.codehaus.groovy.runtime.EncodingGroovyMethods

• org.json.JSONArray

• org.json.JSONException

• org.json.JSONObject

• org.json.JSONObject.Null

169

SmartThings Classic Developer Documentation, Release latest

170 Chapter 74. Allowed classes

CHAPTER 75

Summary and next steps

Now that you understand how and why SmartThings restricts certain features of the Groovy programming language,
it’s time to dive deeper and write our first SmartApp! Head over to the Writing Your First SmartApp (page 175) and
learn how easy it is to program the physical world.

171

SmartThings Classic Developer Documentation, Release latest

172 Chapter 75. Summary and next steps

Part VI

Writing Your First SmartApp

173

SmartThings Classic Developer Documentation, Release latest

This tutorial will guide you through writing your first SmartApp. Once you’ve read through the Groovy With Smart-
Things (page 161), this should be your next stop.

175

SmartThings Classic Developer Documentation, Release latest

176

CHAPTER 76

Goals

At the end of this tutorial, you will know:

• How to create a SmartApp using the web-based IDE.

• The key components of a SmartApp.

• How to gather input from a user to configure the SmartApp.

• How to subscribe to changes in a device’s state.

• How to control devices.

• How to schedule a SmartApp to execute in the future.

• How to use the Simulator to test your SmartApp.

• How to publish your SmartApp and install it on your mobile phone.

• How to achieve world domination, without even trying.

The SmartApp we will create will be relatively simple, but it will teach you a few core concepts of SmartThings, and
get you familiar with the development process.

The purpose of the SmartApp we’ll write is to turn a switch on when motion is detected, and turn it off when motion
stops.

177

SmartThings Classic Developer Documentation, Release latest

178 Chapter 76. Goals

CHAPTER 77

Prerequisites

Before completing this tutorial, you should have read the Overview (page 93), and registered for an account as dis-
cussed in the Up and Running (page 105) page. It is recommended that you become at least familiar with the basic
Groovy concepts discussed in the Groovy Basics (page 115) and Groovy With SmartThings (page 161) tutorials.

Start by logging into IDE at at https://graph.api.smartthings.com. Next, navigate to My Locations page to see the
Locations you created.

Normally you will see just one Location where you installed your Hub. Click on the Location name appearing in the
far left column (i.e., the Name column). You may need to log in again with your SmartThings userid and password.

Warning: Note that even though the IDE is located at https://graph.api.smartthings.com, it may not always be the
correct URL for your SmartApp deployment. By explicitly selecting the Location name you will ensure that your
SmartApp will be published properly.

The SmartApp will utilize a motion sensor and a smart switch. Even if you don’t have these devices or don’t have a
Hub, you can still complete the majority of this tutorial. We will call out any special steps required if you don’t have
the hardware.

179

https://graph.api.smartthings.com
https://graph.api.smartthings.com

SmartThings Classic Developer Documentation, Release latest

180 Chapter 77. Prerequisites

CHAPTER 78

Create a SmartApp

In the IDE, navigate to the My SmartApps page. This will bring you to a page that shows all of the SmartApps that
you have created. This is also where you can create a new SmartApp. Click on the New SmartApp button.

Three options are presented for creating a new SmartApp: From Form, From Code, and From Template.

The From Form option will ask for some details about your SmartApp and create a SmartApp with some boiler plate
code.

The From Code option will create a new SmartApp out of code that you paste into the input box.

Lastly, the From Template option will let you select an already existing SmartApp and use its code as a starting point.
This is useful when you want to change or enhance a SmartApp that already exists, and it also a great way to look at
examples.

For our SmartApp, let’s stick to the From Form option.

Fill out the form as follows:

Name A name for your SmartApp. Call it something like “My First SmartApp”.

Namespace This field uniquely identifies your SmartApp in the event that someone else has written a SmartApp with
the exact same name. This should be your GitHub username (or if you don’t have a GitHub account, some other
unique identifier).

Author This is you. Populate this field with your handle.

181

SmartThings Classic Developer Documentation, Release latest

Description This describes the intent and functionality of your SmartApp. This description appears in the SmartApp
Marketplace section of SmartThings mobile application, and hence a clear and concise description is recom-
mended.

Category SmartApps are categorized based on functionality. This is used by SmartThings mobile application. Smar-
tApps can be published either for Marketplace or for your own use. When publishing SmartApps for your own
use (which is what we will be doing), all SmartApps will appear in My Apps category.

Leave the rest of the fields as they are, and click the Create button at the bottom. This will create the SmartApp and
populate it with some skeleton code. In the next section we will dive into using the editor to begin writing your first
SmartApp.

182 Chapter 78. Create a SmartApp

CHAPTER 79

Editor

Once you’ve created your SmartApp, you’ll be taken to the editor and Simulator. Before we look at the code, it’s
worth becoming familiar with some of the basic features.

Above the code window, there are five buttons:

Save This button saves your SmartApp in the SmartThings cloud.

Publish This allows you to publish your SmartApp for yourself, so you may install it in your SmartThings mobile
app, as well as to submit it to the SmartThings team for publication into the SmartThings catalog.

IDE Settings Here you can make changes to personalize the editor to your liking. You can choose from a variety of
themes to control the look and feel, specify your preferred keymapping, and set the font size.

App Settings This takes you back to the form that you created this SmartApp from, where you can view the values
entered when you created the SmartApp, as well as edit certain properties about the SmartApp.

Simulator This button toggles the display of the online Simulator. We’ll discuss the Simulator in further detail next.

Tip: On the upper-right side of the IDE, in the Simulator menu, you’ll see a drop-down titled Browse SmartApp
Templates. If you click this, you’ll see a variety of SmartApps that you can browse to learn from, or use as the starting
point of a new SmartApp.

183

SmartThings Classic Developer Documentation, Release latest

184 Chapter 79. Editor

CHAPTER 80

Simulator

On the right side of the IDE is the Simulator. This is where you can install your SmartApp to test it, either using
physical devices, or simulated devices. We will walk you through installing the SmartApp using this later in the
tutorial.

If you don’t have a Location yet, the Simulator will show a message instructing you to create one. Follow the steps
there to create a Location.

185

SmartThings Classic Developer Documentation, Release latest

186 Chapter 80. Simulator

CHAPTER 81

SmartApp basics

The first thing to know is that there are a few different types of SmartApps.

Some SmartApps, called Service Manager SmartApps, manage the connection of a Cloud-connected or LAN-
connected device.

Solution Module SmartApps provide a dashboard-like user interface in the SmartThings mobile application 1.

The most common type of a SmartApp is one that monitors the user’s devices for certain changes (or simply execute
on a defined schedule), and then take certain action (“Turn a light on when motion is detected”). These SmartApps are
called Event-Handler SmartApps.

This tutorial will walk you through building a simple Event-Handler SmartApp, but the core principles you will learn
are applicable to all types of SmartApps.

Regardless of what type of SmartApp you are writing, there are a few core principles that apply to all SmartApps:

• SmartApps are not continuously running. They are executed in response to various Events or schedules.

• SmartApps are installed into a user’s Location, and a user may install multiple instances of a SmartApp into the
same Location.

• With the exception of Solution Module SmartApps, SmartApps do not have any user interface, except for the
preferences page that allows the user to configure the SmartApp (more on this in a bit).

• The code that defines a SmartApp does not run on the user’s mobile phone. SmartApps may execute in the
SmartThings cloud, or on the Hub. The mobile application uses some information from the SmartApp to drive
the experience in the app.

In your editor, you can see that there is some code already written for you. This defines the basic structure and skeleton
for your SmartApp. We will discuss each key component as we build our SmartApp.

1 Solution Module SmartApps are not currently available for developers, but support for this is planned in the near future.

187

SmartThings Classic Developer Documentation, Release latest

188 Chapter 81. SmartApp basics

CHAPTER 82

Definition

Every SmartApp must have a definition method call. This provides metadata about the SmartApp itself. The
definition method simply expects a map of parameters. If you look at the code in the editor, you’ll see that these
values are already set from the values you entered when creating your SmartApp:

definition(
name: "My First SmartApp",
namespace: "mygithubusername",
author: "Peter Gregory",
description: "This is my first SmartApp. Woot!",
category: "My Apps",
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

We don’t need to change anything here, so let’s move on to defining our preferences. If you do need to change some
of your SmartApp’s metadata, you can change these values later.

189

SmartThings Classic Developer Documentation, Release latest

190 Chapter 82. Definition

CHAPTER 83

Preferences

The preferences method is where we define what information our SmartApp needs from the user. When a user
installs a SmartApp on their mobile device, they will be taken to a screen (or screens) where they can configure the
SmartApp. The content of these screens are derived from our preferences definition.

Preferences can be displayed as a simple, single screen, or multiple screens. This tutorial will use a simple preferences
definition, with only one screen.

In the editor, there is a preferences definition stubbed in for us:

preferences {
section("Title") {

// TODO: put inputs here
}

}

Recall that the purpose of our SmartApp is to turn a switch on when motion is detected. Our SmartApp needs to know
which switch and motion sensor to work with. Update preferences with this code:

preferences {
section("Turn on when motion detected:") {

input "themotion", "capability.motionSensor", required: true, title: "Where?"
}
section("Turn on this light") {

input "theswitch", "capability.switch", required: true
}

}

Notice that we defined two section calls. Sections allow us to group related inputs, and can have a text description
(“Select a switch to turn on”).

We use the input method to specify what types of devices we want the user to choose from. Let’s break down in
detail the input for the switch:

input "theswitch", "capability.switch", required: true

The first argument to input is what we - inside our SmartApp - want to refer to the device as. In this case, we use
"theswitch". This becomes the identifier for the device in our SmartApp, so that we can refer to the switch as
theswitch (without the quotes). We’ll see this in action shortly.

The second argument is the type of device our SmartApp will work with. "capability.switch" states that
our SmartApp is requesting the user to pick from any device that supports the Switch capability. The concept of
capabilities is core to SmartThings, and requires a bit more explanation.

First, consider that the catalog of connected devices is growing at a rapid pace. New devices arrive on the market
almost daily. Many of these devices do similar things, and some do multiple things.

191

SmartThings Classic Developer Documentation, Release latest

83.1 Capabilities

SmartThings abstracts devices into their capabilities - that is, what the device is capable of. This allows us to build
SmartApps that can work with any device that supports a given capability. In this way, we can build robust SmartApps
that will work with any device integrated with SmartThings that supports a given capability.

Capabilities are broken down into commands and attributes. Commands can be issued to a device, and attributes are
what the device reports on. Every capability defines its commands and attributes, and devices that support a given
capability must support those commands and attributes.

Note: A device may (and typically does) support multiple capabilities. For example, a Phillips Hue Bulb supports
the Switch capability, because it can turn on and off. It also supports the Color Control capability, since the bulb can
change colors. In our example, a Hue bulb could be selected by the user since it supports the Switch capability.

But, our SmartApp is only requesting that a user select a device that supports the Switch capability, so even if the user
selects a device that can do more (such as a Hue bulb), we cannot assume that in our SmartApp. All we can know is
that the device supports the Switch capability.

With capabilities, we can be assured that even if a new device supporting the Switch capability is added after we’ve
written and published our SmartApp, there’s no need to update any code!

Capabilities are created and maintained by SmartThings. You can view the reference documentation for capabilities
in the Capabilities Reference (page 655).

The last thing to note in our input method call is the required: true argument. This specifies that the user
must select a device in order to install the SmartApp.

Important: By requiring users to select which devices the SmartApp will work with, SmartThings is providing a
basic security feature - SmartThings can only control those devices which a user explicitly chooses. SmartApps cannot
control devices which the user did not select, and this is by design.

To summarize, when the user selects and installs the SmartApp from within SmartThings mobile app, they will be
prompted to select a device that supports the switch capability. The SmartThings mobile app will provide them with
a list of devices for this user’s Location that support the switch capability. The device chosen will then be identified
within the SmartApp as theswitch.

We covered a lot of information for such a small amount of code because it’s important that you understand the
importance of preferences and capabilities.

For additional information about preferences, see the Preferences and Settings (page 285) chapter of the SmartApp
guide.

Now that you’ve updated the preferences method, make sure to save your SmartApp by clicking the Save button.

192 Chapter 83. Preferences

CHAPTER 84

Events and callback methods

Our SmartApp needs to turn a switch on when motion is detected. To turn the switch on, we first need to know when
motion is detected.

SmartApps can subscribe to various Events so that when that Event happens, the SmartApp will be notified. For our
SmartApp we do this by using the subscribe() (page 942) method.

In your editor, below the preferences, you’ll see some methods already defined:

def installed() {
log.debug "Installed with settings: ${settings}"
initialize()

}

def updated() {
log.debug "Updated with settings: ${settings}"
unsubscribe()
initialize()

}

def initialize() {
// TODO: subscribe to attributes, devices, locations, etc.

}

// TODO: implement event handlers

Every SmartApp must define methods named installed() (page 897) and updated() (page 898). When a user installs
a SmartApp by clicking on the Install button in the SmartThings mobile application (after filling out any required
preferences inputs), the installed() method we define in our SmartApp will be called. This is where SmartApps
can subscribe to any device changes we are interested in, as well as set up any scheduled tasks we want our SmartApp
to perform.

Similarly, the updated() method is called when a user updates their installation of the SmartApp by changing any
of the preferences inputs. For example, a user may want to change which switch is turned on after they have installed
the SmartApp. So, they open the SmartApp settings, select a different switch, and then update the SmartApp. At this
point, the updated() method is called.

In our updated() method, notice that the first thing we do (aside from some logging, which is discussed shortly), is
to call a method called unsubscribe() (page 947). This method is provided by the SmartThings platform, and simply
removes any existing subscriptions this SmartApp has created. This is important, since the user has just changed their
preferences for this SmartApp. If we didn’t do this, we might still be subscribed to Events for devices that the user has
removed from the SmartApp.

Also, note that both installed() and updated() call a method named initialize(). Since both
installed() and updated() typically both create subscriptions or schedules, we can reduce code duplication

193

SmartThings Classic Developer Documentation, Release latest

by using a helper method.

We also use the built-in logger (log) to log information. SmartThings does not currently have a debugger within
the IDE, so use the log() method to log information that might be useful for debugging. The logs are available by
clicking Live Logging at the top of the IDE.

Finally, note that we reference a variable named settings in our log statement. Remember the preference inputs
we defined? Every preference input gets stored in a read-only map called settings. We can get the values of the
various inputs by indexing into the settings map with the name of the input (e.g., settings.theswitch).

Now that you understand the purpose and importance of the installed() and updated() methods, we need to
subscribe to any Events that we are interested in. In our case, we need to know when the motion sensor reports that it
detected motion.

In the editor, update the initialize() method with this:

def initialize() {
subscribe(themotion, "motion.active", motionDetectedHandler)

}

The subscribe() method accepts three parameters: The thing we want to subscribe to (themotion),
the specific attribute and its state we care about ("motion.active"), and the name of the method
(motionDetectedHandler) that should be called when this Event happens.

How do you know what attribute and what state we can subscribe to? We refer to the Capabilities Reference (page 655)
to find out the available attributes the capability supports. In the case of the Motion Sensor capability, we see that it
supports the "motion" attribute. In this case, it has two discreet possible values - “active” and “inactive”.

Since the "motion" attribute value is either active or inactive, we can subscribe to either of those specific changes
by using the format "<attribute>.<value>". This will cause the specified event handler method to be called
any time the "motion" attribute value changes to "active" (motion is detected).

Now that we’ve created our subscription, we need to define the event handler method.

194 Chapter 84. Events and callback methods

CHAPTER 85

Event Handler methods

Add the following method to your SmartApp. We’ll fill in the real meat of the method later.

def motionDetectedHandler(evt) {
log.debug "motionDetectedHandler called: $evt"

}

Every event handler method must accept a single parameter, which is an Event (page 1017) object that contains
information about the Event, such as the Event’s value, time it occurred, and other information.

Since we subscribed to the "active" state of the motion sensor, we know that our event handler method will only
be called when the motion sensor changes from inactive to active.

Now that we know motion has been detected, we need to turn the light on!

195

SmartThings Classic Developer Documentation, Release latest

196 Chapter 85. Event Handler methods

CHAPTER 86

Controlling devices

Recall that capabilities support commands (things the device can do), as well as attributes (things the attribute knows).
To turn the switch on requires only one line of code to be added to our event handler:

def motionDetectedHandler(evt) {
log.debug "motionDetectedHandler called: $evt"
theswitch.on()

}

Simple, right? But how do we know that we can call the on() method on the switch? By looking at the Switch
Capability Reference, we see that the Switch capability supports the on() and off() commands. These turn the
switch on and off, respectively.

Also note that we referred to the switch selected by the user by the name we provided in the input inside
preferences (theswitch).

197

SmartThings Classic Developer Documentation, Release latest

198 Chapter 86. Controlling devices

CHAPTER 87

Using the Simulator

Save your SmartApp by clicking the Save button at the top of the IDE. Click Simulator and you will see a Location
section on the right-hand side:

SmartApps are installed to a Location in your SmartThings account. By clicking the Set Location button, you are
telling the Simulator that you want to install this SmartApp into the chosen Location.

After you have selected the Location, you will see the Preferences section appear:

This is where you can choose devices that the SmartApp will use. Here we see that it asks for a motion sensor to
monitor, and a switch. These two inputs directly correspond to what we have in the preferences section in our
SmartApp. SmartThings will provide a “Virtual Device” when it can. When you do not have a physical device to
choose from this is a very useful option. By default the virtual devices will be selected. Click the Install button, and
the SmartApp will be installed into the Location you selected above.

Now we see the Simulator section appear:

199

SmartThings Classic Developer Documentation, Release latest

We have two devices. A motion sensor, and a switch. We can manipulate the motion sensor by choosing active or
inactive and clicking the play button. The same with the switch, it can be on or off. We wrote our SmartApp to turn
the switch on when motion is detected, so let’s give that a try. Choose active if it’s not already selected and then hit
the play button. You should see the switch should go on:

200 Chapter 87. Using the Simulator

SmartThings Classic Developer Documentation, Release latest

Warning: The behavior of the Simulator is known to have inconsistencies. If you are unable to see the correct
device status, or unable to actuate the device, you may just be experiencing issues with the Simulator.
In that case, just skip ahead to the next section to install the SmartApp via the SmartThings mobile app.

201

SmartThings Classic Developer Documentation, Release latest

202 Chapter 87. Using the Simulator

CHAPTER 88

Publishing and installing

We can now see our first SmartApp in action in the Simulator. The next question is how can we use this SmartApp on
our mobile devices in the SmartThings app? To accomplish this, we need to publish the SmartApp.

When you press the Publish button, a For Me option will appear. Select it. This means that the SmartApp will only be
published for your account and not be visible for everyone in the SmartThings community.

Note: If you have a SmartApp that you do want to publish publicly, you can do that via the “My Publication Requests”
link at the top of the page. For more information on this, see For public distribution (page 627).

Now you should be able to see your SmartApp in the mobile app if you browse to the My Apps category of the
Marketplace:

203

SmartThings Classic Developer Documentation, Release latest

After selecting your SmartApp, you will be brought to the preferences screen where you can select the devices to work
with this SmartApp:

204 Chapter 88. Publishing and installing

SmartThings Classic Developer Documentation, Release latest

You can see the sections and inputs we defined in the preferences here. Notice how the inputs are marked in red,
to indicate that the user must set values for these inputs in order to install the SmartApp.

Tap the fields to select a motion sensor and switch. If you have devices that support the requested capability, you’ll
see an option to select them.

You’ll also see that some other inputs were added for us. For single page preferences, every SmartApp receives an
input to allow the user to assign a name of their choosing for this installation. The name that they choose will then be
displayed as the name of the SmartApp. Also by default, the user can select to only execute this SmartApp when the
Location is in certain Modes (page 335). It also includes the ability for the user to uninstall this SmartApp.

Note: A SmartApp may be installed into a Location multiple times. For example, a person may have multiple rooms
for which they want a light to come on when motion is detected.

Even though the code is the same, each installation is unique, and must also be removed by the user individually.

205

SmartThings Classic Developer Documentation, Release latest

206 Chapter 88. Publishing and installing

CHAPTER 89

Turn off when motion inactive

We now have a simple SmartApp that turns a switch on when motion is detected. Let’s extend this further, and turn
the switch off when the motion stops.

In our SmartApp, we need to subscribe to not only the motion sensor being active, but also inactive.

Recall that our subscription looks like this:

subscribe(themotion, "motion.active", motionDetectedHandler)

We will also subscribe the "motion.inactive" Event in a similar way. Add this subscription to the
initialize() method:

subscribe(themotion, "motion.inactive", motionStoppedHandler)

Note: We could also subscribe to any change in the motion sensor, by simply specifying the attribute we want to
monitor (e.g., "motion" instead of "motion.active"). This would then call the specified handler method when
there is any reported change to the "motion" attribute. For attributes that don’t have a discrete set of possible values
(for example, temperature readings), this is how we subscribe to changes for that attribute.

We can then get the value of the Event in the event handler by looking at the value of the passed-in Event. If we
were to do this in our SmartApp, it would look like this:

def initialize() {
subscribe(themotion, "motion", motionHandler)

}

def motionHandler(evt) {
if (evt.value == "active") {

// motion detected
} else if (evt.value == "inactive") {

// motion stopped
}

}

Our SmartApp will use separate subscriptions and event handlers, but you are free to modify it to use a single sub-
scription and handle the different values in your event handler method.

We need to define the motionStoppedHandler event handler method - add this method to your SmartApp:

def motionStoppedHandler(evt) {
log.debug "motionStoppedHandler called: $evt"
theswitch.off()

}

207

SmartThings Classic Developer Documentation, Release latest

Save your SmartApp in the IDE, publish it again for yourself, and then install it again in the Simulator. Now when
you change the motion to “inactive”, the switch will turn off.

208 Chapter 89. Turn off when motion inactive

CHAPTER 90

Going further–adding flexibility

Our SmartApp now turns a switch on when motion is detected, then turns it off when motion stops. But consider this
scenario:

• A person enters a room, the motion sensors reports that motion is active, and our SmartApp turns the light on.

• The person then sits down, or stands still enough for the motion sensor to report motion is inactive, and our
SmartApp turns the light off.

• The person than moves again, causing the motion sensor to again report active motion, and our SmartApp turns
the light on again.

As you can imagine, this could be quite annoying. It would be better if we could allow the user to specify a number of
minutes after motion stops to turn the light off. Then, once motion stops, if no motion is detected within the specified
number of minutes, the SmartApp will turn the light off. If motion is detected within this time window, the switch will
not turn off.

We can add this flexibility into our SmartApp easily. The first thing we need to do is update our preferences to let
the user specify the number of minutes to elapse without motion being detected, before the light is turned off.

Replace the preferences in our SmartApp with the following:

preferences {
section("Turn on when motion detected:") {

input "themotion", "capability.motionSensor", required: true, title: "Where?"
}
section("Turn off when there's been no movement for") {

input "minutes", "number", required: true, title: "Minutes?"
}
section("Turn on/off this light") {

input "theswitch", "capability.switch", required: true
}

}

Preferences inputs can be more than just devices - we can ask users to enter in numeric values, text values, booleans,
enumerated lists, and more. You can learn about the various options for preferences inputs here (page 285).

Now that the user can specify the number of minutes to wait without motion before turning the light off, we need to
implement the logic to do so.

Our motionStoppedHandler() method will be called whenever the motion sensor reports that motion has
stopped. Before turning the light off, we need to check that there is no motion detected for the specified number
of minutes in the future. But since SmartApps are not continuously running, how can we handle checking for future
states? The answer is by using methods that allow us to schedule a SmartApp for future execution.

209

SmartThings Classic Developer Documentation, Release latest

The first thing we need to do is update our motionStoppedHandler() to execute a method after the number of
minutes specified by the user. This method will then check to see if there has been motion reported within the time
interval, and turn the light off if there has been no motion.

Let’s write some skeleton code to do this, and we’ll fill in the details later. First, update the
motionStoppedHandler() method and add a new method as shown below:

def motionStoppedHandler(evt) {
log.debug "motionStoppedHandler called: $evt"
runIn(60 * minutes, checkMotion)

}

def checkMotion() {
log.debug "In checkMotion scheduled method"

}

We use the runIn() (page 928) method to schedule our checkMotion() method to be called after the number of
minutes specified by the user. We pass runIn() the number of seconds (from the time of the call) to schedule the
call, and the name of the method we want executed.

When motion stops, our checkMotion() method will be called after the number of minutes specified by the user.
Now, inside our checkMotion() method, we need to see if there has been any motion detected in the time window
specified. We can use some date/time utility methods, along with information about the device state, to determine if
we should turn the switch off.

Here’s the logic we need to implement:

• If the motion sensor is currently reporting active motion, do nothing.

• If the motion sensor is reporting inactive motion, check to see what time the motion sensor reported inactive
motion.

• If the motion sensor reported that motion has been inactive for longer than the time specified by the user, turn
the switch off.

And here’s the full method definition for checkMotion(). Update your SmartApp with the code below:

def checkMotion() {
log.debug "In checkMotion scheduled method"

// get the current state object for the motion sensor
def motionState = themotion.currentState("motion")

if (motionState.value == "inactive") {
// get the time elapsed between now and when the motion reported inactive

def elapsed = now() - motionState.date.time

// elapsed time is in milliseconds, so the threshold must be converted to milliseconds too
def threshold = 1000 * 60 * minutes

if (elapsed >= threshold) {
log.debug "Motion has stayed inactive long enough since last check ($elapsed ms): turning switch off"
theswitch.off()
} else {
log.debug "Motion has not stayed inactive long enough since last check ($elapsed ms): doing nothing"

}
} else {

// Motion active; just log it and do nothing
log.debug "Motion is active, do nothing and wait for inactive"

}
}

210 Chapter 90. Going further–adding flexibility

SmartThings Classic Developer Documentation, Release latest

The first thing to note is that we get a State (page 1040) object for the motion sensor, by using the currentState()
method with "motion" as the attribute we’re interested in. This object encapsulates information about an attribute
at a particular moment in time. In our case, we want the current state.

From this object, we can determine when this state record was created. This will be the time that the motion sensor
reported it is inactive. Using the now() (page 926) method, we can get the current time (in milliseconds), and then see
if the motion stopped within the threshold specified by the user. If the time elapsed since the motion stopped exceeds
the threshold, we turn the switch off.

Go ahead and save and publish your SmartApp again, and try it out!

211

SmartThings Classic Developer Documentation, Release latest

212 Chapter 90. Going further–adding flexibility

CHAPTER 91

Complete code listing

Here is the entire code for our SmartApp:

definition(
name: "My First SmartApp",
namespace: "mygithubusername",
author: "Peter Gregory",
description: "This is my first SmartApp. Woot!",
category: "My Apps",
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
section("Turn on when motion detected:") {

input "themotion", "capability.motionSensor", required: true, title: "Where?"
}
section("Turn off when there's been no movement for") {

input "minutes", "number", required: true, title: "Minutes?"
}
section("Turn on this light") {

input "theswitch", "capability.switch", required: true
}

}

def installed() {
initialize()

}

def updated() {
unsubscribe()
initialize()

}

def initialize() {
subscribe(themotion, "motion.active", motionDetectedHandler)
subscribe(themotion, "motion.inactive", motionStoppedHandler)

}

def motionDetectedHandler(evt) {
log.debug "motionDetectedHandler called: $evt"
theswitch.on()

}

213

SmartThings Classic Developer Documentation, Release latest

def motionStoppedHandler(evt) {
log.debug "motionStoppedHandler called: $evt"
runIn(60 * minutes, checkMotion)

}

def checkMotion() {
log.debug "In checkMotion scheduled method"

def motionState = themotion.currentState("motion")

if (motionState.value == "inactive") {
// get the time elapsed between now and when the motion reported inactive
def elapsed = now() - motionState.date.time

// elapsed time is in milliseconds, so the threshold must be converted to milliseconds too
def threshold = 1000 * 60 * minutes

if (elapsed >= threshold) {
log.debug "Motion has stayed inactive long enough since last check ($elapsed ms): turning switch off"
theswitch.off()

} else {
log.debug "Motion has not stayed inactive long enough since last check ($elapsed ms): doing nothing"

}
} else {

// Motion active; just log it and do nothing
log.debug "Motion is active, do nothing and wait for inactive"

}
}

214 Chapter 91. Complete code listing

CHAPTER 92

How the switch turns on (or off)

Now that we understand how to control devices in a SmartApp, you may be wondering how exactly the method
switch.on() turns on the switch. The answer is Device Handlers.

Device Handlers are software much the same way SmartApps are. They define what actually happens when you call
switch.on(). Let’s look at an example to further understand this.

When you connect a new device to your SmartThings Hub, a Device Handler is picked for it based on the signature the
device delivered to the Hub as part of its pairing communication. The Device Handler will have methods defined in
it that support that device. So in our case, the Device Handler for the specific switch being used will have both on()
and off() methods defined. The actual implementation of these methods vary depending upon the underlying device
protocols, but are typically low-level protocol-specific commands to send to the device (like Z-Wave or ZigBee).

So, when switch.on() is executed from your SmartApp, the SmartThings platform will look up the Device Handler
associated with the device and call its on()method, which will in turn send the protocol and device-specific command
through the Hub to the device. Device Handlers are discussed in the Device Handlers (page 449) guide.

215

SmartThings Classic Developer Documentation, Release latest

216 Chapter 92. How the switch turns on (or off)

CHAPTER 93

Summary

In this tutorial, you learned how to write a SmartApp. To do this, we:

• Created a new SmartApp using the web-based IDE.

• Defined the preferences that specifies what input we need from the user.

• Subscribed to device Events and controlled a device. We used the Capabilities Reference (page 655) to deter-
mine what attributes and commands a capability supports.

• Used the web-based Simulator to test our SmartApp with virtual devices.

• Published the SmartApp for yourself and installed it on your mobile phone.

• Extended our SmartApp by allowing a user to enter the number of minutes to wait before turning the switch off,
and implemented this using the runIn() method.

217

SmartThings Classic Developer Documentation, Release latest

218 Chapter 93. Summary

CHAPTER 94

Next steps

Now that you’ve written your first SmartApp and have a basic understanding of the SmartThings developer tools,
language, and workflow, here are some further topics for you to pursue.

94.1 More about SmartApps

There is much more you can do with SmartApps than what this tutorial covered. SmartApps can send notifications
(page 385), execute routines (page 339), define advanced schedules (page 345) for which they execute, call external
web services (page 365), and more. You can learn more about developing SmartApps in the SmartApps (page 279)
guide.

You can also make your SmartApp into a web service, capable of exposing its own REST endpoints. You can read
about them in the Web Services SmartApps (page 411) guide.

94.2 Fork it!

SmartThings SmartApps and Device Handlers are now hosted in GitHub. Further, the IDE can integrate with GitHub,
to provide a seamless developer experience. Learn more about it in the GitHub Integration (page 265) chapter of the
Tools and IDE (page 251) guide. Happy forking!

94.3 Device Handler development

If you are interested in learning more about Device Handlers, and how to write one, head over to the Device Handlers
(page 449) guide.

219

SmartThings Classic Developer Documentation, Release latest

220 Chapter 94. Next steps

Part VII

Getting Help

221

SmartThings Classic Developer Documentation, Release latest

In addition to this documentation, there are other ways to learn and get help developing for SmartThings, discussed
below.

223

SmartThings Classic Developer Documentation, Release latest

224

CHAPTER 95

Developer documentation

Use this documentation to learn about SmartThings development, as well as serve as a reference. The documentation
is searchable, and can be viewed and downloaded in a variety of formats including PDF and EPUB (click on “Read
the Docs” on the bottom left of the page to see the download options).

This documentation is open source and available in GitHub here.

225

https://github.com/SmartThingsCommunity/Documentation

SmartThings Classic Developer Documentation, Release latest

226 Chapter 95. Developer documentation

CHAPTER 96

Community

One of the best things about SmartThings is the amazing community of users, makers, and developers. Make sure to
register for an account and introduce yourself. It’s a great place to learn, help others, and make friends.

If you can’t find an answer for your question in the documentation, the community is a great resource as well. You
can search for your question in case it has already been addressed, or post a new question.

Many of the SmartThings staff frequents these forums as well. We’ll chime in and try to be helpful.

227

https://community.smartthings.com/

SmartThings Classic Developer Documentation, Release latest

228 Chapter 96. Community

CHAPTER 97

SmartThings developer support

While our community is amazing and there are tons of awesome people there to support you, you may sometimes have
more in-depth questions that our communtiy can’t answer. When that happens, we’re here to help.

This form is a direct line to our developer advocates in the rare occasion our community can’t help with your question.
Once you submit a ticket you should expect to get a response in 48 hours.

Note: This form is for developers writing SmartApps and Device Handlers on the platform. If you need support for a
SmartApp or Device Handler that you found on our community, please reach out to the developer of that SmartApp or
Device Handler for support. If they need further support we will work directly with them to support their development.

In order to receive the best support, you should provide a simplified example that clearly illustrates the issue. This
should be in the form of a simple SmartApp or Device Handler that can be easily installed and clearly shows the issue.
This allows us to quickly verify the issue, and use it as a test for any fix provided.

We recommend creating a gist with a complete and easily installable SmartApp or Device Handler, and referencing it
in your support ticket.

Important: We recognize that sometimes, providing a simple SmartApp or Device Handler that illustrates the issue
is not possible. More often than not, however, it is. A simplified example enables you (and us) to verify that the issue
is in fact with the API in question, and not some other factor.

If you do not provide a simplified example that can be easily installed, our ability to quickly verify, diagnose, and
address the issue may be limited.

229

https://community.smartthings.com/
https://support.smartthings.com/hc/en-us/requests/new?ticket_form_id=110843
https://gist.github.com/

SmartThings Classic Developer Documentation, Release latest

230 Chapter 97. SmartThings developer support

Part VIII

Architecture

231

SmartThings Classic Developer Documentation, Release latest

As a starting point in understanding SmartThings approach, it is important to recognize that it is centered on the sep-
aration of intelligence from devices. SmartThings architecture is developed with a view that most of the value will be
created in the space between the devices. Moreover, the devices themselves can be limited to their primitive capabil-
ities (open/close, on/off, heat/cool, brew/don’t brew), while the intelligence layer exists separately as an application
layer.

By doing this we allow the intelligence (or application) layer to apply flexibly across a wide range of devices, and
make it easier to create applications that interact with and across the physical world. In many cases, we also benefit
from lower-cost end devices, less maintenance complexity and longer battery life.

The SmartThings platform provides methods such that using these methods in Device Handlers we can abstract away
the underlying complexity of devices and protocols, while at the same time coding in only the desired experience into
SmartApps.

Each device in SmartThings has “capabilities”, which define and standardize available attributes and commands for
a device. This allows you to develop an application for a type of device, regardless of the connection protocol or the
manufacturer.

All of the code that developers can write on our platform is written in Groovy, which is a dynamic, object-oriented
language built for the Java platform. You can learn more about Groovy on the Groovy Basics (page 115) page.

233

SmartThings Classic Developer Documentation, Release latest

234

CHAPTER 98

Big picture

98.1 Devices

Devices are the building blocks of the SmartThings infrastructure. They are the connection between the SmartThings
system and the physical world. There’s a huge variety in the devices you can use; some are created by SmartThings,
but most are not.

The real power of SmartThings is that the platform works with most home automation devices already on the market.
We believe in a fully integrated approach, where you aren’t tied into a particular technology or protocol. SmartThings

235

SmartThings Classic Developer Documentation, Release latest

offers compatibility with standards such as ZigBee, Z-Wave, LAN, and Cloud-to-cloud integrations. This allows
SmartThings platform to work with hundreds of off the shelf third-party devices.

98.2 Hub

The SmartThings Hub connects directly to your broadband router. The Hub provides communication between all
connected devices, the SmartThings cloud and the SmartThings mobile application. With a SmartThings Hub you:

• Simply plug it into your Ethernet router and provide power.

• Connect any SmartThings or SmartThings-ready device to your SmartThings account.

• Build your own SmartThings kit by combining with other SmartThings devices.

• Work with a variety of standard ZigBee and Z-Wave devices, such as GE Z-Wave in-wall switches and outlets.

The new Samsung SmartThings Hub also supports the ability to execute certain automations locally on the Hub itself,
and ships with four AA batteries. This allows for certain automations to continue, even without AC power. It also ships
with USB ports and is Bluetooth Low Energy capable. While not active at launch, this allows for greater expansion in
the future without requiring new hardware.

98.3 Connectivity management

Connectivity Management is the layer that connects your SmartThings Hub, the client devices (mobile phones) to
SmartThings servers and to the cloud as a whole. The Connectivity Management layer is comprised of:

• Hub Connectivity that connects your Hub to the cloud.

• Client Connectivity that connects your client devices to the cloud.

These are the highways by which your messages are sent to the internet.

98.4 Device Handler execution

The SmartThings system determines what type of device you are using based on Device Handlers. Once the Device
Handler is selected, the incoming messages are parsed by that particular Device Handler. The input to the Device
Handler is a set of device-specific messages, and the output of the Device Handler is normalized SmartThings Events.
Note that one message can lead to many SmartThings Events.

98.5 Subscription management

When Events are created in the SmartThings platform, they don’t inherently do anything besides publish that they’ve
happened. Instead of Events triggering change, SmartApps are configured with subscriptions that listen for defined
Events. The purpose of the subscription management layer is to match up Events that are triggered by the Device
Handlers with the SmartApp that is using them.

98.6 SmartApp execution

The SmartApp is run when triggered either via subscriptions, or via external calls to SmartApp endpoints, or by
scheduled methods. The SmartApp is transient in nature, as it runs and then stops running on completion of its task.

236 Chapter 98. Big picture

SmartThings Classic Developer Documentation, Release latest

Any data that needs to persist throughout SmartApp instances must be stored in a special state variable that is
discussed in the Storing Data With State (page 315) documentation.

98.7 Web UI and IDE

The Web UI sits on top of all of the other technology and allows you to monitor your devices, Hubs, Locations and
many other aspects of your SmartThings system.

You have full control of the configuration, including editing, adding, removing, and even creating SmartApps. To
create, you write code within the IDE for SmartApps and Device Handlers. SmartThings also has an integrated
Simulator that allows you to simulate any devices, so it’s not required to own the devices you develop for.

98.7. Web UI and IDE 237

SmartThings Classic Developer Documentation, Release latest

238 Chapter 98. Big picture

CHAPTER 99

Important concepts

99.1 Asynchronous and eventually consistent programming

When dealing with the physical graph, i.e., a digital representation of the physical things connected around us, there
will always be a delay between when you request something to happen and when it actually happens. There is latency
in all networks, but it’s especially pronounced when dealing with the physical graph.

To deal with this, the SmartThings platform utilizes asynchronous execution. This means that anytime you execute a
command, it doesn’t stop everything else from running. This helps everyone’s code run the most efficiently.

Our basic methodology towards executing a command, such as turning a light switch on, is “fire and forget”. This
means that you execute a command, and assume it will turn on in due time, without any sort of follow up.

You cannot be guaranteed that your command has been executed, because another SmartApp could interact with your
end device, and change its state. For example, you might turn a light switch on, but another app might sneak in and
turn it off.

If you need to know if a command was executed, you can subscribe to an Event triggered by the command you
executed and check its timestamp to ensure it fired after you told it to. You will, however, still have latency issues to
take into consideration, so it’s impossible to know the exact current status at any given time.

The SmartApps platform follows eventually consistent programming, meaning that responses to a request for a value
in SmartApps will eventually be the same, but in the short term they might differ.

99.2 Containers

Within the SmartThings platform, there are three different “containers” that are important concepts to understand.
These are: accounts, Locations, and groups. These containers represent both security boundaries and navigation
containers that make it easy for users to browse their devices.

The diagram below shows the hierarchical relationship between these containers. Each type of container is described
below in more detail.

99.3 Accounts

Accounts are the top-level container that represents the SmartThings ‘customer’. Accounts contain only Locations
and no other types of objects.

239

SmartThings Classic Developer Documentation, Release latest

240 Chapter 99. Important concepts

SmartThings Classic Developer Documentation, Release latest

99.4 Locations and users

Locations are meant to represent a geolocation such as “Home” or “Office”. Locations can optionally be tagged with
a geolocation (latitude and longitude). In addition, Locations don’t have to have a SmartThings Hub, but generally do.
Finally, locations contain Groups or Devices.

99.5 Groups

Groups are meant to represent a room or other physical space within a Location. This allows for devices to be organized
into groups making navigation and security easier. A group can contain multiple devices, but devices can only be in a
single group. Further, nesting of groups is not currently supported.

99.4. Locations and users 241

SmartThings Classic Developer Documentation, Release latest

242 Chapter 99. Important concepts

CHAPTER 100

Capability taxonomy

Capabilities represent the common taxonomy that allows SmartThings platform to link SmartApps with Device Han-
dlers. An application interacts with devices based on their capabilities, so once we understand the capabilities that are
needed by a SmartApp, and the capabilities that are provided by a device, we can understand which devices (based on
the type of device and inherent capabilities) are eligible for use within a specific SmartApp.

The Capabilities Reference (page 655) is evolving and is heavily influenced by existing standards like ZigBee and
Z-Wave.

Capabilities themselves may be decomposed into both ‘Actions’ or ‘Commands’ (these are synonymous), and At-
tributes. Actions represent ways in which you can control or actuate the device, whereas Attributes represent state
information or properties of the device.

100.1 Attributes and events

Attributes represent the various properties or characteristics of a device. Generally speaking device attributes represent
a current device state of some kind. For a temperature sensor, for example, ‘temperature’ might be an attribute. For a
door lock, an attribute such as ‘status’ with values of ‘open’ or ‘closed’ might be a typical.

100.2 Commands

Commands are ways in which you can control the device. A capability is supported by a specific set of commands.
For example, the ‘Switch’ capability has two required commands: ‘On’ and ‘Off’. When a device supports a specific
capability, it must generally support all of the commands required of that capability.

100.3 Custom capabilities

We do not currently support creating custom capabilities. You can, however, create a device-type handler that exposes
custom commands or attributes.

243

SmartThings Classic Developer Documentation, Release latest

244 Chapter 100. Capability taxonomy

CHAPTER 101

SmartThings cloud

The SmartThings platform assumes a “Cloud First” approach. This means that in order to use all supported devices
and automations, and to ensure that the SmartThings mobile application reflects the correct state of your home, the
SmartThings Hub will need to be online and be connected to the SmartThings cloud.

The second generation Hub, the Samsung SmartThings Hub, allows for some Hub-local capabilities. Certain au-
tomations can execute even when disconnected from the SmartThings cloud. This allows SmartThings to improve
performance and insulate the user from intermittent internet outages.

This is accomplished by delivering certain automations to the Samsung SmartThings Hub itself, where it can execute
locally. The engine that executes these automations are typically referred to as “AppEngine”. Events are still sent to
the SmartThings cloud - this is necessary to ensure that the SmartThings mobile application reflects the current state
of the home, as well as to send any notifications or perform other cloud-based services.

The specific automations that execute locally are expanding and currently managed by the SmartThings internal team.
The ability for developers to execute their own SmartApps or Device Handlers locally is planned.

That said, there are a number of important scenarios where the cloud is simply required:

Scenario: There may not be a hub at all

Many devices are now already connected devices, via Wi-Fi/IP, and connect directly to the cloud without the need for
a gateway device (hub).

The most likely use case for such devices involves adding intelligence to those devices through SmartApps. These
devices may not be connected to a SmartThings Hub, and instead are directly connected to the vendor cloud or the
SmartThings Cloud.

Put simply, if there is no Hub, then the SmartApps layer must run in the cloud!

Scenario: SmartApps may run across both cloud- and Hub-connected devices

As a corollary to the first point above, since there are use cases where devices are not Hub-connected, SmartApps
might be installed to use one device that is Hub-connected, and another device that is Cloud-connected, all in the same
app. In this case, the SmartApp needs to run in the cloud.

Scenario: There may be multiple Hubs

While the mesh network standards for ZigBee and Z-Wave generally eliminate the need for multiple SmartThings
Hubs, we didn’t want to exclude this as a valid deployment configuration for large homes or even business applications
of our technology. In the multi-Hub case, SmartApps that use multiple devices that are split across hubs will run in
the cloud in order to simplify the complexity of application deployment.

Scenario: External service integration

SmartApps may call external web services. Calling them from SmartThings cloud reduces risk as it allows Smart-
Things to easily monitor for errors and ensure the security and privacy of the users.

245

SmartThings Classic Developer Documentation, Release latest

In some cases, an external web service might even use IP white-listing such that they simply can’t be called from the
Hub running at a user’s home or place of business.

Accordingly, SmartApps that use web services will run in the cloud also.

Important: Note that because of the abstraction layer, SmartApp developers never have to understand where or how
devices connect to the SmartThings platform. All of that is hidden from the developer so that whether a device (such
as a Garage Door opener) is Hub-Connected or Cloud-Connected, all they need to understand is:

myGarageDoor.open()

246 Chapter 101. SmartThings cloud

CHAPTER 102

Hubs and Locations

To efficiently manage performance, the SmartThings platform scales its cloud server architecture horizontally with
sharding. Sharding helps reduce the latency between the Hub and the cloud, and handles increasing capacity. As a
developer you must note the impact of sharding on how you work with the SmartThings IDE.

When you first install SmartThings app on your mobile phone, create your user account and claim your Hub, the
SmartThings platform automatically assigns your Hub to the Location and connects your Location/Hub to a particular
shard. Before starting your development, you must note that:

• Your Location/Hub is connected to a specific SmartThings shard, based on the geographical location of the Hub,
and,

• You must ensure that you are logged into the URL of this specific shard on IDE. Since the Location is always
connected to the correct shard URL, you can do this by clicking on your Location from “My Locations” page
after you log in.

Note: If for some reason you are not seeing your Hub in the IDE, then from My Locations page select the Location
and it will prompt you to log into correct shard where you can see your Hub.

102.1 Consequences of sharding

In practice, some consequences of sharding are:

• A global layer, with a few specific services, spans across all shards while all other services are owned by the
specific shard itself (which, as emphasized above, is Location-dependent). A few global layer services are: user
account creation, authorization, OAuth authentication, mappings of Location-to-shard, users-to-Locations and
Hub-to-Locations. All data that is down from the Location level are managed by the specific shard.

• A shard does not share information with another shard. For example, a common login across the shards does not
exist yet. You will have to log in to each shard, although the userid and password will be the same (see the note
above). At the same time, note that SmartThings mobile app users do not have to log in again because mobile
client OAuth tokens are shared across the shards.

• SmartApps and Device Handlers are now published in a specific shard and not for your entire account. For
example, if you have a Hub in North America and another Hub in Europe, you will need to publish your
SmartApp twice, one in each Location, i.e., shard.

• Note that since a Hub is assigned to a Location, if you delete a Location, the Hub becomes unclaimed. Con-
versely, it is possible for a Location to exist without a claimed Hub at that Location.

247

SmartThings Classic Developer Documentation, Release latest

248 Chapter 102. Hubs and Locations

Part IX

Tools and IDE

249

SmartThings Classic Developer Documentation, Release latest

The SmartThings IDE (Integrated Development Environment) provides SmartThings developers with a set of tools to
manage their SmartThings account, and build and publish custom SmartApps and Device Handlers.

251

http://graph.api.smartthings.com

SmartThings Classic Developer Documentation, Release latest

252

CHAPTER 103

Account Managment

The SmartThings IDE allows you to view and edit information about your Locations, Hubs, Devices, custom Smar-
tApps and Device Handlers, as well as view a live log for all your SmartThings devices and apps.

103.1 Locations

My Locations will show all Locations registered to your account. Choosing a particular Location will allow you to see
more in depth information on that Location, including the groups created under that Location. You can also see all
Events, notifications, and SmartApps under a particular Location.

103.2 Hubs

My Hubs will show all Hubs registered to your account. Choosing a particular Hub will give a comprehensive look at
all of the attributes of your Hub, with the opportunity to observe all Events that have taken place, by clicking on List
Events. You can also view all of the devices that are registered to your Hub.

253

SmartThings Classic Developer Documentation, Release latest

103.3 Devices

My Devices will show all devices attached to any of your Hubs. Choosing a particular device will give a comprehensive
look at all of the attributes of your device, with the opportunity to observe all Events that have taken place, by clicking
on List Events.

103.4 SmartApps

My SmartApps will show all your custom (written or edited by you) SmartApps. You can view the SmartApp status,
category, and Locations from this list, as well as edit SmartApp metadata. You can click the SmartApp name to be
taken to the editor where you can view and modify the code.

254 Chapter 103. Account Managment

SmartThings Classic Developer Documentation, Release latest

103.5 Device Handlers

My Device Handlers will show all your custom (written or edited by you) Device Handlers. ou can view the status,
supported capabilities, and sessions from this list, as well as edit the metadata associated with this Device Handler.
You can click on the name to be taken to the editor, where you can view and modify the code.

103.6 Publication requests

My Publication Requests will show all your publication requests for submissions to the SmartThings catalog, along
with the publication request status.

103.7 Live logging

Live Logging will show a live logging view for your SmartThings account. Here you will find logs for all your installed
SmartApps and Device Handlers. You can also filter the logs by a specific SmartApp.

103.5. Device Handlers 255

SmartThings Classic Developer Documentation, Release latest

256 Chapter 103. Account Managment

CHAPTER 104

Editor and Simulator

The SmartThings editor and simulator allows you to create, edit, and test SmartApps and Device Handlers.

104.1 Creating a new SmartApp

To create a new SmartApp, click the New SmartApp button from the My SmartApps page.

257

SmartThings Classic Developer Documentation, Release latest

Important: Make sure you have selected the correct Location before creating a new SmartApp. Follow these steps
(page 625) to ensure your code will be puplished to the correct Location.

There are three different tabs on the New SmartApp page that allow you to create a new SmartApp in different ways:

• From Form allows you to create a new SmartApp based on the some metadata you can enter into the form.

• From Code allows you to create a new SmartApp directly from existing code. This is useful if you receive the
code for a SmartApp - just paste it in to the page and a new SmartApp will be created from it.

• From Template allows you to create a new SmartApp based upon existing SmartApps. This is especially useful
if you are new to SmartThings development, since you can start from an existing SmartApp.

Important: Only install source code into your account that you fully understand, or that comes from a trusted source.

104.2 Creating a new Device Handler

To create a new Device Handler, click the Create New Device Handler button from the My Device Handlers page.

Important: Make sure you have selected the correct Location before creating a new Device Handler. Follow these
steps (page 625) to ensure your code will be puplished to the correct Location.

There are three different tabs on the New Device Handler page that allow you to create a new Device Handler in
different ways:

• From Form allows you to create a new Device Handler based on the some metadata you can enter into the form.

• From Code allows you to create a new Device Handler directly from existing code. This is useful if you receive
the code for a Device Handler - just paste it in to the page and a new Device Handler will be created from it.

• From Template allows you to create a new Device Handler based upon existing Device Handlers. This is espe-
cially useful if you are new to SmartThings development, since you can start from an existing Device Handlers.

Important: Only install source code into your account that you fully understand, or that comes from a trusted source.

104.3 Using the editor

The SmartThings web editor allows you to edit code, and provides syntax highlighting for easy code readability.

You can choose from a variety of themes, key maps, and font sizes to suit your preferences by clicking on the IDE
Settings button above the editor frame.

Tip: Save often! To avoid losing unsaved changes when your session login to the IDE expires, get in the habit of
saving often using Save button.

258 Chapter 104. Editor and Simulator

SmartThings Classic Developer Documentation, Release latest

104.4 Using the Simulator

Warning: The simulator may not work reliably at all times, so we recommend that you validate your code on
your SmartThings mobile app before deploying it.

The simulator allows you to test your SmartApps or Device Handlers within the IDE, and without requiring you to
have the actual physical devices.

When you run your application in the IDE, it is always running in the simulation framework. The IDE simulator does
two very important things to support simulation:

• It acts as a “Virtual Hub” that has virtual devices connected to it.

• It acts as if it was the SmartThings Mobile application to receive and process status updates and support direct
user actions on devices through a simulated mobile app control.

The IDE simulation environment also allows you to run the simulator attached to any of the “Locations” defined within
your account.

When editing a SmartApp or Device Handler, you can see the simulator on the right of the page. You can choose
a Location and click the Set Location button, and then input any preferences required by the SmartApp or Device
Handler. Click the Install button to run the simulator.

When simulating a SmartApp, any selected devices will appear in the IDE, along with controls to actuate the devices:

104.4. Using the Simulator 259

SmartThings Classic Developer Documentation, Release latest

260 Chapter 104. Editor and Simulator

CHAPTER 105

Logging

SmartApps and Device Handlers can log debugging messages using a built-in logger. This is very useful for debugging
purposes.

105.1 Overview

There is an instance of a logger (log) injected into each SmartApp and Device Handler available for your use.
SmartThings does not currently support a line-by-line, step-through debugger tool; instead, we use logging to debug
our custom code. To view the logs, organized by app, click on the Live Logging link at the top of the IDE.

105.2 Logging levels

The log instance currently supports these log levels, in decreasing order of severity:

Level Usage Description
ER-
ROR

log.error(String,
Throwable = null)

Runtime errors or unexpected conditions.

WARN log.warn(String,
Throwable = null)

Runtime situations that are unexpected, but not wrong. Can also be
used to log use of deprecated APIs.

INFO log.info(String,
Throwable = null)

Interesting runtime events. For example, turning a switch on or off.

DE-
BUG

log.debug(String,
Throwable = null)

Detailed information about the flow of the SmartApp.

TRACE log.trace(String,
Throwable = null)

Most detailed information.

105.3 Logging exceptions

All log methods accept a second, optional parameter of type Throwable. This is useful when catching an exception
- you can pass the exception to any of the log methods, and it will include the exception message along with the line
number that caused it.

261

SmartThings Classic Developer Documentation, Release latest

Consider the following example that simply forces a NullPointerException by invoking a method on an object
that does not exist:

(Real applications should never attempt to handle possible NullPointerExceptions like this, of course. It is shown here
only to illustrate how to pass the exception to the log methods.)

def initialize() {
try {

// foo doesn't exist, causing exception
foo.boom()

} catch (e) {
log.error("caught exception", e)

}
}

Executing the above code would result in the following message in Live Logging:

12:42:03 PM: debug caught exception java.lang.NullPointerException: Cannot invoke method boom() on null object @ line 47

105.4 Logging examples

Consider the following simple SmartApp which sets up some switch devices and has an event handler method that will
log how many switches are currently turned on.

preferences {
section {

input "switches", "capability.switch", multiple: true
}

}

def installed() {
log.debug "Installed with settings: ${settings}"
initialize()

}

def updated() {
log.debug "Updated with settings: ${settings}"
unsubscribe()
initialize()

}

def initialize() {
subscribe(switches, "switch", someEventHandler)

}

def someEventHandler(evt) {
// returns a list of the values for all switches
def currSwitches = switches.currentSwitch

def onSwitches = currSwitches.findAll { switchVal ->
switchVal == "on" ? true : false

}

log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"
}

262 Chapter 105. Logging

SmartThings Classic Developer Documentation, Release latest

Let’s start the above SmartApp execution in the IDE. The first thing that we can see are messages like this:

It is easy to see that the debug message came from the updated() method.

def updated() {
log.debug "Updated with settings: ${settings}"
...

}

But where did the other trace messages come from? These messages are coming from the SmartApp framework. The
SmartApp framework automatically will provide certain information like this during the execution of a SmartApp. Try
turning one of the switches on in the IDE. You will see some more of these trace messages coming from the SmartApp
framework. You will also see the debug message in the someEventHandler() method.

log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"

You should expect to see something like this in live logging.

Note: The newest messages appear at the top of the live logs, not the bottom.

Lets see an example of how each one of the log levels look when output to live logging. In the
someEventHandler() method, I’ve added the following log messages for this example.

log.error "${onSwitches.size()} out of ${switches.size()} switches are on"
log.warn "${onSwitches.size()} out of ${switches.size()} switches are on"
log.info "${onSwitches.size()} out of ${switches.size()} switches are on"
log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"
log.trace "${onSwitches.size()} out of ${switches.size()} switches are on"

The output is nice and color coordinated so we can visually see the severity of the various levels.

Finally, an example of how the logger can be used in a try/catch block instead of getting the exception.

105.4. Logging examples 263

SmartThings Classic Developer Documentation, Release latest

try {
def x = "some string"
x.somethingThatDoesNotExist

} catch (all) {
log.error("Something went horribly wrong!", all)

}

264 Chapter 105. Logging

CHAPTER 106

GitHub Integration

Warning: Before proceeding to enable GitHub integration in the IDE, be aware that:
1. GitHub IDE integration is not supported outside the US.
2. GitHub IDE integration may negatively impact the performance of the IDE.

As an open platform, we recognize that giving our community developers access to the repository housing our Smar-
tApps and Device Handlers is extremely important. While you can browse the code in the IDE, not having access
to the repository itself is limiting. The SmartThingsCommunity/SmartThingsPublic GitHub repository is now public,
allowing you to browse the source code in a more traditional format.

We have also provided an integration with the GitHub repository into the IDE. This will allow SmartThings developers
to integrate their forked SmartThingsPublic repository with the IDE, including the ability to make commits to the
forked repository using the IDE.

If you just want to browse the source in GitHub, you can do that using the tools you are most comfortable with.

If you want to take advantage of the GitHub integration with the IDE, read on for more information.

Note: A working knowledge of Git and GitHub is assumed in this guide. If you are new to Git and GitHub, we
recommend checking out the GitHub Bootcamp to help you learn the basics. We will walk you through some specific
Git steps, but a full discussion/explanation of Git is beyond the scope of this guide.

106.1 Overview

The GitHub IDE integration allows you to integrate your forked SmartThingsPublic repository with the IDE. This
allows you to easily view and work with SmartApps or Device Handlers already in the repository, as well as update
the versions in your IDE with upstream repository changes, and make commits to your forked repository right from
the IDE.

When you setup GitHub integration in the IDE, you will create a fork of the SmartThingsPublic repository in GitHub.
This will then be the repository that the IDE will be connected to. When you add files from the repository to the IDE,
this is the repository it will look at to get the available files. When you commit changes in the IDE, you are making
commits in your remote forked repository.

You will need to manage the syncing of your forked repository with the original SmartThingsPublic repository, just as
you would with any forked repository in GitHub.

265

https://github.com/SmartThingsCommunity/SmartThingsPublic
https://help.github.com/categories/bootcamp/

SmartThings Classic Developer Documentation, Release latest

Important: Remember that the IDE is connected to your remote forked repository in GitHub. If you create a local
clone of your repository, you will need to keep that in sync with the remote repository.

106.2 Setup

To connect your GitHub account with the SmartThingsPublic repository in the IDE, follow these steps.

106.2.1 Step 1 - Enable GitHub integration

Click the Enable GitHub Integration link on the My SmartApps or My Device Handlers page. This will launch a
wizard that will guide you through the process.

106.2.2 Step 2 - Connect your GitHub account to SmartThings

On Step 1 of the wizard, follow the instructions to authorize SmartThings to integrate with your GitHub account. Click
the Next button after you have done this.

266 Chapter 106. GitHub Integration

SmartThings Classic Developer Documentation, Release latest

106.2.3 Step 3 - Create a fork

Follow the instructions to fork the SmartThingsCommunity/SmartThingsPublic repository, and then click the Next
button.

106.2. Setup 267

SmartThings Classic Developer Documentation, Release latest

106.2.4 Step 4 - Clone the forked repository

Tip: While not required to for submitting changes, this is useful so that you have a local copy of the source code
(useful for grepping the source locally, using your favorite editor, etc.), and is required to update your fork from the
main SmartThingsPublic repository.

Follow these steps to clone your forked repository to your local machine (it is assumed that you have installed and
configured Git on your local machine):

On the main page of your forked repository in GitHub, copy the HTTPS clone URL link:

In a terminal or command prompt, type:

git clone <clone URL copied as above>

Press Enter. This will create a local clone of your forked repository.

268 Chapter 106. GitHub Integration

SmartThings Classic Developer Documentation, Release latest

106.2.5 Step 5 - Configure Git to sync fork with SmartThings

If you chose to create a local clone of your forked repository, you should configure it get upstream changes from the
original SmartThings repository.

On GitHub, navigate to the SmartThingsCommunity/SmartThingsPublic repository. On the right sidebar of the repos-
itory page, copy the clone URL:

Important: This is the clone URL for the main SmartThingsPublic repository, not your fork!

In a terminal or command prompt, change directories to the location of your cloned fork, and type:

git remote add upstream <remote URL as copied above>

It should look like this:

git remote add upstream https://github.com/SmartThingsCommunity/SmartThingsPublic.git

Press Enter.

In a terminal or command prompt, type:

git remote -v

This will show all the configured remotes. You should see an upstream remote configured for the SmartThingsPublic
repository.

That’s it! You now have connected your GitHub account with the SmartThings IDE. You will now be able to commit
changes made in the IDE to this repository, and update SmartApps and Device Handlers in the IDE from changes
merged into this repository from other sources.

106.3 Repository structure

The repository is organized by type (SmartApps or Device Handlers) and namespace.

Each SmartApp and Device Handler should be in its own directory, named the same as the SmartApp or Device
Handler, and appended with ".src".

For SmartApps:

smartapps/<namespace>/<smartapp-name>.src/<smartapp file>.groovy

For Device Handlers:

devicetypes/<namespace>/<device-type-name>.src/<device handler file>.groovy

The namespace is typically your GitHub user name. When you create a SmartApp or Device Handler in the IDE, you
provide a namespace, which is then populated in the definition method. This namespace will be used in the directory
structure as shown above.

106.3. Repository structure 269

SmartThings Classic Developer Documentation, Release latest

Important: Note that the directory names must all be lowercase and must be consistent with the
namespace and the name of the Device Handler or SmartApp. In other words, the directory names
must all be lowercase with non-alphanumeric characters replaced with a dash. For example, if a Smar-
tApp has the namespace “My Apps” and the name “My First App” then the path name for it must be
smartapps/my-apps/my-first-app.src/my-first-app.groovy.

106.4 GitHub integration IDE tour

106.4.1 Color-coded names

The first thing you may notice after enabling GitHub integration is that various SmartApps or Device Handlers are
color-coded differently in the IDE. Each name will be color-coded differently depending on its state in the GitHub
repository

Hint: Hover your mouse cursor over the name to display a tooltip to give more information.

Black Indicates that the file is unchanged between your forked GitHub repository and the IDE.

Green Indicates that the file is in the IDE only, and not in any repository.

Blue Indicates that the file exists in your GitHub repository, and has been modified in the IDE but not committed to
the repository.

Magenta Indicates that the file has been updated in the repository, but not in the IDE. To resolve this, you should
click the Update from Repo button, where you sill see the file appear in the Obsolete column. More information
about the Update from Repo button can be found below.

Red Both the IDE version and repository version have been updated, and are in need of a conflict resolution. To
resolve this, you should click the Update from Repo button and follow the steps there (more information about
the Update from Repo action can be found below).

Brown Indicates that the SmartApp or Device Handler is unattached to the repository version. Typically this happens
when a new SmartApp or Device Handler is created from a template, and the name or namespace hasn’t been
changed. If you update from the repo without changing the name or namespace, the IDE version will be replaced
with the repo version. Typically in this case you would change the name and namespace to be unique for your
code.

106.4.2 GitHub actions buttons

When you enable GitHub integration, you will see a few buttons added to the My SmartApps and My DeviceTypes
pages in the IDE:

270 Chapter 106. GitHub Integration

SmartThings Classic Developer Documentation, Release latest

Commit Changes

Clicking the Commit Changes button will first prompt you to select what repository you want to commit to, and then
launch a wizard allows you to commit any new or modified code to your forked repository. You can (and should) also
add a commit message as you would normally do when making commits in Git.

Update from Repo

Clicking the Update from Repo button will first prompt you to select what repository you’d like to update from, and
then launch a wizard that allows you to update your IDE code from your forked repository.

The wizard will display three columns, each of which is described below:

Tip: The files considered for this action will depend on if you are on the My SmartApps or My DeviceTypes page in
the IDE. Only SmartApps will be considered if launched from My SmartApps, and only device handlers if launched
from My DeviceTypes

Obsolete (updated in GitHub) Entries showing in the Obsolete column represent files that you have included in the
IDE, but have since been updated in your forked repository (with no conflicts existing). To update your IDE
version, select the files you wish to update, and click the Execute Update button.

Conflicted (updated locally and in GitHub) Entries showing in the Conflicted column represent files that have been
modified both in the IDE and in your forked repository. To resolve these conflicts, select the files and click the
Execute Update button.

New (only in GitHub) Entries showing in the New column are any files found in your forked repository that are not
currently in the IDE. To bring these files into your IDE, select the files and click the Execute Update button.

Note: When updating from the repo, you also have the ability to publish any updates (either for yourself or all) by
checking the Publish check box.

Settings

This is where you can find information about the repository and branch integrated with the IDE, as well as actions to
update, remove, or add new repositories.

106.5 How to

106.5.1 Add files from repository to the IDE

To add files from your forked SmartThingsPublic repository into the IDE, follow these steps:

1. Step 1 - Navigate to the My SmartApps or My Device Handlers page in the IDE

The files available to add to the IDE vary depending upon the context. If you want to add SmartApps to your IDE,
navigate to the My SmartApps page. If you want to add Device Handlers, navigate to the My Device Handlers.

2. Step 2 - Update from Repo

Click the Update from Repo button (above the list of SmartApps or device handlers), and select the repo you want to
update from.

106.5. How to 271

SmartThings Classic Developer Documentation, Release latest

In the resulting wizard, select the files you want to add to the IDE in the New (only in GitHub) column.

Click the Execute Update button in the wizard.

The IDE will now have the files you selected.

106.5.2 Get latest code from SmartThingsPublic repository

Note: To get the latest code from the SmartThingsPublic repository, you need to have cloned your forked repository
and configured it to fetch changes from the main (upstream) SmartThingsPublic repository.

See Step 4 - Clone the forked repository (page 268) and Step 5 - Configure Git to sync fork with SmartThings (page 269)
in the Setup (page 266) section for more information.

To get the latest code from the SmartThingsPublic repository, follow these steps:

Step 1 - Fetch upstream changes

Open a terminal or command prompt and change directory to the root of your forked repository.

Type git fetch upstream and press Enter. This will fetch the branches and their commits from the Smart-
ThingsPublic repository.

Step 2 - Checkout your local master branch

Type git checkout master and press Enter.

Step 3 - Merge the changes from upstream/master to your local master branch

Type git merge upstream/master and press Enter. This will bring your fork’s local master branch up to date
with the changes in the SmartThingsPublic master branch.

Step 4 - Push changes to your remote fork

Now that we have our local repository updated synced with the latest SmartThingsPublic repository, we need to push
those changes to our remote fork. Remember, this is where the IDE looks for changes (not your local clone!).

Type git push origin master and press Enter. This will push all commits in your local repository on the
master branch, to the remote (origin) master branch.

Step 5 - Update the IDE version

272 Chapter 106. GitHub Integration

SmartThings Classic Developer Documentation, Release latest

Now, to update the IDE versions with your updated forked repository, click the Update from Repo button on the My
SmartApps or My device handlers page, and select the repo you want to update from.

In the resulting wizard, check the box next to any of the files you want to update in the IDE, and click the Execute
Update button.

The files you chose to update are now updated in the IDE.

106.5.3 Commit changes in the IDE

To commit changes to a SmartApp or Device Handler, whether it is a new file or already exists in the repository, Click
on the Commit Changes button on the My SmartApps or My device handlers and select the repository you want to
commit to.

In the resulting wizard, check the box next to the file you want to commit, add a commit message, and press the
Commit Changes button.

This will make a commit in your fork.

106.5.4 Keep your cloned repo in sync with origin

If you cloned your forked repository to your local machine, you will want to keep it in sync with your remote forked
repository in GitHub.

When you make commits in the IDE, you are making a commit and pushing those changes to your forked repository.
To sync your cloned repository with the remote forked repository, follow these steps:

Step 1 - Fetch origin changes

Open a terminal or command prompt and change directory to the root of your forked repository.

Type git fetch origin and press Enter. This will fetch the branches and their commits from your forked
SmartThingsPublic repository.

Step 2 - Checkout your local branch

Type git checkout master (substitute master for a different branch, if you choose) and press Enter.

Step 3 - Merge the changes from origin/master to your local branch

Type git merge origin/master (substitute master for a different branch, if you want to merge from a dif-
ferent branch) and press Enter. This will bring your cloned repository’s local branch up to date with the changes in
your forked SmartThingsPublic branch.

106.6 Best practices

106.6.1 Sync with upstream repository frequently

If you have cloned your forked repository locally, you should merge changes from the upstream SmartThingsPub-
lic repository frequently. This will help prevent your fork from becoming out-of-date with the SmartThingsPublic
repository, and minimize the potential for difficult merging of conflicts.

See Get latest code from SmartThingsPublic repository (page 272) for instructions on syncing from the upstream
SmartThingsPublic repository.

106.6. Best practices 273

SmartThings Classic Developer Documentation, Release latest

106.7 FAQ

I don’t want to grant SmartThings access to my GitHub account. Is there a way around this? Integrating the
GitHub repositories with the IDE requires that you grant SmartThings read and write access to your GitHub
repositories. If you would rather not grant SmartThings this level of access to your GitHub account, we
recommend that you create a new GitHub user to use for SmartThings development. That will allow you to
keep your primary GitHub account separate from the SmartThings account.

Do I have to use the GitHub integration? No. The GitHub integration is optional.

Does this change the process for submitting SmartApps or device handlers to SmartThings ? The process for
submitting a publication request is essentially the same. The result is slightly different, in that the requests
themselves become pull requests in the main SmartThingsPublic repository. This is similar to how it was work-
ing previously, but now the pull requests will be visible in the repository since the repository is public.

Can I just a make a pull request to the SmartThingsPublic repository, without using the GitHub IDE Integration?
If you make a pull request to the SmartThingsPublic repository, but have not enabled GitHub integration in the
IDE, your pull request will not be reviewed or merged in to the SmartThingsPublic repository. Enabling GitHub
integration is what allows us to connect your GitHub account with your SmartThings account. If you have
enabled the GitHub integration, and then would rather make a pull request to the SmartThingsPublic repository
(using the GitHub account you enabled in the IDE) instead of publishing through the IDE, you can. We think
it’s more efficient to use the tools in the IDE, but nothing prevents you from making a pull request directly in
this case.

Where can I find more information about working with Git? See the Getting help (page 274) section.

I made a commit to my local GitHub fork (not using the IDE), but don’t see it when I try to Update from Repo in the IDE.
Did you push your changes to your forked GitHub repository and branch associated with the IDE? Only changes
pushed to your forked repository are visible to the IDE - committing changes to your local repository only,
without pushing them to the repository and branch associated with the IDE, will not be visible.

I made a commit through the IDE, but I don’t see it in my cloned forked repository. Did you merge the latest
changes into your local repository? Remember, when you make a commit in the IDE, you are making a commit
to your forked version of the SmartThingsPublic repository. If you cloned the repository locally, you need to
sync your local repository with the remote repository. See Keep your cloned repo in sync with origin (page 273)
for more information.

I think I found a bug. How do I report it? First, check out the Getting help (page 274) section below to see if any
of the links may answer your questions. If you’re confident you’ve found a bug, and it’s not already discussed
on the community forums, email support@smartthings.com. For the fastest response, be sure to include your
SmartThings user name, your GitHub account name, and specific steps that caused the issue.

106.8 Getting help

Here are some links for getting help working with Git and GitHub:

• GitHub

• GitHub Help Page

• GitHub Bootcamp - useful for getting started with Git.

• Fork a Repo - documentation on how to fork a repo in GitHub.

• Sync a Repo - documentation on how to sync a fork to the upstream repository.

• Pushing to a Remote - documentation on how to push to a remote repository.

274 Chapter 106. GitHub Integration

mailto:support@smartthings.com
http://github.com
https://help.github.com/
https://help.github.com/categories/bootcamp/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/syncing-a-fork/
https://help.github.com/articles/pushing-to-a-remote/

SmartThings Classic Developer Documentation, Release latest

If your questions are about the IDE integration, and aren’t answered in this documentation, the SmartThings Commu-
nity Forums is a great place to leverage the power of our active community developers to help.

Finally, if you have ideas to help improve this documentation, feel free to contact docs@smartthings.com.

106.8. Getting help 275

http://community.smartthings.com
http://community.smartthings.com
mailto:docs@smartthings.com

SmartThings Classic Developer Documentation, Release latest

276 Chapter 106. GitHub Integration

Part X

SmartApps

277

SmartThings Classic Developer Documentation, Release latest

SmartApps are Groovy-based programs that allow a user to tap into the capabilities of their devices to automate their
lives.

If you haven’t written a SmartApp yet, you should work through the Writing Your First SmartApp (page 175).

279

SmartThings Classic Developer Documentation, Release latest

280

CHAPTER 107

Anatomy and Life Cycle of a SmartApp

SmartApps are applications that allow users to tap into the capabilities of their devices to automate their lives. Most
SmartApps are installed by the user via the SmartThings mobile client application. In addition, a few pre-installed
SmartApps are readily available in the SmartThings system out-of-the-box.

107.1 Types of SmartApps

Generally speaking, there are three different kinds of SmartApps: Event-Handlers, Solution Modules, and Service
Managers. If you are familiar with back-end web development, then you will be more than capable of developing
SmartApps.

107.1.1 Event Handler SmartApps

Event Handler SmartApps are the most common apps developed by our community. They allow you to subscribe to
Events from devices and call a handler method upon their firing. This method can then do a variety of things, most
commonly invoking a command on another device.

A very simple example of an Event-Handler SmartApp would involve you walking through a door and having the
lights turn on automatically.

107.1.2 Solution Module SmartApps

These apps exist within the dashboard of the SmartThings app interface, and are containers for other SmartApps. The
idea behind Solution Module SmartApps is to combine SmartApps that, in the real world, intuitively go together. One
example of this would be the “Home & Family” section of the dashboard which allows you to see the comings and
goings of your family.

107.1.3 Service Manager SmartApps

Service Manager SmartApps are used to connect to LAN or cloud devices, such as a Sonos or a WeMo device. These
SmartApps are the connecting glue between the unique protocols of such LAN or cloud devices and a Device Handler
you would create for such devices. These Service Manager SmartApps discover LAN or cloud devices and then
continue to maintain their connection.

The Service Manager SmartApp must be installed when a user utilizes a device using LAN or the cloud. So, for
example, there is a Sonos Service Manager SmartApp that is installed when pairing with a Sonos device.

281

SmartThings Classic Developer Documentation, Release latest

107.2 SmartApp structure

SmartApps take the form of a single Groovy script. A typical SmartApp script is composed of four sections: Definition,
Preferences, Predefined Callbacks, and Event Handlers. There is also a Mappings section that is required for Cloud-
connected SmartApps that will be described later.

107.2.1 Definition

The defintion section of the SmartApp specifies the name of the app along with other information that identifies and
describes it.

107.2.2 Preferences

The preferences section is responsible for defining the screens that appear in the mobile app when a SmartApp is
installed or updated. These screens allow the user to specify which devices the SmartApp interacts with along with
other configuration options that affect its behavior.

107.2.3 Pre-defined callbacks

The following methods, if present, are automatically called at various times during the lifecycle of a SmartApp:

1. installed() - Called when a SmartApp is first installed.

282 Chapter 107. Anatomy and Life Cycle of a SmartApp

http://groovy.codehaus.org/

SmartThings Classic Developer Documentation, Release latest

2. updated() - Called when the preferences of an installed smart app are updated.

3. uninstalled() - Called when a SmartApp is uninstalled.

4. childUninstalled() - Called for the parent app when a child app is uninstalled (a SmartApp can have
child SmartApps).

The installed() and updated() methods are commonly found in all apps. Since the selected devices may have
changed when an app is updated, both of these methods typically set up the same Event subscriptions, so it is common
practice to put those calls in an initialize() method and call it from both the installed and updated methods.

The uninstalled() method is typically not needed since the system automatically removes subscriptions and
schedules when a SmartApp is uninstalled. However, they can be necessary in apps that integrate with other systems
and need to perform cleanup on those systems.

107.2.4 Event Handlers

The remainder of the SmartApp contains the event handler methods specified in the Event subscriptions and any other
methods necessary for implementing the SmartApp. Event handler methods must have a single argument, which
contains the Event (page 1017) object.

107.3 SmartApp execution

SmartApps aren’t always running. Their various methods are executed when external Events occur. SmartApps
execute when any of the following types of Events occur:

1. Pre-defined callback - Any of the predefined lifecycle Events described above occur.

2. Device state change - An attribute changes on a device, which creates an Event, which triggers a subscription,
which calls a handler method within your SmartApp.

3. Location state change - A location attribute such as Mode changes. Sunrise and sunset are other examples of
location events.

4. User action on the app - The user taps a SmartApp icon or shortcut in the mobile app UI.

5. Scheduled event - Using a method like runIn(), you call a method within your SmartApp at a particular time.

6. Web services call Using our web services API, you create an endpoint accessible over the web that calls a
method within your SmartApp.

107.4 Device preferences

The most common type of input in the preferences section specifies what kind of devices a SmartApp works with. For
example, to specify that an app requires one contact sensor:

input "contact1", "capability.contactSensor"

This will generate an input element in the mobile UI that prompts for the selection of a single contact sensor
(capability.contactSensor). contact1 is the name of a variable that provides access to the device in
the SmartApp.

Device inputs can also prompt for more than one device. So to ask for the selection of one or more switches:

107.3. SmartApp execution 283

SmartThings Classic Developer Documentation, Release latest

input "switch1", "capability.switch", multiple: true

You can find more information about SmartApp preferences here.

107.5 Event subscriptions

Subscriptions allow a SmartApp to listen for Events from devices, or from a Location, or from the SmartApp tile in
the mobile UI. Device subscriptions are the most common and take the form:

subscribe(<device>, "<attribute[.value]>", handlerMethod)

For example, to subscribe to all Events from a contact sensor you would write:

subscribe(contact1, "contact", contactHandler)

The contactHandler() method would then be called whenever the sensor opened or closed. You can also sub-
scribe to specific Event values, so to call a handler only when the contact sensor opens write:

subscribe(contact1, "contact.open", contactOpenHandler)

The subscribe() method call accepts either a device or a list of devices, so you don’t need to explicitly iterate over
each device in a list when you specify multiple: true in an input preference.

You can learn more about subscribing to device Events in the Events and Subscriptions (page 325) section.

107.6 SmartApp sandboxing

SmartApps are developed in a sandboxed environment. The sandbox is a way to limit developers to a specific subset
of the Groovy language for performance and security. We have documented (page 161) the main ways this should
affect you.

107.7 Execution location

With the original SmartThings Hub, all SmartApps execute in the SmartThings cloud. With the new Samsung Smart-
Things Hub, certain SmartApps may run locally on hub or in the SmartThings cloud. Execution location varies
depending on a variety of factors, and is managed by the SmartThings internal team.

As a SmartThings developer, you should write your SmartApps to satisfy their specific use cases, regardless of where
the app executes. There is currently no way to specify or force a certain execution location.

284 Chapter 107. Anatomy and Life Cycle of a SmartApp

CHAPTER 108

Preferences and Settings

The preferences section of a SmartApp specifies what kinds of devices and other information is needed in order for
the application to run. During the installation of the SmartApp the user is prompted, in the mobile UI, to provide such
needed information. The user can present all these inputs on a single page, or break them up into multiple pages.

We strongly recommend you to try out the web IDE and become familiar with it.

108.1 Preferences overview

Preferences are made up of one or more pages. Later we will see that pages themselves contain one or more sections,
which in turn contain one or more elements. The general form of creating preferences looks like:

preferences {
page() {

section() {
paragraph "some text"
input "motionSensors", "capability.motionSensor",

title: "Motions sensors?", multiple: true
}
section() {

...
}

}
page() {

...
}

}

All inputs from the user are stored in a read-only map called settings, and they are available simply by referring
to the input name (the first argument to input()).

Assuming the following inputs:

preferences {
section() {

input "someSwitch", "capability.switch"
input "someText", "text",
input "someTime", "time"

}
}

285

http://ide.smartthings.com

SmartThings Classic Developer Documentation, Release latest

The values can be accessed like this:

// direct access
log.debug "someSwitch is $someSwitch"
log.debug "someText is $someText"
log.debug "someTime is $someTime"

// via settings
log.debug "settings.someSwitch is $settings.someSwitch"
log.debug "settings.someText is $settings.someText"
log.debug "settings.someTime is $settings.someTime"

108.2 Page definition

Pages can be defined two different ways: either by page(String pageName, String pageTitle) {} or by page(options) {}.

page(String pageName, String pageTitle) {}

The code sample below illustrates the first way:

preferences {
// page with name and title
page("page name", "page title") {

// sections go here
}

}

page(options) {}

This form takes a comma-separated list of name-value arguments.

Note: This is a common Groovy pattern that allows for named arguments to be passed to a method. More info can be
found here.

preferences {
page(name: "pageName", title: "page title",

nextPage: "nameOfSomeOtherPage", uninstall: true) {
// sections go here

}
}

The valid options are:

name (required) String - Identifier for this page.

title String - The display title of this page.

nextPage String - Used on multi-page preferences only. Should be the name of the page to navigate to next.

install Boolean - Set to true to allow the user to install this app from this page. Defaults to false. Not necessary
for single-page preferences.

uninstall Boolean - Set to true to allow the user to uninstall from this page. Defaults to false. Not necessary for
single-page preferences.

We will see more in-depth examples of pages in the following sections.

286 Chapter 108. Preferences and Settings

http://docs.groovy-lang.org/latest/html/documentation/#_named_arguments

SmartThings Classic Developer Documentation, Release latest

108.3 Section definition

Pages can have one or more sections. Think of sections as way to group the inputs you want to gather from the user.

Sections can be created in three different ways:

section{}

preferences {
// section with no title
section {

// elements go here
}

}

section(String sectionTitle){}

preferences {
// section with title
section("section title") {

// elements go here
}

}

section(options, String sectionTitle) {}

preferences {
// section will not display in IDE
section(mobileOnly: true, "section title")

}

The valid options are:

hideable Boolean - Pass true to allow the section to be collapsed. Defaults to false.

hidden Boolean - Pass true to specify the section is collapsed by default. Used in conjunction with hideable.
Defaults to false.

mobileOnly Boolean - Pass true to suppress this section from the IDE simulator. Defaults to false.

108.4 Single preferences page

A single page preferences declaration is composed of one or more section elements, which in turn contain one or more
elements. Note that there is no page defined in the example below. When creating a single-page preferences app,
there’s no need to define the page explicitly - it’s implied. Here’s an example:

preferences {
section("Turn on when motion is detected") {

input "themotion", "capability.motionSensor", required: true, multiple: true, title: "Where?"
}

section("Turn off when there's been no movement for") {
input "minutes", "number", required: true, title: "Minutes?"

}
section("Turn on/off this light") {

input "theswitch", "capability.switch", required: true
}

108.3. Section definition 287

SmartThings Classic Developer Documentation, Release latest

}

Which would be rendered in the mobile app UI as:

288 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

108.4. Single preferences page 289

SmartThings Classic Developer Documentation, Release latest

Note that in the above example, we did not specify the name or mode input in the preferences section of the
code, yet they appeared in the UI of our mobile app at the bottom (“Assign a name” and “Set for specific mode(s)”).
When defining single-page preferences, name and mode are automatically added. Also note that inputs that are marked
as required: true are displayed prominently in red color by the mobile app, so that the user knows they are
required. The mobile application will prevent the user from going to the next page or installing the SmartApp without
entering required inputs.

108.5 Multiple preferences pages

Preferences can also be broken up into multiple pages. Each page must contain one or more section elements. Each
page specifies a name property that is referenced by the nextPage property. The nextPage property is used to define
the flow of the pages.

Note: Unlike single page preferences, the name and mode control fields are not automatically added, and must be
specified on the desired page or pages.

Here’s an example that defines three pages:

preferences {
page(name: "pageOne", title: "When there's activity on any of these sensors", nextPage: "pageTwo", uninstall: true) {

section("Choose sensors to trigger the action") {

input "contactSensors", "capability.contactSensor",
title: "Open/close sensors", multiple: true

input "motionSensors", "capability.motionSensor",
title: "Motion sensors?", multiple: true

}
}
page(name: "pageTwo", title: "Turn on these lights", nextPage: "pageThree") {

section {
input "switches", "capability.switch", multiple: true

}
}
page(name: "pageThree", title: "Name app and configure modes", install: true, uninstall: true) {

section([mobileOnly:true]) {
label title: "Assign a name", required: false
mode title: "Set for specific mode(s)", required: false

}
}

}

The resulting pages in the mobile app would show the name and mode control fields only on the third page, and the
uninstall button on the first and third pages:

290 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Page 1 Page 2 Page 3

108.6 Preference elements and inputs

Preference pages (single or multiple) are composed of one or more sections. Each section, in turn, contains one or
more of the following elements:

108.6.1 paragraph

Text that is displayed on the page for messaging and instructional purposes.

Example:

preferences {
section("paragraph") {

paragraph "This is how you can make a paragraph element"
paragraph image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",

title: "paragraph title",
required: true,
"This is a long description that rambles on and on and on..."

}
}

The above preferences definition would render the mobile app UI as:

108.6. Preference elements and inputs 291

SmartThings Classic Developer Documentation, Release latest

292 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Valid options are:

title String - The title of the paragraph.

image String - URL of image to use, if desired.

required Boolean - true or false to specify this input is required. Defaults to false.

108.6.2 icon

Allows the user to select an icon to be used when displaying the app in the mobile UI.

Example:

preferences {
section("paragraph") {

icon(title: "required is true",
required: true)

}
}

The above preferences definition would render the mobile app UI as:

108.6. Preference elements and inputs 293

SmartThings Classic Developer Documentation, Release latest

294 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Tapping the icon UI element would then allow the user to choose an icon:

108.6. Preference elements and inputs 295

SmartThings Classic Developer Documentation, Release latest

296 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Valid options are:

title String - The title of the icon.

required Boolean - true or false to specify this input is required. Defaults to false.

108.6.3 href

A control that selects an external HTML page or another preference page.

Example of using href to visit a URL:

preferences {
section("external") {

href(name: "hrefNotRequired",
title: "SmartThings",
required: false,
style: "external",
url: "http://smartthings.com/",
description: "tap to view SmartThings website in mobile browser")

}
section("embedded") {

href(name: "hrefWithImage", title: "This element has an image and a long title.",
description: "tap to view SmartThings website inside SmartThings app",
required: false,
image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
url: "http://smartthings.com/")

}
}

The above preferences would render the mobile app UI as:

108.6. Preference elements and inputs 297

SmartThings Classic Developer Documentation, Release latest

298 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Example of using href to link to another preference page (dynamic pages are discussed later in this section):

preferences {
page(name: "hrefPage")
page(name: "deadEnd")

}

def hrefPage() {
dynamicPage(name: "hrefPage", title: "href example page", uninstall: true) {

section("page") {
href(name: "href",

title: "dead end page",
required: false,
page: "deadEnd")

}
}

}

def deadEnd() {
dynamicPage(name: "deadEnd", title: "dead end page") {

section("dead end") {
paragraph "this is a simple paragraph element."

}
}

}

You can use the params option to pass data to dynamic pages:

preferences {
page(name: "firstPage")
page(name: "secondPage")

}

def firstPage() {
def hrefParams = [

foo: "bar",
someKey: "someVal"

]

dynamicPage(name: "firstPage", uninstall: true) {
section {

href(name: "toSecondPage",
page: "secondPage",
params: hrefParams,
description: "includes params: ${hrefParams}")

}
}

}

// page def must include a parameter for the params map!
def secondPage(params) {

log.debug "params: ${params}"
dynamicPage(name: "secondPage", uninstall: true, install: true) {

section {
paragraph "params.foo = ${params?.foo}"

}
}

}

Valid options are:

108.6. Preference elements and inputs 299

SmartThings Classic Developer Documentation, Release latest

title String - the title of the element.

required Boolean - true or false to specify this input is required. Defaults to false.

description String - the secondary text of the element

external (deprecated - use style instead) Boolean - true to open URL in mobile browser application, false to
open URL within the SmartThings app. Defaults to false.

style String - Controls how the link will be handled. Specify “external” to launch the link in the mobile device’s
browser. Specify “embedded” to launch the link within the SmartThings mobile application. Specify “page” to
indicate this is a preferences page.

If style is not specified, but page is, then style:"page" is assumed. If style is not specified, but url
is, then style:"embedded" is assumed.

Currently, Android does not support the “external” style option.

url String - The URL of the page to visit. You can use query parameters to pass additional information to the URL
(for example, http://someurl.com?param1=value1¶m2=value1).

params Map - Use this to pass parameters to other preference pages. If doing this, make sure your page definition
method accepts a single parameter (that will be this params map). See the page-params-by-href example at the
end of this document for more information.

page String - Used to link to another preferences page. Not compatible with the external option.

image String - URL of an image to use, if desired.

108.6.4 mode

Allows the user to select which modes the app executes in. Automatically generated by single-page preferences.

Example:

preferences {
page(name: "pageOne", title: "page one", nextPage: "pageTwo", uninstall: true) {

section("section one") {
paragraph "just some text"

}
}
page(name: "pageTwo", title: "page two") {

section("page two section one") {
mode(name: "modeMultiple",

title: "pick some modes",
required: false)

mode(name: "modeWithImage",
title: "This element has an image and a long title.",
required: false,
multiple: false,
image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png")

}
}

}

The second page of the above example would render in the mobile UI as:

300 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Valid options are:

title String - the title of the mode field.

required Boolean - true or false to specify this input is required. Defaults to false.

multiple Boolean - true or false to specify this input allows selection of multiple values. Defaults to true.

image String - URL of an image to use, if desired.

Note: There are a couple of different ways to use modes that are worth pointing out. The first way is to use modes as
a type of enum input like this:

input "modes", "mode", title: "only when mode is", multiple: true, required: false

This method will automatically list the defined modes as the options. Please note when using modes in this way that
the modes are just data and can be accessed in the SmartApp as such. This does not effect SmartApp execution. In
this scenario, it is up to the SmartApp itself to react to the mode changes.

The second example actually controls whether the app is executed based on the modes selected:

108.6. Preference elements and inputs 301

SmartThings Classic Developer Documentation, Release latest

mode(title: "set for specific mode(s)")

Both of these methods of using modes are valid. The impact on SmartApp execution is different in each scenario and
it is up to the SmartApp developer to properly label whichever form is used and code the app accordingly.

108.6.5 label

Allows the user to name the app installation. Automatically generated by single-page preferences.

Example:

preferences {
section("labels") {

label(name: "label",
title: "required:false",
required: false,
multiple: false)

label(name: "labelRequired",
title: "required:true",
required: true,
multiple: false)

label(name: "labelWithImage",
title: "This element has an image and a title.",
description: "image and a title",
required: false,
image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png")

}
}

The above preferences definition would render in the mobile UI as:

302 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

108.6. Preference elements and inputs 303

SmartThings Classic Developer Documentation, Release latest

Note: Images do not currently render in label inputs on Android.

Valid options are:

title String - the title of the label field.

description String - the text in the input field.

required Boolean - true or false to specify this input is required. Defaults to false. Defaults to true.

image String - URL to an image to use, if desired.

108.6.6 app

Provides user-initiated installation of child apps.

108.6.7 input

Allows the user to select devices or enter values to be used during execution of the SmartApp.

Inputs are the most commonly used preference elements. They can be used to prompt the user to select devices that
provide a certain capability, or devices of a specific type, or constants of various kinds.

Input element method calls take two forms.

The “shorthand” form passes in the name and type unnamed as the required first two parameters, and any other
arguments as named options:

preferences {
section("section title") {

// name is "temperature1", type is "number"
input "temperature1", "number", title: "Temperature"

}
}

The second form explicitly specifies the name of each argument:

preferences {
section("section title") {

input(name: "color", type: "enum", title: "Color", options: ["Red","Green","Blue","Yellow"])
}

}

Valid input options are:

capitalization (Note - this feature is currently only supported on iOS devices) String - if the input is a text field, this
controls the behavior of the auto-capitalization on the mobile device. "none" specifies to not enable auto-
capitalization for any word. "sentences" will capitlize the first letter of each sentence. "all" will use all
caps. "words" will capitalize every word. The default is "words".

defaultValue Object - if specified, a default value for this input.

name String - name of variable that will be created in this SmartApp to reference this input.

title String - title text of this element.

description String - default value of the input element.

304 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

multiple Boolean - true or false to specify this input allows selection of multiple devices of the input type (if you
have more than one). Defaults to true. For example, in the motion sensor example above, setting this to true
will allow you to select more than one motion sensor, provided you have more than one.

range A range for numeric (number and decimal) that restricts the valid entries to values within the range. For
exampe, range: "2..7" will only allow inputs between 2 and 7 (inclusive). range: "-5..8" allows
inputs between -5 and 8. A value of “*” will allow any numeric value on that side of the range. Use range:
"*..*" to allow the user to enter any value, negative or positive. Note that without specifying a range that
allows negative numbers, the mobile clients will only show a keypad to allow positive numeric entries.

required Boolean - true to require the selection of a device for this input or false to not require selection.

submitOnChange Boolean - true to force a page refresh after input selection or false to not refresh the page.
This is useful when creating a dynamic input page.

options List - used in conjunction with the enum input type to specify the values the user can choose from. Example:
options: ["choice 1", "choice 2", "choice 3"].

type String - one of the names from the following table:

Name Comment
capability.capabilityName Prompts for all the devices that match the specified

capability.
See the Preferences Reference column of the Capa-
bilities Reference (page 655) table for possible val-
ues.

device.deviceTypeName Prompts for all devices of the specified type. See Us-
ing device-specific inputs (page 306) for more infor-
mation.

bool A true or false value (value returned as a
boolean).

boolean A "true" or "false" value (value returned as a
string). It’s recommended that you use the “bool” in-
put instead, since the simulator and mobile support
for this type may not be consistent, and using “bool”
will return you a boolean (instead of a string). The
“boolean” input type may be removed in the near fu-
ture.

decimal A floating point number, i.e. one that can contain a
decimal point

email An email address
enum One of a set of possible values. Use the options ele-

ment to define the possible values.
hub Prompts for the selection of a hub
icon Prompts for the selection of an icon image
number An integer number, i.e. one without decimal point
password A password string. The value is obscured in the UI

and encrypted before storage
phone A phone number
time A time of day. The value will be stored as a

string in the Java SimpleDateFormat (e.g., “2015-01-
09T15:50:32.000-0600”)

text A text value

108.6. Preference elements and inputs 305

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

SmartThings Classic Developer Documentation, Release latest

108.6.8 Using device-specific inputs

If a specific device is required for a SmartApp, the device itself can be used instead of the capability, with the
"device.<deviceName>" input type. For example, if your SmartApp specifically requires a device named “My
Fancy Device”, you can prompt the user for that device this way:

input "myDevice", "device.myFancyDevice"

The format of the device name is determined by the following algorithm:

1. Remove "device." prefix ("device.myFancyDevice" -> "myFancyDevice").

2. Capitalize the result ("myFancyDevice" -> "MyFancyDevice").

3. Split the result by camel case ("MyFancyDevice" -> ["My", "Fancy", "Device"]).

4. Join result with a space (["My", "Fancy", "Device"] -> "My Fancy Device").

5. Replace occurrences of any of these strings in the result with the following, as shown:

Original Replaced With
"Smart Sense" "SmartSense"
"Smart Power Outlet V 1" "SmartPower Outlet V1"
"Smart Power Outlet" "SmartPower Outlet"
"Open Closed Sensor" "Open/Closed Sensor"
"On Off" "On/Off"
"Door Window" "Door/Window"
"Motion Temp Sensor" "Motion/Temp Sensor"
"Z Wave" "Z-Wave"
"Zwave" "Z-Wave"
"Smart Phone" "Mobile Presence"
"Mobile Presence" "Mobile Presence"

Here are a few examples:

Device Preference Input Device Name Searched For
"device.myFancyDevice" "My Fancy Device"
"device.ecobeeThermostat" "Ecobee Thermostat"
"device.myOnOffDevice" "My On/Off Device"

When using device.<name> inputs, the platform first looks up which Device Handler it is, then finds any devices
of that type for that Location. The algorithm searches for a Device Handler in the following order:

1. A Device Handler published by SmartThings that matches the name.

2. A Device Handler published by the current user that matches the name.

If there are multiple Device Handlers with the same name, the first Device Handler found will be returned. Only the
name of the Device Handler is searched for; namespace is not considered.

There are some caveats to be aware of due to the way the algorithm works:

• The name of the device should have every word capitalized.

• Use of numbers can cause unexpected results.

• Use of spaces in the device input can cause unexpected results.

Here are some examples that illustrate this:

306 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

Device Preference Input Device Name Searched For
"device.myDevice v1" "My Device v 1"
"device.myDeviceV1" "My Device V 1"
"device.myDevicev1" "My Devicev 1"
"device.mydevice" "Mydevice"

108.7 Hide when empty

Inputs, sections, and pages support the hideWhenEmpty attribute. This attribute will hide the element that it is
associated with when the element is empty. For example, if you have an input that prompts the user for an audio
device, but that user does not have any audio devices, the hideWhenEmpty attribute will hide the input from the
user. Let’s take a look at a few examples.

Add the hideWhenEmpty attribute to SmartApp inputs to completely hide UI control if there are no devices avail-
able. In this example, the SmartApp will not display the valve input if there were no valves in this user’s Location, but
would display the switch input even if there were no switches.

preferences {
section {

input "switches", "capability.switch", title: "Select a switch"
input "valves", "capability.valve", title: "Select a valve", hideWhenEmpty: true, required: false

}
}

Adding the hideWhenEmpty attribute to a section or a page will cascade the attribute down to all of the child input
elements. This means that adding the hideWhenEmpty attribute to any parent element is in effect the same as adding
the hideWhenEmpty attribute to all of the child input elements. Let’s look at a few examples.

The following example will hide the entire section if there are no valves and no switches. If the user did have a switch
or a valve, then the section would be displayed with only the input element that is available.

preferences {
section(hideWhenEmpty: true) {

input "switches", "capability.switch", title: "Select a switch"
input "valves", "capability.valve", title: "Select a valve", required: false

}
}

The last example illustrates how this attribute applies to an entire page element. In this case, any section will be
hidden if all of its input elements are absent. For example, if the switch device is available but the valve device is not
available, then the section with switches and valves will still display. However, if both switch and valve devices are
entirely absent, then the section with switches and valves will not display.

preferences {
page(name: "mainPage", title: "Select some things", hideWhenEmpty: true) {

section {
input "switches", "capability.switch", title: "Select a switch"
input "valves", "capability.valve", title: "Select a valve", required: false

}
section {

input "audio", "capability.musicPlayer", title: "Select a music player"
}

}
}

108.7. Hide when empty 307

SmartThings Classic Developer Documentation, Release latest

It is worth noting that in the last example, the audio input does not have the usual required: false attribute.
This is because the input will not be displayed if there are no audio devices associated to this Location. However, the
SmartApp would have to be able to handle a null value for that input. Also, it is worth remembering that if the user
does have an audio device in this Location, the default value of required: true will be applicable.

108.7.1 Working with other input types

We’ve seen how the hideWhenEmpty attribute works with device inputs, but what about other types of inputs like
Number, text, or Boolean inputs?

These types of inputs will always appear because they can never have empty selections. It is possible to hide these
kinds of input elements if they relate to another input element. Let’s look at an example where we have two inputs, an
audio device input, and a volume input. The volume input can never be empty, so we can’t hide it. But it is related to
the audio input which can be empty and hidden. In this case, we can hide the entire section containing the two inputs
by telling the volume input to hide if the audio input is empty. We do this by referencing the name of the related input.

preferences {
page(name: "mainPage", title: "Select some things", hideWhenEmpty: true) {

section {
input "audio", "capability.musicPlayer", title: "Select a music player"
input "volume", "number", title: "Set it to this volume level", hideWhenEmpty: "audio"

}
}

}

108.8 Custom Remove button

By default, a Remove button is added to the bottom of a preferences page that specifies uninstall: true. This
button can be customized by using the remove() method:

page(name: "firstPage") {
section {

paragraph "The remove button below normally says 'Remove'"
}
remove("Custom Button Text")

}

The specified text is used as the label of the button on the page, as well as the label of the confirmation button on the
resulting confirmation dialog:

308 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

We can also specify custom confirmation text:

page(name: "firstPage") {
section {

paragraph "The remove button below normally says 'Remove'"
}
remove("Custom Button Text", "Custom Confirmation Text")

}

This renders in the mobile UI as:

Finally, we can specify custom detail text to show on the confirmation dialog:

page(name: "firstPage") {
section {

paragraph "The remove button below normally says 'Remove'"
}
remove("Custom Button Text!", "Custom Confirmation Text!", "Custom detail text")

}

108.8. Custom Remove button 309

SmartThings Classic Developer Documentation, Release latest

This renders in the mobile UI as:

The use of remove() must follow these rules:

• It must be defined after all other sections.

• It must not be nested inside a section.

• It can only be used inside a page.

• It must only be used once per page.

If these rules are not followed, exceptions are thrown and error messages are displayed when pressing Save.

remove() also sets the page uninstall to true.

108.9 Dynamic preferences

One of the most powerful features of multi-page preferences is the ability to dynamically generate the content of a
page based on previous selections or external inputs, such as the data elements returned from a web services call.
The following example shows how to create a two-page preferences SmartApp where the content of the second page
depends on the selections made on the first page.

preferences {
page(name: "page1", title: "Select sensor and actuator types", nextPage: "page2", uninstall: true) {

section {
input("sensorType", "enum", options: [

"contactSensor":"Open/Closed Sensor",
"motionSensor":"Motion Sensor",
"switch": "Switch",
"moistureSensor": "Moisture Sensor"])

input("actuatorType", "enum", options: [
"switch": "Light or Switch",
"lock": "Lock"]

)

310 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

}
}

page(name: "page2", title: "Select devices and action", install: true, uninstall: true)

}

def page2() {
dynamicPage(name: "page2") {

section {
input(name: "sensor", type: "capability.$sensorType", title: "If the $sensorType device")
input(name: "sensorAction", type: "enum", title: "is", options: attributeValues(sensorType))

}
section {

input(name: "actuator", type: "capability.$actuatorType", title: "Set the $actuatorType")
input(name: "actuatorAction", type: "enum", title: "to", options: actions(actuatorType))

}

}
}

private attributeValues(attributeName) {
switch(attributeName) {

case "switch":
return ["on","off"]

case "contactSensor":
return ["open","closed"]

case "motionSensor":
return ["active","inactive"]

case "moistureSensor":
return ["wet","dry"]

default:
return ["UNDEFINED"]

}
}

private actions(attributeName) {
switch(attributeName) {

case "switch":
return ["on","off"]

case "lock":
return ["lock","unlock"]

default:
return ["UNDEFINED"]

}
}

The previous example shows how you can achieve dynamic behavior between pages. Next, with the
submitOnChange input attribute you can also have dynamic behavior in a single page.

preferences {
page(name: "examplePage")

}

def examplePage() {
dynamicPage(name: "examplePage", title: "", install: true, uninstall: true) {

section {

108.9. Dynamic preferences 311

SmartThings Classic Developer Documentation, Release latest

input(name: "dimmers", type: "capability.switchLevel", title: "Dimmers",
description: null, multiple: true, required: false, submitOnChange: true)

}

if (dimmers) {
// Do something here like update a message on the screen,
// or introduce more inputs. submitOnChange will refresh
// the page and allow the user to see the changes immediately.
// For example, you could prompt for the level of the dimmers
// if dimmers have been selected:

section {
input(name: "dimmerLevel", type: "number", title: "Level to dim lights to...", required: true)

}
}

}
}

Note: When a submitOnChange input is changed, the whole page will be saved and then a refresh is triggered
with the saved page state. This means that all of the methods will execute each time you change a submitOnChange
input.

108.9.1 dynamicPage() options

Any valid option for page() will work for dynamicPage() also. In addition, the refreshInterval input
option is specific to dynamicPage() method:

preferences {
page(name: "page0")
page(name: "page1")
page(name: "page3")

}

...

def page1() {
dynamicPage(name: "page1", title: "Page 1", nextPage: "page2", refreshInterval: 5, uninstall: "true")

}

refreshInterval Integer - refreshes the specific page of the SmartApp on the mobile device for the integer number of
seconds. In the above example, it refreshes the page1 every 5 seconds.

108.10 Private settings

Some SmartApps may need to reference sensitive data, such as API keys or secrets. These should not be placed
directly in the source code, since anyone with access to the source will then be able to view this sensitive information.

Instead, you should specify appSettings in the SmartApp’s definition:

312 Chapter 108. Preferences and Settings

SmartThings Classic Developer Documentation, Release latest

definition(
name: "your app name",
namespace: "your-namespace",
// ...

) {
appSetting "setting1"
appSetting "setting2"

}

The string passed to appSetting will be the name of the setting. The actual values are set on the Edit SmartApp
page, accessed by pressing the App Settings button. Scroll down the page, expand the Settings group, and set the values
as needed.

The values are stored in a map in app.appSettings. You can access the values like this:

definition(
//...

) {
appSetting "apiSecret"

}

// get the value of apiSecret
def mySecret = appSettings.apiSecret

Note: All values in appSettings are stored as strings. Any desired type conversion will need to be performed
manually.

Any SmartApp that requires the use of API keys or other information that is sensitive in nature should use
appSettings to store this information.

108.11 Examples

The Github page page-params-by-href.groovy shows how to pass parameters to dynamic pages using the href element.

Almost every SmartApp makes use of preferences to some degree. You can browse them in the IDE under the “Browse
SmartApp Templates” menu.

108.11. Examples 313

https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/preferences/page-params-by-href.groovy

SmartThings Classic Developer Documentation, Release latest

314 Chapter 108. Preferences and Settings

CHAPTER 109

Storing Data With State

SmartApps and Device Handlers execute in response to various Events or schedules; they are not continuously run-
ning. Since each execution is executed independently, it has no information regarding previous executions. This is
often adequate for most SmartApps or Device Handlers, but sometimes, they need to remember information across
executions.

For this reason, SmartApps and Device Handlers can store small amounts of data using a map-like API, and retrieve
this data in later executions.

SmartApps can persist and retrieve data one of two ways - using the built-in state or atomicState objects (the
details and difference between these implementations are discussed in detail in this document). Device Handlers can
use the built-in state object, just as SmartApps can, but do not have atomicState available.

Warning: As discussed in the documentation below, state and atomicState should never be used in the
same SmartApp.
Doing so can cause inconsistencies or even loss of data. At some point, this may be enforced through a compile-
time check to prevent making this mistake.

109.1 Quick example

Consider this simple example that keeps track of how many time a switch is turned on:

preferences {
section() {

input "theswitch", "capability.switch"
}

}

def installed() {
initialize()

}

def updated() {
unsubscribe()
initialize()

}

def initialize() {
// initialize counter

315

SmartThings Classic Developer Documentation, Release latest

state.switchCounter = 0

subscribe(theswitch, "switch.on", incrementCounter)
}

def incrementCounter() {
state.switchCounter = state.switchCounter + 1
log.debug "switch has been turned on $state.switchCounter times"

}

As you can see, using State is straightforward - we can add and retrieve data just as we would with a map (actually,
State is an implementation of java.util.Map, as discussed more below).

While working with State appears straightforward (and for simple use cases, it is), an understanding of the workings
of State is necessary to avoid debugging headaches, inconsistent data results, and even potential data loss in certain
scenarios. With this information, you can make the best use of State (and Atomic State) and save yourself and your
customers a good deal of trouble that could be encountered.

109.2 State and Atomic State overview

There are two objects injected into every SmartApp to persist and retrieve data across executions: state and
atomicState (Device Handlers only have state available, but an understanding of how state works is still
important for Device Handler developers).

Here are the key features and differences between State and Atomic State. The details of both are discussed in this
document, along with guidelines for understanding which to use in different situations.

State:

• State is an implementation of java.util.Map, making it simpler and more feature-rich to work with.

• Modifications (addition, removal, updating) to State within an execution are only persisted to external storage
after execution completes. This makes State the more performant choice.

Atomic State:

• Atomic State is not an implementation of java.util.Map, so working with it is not as feature-rich as State.

• Modifications (additional, removal, updating) to Atomic State within an execution are persisted to external
storage more or less immediately. This incurs a performance penalty when compared to State.

109.3 Persistence model

Both State and Atomic State use a database table to store values. The same table is used by both State and Atomic
State.

The values are stored as JSON strings. Given the following code:

def initialize() {
state.someString = "some string"
state.someNum = 42
state.collection = [k1: 1, k2: [n1: "nested"]]

}

316 Chapter 109. Storing Data With State

SmartThings Classic Developer Documentation, Release latest

The data stored in the database table would look like this:

Installed SmartApp ID Name Value
<installed-smartapp-id> someString “some string”
<installed-smartapp-id> someNum 42
<installed-smartapp-id> collection {“k1”:1,”k2”:{“n1”:”nested”}}

109.4 How State works

All SmartApps and Device Handlers have available to them a state object (it is a map) to persist data between
executions.

The general flow for SmartApp state is as follows:

1. When a SmartApp or Device Handler is scheduled for execution, the state object is populated with the values
from the database. The SmartThings platform also makes a copy of the contents of state prior to execution,
for later comparison.

2. SmartApp or Device Handler execution begins, and can add, read, or modify the contents in the state object
just as with any other map.

3. Execution ends. The SmartThings platform compares the state object at execution ends with the contents of
state before execution began. If there are any changes (additions, removals, updates), those entries are written
to the database.

This is summarized in the following diagram:

109.5 State and potential race conditions

Since state is initialized from persistent storage when a SmartApp executes, and is written to storage only when the
application is done executing, there is the possibility that another execution could happen within that time window,
and cause the values stored in state to appear inconsistent.

Consider the scenario of a SmartApp that keeps a counter of executions. Each time the SmartApp executes, it incre-
ments the counter by 1. Assume that the initial value of state.counter is 0.

1. An execution (“Execution 1”) occurs, and increments state.counter by one:

state.counter = state.counter + 1 // counter == 1

2. Another execution (“Execution 2”) occurs before “Execution 1” has finished. It reads state.counter and
increments it by one:

109.4. How State works 317

SmartThings Classic Developer Documentation, Release latest

state.counter = state.counter + 1 // counter == 1!!!

Because “Execution 1” hasn’t finished executing by the time that “Execution 2” begins, the value of counter is still
0!

Additionally, because the contents of state are only persisted when execution is complete, it’s also possible to
inadvertently overwrite values (last finished execution “wins”).

To avoid this type of scenario, SmartApps can use Atomic State, which is discussed next. Atomic State writes to
the data store when a value is set, and reads from the data store when a value is read - not just when the application
execution initializes and completes.

Before using Atomic State, you should read about how to choose between State and Atomic State (page 318).

109.6 How Atomic State works

SmartApps have available to them, in addition to state, also the object atomicState, which operates like state
with two notable differences:

1. Atomic State does not implement java.util.Map.

2. When items are added or modified to Atomic State, those values are persisted more or less immediately (unlike
State, which only persists its data when execution finishes).

The following diagram illustrates how Atomic State is initialized and updated when a SmartApp executes:

109.7 Choosing between State and Atomic State

Given the choice between State and Atomic State, which should you use?

In short, prefer State until analysis and testing shows you otherwise. The reasons for this are:

1. State is easier to work with, since it supports java.util.Map.

2. State is more performant than Atomic State, since it does not read or write to external storage during SmartApp
execution.

You may need to use Atomic State if code that updates a value in State may execute at the same time as another
instance of the same SmartApp, updating the same State key, as discussed here (page 317).

318 Chapter 109. Storing Data With State

SmartThings Classic Developer Documentation, Release latest

Important: Never use both Atomic State and State in the same SmartApp. This can’t be emphasized enough -
doing so may result in data inconsistency, data corruption, or even data loss.

109.8 What can be stored in State and Atomic State

state and atomicState values are stored as a JSON string by SmartThings.

109.8.1 Supported types

The following types are supported for storage in State and Atomic State:

• String

• long

• int

• BigDecimal

• true

• false

• null

• ArrayList

• Map

Here is an example illustrating this:

def initialize() {
state.string = "string"
state.int = 42
state.long = now()
state.decimal = 4.2
state.yes = true
state.no = false
state.empty = null
state.list = [1, 2, 3, 4]
state.map = [a: 1, b: 2, c: "three"]
runIn(60, check)

}

def check() {
def isString = state.string instanceof String // -> true
def isInt = state.int instanceof Integer // -> true
def isLong = state.long instanceof Long // -> true
def isDecimal = state.decimal instanceof BigDecimal // -> true
def isBoolean = state.yes instanceof Boolean // -> true
def isAlsoBoolean = state.no instanceof Boolean // -> true
def isNull = state.empty == null // -> true
def isList = state.list instanceof List // -> true
def isMap = state.map instanceof Map // -> true

109.8. What can be stored in State and Atomic State 319

SmartThings Classic Developer Documentation, Release latest

// items in map
def isMapInt = state.map.b instanceof Integer // -> true
def isMapString = state.map.c instanceof String // -> true

109.8.2 Other object types

SmartThings objects (like Event (page 1017), Device (page 1003), etc.) cannot be stored in State or Atomic State. If
you attempt to store these objects, it will silently fail without any messages in Live Logging.

If you need to store such information on State, get the specific data you need from the object and assign it to state, like
so:

def someEventHandler(evt) {
state.someEvent = [name: evt.name, value: evt.value, id: evt.id]

}

Dates also require some care when storing in state. If you were to store a date directly, you would end up with a string
representation of the date when retrieving it.

def initialize() {
state.date = new Date()
runIn(30, check)

}

def check() {
def isDate = state.date instanceof Date // -> false
def isString = state.date instanceof Date // -> true

}

If you need to store time information, consider using an epoch time stamp, conveniently available via the now()
(page 926) method:

def installed() {
state.installedAt = now()

}

def someEventHandler(evt) {
def millisSinceInstalled = now() - state.installedAt
log.debug "this app was installed ${millisSinceInstalled / 1000} seconds ago"

// you can also create a Date object back from epoch time:
log.debug "this app was installed at ${new Date(state.installedAt)}"

}

109.9 Working with the state object

state is an implementation of java.util.Map. This means you can interact with the state object in a Smar-
tApp or Device Handler just as you would with any other map.

Just remember that all modifications done to state within a SmartApp or Device Handler are only written to external
storage after the execution completes.

320 Chapter 109. Storing Data With State

SmartThings Classic Developer Documentation, Release latest

Important: Be sure to read the Overview (page 316) and How State works (page 317) documentation before using
state.

109.9.1 Adding values

Add values to state just as you would with a map:

state.someKey = "some val"
state['otherKey'] = 32

109.9.2 Retrieving values

Get values from state just as you would with a map, using either dot notation or index notation (we prefer dot
notation for simplicity):

state.someKey = "some val"
log.debug "value of state.someKey: $state.someKey"

state.someOtherKey = 42
log.debug "value of state['someOtherKey']: ${state['someOtherKey']}"

109.9.3 Updating values

To update the value for an existing key in state, simply assign a new value to it:

state.someKey = "some val"
log.debug "state.someKey: $state.someKey" // -> some val
state.someKey = "updated"
log.debug "state.someKey: $state.someKey" // -> updated

109.9.4 Removing values

Because state is a map, we can use the remove() method to remove the item:

state.someKey = "some val"
log.debug "state: $state" // -> [someKey: "some val"]
state.remove('someKey')
log.debug "state: $state" // -> [:]

109.9.5 Iterating over state

We can iterate over the values in state just as we would with a map, using each():

state.keyOne = "val one"
state.keyTwo = "val two"

state.each {key, val ->
log.debug "state key: $key, value: $val"

}

109.9. Working with the state object 321

SmartThings Classic Developer Documentation, Release latest

We can also find entries using any of Groovy’s collections methods like find(), findAll(), collect(), etc:

state.key_one = "val one"
state.key_two = "val two"
state.someOther = 42

def found = state.findAll {k, v ->
k.startsWith('key_')

}

log.debug "found: $found" // -> [key_one: "val one", key_two: "val two"]

109.9.6 Working with collections

Working with collections in state is straightforward:

state.collection = [k1: "one", k2: "two", k3: [n1: 2, n2: 3]]
state.collection.k1 = "UPDATED"
state.k3.n1 = "ALSO UPDATED"

// [k1: "UPDATED", k2: "two", k3: [n1: 2, n2: "ALSO UPDATED"]
log.debug "state: $state"

109.10 Working with the atomicState object

For simple use cases, working with Atomic State is just like working with State - you can assign and retrieve values
just as with State. The key difference is that Atomic State does not implement java.util.Map, so using map
operations like remove(), forEach(), find(), etc., will not work with Atomic State.

Important: Be sure to read the Overview (page 316), How Atomic State works (page 318), and Choosing between
State and Atomic State (page 318) documentation before using atomicState.

109.10.1 Adding values

We can add values to Atomic State just as we do with State:

atomicState.someKey = "some val"
log.debug "value of atomicState.someKey: $atomicState.someKey"

atomicState.someOtherKey = 42
log.debug "value of atomicState['someOtherKey']: ${atomicState['someOtherKey']}"

109.10.2 Updating values

To update the value for an existing key in Atomic State, simply assign a new value to it.

Note: Updating collections in atomicState is a special case, and is discussed here (page 323).

322 Chapter 109. Storing Data With State

SmartThings Classic Developer Documentation, Release latest

atomicState.someKey = "some val"
log.debug "atomicState.someKey: $atomicState.someKey" // -> some val
atomicState.someKey = "updated"
log.debug "atomicState.someKey: $atomicState.someKey" // -> updated

109.10.3 Removing values

Removing items from Atomic State is not possible, since it does not implement java.util.Map. Instead, you can
set the value to null:

atomicState.someExistingKey = null

Note that this does not remove the key from Atomic State; it simply sets the value to null.

109.10.4 Iterating over all values

Iterating over all items in Atomic State is not possible, because it does not implement java.util.Map.

109.10.5 Working with collections

Updating collections stored in Atomic State is different than working with collections in State.

Instead, you will need to assign the collection to a local variable, make changes as needed, then assign it back to
atomicState. Here’s an example:

def initialize() {
atomicState.myMap = [key1: "val1"]
log.debug "atomicState: $atomicState"

// assign collection to local variable and update
def temp = atomicState.myMap
// update existing entry
temp.key1 = "UPDATED"
// add new entry
temp.key2 = "val2"

// assign collection back to atomicState
atomicState.myMap = temp
log.debug "atomicState: $atomicState"

}

109.11 Storage size limits

The contents of State and Atomic State are limited to 100,000 characters when serialized to JSON.

This should be more than sufficient for typical use cases. If you find yourself running into this limitation, you should
evaluate your use case - remember, State and Atomic State are intended to persist small amounts of data across
executions. It is not intended to be an unbounded or large database.

To get the character size of state or atomicState, you can do:

109.11. Storage size limits 323

SmartThings Classic Developer Documentation, Release latest

def stateCharSize = state.toString().length()

When the character limit has been exceeded, a physicalgraph.exception.StateCharacterLimitExceededException
will be thrown.

Important: Remember that when using state, the contents are written to the external data store when the app is
finished executing - not immediately on write/read from the object.

This means that if the character limit is exceeded for state, you won’t be able to handle a
StateCharacterLimitExceededException in your code - it will only be visible in the logs.

If using atomicState, which reads and writes to the external data store when the object is updated or accessed, you
will be able to handle a StateCharacterLimitExceededException in your code.

Additional helper methods to get the remaining available size and the character limit will be added in a future release.

109.12 State in parent-child relationships

If you are attempting to access the State or Atomic State of a parent or child relationship, you may encounter a
NullPointerException. As a workaround, you can create a method to get State or Atomic State values like
this:

def getStateValue(key) {
return state[key]

}

You could create a similar method to update State or Atomic State across parent-child relationships, but be careful.
Because there could be multiple children for a parent SmartApp, for example, updating the parent’s State or Atomic
State from the children may introduce additional complexity and opportunity for race conditions and inconsistent
values.

109.13 Summary

• State and Atomic State allow developers to persist data across executions.

• State and Atomic State are both available to SmartApps; only State is available to Device Handlers.

• State and Atomic State use the same underlying database table.

• State values are persisted after the current execution ends. Atomic State values are persisted immediately.

• State implements java.util.Map, Atomic State does not.

• State and Atomic State allow for the storage of strings, numbers, booleans, null values, lists, and maps.

• Never mix State and Atomic State in the same SmartApp.

• Prefer State unless analysis and testing shows Atomic State is necessary.

• State and Atomic State are limited to 100,000 characters of data (when serialized to JSON) per installed Smar-
tApp or Device Handler.

324 Chapter 109. Storing Data With State

CHAPTER 110

Events and Subscriptions

Turn on a light when a door opens. Turn the lights off at sunrise. Send a message if a door opens when you’re not
home. These are all examples of event-handler SmartApps. They follow a common pattern - subscribe to some Event,
and take action when the Event happens.

This section will discuss Events and how you can subscribe to them in your SmartApp.

110.1 Subscribe to specific device Events

The most common use case for Event subscriptions is for device Events:

1 preferences {
2 section {
3 input "theSwitch", "capability.switch"
4 }
5 }
6

7 def install() {
8 subscribe(theSwitch, "switch.on", switchOnHandler)
9 }

10

11 def switchOnHandler(evt) {
12 log.debug "switch turned on!"
13 }

The handler method must accept an Event parameter.

Refer to the Event (page 1017) API documentation for more information about the Event object.

You can find the possible Events to subscribe to by referring to the Attributes column for a capability in the Capabilities
Reference (page 655). The general form we use is “<attributeName>.<attributeValue>”. If the attribute does not have
any possible values (for example, “battery”), you would just use the attribute name.

In the example above, the switch capability has the attribute “switch”, with possible values “on” and “off”. Putting
these together, we use “switch.on”.

325

SmartThings Classic Developer Documentation, Release latest

110.2 Subscribe to all device Events

You can also subscribe to all states by just specifying the attribute name:

subscribe(theSwitch, "switch", switchHandler)

def switchHandler(evt) {
if (evt.value == "on") {

log.debug "switch turned on!"
} else if (evt.value == "off") {

log.debug "switch turned off!"
}

}

In this case, the switchHandler method will be called for both the “on” and “off” Events.

110.3 Subscribe to multiple devices

If your SmartApp allows multiple devices, you can subscribe to Events for all the devices:

preferences {
section {

input "switches", "capability.switch", multiple: true
}

}

def installed() {
subscribe(switches, "switch", switchesHandler)

}

def switchesHandler(evt) {
log.debug "one of the configured switches changed states"

}

110.4 Subscribe to Location Events

In addition to subscribing to device Events, you can also subscribe to Events for the user’s Location.

You can subscribe to the following Location Events:

mode Triggered when the mode changes.

position Triggered when the geofence position changes for this Location. Does not get triggered when the fence is
widened or narrowed - only fired when the position changes.

sunset Triggered at sunset for this Location.

sunrise Triggered at sunrise for this Location.

sunriseTime Triggered around sunrise time. Used to get the time of the next sunrise for this Location.

sunsetTime Triggered around sunset time. Used to get the time of the next sunset for this Location.

326 Chapter 110. Events and Subscriptions

SmartThings Classic Developer Documentation, Release latest

Pass in the Location property automatically injected into every SmartApp as the first parameter to the subscribe
method.

subscribe(location, "mode", modeChangeHandler)

// shortcut for mode change handler
subscribe(location, modeChangeHandler)

subscribe(location, "position", positionChange)
subscribe(location, "sunset", sunsetHandler)
subscribe(location, "sunrise", sunriseHandler)
subscribe(location, "sunsetTime", sunsetTimeHandler)
subscribe(location, "sunriseTime", sunriseTimeHandler)

Refer to the Sunset and Sunrise section for more information about sunrise and sunset.

110.5 The Event object

Event-handler methods must accept a single parameter, the Event itself.

Refer to the Event (page 1017) API documentation for more information.

A few of the common ways of using the Event:

def eventHandler(evt) {
// get the event name, e.g., "switch"
log.debug "This event name is ${evt.name}"

// get the value of this event, e.g., "on" or "off"
log.debug "The value of this event is ${evt.value}"

// get the Date this event happened at
log.debug "This event happened at ${evt.date}"

// did the value of this event change from its previous state?
log.debug "The value of this event is different from its previous value: ${evt.isStateChange()}"

}

Note: The contents of each Event instance will vary depending on the exact Event. If you refer to the Event reference
documentation, you will see different value methods, like “floatValue” or “dateValue”. These may or may not be
populated depending on the specific Event, and may even throw exceptions if not applicable.

110.6 See also

• Sunset and Sunrise

• Event (page 1017) API Documentation

• Location (page 1036) API Documentation

• Interacting with Devices

110.5. The Event object 327

http://docs.smartthings.com/en/latest/smartapp-developers-guide/sunset-and-sunrise.html

SmartThings Classic Developer Documentation, Release latest

328 Chapter 110. Events and Subscriptions

CHAPTER 111

Working with Devices

SmartApps almost always interact with devices. We often need to get information about a specific device (is this
switch on?), or send a device a command (turn this switch off).

111.1 Device overview

Devices are the “things” that SmartApps interact with. Devices may support one or many capabilities.

Capabilities represent the things a device knows (attributes) and the things they can do (commands). They are an
abstraction that allows us to work with many different manufacturer’s devices transparently.

To build a flexible SmartApp, we should write our SmartApp to work with any device that supports a given capability.
We don’t want to write a SmartApp that only works with a specific manufacturer’s switch, for example. We want to
write an app that works with any device that supports the switch capability.

111.2 Preferences–selecting the devices

To allow the user to select devices that support a given capability, we use the preferences input element:

preferences {
section {

input "presenceSensors", "capability.presenceSensor"
}

}

The above example will allow the user to select any device that supports the presence sensor capability. This could be
a mobile phone, or a SmartSense presence sensor. We don’t care about the specific device - we just declare we want a
device that supports the presence sensor capability.

You can refer to the Capabilities Reference (page 655) for information on all the supported capabilities. The “Prefer-
ences Reference” column tells you what to use in your preferences for a given capability.

329

https://shop.smartthings.com/#!/products/smartsense-presence

SmartThings Classic Developer Documentation, Release latest

111.3 Interacting with devices

After you have declared the devices your SmartApp needs to interact with, a Device object instance will be available
in your SmartApp, with the name that you provided.

preferences {
section {

input "theSwitch", "capability.switch"
}

}

def someEventHandler(evt) {
theSwitch.on()

}

111.4 Device attributes

Attributes represent the state of a device. A device that supports the “temperatureMeasurement” capability has a
“temperature” attribute, for example.

Attributes have state - the “temperature” attribute has an associated State (page 1040) object that contains information
about the temperature (its value, the date it was recorded, etc.).

Attribute data is stored in the SmartThings Cloud and updated when the device reports its status.

111.5 Device commands

Devices may expose one or many commands. Commands are the things that devices can do. A switch supports the
“on” and “off” commands, that turn the switch “on” and “off”, respectively.

Not all devices have commands. Commands typically perform some sort of physical actuation (turn a switch on, or
unlock a lock, for example). A humidity sensor has nothing to physically actuate, for example.

111.6 Getting device current values

Information about the most recently reported device attribute state can be retrieved in two ways:

currentState() (page 1006) and <attribute name>State (page 1004) return a State (page 1040) object that encapsulates
the most recently reported state of the device.

preferences {
section() {

input "tempSensor", "capability.temperatureMeasurement"
}

}

def someEventHandler(evt) {

330 Chapter 111. Working with Devices

SmartThings Classic Developer Documentation, Release latest

def currentState = tempSensor.currentState("temperature")
log.debug "temperature value as a string: ${currentState.value}"
log.debug "time this temperature record was created: ${currentState.date}"

// shortcut notation - temperature measurement capability supports
// a "temperature" attribute. We then append "State" to it.
def anotherCurrentState = tempSensor.temperatureState
log.debug "temperature value as an integer: ${anotherCurrentState.integerValue}"

}

latestValue() (page 1015), currentValue() (page 1006), and current<Uppercase attribute name> (page 1005) returns
the most recently reported attribute value. These can be used interchangeably; they all do the same thing.

preferences {
section() {

input "myLock", "capability.lock"
}

}

def someEventHandler(evt) {
def currentValue = myLock.currentValue("lock")
log.debug "the current value of myLock is $currentValue"

def latestValue = myLock.latestValue("lock")
log.debug "the latest value of myLock is $latestValue"

// Lock capability has "lock" attribute.
// <deviceName>.current<uppercase attribute name>:
def anotherCurrentValue = myLock.currentLock
log.debug "the current value of myLock using shortcut is: $anotherCurrentValue"

}

Important: The current or latest state for an attribute value is the most recent value the device has reported to
SmartThings. It is not calculated by polling or otherwise directly communicating with the device.

For example, someDevice.currentValue(’someAttribute’) will get the most recently reported value for
the specified attribute. If the device has malfunctioned, or the SmartThings Hub has gone offline, it is possible that the
value returned is not consistent with the physical status of the device.

111.7 Querying event history

To get a list of Events in reverse chronological order (newest first), use the events() method:

// returns the last 10 by default
myDevice.events()

// use the max option to get more results
myDevice.events(max: 30)

To get a list of Events in reverse chronological order (newest first) since a given date, use the eventsSince method:

111.7. Querying event history 331

SmartThings Classic Developer Documentation, Release latest

// get all events for this device since yesterday (maximum of 1000 events)
myDevice.eventsSince(new Date() - 1)

// get the most recent 20 events since yesterday
myDevice.eventsSince(new Date() - 1, [max: 20])

To get a list of Events between two dates, use the eventsBetween method:

// get all events between two days ago and yesterday (up to 1000 events)
// returned events sorted in inverse chronological order (newest first)
myDevice.eventsBetween(new Date() - 2, new Date() - 1)

// get the most recent 50 events in the last week
myDevice.eventsBetween(new Date() - 7, new Date(), [max: 50])

Similar date-constrained methods exist for getting State information for a device.

Refer to the full Device (page 1003) API documentation for more information.

111.8 Sending commands

SmartApps often need to send commands to a device - tell a switch to turn on, or a lock to unlock, for example.

The commands available to your device will vary by device. You can refer to the Capabilities Reference (page 655) to
see the available commands for a given capability.

Sending a command is as simple as calling the command method on the device:

myLock.lock()
myLock.unlock()

Some commands may expect parameters. All commands can take an optional map parameter, as the last argument, to
specify delay time in milliseconds to wait before the command is sent to the device:

// wait two seconds before sending on command
mySwitch.on([delay: 2000])

Note: Because specific devices can provide more commands than its supported capabilities, it is possible to have
more available commands than the capability declares. As a best practice, you should write your SmartApp to the
capabilities specification, and not to any specific device. If, however, you are writing a SmartApp for a very specific
case, and are willing to forgo the flexibility, you may make use of this ability.

111.9 Interacting with multiple devices

If you specified multiple:true in your device preferences, the user may have selected more than one device. Your
device instance will refer to a list of objects if this is the case.

You can send commands to all the devices without needing to iterate over each one:

332 Chapter 111. Working with Devices

SmartThings Classic Developer Documentation, Release latest

preferences {
section {

input "switches", "capability.switch", multiple: true
}

}

def someEventHandler(evt) {
log.debug "will send the on() command to ${switches.size()} switches"
switches.on()

}

You can also retrieve state and event history for multiple devices, using the methods discussed above. Instead of single
values or objects, they will return a list of values or objects.

Here’s a simple example of getting all switch state values and logging the switches that are on:

preferences {
section {

input "switches", "capability.switch", multiple: true
}

}

def someEventHandler(evt) {
// returns a list of the values for all switches
def currSwitches = switches.currentSwitch

def onSwitches = currSwitches.findAll { switchVal ->
switchVal == "on" ? true : false

}

log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"
}

111.10 See also

• Capabilities Reference (page 655)

• Preferences and Settings (page 285)

• Events and Subscriptions (page 325)

• Device (page 1003) API Documentation

• Event (page 1017) API Documentation

• State (page 1040) API Documentation

111.10. See also 333

SmartThings Classic Developer Documentation, Release latest

334 Chapter 111. Working with Devices

CHAPTER 112

Modes

SmartThings allows users to specify that SmartApps only execute when in certain modes.

112.1 Overview

Modes can be thought of as behavior filters for the smart home. Users can change how things act or behave based on
the mode you’re in. For example:

• When in “Home” mode, motion should turn on a light.

• When in “Away” mode, motion should send a text message and turn on an alarm.

SmartThings comes with a few pre-configured modes, such as “Home”, “Away”, and “Night”. Users can also create
their own modes for each Location.

112.2 Getting the current Mode

You can get the current mode by using the mode or currentMode property on the location in a SmartApp:

def currMode = location.mode // "Home", "Away", etc.
log.debug "current mode is $currMode"

def anotherWay = location.currentMode
log.debug "current mode is $anotherWay"

112.3 Getting all Modes

You can get a list of all the modes for the Location the SmartApp is installed into:

def allModes = location.modes // ex: [Home, Away, Night]
log.debug "all modes for this location: $allModes"

335

SmartThings Classic Developer Documentation, Release latest

112.4 Setting the Mode

You can use setLocationMode() or location.setMode() to set the mode for the Location:

setLocationMode("Away")

location.setMode("Away")

These methods will raise an error if the mode specified does not exist for the Location.

112.5 Allowing users to select Modes

In the SmartApp preferences block, you can specify that the user select a mode by using the "mode" input type:

input "modes", "mode", title: "select a mode(s)", multiple: true

This will allow the user to select a mode (or multiple modes), and the SmartApp can then vary its behavior based upon
the mode(s) selected.

You can also use the mode() method to allow a user to select a mode that this SmartApp will execute for:

mode(title: "Set for specific mode(s)")

The SmartApp will then only execute when in the selected mode, without any action needed by the developer to
determine the correct mode.

You can learn more about the various ways to allow a user to select a mode here (page 300).

112.6 Mode events

You can listen for a mode change by subscribing to the "mode" on the location object:

def installed() {
subscribe(location, "mode", modeChangeHandler)

}

def modeChangeHandler(evt) {
log.debug "mode changed to ${evt.value}"

}

In the example above modeChangeHandler() will be called whenever the mode changes for the Location this
SmartApp is installed into.

336 Chapter 112. Modes

SmartThings Classic Developer Documentation, Release latest

112.7 Example

The following example is a simplified version of the “Scheduled Mode Change” SmartApp. You can view the Smar-
tApp in the IDE templates for the full example.

This example shows how to use the "mode" input type to ask the user to select a mode, and then (based on the
user-defined schedule), changes the mode as specified.

preferences {
section("At this time every day") {

input "time", "time", title: "Time of Day"
}

section("Change to this mode") {
input "newMode", "mode", title: "Mode?"

}
}

def installed() {
initialize()

}

def updated() {
unschedule()
initialize()

}

def initialize() {
schedule(time, changeMode)

}

def changeMode() {
log.debug "changeMode, location.mode = $location.mode, newMode = $newMode, location.modes = $location.modes"

if (location.mode != newMode) {
if (location.modes?.find{it.name == newMode}) {

setLocationMode(newMode)
} else {

log.warn "Tried to change to undefined mode '${newMode}'"
}

}
}

In the changeMode() method above, there are a few things worth calling out.

First, notice we first check if we are already in the mode specified - if we are, we don’t do anything:

if (location.mode != newMode)

If we do need to change the mode, we first verify that the mode actually exists. This ensures that we don’t try and set
the mode to one that does not exist for the Location.

if (location.modes?.find{it.name == newMode})

112.8 Further reading

• Mode Input (page 300)

112.7. Example 337

SmartThings Classic Developer Documentation, Release latest

• Location Object (page 1036)

• Mode Object (page 1039)

338 Chapter 112. Modes

CHAPTER 113

Routines

Routines (or Hello Home Actions in older mobile apps) allow certain things to happen when the Routine is invoked.

339

SmartThings Classic Developer Documentation, Release latest

113.1 Overview

Routines allow for certain things to happen whenever it executes. SmartThings comes with a few Routines already
installed:

• Good Morning! - You or the house is waking up

340 Chapter 113. Routines

SmartThings Classic Developer Documentation, Release latest

• Good Night! - You or the house is going to sleep

• Goodbye! - You’re leaving the house

• I’m Back! - You’ve returned to the house

Each Routine can be configured to do certain things. For example, when “I’m Back!” executes, you can set the Mode
to “Home”, unlock doors, adjust the thermostat, etc.

Routines exist for each Location in a SmartThings account.

113.2 Get available Routines

You can get the Routines for the Location the SmartApp is installed into by accessing the helloHome object on the
location:

def actions = location.helloHome?.getPhrases()*.label

Tip: If the above code example, with the ? and * operator looks foreign to you, read on.

The ? operator allows us to safely avoid a NullPointerException should helloHome be null. It’s one of
Groovy’s niceties that allows us to avoid wrapping calls in if(someThing != null) blocks. Read more about
it here.

The * operator is called the spread operator, and it invokes the specified action (get the label, in the example above)
on all items in a collection, and collects the result into a list. Read more about it here.

113.3 Execute Routines

To execute a Routine, you can call the execute() method on helloHome:

location.helloHome?.execute("Good Night!")

113.4 Allowing users to select Routines

A SmartApp may want to allow a user to execute certain Routines in a SmartApp. Since the Routines for each Location
will vary, we need to get the available Routines, and use them as options for an enum input type.

This needs to be done in a dynamic preferences page, since we need to execute some code to populate the available
actions:

preferences {
page(name: "selectActions")

}

def selectActions() {
dynamicPage(name: "selectActions", title: "Select Hello Home Action to Execute", install: true, uninstall: true) {

113.2. Get available Routines 341

http://docs.groovy-lang.org/latest/html/documentation/#_safe_navigation_operator
http://docs.groovy-lang.org/latest/html/documentation/#_spread_operator

SmartThings Classic Developer Documentation, Release latest

// get the available actions
def actions = location.helloHome?.getPhrases()*.label
if (actions) {
// sort them alphabetically
actions.sort()

section("Hello Home Actions") {
log.trace actions

// use the actions as the options for an enum input
input "action", "enum", title: "Select an action to execute", options: actions

}
}

}
}

You can read more about the enum input type and dynamic pages here (page 285).

You can then access the selected phrase like so:

def selectedAction = settings.action

113.5 Routine Events

When a Routine is executed, a "routineExecuted" event is created for that Location. Here’s how you can
subscribe to a Routine being executed in a SmartApp:

def initialize() {
// subscribe to the "routineExecuted" event on the location
subscribe(location, "routineExecuted", routineChanged)

}

def routineChanged(evt) {
log.debug "routineChanged: $evt"

// name will be "routineExecuted"
log.debug "evt name: ${evt.name}"

// value will be the ID of the SmartApp that created this event
log.debug "evt value: ${evt.value}"

// displayName will be the name of the routine
// e.g., "I'm Back!" or "Goodbye!"
log.debug "evt displayName: ${evt.displayName}"

// descriptionText will be the name of the routine, followed by the action
// e.g., "I'm Back! was executed" or "Goodbye! was executed"
log.debug "evt descriptionText: ${evt.descriptionText}"

}

113.6 Example

This example simply shows executing a selected Routine when a switch turns on, and another action when a switch
turns off:

342 Chapter 113. Routines

SmartThings Classic Developer Documentation, Release latest

preferences {
page(name: "configure")

}

def configure() {
dynamicPage(name: "configure", title: "Configure Switch and Phrase", install: true, uninstall: true) {

section("Select your switch") {
input "theswitch", "capability.switch",required: true

}

def actions = location.helloHome?.getPhrases()*.label
if (actions) {
actions.sort()

section("Hello Home Actions") {
log.trace actions

input "onAction", "enum", title: "Action to execute when turned on", options: actions, required: true
input "offAction", "enum", title: "Action to execute when turned off", options: actions, required: true

}
}

}
}

def installed() {
log.debug "Installed with settings: ${settings}"
initialize()

}

def updated() {
log.debug "Updated with settings: ${settings}"
unsubscribe()
initialize()

}

def initialize() {
subscribe(theswitch, "switch", handler)
subscribe(location, "routineExecuted", routineChanged)
log.debug "selected on action $onAction"
log.debug "selected off action $offAction"

}

def handler(evt) {
if (evt.value == "on") {

log.debug "switch turned on, will execute action ${settings.onAction}"
location.helloHome?.execute(settings.onAction)

} else {
log.debug "switch turned off, will execute action ${settings.offAction}"

location.helloHome?.execute(settings.offAction)
}

}

def routineChanged(evt) {
log.debug "routineChanged: $evt"
log.debug "evt name: ${evt.name}"
log.debug "evt value: ${evt.value}"
log.debug "evt displayName: ${evt.displayName}"
log.debug "evt descriptionText: ${evt.descriptionText}"

}

113.6. Example 343

SmartThings Classic Developer Documentation, Release latest

113.7 Further reading

• Preferences and Settings Guide (page 285)

344 Chapter 113. Routines

CHAPTER 114

Scheduling

SmartApps and Device Handlers often need to schedule certain actions to take place at a given point in time. For
example, an app may want to turn off the lights five minutes after someone leaves. Or, an app may want to turn on the
lights every day at a certain time.

114.1 Overview

Broadly speaking, there are a few different ways we might want to schedule something to happen:

• Do something after a certain duration of time from now.

• Do something once at a certain time in the future.

• Do something on a recurring schedule.

We’ll look at each scenario in detail, and at the methods SmartThings makes available to address these requirements.

Note: When using the scheduler APIs, the schedule will be created using the time zone of the SmartApp’s Location.

114.2 Schedule from now–runIn()

A SmartApp may want to take some action within a certain duration of time after some event has occurred. Consider
a few examples:

• Turn a light off two minutes after a door closes.

• Adjust the thermostat ten minutes after everyone leaves.

• If a door opens and is not shut after five minutes, send a notification.

All these scenarios follow a common pattern: when a certain event happens, take some action after a given duration of
time. This can be accomplished this by using the runIn() (page 928) method.

The runIn() method executes a specified handler method after a given number of seconds have elapsed.

345

SmartThings Classic Developer Documentation, Release latest

def someEventHandler(evt) {
// execute handler in five minutes from now
runIn(60*5, handler)

}

def handler() {
theswitch.off()

}

By default, if a method is scheduled to run in the future, and then if another call to runIn() with the same method
is made, the last one overwrites the previously scheduled method. This is usually preferable.

Consider a situation where we have a switch scheduled to turn off after five minutes of a door closing:

• First, the door closes at 2:50 and we schedule the switch to turn off after five minutes (2:55).

• Then, two minutes later (2:52), the door opens and closes again - another call to runIn() will be made to
schedule the switch to turn off in five minutes from now (2:57).

By default, there will now be one scheduled execution, at 2:57. And in this scenario, that is preferable.

But if don’t want the most recent scheduled handler to execute, we can specify [overwrite: false]:

def someEventHandler(evt) {
runIn(300, handler, [overwrite: false])

}

def handler() {
// need to handle multiple calls since overwrite:false specified

}

We would now have two schedules to turn off the switch - one at 2:55, and one at 2:57. So, if you do specify
[overwrite: false], be sure to write your handler so that it can handle multiple calls.

Note: It is important to note that you should not rely on runIn() being called in exactly the specified number of
seconds. SmartThings will attempt to execute the method within a minute of the time specified, but cannot guarantee
it. See the Best practices (page 352) topic below for more information.

114.3 Run once in the future–runOnce()

Some SmartApps may need to schedule certain actions to happen once at a specific time and date. runOnce()
(page 934) handles this case.

You can pass a Date object or a Java ISO-8601 formatted string 1.

1 You may notice that some of the scheduling APIs accept a string to represent the the date/time to be executed. This is a result of when you
define a preference input of the “time” type, it uses a String representation of the value entered. When using this value later to set up a schedule,
the APIs need to be able to handle this type of argument. When simply using the input from preferences, you don’t need to know the details of
the specific date format being used. But, if you wish to use the APIs with string inputs directly, you will need to understand their expected format.
SmartThings uses the Java standard format of “yyyy-MM-dd’T’HH:mm:ss.SSSZ”. More technical readers may recognize this format as ISO-8601
(Java does not fully conform to this format, but it is very similar). Full discussion of this format is beyond the scope of this documentation, but a
few examples may help: “January 09, 2015 3:50:32 GMT-6 (Central Standard Time)” converts to “2015-01-09T15:50:32.000-0600”, and “February
09, 2015 3:50:32:254 GMT-6 (Central Standard Time)” converts to “2015-02-09T15:50:32.254-0600” For more information about date formatting,
you can review the SimpleDateFormat JavaDoc.

346 Chapter 114. Scheduling

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

SmartThings Classic Developer Documentation, Release latest

preferences {
input "executeTime", "time", title: "enter a time to execute every day"

}

def initialized() {
// execute once at the time specified by the user
runOnce(executeTime, handler)

// execute tomorrow at the current time
runOnce(new Date() + 1, handler)

}

def handler() {
log.debug "handler executed at ${new Date()}"

}

Like runIn(), you can also specify the overwrite behavior of runOnce():

runOnce(new Date() + 1, handlerMethod, [overwrite: false])

114.4 Run on a recurring schedule

Often, there is a need to schedule a job to run on a specific schedule. For example, maybe you want to turn the lights
off at 11 PM every night. Or, you might need to execute a certain action every X minutes.

SmartThings provides the schedule() (page 935) and various runEvery*() methods to allow you to create recurring
schedules.

The various schedule() methods follow a similar form - they take an argument representing the desired schedule,
and the method to be called on this schedule.

Note: If a method is already scheduled, and later you call schedule() with that method, then that method will be
executed as per the new schedule.

114.4.1 Schedule once per day

Use the schedule() method to execute a handler method every day at a certain time:

preferences {
input "theTime", "time", title: "Time to execute every day"

}

def initialize() {
schedule(theTime, handler)

}

// called every day at the time specified by the user
def handler() {

log.debug "handler called at ${new Date()}"
}

114.4. Run on a recurring schedule 347

SmartThings Classic Developer Documentation, Release latest

You can also use schedule() with a Date object. Only the time portion of the Date will be used to derive the
schedule.

// execute every day at the current time
schedule(new Date(), handler)

Finally, you can pass a Long representing the desired time in milliseconds (using Unix time) to schedule():

def someEventHandler(evt) {
// call handlerMethod every day, at two minutes from the current time
schedule(now() + 120000, handlerMethod)

}

def handlerMethod() {
...

}

114.4.2 Schedule every X minutes or hours

For common recurring schedules, SmartThings provides a few convenience APIs that we can use.

These methods work by creating a random start time in X minutes or hours, and then every X minutes or hours after
that. For example, runEvery5Minutes(handlerMethod) will execute handlerMethod() at a random
time in the next five minutes, and then run every five minutes from then.

These methods have the advantage of randomizing the start time for schedules, which reduces the load on the Smart-
Things scheduler, and results in better performance for end users. As such, these methods should be preferred over
cron expressions when available.

The currently available methods are:

• runEvery1Minute() (page 929)

• runEvery5Minutes() (page 930)

• runEvery10Minutes() (page 931)

• runEvery15Minutes() (page 931)

• runEvery30Minutes() (page 932)

• runEvery1Hour() (page 933)

• runEvery3Hours() (page 933)

Using these methods is similar to other scheduling methods:

def initialize() {
runEvery5Minutes(handlerMethod)

}

def handlerMethod() {
log.debug "handlerMethod called at ${new Date()}"

}

348 Chapter 114. Scheduling

http://en.wikipedia.org/wiki/Unix_time

SmartThings Classic Developer Documentation, Release latest

114.4.3 Schedule using cron

Important: Prefer the runEvery*() methods to creating your own cron schedule when possible. These methods
are documented above in the Schedule every X minutes or hours (page 348) section.

Scheduling jobs to execute at a particular time is useful, but what if, for example, we want a method to execute at
fifteen minutes past the hour, every hour? SmartThings allows you to pass a cron expression to the schedule()
method to accomplish this.

def initialize() {
// execute handlerMethod every hour on the half hour.
schedule("0 30 * * * ?", handlerMethod)

}

def handlerMethod() {
...

}

A cron expression is a way to specify a recurring schedule, based on the UNIX cron tool. The cron expression
supported by SmartThings is a string of six or seven fields, separated by white space. The seconds field is the left most
field. The below table describes these fields.

Field Allowed Values Required Allowed Wildcards
Seconds 0-59 Yes *
Minutes 0-59 Yes , - * /
Hours 0-23 Yes , - * /
Day of Month 1-31 Yes , - * ? / L W
Month 1-12 or JAN-DEC Yes , - * /
Day of Week 1-7 or SUN-SAT Yes , - * ? / L
Year empty, 1970-2099 No , - * /

Allowed wildcards are:

• , (comma) is used to specify additional values. For example, SAT,SUN,MON in the Day of Week field means
“the days Saturday, Sunday, and Monday.”

• - (hyphen) is used to specify ranges. For example, 5-7 in the Hours field means “the hours 5, 6 and 7”.

• * (asterisk) is used to specify all values in the field. For example, * in the Hours field means every hour.

• ? (question mark) is used to specify any value. For example, ? in the Day of Week field means regardless of
what the day of the week is.

• / (forward slash) is used to specify increments. For example, 5/15 in the Minutes field means “the minutes 5,
20, 35, and 50”.

• L is used to specify the last day of the month when used in the Day of Month field and the last day of the week
when used in the Day of Week fields.

• W is used to specify a weekday (Monday-Friday) that is nearest to the given day when used in the Day of Month
field. For example, if you specify 21W in the Day of Month field, it means: “the nearest weekday to the 21st
of the month”. So if the 21st is a Saturday, the trigger will fire on Friday the 20th. If the 21st is a Sunday, the
trigger will fire on Monday the 22nd. If the 21st is a Tuesday, then it will fire on Tuesday the 21st. However if
you specify 1W as the value for day-of-month, and the 1st is a Saturday, the trigger will fire on Monday the 3rd,
and not on Friday, as it will not cross over the boundary of a month. The W character can only be specified when
the day-of-month is a single day, not a range or list of days.

114.4. Run on a recurring schedule 349

SmartThings Classic Developer Documentation, Release latest

Warning: You cannot specify both the Day of Month and the Day of Week fields in the same cron expression. If
you specifiy one of these fields, the other one must be ?.

Here is an example with the two fields, i.e., the Day of Month and the Day of Week. In the table below cases A and C
are invalid.

Case Day of Month Day of Week Cron Interpretation
A * MON Every day of month and every Monday
B * ? Every day of month and whatever be the day of week
C 23 * Every 23rd of month and every day of week
D ? * Whatever be the day of month and every day of week

We recommend that you test your cron expression before using it in a SmartApp or Device Handler. The cron expres-
sion test tool we use is http://www.cronmaker.com/.

Note: Cron jobs are only allowed to run at a rate of 1 minute or slower. If your cron expression runs faster than once
per minute, it will be limited to a one minute interval. For more information, see this community post.

High volume cron schedules are encouraged to specify a random seconds field. This helps to avoid a large number of
scheduled executions being queued up at the same time. If you can, use a random second.

Here are some common examples for recurring schedules using cron:

Expression Description Description
schedule("12 30 * * *
?", handler)

Execute handler() every hour on the half hour (using a randomly chosen
seconds field of 12)

schedule("23 0/7 * * *
?", handler)

Execute handler() every 7 minutes beginning at 0 minutes after the hour
(using a randomly chosen seconds field of 23)

schedule("0 0/5 10-11

* * ?", handler)
Execute handler() every 5 minutes beginning at 0 minutes after the hour,
between the hours of 10 and 11 AM, at 0 seconds past the minute

schedule("48 25 10 ?

* MON-FRI", handler)
Execute handler() at 10:25 AM Monday through Friday (using a
randomly chosen seconds field of 48)

Warning: Note how you use * as it may unwittingly lead to high-frequency schedules. You may have intended
to use ?. Note the difference between *, which means “every” and ?, which means “any”.
For example, * */5 * * * ? means every 5th minute, run 60 times within that minute. That’s almost surely
not what you want, and SmartThings will not execute your schedule that frequently (see below).
If you were trying to execute every X minutes, it would look like this: 0 0/X * * * ? where X is the minute
value.

114.5 Passing data to the handler method

Sometimes it is useful to pass data to the handler method. This is possible by passing in a map as the last argument to
the various schedule methods with data as the key and another map as the value.

def someEventHandler(evt) {
runIn(60, handler, [data: [flag: true]])

}

def handler(data) {
if (data.flag) {

350 Chapter 114. Scheduling

http://www.cronmaker.com/
https://community.smartthings.com/t/announcement-changes-coming-to-cron-jobs/41656

SmartThings Classic Developer Documentation, Release latest

theswitch.off()
}

}

By passing data directly to the handler method, you can avoid having to store data in the SmartApp or Device Handler
state. The following scheduling methods support passing data to their handler methods:

• runIn()

• runOnce()

• schedule()

• All runEveryXMinutes() methods

• All runEveryXHours() methods

Note: To also specify the overwrite flag, pass it as an additional property in the map: [overwrite: false,
data: [foo: ’bar’]].

Similar to state, only data that can be serialized to JSON (page 319) can be passed to the handler.

The amount of data is limited to 2500 characters after being serialized. If this limit is exceeded, a
physicalgraph.exception.DataCharacterLimitExceededException exception will be thrown,
and the schedule will not be created.

114.6 Removing scheduled executions

You can remove scheduled executions using the unschedule() (page 946) method:

def initialize() {
// schedule execution every 5 minutes
runEvery5Minutes(handler)

}

def someEventHandler(evt) {
// remove the scheduled execution
unschedule(scheduledHandler)

}

def handler() {
log.debug "in handler, current time is ${new Date()}"

}

This will remove schedules created with any of the scheduling methods (runIn(), runOnce(), and
schedule()).

You can also call unschedule() with no arguments to remove all schedules:

// remove all scheduled executions for this SmartApp install
unschedule()

Note: Due to the way that the scheduling service is currently implemented, unschedule() is a fairly expensive
operation, and may take many seconds to execute.

114.6. Removing scheduled executions 351

SmartThings Classic Developer Documentation, Release latest

114.7 Viewing schedules in the IDE

You can view schedules for any installed SmartApp in the IDE.

Note: Schedules can only be viewed for SmartApps installed via the mobile client. Schedules for Device Handlers
and SmartApps installed via the IDE simulator can not be viewed.

1. In the IDE, navigate to Locations.

2. Select the Location the SmartApp is installed into.

3. Click the List SmartApps link:

4. Click the name of the SmartApp you wish to view the schedules for.

You will then see various information about the installed SmartApp, including the scheduled executions:

You can view all the scheduled jobs, including the next scheduled run time, the status, and the schedule.

You can also view the SmartApp job history, which shows the previous executions and the scheduled vs. actual
execution time, the delay between the scheduled time and actual time, and the total execution time for the handler
method:

114.8 Best practices

When using any of the scheduling APIs, it’s important to understand some limitations and best practices.

352 Chapter 114. Scheduling

SmartThings Classic Developer Documentation, Release latest

114.8.1 Avoid chained runIn() calls

Use runIn() to schedule one-time executions, not recurring schedules.

For example, do not do this:

def initialize() {
runIn(60, handler)

}

def handler() {
// do something here

// schedule to run again in one minute - this is an antipattern!
runIn(60, handler)

}

The above example uses a chained runIn() pattern to create a recurring schedule to execute every minute.

This pattern is prone to failure, because any single scheduled execution failure that results in handler() not being
called means it will not be able to reschedule itself. One failure causes the whole chain to collapse.

If you need a recurring schedule, use cron.

Note: Using a chained runIn() pattern can be acceptable for certain short-running tasks, such as gradually dimming
a bulb. But for anything long-running, use cron.

114.8.2 Prefer runEvery*() over cron

Use any of the runEvery*() (page 348) methods instead of creating your own cron schedule when possible.

114.8.3 Execution time may not be in exact seconds

SmartThings will try to execute your scheduled job at the specified time, but cannot guarantee it will execute at that
exact moment. As a general rule of thumb, you should expect that your job will be called within the minute of
scheduled execution. For example, if you schedule a job at 5:30:20 (20 seconds past 5:30) to execute in five minutes,
we expect it to be executed at some point in the 5:35 minute.

114.8.4 Do not aggressively schedule

Every scheduled execution incurs a cost to launch the SmartApp, and counts against the Rate Limits (page 609).
While there are some limitations in place to prevent excessive scheduling, it’s important to note that excessive polling
or scheduling is discouraged. It is one of the items we look for when reviewing community-developed SmartApps or
device-type handlers.

114.8.5 unschedule() is expensive

As discussed above, unschedule() is currently a potentially expensive operation.

We plan to address this in the near future. Until we do, be aware of the potential performance impacts of calling
unschedule().

114.8. Best practices 353

SmartThings Classic Developer Documentation, Release latest

Note that when the SmartApp is uninstalled, all scheduled executions are removed - there is no need to call
unschedule() in the uninstalled() method.

114.8.6 Number of scheduled executions limit

The canSchedule() (page 902) method returns false if four or more scheduled executions are created.

This currently does not actually impact the ability to create additional schedules, but such a limit may be imposed in
the near future. A community post will be made in advance of any such change.

114.9 Examples

Here are some examples in the SmartThingsPublic repository that make use of schedules:

• Once-A-Day uses schedule() turn switches on and off every day at a specified time.

• Turn-It-On uses runIn() to turn a switch off after five minutes.

• Left-It-Open uses runIn() to see if a door has been left open for a specified number of minutes.

354 Chapter 114. Scheduling

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/once-a-day.src/once-a-day.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/turn-it-on-for-5-minutes.src/turn-it-on-for-5-minutes.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/left-it-open.src/left-it-open.groovy

CHAPTER 115

Working With Time

Monitoring the home and triggering Events based on what is detected often entails asking the question: “Is it the right
time?” and then based on the answer, perform “Do this, or not,” actions. For example, a SmartApp can turn on a room
light when a door is opened but only during certain hours, or wake up the house in the morning at different times based
on what day of the week it is.

Time methods can be used in a SmartApp to accomplish such automations. These time methods support a variety of
time-related queries such as get the current time or today’s date, know the time zone, or find out if a given moment of
time is between a preset time-window.

115.1 Taking action within a time window

A common automation with SmartThings is to turn on a room light when the door is opened between certain hours,
and do not turn on the light during other times. The timeOfDayIsBetween() (page 943) method comes in handy to set
up a SmartApp that accomplishes such an automation.

Refer to the SmartApp code below. First we set up the preferences() section with openCloseSensor, an
open/close sensor that detects when the door is opened, and a roomLight that controls the switch to the room light.
With the fromTime and toTime inputs the user will set up the preferred time-window during which the light should
be turn on whenever the door is opened.

preferences {
section("Select SmartThings") {

input "openCloseSensor", "capability.contactSensor", title: "Which door?", required: true, multiple: false
input "roomLight", "capability.switch", title: "Which room light?", required: true, multiple: false

}
section("Turn on between what times?") {

input "fromTime", "time", title: "From", required: true
input "toTime", "time", title: "To", required: true

}

}

Next, we begin watching the door by creating the contactHandler event handler and have it subscribe to the
contact.open attribute of the openCloseSensor contact sensor. This enables the contactHandler event
handler to be sensitive only to the open Event of the contact sensor, i.e, when the door is opened.

def initialize() {
subscribe(openCloseSensor, "contact.open", contactHandler)

}

In the contactHandler() implementation below, we ensure our SmartApp performs the following checks:

355

SmartThings Classic Developer Documentation, Release latest

• Is the door open? No? Then do nothing (in this particular example we do not care if the door is closed).

• If the door is open, then are we within the time-window? No? Then do nothing.

• If the door is open, and we are within the time-window, then turn on the room light.

def contactHandler(evt) {

// Door is opened. Now check if the current time is within the visiting hours window
def between = timeOfDayIsBetween(fromTime, toTime, new Date(), location.timeZone)
if (between) {

roomLight.on()
} else {

roomLight.off()
}

}

The timeOfDayIsBetween() method returns a Boolean true or false following the logic in the table below.

fromTime toTime new Date() between
12:30 12:32 12:29:59 false
12:30 12:32 12:30:00 true
12:30 12:32 12:30:01 true
12:30 12:32 12:31:59 true
12:30 12:32 12:32:00 true
12:30 12:32 12:32:01 false

115.2 Execute only on certain days

A natural extension to the above automation of taking action within a time window is taking action only within a time
window on selected days of the week. This can be easily achieved by a slight modification to the above SmartApp.

First we prompt the user to select the preferred days of the week, by adding an enumerated input days in the
preferences section, as below:

preferences {
section("On Which Days") {

input "days", "enum", title: "Select Days of the Week", required: true, multiple: true, options: ["Monday": "Monday", "Tuesday": "Tuesday", "Wednesday": "Wednesday", "Thursday": "Thursday", "Friday": "Friday"]
}

}

Next, we make modifications to the contactHandler event handler so that it checks for the following conditions:

• Is the door open? No? Then do nothing (as in the earlier example, we do not care if the door is closed).

• If the door is open, then is today one of the preferred days-of-the-week?

• If no, then do nothing.

• If yes, i.e., if today is one of the preferred days-of-the-week, then are we within the time-window? No? Then
do nothing.

• If yes, then turn on the room light.

def contactHandler(evt) {

// Door is opened. Now check if today is one of the preset days-of-week
def df = new java.text.SimpleDateFormat("EEEE")

356 Chapter 115. Working With Time

SmartThings Classic Developer Documentation, Release latest

// Ensure the new date object is set to local time zone
df.setTimeZone(location.timeZone)
def day = df.format(new Date())
//Does the preference input Days, i.e., days-of-week, contain today?
def dayCheck = days.contains(day)
if (dayCheck) {

def between = timeOfDayIsBetween(fromTime, toTime, new Date(), location.timeZone)
if (between) {

roomLight.on()
} else {

roomLight.off()
}

}
}

115.3 Working with time zones

Often we may want to set or adjust the SmartApp automation settings while we are traveling, in which case the time
zone of the hub may differ from the time zone of the mobile app (our current travel location). For this reason, the code
defining the SmartApp should be aware of the time zone of the physical location of the hub.

When working with time-related methods, SmartThings provides ways to handle time zone of both the physical loca-
tion of the hub and of the mobile app (installed on mobile phone).

For example, location.getTimeZone() gives the time zone of the physical location of the hub, whereas invok-
ing timeZone() (page 946) method will give the current time zone of the mobile app, i.e., the time zone where mobile
phone is currently located.

For a hub that is physically located in Eastern Time Zone in the U.S., and the mobile phone with SmartThings mobile
app located in the Pacific Time Zone, the below SmartApp code fragment prints the results shown in the comments:

preferences {
section("What time?") {

input "myTime", "time", title: "From", required: false
}

}

...

def contactHandler(evt) {
// this below outputs "America/New_York", i.e., time zone of hub's physical location
log.debug "location.getTimeZone() value is: ${location.getTimeZone()}"
// this below outputs "America/Los_Angeles", the time zone of the mobile app
log.debug "timeZone() for the preference time input value is: ${timeZone(myTime)}"

}

Many time-related methods, such as timeOfDayIsBetween() and timeToday() require timeZone argument
to ensure that the correct time zone of the hub is used.

115.3. Working with time zones 357

SmartThings Classic Developer Documentation, Release latest

358 Chapter 115. Working With Time

CHAPTER 116

Sunset and Sunrise

SmartApps often need to take some action at or around the local sunrise or sunset time. The SmartThings cloud
provides access to this type of rich data, and even generates Events for the Location (if the geofence is set). We can
also get access to sunrise and sunset times using a ZIP code.

116.1 Sunrise and sunset Events

Using the sunrise and sunset Events is the preferred (and simpler) way to take some action at (or around) sunrise or
sunset. It is required that the Location has set up a geofence.

116.1.1 Taking action at sunrise or sunset

If you wish to have certain actions take place at sunrise or sunset, you can use the sunrise and sunset Events. These
Events will be fired at (gasp!) sunrise and sunset times for the user’s Location.

You can subscribe to the Events by passing in the Location (automatically injected into every SmartApp), the event
(“sunrise” or “sunset”), and your handler method:

def installed() {
subscribe(location, "sunset", sunsetHandler)
subscribe(location, "sunrise", sunriseHandler)

}

def sunsetHandler(evt) {
log.debug "Sun has set!"
...

}

def sunriseHandler(evt) {
log.debug "Sun has risen!"
...

}

116.1.2 Taking action before or after

If you want to take some action a certain amount of time before or after sunset or sunrise, you can use the “sunriseTime”
and “sunsetTime” Events. These Events are fired every day around the time of sunset or sunrise, and their value is the

359

SmartThings Classic Developer Documentation, Release latest

next sunrise or sunset. You can use this information to calculate an offset so that some action happens a certain amount
of time before or after sunrise or sunset.

To use, you can subscribe to the Events by passing the Location, the event (“sunriseTime” or “sunsetTime”), and the
handler method.

Consider the following example that turns on lights a specified number of minutes before sunset for the user’s Location:

preferences {
section("Lights") {

input "switches", "capability.switch", title: "Which lights to turn on?"
input "offset", "number", title: "Turn on this many minutes before sunset"

}
}

def installed() {
initialize()

}

def updated() {
unsubscribe()
initialize()

}

def initialize() {
subscribe(location, "sunsetTime", sunsetTimeHandler)

//schedule it to run today too
scheduleTurnOn(location.currentValue("sunsetTime"))

}

def sunsetTimeHandler(evt) {
//when I find out the sunset time, schedule the lights to turn on with an offset
scheduleTurnOn(evt.value)

}

def scheduleTurnOn(sunsetString) {
//get the Date value for the string
def sunsetTime = Date.parse("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'", sunsetString)

//calculate the offset
def timeBeforeSunset = new Date(sunsetTime.time - (offset * 60 * 1000))

log.debug "Scheduling for: $timeBeforeSunset (sunset is $sunsetTime)"

//schedule this to run one time
runOnce(timeBeforeSunset, turnOn)

}

def turnOn() {
log.debug "turning on lights"
switches.on()

}

Because the sunriseTime and sunsetTime Events are fired every day for the next sunrise/sunset event, we use
runOnce() to schedule one execution. Sunrise and sunset times change, so the next time the Events are fired, we
will create another scheduled execution using the runOnce() method for that time.

We want it to run today too, so we use the sunsetTime value of the user’s Location to schedule the lights to turn on
today.

360 Chapter 116. Sunset and Sunrise

SmartThings Classic Developer Documentation, Release latest

Note: If a user changes their Location’s geofence, it could change the sunrise and sunset times. You
can listen for position change Events and reschedule accordingly: subscribe(location, "position",
locationPositionChangeHandler)

116.2 Looking up sunrise or sunset directly

SmartApps can use the provided getSunriseAndSunset() (page 906) method to get the sunrise and sunset time. You
can pass in a ZIP code, which can be useful if the user has not set a geofence for their Location.

The return value is a map in the following form:

[sunrise: Date, sunset: Date]

def initialize() {
def noParams = getSunriseAndSunset()
def beverlyHills = getSunriseAndSunset(zipCode: "90210")
def thirtyMinsBeforeSunset = getSunriseAndSunset(sunsetOffset: "-00:30")

log.debug "sunrise with no parameters: ${noParams.sunrise}"
log.debug "sunset with no parameters: ${noParams.sunset}"
log.debug "sunrise and sunset in 90210: $beverlyHills"
log.debug "thirty minutes before sunset at current Location: ${thirtyMinsBeforeSunset.sunset}"

}

116.3 Polling for sunrise or sunset

You may have seen some SmartApp code that runs a task sometime after midnight (usually in a method called “as-
troCheck”) and calls a third party weather API to get the sunrise/sunset times. This is strongly discouraged now; it is
much more efficient to use Location Events as they do not rely on third party services.

116.4 Examples

You can refer to these example SmartApps in the IDE to see how sunrise and sunset can be used:

• Smart Nightlight

• Sunrise/Sunset

You can also refer to the following examples in Github:

• Sunset Event Example

• Sunset Offset Example

• Sunset by ZIP Code Example

116.2. Looking up sunrise or sunset directly 361

https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-before-sunset.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-by-zip-code.groovy

SmartThings Classic Developer Documentation, Release latest

362 Chapter 116. Sunset and Sunrise

CHAPTER 117

App Touch

There are certain cases where we want to perform some action when the user chooses to do so, by clicking on the Play
icon next to the SmartApp.

For example, a custom voice notification SmartApp might want to play the message when the user presses play.

117.1 Subscribe to app

To enable this feature, you simply subscribe to the app:

def initialize() {
subscribe(app, appHandler)

}

def appHandler(evt) {
log.debug "app event ${evt.name}:${evt.value} received"

}

Simply subscribing to the event will cause the app to display with a play icon in the mobile application:

Your app event handler method can then take the action it needs to in response to the touch event.

363

SmartThings Classic Developer Documentation, Release latest

364 Chapter 117. App Touch

CHAPTER 118

Making Synchronous External HTTP Requests

SmartApps or Device Handlers may need to make calls to external web services. There are several APIs available to
you to handle making these requests.

The various APIs are named for the underlying HTTP method they will use. httpGet() makes an HTTP GET
request, for example.

Note: The APIs discussed here are executed synchrously, within a single SmartApp or Device Handler execution.

For information on making asynchronous HTTP requests, check out the Making Asynchronous External HTTP Re-
quests (Beta) (page 371) documentation.

118.1 HTTP methods

The following methods are available for making HTTP requests. You can read more about each of them in the
SmartApp (page 897) API documentation.

These methods execute synchrously, and there is a 10 second timeout limit for the response to be received.

Method Description
httpDelete() (page 920) Executes an HTTP DELETE request
httpGet() (page 921) Executes an HTTP GET request
httpHead() (page 922) Executes an HTTP HEAD request
httpPost() (page 923) Executes an HTTP POST request
httpPostJson() (page 923) Executes an HTTP POST request with JSON Content-Type
httpPutJson() (page 925) Executes an HTTP PUT request with JSON Content-Type

Here’s a simple example of making an HTTP GET request:

def params = [
uri: "http://httpbin.org",
path: "/get"

]

try {
httpGet(params) { resp ->

resp.headers.each {
log.debug "${it.name} : ${it.value}"

}

365

SmartThings Classic Developer Documentation, Release latest

log.debug "response contentType: ${resp.contentType}"
log.debug "response data: ${resp.data}"

}
} catch (e) {

log.error "something went wrong: $e"
}

118.2 Configuring the request

The various APIs for making HTTP requests all accept a map of parameters that define various information about the
request:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContentType Content type for the request, if it is different from the expected response content-type.
body Request body that will be encoded based on the given contentType.

Note: Specifying a requestContentType may override the default behavior of the various http API you are call-
ing. For example, httpPostJson() sets the requestContentType to "application/json" by default.

118.3 Handling the response

The HTTP APIs accept a closure that will be called with the response information from the request.

The closure is passed an instance of a HttpResponseDecorator. You can inspect this object to get information about
the response.

Here’s an example of getting various response information:

def params = [
uri: "http://httpbin.org",
path: "/get"

]

try {
httpGet(params) { resp ->

// iterate all the headers
// each header has a name and a value
resp.headers.each {

log.debug "${it.name} : ${it.value}"
}

// get an array of all headers with the specified key
def theHeaders = resp.getHeaders("Content-Length")

366 Chapter 118. Making Synchronous External HTTP Requests

https://github.com/jgritman/httpbuilder/blob/855e1784be8585de81cc3c99fd19285798c7bc4f/src/main/java/groovyx/net/http/HttpResponseDecorator.java

SmartThings Classic Developer Documentation, Release latest

// get the contentType of the response
log.debug "response contentType: ${resp.contentType}"

// get the status code of the response
log.debug "response status code: ${resp.status}"

// get the data from the response body
log.debug "response data: ${resp.data}"

}
} catch (e) {

log.error "something went wrong: $e"
}

Tip: Any ‘failed’ response response will generate an exception, so you should wrap your calls in a try/catch block.

If the response returns JSON, data will be in a map-like structure that allows you to easily access the response data:

def makeJSONWeatherRequest() {
def params = [

uri: 'http://api.openweathermap.org/data/2.5/',
path: 'weather',
contentType: 'application/json',
query: [q:'Minneapolis', mode: 'json']

]
try {

httpGet(params) {resp ->
log.debug "resp data: ${resp.data}"
log.debug "humidity: ${resp.data.main.humidity}"

}
} catch (e) {

log.error "error: $e"
}

}

The resp.data from the request above would look like this (indented for readability):

resp data: [id:5037649, dt:1432752405, clouds:[all:0],
coord:[lon:-93.26, lat:44.98], wind:[speed:4.26, deg:233.507],
cod:200, sys:[message:0.012, sunset:1432777690, sunrise:1432722741,

country:US],
name:Minneapolis, base:stations,
weather:[[id:800, icon:01d, description:Sky is Clear, main:Clear]],
main:[humidity:73, pressure:993.79, temp_max:298.696, sea_level:1026.82,

temp_min:298.696, temp:298.696, grnd_level:993.79]]

We can easily get the humidity from this data structure as shown above:

resp.data.main.humidity

118.3. Handling the response 367

SmartThings Classic Developer Documentation, Release latest

118.4 Host and timeout limitations

118.4.1 Host and IP address restrictions

Requests can only be made to publicly accessible hosts. Remember that when executing an HTTP request, the request
originates from the SmartThings platform (i.e., the SmartThings cloud), not from the hub itself.

Requests made to local or private hosts are not allowed, and will fail with a SecurityException.

118.4.2 Request timeout limit

Requests will timeout after 10 seconds.

Because the request is executed synchronously within a single execution, we encourage you to check out the new
(currently beta) Making Asynchronous External HTTP Requests (Beta) (page 371) feature.

118.5 Try it out

If you’re interested in experimenting with the various HTTP APIs, there are a few tools you can use to try out the APIs
without signing up for any API keys.

You can use httpbin.org to test making simple requests. The httpGet() example above uses it.

For testing POST requests, you can use PostCatcher. You can generate a target URL and then inspect the contents of
the request. Here’s an example using httpPostJson():

def params = [
uri: "http://postcatcher.in/catchers/<yourUniquePath>",
body: [

param1: [subparam1: "subparam 1 value",
subparam2: "subparam2 value"],

param2: "param2 value"
]

]

try {
httpPostJson(params) { resp ->

resp.headers.each {
log.debug "${it.name} : ${it.value}"

}
log.debug "response contentType: ${resp. contentType}"

}
} catch (e) {

log.debug "something went wrong: $e"
}

368 Chapter 118. Making Synchronous External HTTP Requests

http://httpbin.org/
http://postcatcher.in/

SmartThings Classic Developer Documentation, Release latest

118.6 See also

A simple example using httpGet() that connects a SmartSense Temp/Humidity Sensor to your Weather Under-
ground personal weather station can be found here.

You can browse some templates in the IDE that use the various HTTP APIs. The Ecobee Service Manager is an
example that uses both httpGet() and httpPost().

118.6. See also 369

https://github.com/SmartThingsCommunity/Code/blob/e8a6b6926fb32df1e8d79bfe09a1ad063682396a/smartapps/wunderground-pws-connect.groovy

SmartThings Classic Developer Documentation, Release latest

370 Chapter 118. Making Synchronous External HTTP Requests

CHAPTER 119

Making Asynchronous External HTTP Requests (Beta)

Beta Feature

The ability to make asynchronous HTTP requests is currently available as a beta development feature.

All beta asynchronous HTTP APIs exist in the asynchttp_v1 namespace (page 374). Approximately 30 days after
the launch of this beta feature, we will evaluate metrics and your feedback, and make adjustments as necessary.

When released generally, it is likely that the v1 postfix will be dropped, and a deprecation period will be announced
to change existing usages accordingly.

If, for unexpected reasons, usage of asynchronous HTTP requests has negative impacts on the SmartThings platform,
SmartThings reserves the right to alter or remove any impacted asynchronous HTTP APIs without notice. This is
highly unlikely and every effort will be made to avoid such a scenario.

If you experience issues or have feedback on these asynchronous HTTP APIs, please share them on this community
thread.

119.1 Overview

SmartApps and Device Handlers may need to communicate with third party services via HTTP. This can be accom-
plished using the various HTTP APIs such as httpGet(), httpPost(), httpPut(), etc, as discussed in the
Making Synchronous External HTTP Requests (page 365) documentation. But, these APIs are synchronous in nature
- the currently executing SmartApp or Device Handler waits for the response from the third party. This synchronous
execution blocks the current thread executing the SmartApp or Device Handler, and increases the likelihood of hitting
the execution timeout.

To address these issues, we’re releasing new APIs so SmartApps and Device Handlers can make HTTP requests
asynchronously. We specify the details of the request, along with the name of a method (that we must implement) to
call with the response. SmartThings will then execute the request, and then call the specified request handler method
when the response is received.

With asynchronous HTTP requests, we’re far less likely to encounter execution timeouts due to a slow third party
service.

371

https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280
https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280

SmartThings Classic Developer Documentation, Release latest

119.2 Quick example

Let’s jump right in and look at an example asynchronous HTTP request. Our example simply makes a GET request to
the GitHub API, and logs the response. Don’t worry about the details yet, the rest of this documentation will cover it.

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://api.github.com',
contentType: 'application/json'

]
def data = [key1: "hello world"]

asynchttp_v1.get('responseHandlerMethod', params, data)
}

def responseHandlerMethod(response, data) {
log.debug "got response data: ${response.getData()}"
log.debug "data map passed to handler method is: $data"

}

The first thing you may notice is the include directive. This is a new feature in SmartThings that allows various
APIs to be grouped together by their functionality. Don’t worry too much about it now, it is discussed in detail below
(page 374). For now, just think of it as a way to import a set of APIs that exist in a specific namespace - in this case,
“asynchttp_v1".

The code to make an asynchronous HTTP request is fairly straightforward. We call asynchttp_v1.get() with
the name of the method we want to be called with the response, a map of data that is used to build the request, and an
optional map of data to pass on to the response handler. The details of the request builder parameters are documented
in the Configuring the request (page 374) section.

We can then define an optional response handler method, which accepts the response of the request, as well as the
optional data map we passed to the get() method. If none is provided the request will be made in a ‘fire-and-forget’
mode where the response will be discarded immediately after execution. The details of handling the response are
documented in the Handling the response (page 377) section.

119.3 Synchronous versus asynchronous

The following diagrams illustrate the difference between making synchronous HTTP requests, and using the new
asynchronous HTTP APIs.

Synchronous HTTP Request Flow:

372 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

SmartThings Classic Developer Documentation, Release latest

Asynchronous HTTP Request Flow:

We can see from the above diagrams that a synchronous HTTP requests makes the requests, waits for the response,
then processes the response, all in a single execution.

Asynchronous HTTP requests, on the other hand, handle the response in a separate execution. The SmartThings
platform makes the request, waits for the response, and then schedules a new SmartApp (or Device Handler) execution

119.3. Synchronous versus asynchronous 373

SmartThings Classic Developer Documentation, Release latest

to call the specified response handler with the response.

It is important to note that these executions are not necessarily sequential. Other executions may occur between making
the request and receiving the response, either as a result of a scheduled execution or event callbacks. See When to use
asynchronous HTTP requests (page 382) for more information about using asynchronous versus synchronous HTTP
requests.

Asynchronous requests are supported for the GET, POST, PUT, DELETE, HEAD, and PATCH HTTP request methods.
A summary of the supported operations is documented below (page 381).

119.4 The include Statement

All asynchronous HTTP APIs are namespaced in an object that can be included in the SmartApp or Device Handler
using the include statement:

include 'asynchttp_v1'

asynchttp_v1 is then a reference to an object that the asynchronous HTTP APIs exist on:

include 'asynchttp_v1'

def initialize() {
asynchttp_v1.get([uri: 'https://api.github.com'], handler)

}

def handler(response, data) {
// handle response

}

The include statement should be placed at the top of the file.

Note: The asynchronous HTTP APIs are the first feature to utilize this feature.

The motivation for this feature is to allow a finer-grained control over the APIs available to SmartApps or Device
Handlers, and avoid further polluting the global namespace.

When using include(), the SmartThings platform will attempt to find an internally registered API that matches
the name provided. If one is found, an instance of the class representing that API will be injected into the SmartApp
or Device Handler. If no API is found for the given name, an exception will be thrown and the SmartApp or Device
Handler will fail to save.

119.5 Configuring the request

All asynchronous HTTP request methods require, as the first argument, the name of the method to call with the
response. We also need to specify some information about the request, such as the URI, an optional path, URL query
parameters, HTTP headers, and the content type of the request. We do so by passing a map of parameters. The table
below lists the supported keys in the map.

374 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

SmartThings Classic Developer Documentation, Release latest

Key Description
uri
(required)

Either a URI or URL of the endpoint to make a request from.

path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
request-
Content-
Type

The value of the Content-Type request header. Defaults to ’application/json’.

content-
Type

The value of the Accept request header. Defaults to the value of the requestContentType
parameter if not specified.

body The request body to send. Can be a string, or if the requestContentType is
"application/json", a Map or List (will be serialized to JSON). Only valid for PUT, POST,
DELETE, and PATCH requests.

119.5.1 URI and path

The uri is required for all asynchronous HTTP request methods. If specified, the path will be merged with the URI:

// uri and path merged to form "https://someapi.com/some/path"
def params = [

uri: 'https://someapi.com',
path: '/some/path'

]

Note that only publicly accessible (i.e., non-local) addresses can be used when making HTTP requests. See the Host,
timeout, response, and data size limits (page 381) section below for more information.

119.5.2 Request headers

As you see in the above table, the request headers Content-Type and Accept will be added to every request. If
you need to set other request headers, specify them using the headers key in the parameters map:

def params = [
uri: 'https://api.github.com',
path: '/repos/SmartThingsCommunity/SmartThingsPublic/events',
headers: ['If-None-Match': 'c873e724d02caa124de0884535c32acb']

]
asynchttp_v1.get('someHandlerMethod', params)

As configured above, the request would look like this:

GET /repos/SmartThingsCommunity/SmartThingsPublic/events HTTP/1.1

Host: api.github.com
Content-Type: application/json
Accept: application/json
If-None-Match: c873e724d02caa124de0884535c32acb

119.5.3 Query parameters

URL query parameters can be added to the request by specifying a map as the value for the query key:

119.5. Configuring the request 375

SmartThings Classic Developer Documentation, Release latest

include 'asynchttp_v1'

def initialize() {
// search for occurences of httpGet in the SmartThingsPublic repo
def params = [

uri: 'https://api.github.com',
path: '/search/code',
query: [q: "httpGet+repo:SmartThingsCommunity/SmartThingsPublic"],
contentType: 'application/json'

]
asynchttp_v1.get(processResponse, params)

}

def processResponse(response, data) { ... }

The request made given the code above would look like this:

GET /search/code?q=httpGet+repo:SmartThingsCommunity/SmartThingsPublic HTTP/1.1

Host: api.github.com
Content-Type: application/json
Accept: application/json

119.5.4 Request body

HTTP request methods that may have a body can also specify a body in the parameters map. The value of body
can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized
to JSON). The put() (page 992), post() (page 991), delete() (page 988), and patch() (page 990) methods support the
body option.

Here’s an example making a POST request using a map for the body:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
body: [key1: 'value 1']

]
asynchttp_v1.post(processResponse, params)

}

def processResponse(response, data) { ... }

Here’s what the request looks like (note that the Content-Type and Accept headers are
"application/json" by default):

POST /some/path

Host: someapi.com
Content-Type: application/json
Accept: application/json

{"key1": "value 1"}

Here’s an example making a PUT request using a string as the body:

376 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

SmartThings Classic Developer Documentation, Release latest

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
body: "<entity><name>test</name></entity>",
requestContentType: "application/xml"

]
asynchttp_v1.put(processResponse, params)

}

def processResponse(response, data) { ... }

And here’s the request made by the above example:

PUT /some/path

Host: someapi.com
Content-Type: application/xml
Accept: application/xml

<entity><name>test</name></entity>

119.6 Handling the response

Once SmartThings executes the request we specified and receives a response from the third party, the request handler
method (if specified) will be called (in a new execution of the SmartApp or Device Handler). It will be called with an
instance of AsyncResponse (page 993), which allows us to get information about the response.

The response handler method must also accept a map of data that may have been specified in the request. This can be
useful for passing data between the time we create the request and when the response is received. If no (optional) data
was specified when making the request, the request handler method will be called with null for the second parameter.
We’ll discuss this optional data parameter later in this documentation.

The signature of the response handler method should look like:

def someResponseHandler(response, data) {}

119.6.1 Response status code

We can get the response status code if we need to handle different possible response codes:

def responseHandler(response, data) {
def status = response.status
switch (status) {

case 200:
log.debug "200 returned"
break

case 304:
log.debug "304 returned"
break

default:

119.6. Handling the response 377

SmartThings Classic Developer Documentation, Release latest

log.warn "no handling for response with status $status"
break

}
}

119.6.2 Response headers

The AsyncResponse object contains all headers from the response as a map of key-value pairs (the return type is
Map<String, String>):

def responseHandler(response, data) {
def headers = response.headers
headers.each { header, value ->

log.debug "$header: $value"
}
// can use array notation to get specific header values
def etagHeader = response.headers['ETag']

}

119.6.3 Error responses

Use the hasError() (page 997) to check if the response has an error. hasError() will return true if any exception
occurred during the request.

Any non-2XX response is also considered an error.

You can get any error messages using the getErrorMessage() (page 995) method.

def responseHandler(response, data) {
if (response.hasError()) {

log.debug "response received error: ${response.getErrorMessage()}"
}

}

In the case of an error response, you can also get the response body using getErrorData() (page 994), getErrorJson()
(page 994), or getErrorXml() (page 995). Note that these methods will throw an exception if called on a successful
response.

def responseHandler(response, data) {
if (response.hasError()) {

log.debug "error response data: $response.errorData"
try {

// exception thrown if json cannot be parsed from response
log.debug "error response json: $response.errorJson"

} catch (e) {
log.warn "error parsing json: $e"

}
try {

// exception thrown if xml cannot be parsed from response
log.debug "error response xml: $response.errorXml"

} catch (e) {
log.warn "error parsing xml: $e"

}
}

}

378 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

SmartThings Classic Developer Documentation, Release latest

119.6.4 JSON responses

If the response from a request is JSON, we can get a fully-formed JSONObject of the response using getJson()
(page 996). The example below illustrates getting the JSON response from a GitHub API call to get the occurrences
of “httpGet” in the SmartThingsPublic repository.

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://api.github.com',
path: '/search/code',
query: [q: "httpGet+repo:SmartThingsCommunity/SmartThingsPublic"]

]
asynchttp_v1.get(processResponse, params)

}

def processResponse(response, data) {
if (response.hasError()) {

log.error "response has error: $response.errorMessage"
} else {

def results
try {

// json response already parsed into JSONElement object
results = response.json

} catch (e) {
log.error "error parsing json from response: $e"

}
if (results) {

def total = results?.total_count

log.debug "there are $total occurences of httpGet in the SmartThingsPublic repo"

// for each item found, log the name of the file
results?.items.each { log.debug "httpGet usage found in file $it.name" }

} else {
log.debug "did not get json results from response body: $response.data"

}
}

}

getJson() will throw an Exception if the response body cannot be parsed to JSON, if the request failed to get a
response, or if the response status code is not 2XX. See the getJson() (page 996) reference documentation for more
information.

119.6.5 XML responses

Handling XML responses is similar to JSON - the XML is parsed into a data structure that we can use:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://httpbin.org',
path: '/xml',
requestContentType: 'application/xml'

]

119.6. Handling the response 379

SmartThings Classic Developer Documentation, Release latest

asynchttp_v1.get('xmlResultsHandler', params)
}

def xmlResultsHandler(response, data) {
// results look like:
// <slideshow title="Sample Slide Show" date="Date of publication" author="Yours Truly">
// <slide type="all">
// <title>Wake up to WonderWidgets!</title>
// </slide>
// </slideshow>
if (!response.hasError()) {

def slideshow
try {

slideshow = response.xml
} catch (e) {

log.error "error parsing XML from response: $e"
}
if (slideshow) {

log.debug "title: ${slideshow.slide.title.text()}" // -> Wake up to WonderWidgets!
}

} else {
log.error "error making request: ${response.getErrorMessage()}"

}
}

Like getJson(), getXml() throws an exception if the results cannot be parsed to XML from the response body.
See getXml() (page 997) for more information.

119.6.6 Getting the raw response

If we want to get the raw response data, we can do that using getData() (page 994).

def responseHandler(response, data) {
log.debug "the raw response data is: $response.data"

}

119.7 Passing data to the request handler

Given that the response for an asynchronous HTTP request is processed in a separate SmartApp or Device Handler
execution, we may need a way to share data between when we make the request, and when the response handler is
called. Rather than store such data in State (page 315), we can pass a map of data to any of the asynchronous HTTP
methods, and this will be be passed along to the response handler:

Note: All response handler methods must accept a second parameter for the data map, even if no data is specified on
the request. In that case, the value passed to the response handler will be null.

If your response handler does not accept the second parameter, a MethodMissingException error will be thrown
when the platform tries to call your response handler.

include 'asynchttp_v1'

380 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

SmartThings Classic Developer Documentation, Release latest

def initialize() {
def params = [uri: 'https://someapi.com']
def data = [key1: "value 1", key2: "value 2"]
asynchttp_v1.get(handler, params, data)

}

def handler(response, data) {
// logs [key1: "value 1", key2: "value 2"]
log.debug "data passed to response handler: $data"

}

119.8 Available methods

The following methods are available on the asynchttp_v1 object. The HTTP request method will match the name
of the asynchttp_v1 method–see the reference documentation for more details on each method.

HTTP Verb Method
GET asynchttp_v1.get(String callbackMethod, Map params, Map data = null) (page 989)
PUT asynchttp_v1.put(String callbackMethod, Map params, Map data = null) (page 992)
POST asynchttp_v1.post(String callbackMethod, Map params, Map data = null) (page 991)
DELETE asynchttp_v1.delete(String callbackMethod, Map params, Map data = null) (page 988)
PATCH asynchttp_v1.patch(String callbackMethod, Map params, Map data = null) (page 990)
HEAD asynchttp_v1.head(String callbackMethod, Map params, Map data = null) (page 990)

119.9 Host, timeout, response, and data size limits

119.9.1 Host and IP address restrictions

Requests can only be made to publicly accessible hosts. Remember that when executing an HTTP request, the request
originates from the SmartThings platform (i.e., the SmartThings cloud), not from the hub itself.

Requests made to local or private hosts are not allowed, and will fail with a SecurityException.

119.9.2 Request timeout limit

Requests will timeout after 40 seconds. If the request timeout is hit, the response handler will be called and the
response will have an error:

def responseHandler(response, data) {
if (response.hasError()) {

log.error "response has error: $response.errorMessage"
}

}

119.8. Available methods 381

SmartThings Classic Developer Documentation, Release latest

119.9.3 Response size limit

The current limit is 500,000 characters of response data. This limit will be studied during the beta period, and may be
adjusted as necessary.

When the limit is hit, the response body will be empty, but the response status will reflect the actual response status. A
warning message will be added to getWarningMessages() (page 996) stating that the response size exceeded the limit.

119.9.4 Data size limit

The size of the data map that can be passed to the response handler is limited to 1000 characters when serialized to
JSON. If this limit is exceeded, an IllegalArgumentException will be thrown when making the request.

119.10 Using asynchronous HTTP in parent-child relationships

When making an asynchronous HTTP request, the associated response handler method will be called on the SmartApp
that made the request. This may be obvious, but it is something to keep in mind if you are developing a parent-child
relationship SmartApp or Device Handler.

For example, a child SmartApp or Device Handler can call a method on its parent that makes an asynchronous HTTP
request, as long as the response handler also exists within the parent.

119.11 When to use asynchronous HTTP requests

Simply put, prefer asynchronous unless it is proven that synchronous is required. Each case needs to be considered on
its own, but there are some general cases where synchronous HTTP requests may be required:

• When the response is used in the UI, such as during the OAuth flow during install for cloud-to-cloud device
integrations.

• When the response is returned immediately to other APIs, and those APIs cannot be refactored.

The next section discusses some strategies for refactoring synchronous HTTP requests to be asynchronous, and high-
lights some of the design changes that the asynchronous nature demand.

119.12 Refactoring to asynchronous HTTP requests

119.12.1 Find high-value opportunities

When considering if you should refactor synchronous HTTP requests to be asynchronous, look for high-value oppor-
tunities. High-value can be defined as frequent, often scheduled, executions that make HTTP requests.

For example, a SmartApp that executes an HTTP request every five minutes can benefit tremendously from being
refactored to use asynchronous HTTP. On the other hand, a single synchronous HTTP request done only during install
or in some other low-frequency occurence, may not benefit as much from being refactored to asynchronous, especially
if such a refactoring is costly or risky.

382 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

SmartThings Classic Developer Documentation, Release latest

Look for usages of synchronous HTTP requests that occur on schedules or other high-frequency occurences, and
refactor those first.

119.12.2 Refactoring strategies

When refactoring synchronous HTTP requests to be asynchronous, we need to be sure that any code executed after
the response has been received is moved to the response callback handler. Consider the following synchronous HTTP
example:

def initialize() {
def results = getSomeData()
log.debug "got results $results"
doSomethingWithData(results)

}

def getSomeData() {
def params = [

uri: 'https://someapi.com',
path: '/some/path'

]
def results
httpGet(params) { resp ->

...
results = resp.data

}
return results

}

def doSomethingWithData(results) {
// do something with the results data

}

In the example above, the initialize() method (and all methods it calls) will execute in a single execution.
The execution will make the request, wait for the request to return a response, and then parse that response and do
something with it.

To change the above example to use the asynchronous HTTP methods, we need to move all code that expects the
results into the response handler. We cannot simply update the getSomeData() method to use asynchronous
HTTP, because the code in initialize() following the call to getSomeData() assumes that the response has
been received.

Below is the updated code to use asynchronous HTTP requests. Because the request is handled asynchronously and the
response handler called in another execution, we move the logic that requires the response into the response handler.

include 'asynchttp_v1'

def initialize() {
getSomeData()

}

// execution 1: make the request
def getSomeData() {

def params = [
uri: 'https://someapi.com',
path: '/some/path'

]
asynchttp_v1.get('responseHandler', params)

}

119.12. Refactoring to asynchronous HTTP requests 383

SmartThings Classic Developer Documentation, Release latest

// execution 1 + n: handle the response
def responseHandler(response, data) {

def data = response.data
log.debug "got data: $data"
doSomethingWithData(data)

}

def doSomethingWithData(results) {
// do something with the results data

}

119.13 Example

A complete SmartApp example illustrating the APIs discussed in this document, along with installation instructions,
can be found here.

119.14 Related documentation

• Making Synchronous External HTTP Requests (page 365)

• Async HTTP API (Beta) (page 987)

• AsyncResponse (Beta) (page 993)

384 Chapter 119. Making Asynchronous External HTTP Requests (Beta)

https://gist.github.com/jimmyjames/85a1a46fbd7fc077dee78f6ae1d865c0

CHAPTER 120

Sending Notifications

SmartApps can send notifications, either as a push notification in the mobile app, or as SMS messages to designated
recipients. This allows SmartApps to notify people when important Events happen in their home.

120.1 Send notifications with Contact Book

Note: The Contact Book feature is not currently enabled for users. However, using the Contact Book APIs (with the
fall-back to non-Contact Book features), will future-proof your SmartApp for when Contact Book is enabled.

See the Handling disabled Contact Book (page 387) section for more information.

If a user has added contacts to their Contact Book, SmartApps can prompt a user to select contacts to send notifications
to. This allows a user’s contacts to be managed independently through the Contact Book, and SmartApps can tap into
that feature. This has the advantage that a user does not have to enter in phone numbers for every SmartApp.

Sending notifications by using the Contact Book feature is the preferred way for sending notifications in a SmartApp.

120.1.1 Selecting Contacts to notify

To allow a user to select from a list of their contacts, use the "contact" input type:

preferences {
section("Send Notifications?") {

input("recipients", "contact", title: "Send notifications to")
}

}

When the user configures this SmartApp, they can then select which contacts they want to notify, and how they should
be notified (SMS or push):

385

SmartThings Classic Developer Documentation, Release latest

In the example above, the users selected will be stored in a variable named recipients. This is just a simple list
that we can pass into the sendNotificationToContacts() method.

Note: When creating contacts, the user can enter an email address. Emails are not currently sent by SmartThings,
though they are used to identify SmartThings users, and enable them to receive push notifications.

120.1.2 Send notifications to Contacts

Use the sendNotificationToContacts() method to send a notification to the users (and the specified mode
of contact) selected.

sendNotificationToContacts() accepts three parameters - the message to send, the contacts selected, and
an optional map of additional parameters. The valid option for the additional parameters is [event: false],
which will suppress the message from appearing in the Notifications feed.

386 Chapter 120. Sending Notifications

SmartThings Classic Developer Documentation, Release latest

Assuming the "contact" input named "recipients" above, you would use:

sendNotificationToContacts("something you care about!", recipients)

If you don’t want the message to appear in the Notifications feed, specify event: false:

sendNotificationToContacts("something you care about!", recipients, [event: false])

120.1.3 Handling disabled Contact Book

A user may not have created any contacts, and SmartApps should be written to handle this.

The "contact" input element takes an optional closure, where you can define additional input elements that will be
displayed if the user has no contacts. If the user has contacts, these input elements won’t be seen when installing or
configuring the SmartApp.

Modifying our preferences definition from above, to handle the case of a user having no contacts, would look like:

preferences {
section("Send Notifications?") {

input("recipients", "contact", title: "Send notifications to") {
input "phone", "phone", title: "Warn with text message (optional)",

description: "Phone Number", required: false
}

}
}

If the user configuring this SmartApp does have contacts defined, they will only see the input to select from those
contacts. If they don’t have any contacts defined, they will see the input to enter a phone number.

When attempting to send notifications, we should also check to see if the user has enabled the Contact Book and
selected contacts. You can check the contactBookEnabled property on location to find out if Contact Book
has been enabled. It’s a good idea to also check if any contacts have been selected.

// check that Contact Book is enabled and recipients selected
if (location.contactBookEnabled && recipients) {

sendNotificationToContacts("your message here", recipients)
} else if (phone) { // check that the user did select a phone number

sendSms(phone, "your message here")
}

120.1.4 Complete example

The example SmartApp below sends a notification to selected contacts when a door opens. If the user has no contacts,
they can enter in a number to receive an SMS notification.

definition(
name: "Contact Book Example",
namespace: "smartthings",
author: "SmartThings",
description: "Example using Contact Book",
category: "My Apps",
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

120.1. Send notifications with Contact Book 387

SmartThings Classic Developer Documentation, Release latest

preferences {
section("Which Door?") {

input "door", "capability.contactSensor", required: true,
title: "Which Door?"

}

section("Send Notifications?") {
input("recipients", "contact", title: "Send notifications to") {

input "phone", "phone", title: "Warn with text message (optional)",
description: "Phone Number", required: false

}
}

}

def installed() {
initialize()

}

def updated() {
initialize()

}

def initialize() {
subscribe(door, "contact.open", doorOpenHandler)

}

def doorOpenHandler(evt) {
log.debug "recipients configured: $recipients"

def message = "The ${door.displayName} is open!"
if (location.contactBookEnabled && recipients) {

log.debug "Contact Book enabled!"
sendNotificationToContacts(message, recipients)

} else {
log.debug "Contact Book not enabled"
if (phone) {

sendSms(phone, message)
}

}
}

Note: The rest of this guide discusses alternative ways to send notifications (push, SMS, Notifications Feed). Smar-
tApps should use Contact Book, and use the methods described below as a precaution in case the user does not have
Contact Book enabled.

120.2 Send push notifications

To send a push notification through the SmartThings mobile app, you can use the sendPush() or
sendPushMessage() methods. Both methods simply take the message to display. sendPush() will display
the message in the Notifications feed; sendPushMessage() will not.

A simple example below shows (optionally) sending a push message when a door opens:

388 Chapter 120. Sending Notifications

SmartThings Classic Developer Documentation, Release latest

preferences {
section("Which door?") {

input "door", "capability.contactSensor", required: true,
title: "Which door?"

}
section("Send Push Notification?") {

input "sendPush", "bool", required: false,
title: "Send Push Notification when Opened?"

}
}

def installed() {
initialize()

}

def updated() {
initialize()

}

def initialize() {
subscribe(door, "contact.open", doorOpenHandler)

}

def doorOpenHandler(evt) {
if (sendPush) {

sendPush("The ${door.displayName} is open!")
}

}

Push notifications will be sent to all users with the SmartThings mobile app installed, for the account the SmartApp is
installed into.

120.3 Send SMS notifications

In addition to sending push notifications through the SmartThings mobile app, you can also send SMS messages to
specified numbers using the sendSms() and sendSmsMessage() methods.

Both methods take a phone number (as a string) and a message to send. The message can be no longer than 140
characters. sendSms() will display the message in the Notifications feed; sendSmsMessage() will not.

Extending the example above, let’s add the ability for a user to (optionally) send an SMS message to a specified
number:

preferences {
section("Which door?") {

input "door", "capability.contactSensor", required: true,
title: "Which door?"

}
section("Send Push Notification?") {

input "sendPush", "bool", required: false,
title: "Send Push Notification when Opened?"

}
section("Send a text message to this number (optional)") {

input "phone", "phone", required: false
}

120.3. Send SMS notifications 389

SmartThings Classic Developer Documentation, Release latest

}

def installed() {
initialize()

}

def updated() {
initialize()

}

def initialize() {
subscribe(door, "contact.open", doorOpenHandler)

}

def doorOpenHandler(evt) {
def message = "The ${door.displayName} is open!"
if (sendPush) {

sendPush(message)
}
if (phone) {

sendSms(phone, message)
}

}

SMS notifications will be sent from the number 844647 (“THINGS”).

120.4 Send both push and SMS notifications

The sendNotification()method allows you to send both push and/or SMS messages, in one convenient method
call. It can also optionally display the message in the Notifications feed.

sendNotification() takes a message parameter, and a map of options that control how the message should be
sent, if the message should be displayed in the Notifications feed, and a phone number to send an SMS to (if specified):

// sends a push notification, and displays it in the Notifications feed
sendNotification("test notification - no params")

// same as above, but explicitly specifies the push method (default is push)
sendNotification("test notification - push", [method: "push"])

// sends an SMS notification, and displays it in the Notifications feed
sendNotification("test notification - sms", [method: "phone", phone: "1234567890"])

// Sends a push and SMS message, and displays it in the Notifications feed
sendNotification("test notification - both", [method: "both", phone: "1234567890"])

// Sends a push message, and does not display it in the Notifications feed
sendNotification("test notification - no event", [event: false])

390 Chapter 120. Sending Notifications

SmartThings Classic Developer Documentation, Release latest

120.5 Only display message in the notifications feed

Use the sendNotificationEvent() method to display a message in the Notifications feed, without sending a
push notification or SMS message:

sendNotificationEvent("Your home talks!")

120.6 Examples

Several examples exist in the SmartApp templates that send notifications. Here are a few you can look at to learn
more:

• Notify Me When sends push or text messages in response to a variety of Events.

• Presence Change Push and Presence Change Text send notifications when people arrive or depart.

120.7 Related API documentation

• sendNotificationToContacts() (page 938)

• getContactBookEnabled() (page 1036)

• sendPush() (page 939)

• sendPushMessage() (page 939)

• sendSms() (page 940)

• sendSmsMessage() (page 940)

• sendNotification() (page 938)

• sendNotificationEvent() (page 938)

120.5. Only display message in the notifications feed 391

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/notify-me-when.src/notify-me-when.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/presence-change-push.src/presence-change-push.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/presence-change-text.src/presence-change-text.groovy

SmartThings Classic Developer Documentation, Release latest

392 Chapter 120. Sending Notifications

CHAPTER 121

Parent-Child SmartApps

SmartApps can have child SmartApps. This is often useful whe you want to provide multiple automations that act
independently on separate devices. This will consolidate multiple separate automations under one parent.

121.1 Overview

Smart Lighting is an example of a parent-child SmartApp. When you install Smart Lighting, you are installing one
parent SmartApp (Smart Lighting), and each unique lighting automation you create is actually a new instance of a
child SmartApp. This child SmartApp is what actually controls each lighting automation.

The diagram below illustrates this relationship:

393

SmartThings Classic Developer Documentation, Release latest

The relationship between a parent SmartApp and its children is a one-to-many relationship. A SmartApp may have
many children, and those children can also have children. A child SmartApp can have only one parent.

121.2 The parent SmartApp

To define that a SmartApp is a parent to other SmartApps, use the app input element inside the preferences. The
app input allows the user to install and edit child SmartApp instances, and establishes the relationship between parent
and child.

preferences {
page(name: "mainPage", title: "Child Apps", install: true, uninstall: true) {

section {
app(name: "childApps", appName: "Child App", namespace: "mynamespace", title: "New Child App", multiple: true)

}
}

}

All child SmartApps installed via the app input will then be listed in the parent SmartApp preferences page, and the
user can then edit or remove those instances.

The options for the app input are:

Option Description
name The name of the input. Serves as the identifier for this input element.
appName The name of the child SmartApp, as defined in the definition metadata of the child.
names-
pace

The namespace of the child SmartApp, as defined in the definition metadata of the child.

title The title of the button the user can press to install a new instance of this child SmartApp.
multiple If true, the user can install multiple child SmartApps. If false, only one may be installed.

Defaults to false.

121.3 The child SmartApp

In the SmartApp you wish to serve as the child, specify the parent option in the child SmartApp’s definition,
in the form of "namespace":"Parent App Name":

definition(
...
parent: "yourNameSpace:Parent App Name",
...

)

Note: When you save the child SmartApp, the platform will validate that a parent SmartApp with the namespace and
name as specified in the parent option exists. If it does not, an error will be raised.

Either make sure your parent SmartApp has been saved first, or come back and add the parent option after your
parent SmartApp has been saved.

394 Chapter 121. Parent-Child SmartApps

SmartThings Classic Developer Documentation, Release latest

121.4 Communicating between parent and children

Parents and children may need to talk to each other. In the parent SmartApp, you can get the child SmartApp using
the getChildApps() method:

def children = getChildApps()
log.debug "$children.size() child apps installed"
children.each { child ->

log.debug "Child app id: $child.id"
}

You can then call methods directly on the child SmartApp:

// assumes the child SmartApp has method foo() defined
child.foo()

You can also use the findChildAppByName() method to find a specific child SmartApp by it’s name:

def theChild = findChildAppByName("My Child App")

Children can communicate with their parent by using the parent property in the Child SmartApp:

// assumes the parent SmartApp has a method bar() defined:
parent.bar()

121.5 Preventing more than one parent instance

If you want to prevent users from installing more than one parent SmartApp in their Location, you can specify
singleInstance: true in the definition:

definition(
...
singleInstance: true
...

)

With singleInstance: true, when a user tries to install a parent SmartApp that has already been installed,
they will be taken to the existing installation. From there, they can configure existing child SmartApps or add new
ones. This avoids having multiple instances of parent SmartApp, when only one is necessary.

121.6 Example

Below is a simple example illustrating how a parent SmartApp (“Simple Lighting”) can be created to allow multiple
child SmartApps (“Simple Automations”).

Here is the parent SmartApp:

definition(
name: "Simple Lighting",
namespace: "mynamespace/parent",
author: "Your Name",

121.4. Communicating between parent and children 395

SmartThings Classic Developer Documentation, Release latest

description: "An example of parent/child SmartApps (this is the parent).",
category: "My Apps",
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
// The parent app preferences are pretty simple: just use the app input for the child app.
page(name: "mainPage", title: "Simple Automations", install: true, uninstall: true,submitOnChange: true) {

section {
app(name: "simpleAutomation", appName: "Simple Automation", namespace: "mynamespace/automations", title: "Create New Automation", multiple: true)
}

}
}

def installed() {
log.debug "Installed with settings: ${settings}"
initialize()

}

def updated() {
log.debug "Updated with settings: ${settings}"
unsubscribe()
initialize()

}

def initialize() {
// nothing needed here, since the child apps will handle preferences/subscriptions
// this just logs some messages for demo/information purposes
log.debug "there are ${childApps.size()} child smartapps"
childApps.each {child ->

log.debug "child app: ${child.label}"
}

}

Here’s the child SmartApp:

definition(
name: "Simple Automation",
namespace: "mynamespace/automations",
author: "Your Name",
description: "A simple app to control basic lighting automations. This is a child app.",
category: "My Apps",

// the parent option allows you to specify the parent app in the form <namespace>/<app name>
parent: "mynamespace/parent:Simple Lighting",
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
page name: "mainPage", title: "Automate Lights & Switches", install: false, uninstall: true, nextPage: "namePage"
page name: "namePage", title: "Automate Lights & Switches", install: true, uninstall: true

}

def installed() {
log.debug "Installed with settings: ${settings}"

396 Chapter 121. Parent-Child SmartApps

SmartThings Classic Developer Documentation, Release latest

initialize()
}

def updated() {
log.debug "Updated with settings: ${settings}"
unschedule()
initialize()

}

def initialize() {
// if the user did not override the label, set the label to the default
if (!overrideLabel) {

app.updateLabel(defaultLabel())
}
// schedule the turn on and turn off handlers
schedule(turnOnTime, turnOnHandler)
schedule(turnOffTime, turnOffHandler)

}

// main page to select lights, the action, and turn on/off times
def mainPage() {

dynamicPage(name: "mainPage") {
section {

lightInputs()
actionInputs()

}
timeInputs()

}
}

// page for allowing the user to give the automation a custom name
def namePage() {

if (!overrideLabel) {
// if the user selects to not change the label, give a default label
def l = defaultLabel()
log.debug "will set default label of $l"
app.updateLabel(l)

}
dynamicPage(name: "namePage") {

if (overrideLabel) {
section("Automation name") {

label title: "Enter custom name", defaultValue: app.label, required: false
}

} else {
section("Automation name") {

paragraph app.label
}

}
section {

input "overrideLabel", "bool", title: "Edit automation name", defaultValue: "false", required: "false", submitOnChange: true
}

}
}

// inputs to select the lights
def lightInputs() {

input "lights", "capability.switch", title: "Which lights do you want to control?", multiple: true, submitOnChange: true
}

121.6. Example 397

SmartThings Classic Developer Documentation, Release latest

// inputs to control what to do with the lights (turn on, turn on and set color, turn on
// and set level)
def actionInputs() {

if (lights) {
input "action", "enum", title: "What do you want to do?", options: actionOptions(), required: true, submitOnChange: true
if (action == "color") {

input "color", "enum", title: "Color", required: true, multiple:false, options: [
["Soft White":"Soft White - Default"],
["White":"White - Concentrate"],
["Daylight":"Daylight - Energize"],
["Warm White":"Warm White - Relax"],
"Red","Green","Blue","Yellow","Orange","Purple","Pink"]

}
if (action == "level" || action == "color") {

input "level", "enum", title: "Dimmer Level", options: [[10:"10%"],[20:"20%"],[30:"30%"],[40:"40%"],[50:"50%"],[60:"60%"],[70:"70%"],[80:"80%"],[90:"90%"],[100:"100%"]], defaultValue: "80"
}

}
}

// utility method to get a map of available actions for the selected switches
def actionMap() {

def map = [on: "Turn On", off: "Turn Off"]
if (lights.find{it.hasCommand('setLevel')} != null) {

map.level = "Turn On & Set Level"
}
if (lights.find{it.hasCommand('setColor')} != null) {

map.color = "Turn On & Set Color"
}
map

}

// utility method to collect the action map entries into maps for the input
def actionOptions() {

actionMap().collect{[(it.key): it.value]}
}

// inputs for selecting on and off time
def timeInputs() {

if (settings.action) {
section {

input "turnOnTime", "time", title: "Time to turn lights on", required: true
input "turnOffTime", "time", title: "Time to turn lights off", required: true

}
}

}

// a method that will set the default label of the automation.
// It uses the lights selected and action to create the automation label
def defaultLabel() {

def lightsLabel = settings.lights.size() == 1 ? lights[0].displayName : lights[0].displayName + ", etc..."

if (action == "color") {
"Turn on and set color of $lightsLabel"

} else if (action == "level") {
"Turn on and set level of $lightsLabel"

} else {
"Turn $action $lightsLabel"

398 Chapter 121. Parent-Child SmartApps

SmartThings Classic Developer Documentation, Release latest

}
}

// the handler method that turns the lights on and sets level and color if specified
def turnOnHandler() {

// switch on the selected action
switch(action) {

case "level":
lights.each {

// check to ensure the switch does have the setLevel command
if (it.hasCommand('setLevel')) {

log.debug("Not So Smart Lighting: $it.displayName setLevel($level)")
it.setLevel(level as Integer)

}
it.on()

}
break

case "on":
log.debug "on()"
lights.on()
break

case "color":
setColor()
break

}
}

// set the color and level as specified, if the user selected to set color.
def setColor() {

def hueColor = 0
def saturation = 100

switch(color) {
case "White":
hueColor = 52
saturation = 19
break;

case "Daylight":
hueColor = 53
saturation = 91
break;

case "Soft White":
hueColor = 23
saturation = 56
break;

case "Warm White":
hueColor = 20
saturation = 80
break;

case "Blue":
hueColor = 70
break;

case "Green":
hueColor = 39
break;

case "Yellow":
hueColor = 25

121.6. Example 399

SmartThings Classic Developer Documentation, Release latest

break;
case "Orange":

hueColor = 10
break;

case "Purple":
hueColor = 75
break;

case "Pink":
hueColor = 83
break;

case "Red":
hueColor = 100
break;

}

def value = [switch: "on", hue: hueColor, saturation: saturation, level: level as Integer ?: 100]
log.debug "color = $value"

lights.each {
if (it.hasCommand('setColor')) {

log.debug "$it.displayName, setColor($value)"
it.setColor(value)

} else if (it.hasCommand('setLevel')) {
log.debug "$it.displayName, setLevel($value)"
it.setLevel(level as Integer ?: 100)

} else {
log.debug "$it.displayName, on()"
it.on()

}
}

}

// simple turn off lights handler
def turnOffHandler() {

lights.off()
}

To try it out, create the parent and child SmartApp with the code as shown above, and publish the parent SmartApp
for yourself (you don’t need to publish the child SmartApp, since it will be discovered by the parent and you don’t
want to install it individually from the Marketplace). Then, go to the Marketplace and install “Simple Lighting” in
“My Apps”. You can then add multiple automations, with each automation being an instance of the child SmartApp
(“Simple Automation”).

121.7 Tips and best practices

• Think carefully about creating more than one level of parent-to-child relationships, as it may negatively impact
usability and create unneeded complications.

• Sharing state or atomicState between parent and child SmartApps is not currently supported.

• The number of children a SmartApp may have is capped as documented in the Parent-child relationship limit
(page 617).

400 Chapter 121. Parent-Child SmartApps

SmartThings Classic Developer Documentation, Release latest

121.8 Summary

Parent-child relationships can be useful when you want to provide multiple automations that act independently on
separate devices. A parent SmartApp may have many children; a child SmartApp has only one parent.

To create a parent-child relationship, the SmartApp that is to be the parent should use the app input type to specify
what app can be a child. The child SmartApp should specify the parent option in its definition to specify what
SmartApp should serve as the parent.

A parent SmartApp can get its children by using the getChildApps(), or findChildAppByName() if you
know the name of the app you are looking for. Children can get a reference to their parent through the parent
property.

121.8. Summary 401

SmartThings Classic Developer Documentation, Release latest

402 Chapter 121. Parent-Child SmartApps

CHAPTER 122

Example: Bon Voyage

To help illustrate some of the important concepts in writing a SmartApp, let’s walk through an example.

122.1 Bon Voyage

Our example SmartApp is fairly simple - it will monitor a set of presence detectors, and trigger a Mode change when
everyone has left.

To accomplish this, our app will need to do the following:

• Gather the necessary input from the user, including which sensors to monitor, what Mode to trigger, and other
app preferences.

• Subscribe to the appropriate Events, and take action when they are triggered.

Let’s begin with configuring the preferences.

122.2 SmartApp preferences

To configure the Bon Voyage app, we will want to gather the following information from the user:

• Which sensors to monitor

• The Mode to trigger when everyone is away

• A false alarm threshold

• Who should be notified, and how

Each of these inputs corresponds into a preferences section:

preferences {
section("When all of these people leave home") {

input "people", "capability.presenceSensor", multiple: true
}
section("Change to this mode") {

input "newMode", "mode", title: "Mode?"
}
section("False alarm threshold (defaults to 10 min)") {

403

SmartThings Classic Developer Documentation, Release latest

input "falseAlarmThreshold", "decimal", title: "Number of minutes", required: false
}
section("Notifications") {

input("recipients", "contact", title: "Send notifications to", required: false) {
input "sendPushMessage", "enum", title: "Send a push notification?", options: ["Yes", "No"], required: false
input "phone", "phone", title: "Send a Text Message?", required: false

}
}

}

Let’s look at each section in a bit more detail.

The When all of these people leave home section allows the user to configure what sensors to use for this app. The
user will see a section with the main title “When all of these people leave home.” A drop down will be populated with
all the devices that have the presenceSensor capability (capability.presenceSensor) for them to select the
sensor(s) they’d like to use. multiple: true allows them to add as many sensors as they’d like. Their choice(s)
are then stored in a variable named people.

The Change to this mode section allows the user to specify what Mode should be triggered when everyone is away.
The input type of mode is used, so a drop down will be populated with all the modes the user has set up. The title
property is used to show the title "Mode?" above the field. The selection is stored in the variable named newMode.

The section False alarm threshold (defaults to 10 min) allows the user to specify a false alarm threshold. These types of
thresholds are common in our SmartApps. A section is shown titled “False alarm threshold (defaults to 10 min)”. The
input field type of decimal is used, to allow the user to input a numeric value that represents minutes. The title “Number
of minutes” is specified, and we set the required property to false. By default, all fields are required, so you must
explicitly state if it is not required. We store the user’s input in the variable named falseAlarmThreshold for
later use.

Finally, a section is shown labeled as “Notifications”. This is where the user can configure how they want to be notified
when everyone is away. This input is a little different; it uses the special input type contact. You can read more
about sending notifications in a SmartApp in the Sending Notifications (page 385) section.

122.3 Monitor and react

Now that we have gathered the input we need from the user, we need to listen to the appropriate Events, and take
action when they are triggered.

We do this through the required installed() method:

def installed() {
log.debug "Installed with settings: ${settings}"
log.debug "Current mode = ${location.mode}, people = ${people.collect{it.label + ': ' + it.currentPresence}}"
subscribe(people, "presence", presence)

}

Upon installation, we want to keep track of the status of our people. We use the subscribe() method to listen to
the presence attribute of the predefined group of presence sensors, people. When the presence status changes of
any of our people, the method presence (the last parameter above) will be called.

(Also note the log statements. We won’t discuss log statements in detail, but providing thorough logging is a habit
you will want to get into as a SmartApps developer. It is invaluable when trying to debug or troubleshoot your app!)

Let’s define our presence method.

404 Chapter 122. Example: Bon Voyage

SmartThings Classic Developer Documentation, Release latest

def presence(evt) {
log.debug "evt.name: $evt.value"
if (evt.value == "not present") {

if (location.mode != newMode) {
log.debug "checking if everyone is away"
if (everyoneIsAway()) {

log.debug "starting sequence"
runIn(findFalseAlarmThreshold() * 60, "takeAction", [overwrite: false])

}
}
else {

log.debug "mode is the same, not evaluating"
}

}
else {

log.debug "present; doing nothing"
}

}

// returns true if all configured sensors are not present,
// false otherwise.
private everyoneIsAway() {

def result = true
// iterate over our people variable that we defined
// in the preferences method
for (person in people) {

if (person.currentPresence == "present") {
// someone is present, so set our our result
// variable to false and terminate the loop.
result = false
break

}
}
log.debug "everyoneIsAway: $result"
return result

}

// gets the false alarm threshold, in minutes. Defaults to
// 10 minutes if the preference is not defined.
private findFalseAlarmThreshold() {

// In Groovy, the return statement is implied, and not required.
// We check to see if the variable we set in the preferences
// is defined and non-empty, and if it is, return it. Otherwise,
// return our default value of 10
(falseAlarmThreshold != null && falseAlarmThreshold != "") ? falseAlarmThreshold : 10

}

Let’s break that down a bit.

The first thing we need to do is see what event was triggered. We do this by inspecting the evt variable that is passed
to our event handler. The presence capability can be either "present" or "not present".

Next, we check that the current Mode isn’t already set to the Mode we want to trigger. If we’re already in our desired
Mode, there’s nothing else for us to do!

Now it starts to get fun!

We have defined two helper methods above: everyoneIsAway() and findFalseAlarmThreshold().

everyoneIsAway() returns true if all configured sensors are not present, and false otherwise. It iterates over all

122.3. Monitor and react 405

SmartThings Classic Developer Documentation, Release latest

the sensors configured and stored in the people variable, and inspects the currentPresence property. If the
currentPresence is "present", we set the result to false, and terminate the loop. We then return the value of
the result variable.

findFalseAlarmThreshold() gets the false alarm threshold, in minutes, as configured by the user. If the
threshold preference has not been set, it returns 10 minutes as the default.

If everyone is away, we call the built-in runIn() (page 928) method, which runs the method takeAction() in a
specified amount of time (we’ll define that method shortly). We use findFalseAlarmThreshold() multiplied
by 60 to convert minutes to seconds, which is what the runIn() method requires. We specify overwrite:
false so it won’t overwrite previously scheduled takeAction() calls. In the context of this SmartApp, it means
that if one user leaves, and then another user leaves within the false alarm threshold time, takeAction() will
still be called twice. By default, overwrite is true, so any previously scheduled takeAction() calls would be
canceled and replaced by your current call.

Now we need to define our takeAction() method:

def takeAction() {
if (everyoneIsAway()) {

def threshold = 1000 * 60 * findFalseAlarmThreshold() - 1000
def awayLongEnough = people.findAll { person ->

def presenceState = person.currentState("presence")
def elapsed = now() - presenceState.rawDateCreated.time
elapsed >= threshold

}
log.debug "Found ${awayLongEnough.size()} out of ${people.size()} person(s) who were away long enough"
if (awayLongEnough.size() == people.size()) {

//def message = "${app.label} changed your mode to '${newMode}' because everyone left home"
def message = "SmartThings changed your mode to '${newMode}' because everyone left home"
log.info message
send(message)
setLocationMode(newMode)

} else {
log.debug "not everyone has been away long enough; doing nothing"

}
} else {

log.debug "not everyone is away; doing nothing"
}

}

private send(msg) {
if (sendPushMessage != "No") {

log.debug("sending push message")
sendPush(msg)

}

if (phone) {
log.debug("sending text message")
sendSms(phone, msg)

}

log.debug msg
}

There’s a lot going on here, so we’ll look at some of the more interesting parts.

The first thing we do is check again if everyone is away. This is necessary since something may have changed since it
was already called, because of the falseAlarmThreshold().

If everyone is away, we need to find out how many people have been away for long enough, using our false

406 Chapter 122. Example: Bon Voyage

SmartThings Classic Developer Documentation, Release latest

alarm threshold. We create a variable, awayLongEnough and set it through the Groovy findAll() method. The
findAll() method returns a subset of the collection based on the logic of the passed-in closure. For each person,
we use the currentState() (page 1006) method available to us, and use that to get the time elapsed since the event was
triggered. If the time elapsed since this event exceeds our threshold, we add it to the awayLongEnough collection
by returning true in our closure (note that we could omit the “return” keyword, as it is implied in Groovy).

For more information about the findAll() method, or how Groovy utilizes closures, consult the Groovy documen-
tation at http://www.groovy-lang.org/documentation.html

If the number of people away long enough equals the total number of people configured for this app, we send a message
(we’ll look at that method next), and then call the setLocationMode() (page 940) method with the desired Mode. This
is what will cause a Mode change.

The send() method takes a String parameter, msg, which is the message to send. This is where our app sends a
notification to any of the contacts the user has specified.

Finally, we need to write our updated()method, which is called whenever the user changes any of their preferences.
When this method is called, we need to call the unsubscribe() method, and then subscribe(), to effectively
reset our app.

def updated() {
log.debug "Updated with settings: ${settings}"
log.debug "Current mode = ${location.mode}, people = ${people.collect{it.label + ': ' + it.currentPresence}}"
unsubscribe()
subscribe(people, "presence", presence)

}

122.4 Related documentation

• Preferences and Settings (page 285)

• Events and Subscriptions (page 325)

• Working with Devices (page 329)

• Modes (page 335)

• Scheduling (page 345)

• Sending Notifications (page 385)

122.5 Complete source code

The complete source code for this SmartApp can be found in the SmartThingsPublic GitHub repository here.

122.4. Related documentation 407

http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html#findAll(groovy.lang.Closure)
http://www.groovy-lang.org/documentation.html
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy

SmartThings Classic Developer Documentation, Release latest

408 Chapter 122. Example: Bon Voyage

Part XI

Web Services SmartApps

409

SmartThings Classic Developer Documentation, Release latest

SmartApps may themselves be a web service, exposing a URL and any defined endpoints.

This allows external applications to make web API calls to a SmartApp, and get information about, or control, end
devices.

411

SmartThings Classic Developer Documentation, Release latest

412

CHAPTER 123

Web Services SmartApps Overview

Integrating with SmartThings using SmartApps Web Services

In this guide, you will learn:

• The overall design of how Web Services SmartApps work.

• Security measures taken to ensure access is only granted to trusted clients, and specific devices as chosen by the
user.

• The end user flow for external applications integrating with Web Services SmartApps.

123.1 Introduction

In designing a way to allow external systems API access, we wanted to give developers the flexibility they need,
while ensuring that the customer understands why their account is being accessed through an external API, and has
specifically authorized that access.

As such, we’ve designed an architecture and user experience around external API access that meets the following
goals:

• It uses industry best practices such as OAuth2 to authenticate and authorize basic external API access.

• It requires the end user (customer) to specifically authorize the access to specific devices.

• It delivers a user experience that is easy to understand.

• It delivers a developer experience that is easy to understand and implement.

123.2 Concepts

There are a couple of important concepts that need to be understood with respect to how SmartApps APIs work:

• All SmartApps APIs are authenticated using OAuth2.

• When we talk about SmartApps APIs, we are referring to APIs that are exposed by SmartApps themselves.

• SmartApps execute in a special security context, where they only have access to devices specifically authorized
by the user at installation time. This is no different for SmartApps APIs.

413

SmartThings Classic Developer Documentation, Release latest

123.3 How it works

Our overall approach to API access requires the end user to authenticate and authorize the API access in two steps:

1. The installation of a SmartThings Web Services “SmartApp” into the user’s SmartThings Account/Location,
along with specific device preferences that specify the devices to which the external system is being granted
access.

2. The typical OAuth login flow grants the external system the OAuth access token.

It is important to understand that it is the SmartApp itself that exposes the API endpoints that are then used by the
external system to integrate with SmartThings.

This approach is designed to ensure that an external system must have explicit access granted to the devices, before it
can control those devices.

123.3.1 OAuth-integrated app installation flow

The diagram above outlines the following standard steps in the API Connection and Usage process:

1. A user of the external system takes some action that initiates a “Connect to SmartThings” flow. An example of
this is an IFTTT user adding the SmartThings “channel”.

2. The external service will typically redirect to the SmartThings login page. The HTTP request to this page
includes the required OAuth client ID (more details below), allowing our login page to recognize this as a login

414 Chapter 123. Web Services SmartApps Overview

http://www.ifttt.com

SmartThings Classic Developer Documentation, Release latest

request using OAuth.

3. The login page is displayed, and if the login is successful, a subsequent page is displayed that allows the now-
authenticated user to install and configure the Web Services SmartApp that is associated with the client ID.
When this step is complete, an authorization code is returned to the browser.

4. Typically, the authorization code is then given to the external system, and it is used (along with the OAuth client
ID and client secret), to request an access token. The authorization code takes the place of the user credentials in
this case, and is only valid for a single use. Once the external system has the OAuth access token, API requests
can be made using this token.

5. The first API call that the external system should make is to the endpoints service. This service exists on a
standard URL, and will return the specific URL that the external system should use (for this specific OAuth
access token) to make all API requests.

6. Finally, the external system can use the specified endpoint URL and the provided OAuth2 access token to make
API calls to the SmartApp providing the web services.

123.4 The end-user journey

Before discussing the specific steps to building a Web Services SmartApp, you should understand the end user expe-
rience.

123.4.1 Initiate connection from external system

The first step is to initiate the connection with the SmartThings cloud from the external web application. This is
different for each web application, but is just a URL.

123.4.2 Authentication and authorization

The typical OAuth journey is the OAuth2 authorization code flow, initiated from the website of the external system,
whereby the user is redirected to the SmartThings website. This is where they enter their SmartThings credentials, as
shown below:

Once authenticated with SmartThings, they will be prompted to specifically authorize access by the application.

123.4. The end-user journey 415

SmartThings Classic Developer Documentation, Release latest

123.4.3 Application configuration

The user is prompted to configure the Web Services SmartApp that will be automatically installed. The user does not
have to select the specific SmartApp, because it can be automatically identified by the OAuth client ID.

The first step in the application configuration process is to identify the Location in which the SmartApp will be in-
stalled.

The second step is to configure exactly which devices will be accessible through any external web services that are
exposed by the SmartApp.

An example of the IFTTT SmartApp device selection options is shown below:

Finally, the user clicks on Authorize to complete both the authorization of the application and the installation of the
SmartApp and the connection between the external system and the SmartThings Cloud is now complete.

416 Chapter 123. Web Services SmartApps Overview

SmartThings Classic Developer Documentation, Release latest

Once the user authorizes access, the external system is provided with the OAuth authorization code, which is in turn
used to request and receive an OAuth access token. Once the external system has the token, it can access the web
services provided by the SmartApp.

123.4. The end-user journey 417

SmartThings Classic Developer Documentation, Release latest

418 Chapter 123. Web Services SmartApps Overview

CHAPTER 124

Web Services Tutorial–SmartApp

This is the first part of two that will teach you how to build a Web Services SmartApp and a web application to illustrate
the authorization flow.

124.1 Overview

In part 1 of this tutorial, you will learn:

• How to develop a Web Services SmartApp that exposes endpoints.

• How to call the Web Services SmartApp using simple API calls.

The source code for this tutorial is available here.

Part 1 of this tutorial will build a simple SmartApp that exposes endpoints to get information about and control
switches.

124.2 Create a new SmartApp

Create a new SmartApp in the IDE. Fill in the required fields, and make sure to click on Enable OAuth in SmartApp to
receive an auto-generated client ID and secret.

Make sure to specify the redirect URI as this will be used to validate the authorization code request. For the purposes
of this tutorial, simply type in http://localhost:4567/oauth/callback.

Note the Client ID and secret - they’ll be used later (should you forget, you can get them by viewing the “App Settings”
in the IDE).

124.3 Define preferences

SmartApps declare preferences metadata that is used at installation and configuration time, to allow the user to control
what devices the SmartApp will have access to.

This is a configuration step, but also a security step, whereby the users must explicitly select what devices the Smar-
tApp can control.

419

https://github.com/SmartThingsCommunity/Code/tree/master/smartapps/tutorials/web-services-smartapps

SmartThings Classic Developer Documentation, Release latest

Web Services SmartApps are no different, and this is part of the power of this approach. The end user controls exactly
what devices the SmartApp will have access to, and therefore what devices the external systems that consume those
web services will have access to.

The preferences definition should look like this:

preferences {
section ("Allow external service to control these things...") {
input "switches", "capability.switch", multiple: true, required: true

}
}

Also ensure that you have an installed() and updated() method defined (this should be created by default
when creating a SmartApp). They can remain empty, since we are not subscribing to any device Events in this
example.

You can learn more about Web Services SmartApp preferences here (page 434).

124.4 Specify endpoints

The mappings declaration allows developers to expose HTTP endpoints, and map the various supported HTTP
operations to an associated handler.

Our SmartApp will expose two endpoints:

• The /switches endpoint will support a GET request. A GET request to this endpoint will return state infor-
mation for the configured switches.

• The /switches/:command endpoint will support a PUT request. A PUT request to this endpoint will
execute the specified command ("on" or "off") on the configured switches.

Here’s the code for our mappings definition. This is defined at the top-level in our SmartApp (i.e., not in another
method):

mappings {
path("/switches") {
action: [

GET: "listSwitches"
]

}
path("/switches/:command") {
action: [

PUT: "updateSwitches"
]

}
}

Note the use of variable parameters in our PUT endpoint. Use the : prefix to specify that the value will be variable.
We’ll see later how to get this value.

Go ahead and add empty methods for the various handlers. We’ll fill these in in the next step:

def listSwitches() {}

def updateSwitches() {}

See the Mapping endpoints (page 435) documentation for more information.

420 Chapter 124. Web Services Tutorial–SmartApp

SmartThings Classic Developer Documentation, Release latest

124.5 GET switch information

Now that we’ve defined our endpoints, we need to handle the requests in the handler methods we stubbed in above.

Let’s start with the handler for GET requests to the /switches endpoint. When a GET request to the /switches
endpoint is called, we want to return the display name, and the current switch value (e.g., on or off) for the configured
switch.

Our handler method returns a list of maps, which is then serialized by the SmartThings platform into JSON:

// returns a list like
// [[name: "kitchen lamp", value: "off"], [name: "bathroom", value: "on"]]
def listSwitches() {

def resp = []
switches.each {

resp << [name: it.displayName, value: it.currentValue("switch")]
}
return resp

}

See the Response handling (page 438) documentation for more information on working with web request responses.

124.6 UPDATE the switches

We also need to handle a PUT request to the /switches/:command endpoint. /switches/on will turn the
switches on, and /switches/off will turn the switches off.

If any of the configured switches does not support the specified command, we’ll return a 501 HTTP error.

void updateSwitches() {
// use the built-in request object to get the command parameter
def command = params.command

// all switches have the command
// execute the command on all switches
// (note we can do this on the array - the command will be invoked on every element
switch(command) {

case "on":
switches.on()
break

case "off":
switches.off()
break

default:
httpError(400, "$command is not a valid command for all switches specified")

}
}

Our example uses the endpoint itself to get the command. You can learn more about working with requests here
(page 436).

124.5. GET switch information 421

SmartThings Classic Developer Documentation, Release latest

124.7 Self-publish the SmartApp

Publish the app for yourself, by clicking on the Publish button and selecting For Me.

124.8 Run the SmartApp in the Simulator

Using the Simulator, we can quickly test our Web Services SmartApp.

Click the Install button in the Simulator, select a Location to install the SmartApp into, and select a switch.

Note that in the lower right of the Simulator there is an API token and an API endpoint URL:

Important: The base URL for of your SmartApp’s API endpoint will vary depending on the Location being installed
into.

Be sure to copy the URL from the Simulator to ensure you have the correct URL!

We can use these to test making requests to our SmartApp.

124.9 Make API calls to the SmartApp

Using whatever tool you prefer for making web requests (this example will use curl, but Apigee is a good UI-based
tool for making requests), we will call one of our SmartApp endpoints.

From the Simulator, grab the API endpoint. It will look something like this:

https://<BASE-URL>/api/smartapps/installations/158ef595-3695-49ab-acc1-80e93288c0c8

Your installation will have a different, unique URL.

Important: The base URL for of your SmartApp’s API endpoint will vary depending on the Location being installed
into.

Be sure to copy the URL from the Simulator to ensure you have the correct URL!

422 Chapter 124. Web Services Tutorial–SmartApp

http://apigee.com

SmartThings Classic Developer Documentation, Release latest

To get information about the switch, we will call the /switch endpoint using a GET request. You’ll need to substitute
your unique endpoint and API key.

curl -H "Authorization: Bearer <api token>" "<api endpoint>/switches"

This should return a JSON response like the following:

[{"name":"Kitchen 2","value":"off"},{"name":"Living room window","value":"off"}]

To turn the switch on or off, call the /switches endpoint using a PUT request. Again, you’ll need to substitute your
unique endpoint and API key:

curl -H "Authorization: Bearer <api token>" -X PUT "<api endpoint>/switches/on"

Change the command value to "off" to turn the switch off. Try turning the switch on and off, and then using curl to
get the status, to see that it changed.

124.10 Uninstall the SmartApp

Finally, uninstall the SmartApp using the Uninstall button in the IDE Simulator.

124.11 Summary

In this tutorial, you learned how to create a SmartApp that exposes endpoints to get information about, and control, a
device. You also learned how to install the SmartApp in the Simulator, and then make API calls to the endpoint.

In the next part of this tutorial, we’ll look at how a external application might interact with SmartThings using the
OAuth2 flow (instead of simply using the Simulator and its generated access token).

124.10. Uninstall the SmartApp 423

SmartThings Classic Developer Documentation, Release latest

424 Chapter 124. Web Services Tutorial–SmartApp

CHAPTER 125

Web Services SmartApp Tutorial–Authorization Flow

In Part 1 of this tutorial, you learned how to create a simple Web Services SmartApp, and install it in the IDE simulator,
and make web requests to it.

In Part 2, we’ll build a simple web application that will integrate with SmartThings and the WebServices SmartApp
we created in Part 1.

125.1 Overview

In Part 2 of this tutorial, you will learn:

• How to get the API token.

• How to discover the endpoints of a Web Services SmartApp.

• How to make calls to the Web Services SmartApp.

The source code for this tutorial is available here.

Important: Beginning February 1, 2016, only SmartApps approved and published by SmartThings can be installed
via the OAuth flow discussed below.

For testing purposes, you will be able to install into your own account only.

For more information, see this community post.

We will build a simple Sinatra application that will make calls to the Web Services SmartApp we built in Part 1.

If you’re not familiar with Sinatra, you are encouraged to try it out. It’s not strictly necessary, however, as our
application will simply make web requests to get the API token and the endpoint.

Note: If Node is more your speed, check out the awesome SmartThings OAuth Node app written by community
member John S (@schettj) here. It shows how you can get an access token using the OAuth flow for a WebServices
SmartApp using Node.

425

https://github.com/SmartThingsCommunity/Code/tree/master/smartapps/tutorials/web-services-smartapps
https://community.smartthings.com/t/smartthings-oauth-changes/35019
https://github.com/schettj/SmartThings

SmartThings Classic Developer Documentation, Release latest

125.2 Prerequisites

Aside from completing Part 1 of this tutorial, you should have Ruby and Sinatra installed.

Visit the Ruby website to install Ruby, and the Sinatra Getting Started Page for information about installing Sinatra.

125.3 Bootstrap the Sinatra app

Create a new directory for the Sinatra app, and change directories to it:

mkdir web-app-tutorial
cd web-app-tutorial

In your favorite text editor*, create a new file called server.rb and paste the following into it, and save it.

*(If your favorite text editor is vim or emacs, then our hat’s off to you. We’re impressed - maybe even a bit intimidated.
If your favorite editor is notepad, well... we’re not as impressed, or intimidated. :@))

require 'bundler/setup'
require 'sinatra'
require 'oauth2'
require 'json'
require "net/http"
require "uri"

Our client ID and secret, used to get the access token
CLIENT_ID = ENV['ST_CLIENT_ID']
CLIENT_SECRET = ENV['ST_CLIENT_SECRET']

We'll store the access token in the session
use Rack::Session::Pool, :cookie_only => false

This is the URI that will be called with our access
code after we authenticate with our SmartThings account
redirect_uri = 'http://localhost:4567/oauth/callback'

This is the URI we will use to get the endpoints once we've received our token
endpoints_uri = 'https://graph.api.smartthings.com/api/smartapps/endpoints'

options = {
site: 'https://graph.api.smartthings.com',
authorize_url: '/oauth/authorize',
token_url: '/oauth/token'

}

use the OAuth2 module to handle OAuth flow
client = OAuth2::Client.new(CLIENT_ID, CLIENT_SECRET, options)

helper method to know if we have an access token
def authenticated?

session[:access_token]
end

handle requests to the application root
get '/' do

426 Chapter 125. Web Services SmartApp Tutorial–Authorization Flow

http://ruby-lang.org
http://www.sinatrarb.com/intro.html

SmartThings Classic Developer Documentation, Release latest

%(Connect with SmartThings)
end

handle requests to /authorize URL
get '/authorize' do

'Not Implemented!'
end

hanlde requests to /oauth/callback URL. We
will tell SmartThings to call this URL with our
authorization code once we've authenticated.
get '/oauth/callback' do

'Not Implemented!'
end

handle requests to the /getSwitch URL. This is where
we will make requests to get information about the configured
switch.
get '/getswitch' do

'Not Implemented!'
end

Create your Gemfile - open a new file in your editor, paste the contents below in, and save it as Gemfile.

source 'https://rubygems.org'

gem 'sinatra'
gem 'oauth2'
gem 'json'

We’ll use bundler to install our app. If you don’t have it, you can learn how to get started here.

Back at the command line, run bundle:

bundle install

You’ll also want to set environment variables for your ST_CLIENT_ID and ST_CLIENT_SECRET.

Now, run the app on your local machine:

ruby server.rb

Visit http://localhost:4567. You should see a page with a link to “Connect with SmartThings”.

We’re using the OAuth2 module to handle the OAuth2 flow. We create a new client object, using the client_id
and client_secret. We also configure it with the options data structure that defines the information about the
SmartThings OAuth endpoint.

We’ve handled the root URL to simply display a link that points to the /authorize URL of our server. We’ll fill
that in next.

125.4 Get an authorization code

When the user clicks on the “Connect with SmartThings” link, we need to get our OAuth authorization code.

To do this, the user will need to authenticate with SmartThings, and authorize the devices this application can work
with. Once that has been done, the user will be directed back to a specified redirect_uri, with the OAuth

125.4. Get an authorization code 427

http://bundler.io/
http://localhost:4567
https://github.com/intridea/oauth2

SmartThings Classic Developer Documentation, Release latest

authorization code. When we created the SmartApp in the first part of this tutorial, we set the redirect URI to
http://localhost:4567/oauth/callback. It is important that the redirect URI in the SmartApp and the
redirect_uri field in this Sinatra app match, as validation will occur with the authorization code request that will
make sure these two URIs match. This will be used (along with the client_id and client_secret), to get the
access token.

Important: When you self-publish a SmartApp, it is published and available in the Location that you published it.
Since SmartThings is moving into the global space, the Location that you published your SmartApp corresponds to a
specific server. This means your self-published SmartApp is only available on that server.

Replace the /authorize route with the following:

get '/authorize' do
Use the OAuth2 module to get the authorize URL.
After we authenticate with SmartThings, we will be redirected to the
redirect_uri, including our access code used to get the token
url = client.auth_code.authorize_url(redirect_uri: redirect_uri, scope: 'app')
redirect url

end

Kill the server if it’s running (CTRL+C), and start it up again using ruby server.rb.

Visit http://localhost:4567 again, and click the “Connect with SmartThings” link.

This should prompt you to authenticate with your SmartThings account (if you are not already logged in), and bring
you to a page where you must authorize this application. It should look something like this:

Click the Authorize button, and you will be redirected back your server.

You’ll notice that we haven’t implemented handling this URL yet, so we see “Not Implemented!”.

428 Chapter 125. Web Services SmartApp Tutorial–Authorization Flow

http://localhost:4567

SmartThings Classic Developer Documentation, Release latest

125.5 Get an access token

When SmartThings redirects back to our application after authorizing, it passes a code parameter on the URL. This
is the code that we will use to get the API token we need to make requests to our Web Servcies SmartApp.

We’ll store the access token in the session. Towards the top of server.rb, we configure our app to use the session,
and add a helper method to know if the user has authenticated:

We'll store the access token in the session
use Rack::Session::Pool, :cookie_only => false

def authenticated?
session[:access_token]

end

Replace the /oauth/callback route with the following:

get '/oauth/callback' do
The callback is called with a "code" URL parameter
This is the code we can use to get our access token
code = params[:code]

Use the code to get the token.
response = client.auth_code.get_token(code, redirect_uri: redirect_uri, scope: 'app')

now that we have the access token, we will store it in the session
session[:access_token] = response.token

debug - inspect the running console for the
expires in (seconds from now), and the expires at (in epoch time)
puts 'TOKEN EXPIRES IN ' + response.expires_in.to_s
puts 'TOKEN EXPIRES AT ' + response.expires_at.to_s
redirect '/getswitch'

end

We first retrieve the access code from the parameters. We use this to get the token using the OAuth2 module, and store
it in the session.

We then redirect to the /getswitch URL of our server. This is where we will retrieve the endpoint to call, and get
the status of the configured switch.

Restart your server, and try it out. Once authorized, you should be redirected to the /getswitch URL. We’ll start
implementing that next.

125.6 Discover the endpoint

Now that we have the OAuth token, we can use it to discover the endpoint of our WebServices SmartApp.

Replace the /getswitch route with the following:

get '/getswitch' do
If we get to this URL without having gotten the access token
redirect back to root to go through authorization
if !authenticated?
redirect '/'

end

125.5. Get an access token 429

SmartThings Classic Developer Documentation, Release latest

token = session[:access_token]

make a request to the SmartThins endpoint URI, using the token,
to get our endpoints
url = URI.parse(endpoints_uri)
req = Net::HTTP::Get.new(url.request_uri)

we set a HTTP header of "Authorization: Bearer <API Token>"
req['Authorization'] = 'Bearer ' + token

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = (url.scheme == "https")

response = http.request(req)
json = JSON.parse(response.body)

debug statement
puts json

get the endpoint from the JSON:
uri = json[0]['uri']

'<h3>JSON Response</h3>
' + JSON.pretty_generate(json) + '<h3>Endpoint</h3>
' + uri
end

The above code simply makes a GET request to the SmartThings API endpoints service
at https://graph.api.smartthings.com/api/smartapps/endpoints, setting the
"Authorization" HTTP header with the API token.

The response is JSON that contains (among other things), the endpoint of our SmartApp. The JSON that is returned
contains a key called uri that we will use to build our endpoint URLs. There are other URL keys in the JSON, but the
uri key is specific to the server that your SmartApp is on. Always use the uri key or base_uri for your endpoints. For
this step, we just display the JSON response and endpoint in the page.

By now, you know the drill. Restart your server, refresh the page, and click the link (you’ll have to reauthorize). You
should then see the JSON response and endpoint displayed on your page.

125.7 Make API calls

Now that we have our token and endpoint, we can make API calls to our SmartApp.

As you may have guessed by the URL path, we’re just going to display the name of the switch, and it’s current status
(on or off).

Remove the line at the end of the getswitch route handler that outputs the response HTML, and add the following:

now we can build a URL to our WebServices SmartApp
we will make a GET request to get information about the switch
switchUrl = uri + '/switches'

debug
puts "SWITCH ENDPOINT: " + switchUrl

getSwitchURL = URI.parse(switchUrl)
getSwitchReq = Net::HTTP::Get.new(getSwitchURL.request_uri)

430 Chapter 125. Web Services SmartApp Tutorial–Authorization Flow

SmartThings Classic Developer Documentation, Release latest

getSwitchReq['Authorization'] = 'Bearer ' + token

getSwitchHttp = Net::HTTP.new(getSwitchURL.host, getSwitchURL.port)
getSwitchHttp.use_ssl = true

switchStatus = getSwitchHttp.request(getSwitchReq)

'<h3>Response Code</h3>' + switchStatus.code + '
<h3>Response Headers</h3>' + switchStatus.to_hash.inspect + '
<h3>Response Body</h3>' + switchStatus.body

The above code uses the endpoint (obtained from the uri key in our JSON response above) for our SmartApp to build
a URL, and then makes a GET request to the /switches endpoint. It simply displays the the status, headers, and
response body returned by our WebServices SmartApp.

Restart your server and try it out. You should see status of your configured switches displayed!

125.8 Summary

In the second part of this tutorial, we learned how an external application can work with SmartThings by getting an
access token, discover endpoints, and make API calls to a WebServices SmartApp.

You are encouraged to explore further with this sample, including making different API calls to turn the configured
switch on or off.

125.8. Summary 431

SmartThings Classic Developer Documentation, Release latest

432 Chapter 125. Web Services SmartApp Tutorial–Authorization Flow

CHAPTER 126

The SmartApp

A Web Services SmartApp exposes endpoints that third parties can make REST calls to. It can then do anything a
normal SmartApp can do - get device status, actuate devices, etc. - and send a response back to the calling client.

126.1 Enable OAuth

For a SmartApp to expose endpoints that can receive REST calls from a third party, OAuth must be enabled.

OAuth can be enabled for a SmartApp via the App Settings page. In the OAuth section, check the box to enable OAuth.
A client ID and secret will be generated for this SmartApp. These will be used as part of the OAuth flow to obtain an
access token for this SmartApp.

There is an option to specify a Redirect URI. This URI will be used to validate the redirect_uri passed in with
the request for the authorization code. The value of this field can be a single value, or a comma-delimited list of values.
For example:

http://myserverhostname.com

or

http://myserverhostname1.com,http://myserverhostname2.com,http://myserverhostname3.com

During validation, the redirect_uri passed in with the authorization code request will be checked against the
URIs defined in this field. The port does matter during validation. If there is no match, validation will fail with the
following error:

OAuth2 Error

error="invalid_grant", error_description="Invalid redirect: http://myserverhostname.com/oauth/callback does not match one of the registered values: [http://myserverhostname1.com/oauth/callback]"

You can also set the Client Display Name and Client Display Link. These will be used on the SmartThings Authoriza-
tion page to inform the user who is requesting access to their devices.

433

SmartThings Classic Developer Documentation, Release latest

126.2 Preferences

Part of the Authorization Flow (page 441) that installs the SmartApp requires the user to authorize specific devices
that the third party can interact with. The types of devices that may be authorized for Web Services SmartApps are
controlled through the SmartApp’s preferences.

The intent of the Authorization page is to simply allow the user to authorize specific devices. This can be accomplished
in one of two ways:

• Specify a simple, single page that allows the user to select from a set of devices, or

• Specify a specific preferences page to be used by the Authorization web page.

An example of a simple, single page that will allow the user to select from a set of devices:

preferences {
section("Control these switches...") {

input "switches", "capability.switch"
}
section("Control these motion sensors...") {

input "motion", "capability.motionSensor"
}

}

Here is an example that specifies a specific page to be used during authorization, using the oauthPage option to
preferences:

Warning: Currently, using required inputs does not work inside of page declarations when using oauthPage.
This is a known issue and is currently being worked on. We recommend using non-required inputs, by explicitly
setting required: false, when using oauthPage pages.

434 Chapter 126. The SmartApp

SmartThings Classic Developer Documentation, Release latest

preferences(oauthPage: "deviceAuthorization") {
// deviceAuthorization page is simply the devices to authorize
page(name: "deviceAuthorization", title: "", nextPage: "instructionPage",

install: false, uninstall: true) {
section("Select Devices to Authorize") {

input "switches", "capability.switch", title: "Switches:", required: false
input "motions", "capability.motionSensor", title: "Motion Sensors:", required: false

}

}

page(name: "instructionPage", title: "Device Discovery", install: true) {
section() {

paragraph "Some other information"
}

}
}

If you require additional, non-device preferences inputs, you can use dynamic pages. The oauthPage must be a
static (non-dynamic) page, and be the first page displayed:

preferences(oauthPage: "deviceAuthorization") {
// deviceAuthorization page is simply the devices to authorize
page(name: "deviceAuthorization", title: "", nextPage: "otherPage",

install: false, uninstall: true) {
section("Select Devices to Authorize") {

input "switches", "capability.switch", title: "Switches:", required: false
input "motions", "capability.motionSensor", title: "Motion Sensors:", required: false

}

}

page(name: "otherPage")
}

def otherPage() {
dynamicPage(name: "otherPage", title: "Other Page", install: true) {

section("Other Inputs") {
input "sometext", "text"
input "sometime", "time"

}
}

}

126.3 Mapping endpoints

To expose a callable endpoint in your SmartApp, use mappings. Specify the various endpoints using path, and
specify the supported HTTP methods (GET, PUT, POST, and DELETE). Each action specified is associated with the
name of a method that will handle the request.

mappings {
path("/foo") {

action: [
GET: "getFoo",

126.3. Mapping endpoints 435

SmartThings Classic Developer Documentation, Release latest

PUT: "putFoo",
POST: "postFoo",
DELETE: "deleteFoo"

]
}
path("/bar") {

action: [
GET: "getBar"

]
}

}

def getFoo() {}
def putFoo() {}
def postFoo() {}
def deleteFoo() {}
def getBar() {}

There is no limit to the number of endpoints a SmartApp exposes, but the path level is restricted to four levels deep
(i.e., /level1/level2/level3/level4).

You can specify variable URL path parameters using the : prefix in the path:

mappings {
path("/foo/:param1/:param2") {

action: [GET: "getFoo"]
}

}

126.4 Request handling

When a request is made to one of the SmartApp’s endpoints, its associated request handler method will be called.

Every request handler method has available to it a request object that represents information about the request, and
a params object that contains information about the request parameters.

Important: All request or path parameters should be validated in your request handler. Never allow parameters to
arbitrarily execute device commands or otherwise modify data.

126.4.1 Path variables

Any path variables you defined in the path are available via the injected params object:

mappings {
path("/switches/:command") {

action: [PUT: "updateSwitches"]
}

}

def updateSwitches() {
def cmd = params.command
log.debug "command: $cmd"

436 Chapter 126. The SmartApp

SmartThings Classic Developer Documentation, Release latest

switch(cmd) {
case "on":

// handle on command
break

case "off":
// handle off command
break

default:
httpError(501, "$command is not a valid command for all switches specified")

}
}

126.4.2 Query parameters

URL query parameters sent on the request are available via the params object:

def someHandler() {
// this endpoint can accept the "foo" query parameter
def fooParam = params.foo
log.debug "foo parameter: $foo"

}

126.4.3 Request body parameters

SmartThings supports JSON or XML request body parameters. They can be accessed via request.JSON and
request.XML:

// json on request: '{"foo": "bar"}'
def someJSONHandler() {

def fooJSON = request.JSON?.foo
log.debug "foo json: $fooJSON"

}

// xml on request: '<foo>bar</foo>'
def someXMLHandler() {

def fooXML = request.XML?.foo
log.debug "foo xml: $fooXML"

}

Tip: Use the ? (safe navigation operator) to avoid a NullPointerException if the request JSON or XML is
null (in case the request did not send JSON or XML).

The JSON available on the request will be the result of calling new JsonSlurper().parseText(). You
can learn more about working with JSON in Groovy here.

Similarly, the XML on request is the result of calling new XmlSlurper().parseText(). Learn more about
working with XML in Groovy here.

126.4. Request handling 437

http://www.groovy-lang.org/json.html
http://www.groovy-lang.org/processing-xml.html

SmartThings Classic Developer Documentation, Release latest

126.5 Response handling

126.5.1 Defaults

Each HTTP method (GET, PUT, POST, DELETE) request handler returns a default response. Some request handlers
may return a map that will be serialized to JSON on the response, and some may specify their own response by using
the render() method:

Request Method Default HTTP Response Code JSON Serialization Support render()
support

GET 200 OK yes yes
POST 201 Created yes yes
PUT 204 No Content no no
DELETE 204 No Content no no

126.5.2 Automatic JSON serialization

GET and POST request handlers may return a map, which will be serialized to JSON and returned to the client with
Content-Type: application/json:

mappings {
path("/test") {

action: [
GET: "responseTest",
POST: "responseTest"

]
}

}

def responseTest() {
// a map is serialized to JSON and returned on the response
return [data: "test"]

}

The response of executing a GET or POST request on the /test endpoint results in the following:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8
Date: Tue, 29 Mar 2016 13:53:14 GMT
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=XXXXXXXXXXXXXXXX-n1; Path=/; Secure; HttpOnly
X-RateLimit-Current: 0
X-RateLimit-Limit: 250
X-RateLimit-TTL: 60
transfer-encoding: chunked
Connection: keep-alive

{"data":"test"}

126.5.3 Using render() to control the response

GET and POST request handlers also support the ability to return a custom response using the render() (page 927)
method:

438 Chapter 126. The SmartApp

SmartThings Classic Developer Documentation, Release latest

mappings {
path("/test") {

action: [
GET: "responseTest",
POST: "responseTest"

]
}

}

def responseTest() {
def html = """
<!DOCTYPE html>
<html>

<head><title>Some Title</title></head>
<body><p>Testing</p></body>

</html>"""

render contentType: "text/html", data: html, status: 200
}

The response of executing a GET or POST request on the /test endpoint results in the following:

HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Date: Tue, 29 Mar 2016 15:00:32 GMT
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=1A4382D4BDFCCB31CD6C4EF3C2E3D693-n5; Path=/; Secure; HttpOnly
Vary: Accept-Encoding
X-RateLimit-Current: 0
X-RateLimit-Limit: 250
X-RateLimit-TTL: 60
transfer-encoding: chunked
Connection: keep-alive

<!DOCTYPE html>
<html>

<head><title>Some Title</title></head>
<body><p>Testing</p></body>

</html>

If not specified, the contentType will be “application/json”, and the status will be 200.

126.6 Error handling

126.6.1 Default errors

The following errors may be returned by the SmartThings platform:

126.6. Error handling 439

SmartThings Classic Developer Documentation, Release latest

HTTP
Response
Code

Error Message Cause

401
(Unauthorized)

{“error”: “invalid_token”,
“error_description”: “<TOKEN>”}

Invalid token for the SmartApp installation.

403
(Forbidden)

{“error”:true,
“type”:”AccessDenied”,
“message”:”This request is not
authorized by the specified access
token”}

No installed SmartApp can be found associated with the
token.

404 (Not
Found)

{“er-
ror”:true,”type”:”SmartAppException”,”message”:”Not
Found”}

The endpoint path requested does not exist.

405
(Method
Not
Allowed)

{“er-
ror”:true,”type”:”SmartAppException”,”message”:”Method
Not Allowed”}

An endpoint path was called but no request handler is
defined for the specified request method (e.g., issuing a
POST request to an endpoint path that only handles GET
requests)

429 (Too
Many
Requests)

{“error”: true, “type”: “RateLimit”,
“message”: “Please try again later”}

The rate limit for this SmartApp installation has been
exceeded. See the Web services rate limit headers
(page 613) documentation for more information.

500
(Server
Error)

{“error”:true,
“type”:”<EXCEPTION-TYPE>”,
“message”: “An unexpected error has
occurred”}

An unhandled exception occurred in the processing of the
request. Check the SmartThings live logging to debug.

126.6.2 Custom errors

If your endpoint needs to send an error response, use the httpError() (page 921) method:

def someHandler() {
def foo = request.JSON?.foo

if (!foo) {
httpError(400, "Foo parameter required")

}
}

A SmartAppException will be thrown, and a response will be sent to the client with the specified HTTP code.
The body of the response will be application/json, and look like this:

{
"error":true,
"type":"SmartAppException",
"message":"your error message"

}

You should send appropriate error codes and messages for any errors.

440 Chapter 126. The SmartApp

CHAPTER 127

Authorization

To make REST requests to a SmartApp, the client must establish a trusted relationship using an implementation of the
OAuth2 Authorization Code Flow.

127.1 Overview

The general flow is:

1. Request an authorization code.

2. Use the code to request an access token.

3. Get the endpoint URI for the SmartApp.

4. Make REST calls to the SmartApp using the endpoint URI.

As part of the authorization flow, the SmartApp will be installed to the user’s selected Location.

Important: Beginning February 1, 2016, only SmartApps approved and published by SmartThings can be installed
via the OAuth flow discussed below.

For testing purposes, you will be able to install into your own account only.

For more information, see this community post.

Note: Regardless of the server the SmartApp is actually published to,
https://graph.api.smartthings.com should be used to obtain the authorization code, access token,
and endpoints.

127.2 Get authorization code

Authorization URL: https://graph.api.smartthings.com/oauth/authorize

To obtain an authorization code, make a GET request to https://graph.api.smartthings.com/oauth/authorize:

441

https://community.smartthings.com/t/smartthings-oauth-changes/35019

SmartThings Classic Developer Documentation, Release latest

GET https://graph.api.smartthings.com/oauth/authorize?
response_type=code&
client_id=YOUR-SMARTAPP-CLIENT-ID&
scope=app&
redirect_uri=YOUR-SERVER-URI

The following parameters are required:

param-
eter

value

re-
sponse_type

Use code to obtain the authorization code.

client_id The OAuth client ID of the SmartApp.
scope This should always be “app” for this authorization flow.
redi-
rect_uri

The URI of your server that will receive the authorization code. This URI must match one of the
redirect URIs specified in the SmartApp settings, otherwise validation will fail.

This will require the user to log in with their SmartThings account credentials, choose a Location, and select what
devices may be accessed by the third party.

The authorization code expires 24 hours after issue.

127.3 Get access token

Token URL: https://graph.api.smartthings.com/oauth/token

Use the code you received to obtain the access token:

POST https://graph.api.smartthings.com/oauth/token HTTP/1.1
Host: graph.api.smartthings.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=YOUR_CODE&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECRET&redirect_uri=YOUR_REDIRECT_URI

The content-type header of your request should be of the type application/x-www-form-urlencoded.
The following form parameters are required:

parame-
ter

value

grant_type This is always “authorization_code” for this flow.
code The code you received.
client_id The client ID for the SmartApp.
client_secret The client secret for the SmartApp.
redi-
rect_uri

The URI of the server that will receive the token. This must match the URI you used to obtain the
authorization code.

A successful response will look like this:

{
"access_token": "XXXXXXXXXXXX",
"expires_in": 1576799999,
"token_type": "bearer"

}

442 Chapter 127. Authorization

SmartThings Classic Developer Documentation, Release latest

The expires_in response is the time, in seconds from now, that this token will expire.

Once you have the token, it must be stored securely in the application.

127.4 Get SmartApp endpoints

You can use the token to request the callable endpoints of the SmartApp, by making a GET request to
https://graph.api.smartthings.com/api/smartapps/endpoints. The access token should be
supplied via a Authorization: Bearer header:

GET -H "Authorization: Bearer ACCESS-TOKEN" "https://graph.api.smartthings.com/api/smartapps/endpoints"

A successful response will return a list of all installed SmartApps for the clientID associated with the given access
token.

[
{

"oauthClient": {
"clientId": "CLIENT-ID"

},
"location": {

"id": ID,
"name": "LOCATION-NAME"

}
"uri": "BASE-URL/api/smartapps/installations/INSTALLATION-ID",
"base_url": "BASE-URL",
"url": "/api/smartapps/installations/INSTALLATION-ID"

},
...

]

Important: The base_url (and base URL of the uri) will vary depending upon the server the SmartApp is being
installed to.

SmartApps may be installed into any number of servers depending upon the location of the end-user. You should
always use the uri and base_url to find the location this SmartApp can be reached at.

Do not assume that the SmartApp will be installed on https://graph.api.smartthings.com.

127.5 Make REST calls

Using the uri returned from /api/smartapps/endpoints, you can then make REST calls the SmartApp.

Simply append any paths your SmartApp declares in its mappings to make the appropriate request.

For example, assuming a mappings definition like this:

mappings {
path("/switches") {

action: [GET: "getSwitches"]
}

127.4. Get SmartApp endpoints 443

SmartThings Classic Developer Documentation, Release latest

}

def getSwitches() {
// ...

}

And a URI of https://graph.api.smartthings.com/api/smartapps/installations/12345,
you can make a request to the /switches endpoint like this:

curl -H "Authorization: Bearer ACCESS-TOKEN" -X GET "https://graph.api.smartthings.com/api/smartapps/installations/12345/switches"

444 Chapter 127. Authorization

CHAPTER 128

Troubleshooting

128.1 General

Developing and testing Web Services SmartApps can be tricky, in large part due to the nature of the OAuth process.
Here are some general tips and strategies to help you be successful:

• Make you sure you have read and understand the Web Services Authorization (page 441) documentation.

• Remember that only SmartApps published by SmartThings can be installed into general user accounts. If you
self-published the SmartApp, only the account who published it can install the SmartApp for testing purposes.

• Trying to complete the OAuth process through the browser, without exposing a callable URL to receive the
token, will not work. Read through the Web Services SmartApp Tutorial–Authorization Flow (page 425) to see
how this can be done.

• Understand that to make API calls to the SmartApp, you must first make a REST call to ob-
tain the specific URL for the installed SmartApp (page 443). This should always be made to
https://graph.api.smartthings.com/api/smartapps/endpoints, regardless of the specific
server the SmartApp is installed into.

128.2 Errors during installation

When choosing a Location and selecting devices to authorize, there are some common errors that may occur.

128.2.1 “<clientID> is not associated with a SmartApp in Location” after selecting
Location

Problem When attempting to install a Web Services SmartApp via the OAuth flow, SmartThings looks for a SmartApp
published to the specific server for that Location with that Client ID. This error results from either the SmartApp
not being published to the server that the user is installing into, or from trying to install a Web Services SmartApp
into an account that did not publish the SmartApp.

Solution If the SmartApp was self-published, make sure you are using the same account to install into (only Web
Service SmartApps published by SmartThings may be installed into other user accounts). If it is the same
account, and you are trying to install into a different Location, ensure the SmartApp is published on that Location
as well (this will require handling different OAuth Client ID and Secret).

If this is a SmartApp published by SmartThings, contact support@smartthings.com.

445

mailto:support@smartthings.com

SmartThings Classic Developer Documentation, Release latest

128.2.2 “Please select at least one device to authorize” error after clicking Autho-
rize

Problem If you have selected devices to authorize, this error likely indicates that an exception occurred during the
installation process itself (in the installed() or updated() methods).

Solution Check Live Logging for any exceptions, and look at any code executing in the installed() or
updated() methods for possible bugs.

446 Chapter 128. Troubleshooting

Part XII

Device Handlers

447

SmartThings Classic Developer Documentation, Release latest

Device Handlers are the virtual representation of a physical device.

If you are new to writing Device Handlers, start with the Quick Start (page 451).

After that, read the Overview (page 459) for a broad discussion about Device Handlers and where they fit in the
SmartThings architecture.

The rest of the guide discusses the various components of Device Handlers primarily targeted for Hub-connected
(ZigBee or Z-Wave) devices (though the common Device Handler principles and patterns apply to other devices as
well).

Note: This guide discusses Hub-connected Device Handlers. For information about LAN- and Cloud-connected
Device Handlers, see this guide

Table of Contents:

449

SmartThings Classic Developer Documentation, Release latest

450

CHAPTER 129

Quick Start

A Device Handler is a representation of a physical device in the SmartThings platform. It is responsible for commu-
nicating between the actual device and the SmartThings platform.

Alternately, a Device Handler can also be associated with a Virtual Device when a physical device is not yet available.
This section will walk you through creating your first custom Device Handler and testing it with a Virtual Device.

Warning: Before you proceed, ensure that you are on the correct Location on IDE. Follow the prerequisites
described in Prerequisites (page 179).
If you are new to SmartThings development, consider starting with the Getting Started (page 93) material.

129.1 Create a new Device Handler

From IDE click on the My Device Handlers link on the top menu. Here you will see all your Device Handlers, if you
have any.

Create a new Device Handler by clicking on the +Create New Device Handler button in the upper-right of the page.

You will see a form for creating a new Device Handler. Note the tabs at the top of the form, showing different options
for creating a new Device Handler:

Select the From Template tab.

451

SmartThings Classic Developer Documentation, Release latest

We are going to create a new Device Handler from the Dimmer Switch template. Click on the Dimmer Switch in the
menu on the left.

You will now see the Dimmer Switch Device Handler code on the right.

Take a minute to look at the code and its structure. Don’t worry about the details yet - for now, just take note of the
anatomy of the Device Handler:

Next, make a few changes to this code to make it yours. In the definition method, change the name from “Dimmer
Switch” to something like “My Dimmer Switch”, the namespace to your github user account (or you can leave it
blank), and the author to your name.

Click the Create button below the editor, and then click Publish and For Me on the next screen.

452 Chapter 129. Quick Start

SmartThings Classic Developer Documentation, Release latest

129.2 Create a Virtual Device

Next, we will create a Virtual Device and associate it with the Device Handler we just created above.

From the top menu of the IDE, click on the My Devices.

Click on +New Device on the top-right. This will take you to Create Device page.

Follow below steps to fill the above Create Device form:

Name Your Virtual Device, preferably something that’s indicative of the type of the device, such as “Virtual Dimmer
Switch”.

Label Optional, but you can have something like “virtual-dimmer-switch”.

Zigbee Id Can be blank.

Device Network Id Should be a unique ID that identifies your Virtual Device. Make sure this ID doesn’t conflict with
any other device Ids. Put in “VIRTDIMMERS01”.

Type Pulldown menu lists available Device Handlers. Note that all your custom Device Handlers are listed at the
bottom of the pulldown list. Scroll down the list and select the customer Device Handler that you created above.

129.2. Create a Virtual Device 453

SmartThings Classic Developer Documentation, Release latest

Version Option should be Published.

Location Must be your Hub Location.

Hub Your Hub name associated with the above Location.

Group Not selectable.

Click Create.

You will see virtual-dimmer-switch device appear instantly in your SmartThings mobile app, in the Things screen of
the “My Home” view.

129.3 Test your Device Handler with Virtual Device

With the Virtual Dimmer you just created you can test your Device Handler. From your SmartThings mobile app, tap
on the OFF tile of virtual-dimmer-switch to turn it ON.

Next, tap on the virtual-dimmer-switch to open the detail view and test the tiles.

Note: While the Simulator is useful and necessary for testing how the Device Handler handles incoming messages,
we recommended that you test on the mobile app with Virtual Devices wherever possible.

129.4 Next steps

Now that you have created and installed your first Device Handler with a Virtual Device, use the rest of this guide to
learn more.

454 Chapter 129. Quick Start

SmartThings Classic Developer Documentation, Release latest

129.4. Next steps 455

SmartThings Classic Developer Documentation, Release latest

456 Chapter 129. Quick Start

SmartThings Classic Developer Documentation, Release latest

129.4. Next steps 457

SmartThings Classic Developer Documentation, Release latest

458 Chapter 129. Quick Start

CHAPTER 130

Overview

The SmartThings architecture provides a unique abstraction of devices from their distinct capabilities and attributes in
a way that allows developers to build applications that are insulated from the specifics of which device they are using.
For example, there are lots of wirelessly controllable “switches”. A switch is any device that can be turned On or Off.

When a SmartApp interacts with the virtual representation of a device, it knows that the device supports certain actions
based on its capabilities. A device that has the “switch” capability must support both the “on” and “off” actions. In
this way, all switches are the same, and it doesn’t matter to the SmartApp what kind of switch is actually involved.

This virtual representation of the device is called a Device Handler.

Note: This layer of abstraction is key to the successful function and flexibility of the SmartThings platform. Ar-
chitecturally, device handlers are the bridge between generic capabilities and the device or protocol specific interface
actually used to communicate with the device.

The diagram below depicts where device handlers sit in the SmartThings architecture.

In the example shown above, the job of the Device Handler (that is implementing the “switch” capability) is to parse
incoming, protocol-specific status messages from the device and turn them into normalized “events”. It is also re-
sponsible for accepting normalized commands (such as “on” and “off”) and turning those into the protocol-specific
commands that can be sent to the device to affect the desired action.

For example, for a Z-Wave compatible on-off switch, the incoming status messages used by the device to report an
“on” or “off” state are as shown below:

Device Command Protocol-Specific Command Message
on command: 2003, payload: FF
off command: 2003, payload: 00

Whereas the device status reported to the SmartThings platform for the device is literally just a simple “on” or “off”.

Similarly, when a SmartApp or the mobile app invoked an “on” or “off” command for a switch device, the command
that is sent to the Device Handler is just that simple: “on” or “off”. The Device Handler must turn that simple command
into a protocol-specific message that can be sent down to the device to affect the desired action.

The table below shows the actual Z-Wave commands that are sent to a Z-Wave switch by the Device Handler.

Device Command Protocol-Specific Command Message
On 2001FF
Off 200100

459

SmartThings Classic Developer Documentation, Release latest

460 Chapter 130. Overview

SmartThings Classic Developer Documentation, Release latest

130.1 Core concepts

To understand how device handlers work, a few core concepts need to be discussed.

130.1.1 Capabilities

Capabilities are the interactions that a device allows. They provide an abstraction layer that allows SmartApps to work
with devices based on the capabilities they support, and not be tied to a specific manufacturer or model.

Consider the example of the “Switch” capability. In simple terms, a switch is a device that can turn on and off. It
may be that a switch in the traditional sense (for example an in-wall light switch), a connected bulb (a Hue or Cree
bulb), or even a music player. All of these unique devices have a Device Handler, and those Device Handler’s support
the “Switch” capability. This allows SmartApps to only require a device that supports the “Switch” capability and
thus work with a variety of devices including different manufacturer and model-specific “switches”. The SmartApp
can then interact with the device knowing that it supports the “on” and “off” command (more on commands below),
without caring about the specific device being used.

This code illustrates how a SmartApp might interact with a device that supports the “Switch” capability:

preferences() {
section("Control this switch"){

input "theSwitch", "capability.switch", multiple: false
}

}

def someEventHandler(evt) {
if (someCondition) {

theSwitch.on()
} else {

theSwitch.off()
}

// logs either "switch is on" or "switch is off"
log.debug "switch is ${theSwitch.currentSwitch}"

}

The above example illustrates how a SmartApp requests a device that supports the “Switch” capability. When installing
the SmartApp, the user will be able to select any device that supports the “Switch” capability - be it an in-wall light
switch, a connected bulb, a music player, or any other device that supports the “Switch” capability.

The Capabilities Reference (page 655) outlines all the supported capabilities.

Device Handlers typically support more than one capability. A Device Handler for a Hue bulb would support the
“Switch” capability as well as the “Color Control” capability. This allows SmartApps to be written in a very flexible
manner.

Commands and attributes deserve their own discussion - let’s dive in.

130.1.2 Commands

Commands are the actions that your device can do. For example, a switch can turn on or off, a lock can lock or unlock,
and a valve can open or close. In the example above, we issue the “on” and “off” command on the switch by invoking
the on() or off() methods.

Commands are implemented as methods on the Device Handler. When a device supports a capability, it is responsible
for implementing all the supported command methods.

130.1. Core concepts 461

SmartThings Classic Developer Documentation, Release latest

130.1.3 Attributes

Attributes represent particular state values for your device. For example, the switch capability defines the attribute
“switch”, with possible values of “on” and “off”.

In the example above, we get the value of the “switch” attribute by using the “current<attributeName>” property
(currentSwitch).

Attribute values are set by creating Events where the attribute name is the name of the Event, and the attribute value is
the value of the Event. This is discussed more in the Parse and Events documentation

Like commands, when a device supports a capability, it is responsible for ensuring that all the capability’s attributes
are implemented.

130.1.4 Actuator and Sensor

If you look at the Capabilities Reference (page 655) , you’ll notice two capabilities that have no attributes or commands
- “Actuator” and “Sensor”.

These capabilities are “marker” or “tagging” capabilities (if you’re familiar with Java, think of the Cloneable interface
- it defines no state or behavior).

The “Actuator” capability defines that a device has commands. The “Sensor” capability defines that a device has
attributes.

If you are writing a Device Handler, it is a best practice to support the “Actuator” capability if your device has
commands, and the “Sensor” capability if it has attributes. This is why you’ll see most Device Handlers supporting
one of, or both, of these capabilities.

The reason for this is convention and forward-looking abilities - it can allow the SmartThings platform to interact with
a variety of devices if they do something (“Actuator”), or if they report something (“Sensor”).

130.2 Protocols

SmartThings currently supports both the Z-Wave and ZigBee wireless protocols.

Since the Device Handler is responsible for communicating between the device and the SmartThings platform, it is
usually necessary to understand and communicate in whatever protocol the device supports. This guide will discuss
both Z-Wave and ZigBee protocols at a high level.

130.3 Execution location

With the original SmartThings Hub, all Device handlers execute in the SmartThings cloud. With the new Samsung
SmartThings Hub, certain Device handlers may run locally on the Hub or in the SmartThings cloud. Execution location
varies depending on a variety of factors, and is managed by the SmartThings internal team.

As a SmartThings developer, you should write your Device Handlers to satisfy their specific use cases, regardless of
where the handler executes. There is currently no way to specify or force a certain execution location.

462 Chapter 130. Overview

http://en.wikipedia.org/wiki/Z-Wave
http://en.wikipedia.org/wiki/ZigBee

CHAPTER 131

Simulator

Using the IDE Simulator, we can model the behavior of the device without actually requiring a physical device.

131.1 Overview

On the right-hand side of the IDE, after you install a Device Handler, you’ll see the Simulator. The image below is
the Simulator seen after installing the “Z-Wave Switch” Device Handler (available via the Browse Device Templates
menu).

Go ahead, try it out. Install the Device Handler in the IDE, and choose a virtual switch. Modify some of the Simulator
metadata as you read through this and see what happens.

The purpose of the Simulator metadata is to model the behavior of the physical device. Using the Simulator, we can
test sending messages and commands to our Device Handler.

There are two types of Simulator declarations to define in a Device Handler - “status” and “reply”.

131.2 Status

The “status” declarations specify actions that result in a person physically actuating the device. In the case of the
Z-Wave switch, for example, we have:

status "on": "command: 2003, payload: FF"
status "off": "command: 2003, payload: 00"

status() takes a map as an argument. The key (“on” in the example above) is just a name for the action. The value
(“command: 2003, payload: FF”) is the message that the device will send to the Device Handler’s parse(message)
method when that action is taken on the physical device.

In the Simulator, each status key (“on” or “off” in the example above) will be an available message in the Simulator.

463

SmartThings Classic Developer Documentation, Release latest

464 Chapter 131. Simulator

SmartThings Classic Developer Documentation, Release latest

131.3 Reply

The “reply” declarations specify responses that the physical device will send to the Device Handler when it receives a
certain message from the Hub. For a Z-Wave switch, for example, we specify:

reply "2001FF,delay 100,2502": "command: 2503, payload: FF"
reply "200100,delay 100,2502": "command: 2503, payload: 00"

Just like status(), reply() accepts a map as a parameter. The key is a comma-separate list of the raw commands
sent to the device, i.e. what’s returned from the Device Handler’s command methods. For example, the Z-Wave switch
commands that send the above methods are:

def on() {
delayBetween([

zwave.basicV1.basicSet(value: 0xFF).format(),
zwave.switchBinaryV1.switchBinaryGet().format()

])
}

def off() {
delayBetween([

zwave.basicV1.basicSet(value: 0x00).format(),
zwave.switchBinaryV1.switchBinaryGet().format()

])
}

Those methods will return the values in the first arguments of the reply declarations. The second argument in the reply
declarations works the same way as the status declarations - they define messages sent to the parse method. But in this
case it’s in response to commands, not physical actuations.

131.4 Summary

The purpose of these declarations is to allow a virtual device to function in the IDE Simulator, without being attached
to a physical device. The status() method allows us to simulate physical actuation, while the reply() method
allows us to simulate sending messages to the device in response to a command from the Hub.

131.3. Reply 465

SmartThings Classic Developer Documentation, Release latest

466 Chapter 131. Simulator

CHAPTER 132

Definition

The definition metadata defines core information about your Device Handler. The initial values are set from the values
entered when creating your Device Handler.

Example definition metadata:

metadata {
definition(name: "test device", namespace: "yournamespace", author: "your name") {

capability "Alarm"
capability "battery"

attribute "customAttribute", "string"

command "customCommand"

fingerprint profileId: "0104", inClusters: "0000,0003,0006",
outClusters: "0019"

}

...
}

The definition method takes a map of parameters, and a closure.

The supported parameters are:

name The name of the Device Handler.

namespace The namespace for this Device Handler. This should be your github user name. This is used when looking
up Device Handlers by name to ensure the correct one is found, even if someone else has used the same name.

author The author of this Device Handler.

The closure defines the capabilities, attributes, commands, and fingerprint information for your Device Handler.

132.1 Capabilities

To define that your device supports a capability, simply call the capability method in the closure passed to
definition.

The argument to the capability method is the Capability name.

467

SmartThings Classic Developer Documentation, Release latest

capability "Actuator"
capability "Power Meter"
capability "Refresh"
capability "Switch"

132.2 Attributes

If you need to define a custom attribute for your Device Handler, call the attribute()method in the closure passed
to the definition() method:

attribute(String attributeName, String attributeType, List possibleValues = null)

attributeName Name of the attribute.

attributeType Type of the attribute. Available types are “string”, “number”, and “enum”.

possibleValues Optional. The possible values for this attribute. Only valid with the “enum” attributeType.

// String attribute with name "someName"
attribute "someName", "string"

// enum attribute with possible values "light" and "dark"
attribute "someOtherName", "enum", ["light", "dark"]

132.3 Commands

To define a custom command for your Device Handler, call the command() method in the closure passed to the
definition() method:

command(String commandName, List parameterTypes = [])

commandName The name of the command. You must also define a method in your Device Handler with the same
name.

parameterTypes Optional. An ordered list of the parameter types for the command method, if needed.

// command name "myCommand" with no parameters
command "myCommand"

// comand name myCommandWithParams that takes a string and a number parameter
command "myCommandWithParams", ["string", "number"]

...

// each command specified in the definition must have a corresponding method

def myCommand() {
// handle command

}

// this command takes parameters as defined in the definition
def myCommandWithParams(stringParam, numberParam) {

// handle command
}

468 Chapter 132. Definition

SmartThings Classic Developer Documentation, Release latest

132.4 Fingerprinting

When a ZigBee or Z-Wave device is added to the SmartThings Hub, we need a way to determine which device type to
assign it. This process is known as a “join” process, or “fingerprinting”.

Device Handlers define “fingerprints” to specify which devices or what kinds of devices they support. Then, when
a device is added, its join information is compared to all fingerprints in the default handlers and your self-published
handlers to determine which type of device it is.

The fingerprinting process differs between ZigBee and Z-Wave devices.

132.4.1 ZigBee fingerprinting

For ZigBee devices, the main profileIds you will need to use are:

• HA: Home Automation (0104)

• SEP: Smart Energy Profile

• ZLL: ZigBee Light Link (C05E)

The input and output clusters are defined specifically by your device and should be available via the device’s docu-
mentation.

An example of a ZigBee fingerprint definition:

fingerprint profileId: "C05E", inClusters: "0000,0003,0004,0005,0006,0008,0300,1000", outClusters: "0019"

You can also include the manufacturer and model name in the fingerprint to limit the fingerprint to a specific product:

fingerprint inClusters: "0000,0001,0003,0020,0406,0500", manufacturer: "NYCE", model: "3014"

132.4.2 Z-Wave fingerprinting

Z-Wave fingerprints used to be based on the format used for ZigBee, but there is now a new format that is preferred.
You may see the original fingerprints on older Device Handlers; see below for information on the legacy format.

The best place to start is to add your device to SmartThings and look for the Raw Description in its details view in the
SmartThings developer tools.

Z-Wave raw description

Z-Wave devices added since the introduction of the new format will have raw description strings with multiple key-
value fields, such as:

zw:Ss type:2101 mfr:0086 prod:0102 model:0064 ver:1.04 zwv:4.05 lib:03 cc:5E,86,72,98,84 ccOut:5A sec:59,85,73,71,80,30,31,70,7A role:06 ff:8C07 ui:8C07

Not all fields will be present for every device.

zw: This field will start with ‘L’ for listening devices, ‘S’ for sleepy devices, and ‘F’ for beamable devices. See the
Z-Wave Primer (page 507) for the meaning of those terms. That capital letter will be followed by a lowercase
‘s’ if the device is securely included into the network via the Z-Wave Security Layer.

132.4. Fingerprinting 469

SmartThings Classic Developer Documentation, Release latest

type: This field is the Z-Wave Device Class as a 16-bit hexadecimal number that combines the Generic and Specific
Device Class codes. 1

mfr: This 16-bit hexadecimal number identifies the device manufacturer. 1 The three values of mfr, prod and
model uniquely identify a certified Z-Wave product.

prod: This 16-bit hexadecimal number is the Product Type ID reported by the device.

model: This 16-bit hexadecimal number is the Product ID reported by the device.

ver: This is the application firmware version reported by the device.

zwv: This is the version of the Z-Wave protocol stack being used by the device.

lib: This indicates the type of Z-Wave protocol libary the device is based on. ‘01’ is a static controller, ‘02’ is a remote
controller, ‘07’ is a bridge controller, and other values are normal non-controller devices.

cc: The list of Z-Wave command classes supported by the device (without security encapsulation). See the Z-Wave
Command Reference for the command classes represented by each hex code.

ccOut: The list of Z-Wave command classes that the device can control. This refers to commands sent to other devices
versus reports generated by the device.

sec: These command classes are supported by the device only via Z-Wave Security encapsulation.

secOut: These command classes are controlled by the device only via Z-Wave Security encapsulation.

role: This indicates the Z-Wave Plus Role Type. 1

ff: This stands for “form factor” and corresponds to the Z-Wave+ Installer Icon type (An offset of 0x8000 is added
for implementation reasons). 1

ui: This corresponds to the Z-Wave+ User Icon type.

New Z-Wave fingerprint format

If you’re writing a Device Handler for a specific device, you can base the fingerprint on the manufacturer info. For
example, the fingerprint to match the raw description example above would be:

fingerprint mfr: "0086", prod: "0102", model: "0064"

No other parameters are required. Note that you need to add quotes and commas to the more concise raw description
format to make it valid Groovy code.

Sometimes related products are grouped under the same ‘prod’ ID. In that case you can use a fingerprint without the
‘model’ parameter.

If you are writing a general Device Handler that supports all devices of a certain type, you can still base the fingerprint
on command class support.

fingerprint type: "10", cc: "25,32"

That fingerprint would match all devices of the Binary Switch generic device class – i.e. their ‘type’ starts with “10”
– that support the Binary Switch (0x25) and Meter (0x32) command classes.

The supported parameters are:

type: Matches if it’s equal to or a prefix of the device’s ‘type’ value in the raw description. Aliased as ‘deviceId’.

mfr, prod, model: Matches if ‘mfr’ matches the raw description and ‘prod’ and ‘model’ match as prefixes (if present).

1 See this document for the values of identifiers defined by the Z-Wave standard.

470 Chapter 132. Definition

https://graph.api.smartthings.com/ide/doc/zwave-utils.html
https://graph.api.smartthings.com/ide/doc/zwave-utils.html
http://zwavepublic.com/files/sds13740-1-z-wave-plus-device-and-command-class-types-and-defines-specificationpdf

SmartThings Classic Developer Documentation, Release latest

cc, ccOut: Takes a list of command class codes as a string: comma-separated, uppercase hexadecimal. Matches if all
listed command class codes are reported as supported or controlled respectively in the device’s raw description.

sec, secOut: The same as the previous parameter, but only matches against command classes the device sup-
ports/controls only via Z-Wave Security encapsulation.

ff/ui: Either of these parameters can be used to match against the corresponding fields of the raw description. It is
only possible to use one of the following in a single fingerprint: ‘type’, ‘deviceId’, ‘ff’, ui’.

deviceJoinName: Not used for matching. If the fingerprint matches, the device will appear to the user with this name.

When multiple device fingerprints match an added Z-Wave device, they are ranked first by number of ‘mfr’, ‘prod’,
and ‘model’ parameters, then by the number of command classes listed, and finally by the length of the ‘type’, ‘ff’,
or ‘ui’ parameter. When fingerprints have the same rank, self-published Device Handlers take precedence over the
default production ones.

Legacy Z-Wave fingeprint format

Legacy fingerprints include the device class – or type value (see above) – in the deviceId parameter and the
command classes it supports in the inClusters parameter. So the fingerprint:

fingerprint deviceId:"0x1104", inClusters:"0x26, 0x2B, 0x2C, 0x27, 0x73, 0x70, 0x86, 0x72", outClusters: "0x20"

would be formatted in the new style as:

fingerprint type: "1104", cc: "26,2B,2C,27,73,70,86,72", ccOut: "20"

132.4.3 Fingerprinting best practices

Add multiple fingerprints

A Device Handler can have multiple fingerprints in order to work with multiple versions of a device. Each fingerprint
is independent. If any of them is the highest ranking match, the device will use your device type.

You can distinguish between the different devices that use the handler by adding the ‘deviceJoinName’ parameter. For
example:

fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702, 0B05", outClusters: "0019", manufacturer: "sengled", model: "Z01-CIA19NAE26", deviceJoinName: "Sengled Element touch"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702, 0B05", outClusters: "000A, 0019", manufacturer: "Jasco Products", model: "45852", deviceJoinName: "GE Zigbee Plug-In Dimmer"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702, 0B05", outClusters: "000A, 0019", manufacturer: "Jasco Products", model: "45857", deviceJoinName: "GE Zigbee In-Wall Dimmer"

If an added device supports the inClusters in the first fingerprint but doesn’t match all the extra info in any of the next
three, it will join with the name from the handler’s definition metadata, in this case “ZigBee Dimmer Power.”

Device pairing process

The order of the inClusters and outClusters lists is not important to the pairing process. It is a best practice,
however, to list the clusters in ascending order.

The device can have more clusters than the fingerprint specifies, and it will still pair. If one of the clusters specified in
the fingerprint is incorrect, the device will not pair.

132.4. Fingerprinting 471

SmartThings Classic Developer Documentation, Release latest

Overly general fingerprints

If you wish to publish or share a Device Handler, you must make sure that the fingerprints do not capture other devices
that aren’t covered by your handler.

If you copied a working fingerprint from a default or template handler, it would be ambiguous which type should match
if yours was published. The easiest way to remedy this is to include manufacturer and model info in all fingerprints.

472 Chapter 132. Definition

CHAPTER 133

Tiles

Tiles define how devices are visually represented in the SmartThings mobile application. Every Device Handler
specifies how the device will appear in the mobile application by specifying one or more tiles.

133.1 Overview

When a user goes to the Things view in the mobile app, they see all their devices listed:

473

SmartThings Classic Developer Documentation, Release latest

When tapping on one of the devices in the Things view, the user will see the Details view for that device:

474 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

The Details view is where a user can get comprehensive information about the device, as well as actuate the device (if
applicable) by interacting with the tile.

A tile may be display only, or can be configured to perform an action on the device when interacted with.

Each tile is associated with one or more attributes of the device. Some tiles are display-only, while others allow the
user to interact with the tile to actuate the device.

133.2 Tiles basics

Tip: If you’re the type that prefers to view and experiment with real code examples as you learn, check out the
Examples (page 497).

Tiles definition and layout is specified using the tiles() builder in the Device Handler’s metadata, and looks like
this (we’ll dive into the details shortly):

133.2. Tiles basics 475

SmartThings Classic Developer Documentation, Release latest

metadata {
definition (

...
}

tiles(scale: 2) {
// standard tile with actions named
standardTile("switch", "device.switch", width: 2, height: 2, canChangeIcon: true) {

state "off", label: '${currentValue}', action: "switch.on",
icon: "st.switches.switch.off", backgroundColor: "#ffffff"

state "on", label: '${currentValue}', action: "switch.off",
icon: "st.switches.switch.on", backgroundColor: "#00a0dc"

}

// value tile (read only)
valueTile("power", "device.power", decoration: "flat", width: 2, height: 2) {

state "power", label:'${currentValue} Watts'
}

// the "switch" tile will appear in the Things view
main("switch")

// the "switch" and "power" tiles will appear in the Device Details
// view (order is left-to-right, top-to-bottom)
details(["switch", "power"])

}
}

It’s important to understand that tiles configuration is part of the device’s static metadata. When the SmartThings
platform executes the tiles() builder you have defined, it doesn’t yet know anything about the actual device or the
current device state. Only later, when the device details screen is rendered in the mobile client, does the platform know
information about the specific device. For this reason, trying to conditionally configure tiles based on device state will
not work.

Tiles are associated with attributes of a device. Device tiles come in two varieties:

1. Single-attribute tiles. These tiles are associated with one attribute of the device.

2. Multi-attribute tiles. These tiles can display information about multiple attribute of a device.

133.2.1 Main and details tiles configuration

The main tile is what appears in the Things view. It’s configured in the tiles() builder with main():

tiles(scale: 2) {
standardTile(name: 'someTile', ...)
controlTile(name: 'otherTile', ...)

// tile with name 'someTile' appears in the Things view
main('someTile')

}

Use details() to specify all other tiles that should be available on the device details screen. The tiles will layout
in left-to-right, top-to-bottom order beginning with the first argument:

tiles(scale: 2) {
standardTile(name: 'someTile', ...)
controlTile(name: 'otherTile', ...)

476 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

valueTile(name: 'valueTile', ...)

main('someTile')
// someTile is top left, then otherTile, then anotherTile,
// all flowing left-to-right, top-to-bottom:
details('someTile', 'otherTile', 'anotherTile')

}

133.2.2 Grid layout

Tiles are rendered using a grid layout. Tiles support either a 6 x Unlimited (6 wide, unlimited height) or 3 x Unlimited
(3 wide, unlimited height) layout. The grid system used is controlled by the scale argument to the tiles builder.
A value of 1 (the default) enables the 3 x Unlimited grid; a value of 2 enables the 6 x Unlimited grid:

// 3 x Unlimited grid
tiles(scale: 1) {...}

// 6 x Unlimited grid
tiles(scale: 2) {...}

SmartThings recommends using the 6 x Unlimited layout, as it offers a more attractive user experience. Older versions
of the SmartThings mobile application that do not support the 6 x Unlimited layout will be scaled back.

Here you can see how the tiles defined above are laid out using the 6 x Unlimited grid (using the scale: 2 option):

133.2. Tiles basics 477

SmartThings Classic Developer Documentation, Release latest

133.2.3 Tile size

Every tile can specify a width and a height, which controls the size of the tile within the grid layout. If not
specified, the tile will default to a width and height of 1.

133.2.4 Allowing the user to change the icon

We can specify the canChangeIcon: true option to allow the user to select an icon of their choosing when
editing the device:

standardTile("switch", "device.switch", width: 2, height: 2, canChangeIcon: true) {...}

If not specified, canChangeIcon is assumed to be false. Only the tile specified as the main tile should specify
canChangeIcon.

478 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

133.3 Tiles and Attribute state

Tiles display data about a device’s attributes, and may allow those attributes to be updated through user interaction.

Let’s explore how this works by considering an example. Consider the case of a Switch - it could be a smart outlet,
an in-wall switch, or a smart bulb. Regardless of the specific device, we want to display a tile that shows the current
state of the switch (on or off), and allows the user to toggle the switch by pressing the tile. We accomplish this by
associating one or more states for a tile definition.

When we define a tile, we associate it with a specific attribute of the device. In our Switch example, this would be the
“switch” attribute of the switch capability:

standardTile("tileName", "device.switch", width: 2, height: 2) {...}

Now that we’ve associated the tile with the switch attribute, we need to configure how it will display for the attribute’s
possible states. For single-attribute tiles (standardTile is a single-attribute tile), we do this using state. Multi-
attribute tiles use attributeState, which is used in the same way.

For attributes that have a finite, discrete set of possible values (for example, “on” or “off”, “wet” or “dry”, “open”
or “closed”), we create a state definition for each possible value. Each state definition can be configured to
customize the display and what should happen (if anything) when the tile is pressed by the user. For attributes whose
value are not finite values (examples include “temperature”, “power”, or the “level” of a dimmable switch), we simply
use one state for the attribute:

valueTile("tileName", "device.level", width: 2, height: 2) {
state "level", label: '${currentValue}'

}

You can learn more about using dynamic state labels (’${currentValue}’ above) here (page 480).

In the case of the “switch” attribute, we need to define two states, one for “on” and one for “off”:

standardTile("tileName", "device.switch", width: 2, height: 2) {
state "off", label: "off", icon: "st.switches.switch.off", backgroundColor: "#ffffff"
state "on", label: "on", icon: "st.switches.switch.on", backgroundColor: "#00a0dc"

}

The above tile definition is pretty self-explanatory. When the “switch” attribute is “off”, the label of the tile will be
“off”, the icon will be “st.switches.switch.off”, and the background color will be white (#ffffff). It’s similarly easy to
understand how the tile will appear when the switch is “on”.

133.3.1 State actions

Tile states can define what should happen when the tile is interacted with by specifying an action. For example, to
allow a switch to be toggled when pressed, we specify what should happen for each attribute state:

standardTile("tileName", "device.switch", width: 2, height: 2) {
state "off", label: "off", icon: "st.switches.switch.off", backgroundColor: "#ffffff", action: "switch.on"
state "on", label: "on", icon: "st.switches.switch.on", backgroundColor: "#00a0dc", action: "switch.off"

}

The value of the action can be formatted in one of two ways:

1. In the form "<capability>.<command>".

2. In the simpler form "<command>". This form is required for custom (non-capability) commands.

We are showing the form "<capability>.<command>" form above, which translates to action:
"switch.on". We could also simply specify the command, which would look like: action: "on".

133.3. Tiles and Attribute state 479

SmartThings Classic Developer Documentation, Release latest

If you’re curious about commands that take parameters (on() and off() do not), you do not need to specify
parameters in the action. Any parameters will be populated and passed to the command method by the specific tile
control.

Note: While both action forms are supported, you’ll most frequently see the form "<capability>.<command>"
in Device Handlers. This form can be somewhat confusing when the capability has a space in its name; consider this
example that would call the setLevel command on a “Switch Level” capability:

action: "switch level.setLevel"

The above reads awkwardly for many, and can cause confusion.

Because of this, we prefer the short form of action: "<command>".

133.3.2 Transition states

We can use the nextState option in state (single-attribute tiles) or attributeState (Multi-Attribute Tiles)
to show that the device is transitioning to a next state. This is useful to provide visual feedback that the device state
is transitioning. When the attribute’s state does change, the tile will be updated according to the state defined for that
attribute.

To define a transition state, simply define a state for the transition, and reference that state using the nextState
option.

Here’s an example that uses a transition state for the “switch” attribute:

standardTile("switch", "device.switch", width: 2, height: 2) {
state "off", label:'Off', action:"switch.on", icon:"st.switches.switch.off", backgroundColor:"#ffffff", nextState:"turningOn"
state "on", label:'On', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#00a0dc", nextState:"turningOff"
state "turningOn", label:'Turning on', icon:"st.switches.switch.on", backgroundColor:"#00a0dc", nextState: "turningOff"
state "turningOff", label:'Turning off', icon:"st.switches.switch.off", backgroundColor:"#ffffff", nextState: "turningOn"

}

133.3.3 State labels

We can hard-code a label for state values, or use the state name or current value of the attribute. The following label
values can be used to display real-time information about the device:

Label Description
label:
’${currentValue}’

The current value of this attribute’s state. This is used when the attribute doesn’t have
a discrete value set, like temperature or power.

label:
’${name}’

The name of the attribute state. This is useful when the attribute state is a discrete
value, like “on” or “off”.

Here’s an example of using the state name as the label:

standardTile("switch", "device.switch") {
// use the state name as the label ("off" and "on")
state "off", label:'${name}', action:"switch.on", icon:"st.switches.switch.off", backgroundColor:"#ffffff"
state "on", label:'${name}', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#00a0dc"

}

When using the current attribute value, the attribute value must be set by sending an Event. For simplicity, the code
examples in this documentation typically will not show the attribute value being set. Just know that if a label is set like
this:

480 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

valueTile("power", "device.power") {
// label will be the current value of the power attribute
state "power", label: '${currentValue} W'

}

The Device Handler needs to send an Event for the "power" attribute somewhere:

sendEvent(name: "power", value: 42)

Important: Dynamic device state values like ’${currentValue}’ and ’${name}’must be used inside single
quotes. This is in contrast to Groovy’s string interpolation that requires double quotes.

This is required because when the platform executes the tiles() builder, it doesn’t know anything about the actual
device yet. Using single quotes will allow the platform to manually substitute the actual value when the device is
rendered on the mobile app.

133.3.4 Background color

We’ve seen in the examples above that states can be configured to appear a certain color using backgroundColor.
The value to the backgroundColor option is a hexadecimal value of the color.

We can also specify an array of background colors for attribute values that fall along a range. This allows for greater
user feedback for a given attribute value, since we can specify the background color for various values. When the value
is between the specified ranges, the resulting color will be a shade between the two specified colors. The “temperature”
attribute is a common example of this. It’s typical to see a tile definition for temperature like this:

valueTile("temperature", "device.temperature", width: 2, height: 2) {
state("temperature", label:'${currentValue}', unit:"dF",

backgroundColors:[
[value: 31, color: "#153591"],
[value: 44, color: "#1e9cbb"],
[value: 59, color: "#90d2a7"],
[value: 74, color: "#44b621"],
[value: 84, color: "#f1d801"],
[value: 95, color: "#d04e00"],
[value: 96, color: "#bc2323"]

]
)

}

The argument to backgroundColors is a list of maps, where each map specifies the hexadecimal color a specific
value. When the attribute value matches a value specified, the color specified will be the background color of the tile.
When the value is between two specified values, the color will be a linear interpolation between the specified ranges.

In the example above, we defined that at 84 degrees the background color will be a shade of green (“#44b621”). When
the temperature reaches 95 degrees, the color will be a shade of yellow (“f1d801”). When the temperature is between
84 and 95 degrees, the background color will be between green and yellow. Increasing the temperature causes the
color to become progressively more yellow, until arriving at 95 degrees. Similarly, decreasing the temperature causes
the color to become more and more green, until arriving at 84 degrees.

Once an upper or lower bound has been reached, the background color will no longer change. In the example above,
that means that decreasing the temperature below 31 degrees or above 96 degrees will not cause the background color
to change from the colors specified at those values.

133.3. Tiles and Attribute state 481

SmartThings Classic Developer Documentation, Release latest

133.3.5 State selection algorithm

The following algorithm is used to determine which state to display, when there are multiple states:

1. If a state is defined for the attribute’s current value, it will render that.

2. If no state exists for the attribute value, it will render a state that has specified defaultState: true. Use
this in place of the “default” state name that you may see in some Device Handlers.

3. If no state matches the above rules, it will render the first state declaration.

133.3.6 Icons

A tile’s state may specify an icon to render using the icon option:

tileAttribute ("device.power", key: "SECONDARY_CONTROL") {
attributeState "power", label:'${currentValue}W', icon: "st.Appliances.appliances17"

}

We can use an icon provided by SmartThings as above, or an accessible URL to an icon.

Note: Using icons is discussed frequenly in the SmartThings developer community forums.

133.4 Single-Attribute Tiles

Single-attribute tiles are associated with a single device attribute. There are several different single-attribute tiles
available for use, as documented below.

133.4.1 Standard Tile

Use a Standard Tile for attributes that have discrete, specific values. For example, a switch is either “on” or “off”; a
moisture sensor is “wet” or “dry”; a contact sensor is “open” or “closed”.

Here’s a standard tile that shows if a switch is on or off.

standardTile("actionFlat", "device.switch", width: 2, height: 2, decoration: "flat") {
state "off", label: '${currentValue}', action: "switch.on", icon: "st.switches.switch.off", backgroundColor: "#ffffff"
state "on", label: '${currentValue}', action: "switch.off", icon: "st.switches.switch.on", backgroundColor: "#00a0dc"

}

The above tile definition would render as (when the switch is on):

Standard Tiles may be styled with a ring (the default), or flat, by using the decoration option:

// standard tile with actions
standardTile("actionRings", "device.switch", width: 2, height: 2, canChangeIcon: true) {

state "off", label: '${currentValue}', action: "switch.on", icon: "st.switches.switch.off", backgroundColor: "#ffffff"
state "on", label: '${currentValue}', action: "switch.off", icon: "st.switches.switch.on", backgroundColor: "#00a0dc"

}

// standard flat tile without actions
standardTile("noActionFlat", "device.switch", width: 2, height: 2, canChangeIcon: true) {

state "off", label: '${currentValue}',icon: "st.switches.switch.off", backgroundColor: "#ffffff"

482 Chapter 133. Tiles

https://community.smartthings.com/t/where-are-the-tile-icons/40086

SmartThings Classic Developer Documentation, Release latest

state "on", label: '${currentValue}', icon: "st.switches.switch.on", backgroundColor: "#00a0dc"
}

The above tiles definition renders as below, with the tile on the left being the ring decoration:

Tip: Check out the Examples (page 497) to see it in action!

133.4. Single-Attribute Tiles 483

SmartThings Classic Developer Documentation, Release latest

133.4.2 Value Tile

Use a Value Tile for attributes that have non-discrete values. Typical examples include temperature, humidity, or power
values.

The following shows a few examples of the Value Tile:

tiles(scale: 2) {
valueTile("integerFloat", "device.integerFloat", width: 2, height: 2) {

state "val", label:'${currentValue}', defaultState: true
}

valueTile("pi", "device.pi", width: 2, height: 2) {
state "val", label:'${currentValue}', defaultState: true

}

valueTile("floatAsText", "device.floatAsText", width: 2, height: 2) {
state "val", label:'${currentValue}', defaultState: true

}

valueTile("bgColor", "device.integer", width: 2, height: 2) {
state "val", label:'${currentValue}', backgroundColor: "#e86d13", defaultState: true

}

valueTile("bgColorRange", "device.integer", width: 2, height: 2) {
state "val", label:'${currentValue}', defaultState: true, backgroundColors: [

[value: 10, color: "#ff0000"],
[value: 90, color: "#0000ff"]

]
}

}

def installed() {
sendEvent(name: "integer", value: 47)
sendEvent(name: "integerFloat", value: 47.0)
sendEvent(name: "pi", value: 3.14159)
sendEvent(name: "floatAsText", value: "3.14159")

}

This renders as:

Note: While it’s possible to specify an action for a Value Tile, that is not the intended purpose. If your tile should
support an action, use a Standard Tile. Value Tiles are intended to be used for display-only attributes.

Tip: Check out the Examples (page 497) to see it in action!

484 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

133.4.3 Slider Control Tile

Use a Slider Control Tile to display a tile that shows a value along a range, and allows the user to adjust the value
using the slider control.

These tiles are useful for attributes like the level of a dimmable bulb.

Here’s an example of a Slider Control Tile:

controlTile("levelSliderControl", "device.level", "slider",
height: 1, width: 2) {

state "level", action:"switch level.setLevel"
}

This renders as:

By default, the range of the slider will be 0-100. You can specify a custom range by using a range parameter.
It is a string, in the form "(<lower bound>..<upper bound>)". Only integers (negative and positive) are
supported for custom ranges; decimal values will not work.

controlTile("levelSliderControl", "device.level", "slider", height: 1,
width: 2, inactiveLabel: false, range:"(20..80)") {

state "level", action:"switch level.setLevel"
}

Tip: Check out the Examples (page 497) to see it in action!

133.4.4 Color Control Tile

If your device supports the colorControl capability, you can use a Control Tile that displays a color wheel. The user
can then set the color by interacting with the control.

Here’s an example of a color control tile:

controlTile("rgbSelector", "device.color", "color", height: 6, width: 6,
inactiveLabel: false) {

state "color", action: "color control.setColor"
}

The tile may render differently depending on the mobile OS. The command method specified by action will be
called with a map that looks like this:

[red:241, hex:#F1E3FF, saturation:10.980392, blue:255, green:227, hue:75.0]

The values are summarized in the table below:

133.4. Single-Attribute Tiles 485

SmartThings Classic Developer Documentation, Release latest

Key Description
red The red value chosen in the standard RGB color space
hex The hexacecimal representation of the color chosen
saturation The saturation value of the value chosen, between 0 and 100
blue The blue value chosen in the standard RGB color space
green The green value chosen in the standard RGB color space
hue The hue value of the color chosen, between 0 and 100

You may also see a level and alpha attribute returned from the color control. These values are not controlled by
the color control tile, so are not useful.

Tip: Check out the Examples (page 497) to see it in action!

133.4.5 Carousel Tile

A Carousel Tile is often used in conjunction with the imageCapture capability, to allow users to scroll through recent
pictures.

Many of the camera Device Handlers will make use of the carouselTile().

carouselTile("cameraDetails", "device.image", width: 3, height: 2) { }

The Carousel Tile displays the ten most recent images captured within the past seven days.

Note: See Capturing and Displaying Camera Pictures (page 575) for more information on working with camera
devices.

133.5 Multi-Attribute Tiles

Multi-Attribute Tiles combine multiple attributes into a single tile presented with a rich UI. Here are some of the types
of tiles that you can create:

486 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

Lighting Thermostat Multimedia

133.5.1 Basics

Multi-Attribute Tiles must be given a width of 6 and a height of 4. To enable this, the tiles builder of your Device
Handler must use the new 6 X Unlimited grid layout by specifying scale: 2:

tiles(scale: 2) {
multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true) {

...
}

}

133.5.2 Multi-Attribute Tile types

Multi-Attribute Tiles specify a type:

multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4) { ... }

The following types are supported, and each type is documented in detail below:

• "lighting"

• "thermostat"

• "mediaPlayer"

• "generic"

133.5.3 Attribute state and control keys

Like Single-Attribute Tiles, Multi-Attribute Tiles are associated with device attributes. As the name sug-
gests, Multi-Attribute Tiles can be associated with more than one attribute, using tileAttribute() and
attributeState():

multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true) {
tileAttribute ("device.switch", key: "PRIMARY_CONTROL") {

attributeState "on", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
attributeState "off", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"
attributeState "turningOn", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
attributeState "turningOff", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"

}
tileAttribute ("device.power", key: "SECONDARY_CONTROL") {

attributeState "power", label:'Power level: ${currentValue}W', icon: "st.Appliances.appliances17"
}
tileAttribute ("device.level", key: "SLIDER_CONTROL") {

133.5. Multi-Attribute Tiles 487

SmartThings Classic Developer Documentation, Release latest

attributeState "level", action:"switch level.setLevel"
}
tileAttribute ("device.color", key: "COLOR_CONTROL") {

attributeState "color", action:"setAdjustedColor"
}

}

The key difference between the Multi-Attribute Tile tileAttribute and the single-attribute state is the key
option for attributeState. The key informs the platform the type of control for the tile attribute, which is then
used to render the appropriate control. The keys commonly used for each type of tile will be discussed below, and a
complete reference list is also available (page 494).

Every Multi-Attribute Tile must specify a PRIMARY_CONTROL. This is the main control, and will control the back-
ground color for the entire Multi-Attribute Tile (except for the Thermostat Multi-Attribute Tile (page 489)).

133.5.4 Lighting Multi-Attribute Tile

The lighting Multi-Attribute Tile makes it easy to create rich tiles for lighting devices. There are several ways a
lighting Multi-Attribute Tile can be configured, depending on the type of bulb and its supported capabilities.

Consider the following Multi-Attribute Tile for a bulb that supports the switch, colorControl, powerMeter, and switch-
Level capabilities:

multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true) {
tileAttribute ("device.switch", key: "PRIMARY_CONTROL") {

attributeState "on", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
attributeState "off", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"
attributeState "turningOn", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
attributeState "turningOff", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"

}
tileAttribute ("device.power", key: "SECONDARY_CONTROL") {

attributeState "power", label:'Power level: ${currentValue}W', icon: "st.Appliances.appliances17"
}
tileAttribute ("device.level", key: "SLIDER_CONTROL") {

attributeState "level", action:"switch level.setLevel"
}
tileAttribute ("device.color", key: "COLOR_CONTROL") {

attributeState "color", action:"setColor"
}

}

This tile renders as:

488 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

Note: Android will display the SECONDARY_CONTROL and SLIDER_CONTROL attribute values as a marquee
when used in conjunction with COLOR_CONTROL.

The tileAttribute keys and their description used for the lighting Multi-Attribute Tile are summarized in the
following table:

Key Description
PRIMARY_CONTROL Displays the status of the switch, and allows the switch state to be toggled when

pressed.
SECONDARY_CONTROL Used to display textual information. Often used to display power usage.
SLIDER_CONTROL For bulbs that support the switchLevel capability, allows the user to set the switch

level.
COLOR_CONTROL For bulbs that support the colorControl capability, allows the user to select a color.

The command method specified by action will be called with a map that looks like this:

[red:241, hex:#F1E3FF, saturation:10.980392, blue:255, green:227, hue:75.0]

The values are summarized in the table below:

Key Description
red The red value chosen in the standard RGB color space
hex The hexacecimal representation of the color chosen
saturation The saturation value of the value chosen, between 0 and 100
blue The blue value chosen in the standard RGB color space
green The green value chosen in the standard RGB color space
hue The hue value of the color chosen, between 0 and 100

You may also see a level and alpha attribute returned from the color control. These values are not controlled by
the color palette, so are not useful.

Note: You may see code for Color Control bulbs that adjusts the Hue using some magic numbers and fun math.

This is an artifact of the original Hue bulb sacrificing the ability to render greens in favor of more pleasant whites. This
tradeoff threw off the actual colors version the apparent color on the color wheel. These calculations compensated for
this behavior somewhat so that when you selected blue on the color wheel you actually saw blue on the bulb.

These adjustments would not apply to other color bulbs.

Tip: Check out the Examples (page 497) to see it in action!

133.5.5 Thermostat Multi-Attribute Tile

The Thermostat Multi-Attribute Tile allows for rich viewing and control of thermostat devices. Here’s an image of a
thermostat tile (when heating):

133.5. Multi-Attribute Tiles 489

SmartThings Classic Developer Documentation, Release latest

The tiles configuration for the above tile is:

multiAttributeTile(name:"thermostatFull", type:"thermostat", width:6, height:4) {
tileAttribute("device.temperature", key: "PRIMARY_CONTROL") {

attributeState("temp", label:'${currentValue}', unit:"dF", defaultState: true)
}
tileAttribute("device.temperature", key: "VALUE_CONTROL") {

attributeState("VALUE_UP", action: "tempUp")
attributeState("VALUE_DOWN", action: "tempDown")

}
tileAttribute("device.humidity", key: "SECONDARY_CONTROL") {

attributeState("humidity", label:'${currentValue}%', unit:"%", defaultState: true)
}
tileAttribute("device.thermostatOperatingState", key: "OPERATING_STATE") {

attributeState("idle", backgroundColor:"#00A0DC")
attributeState("heating", backgroundColor:"#e86d13")
attributeState("cooling", backgroundColor:"#00A0DC")

}
tileAttribute("device.thermostatMode", key: "THERMOSTAT_MODE") {

attributeState("off", label:'${name}')
attributeState("heat", label:'${name}')
attributeState("cool", label:'${name}')
attributeState("auto", label:'${name}')

}
tileAttribute("device.heatingSetpoint", key: "HEATING_SETPOINT") {

attributeState("heatingSetpoint", label:'${currentValue}', unit:"dF", defaultState: true)
}
tileAttribute("device.coolingSetpoint", key: "COOLING_SETPOINT") {

attributeState("coolingSetpoint", label:'${currentValue}', unit:"dF", defaultState: true)
}

}

The below table summarizes the basic controls for a Thermostat Multi-Attribute Tile:

Key Description
PRIMARY_CONTROL Used to display the current temperature.
VALUE_CONTROL Renders controls for increasing or decreasing the temperature.
SECONDARY_CONTROLUsed to display textual data about the thermostat, like humidity. Appears on the

bottom-left of the tile.

In addition to the controls above, there are four additional controls that work together to show the status label at the
bottom of the tile:

490 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

This label provides users with more information on the state of the thermostat. Additionally, thermostat tiles also look
to the OPERATING_STATE attribute for its background color, falling back on the colors for PRIMARY_CONTROL.

In order to provide the relevant data to present the label, there are four additional attributes you should include:

Value Description Notes
OPERATING_STATEWhat the thermostat is

doing
The label will not show if OPERATING_STATE is omitted, as this
is the baseline amount of meaningful information

THERMOSTAT_MODEThermostat Mode (i.e.
Heat, Cool, or Auto)

This allows the user to know the Mode (and temperature) if the
system is idle (e.g. “Idle—Heat at 66°”)

HEATING_SETPOINTAt which point the
system will begin heating

Informs the user when heating will start (or stop, if currently
heating)

COOLING_SETPOINTAt which point the
system will begin cooling

Informs the user when cooling will start (or stop, if currently
cooling)

Note: Only OPERATING_STATE is required to present the status label, but providing all four attributes will ensure
the best experience for your users.

Tip: Check out the Examples (page 497) to see it in action!

133.5.6 Multimedia Multi-Attribute Tile

The Multimedia Multi-Attribute Tile is intended for devices that support the musicPlayer capability. It can render con-
trols for playing, pausing, next/previous tracks, and volume levels for a music player. It can also display information
about the currently playing track.

The code for this tiles configuration is shown below:

tiles(scale: 2) {
multiAttributeTile(name: "mediaMulti", type:"mediaPlayer", width:6, height:4) {

tileAttribute("device.status", key: "PRIMARY_CONTROL") {

133.5. Multi-Attribute Tiles 491

SmartThings Classic Developer Documentation, Release latest

attributeState("paused", label:"Paused",)
attributeState("playing", label:"Playing")
attributeState("stopped", label:"Stopped")

}
tileAttribute("device.status", key: "MEDIA_STATUS") {

attributeState("paused", label:"Paused", action:"music Player.play", nextState: "playing")
attributeState("playing", label:"Playing", action:"music Player.pause", nextState: "paused")
attributeState("stopped", label:"Stopped", action:"music Player.play", nextState: "playing")

}
tileAttribute("device.status", key: "PREVIOUS_TRACK") {

attributeState("status", action:"music Player.previousTrack", defaultState: true)
}
tileAttribute("device.status", key: "NEXT_TRACK") {

attributeState("status", action:"music Player.nextTrack", defaultState: true)
}
tileAttribute ("device.level", key: "SLIDER_CONTROL") {

attributeState("level", action:"music Player.setLevel")
}
tileAttribute ("device.mute", key: "MEDIA_MUTED") {

attributeState("unmuted", action:"music Player.mute", nextState: "muted")
attributeState("muted", action:"music Player.unmute", nextState: "unmuted")

}
tileAttribute("device.trackDescription", key: "MARQUEE") {

attributeState("trackDescription", label:"${currentValue}", defaultState: true)
}

}

main "mediaMulti"
details(["mediaMulti"])

}

The tileAttribute control keys and their description used for the Multimedia Multi-Attribute Tile are summa-
rized in the following table:

Key Description
PRIMARY_CONTROLNecessary to render the background of the tile
MEDIA_STATUSUsed to display and control the current play status (playing, paused, stopped)
PREVIOUS_TRACKRenders a control for going to the previous track
NEXT_TRACK Renders a control for going to the next track
SLIDER_CONTROLRenders a control to select a volume level
MEDIA_MUTED Allows the user to press the volume icon to mute
MARQUEE Will display the currently playing track description below the PRIMARY_CONTROL. Use

newlines ("\n") to delimit fields such as title, artist, album, etc.

Note: The background color of the media Multi-Attribute Tile defaults to blue, and cannot be overridden.

Tip: Check out the Examples (page 497) to see it in action!

133.5.7 Generic Multi-Attribute Tile

If none of the predefined Multi-Attribute Tile types fit your needs, you can use the Generic Multi-Attribute Tile. The
supported tile attribute types for the Generic Multi-Attribute Tile are shown in the following table:

492 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

Key Description
PRIMARY_CONTROL The primary control tile for this device, controls the background color
SECONDARY_CONTROL Displays textual data below the primary control
VALUE_CONTROL Renders Up and Down buttons for increasing or decreasing values
SLIDER_CONTROL Renders a slider control for selecting a value along a range
COLOR_CONTROL Renders the color picker that allows users to select a color (useful for Color Control

devices)

Here’s an example of a generic tile:

multiAttributeTile(name:"sliderTile", type:"generic", width:6, height:4) {
tileAttribute("device.switch", key: "PRIMARY_CONTROL") {

attributeState "on", label:'${name}', backgroundColor:"#00A0DC", nextState:"turningOff"
attributeState "off", label:'${name}', backgroundColor:"#ffffff", nextState:"turningOn"
attributeState "turningOn", label:'${name}', backgroundColor:"#79b821", nextState:"turningOff"
attributeState "turningOff", label:'${name}', backgroundColor:"#ffffff", nextState:"turningOn"

}
tileAttribute("device.level", key: "SECONDARY_CONTROL") {

attributeState "level", icon: 'st.Weather.weather1', action:"randomizeLevel", defaultState: true
}
tileAttribute("device.level", key: "SLIDER_CONTROL") {

attributeState "level", action:"switch level.setLevel", defaultState: true
}

}
multiAttributeTile(name:"valueTile", type:"generic", width:6, height:4) {

tileAttribute("device.level", key: "PRIMARY_CONTROL") {
attributeState "level", label:'${currentValue}', defaultState: true, backgroundColors:[

[value: 0, color: "#ff0000"],
[value: 20, color: "#ffff00"],
[value: 40, color: "#00ff00"],
[value: 60, color: "#00ffff"],
[value: 80, color: "#0000ff"],
[value: 100, color: "#ff00ff"]

]
}
tileAttribute("device.switch", key: "SECONDARY_CONTROL") {

attributeState "on", label:'${name}', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#00A0DC", nextState:"turningOff"
attributeState "off", label:'${name}', action:"switch.on", backgroundColor:"#ffffff", nextState:"turningOn"
attributeState "turningOn", label:'...', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#79b821", nextState:"turningOff"
attributeState "turningOff", label:'...', action:"switch.on", backgroundColor:"#ffffff", nextState:"turningOn"

}
tileAttribute("device.level", key: "VALUE_CONTROL") {

attributeState "VALUE_UP", action: "levelUp"
attributeState "VALUE_DOWN", action: "levelDown"

}
}

The above tiles render as:

133.5. Multi-Attribute Tiles 493

SmartThings Classic Developer Documentation, Release latest

Tip: Check out the Examples (page 497) to see it in action!

133.5.8 Controls summary

The table below summarizes all the available control types. Not all controls are supported for all tile types; see the
tile-specific documentation for more information.

494 Chapter 133. Tiles

SmartThings Classic Developer Documentation, Release latest

Key Description
COLOR_CONTROLDisplays a color palette for the user to select a color from.
COOLING_SETPOINTUsed by the Thermostat Multi-Attribute Tile (page 489).
HEATING_SETPOINTUsed by the Thermostat Multi-Attribute Tile (page 489).
MARQUEE Displays a rotating marquee message beneath the PRIMARY_CONTROL.
MEDIA_MUTED Allows the user to press the volume icon to mute on a Multimedia Multi-Attribute Tile

(page 491).
MEDIA_STATUSUsed to display and control the current play status (playing, paused, stopped) on a Multimedia

Multi-Attribute Tile (page 491).
NEXT_TRACK Renders a control for going to the next track on a Multimedia Multi-Attribute Tile (page 491).
OPERATING_STATEUsed by the Thermostat Multi-Attribute Tile (page 489).
PREVIOUS_TRACKRenders a control for going to the previous track on a Multimedia Multi-Attribute Tile

(page 491).
PRIMARY_CONTROLAll tiles must define a PRIMARY_CONTROL. Controls the background color of tile (except for

the Thermostat Multi-Attribute Tile (page 489)), and specifies the attribute to show on the
Device list views.

SECONDARY_CONTROLUsed to display textual information below the PRIMARY_CONTROL.
SLIDER_CONTROLDisplays a slider input; typically useful for attributes like bulb level or volume.
THERMOSTAT_MODEUsed by the Thermostat Multi-Attribute Tile (page 489).
VALUE_CONTROLRenders Up and Down controls for increasing and decreasing an attribute’s value by 1.

133.6 Color standards

SmartThings has defined a set of common colors for use in device tiles. Follow these standards when developing
device tiles to ensure consistency within the SmartThings mobile app.

133.6.1 Colors

The following table lists the standard colors, their hexadecimal code, and a description of when to use the color:

Color Hex code Description Color example
Blue #00a0dc Represents “on”-like device states
White #ffffff Represents “off”-like device states
Orange #e86d13 Represents device states that require the user’s attention
Gray #cccccc Represents “inactive” or “offline” device states

Transition states (e.g., “Turning on”) should use the color of the transitioned-to state (e.g., blue for “Turning on”).

In addition to the colors above, tiles that display temperatures follow these standards (see the Background color
(page 481) documentation to understand how the colors are interpolated between values):

Temperature value (Fahrenheit) Hex code Color example
31 #153591
44 #1e9cbb
59 #90d2a7
74 #44b621
84 #f1d801
95 #d04e00
96 #bc2323

133.6. Color standards 495

SmartThings Classic Developer Documentation, Release latest

Tip: If your Device Handler needs to accomodate Celsius temperature values, you can convert the values above to
Celsius, and expand the background colors out to include the range of both Celsius and Fahrenheit values. You can
see an example of this here.

133.6.2 Examples

The following table contains several common device states and their tile color:

Attribute state Color
Switch on Blue–#00a0dc
Switch off White–#ffffff
Motion active Blue–#00a0dc
Motion inactive White–#ffffff
Contact sensor open Orange–##e86d13
Contact sensor closed Blue–#00a0dc
Lock locked Blue–#00a0dc
Lock unlocked White–#ffffff
Presence present Blue–#00a0dc
Presence away Gray–#cccccc
Thermostat cool Blue–#00a0dc
Thermostat heat Orange–##e86d13
Siren on Orange–##e86d13
Siren off White–#ffffff
Water sensor dry White–#ffffff
Water sensor wet Blue–#00a0dc
Smoke detector clear White–#ffffff
Smoke detector detected Orange–#e86d13
Smoke detector tested Orange–#e86d13

133.7 Additional information

• If using the SECONDARY_CONTROL, SLIDER_CONTROL, and COLOR_CONTROL controls in the same Multi-
Attribute Tile, the values for the secondary and slider control will display as a Marquee on Android.

• When specifying a Multi-Attribute Tile as the main tile, the PRIMARY_CONTROL tile attribute will display on
the details list.

• Tiles may not render the same across all mobile platforms. While we strive for a degree of consistency, it is still
recommended to test your tiles on a variety of devices.

• Remember that when tile definitions are consumed by the platform, the platform has no knowledge of device
state, etc. Tiles are static in nature; keep this in mind as you design your Device Handler.

• 6 x 1 tiles will actually render the tile that is used for the device in the Device List views. This is almost surely
not what is desired, so it’s recommended not to use 6 x 1 tiles.

496 Chapter 133. Tiles

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/f054cb4de1fb41d15a2725cddcc521b5f659572b/devicetypes/smartthings/ecobee-thermostat.src/ecobee-thermostat.groovy#L45

SmartThings Classic Developer Documentation, Release latest

133.8 Examples

We’ve created several Device Handlers for all the tiles discussed in this documentation. These are a great reference
for seeing various tiles in action.

They are located in the tiles-ux package in the SmartThingsPublic GitHub Repository. Refer to the README in the
package for information on installing and using the example devices.

133.8. Examples 497

https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/devicetypes/smartthings/tile-ux

SmartThings Classic Developer Documentation, Release latest

498 Chapter 133. Tiles

CHAPTER 134

Preferences

Device Handlers may specify simple preferences to allow the user to configure certain properties of their device.

134.1 Overview

When a user adds a device to SmartThings, they are given the option to name their device and select a room. If there
are additional configuration options that you wish to expose to the user, you can specify them using preferences.
They will appear on the same page as the device name preference.

134.2 Defining preferences

Device preferences should be placed in the Device Handler’s metadata. They can appear anywhere in the
metadata definition.

metadata {
definition(...) {...}
tiles() {...}
preferences {

input "tempOffset", "number", title: "Degrees", description: "Adjust temperature by this many degrees",
range: "*..*", displayDuringSetup: false

}
}

134.3 Device preferences are flat

Device preferences are static, and single-page.

Multiple page preferences and dynamic preferences pages are not supported in Device Handlers. Device Handler
preferences are a simple list of inputs:

preferences {
input name: "text", type: "text", title: "Text", description: "Enter Text", required: true

}

499

SmartThings Classic Developer Documentation, Release latest

134.4 Display on setup

Use displayDuringSetup: true to force the preference input to be displayed when the device is being added
to SmartThings:

preferences {
input name: "email", type: "email", title: "Email", description: "Enter Email Address", required: true,

displayDuringSetup: true
}

Preferences that do not specify this value, or specify displayDuringSetup: false, will only appear when
the user presses the Settings button on the Device in the mobile application.

134.5 Supported input types

The following input types are supported in Device Handler preferences:

• bool

• decimal

• email

• enum

• number

• password

• phone

• time

• text

134.6 Getting preference input values

Just as with SmartApp preferences, the name of the preferences input is a reference to the preference value:

metadata {
definition(...) {...}
tiles() {...}
preferences {

input "tempOffset", "number", title: "Degrees", description: "Adjust temperature by this many degrees", range: "*..*", displayDuringSetup: false
}

}

def someCommandMethod() {
if (tempOffset) {

// handle offset value
}

}

500 Chapter 134. Preferences

SmartThings Classic Developer Documentation, Release latest

Note: Preference values are only available to the Device Handler when it is executing in response to Events or
commands. It is not possible to use preference values in other metadata definitions, including tiles().

134.7 Example

metadata {
simulator {

// TODO: define status and reply messages here
}

tiles {
// TODO: define your main and details tiles here

}

preferences {
input name: "email", type: "email", title: "Email", description: "Enter Email Address", required: true, displayDuringSetup: true
input name: "text", type: "text", title: "Text", description: "Enter Text", required: true
input name: "number", type: "number", title: "Number", description: "Enter number", required: true
input name: "bool", type: "bool", title: "Bool", description: "Enter boolean", required: true
input name: "password", type: "password", title: "password", description: "Enter password", required: true
input name: "phone", type: "phone", title: "phone", description: "Enter phone", required: true
input name: "decimal", type: "decimal", title: "decimal", description: "Enter decimal", required: true
input name: "time", type: "time", title: "time", description: "Enter time", required: true
input name: "options", type: "enum", title: "enum", options: ["Option 1", "Option 2"], description: "Enter enum", required: true

}
}

def someCommand() {
log.debug "email: $email"
log.debug "text: $text"
log.debug "bool: $bool"
log.debug "password: $password"
log.debug "phone: $phone"
log.debug "decimal: $decimal"
log.debug "time: $time"
log.debug "options: $options"

}

134.8 Additional notes

• Setting a default value (defaultValue: "foobar") for an input may render that selection in the mobile
app, but the user still needs to enter data in that field. It’s recommended to not use defaultValue to avoid
confusion.

134.7. Example 501

SmartThings Classic Developer Documentation, Release latest

502 Chapter 134. Preferences

CHAPTER 135

Parse and Events

The parse method is the core method in a typical Device Handler.

135.1 Overview

All messages from the device are passed to the parse() method. It is responsible for turning those messages into
something the SmartThings platform can understand.

Because the parse() method is responsible for handling raw device messages, their implementations vary greatly
across different device types. This document will not discuss all these different scenarios (see the Z-Wave Device
Handler Guide or ZigBee Device Handler guide for protocol-specific information).

Consider an example of a simplified parse() method (modified from the CentraLite Switch):

def parse(String description) {
log.debug "parse description: $description"

def attrName = null
def attrValue = null

if (description?.startsWith("on/off:")) {
log.debug "switch command"
attrName = "switch"
attrValue = description?.endsWith("1") ? "on" : "off"

}

def result = createEvent(name: attrName, value: attrValue)

log.debug "Parse returned ${result?.descriptionText}"
return result

}

Our parse() method inspects the passed-in description, and creates an Event with name “switch” and a value of
“on” or “off”. It then returns the created Event, where the SmartThings platform will handle firing the Event and
notifying any SmartApps subscribed to that Event.

503

SmartThings Classic Developer Documentation, Release latest

135.2 Parse, Events, and Attributes

Recall that the “switch” capability specifies an attribute of “switch”, with possible values “on” and “off”. The
parse() method is responsible for creating events for the attributes of that device’s capabilities.

That is a critical point to understand about Device Handlers - it is what allows SmartApps to respond to Event sub-
scriptions!

Note: Only events that constitute a state change are propagated through the SmartThings platform. A state change is
when a particular attribute of the device changes. This is handled automatically by the platform, but should you want
to override that behavior, you can do so by specifying the isStateChange parameter discussed below.

135.2.1 Creating Events

Use the createEvent() method to create events in your Device Handler. It takes a map of parameters as an
argument. You should provide the name and value at a minimum.

Important: The createEvent just creates a data structure (a Map) with information about the Event. It does not
actually fire an Event.

Only by returning that created map from your parse method will an Event be fired by the SmartThings platform.

The parameters you can pass to createEvent are:

name (required) String - The name of the Event. Typically corresponds to an attribute name of the device-handler’s
capabilities.

value (required) The value of the Event. The value is stored as a String, but you can pass in numbers or other objects.
SmartApps will be responsible for parsing the Event’s value into back to its desired form (e.g., parsing a number
from a string)

descriptionText String - The description of this Event. This appears in the mobile application activity feed for the
device. If not specified, this will be created using the Event name and value.

displayed boolean - true to display this Event in the mobile application activity feed. false to not display this
Event. Defaults to true.

linkText String - Name of the Event to show in the mobile application activity feed, if specified.

isStateChange boolean - true if this Event caused the device’s attribute to change state. false otherwise. If not
provided, createEvent will populate this based on the current state of the device.

unit String - a unit string, if desired. This will be used to create the descriptionText if it (the descriptionText parameter)
is not specified.

135.2.2 Multiple Events

You are not limited to returning a single Event map from your parse method.

You can return a list of Event maps to tell the SmartThings platform to generate multiple events:

def parse(String description) {
...

504 Chapter 135. Parse and Events

SmartThings Classic Developer Documentation, Release latest

def evt1 = createEvent(name: "someName", value: "someValue")
def evt2 = createEvent(name: "someOtherName", value: "someOtherValue")

return [evt1, evt2]
}

135.2.3 Generating Events outside of parse

If you need to generate an Event outside of the parse() method, you can use the sendEvent() method. It simply
calls createEvent() and fires the Event. You pass in the same parameters as you do to createEvent().

135.3 Tips

When creating a Device Handler, determining what messages need to be handled by the parse() method varies
by device. A common practice to figure out what messages need to be handled is to simply log the messages in
your parse() method (log.debug "description: $description"). This allows you to see what the
incoming message is for various actuations or states.

135.3. Tips 505

SmartThings Classic Developer Documentation, Release latest

506 Chapter 135. Parse and Events

CHAPTER 136

Z-Wave Primer

This document covers some important aspects of the Z-Wave application-level standard that you may come in contact
with when developing Device Handlers for Z-Wave devices. If you are already familiar with Z-Wave development,
you can learn how SmartThings integrates with it in Building Z-Wave Device Handlers. You can also consult the
Z-Wave public specification for more information about the Z-Wave protocol.

136.1 Command classes

Z-Wave device messages are all called “commands”, even if they are just info reports or other kinds of communica-
tions. They are organized into command classes which group related functionality together. Some devices list which
command classes they support in their manuals.

There is a list of the command classes that SmartThings supports here: Z-Wave Command Reference. Notice some of
them have multiple versions. The Z-Wave standard occasionally adds a new version of a command class that may add
new commands or add more data fields to existing commands. New versions are backwards-compatible and generally
our command parsing system can handle different versions interchangeably, but you may need to specify a specific
version in some cases.

Some commonly seen command classes:

• 0x20 Basic
A generalized get/set/report command class that all devices support. It is usually mapped to another more
specific command class, like Switch Binary for switches or Sensor Binary for sensors.

• 0x25 Switch Binary
Control of on/off switches.

• 0x26 Switch Multilevel
Control of dimmer switches.

• 0x30 Sensor Binary
Sensors with two states, such as motion detectors and open/closed sensors.

• 0x31 Sensor Multilevel
Sensors that report a numeric value, like temperature or illuminance.

• 0x32 Meter
Outlets and meters that measure energy use.

• 0x71 Alarm/Notification

507

http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification/
https://graph.api.smartthings.com/ide/doc/zwave-utils.html
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#basicV1
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#switchBinaryV1
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#switchMultilevelV3
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#sensorBinaryV1
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#sensorMultilevelV5
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#meterV3
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#notificationV3

SmartThings Classic Developer Documentation, Release latest

The Alarm command class was renamed to Notification in version 3.
Used by sensors and other devices to report events.

• 0x70 Configuration
See Configuration section below.

• 0x80 Battery
Battery level reporting for battery powered devices.

• 0x84 Wake Up
See Listening and Sleepy Devices section below.

• 0x85 Association
See Association section below.

• 0x86 Version
All devices report their Z-Wave framework and firmware version on request.

• 0x72 Manufacturer Specific
All devices report their manufacturer and model (via numeric code).

• 0x98 Security
Commands to and from security-sensitive devices can be sent encrypted by wrapping them in
SecurityMessageEncapsulation commands.

• 0x60 Multi-Channel/Multi-Instance
The Multi Instance command class was renamed to Multi Channel in version 3. It is used by devices to
distinguish between multiple control or reporting end points.

136.2 Listening and sleepy devices

Z-Wave devices that are plugged in to power are called listening devices because they keep their receiver on all the
time. Listening devices act as repeaters and therefore extend the Z-Wave mesh network.

Battery powered Z-Wave devices such as sensors or remote controllers are sleepy – they turn off their receivers to
save energy, so you can’t send them commands at any time. Instead, they wake up at a regular interval and send a
WakeUpNotification to alert other devices that they will be listening for incoming commands for the next few seconds.
The WakeUpIntervalSet command is used to configure both how often the device will wake up and which controller it
will send its WakeUpNotification to. When the controller gets the WakeUpNotification and has no commands to send
to the device, it can send WakeUpNoMoreInformation to tell the device that it can go back to sleep.

Some battery powered devices like door locks and thermostats have to be able to receive commands at any time. These
are known as beamable devices, because they wake up for only a tiny slice of time each second or quarter-second and
listen for a “beam”. Thus, the sending device must “beam” the receiving device for a full second to wake it up fully
before sending a command. This makes communication with these devices take a significantly longer time than with
a normal listening device.

136.3 Configuration

A Z-Wave device can use the Configuration command class to allow the user to change its settings. Configuration
parameters and their interpretation vary between device models, and are usually detailed in the device’s manual or
technical documentation.

508 Chapter 136. Z-Wave Primer

https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#batteryV1
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#versionV1
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#manufacturerSpecificV2
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#securityV1
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#multiChannelV3
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2/wakeUpNotification
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2/wakeUpIntervalSet
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2/wakeUpNoMoreInformation
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2

SmartThings Classic Developer Documentation, Release latest

The command class includes commands to read and set configuration parameter values. One thing to be careful of is
that the ConfigurationSet command encodes the setting value in a 1, 2, or 4 byte format, and many devices will only
properly interpret the value if it is sent in the same byte format. When sending a ConfigurationSet, make sure to set
the ‘size’ argument to the same value as it has in an incoming ConfigurationReport from the device for the parameter
number in question.

136.4 Association

The Association command class is used to tell a Z-Wave device that it should send updates to another device. It
provides the ability to add associated devices to different numbered groups that can have different meanings. This
functionality is used in a few different ways, often detailed in the device’s manual or technical documentation:

• Some sensors will send reports of the events they detect only to devices that have been added to a specific
association group.

• Many sensors will send BasicSet commands to associated devices, for example to turn a light on when a door
opens and off when it closes.

• Some devices have multiple groups for different uses, like group 1 gets sent BasicSet commands, group 2 gets
sent SensorBinaryReport events, and group 3 gets sent BatteryReport updates.

• Most door locks will send status updates to associated devices when they are locked or unlocked manually.

The SmartThings Hub automatically adds itself to association group 1 when a device that supports association joins
the network. If this is inappropriate for your Device Handler, your Device Handler can use AssociationRemove to
undo it. To associate to a group higher than 1, the Device Handler can send AssociationSet. The Hub’s node ID is
provided to Device Handler code in the variable zwaveHubNodeId.

136.4. Association 509

https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2/configurationSet
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2/configurationReport
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#basicV1/basicSet
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2/associationRemove
https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2/associationSet

SmartThings Classic Developer Documentation, Release latest

510 Chapter 136. Z-Wave Primer

CHAPTER 137

Building Z-Wave Device Handlers

The Z-Wave public specification is available here. SmartThings provides custom Z-Wave command objects that rep-
resent the standard commands and messages that Z-Wave devices use to send and request information.

137.1 Parsing Events

When Events from Z-Wave devices are passed into your Device Handler’s parse method, they are in an encoded string
format. The first thing your parse method should do is call zwave.parse on the description string to convert it
to a Z-Wave command object. The object’s class is one of the subclasses of physicalgraph.zwave.Command
that can be found in the Z-Wave Command Reference. If the description string does not represent a valid Z-Wave
command, zwave.parse will return null.

def parse(String description) {
def result = null
def cmd = zwave.parse(description)
if (cmd) {

result = zwaveEvent(cmd)
log.debug "Parsed ${cmd} to ${result.inspect()}"

} else {
log.debug "Non-parsed event: ${description}"

}
return result

}

Once you have a command object, the recommended way of handling it is to pass it to a overloaded function such as
zwaveEvent() used in this example, with different argument types for the different types of commands you intend
to handle:

def zwaveEvent(physicalgraph.zwave.commands.basicv1.BasicReport cmd)
{

def result
if (cmd.value == 0) {

result = createEvent(name: "switch", value: "off")
} else {

result = createEvent(name: "switch", value: "on")
}
return result

}

def zwaveEvent(physicalgraph.zwave.commands.meterv3.MeterReport cmd) {

511

http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification/
https://graph.api.smartthings.com/ide/doc/zwave-utils.html

SmartThings Classic Developer Documentation, Release latest

def result
if (cmd.scale == 0) {

result = createEvent(name: "energy", value: cmd.scaledMeterValue, unit: "kWh")
} else if (cmd.scale == 1) {

result = createEvent(name: "energy", value: cmd.scaledMeterValue, unit: "kVAh")
} else {

result = createEvent(name: "power", value: cmd.scaledMeterValue, unit: "W")
}
return result

}

def zwaveEvent(physicalgraph.zwave.Command cmd) {
// This will capture any commands not handled by other instances of zwaveEvent
// and is recommended for development so you can see every command the device sends
return createEvent(descriptionText: "${device.displayName}: ${cmd}")

}

Remember that when you use createEvent() to build an Event, the resulting map must be returned from
parse() for the Event to be sent. For information about createEvent, see the Creating Events section.

As the Z-Wave Command Reference shows, many Z-Wave command classes have multiple versions. By default,
zwave.parse() will parse a command using the highest version of the command class. If the device is sending an
earlier version of the command, some fields may be missing, or the command may fail to parse and return null. To
fix this, you can pass in a map as the second argument to zwave.parse() to tell it which version of each command
class to use:

zwave.parse(description, [0x26: 1, 0x70: 1])

This example will use version 1 of SwitchMultilevel (0x26) and Configuration (0x70) instead of the highest versions.

137.2 Sending commands

To send a Z-Wave command to the device, you must create the command object, call format() on it to convert it to
the encoded string representation, and return it from the command method.

def on() {
return zwave.basicV1.basicSet(value: 0xFF).format()

}

There is a shorthand provided to create command objects: zwave.basicV1.basicSet(value: 0xFF) is
the same as new physicalgraph.zwave.commands.basicv1.BasicSet(value: 0xFF). Note the
different capitalization of the command name and the ‘V’ in the command class name.

The value 0xFF passed in to the command is a hexadecimal number. Many Z-Wave commands use 8-bit integers to
represent device state. Generally 0 means “off” or “inactive”, 1-99 are used as percentage values for a variable level
attribute, and 0xFF or 255 (the highest value) means “on” or “detected”.

If you want to send more than one Z-Wave command, you can return a list of formatted command strings. It is often a
good idea to add a delay between commands to give the device an opportunity to finish processing each command and
possibly send a response before receiving the next command. To add a delay between commands, include a string of
the form "delay N" where N is the number of milliseconds to delay. There is a helper method delayBetween()
that will take a list of commands and insert delay commands between them:

512 Chapter 137. Building Z-Wave Device Handlers

https://graph.api.smartthings.com/ide/doc/zwave-utils.html

SmartThings Classic Developer Documentation, Release latest

def off() {
delayBetween([

zwave.basicV1.basicSet(value: 0).format(),
zwave.switchBinaryV1.switchBinaryGet().format()

], 100)
}

This example returns the output of delayBetween, and thus will send a BasicSet command, followed by a 100 ms
delay (0.1 seconds), then a SwitchBinaryGet command in order to check immediately that the state of the switch was
indeed changed by the set command.

137.3 Sending commands in response to Events

In some situations, instead of sending a command in response to a request by the user, you want to automatically send
a command to the device on receipt of a Z-Wave command.

If you return a list from the parse method, each item of the list will be evaluated separately. Items that are maps will be
processed as Events as usual and sent to subscribed SmartApps and mobile clients. Returned items that are HubAction
items, however, will be sent via the Hub to the device, in much the same way as formatted commands returned from
command methods. The easiest way to send a command to a device in response to an Event is the response()
helper, which takes a Z-Wave command or encoded string and supplies a HubAction:

def zwaveEvent(physicalgraph.zwave.commands.wakeupv1.WakeUpNotification cmd)
{

def event = createEvent(descriptionText: "${device.displayName} woke up", displayed: false)
def cmds = []
cmds << zwave.batteryV1.batteryGet().format()
cmds << "delay 1200"
cmds << zwave.wakeUpV1.wakeUpNoMoreInformation().format()
[event, response(cmds)] // return a list containing the event and the result of response()

}

The above example uses the response() helper to send Z-Wave commands and delay commands to the device
whenever a WakeUpNotification Event is received. The reception of this Event that indicates that the sleepy device is
temporarily listening for commands. In addition to creating a hidden Event, the handler will send a BatteryGet request,
wait 1.2 seconds for a response, and then issue a WakeUpNoMoreInformation command to tell the device it can go
back to sleep to save battery.

137.3. Sending commands in response to Events 513

SmartThings Classic Developer Documentation, Release latest

514 Chapter 137. Building Z-Wave Device Handlers

CHAPTER 138

Z-Wave Example

Below is a Device Handler code sample with examples of many common commands and parsed events.

You can also view this example in GitHub here.

metadata {
definition (name: "Z-Wave Device Reference", author: "SmartThings") {

capability "Actuator"
capability "Switch"
capability "Polling"
capability "Refresh"
capability "Temperature Measurement"
capability "Sensor"
capability "Battery"

}

simulator {
// These show up in the IDE simulator "messages" drop-down to test
// sending event messages to your device handler
status "basic report on":

zwave.basicV1.basicReport(value:0xFF).incomingMessage()
status "basic report off":

zwave.basicV1.basicReport(value:0).incomingMessage()
status "dimmer switch on at 70%":

zwave.switchMultilevelV1.switchMultilevelReport(value:70).incomingMessage()
status "basic set on":

zwave.basicV1.basicSet(value:0xFF).incomingMessage()
status "temperature report 70°F":

zwave.sensorMultilevelV2.sensorMultilevelReport(scaledSensorValue: 70.0, precision: 1, sensorType: 1, scale: 1).incomingMessage()
status "low battery alert":

zwave.batteryV1.batteryReport(batteryLevel:0xFF).incomingMessage()
status "multichannel sensor":

zwave.multiChannelV3.multiChannelCmdEncap(sourceEndPoint:1, destinationEndPoint:1).encapsulate(zwave.sensorBinaryV1.sensorBinaryReport(sensorValue:0)).incomingMessage()

// simulate turn on
reply "2001FF,delay 5000,2002": "command: 2503, payload: FF"

// simulate turn off
reply "200100,delay 5000,2002": "command: 2503, payload: 00"

}

tiles {
standardTile("switch", "device.switch", width: 2, height: 2,

canChangeIcon: true) {

515

https://github.com/SmartThingsCommunity/Code/blob/master/device-types/z-wave-example.groovy

SmartThings Classic Developer Documentation, Release latest

state "on", label: '${name}', action: "switch.off",
icon: "st.unknown.zwave.device", backgroundColor: "#79b821"

state "off", label: '${name}', action: "switch.on",
icon: "st.unknown.zwave.device", backgroundColor: "#ffffff"

}
standardTile("refresh", "command.refresh", inactiveLabel: false,

decoration: "flat") {
state "default", label:'', action:"refresh.refresh",

icon:"st.secondary.refresh"
}

valueTile("battery", "device.battery", inactiveLabel: false,
decoration: "flat") {

state "battery", label:'${currentValue}% battery', unit:""
}

valueTile("temperature", "device.temperature") {
state("temperature", label:'${currentValue}°',

backgroundColors:[
[value: 31, color: "#153591"],
[value: 44, color: "#1e9cbb"],
[value: 59, color: "#90d2a7"],
[value: 74, color: "#44b621"],
[value: 84, color: "#f1d801"],
[value: 95, color: "#d04e00"],
[value: 96, color: "#bc2323"]

]
)

}

main (["switch", "temperature"])
details (["switch", "temperature", "refresh", "battery"])

}
}

def parse(String description) {
def result = null
def cmd = zwave.parse(description, [0x60: 3])
if (cmd) {

result = zwaveEvent(cmd)
log.debug "Parsed ${cmd} to ${result.inspect()}"

} else {
log.debug "Non-parsed event: ${description}"

}
result

}

def zwaveEvent(physicalgraph.zwave.commands.basicv1.BasicReport cmd)
{

def result = []
result << createEvent(name:"switch", value: cmd.value ? "on" : "off")

// For a multilevel switch, cmd.value can be from 1-99 to represent
// dimming levels
result << createEvent(name:"level", value: cmd.value, unit:"%",

descriptionText:"${device.displayName} dimmed ${cmd.value==255 ? 100 : cmd.value}%")

result

516 Chapter 138. Z-Wave Example

SmartThings Classic Developer Documentation, Release latest

}

def zwaveEvent(physicalgraph.zwave.commands.switchbinaryv1.SwitchBinaryReport cmd) {
createEvent(name:"switch", value: cmd.value ? "on" : "off")

}

def zwaveEvent(physicalgraph.zwave.commands.switchmultilevelv3.SwitchMultilevelReport cmd) {
def result = []
result << createEvent(name:"switch", value: cmd.value ? "on" : "off")
result << createEvent(name:"level", value: cmd.value, unit:"%",

descriptionText:"${device.displayName} dimmed ${cmd.value==255 ? 100 : cmd.value}%")
result

}

def zwaveEvent(physicalgraph.zwave.commands.meterv1.MeterReport cmd) {
def result
if (cmd.scale == 0) {

result = createEvent(name: "energy", value: cmd.scaledMeterValue,
unit: "kWh")

} else if (cmd.scale == 1) {
result = createEvent(name: "energy", value: cmd.scaledMeterValue,

unit: "kVAh")
} else {

result = createEvent(name: "power",
value: Math.round(cmd.scaledMeterValue), unit: "W")

}

result
}

def zwaveEvent(physicalgraph.zwave.commands.meterv3.MeterReport cmd) {
def map = null
if (cmd.meterType == 1) {

if (cmd.scale == 0) {
map = [name: "energy", value: cmd.scaledMeterValue,

unit: "kWh"]
} else if (cmd.scale == 1) {

map = [name: "energy", value: cmd.scaledMeterValue,
unit: "kVAh"]

} else if (cmd.scale == 2) {
map = [name: "power", value: cmd.scaledMeterValue, unit: "W"]

} else {
map = [name: "electric", value: cmd.scaledMeterValue]
map.unit = ["pulses", "V", "A", "R/Z", ""][cmd.scale - 3]

}
} else if (cmd.meterType == 2) {

map = [name: "gas", value: cmd.scaledMeterValue]
map.unit = ["m^3", "ft^3", "", "pulses", ""][cmd.scale]

} else if (cmd.meterType == 3) {
map = [name: "water", value: cmd.scaledMeterValue]
map.unit = ["m^3", "ft^3", "gal"][cmd.scale]

}
if (map) {

if (cmd.previousMeterValue && cmd.previousMeterValue != cmd.meterValue) {
map.descriptionText = "${device.displayName} ${map.name} is ${map.value} ${map.unit}, previous: ${cmd.scaledPreviousMeterValue}"

}
createEvent(map)

} else {

517

SmartThings Classic Developer Documentation, Release latest

null
}

}

def zwaveEvent(physicalgraph.zwave.commands.sensorbinaryv2.SensorBinaryReport cmd) {
def result
switch (cmd.sensorType) {

case 2:
result = createEvent(name:"smoke",

value: cmd.sensorValue ? "detected" : "closed")
break

case 3:
result = createEvent(name:"carbonMonoxide",

value: cmd.sensorValue ? "detected" : "clear")
break

case 4:
result = createEvent(name:"carbonDioxide",

value: cmd.sensorValue ? "detected" : "clear")
break

case 5:
result = createEvent(name:"temperature",

value: cmd.sensorValue ? "overheated" : "normal")
break

case 6:
result = createEvent(name:"water",

value: cmd.sensorValue ? "wet" : "dry")
break

case 7:
result = createEvent(name:"temperature",

value: cmd.sensorValue ? "freezing" : "normal")
break

case 8:
result = createEvent(name:"tamper",

value: cmd.sensorValue ? "detected" : "okay")
break

case 9:
result = createEvent(name:"aux",

value: cmd.sensorValue ? "active" : "inactive")
break

case 0x0A:
result = createEvent(name:"contact",

value: cmd.sensorValue ? "open" : "closed")
break

case 0x0B:
result = createEvent(name:"tilt", value: cmd.sensorValue ? "detected" : "okay")
break

case 0x0C:
result = createEvent(name:"motion",

value: cmd.sensorValue ? "active" : "inactive")
break

case 0x0D:
result = createEvent(name:"glassBreak",

value: cmd.sensorValue ? "detected" : "okay")
break

default:
result = createEvent(name:"sensor",

value: cmd.sensorValue ? "active" : "inactive")
break

518 Chapter 138. Z-Wave Example

SmartThings Classic Developer Documentation, Release latest

}
result

}

def zwaveEvent(physicalgraph.zwave.commands.sensorbinaryv1.SensorBinaryReport cmd)
{

// Version 1 of SensorBinary doesn't have a sensor type
createEvent(name:"sensor", value: cmd.sensorValue ? "active" : "inactive")

}

def zwaveEvent(physicalgraph.zwave.commands.sensormultilevelv5.SensorMultilevelReport cmd)
{

def map = [displayed: true, value: cmd.scaledSensorValue.toString()]
switch (cmd.sensorType) {

case 1:
map.name = "temperature"
map.unit = cmd.scale == 1 ? "F" : "C"
break;

case 2:
map.name = "value"
map.unit = cmd.scale == 1 ? "%" : ""
break;

case 3:
map.name = "illuminance"
map.value = cmd.scaledSensorValue.toInteger().toString()
map.unit = "lux"
break;

case 4:
map.name = "power"
map.unit = cmd.scale == 1 ? "Btu/h" : "W"
break;

case 5:
map.name = "humidity"
map.value = cmd.scaledSensorValue.toInteger().toString()
map.unit = cmd.scale == 0 ? "%" : ""
break;

case 6:
map.name = "velocity"
map.unit = cmd.scale == 1 ? "mph" : "m/s"
break;

case 8:
case 9:

map.name = "pressure"
map.unit = cmd.scale == 1 ? "inHg" : "kPa"
break;

case 0xE:
map.name = "weight"
map.unit = cmd.scale == 1 ? "lbs" : "kg"
break;

case 0xF:
map.name = "voltage"
map.unit = cmd.scale == 1 ? "mV" : "V"
break;

case 0x10:
map.name = "current"
map.unit = cmd.scale == 1 ? "mA" : "A"
break;

case 0x12:

519

SmartThings Classic Developer Documentation, Release latest

map.name = "air flow"
map.unit = cmd.scale == 1 ? "cfm" : "m^3/h"
break;

case 0x1E:
map.name = "loudness"
map.unit = cmd.scale == 1 ? "dBA" : "dB"
break;

}
createEvent(map)

}

// Many sensors send BasicSet commands to associated devices.
// This is so you can associate them with a switch-type device
// and they can directly turn it on/off when the sensor is triggered.
def zwaveEvent(physicalgraph.zwave.commands.basicv1.BasicSet cmd)
{

createEvent(name:"sensor", value: cmd.value ? "active" : "inactive")
}

def zwaveEvent(physicalgraph.zwave.commands.batteryv1.BatteryReport cmd) {
def map = [name: "battery", unit: "%"]
if (cmd.batteryLevel == 0xFF) { // Special value for low battery alert

map.value = 1
map.descriptionText = "${device.displayName} has a low battery"
map.isStateChange = true

} else {
map.value = cmd.batteryLevel

}
// Store time of last battery update so we don't ask every wakeup, see WakeUpNotification handler
state.lastbatt = new Date().time
createEvent(map)

}

// Battery powered devices can be configured to periodically wake up and
// check in. They send this command and stay awake long enough to receive
// commands, or until they get a WakeUpNoMoreInformation command that
// instructs them that there are no more commands to receive and they can
// stop listening.
def zwaveEvent(physicalgraph.zwave.commands.wakeupv2.WakeUpNotification cmd)
{

def result = [createEvent(descriptionText: "${device.displayName} woke up", isStateChange: false)]

// Only ask for battery if we haven't had a BatteryReport in a while
if (!state.lastbatt || (new Date().time) - state.lastbatt > 24*60*60*1000) {

result << response(zwave.batteryV1.batteryGet())
result << response("delay 1200") // leave time for device to respond to batteryGet

}
result << response(zwave.wakeUpV1.wakeUpNoMoreInformation())
result

}

def zwaveEvent(physicalgraph.zwave.commands.associationv2.AssociationReport cmd) {
def result = []
if (cmd.nodeId.any { it == zwaveHubNodeId }) {

result << createEvent(descriptionText: "$device.displayName is associated in group ${cmd.groupingIdentifier}")
} else if (cmd.groupingIdentifier == 1) {

// We're not associated properly to group 1, set association
result << createEvent(descriptionText: "Associating $device.displayName in group ${cmd.groupingIdentifier}")

520 Chapter 138. Z-Wave Example

SmartThings Classic Developer Documentation, Release latest

result << response(zwave.associationV1.associationSet(groupingIdentifier:cmd.groupingIdentifier, nodeId:zwaveHubNodeId))
}
result

}

// Devices that support the Security command class can send messages in an
// encrypted form; they arrive wrapped in a SecurityMessageEncapsulation
// command and must be unencapsulated
def zwaveEvent(physicalgraph.zwave.commands.securityv1.SecurityMessageEncapsulation cmd) {

def encapsulatedCommand = cmd.encapsulatedCommand([0x98: 1, 0x20: 1])

// can specify command class versions here like in zwave.parse
if (encapsulatedCommand) {

return zwaveEvent(encapsulatedCommand)
}

}

// MultiChannelCmdEncap and MultiInstanceCmdEncap are ways that devices
// can indicate that a message is coming from one of multiple subdevices
// or "endpoints" that would otherwise be indistinguishable
def zwaveEvent(physicalgraph.zwave.commands.multichannelv3.MultiChannelCmdEncap cmd) {

def encapsulatedCommand = cmd.encapsulatedCommand([0x30: 1, 0x31: 1])

// can specify command class versions here like in zwave.parse
log.debug ("Command from endpoint ${cmd.sourceEndPoint}: ${encapsulatedCommand}")

if (encapsulatedCommand) {
return zwaveEvent(encapsulatedCommand)

}
}

def zwaveEvent(physicalgraph.zwave.commands.multichannelv3.MultiInstanceCmdEncap cmd) {
def encapsulatedCommand = cmd.encapsulatedCommand([0x30: 1, 0x31: 1])

// can specify command class versions here like in zwave.parse
log.debug ("Command from instance ${cmd.instance}: ${encapsulatedCommand}")

if (encapsulatedCommand) {
return zwaveEvent(encapsulatedCommand)

}
}

def zwaveEvent(physicalgraph.zwave.Command cmd) {
createEvent(descriptionText: "${device.displayName}: ${cmd}")

}

def on() {
delayBetween([

zwave.basicV1.basicSet(value: 0xFF).format(),
zwave.basicV1.basicGet().format()

], 5000) // 5 second delay for dimmers that change gradually, can be left out for immediate switches
}

def off() {
delayBetween([

zwave.basicV1.basicSet(value: 0x00).format(),
zwave.basicV1.basicGet().format()

], 5000) // 5 second delay for dimmers that change gradually, can be left out for immediate switches

521

SmartThings Classic Developer Documentation, Release latest

}

def refresh() {
// Some examples of Get commands
delayBetween([

zwave.switchBinaryV1.switchBinaryGet().format(),
zwave.switchMultilevelV1.switchMultilevelGet().format(),
zwave.meterV2.meterGet(scale: 0).format(), // get kWh
zwave.meterV2.meterGet(scale: 2).format(), // get Watts
zwave.sensorMultilevelV1.sensorMultilevelGet().format(),
zwave.sensorMultilevelV5.sensorMultilevelGet(sensorType:1, scale:1).format(), // get temp in Fahrenheit
zwave.batteryV1.batteryGet().format(),
zwave.basicV1.basicGet().format(),

], 1200)
}

// If you add the Polling capability to your device type, this command
// will be called approximately every 5 minutes to check the device's state
def poll() {

zwave.basicV1.basicGet().format()
}

// If you add the Configuration capability to your device type, this
// command will be called right after the device joins to set
// device-specific configuration commands.
def configure() {

delayBetween([
// Note that configurationSet.size is 1, 2, or 4 and generally
// must match the size the device uses in its configurationReport
zwave.configurationV1.configurationSet(parameterNumber:1, size:2, scaledConfigurationValue:100).format(),

// Can use the zwaveHubNodeId variable to add the hub to the
// device's associations:
zwave.associationV1.associationSet(groupingIdentifier:2, nodeId:zwaveHubNodeId).format(),

// Make sure sleepy battery-powered sensors send their
// WakeUpNotifications to the hub every 4 hours:
zwave.wakeUpV1.wakeUpIntervalSet(seconds:4 * 3600, nodeid:zwaveHubNodeId).format(),

])
}

522 Chapter 138. Z-Wave Example

CHAPTER 139

ZigBee Primer

Before we start, lets take a look at a full ZigBee message as it would look in a SmartThings Device Handler. Then
we’ll break up the message into its parts and dive into what each part means. Make sure you download the ZigBee
Cluster Library as a reference for ZigBee message formatting and what is possible for each device. You can also see
our ZigBee Reference (page 1046) for more detailed descriptions of our library methods.

Here are some full commands:

Set the level of a device zigbee.command(0x0008, 0x04, "FE0500")

Read the current level (e.g. of a light) zigbee.readAttribute(0x0008, 0x0000)

Write the value 0xBEEF to cluster 0x0008 attribute 0x0010 zigbee.writeAttribute(0x0008,
0x0010, DataType.UINT16, 0xBEEF)

Report battery level every 10 minutes to 6 hours if it changes value by 1 zigbee.configureReporting(0x0001,
0x0021, DataType.UINT8, 600, 21600, 0x01)

The 4 Main types of ZigBee Messages

• zigbee.command - A ZigBee command for a given cluster.

• zigbee.readAttribute - A ZigBee Read Attribute requesting the value of an attribute from a cluster.

• zigbee.writeAttribute - A ZigBee Write Attribute writing a value to the attribute of a cluster.

• zigbee.configureReporting - A ZigBee Configure Report that configures a cluster attribute to report changes of
a given amount within a certain time period.

139.1 Device Network ID

All connected devices have a Device Network ID that is used to route messages correctly to the device. In the loosest
terms think of the Network ID as the IP Address. It is a 4 digit hex number that the device gets while pairing. Since
the Network ID is unique by device on a network, it can be handled by the ZigBee library provided by SmartThings
and needs not be handled directly.

523

SmartThings Classic Developer Documentation, Release latest

139.2 Endpoints

Endpoints are simple. Think of them basically as ports. Different endpoints can support different clusters and a device
can have multiple endpoints to do different things. Endpoints can be used to separate functionality when needed. For
example a temperature sensor can have the Temperature Measurement Cluster on endpoint 1 and have Over The Air
Boot loader Cluster on endpoint 2.

139.3 Clusters

Clusters are a group of commands and attributes that define what a device can do. Think of clusters as a group of
actions by function. A device can support multiple clusters to do a whole variety of tasks. The majority of clusters are
defined by the ZigBee Alliance and listed in the ZigBee Cluster Library. There are also profile specific clusters that
are defined by their own ZigBee profile like Home Automation or ZigBee Smart Energy, and Manufacture Specific
clusters that are defined by the manufacture of the device. These are typically used when no existing cluster can be
used for a device.

Most used clusters are

• 0x0006 - On/Off (Switch)

• 0x0008 - Level Control (Dimmer)

• 0x0201 - Thermostat

• 0x0202 - Fan Control

• 0x0402 - Temperature Measurement

• 0x0406 - Occupancy Sensing

139.4 Commands

Commands are basically actions a device can take. It’s how we get things to do stuff. Commands and whats available
are defined by the cluster.

Keeping on the On/Off cluster as an example, the available commands are:

• 0x00 - Off

• 0x01 - On

• 0x02 - Toggle

In a SmartThings Device Type the following line would turn a switch off (look at the last number):
zigbee.command(0x0006, 0x00)

This would turn it on: zigbee.command(0x0006, 0x01)

This would toggle it: zigbee.command(0x0006, 0x02)

524 Chapter 139. ZigBee Primer

SmartThings Classic Developer Documentation, Release latest

139.5 Read and Write Attributes

Attributes are used to get information from a device and to set preferences on a device. The two main types are Read
and Write. The data type and values are specified by cluster.

An example of a Read Attribute that would read the current level of a dimmer and return the value:

zigbee.readAttribute(0x0008, 0x0000)

Write Attributes are used to set specific preferences. Write attributes can need specific data type that the payload is in.

An example of a Write Attribute that would set the transition time from on to off of a dimmer look like this:

zigbee.writeAttribute(0x0008, 0x0010, DataType.UINT16, 0x0014)

In this case the value (0x0014) translates to 2 seconds. Breaking the payload down we see that the hex value of 0x0014
equals the decimal value of 20. 20 * 1/10 of a second equals 2 seconds.

139.6 Configure reporting

Many times you will have an attribute for a given device that you are interested in receiving notifications about. For
example you may want to be notified any time the battery level changes. The way to do this in ZigBee is by configuring
a report for that cluster.

An example of configuring a report for the battery level: zigbee.configureReporting(0x0001, 0x0021,
DataType.UINT8, 600, 21600, 0x01)

This is for cluster 0x0001 (power cluster), attribute 0x0021 (battery level), whose type is UINT8, the minimum time
between reports is 10 minutes (600 seconds) and the maximum time between reports is 6 hours (21600 seconds), and
the amount of change needed to trigger a report is 1 unit (0x01).

139.7 Device discovery

After a ZigBee device joins the network it must be queried in order to select the correct Device Handler. After a device
joins (or rejoins) the network the Hub will collect the simple descriptor, manufacturer, model and application version
for each endpoint without any interaction with the cloud. The Hub will automatically resend any messages that the
device does not respond to in a timely manner. Once all the information has been obtained it is sent to the cloud in the
zbjoin message. This message is visible in Hub Events.

Here is an example of the message when a SmartSense Multi Sensor was joined:

zbjoin: {"dni":"5CF4",
"d":"000D6F0005767F37",
"capabilities":"80",
"endpoints":[{"simple":"01 0104 0402 00 07 0000 0001 0003 0020 0402 0500 0B05 01 0019",

"application":"",
"manufacturer":
"CentraLite",
"model":"3325-S"},

{"simple":"02 C2DF 0107 00 05 0000 0001 0003 0B05 FC46 01 0003",
"application":"",
"manufacturer":null,
"model":null}

]
}

139.5. Read and Write Attributes 525

SmartThings Classic Developer Documentation, Release latest

The value is a dictionary that contains all the information gathered from the device. Here is what each part means:

• dni: Device Network ID (page 523)

• d: the ZigBee EUID aka long address

• capabilities: the MAC capability field from the Device Announce message (not currently used by SmartThings)

• endpoints: a list of information for each available endpoint

• simple: a space separated string of hex values that contains the following pieces of information:

– Endpoint

– Profile ID

– Device ID

– Device version

– Number of in/server clusters

– List of In/server clusters

– Number of out/client clusters

– List of out/client clusters

• application: the Application Version read from attribute 0x0001 of the Basic Cluster

• manufacturer: The Manufacturer value read from attribute 0x0004 of the Basic Cluster

• model: The Model value read from attribute 0x0005 of the Basic Cluster

See ZigBee fingerprinting (page 469) for more information on how the platform uses this information to find the
correct Device Handler for the device.

139.8 Useful ZigBee references

ZigBee Cluster Library (ZCL)

ZigBee Home Automation (HA)

ZigBee Specification

526 Chapter 139. ZigBee Primer

http://www.zigbee.org/download/standards-zigbee-cluster-library/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeehomeautomation/
http://www.zigbee.org/download/standards-zigbee-specification/

CHAPTER 140

Building ZigBee Device Handlers

Note: If you are integrating a new ZigBee switch or bulb with SmartThings, see the Using the ZigBee Device Form
(page 529) section below to learn how you can integrate these devices without the need to write code.

140.1 Commands

SmartThings provides a library to make working with ZigBee easier. Every Device Handler has a reference to this
library injected into it, with the name zigbee.

This library will be used in the examples below. You can see the ZigBee Reference (page 1046) for more detailed
documentation.

There are four common ZigBee commands that you will use to integrate SmartThings with your ZigBee Devices.

140.1.1 Read

Read gets the devices current state and is formatted like this:

def refresh() {
zigbee.readAttribute(0x0B04, 0x050B)

}

In this example, the device type (from the “CentraLite Switch” device type) is calling the “refresh” function. It is
sending a ZigBee Read Attribute request via the readAttribute() method to read the current state (the active
power draw). The cluster we are reading here is Electrical Measurement (0xB04) and specifically the Active Power
Attribute (0x50B).

Component Description
0x0B04 Cluster
0x050B Attribute

140.1.2 Write

Write sets an attribute of a ZigBee device and is formatted like this:

527

SmartThings Classic Developer Documentation, Release latest

def configure() {
zigbee.writeAttribute(8, 0x10, 0x21, 0x0014)

}

In this example (from the “ZigBee Dimmer” Device Handler) we are writing to an attribute to set the amount of time
it takes for a light to fully dim on and off. Here we are using the Level Control Cluster (8) to write to the attribute that
defines on and off transition time (0x10). The value we are using is formatted in an Unsigned 16-bit integer (0x21)
with the payload being in 1/10th of a second. In this case the payload ({0014}) translates to 2 seconds. Breaking the
payload down we see that the hex value of 0x0014 equals the decimal value of 20. 20 * 1/10 of a second equals 2
seconds.

Each attribute possesses a specific data type. The corresponding value for this data type can be found in table 2.16 of
the ZigBee Cluster Library.

Note: The payload in the example above, {0014}, is a hex string. The length of the payload must be two times the
length of the data type. For example, if the datatype is 16-bit, then the payload should be 4 hex digits.

Component Description
8 Cluster
0x10 Attribute Set
0x21 Data Type
0x0014 Payload

140.1.3 Command

Command invokes a command on a ZigBee device and is formatted like this:

def on() {
zigbee.command(0x0006, 0x01)

}

In this example (from the “ZigBee Dimmer” device type) we are sending a ZigBee Command to turn the device on.
We use the On/Off Cluster (6) and send the command to turn on (1). This commands has no payload, so we exclude it
from the passed in parameters.

Component Description
0x0006 Cluster
0x01 Command

140.1.4 Configure

Configure reporting instructs a device to notify us when an attribute changes and is formatted like this:

def configure() {
configureReporting(0x0006, 0x0000, 0x10, 0, 600, null)

}

In this example (using the “CentraLite Switch” Device Handler), the bind command is sent to the device using its Net-
work ID which can be determined using 0x${device.deviceNetworkId}. Then using source and destination
endpoints for the device and Hub (1 1), we bind to the On/Off Clusters (6) to get Events from the device. The last part
of the message contains the Hub’s ZigBee id which is set as the Location for the device to send callback messages to.
Note that not at all devices support binding for Events.

528 Chapter 140. Building ZigBee Device Handlers

http://www.zigbee.org/download/standards-zigbee-cluster-library/

SmartThings Classic Developer Documentation, Release latest

Component Description
0x0006 Cluster
0x0000 Attribute ID
0x10 Boolean data type
0 Minimum report time
600 Maximum report time
null Reportable change (discrete)

140.2 ZigBee utilities

In order to work with ZigBee you will need to use the ZigBee Cluster Library extensively to look up the proper values
to send back and forth to your device. You can download this document here.

There is also a ZigBee utility class covered in the ZigBee Reference (page 1046).

140.3 Best practices

• The use of ‘raw ...’ commands is deprecated. Instead use the documented methods on the ZigBee library. If you
need to do something that requires the use of a ‘raw’ command let us know and we will look at adding it to the
ZigBee library.

• Do not use sendEvent() in command methods. Sending Events should be handled in the parse method.

140.4 Using the ZigBee Device Form

To integrate a new ZigBee switch or bulb with SmartThings, you can use the From ZigBee Device Form.

140.2. ZigBee utilities 529

http://www.zigbee.org/download/standards-zigbee-cluster-library/

SmartThings Classic Developer Documentation, Release latest

140.4.1 What it does

By entering the ZigBee information for the device in the form, the appropriate existing Device Handler will be updated
with the device’s fingerprint.

140.4.2 Use it if

• You are the device manufacturer, or otherwise have access to the required ZigBee device information requested
on the form.

• The device is best described as one of the following:

– ZigBee Switch

– ZigBee Switch with Power

– ZigBee Dimmer/Bulb

– ZigBee Dimmer/Bulb with Power

– ZigBee Color Temperature Bulb

530 Chapter 140. Building ZigBee Device Handlers

SmartThings Classic Developer Documentation, Release latest

140.4.3 How to use

Simply fill out the required fields in the form with the information for the device, and click Create.

You will then see the updated Device Handler code in the IDE editor. You can then test that your device pairs with
SmartThings and functions as expected, and then make an update as a Publication Request.

140.4. Using the ZigBee Device Form 531

SmartThings Classic Developer Documentation, Release latest

532 Chapter 140. Building ZigBee Device Handlers

CHAPTER 141

ZigBee Example

An example of a ZigBee device-type is a ZigBee dimmer.

Here is the code.

/**
* Copyright 2015 SmartThings

*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except

* in compliance with the License. You may obtain a copy of the License at:

*
* http://www.apache.org/licenses/LICENSE-2.0

*
* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed

* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License

* for the specific language governing permissions and limitations under the License.

*
*/

metadata {
definition (name: "ZigBee Dimmer", namespace: "smartthings", author: "SmartThings") {

capability "Actuator"
capability "Configuration"
capability "Refresh"
capability "Switch"
capability "Switch Level"

fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0B04, FC0F", outClusters: "0019", manufacturer: "OSRAM", model: "LIGHTIFY A19 ON/OFF/DIM", deviceJoinName: "OSRAM LIGHTIFY LED Smart Connected Light"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, FF00", outClusters: "0019", manufacturer: "MRVL", model: "MZ100", deviceJoinName: "Wemo Bulb"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0B05", outClusters: "0019", manufacturer: "OSRAM SYLVANIA", model: "iQBR30", deviceJoinName: "Sylvania Ultra iQ"

}

tiles(scale: 2) {
multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true){

tileAttribute ("device.switch", key: "PRIMARY_CONTROL") {
attributeState "on", label:'${name}', action:"switch.off", icon:"st.switches.light.on", backgroundColor:"#79b821", nextState:"turningOff"
attributeState "off", label:'${name}', action:"switch.on", icon:"st.switches.light.off", backgroundColor:"#ffffff", nextState:"turningOn"
attributeState "turningOn", label:'${name}', action:"switch.off", icon:"st.switches.light.on", backgroundColor:"#79b821", nextState:"turningOff"
attributeState "turningOff", label:'${name}', action:"switch.on", icon:"st.switches.light.off", backgroundColor:"#ffffff", nextState:"turningOn"

}
tileAttribute ("device.level", key: "SLIDER_CONTROL") {

attributeState "level", action:"switch level.setLevel"

533

SmartThings Classic Developer Documentation, Release latest

}
}
standardTile("refresh", "device.switch", inactiveLabel: false, decoration: "flat", width: 2, height: 2) {

state "default", label:"", action:"refresh.refresh", icon:"st.secondary.refresh"
}
main "switch"
details(["switch", "refresh"])

}
}

// Parse incoming device messages to generate events
def parse(String description) {

log.debug "description is $description"

def event = zigbee.getEvent(description)
if (event) {

sendEvent(event)
}
else {

log.warn "DID NOT PARSE MESSAGE for description : $description"
log.debug zigbee.parseDescriptionAsMap(description)

}
}

def off() {
zigbee.off()

}

def on() {
zigbee.on()

}

def setLevel(value) {
zigbee.setLevel(value)

}

def refresh() {
return zigbee.readAttribute(0x0006, 0x0000) +

zigbee.readAttribute(0x0008, 0x0000) +
zigbee.configureReporting(0x0006, 0x0000, 0x10, 0, 600, null) +
zigbee.configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)

}

def configure() {
log.debug "Configuring Reporting and Bindings."

return zigbee.configureReporting(0x0006, 0x0000, 0x10, 0, 600, null) +
zigbee.configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01) +
zigbee.readAttribute(0x0006, 0x0000) +
zigbee.readAttribute(0x0008, 0x0000)

}

534 Chapter 141. ZigBee Example

CHAPTER 142

Other Useful Methods

Device Handlers have available to them other APIs for features like scheduling, storing data, and making HTTP
requests. While not often necessary for Device Handlers, these features can be useful for certain use cases.

142.1 Scheduling

Device Handlers can schedule future executions, just like SmartApps.

You can learn about scheduling in the Scheduling (page 345) guide.

142.2 Storing data

Device Handlers can persist small amounts of data across exections using state, just as SmartApps. Note that
Atomic State is not available to Device Handlers.

You can learn about storing data in the Storing Data With State (page 315) guide.

142.3 Making external HTTP requests

Device Handlers can make HTTP requests to third party services, just like SmartApps.

• Making Synchronous External HTTP Requests (page 365)

• Making Asynchronous External HTTP Requests (Beta) (page 371)

535

SmartThings Classic Developer Documentation, Release latest

536 Chapter 142. Other Useful Methods

CHAPTER 143

Device Certification Overview

Because we offer an open platform, a wide range of devices can be certified to work with SmartThings. Currently,
anybody can submit a device for certification at no cost. Certifying your device will provide a great experience for
users, meaning that your device works seamlessly with the rest of the SmartThings platform.

Examples of devices already certified to work with SmartThings can be viewed here.

537

https://www.smartthings.com/works-with-smartthings/

SmartThings Classic Developer Documentation, Release latest

The device certification process consists of the following steps:

1. Create a virtual representation of your device using a Device Handlers (page 449)

2. Test the Device Handler by publishing it to your account and pairing your device with your Hub

3. Once you’ve successfully tested your Device Handler, submit it for publication

4. The SmartThings certification team will contact you about how to ship your device to us and complete the
certification process

We’re always looking for ways to improve and shorten the time it takes to certify devices. Stay tuned for future
improvements!

538 Chapter 143. Device Certification Overview

Part XIII

Cloud- and LAN-connected Devices

539

SmartThings Classic Developer Documentation, Release latest

Cloud- and LAN-connected devices are devices that use either a third-party service, like the Ecobee thermostat, or
communicate over the LAN (local area network) like the Sonos system. These devices require a unique implementation
of their Device Handlers. Cloud- and LAN-connected devices use a Service Manager SmartApp along with a Device
Handler for authentication, maintaining connections, and device communications. This guide will walk you through
Service Manager and Device Handler creation for both of these scenarios.

Table of Contents:

541

SmartThings Classic Developer Documentation, Release latest

542

CHAPTER 144

Service Manager Design Pattern

144.1 Basic overview

Devices that connect through the internet as a whole (cloud) or LAN devices (on your local network) require a defined
Service-Manager SmartApp, in addition to the usually expected Device Handler. The Service Manager makes the
connection with the device, handling the input and output interactions, and the Device Handler parses messages.

144.2 Cloud-connected devices

When using a Cloud-connected device, the service manager is used to discover and initiate a connection between the
device and your Hub, using OAuth connections to external third parties. Then the Device Handler uses this connection
to communicate between the Hub and device.

144.3 LAN-connected devices

When using a LAN-connected device, the service manager is used to discover and initiate a connection between the
device and your Hub, using the protocols SSDP or mDNS/DNS-SD. Then the device-handler uses UPnP/SOAP Calls
or REST Calls to communicate outgoing messages between the Hub and device.

543

SmartThings Classic Developer Documentation, Release latest

544 Chapter 144. Service Manager Design Pattern

CHAPTER 145

Building Cloud-connected Device Types

Cloud-connected devices use a third-party service to accomplish device communication. An example of such a device
is the Ecobee thermostat.

When developing a Device Handler for a Cloud-connected device, you must create a Service Manager SmartApp that
will handle authenticating with the third-party service, communicating with the device, and reacting to any device
changes that occur.

This guide overviews the concept of the Service Manager/Device Handler architecture and also gives an example of
both the Service Manager and Device Handler creation.

Table of Contents:

145.1 Division of Labor

The Cloud-connected device paradigm consists of a Service Manager and Device Handlers. The purpose of this guide
is to introduce you to the core concepts of Cloud-connected device development, and provide some examples to help
you get started.

145.1.1 Service Manager responsibilities

The service manager is responsible for the discovery of the devices. It sends out a request to a third party cloud and
parses through the response, finding just the devices you are looking for. Upon discovery, it allows you to add device(s)
that it has found. From there, it saves your connection to be able to make future interactions with the device.

145.1.2 Device Handler responsibilities

The Device Handler is responsible for creating and receiving device specific messages, and allowing them to work
within the SmartThings infrastructure. It takes in a SmartApp specific command and outputs device specific commands
to be passed to the cloud. It also allows you to subscribe to responses from the device and trigger other commands as
needed.

145.1.3 How it all works

The following depiction gives a general overview of how a Cloud-connected device works. Take note of the Service
Manager and Device Handler. We will dive into how to build these next.

545

SmartThings Classic Developer Documentation, Release latest

145.2 Building the Service Manager

The Service Manager’s responsibilities are:

• To authenticate with the third-party cloud service.

• Device discovery.

• Add/Change/Delete device actions.

• Handle sending any messages that require the authentication obtained.

Below we will get into the details of what is outlined above. First, let’s see an illustration of it in a SmartThings
application using the Ecobee Thermostat.

145.2.1 Authentication using OAuth

Any Service Manager authenticated with a third party via OAuth must itself have OAuth enabled. This is be-
cause eventually the third-party service will call back into the SmartApp and hit the /oauth/initialize and
/oauth/callback endpoints.

546 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

End user experience

As an end user you start by selecting the Service Manager SmartApp for Ecobee Thermostat from the SmartApps
screen of the SmartThings mobile app.

Authorization with the third party is the first part of the configuration process. You will be taken to a page that describes
how the authorization process works.

From this screen you will then be directed to the third-party site, i.e., the Ecobee Thermostat site in this case, embed-
ded within the SmartThings mobile application. Here you will enter your Ecobee Thermostat service username and
password.

Next this third-party Ecobee server will show you what access permissions SmartThings will have to your Ecobee
account. It also gives you an opportunity to accept or decline.

After you accept, on the following screen you will finish the configuration by tapping on the Done icon on the top
right.

Next, you will be taken back to the initial configuration screen where you select your device to complete the installa-
tion.

145.2. Building the Service Manager 547

SmartThings Classic Developer Documentation, Release latest

548 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

145.2. Building the Service Manager 549

SmartThings Classic Developer Documentation, Release latest

550 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

Implementation

OAuth is an industry standard for authentication. However, the third-party service may use a different standard. In that
case, consult their documentation and implement it. The basic concepts will be similar to that of OAuth. The below
example will walk through what is necessary for OAuth authentication.

There are two endpoints that all Service Manager SmartApps must define.

mappings {
path("/oauth/initialize") {action: [GET: "oauthInitUrl"]}
path("/oauth/callback") {action: [GET: "callback"]}

}

The /oauth/initialize endpoint will be called during initialization. This endpoint will then forward the user to
the third-party service so they can log in.

The third-party service will be redirected to the /oauth/callback endpoint after the authentication has been
successful. Usually this is where the call is made to the third-party service to exchange an authorization code for an
access token.

The overall idea is this:

• You will create a page on Service Manager SmartApp that will call out to the third-party API to initiate the
authentication.

• The end result is an access token that SmartThings platform will then use to communicate with the third-party
API.

In your Service Manager SmartApp preferences you create a page for authorization.

preferences {
page(name: "Credentials", title: "Sample Authentication", content: "authPage", nextPage: "sampleLoggedInPage", install: false)
...

}

The authPage method will perform the following tasks:

• Create a SmartApp access token that will be sent to the third party so that the third party can call back into
SmartThings SmartApp.

• Check to make sure an access token doesn’t already exist for this particular third-party service.

• Initialize the OAuth flow with the third party service if there is no access token.

Let’s take a look at how we would accomplish this with authPage().

def authPage() {
// Check to see if SmartApp has its own access token and create one if not.
if(!state.accessToken) {

// the createAccessToken() method will store the access token in state.accessToken
createAccessToken()

}

def redirectUrl = "https://graph.api.smartthings.com/oauth/initialize?appId=${app.id}&access_token=${state.accessToken}&apiServerUrl=${getApiServerUrl()}"
// Check to see if SmartThings already has an access token from the third-party service.
if(!state.authToken) {

return dynamicPage(name: "auth", title: "Login", nextPage: "", uninstall: false) {
section() {

paragraph "tap below to log in to the third-party service and authorize SmartThings access"
href url: redirectUrl, style: "embedded", required: true, title: "3rd Party product", description: "Click to enter credentials"

}
}

145.2. Building the Service Manager 551

SmartThings Classic Developer Documentation, Release latest

} else {
// SmartThings has the token, so we can just call the third-party service to list our devices and select one to install.

}
}

There are a few things worth noting here:

• First, we are using state to store our tokens. Your specific needs may be different depending on your imple-
mentation. To learn more about how state works and what your options are, visit the Storing Data With State
(page 315) guide.

• If we do not have a token from the third-party service, we start the OAuth flow by calling the SmartThings
initialize endpoint. This is a static endpoint that will store a few bits of information about your SmartApp,
such as the id, and forwards the request to the /oauth/initalize endpoint defined in the SmartApp.

Initialize endpoint

This endpoint is used to initialize the OAuth flow to a third-party service. The /oauth/initialize endpoint will
save all the query parameters passed to it, but requires the following three parameters:

• The SmartApp ID,

• The SmartApp’s access token, and

• The installed URL of the SmartApp. The endpoint will then call the mapped /oauth/initialize endpoint
defined in the SmartApp with all the query parameters passed to it.

https://graph.api.smartthings.com/oauth/initialize

Required
parameters

Value

appId The SmartApp ID
access_token The SmartApp’s access token
apiServerUrl The URL of the server that the SmartApp is installed on. This information can be retrieved

with the getApiServerUrl() method call.

Example:

def redirectUrl = "https://graph.api.smartthings.com/oauth/initialize?appId=${app.id}&access_token=${state.accessToken}&apiServerUrl=${getApiServerUrl()}"

The initialize endpoint will forward the mapping defined in SmartApp to the /oauth/initialize. This
method will be responsible for redirecting the user to the third-party login page. Below is an example of how it works:

def oauthInitUrl() {

// Generate a random ID to use as a our state value. This value will be used to verify the response we get back from the third-party service.
state.oauthInitState = UUID.randomUUID().toString()

def oauthParams = [
response_type: "code",
scope: "smartRead,smartWrite",
client_id: appSettings.clientId,
client_secret: appSettings.clientSecret,
state: state.oauthInitState,
redirect_uri: "https://graph.api.smartthings.com/oauth/callback"

]

redirect(location: "${apiEndpoint}/authorize?${toQueryString(oauthParams)}")
}

552 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

// The toQueryString implementation simply gathers everything in the passed in map and converts them to a string joined with the "&" character.
String toQueryString(Map m) {

return m.collect { k, v -> "${k}=${URLEncoder.encode(v.toString())}" }.sort().join("&")
}

The oauthInitUrl() method sets up a request used to present the user with the third-party login page. Often the
third-party service will require information passed along with this request as query parameters. The actual parameters
sent with the request will vary depending on what the third-party service expects, so consult their API documentation
to find specifics.

We are expecting to get an authorization code as a result of this request. We will later exchange this authorization code
for an access token. We will create the access token request in our callback handler as seen below. But for now, let’s
look at some basic parameters usually associated with authorization code requests.

Common
parameters

Value

re-
sponse_type

The type of authorization defined by third-party service. Usually code or token.

scope Defines the scope of the request, i.e., what actions will be performed.
client_id The client ID issued by the third-party service when signing up for access to their API. A best

practice is to configure this parameter as an app setting in your SmartApp.
client_secret The client secret issued by the third-party service when signing up for access to their API. A best

practice is to configure this parameter as an app setting in your SmartApp.
state Usually the state is not required, but is used to track state across requests. We will use this to

validate the response we get back from the third party.
redirect_uri The URI to be redirected to after the user has successfully authenticated with the third-party

service. Usually this information is requested when signing up with the third-party service. This
parameter must match what was entered at that time. For SmartApp development, this should
always be the static value:
https://graph.api.smartthings.com/oauth/callback.

Callback endpoint

The third-party service will redirect the user to the callback endpoint after the user has been
successfully authenticated. For SmartApp development, this should always be the static value:
https://graph.api.smartthings.com/oauth/callback. The callback endpoint is typically where the
authorization code–that was acquired from the initialization–will be used to request the access token. Let’s look at an
example.

def callback() {
log.debug "callback()>> params: $params, params.code ${params.code}"

def code = params.code
def oauthState = params.state

// Validate the response from the third party by making sure oauthState == state.oauthInitState as expected
if (oauthState == state.oauthInitState){

def tokenParams = [
grant_type: "authorization_code",
code : code,
client_id : appSettings.clientId,
client_secret: appSettings.clientSecret,
redirect_uri: "https://graph.api.smartthings.com/oauth/callback"

]

145.2. Building the Service Manager 553

SmartThings Classic Developer Documentation, Release latest

// This URL will be defined by the third party in their API documentation
def tokenUrl = "https://www.someservice.com/home/token?${toQueryString(tokenParams)}"

httpPost(uri: tokenUrl) { resp ->
state.refreshToken = resp.data.refresh_token
state.authToken = resp.data.access_token

}

if (state.authToken) {
// call some method that will render the successfully connected message
success()

} else {
// gracefully handle failures
fail()

}

} else {
log.error "callback() failed. Validation of state did not match. oauthState != state.oauthInitState"

}
}

// Example success method
def success() {

def message = """
<p>Your account is now connected to SmartThings!</p>
<p>Click 'Done' to finish setup.</p>

"""
displayMessageAsHtml(message)

}

// Example fail method
def fail() {

def message = """
<p>There was an error connecting your account with SmartThings</p>
<p>Please try again.</p>

"""
displayMessageAsHtml(message)

}

def displayMessageAsHtml(message) {
def html = """

<!DOCTYPE html>
<html>

<head>
</head>
<body>

<div>
${message}

</div>
</body>

</html>
"""
render contentType: 'text/html', data: html

}

In this callback we first check to make sure that the state returned from the authorization code request matches what we
sent as the state. This is how we know that the response is intended for us. If it matches, we then set up the parameters
for the access token request. Common parameters are as follows:

554 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

Common
parameters

value

grant_type This is the type of grant we are requesting. The third-party service will define the expected
value.

code The authorization code we obtained in the previous request.
client_id The same client_id that we used in the previous request, which was issued by the

third-party service.
client_secret The same client_secret that we used in the previous request, which was issued by the

third-party service.
redirect_uri The same redirect_uri that we used in the previous request. This will usually be verified by

the third-party service.

We issue an HTTP POST request to get the token. If we receive a success response, we will save the access token that
was issued by the third-party service, along with the refresh token, in state.

Once we have acquired the access token, our authentication process is complete. Usually the next step is to display
some message to the end user about the success of the operation.

Important: revokeAccessToken() should be called when the SmartApp’s access token is no longer required.
This is true when a user uninstalls the SmartApp. It is also a good practice to revoke the access token after successful
authentication with the 3rd party, unless the token will be used to access other endpoints in your SmartApp.

Refreshing the OAuth token

OAuth tokens are available for a finite amount of time, so you will often need to account for this, and if needed, refresh
your access_token. Above we illustrated how we initiate the request for the access and refresh tokens, and how
we saved them in our SmartApp. If we make a request to the third-party service API and get an “expired token”
response, it is up to us to issue a new request to refresh the access token. This is where the refresh token comes into
play.

If you run an API request and your access_token is determined invalid, for example:

if (resp.status == 401 && resp.data.status.code == 14) {
log.debug "Storing the failed action to try later"
def action = "actionCurrentlyExecuting"
log.debug "Refreshing your auth_token!"
refreshAuthToken()
// replay initial request from the action variable
retryInitialRequest(action)

}

you can use your refresh_token to get a new access_token. To do this, you just need to post to a specified
endpoint and handle the response properly.

private refreshAuthToken() {
def refreshParams = [

method: 'POST',
uri: "https://api.thirdpartysite.com",
path: "/token",
query: [grant_type:'refresh_token', code:"${state.sampleRefreshToken}", client_id:XXXXXXX],

]
try{

def jsonMap
httpPost(refreshParams) { resp ->

if(resp.status == 200)
{

145.2. Building the Service Manager 555

SmartThings Classic Developer Documentation, Release latest

jsonMap = resp.data
if (resp.data) {

state.sampleRefreshToken = resp?.data?.refresh_token
state.sampleAccessToken = resp?.data?.access_token

}
}

}
}

There are some outbound connections in which we are using OAuth to connect to a third party device cloud (Ecobee,
Quirky, Jawbone, etc). In these cases it is the third-party device cloud that issues an OAuth token to SmartThings so
that SmartThings can call their APIs.

However, these same third-party device clouds also support webhooks and subscriptions that allow SmartThings to
receive notifications when something changes in their cloud.

In this case, and ONLY in this case, the Service Manager SmartApp issues its own OAuth token and embeds it in the
callback URL, as a way to authenticate the post backs from the external cloud.

145.2.2 Discovery

Identifying devices in the third-party device cloud

The techniques you will use to identify devices in the third-party cloud will vary, because you are interacting with
unique third-party APIs which all have unique parameters. Typically you will authenticate with the third-party API
using OAuth; then call an API-specific method. For example, it could be as simple as this:

def deviceListParams = [
uri: "https://api.thirdpartysite.com",
path: "/get-devices",
requestContentType: "application/json",
query: [token:"XXXX",type:"json"]

httpGet(deviceListParams) { resp ->
//Handle the response here

}

Creating child devices

Within a Service Manager SmartApp, you create child devices for all your respective cloud devices.

settings.devices.each {deviceId->
def device = state.devices.find{it.id==deviceId}

if (device) {
def childDevice = addChildDevice("smartthings", "Device Name", deviceId, null, [name: "Device.${deviceId}", label: device.name, completedSetup: true])

}
}

Getting initial device state

Upon initial discovery of a device, you need to get the state of your device from the third-party API. This would be
the current status of various attributes of your device. You need to have a method defined in your Service Manager
that is responsible for connecting to the API and to check for the updates. You set this method to be called from a

556 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

poll method in your Device Handler, and in this case, it is called immediately on initialization. Here is a very simple
example which doesn’t take into account error checking for the http request.

def pollParams = [
uri: "https://api.thirdpartysite.com",
path: "/device",
requestContentType: "application/json",
query: [format:"json",body: jsonRequestBody]

httpGet(pollParams) { resp ->
state.devices = resp.data.devices { collector, stat ->
def dni = [app.id, stat.identifier].join('.')
def data = [

attribute1: stat.attributeValue,
attribute2: stat.attribute2Value

]
collector[dni] = [data:data]
return collector
}

}

145.2.3 Handling adds, changes, deletes

singleInstance Service Manager

Adding the tag singleInstance: true to your Service Manager will ensure only one instance of the Service
Manager will be installed. All child devices will be installed under the single parent Service Manager. This enforces
a one-to-many relationship between the parent Service Manager SmartApp and any child devices.

definition(
name: "Ecobee (Connect)",
namespace: "smartthings",
author: "SmartThings",
description: "Connect your Ecobee thermostat to SmartThings.",
category: "SmartThings Labs",
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Partner/ecobee.png",
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Partner/ecobee@2x.png",
singleInstance: true)

Implicit creation of new child Devices

When you update your settings in a Service Manager to add additional devices, the Service Manager needs to respond
by adding a new device in SmartThings.

updated(){
initialize()

}

initialize(){
settings.devices.each {deviceId ->

try {
def existingDevice = getChildDevice(deviceId)
if(!existingDevice) {

def childDevice = addChildDevice("smartthings", "Device Name", deviceId, null, [name: "Device.${deviceId}", label: device.name, completedSetup: true])
}

} catch (e) {

145.2. Building the Service Manager 557

SmartThings Classic Developer Documentation, Release latest

log.error "Error creating device: ${e}"
}

}
}

Implicit removal of child Devices

Similarly when you remove devices in your Service Manager, they need to be removed from SmartThings platform.

def delete = getChildDevices().findAll { !settings.devices.contains(it.deviceNetworkId) }

delete.each {
deleteChildDevice(it.deviceNetworkId)

}

Also, when a Service Manager SmartApp is uninstalled, you need to remove its child devices.

def uninstalled() {
removeChildDevices(getChildDevices())

}

private removeChildDevices(delete) {
delete.each {

deleteChildDevice(it.deviceNetworkId)
}

}

Note: The addChildDevice, getChildDevices, and deleteChildDevice methods are a part of the
SmartApp (page 897) API.

Changes in Device name

The device name is stored within the device and you need to monitor if it changes in the third-party cloud.

Explicit delete actions

When a user manually deletes a device in the Things screen on the client device, you need to delete the child device
from within the Service Manager.

145.3 Building the Device Handler

The Device Handler for a Cloud-connected device is generally the same as any other Device Handler. The means
in which it handles sending and receiving messages from its device is a little bit different. Let’s walk through a
Cloud-connected Device Handler example.

145.3.1 The Parse method

The parse method for Cloud-connected devices will always be empty. In a Cloud-connected device, Event data is
passed down from the Service Manager, not from the device itself, so the parsing is handled in a separate method. The
Device Handler doesn’t interface directly with a hardware device, which is what parse is used for.

558 Chapter 145. Building Cloud-connected Device Types

SmartThings Classic Developer Documentation, Release latest

145.3.2 Sending commands to the third-party cloud

Usually the actual implementation of device methods are delegated to its Service Manager. This is because the Service
Manager is the entity that has the authentication information. To invoke a method on the parent Service Manager, you
simply need to call it in the following format:

parent.methodName()

As with any other device-type, you need to define methods for all of the possible commands for the capabilities you’d
like to support. Then when a user calls this method, it will pass information up to the parent Service Manager, who
will make the direct connection to the third party cloud. You might for example want to turn a switch on, so you would
call the following.

def on() {
parent.on(this)

}

145.3.3 Receiving Events from the third-party cloud

The Device Handler continuously polls the third-party cloud through the service manager to check on the status of
devices. When an Event is fired, they can then be passed to the child Device Handler. Note that poll runs every 10
minutes for Service Manager SmartApps.

In the device-type handler:

def poll() {
results = parent.pollChildren()
parseEventData(results)

}

def parseEventData(Map results){
results.each { name, value ->

//Parse events and optionally create SmartThings events
}

}

In the service manager:

def pollChildren(){
def pollParams = [

uri: "https://api.thirdpartysite.com",
path: "/device",
requestContentType: "application/json",
query: [format:"json",body: jsonRequestBody]
]

httpGet(pollParams) { resp ->
state.devices = resp.data.devices { collector, stat ->
def dni = [app.id, stat.identifier].join('.')
def data = [

attribute1: stat.attributeValue,
attribute2: stat.attribute2Value

]
collector[dni] = [data:data]
return collector
}

}
}

145.3. Building the Device Handler 559

SmartThings Classic Developer Documentation, Release latest

145.3.4 Generating Events at the request of the Service Manager

You won’t generate events directly within the Service Manager, but rather request that they are generated within the
Device Handler. For example:

In the service manager:

childName.generateEvent(data)

In the Device Handler:

def generateEvent(Map results) {
results.each { name, value ->
sendEvent(name: name, value: value)

}
return null

}

560 Chapter 145. Building Cloud-connected Device Types

CHAPTER 146

Building LAN-connected Device Types

LAN-connected devices communicate with the SmartThings Hub over the LAN. An example of such a device is the
Sonos system.

When developing a Device Handler for a LAN device, you must create a service manager SmartApp that will handle
discovery of devices on the LAN, in some cases communicate with the device, and react to any device changes that
occur via Events.

This guide overviews the concept of the Service Manager/Device Handler architecture and also gives an example of
both the Service Manager and Device Handler creation.

Table of Contents:

146.1 Division of Labor

The LAN-connected device paradigm consists of a Service Manager and Device Handlers. The purpose of this guide
is to introduce you to the core concepts of LAN-connected device development, and provide some examples to help
you get started.

146.1.1 Service Manager responsibilities

The service manager is responsible for the discovery of the devices. It sends out a request and parses through the
response, finding just the devices you are looking for. Upon discovery, it allows you to add device(s) that it has found.
From there, it saves your connection to be able to make future interactions with the device.

146.1.2 Device Handler responsibilities

The Device Handler is responsible for creating and receiving device specific messages, and allowing them to work
within the SmartThings infrastructure. It takes in a SmartApp-specific command and outputs device specific com-
mands. It also allows you to subscribe to responses from the device and trigger other commands as needed.

561

SmartThings Classic Developer Documentation, Release latest

146.1.3 How it all works

146.2 Building the Service Manager

The Service Manager’s responsibilities are:

• Discovery - Discover devices on the LAN via SSDP (mDNS/DNS-SD or Bonjour is not currently supported)

• Verification - Verify each discovered device through successful fetching of the UPnP device description

• Inclusion - Add the device as a child of the service manager

• Health - Track IP address and port changes and allow these to make it down to the child device(s) as necessary

Let’s take a look at some of the key parts of a Service Manager implementation. The example code referenced
throughout this document is derived from the below SmartApp and DeviceType:

Generic UPnP Service Manager Generic UPnP Device

The above referenced Generic UPnP Device is incomplete. For the complete guide, please see Building the Device
Type.

562 Chapter 146. Building LAN-connected Device Types

SmartThings Classic Developer Documentation, Release latest

146.2.1 Discovery

Simple Service Discovery Protocol (SSDP) is the main protocol used to find devices on your network. It serves as the
backbone of Universal Plug and Play (UPnP), which allows you to easily connect new network devices to a system.
See UPnP Device Architecture 1.1 for full specification details.

To discover new devices, you first need to subscribe to Location Events with the correct search target for the device.
The search target in the below example, urn:schemas-upnp-org:device:ZonePlayer:1, is for discovery of a Sonos,
but search targets will vary by manufacturer and device. For UPnP, this information should be published on documen-
tation for the device, but you may alternatively have to contact the manufacturer directly to obtain it. Here is the Event
subscription:

subscribe(location, "ssdpTerm.urn:schemas-upnp-org:device:ZonePlayer:1", ssdpHandler)

This means that any time an SSDP search response with a search target of urn:schemas-upnp-org:device:ZonePlayer:1
(e.g. Sonos) is received from a Hub in this Location, it will fire the ssdpHandler method.

Next, you need to send an appropriate discovery command for the desired search target:

void ssdpDiscover() {
sendHubCommand(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:ZonePlayer:1", physicalgraph.device.Protocol.LAN))

}

Note: HubAction is a class supplied by the SmartThings platform

The class physicalgraph.device.HubAction encapsulates request information for communicating with the
device.

When you create an instance of a HubAction, you provide details about the request, such as the request method,
headers, and path. By itself, HubAction is little more than a wrapper for these request details. In this case, it’s a thin
wrapper around discovery information.

In the above HubAction example, the main message to be sent through the Hub is:

lan discovery urn:schemas-upnp-org:device:ZonePlayer:1

This is converted by our device connectivity layer into an M-SEARCH multicast request that is sent to the LAN via
the Hub, and should look something like the following:

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: 4
ST: urn:schemas-upnp-org:device:ZonePlayer:1

After the end device receives the multicast M-SEARCH, it is supposed to issue a unicast search response, delayed by
a random number of seconds between 0 and MX (4 in this case). The search response sent from the device back to the
Hub should look something like this:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=100
EXT:
LOCATION: http://10.0.1.14:80/xml/device_description.xml
SERVER: FreeRTOS/6.0.5, UPnP/1.0, IpBridge/0.1
ST: urn:schemas-upnp-org:device:ZonePlayer:1
USN: uuid:RINCON_000E58F0FFFFFF400::urn:schemas-upnp-org:device:ZonePlayer:1

This will get routed back to the cloud where it will be converted into an Event that will fire the ssdpHandler method
with the following description:

146.2. Building the Service Manager 563

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

SmartThings Classic Developer Documentation, Release latest

devicetype:04, mac:000E58F0FFFF, networkAddress:0A00010E, deviceAddress:0578, stringCount:04, ssdpPath:/xml/device_description.xml, ssdpUSN:uuid:RINCON_000E58F0FFFFFF400::urn:schemas-upnp-org:device:ZonePlayer:1, ssdpTerm:urn:schemas-upnp-org:device:ZonePlayer:1, ssdpNTS:

The ssdpHandler method should record the data from the search response, in preparation for verification.

def ssdpHandler(evt) {
def description = evt.description
def hub = evt?.hubId

def parsedEvent = parseEventMessage(description)
parsedEvent << ["hub":hub]

def devices = getDevices()
String ssdpUSN = parsedEvent.ssdpUSN.toString()
if (!devices."${ssdpUSN}") {

devices << ["${ssdpUSN}": parsedEvent]
}

}

146.2.2 Verification

Once we’ve recorded the presence of a device on the LAN with the desired SSDP search target, the next step is to
verify the availability of the device by fetching some more information about it. In UPnP, this is called the device
description. In the search response, there is a LOCATION header which shows the Location of the device description
on the LAN. SmartThings splits this into networkAddress, deviceAddress, and ssdpPath in the Event, which at this
point should exist in app state. This can be pulled out of state and put into a HubAction. Note that the HubAction
has a callback, which means that when an HTTP response is issued from the device to the Hub, it will fire the
deviceDescriptionHandler method.

void verifyDevices() {
def devices = getDevices().findAll { it?.value?.verified != true }
devices.each {

int port = convertHexToInt(it.value.port)
String ip = convertHexToIP(it.value.ip)
String host = "${ip}:${port}"
sendHubCommand(new physicalgraph.device.HubAction("""GET ${it.value.ssdpPath} HTTP/1.1\r\nHOST: $host\r\n\r\n""", physicalgraph.device.Protocol.LAN, host, [callback: deviceDescriptionHandler]))

}
}

void deviceDescriptionHandler(physicalgraph.device.HubResponse hubResponse) {
def body = hubResponse.xml
def devices = getDevices()
def device = devices.find { it?.key?.contains(body?.device?.UDN?.text()) }
if (device) {

device.value << [name: body?.device?.roomName?.text(), model: body?.device?.modelName?.text(), serialNumber: body?.device?.serialNum?.text(), verified: true]
}

}

Note: HubResponse is a class supplied by the SmartThings platform. Here are some pieces of data that are included:

• description - The raw message received by the device connectivity layer

• hubId - The UUID of the SmartThings Hub that received the response

• status - HTTP status code of the response

• headers - Map of the HTTP headers of the response

564 Chapter 146. Building LAN-connected Device Types

SmartThings Classic Developer Documentation, Release latest

• body - String of the HTTP response body

• error - Any error encountered during any automatic parsing of the body as either JSON or XML

• json - If the HTTP response has a Content-Type header of application/json, the body is automatically parsed as
JSON and stored here

• xml - If the HTTP response has a Content-Type header of text/xml, the body is automatically parsed as XML
and stored here

146.2.3 Inclusion

Now that the device has been verified, we need to add it as a child device.

def addDevices() {
def devices = getDevices()

selectedDevices.each { dni ->
def selectedDevice = devices.find { it.value.mac == dni }
def d
if (selectedDevice) {

d = getChildDevices()?.find {
it.deviceNetworkId == selectedDevice.value.mac

}
}

if (!d) {
log.debug "Creating Generic UPnP Device with dni: ${selectedDevice.value.mac}"
addChildDevice("smartthings", "Generic UPnP Device", selectedDevice.value.mac, selectedDevice?.value.hub, [

"label": selectedDevice?.value?.name ?: "Generic UPnP Device",
"data": [

"mac": selectedDevice.value.mac,
"ip": selectedDevice.value.ip,
"port": selectedDevice.value.port

]
])

}
}

}

Note: It’s important to not use IP and port as the DNI (Device Network ID) of the device. This is because if/when
the IP address changes, we do not want to update the device’s DNI. Instead, we choose MAC address as DNI, which
is guaranteed not to change.

146.2.4 Health

Lastly, we need to handle the possibility of IP address or port changes. Unless you have setup a static DHCP reserver-
ation in your network router, there is a possibility that the IP address of the device will change, and the child device
can be told when this changes by the Service Manager. We’ll start by modifying the above ssdpHandler method to
handle changing IP and port data:

146.2. Building the Service Manager 565

SmartThings Classic Developer Documentation, Release latest

def ssdpHandler(evt) {
def description = evt.description
def hub = evt?.hubId

def parsedEvent = parseEventMessage(description)
parsedEvent << ["hub":hub]

def devices = getDevices()
String ssdpUSN = parsedEvent.ssdpUSN.toString()
if (devices."${ssdpUSN}") {

def d = devices."${ssdpUSN}"
if (d.ip != parsedEvent.ip || d.port != parsedEvent.port) {

d.ip = parsedEvent.ip
d.port = parsedEvent.port
def child = getChildDevice(parsedEvent.mac)
if (child) {

child.sync(parsedEvent.ip, parsedEvent.port)
}

}
} else {

devices << ["${ssdpUSN}": parsedEvent]
}

}

This assumes that the DeviceType has a sync method that has the ability to alter the internally stored ip and port.

def sync(ip, port) {
def existingIp = getDataValue("ip")
def existingPort = getDataValue("port")
if (ip && ip != existingIp) {

updateDataValue("ip", ip)
}
if (port && port != existingPort) {

updateDataValue("port", port)
}

}

Finally, we need to make sure that the M-SEARCH for our desired search target is periodically sent out over the LAN.
We can use the scheduler to do that from the Service Manager:

runEvery5Minutes("ssdpDiscover")

146.2.5 Best practices

For LAN Service Manager SmartApps, there are a couple items to keep in mind that might not be immediately
apparent.

• Use something static as the DNI for the child device, such as MAC address.

• Avoid making calls from your child devices into the parent if possible, as this can lead to increased latency and
unnecessary platform load. Instead, supply your child devices with enough information to make calls into the
parent unnecessary, and use the Service Manager to manage any child device updates that need to happen based
on network changes.

566 Chapter 146. Building LAN-connected Device Types

SmartThings Classic Developer Documentation, Release latest

146.2.6 References and resources

• UPnP Device Architecture 1.1

146.3 Building the Device Type

The Device Handler for a LAN-connected device is generally the same as any other Device Handler. The means
in which it handles sending and receiving messages from its device is a little bit different. Let’s walk through a
LAN-connected Device Handler example.

146.3.1 Making outbound HTTP calls with HubAction

Depending on the type of device you are using, you will send requests to your devices through the Hub via REST or
UPnP. You can do this using the SmartThings provided HubAction class.

146.3.2 Overview

The class physicalgraph.device.HubAction encapsulates request information for communicating with the
device.

When you create an instance of a HubAction, you provide details about the request, such as the request method,
headers, and path. By itself, HubAction is little more than a wrapper for these request details.

It is when an instance of a HubAction is returned from a command method that it becomes useful.

When a command method of your Device Handler returns an instance of a HubAction, the SmartThings platform
will use the request information within it to actually perform the request. It will then call the device-handler’s parse
method with any response data.

Herein lies an important point - if your HubAction instance is not returned from your command method, no request
will be made. It will just be an object allocating system memory. Not very useful.

So remember - the HubAction instance should be returned from your command method so that the platform can
make the request!

146.3.3 Creating a HubAction object

To create a HubAction object, you can pass in a map of parameters to the constructor that defines the request informa-
tion:

def result = new physicalgraph.device.HubAction(
method: "GET",
path: "/somepath",
headers: [

HOST: "device IP address"
],
query: [param1: "value1", param2: "value2"]

)

A brief discussion of the options that can be provided follows:

146.3. Building the Device Type 567

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

SmartThings Classic Developer Documentation, Release latest

method The HTTP method to use for the request.

path The path to send the request to. You can add URL parameters to the request directly, or use the query option.

headers A map of HTTP headers and their values for this request. This is where you will provide the IP address of
the device as the HOST.

query A map of query parameters to use in this request. You can use URL parameters directly on the path if you wish,
instead of using this option.

146.3.4 Parsing the response

When you make a request to your device using HubAction, any response will be passed to your device-handler’s
parse method, just like other device messages.

You can use the parseLanMessage method to parse the incoming message.

parseLanMessage example:

def parse(description) {
...
def msg = parseLanMessage(description)

def headersAsString = msg.header // => headers as a string
def headerMap = msg.headers // => headers as a Map
def body = msg.body // => request body as a string
def status = msg.status // => http status code of the response
def json = msg.json // => any JSON included in response body, as a data structure of lists and maps
def xml = msg.xml // => any XML included in response body, as a document tree structure
def data = msg.data // => either JSON or XML in response body (whichever is specified by content-type header in response)

...
}

For more information about the JSON or XML response formats, see the Groovy JsonSlurper and XmlSlurper docu-
mentation.

146.3.5 Getting the addresses

To use HubAction, you will need the IP address of the device, and sometimes the Hub.

How the device IP and port are stored my vary depending on the device type. There’s currently not a public API to
get this information easily, so until there is, you will need to handle this in your device-type handler. Consider using
helper methods like these to get this information:

// gets the address of the Hub
private getCallBackAddress() {

return device.hub.getDataValue("localIP") + ":" + device.hub.getDataValue("localSrvPortTCP")
}

// gets the address of the device
private getHostAddress() {

def ip = getDataValue("ip")
def port = getDataValue("port")

568 Chapter 146. Building LAN-connected Device Types

http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html

SmartThings Classic Developer Documentation, Release latest

if (!ip || !port) {
def parts = device.deviceNetworkId.split(":")
if (parts.length == 2) {

ip = parts[0]
port = parts[1]

} else {
log.warn "Can't figure out ip and port for device: ${device.id}"

}
}

log.debug "Using IP: $ip and port: $port for device: ${device.id}"
return convertHexToIP(ip) + ":" + convertHexToInt(port)

}

private Integer convertHexToInt(hex) {
return Integer.parseInt(hex,16)

}

private String convertHexToIP(hex) {
return [convertHexToInt(hex[0..1]),convertHexToInt(hex[2..3]),convertHexToInt(hex[4..5]),convertHexToInt(hex[6..7])].join(".")

}

You’ll see the rest of the examples in this document use these helper methods.

146.3.6 Wake on LAN (WOL)

HubAction can be used to make WOL requests.

Here is an example:

def myWOLCommand() {
def result = new physicalgraph.device.HubAction (

"wake on lan <your mac address w/o ':'>",
physicalgraph.device.Protocol.LAN,
null,
[secureCode: "111122223333"]

)
return result

}

The first argument to HubAction tells the HubAction class that this will be a WOL request. The argument must be
in the form “wake on lan <mac address>” where the mac address is the address without the ‘:’ separator characters.
For example, if the mac address of the NIC is 01:23:45:67:89:ab, the first parameter to HubAction would be
"wake on lan 0123456789ab".

The second parameter simply specifies that the request will be a LAN request. This will always be the case for a WOL
type request. So the value must always be physicalgraph.device.Protocol.LAN.

The third parameter is the Device Network ID, or dni. In the case of a WOL request, this parameter should be null.

The last parameter is a map representing the options on the request. For a WOL request, this map will only ever consist
of one parameter, secureCode. Some NIC’s support the SecureOn feature which requires the request to not only
have a valid mac address, but also supply a valid password. This password must be configured on the NIC. If the NIC
does not support SecureOn or does not have a password set, simply leave out the options map.

146.3. Building the Device Type 569

https://en.wikipedia.org/wiki/Wake-on-LAN

SmartThings Classic Developer Documentation, Release latest

146.3.7 REST requests

HubAction can be used to make REST calls to communicate with the device.

Here’s a quick example:

def myCommand() {
def result = new physicalgraph.device.HubAction(

method: "GET",
path: "/yourpath?param1=value1¶m2=value2",
headers: [

HOST: getHostAddress()
]

)
return result

}

146.3.8 UPnP/SOAP requests

Alternatively, after making the initial connection you can use UPnP. UPnP uses SOAP (Simple Object Access Protocol)
messages to communicate with the device.

SmartThings provides the HubSoapAction class for this purpose. It is similar to the HubAction class (it actually
extends the HubAction class), but it will handle creating the soap envelope for you.

Here’s an example of using HubSoapAction:

def someCommandMethod() {
return doAction("SetVolume", "RenderingControl", "/MediaRenderer/RenderingControl/Control", [InstanceID: 0, Channel: "Master", DesiredVolume: 3])

}

def doAction(action, service, path, Map body = [InstanceID:0, Speed:1]) {
def result = new physicalgraph.device.HubSoapAction(

path: path,
urn: "urn:schemas-upnp-org:service:$service:1",
action: action,
body: body,
headers: [Host:getHostAddress(), CONNECTION: "close"]

)
return result

}

146.3.9 Subscribing to device Events

If you’d like to hear back from a LAN-connected device upon a particular Event, you can subscribe using a
HubAction. The parse method will be called when this Event is fired on the device.

Here’s an example using UPnP:

def someCommand() {
subscribeAction("/path/of/event")

}

private subscribeAction(path, callbackPath="") {

570 Chapter 146. Building LAN-connected Device Types

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/SOAP_%28protocol%29

SmartThings Classic Developer Documentation, Release latest

log.trace "subscribe($path, $callbackPath)"
def address = getCallBackAddress()
def ip = getHostAddress()

def result = new physicalgraph.device.HubAction(
method: "SUBSCRIBE",
path: path,
headers: [

HOST: ip,
CALLBACK: "<http://${address}/notify$callbackPath>",
NT: "upnp:event",
TIMEOUT: "Second-28800"

]
)

log.trace "SUBSCRIBE $path"

return result
}

146.3.10 References and resources

• UPnP

• SOAP

• REST

146.3. Building the Device Type 571

http://en.wikipedia.org/wiki/Universal_Plug_and_Play
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_state_transfer

SmartThings Classic Developer Documentation, Release latest

572 Chapter 146. Building LAN-connected Device Types

CHAPTER 147

Automatic LAN Device Discovery

Automatic LAN device discovery minimizes the complexity in discovering LAN-connected devices.

Normally the SmartThings platform will discover a LAN-connected or a Cloud-connected device only when a Service
Manager SmartApp for that specific device is present. This means that if you want to integrate multiple LAN devices,
such as a Wemo motion sensor and a Bose Speaker, then you will need multiple Service Manager SmartApps, i.e., a
separate Service Manager SmartApp for each LAN-connected device. On the contrary, the platform does not have any
such Service Manager SmartApp requirement for a ZigBee or a Z-Wave device.

The new automatic LAN device discovery eliminates the Service Manager SmartApp requirement for some LAN-
connected devices, thereby making for a much smoother and quicker LAN-connected device discovery. See Supported
LAN-connected Devices (page 573).

147.1 Impact on the developer

For the Supported LAN-connected Devices (page 573) if you have made any customizations to either your Service
Manager SmartApp or your Device Handler, then your LAN-connected device integration will be impacted. See the
table below.

Custom Device
Handler

Custom Service Manager
SmartApp

Impact

Yes No Custom LAN Device Handler is overwritten with the
SmartThings version.

Yes Yes No impact

147.1.1 Supported LAN-connected Devices

Currently a limited number of LAN-connected devices can be discovered with automatic LAN device discovery. See
How to connect Wi-Fi devices.

573

https://support.smartthings.com/hc/articles/115001164026

SmartThings Classic Developer Documentation, Release latest

574 Chapter 147. Automatic LAN Device Discovery

CHAPTER 148

Capturing and Displaying Camera Pictures

Cameras connected to SmartThings can use the imageCapture Capability, along with the Carousel Tile, to capture and
view images. SmartThings-connected cameras are either LAN- or Cloud-Connected; this document outlines the steps
to capture and display images for both.

148.1 Image Capture Capability

Add support for the imageCapture Capability by including it in the Device Handler’s metadata:

metadata {
definition(name: "My Camera Device", namespace: "MyNamespace", author: "My Name") {

capability "Image Capture"
// other definition metadata...

}
}

The Image Capture Capability defines one attribute, “image”, and one command, take(). The Carousel Tile can be
used to display images and allow the user to manually take a photo, as discussed next.

148.2 Tiles for taking and viewing pictures

Add tiles to allow the viewing and taking of images:

tiles {
standardTile("image", "device.image", width: 1, height: 1, canChangeIcon: false, inactiveLabel: true, canChangeBackground: true) {

state "default", label: "", action: "", icon: "st.camera.dropcam-centered", backgroundColor: "#FFFFFF"
}

carouselTile("cameraDetails", "device.image", width: 3, height: 2) { }

standardTile("take", "device.image", width: 1, height: 1, canChangeIcon: false, inactiveLabel: true, canChangeBackground: false) {
state "take", label: "Take", action: "Image Capture.take", icon: "st.camera.dropcam", backgroundColor: "#FFFFFF", nextState:"taking"
state "taking", label:'Taking', action: "", icon: "st.camera.dropcam", backgroundColor: "#00A0DC"
state "image", label: "Take", action: "Image Capture.take", icon: "st.camera.dropcam", backgroundColor: "#FFFFFF", nextState:"taking"

}

575

SmartThings Classic Developer Documentation, Release latest

main "image"
details(["cameraDetails", "take"])

}

The carouselTile is where the images will be displayed, and the “take” tile allows users to capture images. Note
that both are associated with the "image" attribute; this association allows the images to be taken and displayed
properly.

148.3 Capture and display images

The take() command of the Image Capture Capability is responsible for capturing the image. Follow the protocol-
specific instructions for implementing this command method below.

148.3.1 LAN-connected cameras

LAN-connected devices can capture images using HubAction (page 1029), store them using storeTemporaryImage()
(page 977), and display them with the Carousel Tile (page 486).

The take() command will issue a request to take a picture via a HubAction. The response from the device
will be sent to the Device Handler’s parse() method, where it can then be moved to longer-lasting storage using
storeTemporaryImage(). storeTemporaryImage() also emits the “image” event, causing the Carousel
Tile to be updated with the new image.

Here’s an example of the take() command (details of the request will be specific to each device):

def take() {
def host = getHostAddress()
def port = host.split(":")[1]

def path = "/some/path/"

def hubAction = new physicalgraph.device.HubAction(
method: "GET",
path: path,
headers: [HOST:host]

)

hubAction.options = [outputMsgToS3:true]

return hubAction
}

/**
* Utility method to get the host addresses

*/
private getHostAddress() {

def parts = device.deviceNetworkId.split(":")
def ip = convertHexToIP(parts[0])
def port = convertHexToInt(parts[1])
return ip + ":" + port

}

Some things to note about the implementation of the take() command:

1. The specific path, method, and headers of the HubAction will vary for each device. Consult the device manu-
facturer’s documentation for this information.

576 Chapter 148. Capturing and Displaying Camera Pictures

SmartThings Classic Developer Documentation, Release latest

2. Make sure to specify hubAction.options = [outputMsgToS3: true]. This will result in the
image being stored (temporarily). We will move the image to longer-lasting storage next.

3. Remember to return the HubAction from the command method, otherwise it will not be executed!

Once we’ve made the request in the take() command method, the response from the device will be sent to the
Device Handler’s parse() method. This response will contain a tempImageKey, which is the key of the photo
just taken.

def parse(String description) {

def map = stringToMap(description)

if (map.tempImageKey) {
try {

storeTemporaryImage(map.tempImageKey, getPictureName())
} catch (Exception e) {

log.error e
}

} else if (map.error) {
log.error "Error: ${map.error}"

}

// parse other messages too
}

private getPictureName() {
return java.util.UUID.randomUUID().toString().replaceAll('-', '')

}

parse() does the following:

1. Checks the response to see if tempImageKey was sent. If it was, this means that this is the image response
from our take() command.

2. Calls storeTemporaryImage() with the tempImageKey and a name for the picture. The name must be
unique per device instance, contain only alphanumeric, “-”, “_”, and ”.” characters. This will move the image
from temporary storage to a location where the image will be stored for 365 days, before being permanently
deleted.

storeTemporaryImage() also emits the “image” event, which is the attribute our Carousel Tile is associated
with. This is what allows the image to be displayed in the tile.

148.3.2 Cloud-connected cameras

The take() command will issue an HTTP request to the third-party service to capture the image, and store the
resulting image bytes using storeImage() (page 976).

Below is a simplified example (A real application will need to handle authentication with the third-party, as well as
additional error handling):

def take() {
def params = [

uri: "https://some-uri",
path: "/some/path"

]

try {
httpGet(params) { response ->

148.3. Capture and display images 577

SmartThings Classic Developer Documentation, Release latest

// we expect a content type of "image/jpeg" from the third party in this case
if (response.status == 200 && response.headers.'Content-Type'.contains("image/jpeg")) {

def imageBytes = response.data
if (imageBytes) {

def name = getImageName()
try {

storeImage(name, imageBytes)
} catch (e) {

log.error "Error storing image ${name}: ${e}"
}

}
} else {

log.error "Image response not successful or not a jpeg response"
}

}
} catch (err) {

log.debug "Error making request: $err"
}

}

def getImageName() {
return java.util.UUID.randomUUID().toString().replaceAll('-','')

}

Warning: Only synchronous HTTP requests are supported when using the Carousel Tile.

The take() command above does the following:

1. Makes a request to a URI that will return an image response. A real integration would need to provide autho-
rization information on the request. This would typically be an OAuth token obtained through the setup process,
as documented here (page 546).

2. If the response is successful and its Content-Type is our expected content, it gets the image bytes from
response.data.

3. Stores the image using storeImage(), using a name generated from a UUID. The name of the image is
required to be unique for each device instance.

storeImage() will emit the “image” event, which causes the Carousel Tile to be updated with the new image.

Tip: httpGet() will serialize the response data for images into a ByteArrayInputStream, which is why we
can pass the response body to storeImage().

148.4 Retrieving an image

If you need to retrieve the byte representation of an image stored with storeImage() or
storeTemporaryImage(), use getImage() (page 959). This will return the bytes of the image in a ByteArrayIn-
putStream.

578 Chapter 148. Capturing and Displaying Camera Pictures

https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html

SmartThings Classic Developer Documentation, Release latest

// Image with "some-name" that was previously stored
ByteArrayInputStream img = getImage("some-name")

148.5 Image size limits

Images are limited to a maximum of one megabyte.

storeImage() will throw an InvalidParameterException if this limit is exceeded.

Attempting to capture an image exceeding this maximum using HubAction will result in the message sent to
parse() containing an error response:

def parse(String description) {
def map = stringToMap(description)

if (map.error) {
log.error "error: ${map.error}"

} else if (map.tempImageKey) {
//...

}
}

148.6 Allowed image name characters

Image names are restricted to alphanumeric, “-”, “_”, and ”.” characters.

An InvalidParameterException is thrown by storeTemporaryImage() and storeImage() if the
name contains other characters.

148.7 Image storage duration

Images stored via a HubAction are stored for 24 hours, after which it is deleted (this is why we use
storeTemporaryImage() to move images captured by a HubAction).

Images stored via storeImage() or storeTemporaryImage() are available to clients for seven days, and
stored by SmartThings for 365 days, after which it is deleted.

148.8 Supported image formats

storeImage() supports both JPEG and PNG image formats. The content type can be specified when calling
storeImage():

148.5. Image size limits 579

SmartThings Classic Developer Documentation, Release latest

storeImage("some-image-name", imgBytes, "image/png")

The content type of "image/jpeg" is the default.

Images captured via a HubAction and stored with storeTemporaryImage() must be in JPEG format.

In either case, there is no need to include the file extension (e.g., ".jpg" or ".png" in the image name).

148.9 Related documentation

• storeTemporaryImage() reference documentation (page 977)

• storeImage() reference documentation (page 976)

• HubAction reference documentation (page 1029)

• Image Capture Capability reference documentation

• Tiles documentation (page 473)

580 Chapter 148. Capturing and Displaying Camera Pictures

Part XIV

Composite Devices

581

SmartThings Classic Developer Documentation, Release latest

Devices such as Hue LAN bridge, AEON Z-Wave SmartStrip, or a Zooz ZEN20 Z-Wave Power Strip have multiple
components, and each component can be controlled independently. For example, a Zooz ZEN20 Z-Wave Power Strip
can be used with a separate Thing connected to each of its five outlets and each Thing can have its own SmartApp.

SmartThings categorizes such a multiple-component device as a composite device. A device is said to be a composite
device when it treats each of its component as its child device. Integrating a composite device into SmartThings
platform involves incorporating the composite device functionality into its Device Handler. Additionally, you may
need to modify the Service Manager SmartApp and the SmartApp.

583

SmartThings Classic Developer Documentation, Release latest

584

CHAPTER 149

Device Handler for a Composite Device

When you integrate a composite device into SmartThings, the composite device maintains a parent-child relationship
between itself and its child devices. For example, the Device Handler of Zooz ZEN20 Z-Wave Power Strip composite
device implements the Power Strip as a parent device and each outlet as a separate child device. More specifically, each
individual outlet of the Power Strip is implemented as a child device instance of Zooz Power Strip Outlet, whereas the
Power Strip itself is an instance of Zooz Power Strip as a parent device.

Similarly, the Hue bridge Device Handler implements the Hue bridge as a parent device and Hue bulbs as child devices
of the Hue bridge parent device.

149.1 Parent Device Handler

Let’s look at how to set up a parent Device Handler. For example, in the Device Handler of the Zooz ZEN20 Z-Wave
Power Strip composite device, the parent device functionality shown below:

• Creates a child device instance of Zooz Power Strip Outlet device for each outlet of the Power Strip,
by using the addChildDevice() (page 949) method, as below:

metadata {
definition (name: "ZooZ Power Strip", namespace: "smartthings", author: "SmartThings") {
capability "Switch"
capability "Refresh"
capability "Configuration"
capability "Actuator"
capability "Sensor"
fingerprint deviceId: "0x1004", inClusters: "0x5E,0x85,0x59,0x5A,0x72,0x60,0x8E,0x73,0x27,0x25,0x86", manufacturer: "015D", model: "F51C", prod: "0651", deviceJoinName: "ZooZ ZEN 20 Power Strip"

}

...

def installed() {
createChildDevices()
response(refresh() + configure())

}

...

private void createChildDevices() {
// Save the device label for updates by updated()
state.oldLabel = device.label
// Add child devices for all five outlets of Zooz Power Strip
for (i in 1..5) {

585

SmartThings Classic Developer Documentation, Release latest

addChildDevice("ZooZ Power Strip Outlet", "${device.deviceNetworkId}-${i}", null,[completedSetup: true, label: "${device.displayName} (CH${i})", isComponent: true, componentName: "ch$i", componentLabel: "Channel $i"])
}

}

and,

• Creates child device APIs such as:

void childOn(String dni) {
onOffCmd(0xFF, channelNumber(dni))

}
void childOff(String dni) {

onOffCmd(0, channelNumber(dni))
}

149.2 Child Device Handler

Next, the below Device Handler code sets up the outlet of the Zooz ZEN20 Z-Wave Power Strip device as the child
device instance.

metadata {
definition (name: "ZooZ Power Strip Outlet", namespace: "smartthings", author: "SmartThings") {

capability "Switch"
capability "Actuator"
capability "Sensor"

}

...

void on() {
parent.childOn(device.deviceNetworkId)

}

void off() {
parent.childOff(device.deviceNetworkId)

}

In the above example, the method calls, parent.childOn(device.deviceNetworkId) and
parent.childOff(device.deviceNetworkId), are the means of communication between the parent
and the child instances of this composite device.

586 Chapter 149. Device Handler for a Composite Device

CHAPTER 150

Deleting a Composite Device

Deleting a composite parent device will delete all children devices. For example, deleting the Power Strip itself will
delete its outlets as devices from the SmartThings platform.

SmartApps can be configured to control individual outlets as well as the entire power strip. In such a case, if you try
to delete the Power Strip parent device itself, then you are given an option to force-delete the outlet device.

If you try to delete a composite device from your SmartThings mobile app, then the following applies:

• If the parameter isComponent is set to true, as shown in the Parent Device Handler (page 585) example
above, then the device is hidden from the Things view and you will not be presented with the option of deleting
child devices individually.

• If the parameter isComponent is set to false, then you can delete individual child devices.

Note: Note that the following applies for a composite device:

• A single SmartApp can control all the components, each independently, sending and receive messages from
each component device.

• A single SmartApp can control all components together in an all-or-nothing fashion.

587

SmartThings Classic Developer Documentation, Release latest

588 Chapter 150. Deleting a Composite Device

CHAPTER 151

Composite Device Tiles

Child device tiles can be visually pulled together into a composite tile. On SmartThings mobile app, such a composite
tile represents a rich interface for the display and control of a composite device.

For example, consider a refrigerator composite device that is built with two child components, i.e., the fridge door and
the temperature control.

In the fridge door child Device Handler, the tile for the fridge door mainDoor is defined normally with the
standardTile method, as below:

// Fridge door child component Device Handler
metadata {

definition (name: "Simulated Refrigerator Door", namespace: "smartthings/testing", author: "SmartThings") {
capability "Contact Sensor"
capability "Sensor"
capability "open"
capability "close"

}
tiles {
standardTile("mainDoor", "device.contact", width: 2, height: 2, decoration: "flat") {
state("closed", label:'Fridge', icon:"st.contact.contact.closed", backgroundColor:"#79b821")
state("open", label:'Fridge', icon:"st.contact.contact.open", backgroundColor:"#ffa81e")
}

}
...

}

Then, by using the method childDeviceTile() (page 953) within the refrigerator parent Device Handler, we can cus-
tomize how the above fridge door tile mainDoor is pulled visually into the refrigerator composite tile. See below:

// Refrigerator parent Device Handler
metadata {

definition (name: "Simulated Refrigerator", namespace: "smartthings/testing", author: "SmartThings") {
capability "Contact Sensor"

}
tiles {
childDeviceTile("mainDoor", "mainDoor", height: 2, width: 2, childTileName: "mainDoor")

}
...

}

The example below illustrates how to put together a mobile visual interface on SmartThings mobile app for a simulated
refrigerator composite device.

589

SmartThings Classic Developer Documentation, Release latest

151.1 Example: Simulated refrigerator

The simulated refrigerator in this example is a composite device with two components (child devices):

• The simulated main refrigerator (fridge) compartment, and

• A simulated freezer compartment.

Each compartment has its own door, its own temperature, and its own temperature setpoint. Each compartment is
modeled as a child device of the main refrigerator device.

From IDE, create a New Device (see Create a Virtual Device (page 453)) and set it to Type “Simulated Refrigerator”.
This will create the composite parent device Simulated Refrigerator. You will see it appear in the Things view of your
SmartThings mobile app. Tap on it to see the Detail view of it.

The mobile app view of the Simulated Refrigerator composite device, with the detail view on the right, looks as below:

590 Chapter 151. Composite Device Tiles

SmartThings Classic Developer Documentation, Release latest

151.1. Example: Simulated refrigerator 591

SmartThings Classic Developer Documentation, Release latest

592 Chapter 151. Composite Device Tiles

SmartThings Classic Developer Documentation, Release latest

Note: If you are new to SmartThings tiles, see Tiles (page 473) before you proceed further.

The composite device tile for the refrigerator door, shown in the top row of the detail view above, is put together as
below:

• In the child Device Handler for the Simulated Refrigerator Door, the tile mainDoor is defined in the tiles()
section. The width and height parameters defined here will be overridden by the parent Device Handler
setting.

metadata {
definition (name: "Simulated Refrigerator Door", namespace: "smartthings/testing", author: "SmartThings") {

capability "Contact Sensor"
capability "Sensor"
command "open"
command "close"

}
tiles {

standardTile("mainDoor", "device.contact", width: 2, height: 2, decoration: "flat") {
state("closed", label:'Fridge', icon:"st.contact.contact.closed", backgroundColor:"#79b821")
state("open", label:'Fridge', icon:"st.contact.contact.open", backgroundColor:"#ffa81e")

}
}

}

• In the Simulated Refrigerator parent Device Handler, the method childDeviceTile() (page 953) is used in the
tiles() section to visually configure this child device mainDoor tile. The width and height settings
here will override the settings for this tile in the child Device Handler.

metadata {
definition (name: "Simulated Refrigerator", namespace: "smartthings/testing", author: "SmartThings") {

capability "Contact Sensor"
}
tiles {
childDeviceTile("mainDoor", "mainDoor", height: 2, width: 2, childTileName: "mainDoor")

}
...

}
def installed() {

state.counter = state.counter ? state.counter + 1 : 1
if (state.counter == 1) {

// A tile with the name "mainDoor" exists in the tiles() method of the child Device Handler "Simulated Refrigerator Door" above.
addChildDevice(

"Simulated Refrigerator Door",
"${device.deviceNetworkId}.2",
null,
[completedSetup: true, label: "${device.label} (Main Door)", componentName: "mainDoor", componentLabel: "Main Door"])

}
}

Note: While the width and height parameters in the childDeviceTile() in the parent Device Handler will
override the settings of these parameters in the child Device Handler, any icon setting specified in the child Device
Handler will not be overriden by the childDeviceTile().

151.1. Example: Simulated refrigerator 593

SmartThings Classic Developer Documentation, Release latest

151.2 Example composite tile code

Copy the following three composite device Device Handler files and create your own three Device Handlers with From
Code option (see Create a new Device Handler (page 451)):

• Parent Device Handler file for the Simulated Refrigerator composite parent device.

• Child Device Handler file for the Simulated Refrigerator Door component device, and

• Child Device Handler for the Simulated Refrigerator Temperature Control component device.

Note: Make sure to publish For Me the above three Device Handlers before you proceed further.

Follow the code in the Device Handlers you copied over to see how the rest of the visual layout is configured for the
entire Simulated Refrigerator composite device.

594 Chapter 151. Composite Device Tiles

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/testing/simulated-refrigerator.src/simulated-refrigerator.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/testing/simulated-refrigerator-door.src/simulated-refrigerator-door.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/testing/simulated-refrigerator-temperature-control.src/simulated-refrigerator-temperature-control.groovy

Part XV

Arduino ThingShield

595

SmartThings Classic Developer Documentation, Release latest

Warning: The SmartThings Arduino ThingShield has been discontinued, and is no longer supported.
All code and libraries discussed in this document are no longer supported by SmartThings, and should be used on
a as-is basis.

Using the SmartThings Arduino Shield (ThingShield), you can add SmartThings capability to any Arduino compatible
board with the R3 pinout, including the Uno, Mega, Duemilanove, and Leonardo.

Specs:

• Works with: Uno, Mega, Duemilanove, Leonardo

• Dimensions: 2.5 x 1.9 x 0.3”

• Weight: 8 ounces

597

SmartThings Classic Developer Documentation, Release latest

598

CHAPTER 152

Installing the library

To install, copy the entire SmartThings directory into the ‘libraries’ directory in your sketchbook. Your sketchbook
location is set in the Arduino IDE preferences, by default, the location will be:

Windows: ‘My DocumentsArduinolibrariesSmartThings’

OSX: ‘~/Documents/Arduino/libraries/SmartThings’

You can download the SmartThings Arduino Library here.

599

http://cl.ly/ZMHh

SmartThings Classic Developer Documentation, Release latest

600 Chapter 152. Installing the library

CHAPTER 153

Pairing the shield

To join the shield to your SmartThings Hub, go to “Add SmartThings” mode in the SmartThings app by hitting the
“+” icon in the desired location, and then press the Switch button on the shield. You should see the shield appear in
the app.

To unpair the shield, press and hold the Switch button for 6 seconds and release. The shield will now be unpaired from
your SmartThings Hub. Make sure to delete from your account if you plan to re-pair it!

601

SmartThings Classic Developer Documentation, Release latest

602 Chapter 153. Pairing the shield

CHAPTER 154

Changing the Device Handler

By changing the Device Handler in the SmartThings cloud you can change how to interact with your Arduino +
ThingShield. When a shield first pairs, it has no functionality and only serves to help identify the device in the mobile
app. We have some pre-built Device Handlers that you can use for most functionality. One pre-built Arduino Device
Handler is the “On/Off Shield (example)”

To change your Device Handler, log into http://graph.api.smartthings.com/ and click on “Devices” Navigate to and
click on the Arduino ThingShield then click on “Edit” on the bottom left of the page.

Select the “Type” drop down menu.

Choose “On/Off Shield (example)”

Hit the “Update” button

Your Arduino will now be able to accept the commands “on” “off”, and “hello”

Here is what the Arduino sketch looks like and here is the Device Handler.

Here is a different Device Handler that can read a string sent from an Arduino and display it in a tile.

603

https://gist.github.com/aurman/6546221
https://gist.github.com/aurman/6862503
https://gist.github.com/aurman/6546257

SmartThings Classic Developer Documentation, Release latest

604 Chapter 154. Changing the Device Handler

CHAPTER 155

Arduino examples

We have created some example Arduino Sketches (code) to use as a reference for building your own devices. The
following is meant to go with the ”On/Off Shield (example)” Device Handler.

Download all of our examples here.

605

https://www.dropbox.com/s/4tz4arq67k21ogs/ThingShield%20Examples.zip?dl=0

SmartThings Classic Developer Documentation, Release latest

606 Chapter 155. Arduino examples

Part XVI

Rate Limits

607

SmartThings Classic Developer Documentation, Release latest

Rate limiting ensures that no single SmartApp or Device Handler will consume too many shared resources.

Rate limits apply to all SmartApps and Device Handlers.

609

SmartThings Classic Developer Documentation, Release latest

610

CHAPTER 156

SmartApp and Device Handler rate limits

SmartApps and Device Handlers are monitored for excessive resource utilization on two measures: Execution count
limits and Execution time limits.

156.1 Execution count limits

SmartApps and Device Handlers are subject to the following execution count limits. These limits are per installed
SmartApp or Device Handler.

Execution count
limit

Time
window

Description

250 executions 60 seconds A maximum of 250 executions per minute is allowed for each installed
SmartApp or Device Handler.

If the limit is exceeded, an error will be displayed in Live Logging, and no further executions for this installed Smar-
tApp or Device Handler will occur until the current 60-second time window expires.

156.2 Execution time limits

These execution time limits apply to SmartApps and Device Handlers:

What Limit
Method execution time 20 seconds
Total continuous execution time 40 seconds

If these limits are exceeded, the current execution will be suspended.

611

SmartThings Classic Developer Documentation, Release latest

612 Chapter 156. SmartApp and Device Handler rate limits

CHAPTER 157

Web services rate limit headers

SmartApps and Device Handlers that expose RESTful APIs are subject to the same rate limits as documented above.
The SmartThings platform will set three HTTP headers on the response for every inbound API call, so that a client
may understand the current rate limit status.

Header Description
X-RateLimit-LimitThe total enforced rate limit (250)
X-RateLimit-CurrentThe number of executions within the current rate limit time window, for this installed

SmartApp or Device Handler.
X-RateLimit-TTL The time remaining (in seconds) before the current rate limit window resets, for this

installed SmartApp or Device Handler.

If the rate limit is exceeded, the following response is sent to the client:

HTTP Response Code Error Response
429 (Too Many
Requests)

{"error": true, "type": "RateLimit", "message":
"Please try again later"}

613

SmartThings Classic Developer Documentation, Release latest

614 Chapter 157. Web services rate limit headers

CHAPTER 158

SMS rate limits

The following limits apply to sending SMS messages:

Limit If exceeded
15 SMS messages per number, per 60 seconds No additional SMS messages will be sent until the next minute.

Note: This limit applies per number, not per SmartApp or user.

615

SmartThings Classic Developer Documentation, Release latest

616 Chapter 158. SMS rate limits

CHAPTER 159

Parent-child relationship limit

The number of child SmartApps or child devices that a SmartApp or Device Handler may have are subject to the
following limits:

Maximum
child count

Description

500 A SmartApp may have at most a combination of 500 child SmartApps or Devices. A Device
Handler may have at most 500 child Devices.

If this limit is exceeded, an exception is thrown and will be displayed in Live Logging. If initiated from within the
mobile app, an error will be seen in the mobile application as well.

617

SmartThings Classic Developer Documentation, Release latest

618 Chapter 159. Parent-child relationship limit

CHAPTER 160

Avoiding rate limits

While SmartThings rate limits are quite high compared to other service platforms, the event-driven nature of Smart-
Things can result in SmartApps or Device Handlers that may (unintentionally) reach this limit. It is important to
reason carefully about your code, think of worst-case scenarios, and monitor Live Logging when testing to reduce the
liklihood of being rate limited.

Here are some common pitfalls to watch out for:

• A SmartApp may subscribe to a large number of “chatty” devices, causing the execution limit to be reached. For
example, DLNA devices may be particularly chatty, and frequently changing energy/power values may cause
the rate limit to be exceeded.

• Service Manager SmartApps that may be called by their child devices may reach the execution limit, if there are
a number of child devices and/or they call the parent in response to frequent events.

• Synchronous (blocking) HTTP requests may hit the execution time rate limit, depending on the third party
response time. Avoid this possibility by using Making Asynchronous External HTTP Requests (Beta) (page 371).

• It’s possible to create an infinite loop of events. For example, subscribing to both “on” and “off” events, and the
“on” command triggers the “off” event and vice versa - leading to a never-ending chain of event handlers being
called.

• Pay attention to any looping logic around creating child devices or SmartApps. Any error in the looping logic
might result in creating too many children, which could encounter the parent-child limit.

619

SmartThings Classic Developer Documentation, Release latest

620 Chapter 160. Avoiding rate limits

Part XVII

Publishing Code

621

SmartThings Classic Developer Documentation, Release latest

You can publish your SmartApp or Device Handler either just for yourself, or for public distribution. Publishing for
distribution requires you to submit your SmartApp or Device Handler for review and approval by SmartThings.

623

SmartThings Classic Developer Documentation, Release latest

624

CHAPTER 161

For yourself

When you publish for yourself, your SmartApp or Device Handler is available only to your account on your Smart-
Things mobile app.

161.1 Ensure proper Location

To publish your SmartApp or Device Handler properly, you must be at the proper Location before you begin writing
your code.

To ensure you are at the correct Location, follow these steps:

• Start by logging into IDE at at https://graph.api.smartthings.com.

• Next, navigate to My Locations page.

• On this page is a listing of all the Locations you created. Normally you will see just one Location where you
installed your Hub.

• Click on the Location name appearing in the far left column (i.e., the Name column). You may need to log in
again with your SmartThings userid and password.

Note: Note that even though the IDE is located at https://graph.api.smartthings.com, it may not always be the correct
URL for your SmartApp or Device Handler deployment. By explicitly selecting the Location name you will ensure
that your SmartApp or Device Handler will be published properly.

625

https://graph.api.smartthings.com
https://graph.api.smartthings.com

SmartThings Classic Developer Documentation, Release latest

161.2 Publish

Next, to publish for yourself, follow these steps:

• Make sure that you are in the proper Location (see above).

• From your SmartApp or Device Handler view, click on Publish button and click the For Me option.

This will publish your SmartApp or Device Handler for only your account. Open your SmartThing mobile app,
navigate to Marketplace and choose SmartApps section. Tap on the My Apps category at the bottom and you will see
your SmartApp.

626 Chapter 161. For yourself

CHAPTER 162

For public distribution

Note: SmartThings is not reviewing submissions for public distribution at this time.

To publish your SmartApp or Device Handler for public distribution, you will need to submit it for review and approval
by SmartThings. Follow these steps:

• On IDE, click on My Publication Requests in the top navigation bar. This will take you to your Publication
Requests page.

• From this page click on +New Request. This will take you to Submit a SmartApp or device type for publication
page.

• Follow the instructions on this page to submit your SmartApp or Device Handler for review by SmartThings.

162.1 Review process

SmartThings team will review your SmartApp or Device Handler for approval.

Note: To enhance the chances of your code getting your SmartApp or Device Handler approved, review and ensure
your code follows the Code Review Guidelines and Best Practices (page 631).

Your SmartApp will be reviewed for the following criteria:

• Does this SmartApp duplicate an existing SmartApp? If so, does it improve the current SmartApp?

• Does it have a good title, description, and configuration preferences? Will the user understand how it works?

• Does the SmartApp work as expected?

Your Device Handler could be rejected by SmartThings review team for any of the following reasons:

• The Device Handler adds minor addition or change that may be changed with a core product or UX change in a
future update.

• SmartThings is already developing a first-party integration and will not accept a Device Handler for this device.

• The Device Handler should actually be a SmartApp instead, because it is actuating or changing a device.

627

SmartThings Classic Developer Documentation, Release latest

• No discovery mechanism is provided. For LAN-Connected devices, a Service Manager SmartApp should serve
to discover and create the device.

• Multiple community submissions exist and SmartThings is rolling up several improvements together, so this
specific one is being rejected.

Once your SmartApp or Device Handler has been approved, it will be published for worldwide public distribution in
SmartThings mobile app.

628 Chapter 162. For public distribution

http://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/understanding-the-service-manage-device-handler-design-pattern.html

Part XVIII

Code Review Guidelines and Best Practices

629

SmartThings Classic Developer Documentation, Release latest

Before submitting your SmartApp or Device Handler, you should ensure that your code adheres to the guidelines
documented here. Any code that does not adhere to these guidelines may be rejected.

This document also serves as a collection of best practices for SmartThings development.

631

SmartThings Classic Developer Documentation, Release latest

632

CHAPTER 163

General

163.1 Code should be readable

Code is executed by machines, but read by humans. Readability can be subjective, but there are some general guide-
lines that should be followed:

• Use meaningful variable and method names.

• Don’t repeat yourself (page 633)

• Methods should serve a single purpose (page 633)

• Comment appropriately (page 634)

163.2 Don’t repeat yourself

Follow the DRY principle (don’t repeat yourself).

Don’t copy/paste code blocks - pull common code out into a shared utility method.

163.3 Methods should serve a single purpose

Methods should serve a single purpose, and be concise. If a method definition doesn’t fit on a standard computer
screen, it’s way too big.

Look for opportunities to split out code into utility methods. For example, parsing a large HTTP response inline can
bloat a method; instead, split out the parsing into a method that can then be called. This facilitates easier understanding
of the code, and promotes better separation of concerns.

163.4 Do not submit unused code

Unused or commented-out code should be removed prior to submitting.

163.5 Do not use offensive, profane, or libelous language

This is pretty self-explanatory - language should be clean and professional.

633

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Separation_of_concerns

SmartThings Classic Developer Documentation, Release latest

163.6 Comment appropriately

Comments can add clarity and context to code when used appropriately. When over-used, they clutter the code and
provide no value.

There are some guidelines that should be followed:

• In general, when the code is doing something out of the ordinary, a comment is appropriate.

• Device Handler custom commands and attributes should have a comment describing the purpose, parameters,
and exception conditions (if applicable).

• Non-trivial methods should be documented with comments describing what it does, its return type, exception
conditions, and parameters. JavaDoc style comments can be used, though there is no tooling in place to generate
documentation from the source.

• Comments should add value - commenting every line of readable code simply clutters the code and is unneces-
sary.

Here’s an example of using comments appropriately for documenting a method:

def capabilityCommands = getDeviceCapabilityCommands(device.capabilities)

/**
* Builds a map of capability names to their supported commands.

*
* @param a list of Capabilities.

* @return a map of device capability -> supported commands.

*/
def getDeviceCapabilityCommands(deviceCapabilities) {

def map = [:]
deviceCapabilities.collect {

map[it.name] = it.commands.collect{ it.name.toString() }
}
return map

}

Here’s an example of an in-line code comment explaining why the code is checking if a percentage value is within a
certain hard-coded range:

log.trace "stopDimmersHandler evt: ${evt.value}"
def percentComplete = completionPercentage()

// Oftentimes, the first thing we do is turn lights on or off,
// so make sure we don't stop as soon as we start
if (percentComplete > 2 && percentComplete < 98) {

...

}

An example of inappropriate comments is below. Note how the comments simply repeat what is obvious by reading
the code; no value is added.

// get all the children
def children = pollChildren()
// iterate over all the children
children.each {child ->

// log each child
log.debug "child: $child"

}

634 Chapter 163. General

https://en.wikipedia.org/wiki/Javadoc#Overview_of_Javadoc

SmartThings Classic Developer Documentation, Release latest

163.7 Handle all if() and switch() cases

Make sure any if() or switch() blocks handle all expected inputs. Forgetting to handle a certain condition can
cause unexpected logic errors.

Also, every switch() statement should have a default: case statement to handle any cases where there is no
match.

163.8 Verify assumptions

If a method operates on some input, it should handle all possible input values, including any differences if the method
is called from a parent or child SmartApp or Device Handler.

163.9 Use consistent return values

Groovy is a dynamically typed language. That’s great for a lot of things, but it’s a sharp knife - highly effective, yet
also easy to cut yourself accidentally.

A method should return a single type of data, regardless of if the method signature is typed or not. For example, don’t
do something like this:

def getSomeResult(input) {
if (input == "option1") {

return true
}
if (input == "option2") {

return false
}
return [name: "someAttribute", value: input]

}

The example above fails to return a consistent data type. Calling clients of this code have to accommodate both a
boolean and map return values. Instead, methods should always return the same data type.

Note: In certain cases, it may make sense for a method to return different types. Such cases are the exception, and
the different types returned, and under what circumstances, should be documented in the method’s comments.

163.10 Be careful indexing into arrays

When parsing data, pay attention to arrays if you use them. Do not index into arrays directly without making sure that
the array actually has enough elements.

Consider the following code that splits a string on the ":" character, and returns the value after the ":":

def getSplitString(input) {
return input.split(":")[1]

}

// -> "123"
getSplitString("abc:123")

163.7. Handle all if() and switch() cases 635

SmartThings Classic Developer Documentation, Release latest

// -> ArrayIndexOutOfBounds exception!
getSplitString("abc:")

Because getSplitString() does not verify that the result of split() split has more than one element, we get
an ArrayIndexOutOfBounds exception when trying to access the second item in the parsed result. In cases like
this, make sure your code verifies the array contains the item:

def getSplitString(input) {
def splitted = input?.split(":")
if (splitted?.size() == 2) {

return splitted[1]
} else {

return null
}

}

163.11 Use the Elvis operator correctly

Groovy supports the Elvis operator, which allows us write more concise conditional expressions than otherwise possi-
ble. However, we need to understand Groovy truth (page 637) to use it effectively.

Consider this example that attempts to set the variable bulbLevel to 100 if it is not already set:

def bulbLevel = settings.level ?: 100

But what happens if settings.level is 0 in the example above? Because Groovy considers zero as false, we’ve
set bulbLevel to 100 !

The above expression should be rewritten as:

def bulbLevel = settings.level == null ?: 100

163.12 Handle null values

Important: NullPointerExceptions are one of the most frequently occurring exceptions on the SmartThings platform
- take care to avoid them!

This is very common in LAN and SSDP interactions, so always double check that code.

A NullPointerException will terminate the SmartApp or Device Handler execution, but can be avoided easily
with the safe navigation (?) operator. Any code that may encounter a null value should anticipate and handle this.

The examples below show a few common scenarios in which null is possible, and how to deal with it using the ?
operator:

// if the LAN event does not have headers, or a "content-type" header,
// don't blow up with a NullPointerException!
if (lanEvent.headers?."content-type"?.contains("xml")) { ... }

// if a location does not have any modes, statement simply returns null
// but does not throw a NullPointerException
if (location.modes?.find{it.name == newMode}) { ... }

636 Chapter 163. General

http://groovy-lang.org/operators.html#_safe_navigation_operator

SmartThings Classic Developer Documentation, Release latest

163.13 Use Groovy truth correctly

Be aware of, and ensure your code is consistent with, what Groovy considers true and false. Groovy truth is docu-
mented here.

Here are some gotchas to be aware of:

• Empty strings are considered false; non-empty strings are considered true.

• Empty maps and lists are considered false; non-empty maps and lists are considered true.

• Zero is considered false; non-zero numbers are considered true.

Consider the following example that verifies that a number is between 0 and 100:

def verifyLevel(level) {
if (!level) {

return false
} else {

return (level >= 0 && level <= 100)
}

}

If we call verifyLevel(0), the result is false, because 0 is treated as false by Groovy. Instead, it should be
written as:

def verifyLevel(level) {
return (level instanceof Number && level >= 0 && level <= 100)

}

This can be a common source of errors; make sure you understand and use Groovy truth appropriately.

163.13. Use Groovy truth correctly 637

http://groovy-lang.org/semantics.html#Groovy-Truth

SmartThings Classic Developer Documentation, Release latest

638 Chapter 163. General

CHAPTER 164

Using State

164.1 state is not an unbounded database

state (SmartApps and Device Handlers) and atomicState (SmartApps only) are provided to persist small
amounts of data across executions. Do not think of state as a virtually unlimited database for your app.

The amount of data that can be stored in state is limited (page 323). Avoid code that adds items to state regularly
(perhaps in response to Events or schedules), but does not remove items.

164.2 Understand how state works

Remember that when using state, the results are not persisted until the app is done executing (page 317). This can
have unintended consequences, such as state values being overridden by another concurrently executing instance of
the SmartApp.

164.3 Understand when to use atomicState vs. state

Understand the difference (page 318) between atomicState and state, make sure you use the correct one for
your needs, and avoid using both in the same SmartApp.

164.4 Take care when storing collections in atomicState

Modifying collections in Atomic State does not work as it does with State. Read the documentation (page 323) to
understand how to best work with collections stored in Atomic State.

639

SmartThings Classic Developer Documentation, Release latest

640 Chapter 164. Using State

CHAPTER 165

Web Services

165.1 Document external HTTP requests

HTTP requests (page 365) to outside services should be documented, explaining the need to make external requests,
what data is sent, and how it will be used. Please also include a comment with a link to the third party’s privacy policy,
if applicable.

165.2 Document any exposed endpoints

If your SmartApp or Device Handler exposes any endpoints (page 435), add comments that document what the API
will be used for, what data may be accessed by those APIs, and where possible, include a link to the privacy policies
of any remote services that may access those APIs.

641

SmartThings Classic Developer Documentation, Release latest

642 Chapter 165. Web Services

CHAPTER 166

Scheduling

166.1 Avoid recurring short schedules

Scheduled and other periodic functions should not execute more often than every five minutes, unless there is a good
reason for it, and the reviewers agree.

If your code executes more frequently than every five minutes, add a comment to your code explaining why this is
necessary.

166.2 Avoid chained runIn() calls

Do not chain runIn() calls (page 353).

If for some reason it is necessary, add a comment describing why it is necessary.

643

SmartThings Classic Developer Documentation, Release latest

644 Chapter 166. Scheduling

CHAPTER 167

Security considerations

167.1 Subscriptions should be clear

It is possible to subscribe to Events using a string variable, so what the SmartApp is subscribing to might be somewhat
opaque.

For example:

def myContactSubscription = "contact.open"

...

subscribe(contact1, myContactSubscription, myContactHandler)

The best practice is to subscribe explicitly to the attribute:

subscribe(contact1, "contact.open", myContactHandler)

However, if the SmartApp must subscribe to a variable (from state, for instance), the reviewer should be able to trace
how the variable is set and what the expected attribute will be.

167.2 Subscriptions should be specific

Do not create overly-broad subscriptions.

A SmartApp that is subscribed to every location Event will execute excessively, and is rarely necessary. Instead, create
subscriptions specific to the Event you are interested in.

If you’re creating a service manager for a LAN-connected device, be sure to subscribe to the device search target
(page 563).

167.3 Do not use dynamic method execution

In groovy you can execute functions based on a string, like so:

object."${mystring}"()

Which can be very handy, but when ${mystring} comes from a HTTP request, outside the SmartThings platform,
or from another SmartApp or Device Handler, we need to validate the input.

645

SmartThings Classic Developer Documentation, Release latest

The preferred method of validation is to use a switch() statement on the input before doing anything with it:

switch(mystring) {
case "cmd1":

object.cmd1()
break

case "cmd2":
object.cmd2()
break

case "cmd3":
object.cmd3()
break

default:
return "ERROR"

}

167.4 Do not hard-code SMS messages

Notifications should never be sent to a hard-coded number. They should always use a number provided by the user
using the contact input (page 385) (even though Contact Book is not enabled, the contact input type is available and
contains a fall-back mechanism for non-Contact Book users. Using this future-proofs your SmartApp).

646 Chapter 167. Security considerations

CHAPTER 168

Performance

168.1 Do not use busy loops

There is no good reason for the code to run busy loops. Don’t do things like this:

def mywait(ms) {
def start = now()
while (now() < start + ms) {

// do nothing, just wait
}

}

The goal of the above code is to delay execution for a number of milliseconds. This wastes resources and increases
the likelihood that the 20 second execution limit will be exceeded.

Instead of trying to force a delay in execution, you should schedule (page 345) a future execution of your app.

168.2 Do not use synchronized()

Using synchronized incurs a performance overhead, and is highly unlikely to have any effect. It should not be
used.

When a SmartApp or Device Handler executes, it is executing on one of n available servers assigned for that Location,
where n is variable depending on Location, current load, and other factors. Concurrent executions of the SmartApp or
Device Handler are not guaranteed, or even likely, to be executing on the same server. Because of this, trying to force
synchronous behavior by using synchronized would only work in the rare occurrence that a concurrent execution
happens on the same server, yet it always incurs overhead.

647

SmartThings Classic Developer Documentation, Release latest

648 Chapter 168. Performance

CHAPTER 169

LAN-specific

169.1 Use the device-specific search

Service managers for LAN-connected devices should subscribe to the device search target (page 563) for device
discovery.

169.2 Handle IP change

Service managers for LAN-connected devices should handle any IP change (page 565). This can happen when the
router power cycles and loses its DHCP mappings.

649

SmartThings Classic Developer Documentation, Release latest

650 Chapter 169. LAN-specific

CHAPTER 170

Parent-child relationships

170.1 Use separate files

When using a parent-child relationship, be it a parent SmartApp with child devices, or a parent SmartApp with child
SmartApps, the parent and child should exist in separate files.

Putting the parent and child code in the same file leads to file size bloat, makes the code harder to understand, is
error-prone, and difficult to debug.

651

SmartThings Classic Developer Documentation, Release latest

652 Chapter 170. Parent-child relationships

Part XIX

Capabilities Reference

653

SmartThings Classic Developer Documentation, Release latest

Important: The Capabilities in this document are supported in the SmartThings Classic mobile app. Visit the
SmartThings Developer Portal for the Capabilities supported in the new SmartThings app.

655

https://smartthings.developer.samsung.com/develop/api-ref/capabilities.html

SmartThings Classic Developer Documentation, Release latest

656

CHAPTER 171

Introduction

Capabilities are core to the SmartThings architecture. They allow us to abstract specific devices into their underlying
capabilities. An application interacts with devices based on their capabilities, so once we understand the capabilities
that are needed by a SmartApp, and the capabilities that are provided by a device, we can understand which devices
(based on the Device’s declared capabilities) are eligible for use within a specific SmartApp. Capabilities themselves
are decomposed into both Commands and Attributes. Commands represent ways in which you can control or actuate
the device, whereas Attributes represent state information or properties of the device. Capabilities are created and
maintained by the SmartThings development team. This page serves as a reference for the supported capabilities.

657

SmartThings Classic Developer Documentation, Release latest

658 Chapter 171. Introduction

CHAPTER 172

Data Types

Before we present the Capabilities, it’s worth covering the various data types associated with Attributes and Com-
mands. Note that these data types are guidelines as to how actual values can be represented. In most cases, the
SmartThings platform contains the implementation logic and defines the actual objects for these data types. Below is
a table outlining the the possible data types and what they mean.

Data
Type

Example Description

STRING “This is a String” Represents character strings
NUM-
BER

5, 10.67 The Number data type is a guideline indicating that a number should be
expected, and not a specific type. Device Handlers contain the implementation
of what kind of number object is actually returned.

VEC-
TOR3

(x,y,z) This Data Type is a representation of x,y,z coordinates in space. Device
Handlers contain the implementation of the actual data structure, but it is
usually as a Map: [x: 0, y: 0, z: 0].

ENUM “one”, “two”,
“three”

The Enum Data Type is a static set of predefined String values that an Attribute
can have, or that a Command can accept as an argument.

DY-
NAMIC_ENUM

“Any”, “value” Much like the Enum Data Type, Dynamic Enum is a set of String values.
However, the set is not static or predefined.

COLOR_MAP[hue: 50,
saturation:
75]

The Color Map is a Map specifically for the use of color control. As such, the
Map should contain a Hue and a Saturation value.

JSON_OBJECT A standard JSON object. Device Handlers contain the implementation and thus
should be consulted when looking for the JSON object structure.

DATE A Date, usually represented as a java.util.Date object.
BOOLEAN true, false A boolean data type with a value of true or false.

659

SmartThings Classic Developer Documentation, Release latest

660 Chapter 172. Data Types

CHAPTER 173

Acceleration Sensor

The Acceleration Sensor capability allows for acceleration detection. Some use cases for SmartApps using this capa-
bility would be detecting if a washing machine is vibrating, or if a case has moved (particularly useful for knowing if
a weapon case has been moved).

173.1 Definition

reviewed 2018-01-03
name: Acceleration Sensor
status: live
attributes:

acceleration:
schema:

type: object
properties:

value:
$ref: ActivityState

required: ["value"]
type: ENUM
values:

- active
- inactive

commands: {
}

public: true
id: accelerationSensor
ocfResourceType: x.com.st.acceleration
version: 1

661

SmartThings Classic Developer Documentation, Release latest

662 Chapter 173. Acceleration Sensor

CHAPTER 174

Actuator

The Actuator capability is a “tagging” capability. It defines no attributes or commands. In SmartThings terms, it
represents that a Device has commands.

174.1 Definition

reviewed 2018-02-01
name: Actuator
status: deprecated
attributes: {

}
commands: {

}
public: true
id: actuator
version: 1

663

SmartThings Classic Developer Documentation, Release latest

664 Chapter 174. Actuator

CHAPTER 175

Air Conditioner Mode

Allows for the control of the air conditioner.

175.1 Definition

reviewed 2018-01-03
name: Air Conditioner Mode
status: proposed
attributes:

airConditionerMode:
schema:

type: object
properties:

value:
$ref: HvacMode

required: ["value"]
type: ENUM
values:

- auto
- cool
- dry
- coolClean
- dryClean
- fanOnly
- heat
- heatClean
- notSupported

setter: setAirConditionerMode
commands:

setAirConditionerMode:
arguments:
- name: mode

required: true
schema:

$ref: HvacMode
type: ENUM
values:

- auto
- cool
- dry
- coolClean

665

SmartThings Classic Developer Documentation, Release latest

- dryClean
- fanOnly
- heat
- heatClean
- notSupported

public: true
id: airConditionerMode
ocfResourceType: x.com.st.mode.airconditioner
version: 1

666 Chapter 175. Air Conditioner Mode

CHAPTER 176

Air Quality Sensor

Gets the air quality number.

176.1 Definition

reviewed 2018-01-11
name: Air Quality Sensor
status: proposed
attributes:

airQuality:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER

commands: {
}

public: true
id: airQualitySensor
ocfResourceType: x.com.st.airqualitylevel
version: 1

667

SmartThings Classic Developer Documentation, Release latest

668 Chapter 176. Air Quality Sensor

CHAPTER 177

Alarm

The Alarm capability allows for interacting with devices that serve as alarms

177.1 Definition

reviewed 2018-01-03
name: Alarm
status: live
attributes:

alarm:
schema:

type: object
properties:

value:
$ref: AlertState

required: ["value"]
type: ENUM
values:

- both
- 'off'
- siren
- strobe

enumCommands:
- command: both

value: both
- command: 'off'

value: 'off'
- command: siren

value: siren
- command: strobe

value: strobe
commands:

both:
arguments: [

]
'off':
arguments: [

]
siren:
arguments: [

]

669

SmartThings Classic Developer Documentation, Release latest

strobe:
arguments: [

]
public: true
id: alarm
ocfResourceType: x.com.st.alarm
version: 1

670 Chapter 177. Alarm

CHAPTER 178

Audio Mute

Allows for the control of audio mute.

178.1 Definition

reviewed 2018-02-01
name: Audio Mute
status: live
attributes:

mute:
schema:

type: object
properties:

value:
$ref: MuteState

required:
- value

type: ENUM
values:

- muted
- unmuted

setter: setMute
enumCommands:

- command: mute
value: muted

- command: unmute
value: unmuted

commands:
setMute:
arguments:
- name: state

required: true
schema:

$ref: MuteState
type: ENUM
values:

- muted
- unmuted

mute:
arguments: [

]

671

SmartThings Classic Developer Documentation, Release latest

unmute:
arguments: [

]
public: true
id: audioMute
version: 1

672 Chapter 178. Audio Mute

CHAPTER 179

Audio Notification

Play a track or a message as an audio notification

179.1 Definition

reviewed 2018-01-03
name: Audio Notification
status: proposed
attributes: {

}
commands:

playTrack:
arguments:
- name: uri

required: true
schema:

$ref: URI
type: STRING

- name: level
schema:

$ref: IntegerPercent
type: NUMBER
required: false

playTrackAndResume:
arguments:
- name: uri

required: true
schema:

$ref: URI
type: STRING

- name: level
schema:

type: integer
minimum: 0
maximum: 100

type: NUMBER
required: false

playTrackAndRestore:
arguments:
- name: uri

required: true

673

SmartThings Classic Developer Documentation, Release latest

schema:
$ref: URI

type: STRING
- name: level

schema:
type: integer
minimum: 0
maximum: 100

type: NUMBER
required: false

public: true
id: audioNotification
ocfResourceType: x.com.st.audionotification
version: 1

674 Chapter 179. Audio Notification

CHAPTER 180

Audio Track Data

Gets the value of the audio track data.

180.1 Definition

reviewed 2018-02-01
name: Audio Track Data
status: proposed
attributes:

audioTrackData:
schema:

type: object
properties:

value:
$ref: AudioTrackAddress

required:
- value

type: JSON_OBJECT
commands: {

}
public: true
id: audioTrackData
ocfResourceType: x.com.st.audiotrackdata
version: 1

675

SmartThings Classic Developer Documentation, Release latest

676 Chapter 180. Audio Track Data

CHAPTER 181

Audio Volume

Allows for the control of audio volume.

181.1 Definition

reviewed 2018-01-03
name: Audio Volume
status: proposed
attributes:

volume:
schema:

$ref: IntegerPercent
type: NUMBER
setter: setVolume
actedOnBy:

- volumeUp
- volumeDown

commands:
setVolume:
arguments:
- name: volume

required: true
schema:

type: integer
minimum: 0
maximum: 100

type: NUMBER
volumeUp:
arguments: [

]
volumeDown:
arguments: [

]
public: true
id: audioVolume
ocfResourceType: x.com.st.audiovolume
version: 1

677

SmartThings Classic Developer Documentation, Release latest

678 Chapter 181. Audio Volume

CHAPTER 182

Battery

Defines that the device has a battery

182.1 Definition

reviewed 2018-01-03
name: Battery
status: live
attributes:

battery:
schema:

$ref: IntegerPercent
type: NUMBER
unit: '%'

commands: {
}

public: true
id: battery
ocfResourceType: oic.r.energy.battery
version: 1

679

SmartThings Classic Developer Documentation, Release latest

680 Chapter 182. Battery

CHAPTER 183

Beacon

Detect whether or not the beacon is present

183.1 Definition

reviewed 2018-02-01
name: Beacon
status: deprecated
attributes:

presence:
schema:

type: object
properties:

value:
$ref: PresenceState

required:
- value

type: ENUM
values:

- not present
- present

commands: {
}

public: true
id: beacon
version: 1

681

SmartThings Classic Developer Documentation, Release latest

682 Chapter 183. Beacon

CHAPTER 184

Bridge

The Bridge capability is a “tagging” capability. It defines no attributes or commands. In SmartThings terms, it
represents that a Device is a bridge to other devices.

184.1 Definition

reviewed 2018-02-01
name: Bridge
status: deprecated
attributes: {

}
commands: {

}
public: true
id: bridge
version: 1

683

SmartThings Classic Developer Documentation, Release latest

684 Chapter 184. Bridge

CHAPTER 185

Bulb

Allows for the control of a bulb device

185.1 Definition

reviewed 2018-01-11
name: Bulb
status: dead
attributes:

switch:
schema:

type: object
properties:

value:
$ref: SwitchState

required: ["value"]
type: ENUM
values:

- 'off'
- 'on'

enumCommands:
- command: 'off'

value: 'off'
- command: 'on'

value: 'on'
commands:

'off':
arguments: [

]
'on':
arguments: [

]
public: true
id: bulb
version: 1

685

SmartThings Classic Developer Documentation, Release latest

686 Chapter 185. Bulb

CHAPTER 186

Button

A device with one or more buttons

186.1 Definition

reviewed 2018-02-22
name: Button
status: deprecated
attributes:

button:
schema:

type: object
properties:

value:
$ref: ButtonState

required:
- value

type: ENUM
values:

- held
- pushed

numberOfButtons:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required:
- value

type: NUMBER
commands: {

}
public: true
id: button
ocfResourceType: x.com.st.button
version: 1

687

SmartThings Classic Developer Documentation, Release latest

688 Chapter 186. Button

CHAPTER 187

Carbon Dioxide Measurement

Measure carbon dioxide levels

187.1 Definition

reviewed 2018-02-20
name: Carbon Dioxide Measurement
status: live
attributes:

carbonDioxide:
schema:

type: object
properties:

value:
type: integer
minimum: 0
maximum: 1000000

unit:
type: string
enum:

- ppm
default:

- ppm
required:

- value
type: NUMBER

commands: {
}

public: true
id: carbonDioxideMeasurement
version: 1

689

SmartThings Classic Developer Documentation, Release latest

690 Chapter 187. Carbon Dioxide Measurement

CHAPTER 188

Carbon Monoxide Detector

Measure carbon monoxide levels

188.1 Definition

reviewed 2018-01-09
name: Carbon Monoxide Detector
status: live
attributes:

carbonMonoxide:
schema:

type: object
properties:

value:
$ref: CarbonMonoxideState

required: ["value"]
type: ENUM
values:

- clear
- detected
- tested

commands: {
}

public: true
id: carbonMonoxideDetector
ocfResourceType: x.com.st.carbonmonoxidedetector
version: 1

691

SmartThings Classic Developer Documentation, Release latest

692 Chapter 188. Carbon Monoxide Detector

CHAPTER 189

Color Control

Allows for control of a color changing device by setting its hue, saturation, and color values

189.1 Definition

reviewed 2018-01-16
name: Color Control
status: live
attributes:

color:
schema:

type: object
properties:

value:
$ref: String

type: STRING
setter: setColor
actedOnBy:

- setHue
- setSaturation

hue:
schema:

type: object
properties:

value:
$ref: PositiveInteger

type: NUMBER
setter: setHue

saturation:
schema:

type: object
properties:

value:
$ref: PositiveInteger

type: NUMBER
setter: setSaturation

commands:
setColor:
arguments:
- name: color

required: true

693

SmartThings Classic Developer Documentation, Release latest

type: COLOR_MAP
schema:

type: object
properties:
value:
$ref: color-map

setHue:
arguments:
- name: hue

required: true
schema:

$ref: PositiveInteger
type: NUMBER

setSaturation:
arguments:
- name: saturation

required: true
schema:

$ref: PositiveInteger
type: NUMBER

public: true
id: colorControl
ocfResourceType: oic.r.colour.chroma
version: 1

694 Chapter 189. Color Control

CHAPTER 190

Color Temperature

Set the color temperature attribute of a color changing device

190.1 Definition

reviewed 2018-01-16
name: Color Temperature
status: live
attributes:

colorTemperature:
schema:

type: object
properties:

value:
type: integer
minimum: 1
maximum: 30000

unit:
type: string
enum:
- K

default: K
required:

- value
type: NUMBER
setter: setColorTemperature

commands:
setColorTemperature:
arguments:
- name: temperature

required: true
schema:

type: integer
minimum: 1
maximum: 30000

type: NUMBER
public: true
id: colorTemperature
ocfResourceType: x.com.st.color.temperature
version: 1

695

SmartThings Classic Developer Documentation, Release latest

696 Chapter 190. Color Temperature

CHAPTER 191

Color

Allows for control of a color changing device by setting its hue and saturation.

191.1 Definition

reviewed 2018-01-16
id: color
status: proposed
public: true
name: Color
attributes:

colorValue:
schema:

type: object
properties:

value:
type: object
properties:

hue:
type: number
minimum: 0.0
maximum: 360.0

saturation:
type: number
minimum: 0.0
maximum: 100.0

required:
- value

setter: setColorValue
type: JSON_OBJECT

commands:
setColorValue:
arguments:

- name: colorValue
required: true
schema:
type: object
properties:

hue:
type: number
minimum: 0.0

697

SmartThings Classic Developer Documentation, Release latest

maximum: 360.0
saturation:
type: number
minimum: 0.0
maximum: 100.0

required:
- hue
- saturation

type: JSON_OBJECT
- name: switchLevel

schema:
type: integer
minimum: 0
maximum: 100

type: NUMBER
required: false

version: 1

698 Chapter 191. Color

CHAPTER 192

Color Mode

Describes if a device is in color or color temperature mode if it supports both since state is mutually exclusive.

192.1 Definition

reviewed 2018-01-16
id: colorMode
status: proposed
public: true
name: Color Mode
attributes:

colorMode:
schema:

type: object
properties:

value:
type: string
enum:

- color
- colorTemperature
- other

type: ENUM
values:

- color
- colorTemperature
- other

commands: {}
version: 1

699

SmartThings Classic Developer Documentation, Release latest

700 Chapter 192. Color Mode

CHAPTER 193

Configuration

Allow configuration of devices that support it

193.1 Definition

reviewed 2018-02-20
name: Configuration
status: live
attributes: {

}
commands:

configure:
arguments: [

]
public: true
id: configuration
version: 1

701

SmartThings Classic Developer Documentation, Release latest

702 Chapter 193. Configuration

CHAPTER 194

Consumable

For devices with replaceable components

194.1 Definition

reviewed 2018-02-20
name: Consumable
status: proposed
attributes:

consumableStatus:
schema:

type: object
properties:

value:
$ref: ConsumableState

required:
- value

type: ENUM
values:

- good
- maintenance_required
- missing
- order
- replace

setter: setConsumableStatus
commands:

setConsumableStatus:
arguments:
- name: status

required: true
schema:

$ref: ConsumableState
type: ENUM
values:

- good
- maintenance_required
- missing
- order
- replace

public: true
id: consumable
version: 1

703

SmartThings Classic Developer Documentation, Release latest

704 Chapter 194. Consumable

CHAPTER 195

Contact Sensor

Allows reading the value of a contact sensor device

195.1 Definition

reviewed 2018-01-09
name: Contact Sensor
status: live
attributes:

contact:
schema:

type: object
properties:

value:
$ref: ContactState

required: ["value"]
type: ENUM
values:

- closed
- open

commands: {
}

public: true
id: contactSensor
ocfResourceType: oic.r.sensor.contact
version: 1

705

SmartThings Classic Developer Documentation, Release latest

706 Chapter 195. Contact Sensor

CHAPTER 196

Demand Response Load Control

Allows requests to be made to appliances to temporarily reduce their energy usage to reduce demand on the power
grid

196.1 Definition

name: Demand Response Load Control
status: proposed
attributes:

drlcStatus:
schema:

type: object
properties:

value:
$ref: DemandResponseLoadControlStatus

required: ["value"]
type: JSON_OBJECT

commands:
requestDrlcAction:
arguments:
- name: drlcType

required: true
schema:

$ref: DrlcType
type: NUMBER

- name: drlcLevel
required: true
schema:

$ref: DrlcLevel
type: NUMBER

- name: start
required: true
schema:

$ref: Iso8601Date
type: STRING

- name: duration
required: true
schema:

$ref: PositiveInteger
type: NUMBER

- name: reportingPeriod

707

SmartThings Classic Developer Documentation, Release latest

schema:
$ref: PositiveInteger

type: NUMBER
required: false

overrideDrlcAction:
arguments:
- name: value

required: true
schema:

type: boolean
type: BOOLEAN

public: true
id: demandResponseLoadControl
ocfResourceType: oic.r.energy.drlc #https://oneiota.org/revisions/1761
version: 1

708 Chapter 196. Demand Response Load Control

CHAPTER 197

Dishwasher Mode

Allows for the control of the dishwasher.

197.1 Definition

name: Dishwasher Mode
status: proposed
attributes:

dishwasherMode:
schema:

type: object
properties:

value:
$ref: DishwasherMode

required: ["value"]
type: ENUM
values:

- auto
- quick
- rinse
- dry

setter: setDishwasherMode
commands:

setDishwasherMode:
arguments:
- name: mode

required: true
schema:

$ref: DishwasherMode
type: ENUM
values:

- auto
- quick
- rinse
- dry

public: true
id: dishwasherMode
ocfResourceType: x.com.st.mode.dishwasher
version: 1

709

SmartThings Classic Developer Documentation, Release latest

710 Chapter 197. Dishwasher Mode

CHAPTER 198

Dishwasher Operating State

Allows for the control of the dishwasher operational state.

198.1 Definition

name: Dishwasher Operating State
status: proposed
attributes:

machineState:
schema:

type: object
properties:

value:
$ref: MachineState

constraints:
type: object
properties:

values:
type: array
items:
$ref: MachineState

required: ["value"]
type: ENUM
values:

- pause
- run
- stop

setter: setMachineState
supportedMachineStates:
schema:

type: object
properties:

value:
type: array
items:

$ref: MachineState
requires:

- value
type: JSON_OBJECT

dishwasherJobState:
schema:

711

SmartThings Classic Developer Documentation, Release latest

type: object
properties:

value:
$ref: DishwasherJobState

constraints:
type: object
properties:
values:
type: array
items:
$ref: DishwasherJobState

required: ["value"]
type: ENUM
values:

- airwash
- cooling
- drying
- finish
- preDrain
- prewash
- rinse
- spin
- unknown
- wash
- wrinklePrevent

completionTime:
schema:

type: object
properties:

value:
$ref: Iso8601Date

required:
- value

type: DATE
commands:

setMachineState:
arguments:
- name: state

required: true
schema:

$ref: MachineState
type: ENUM
values:
- pause
- run
- stop

public: true
id: dishwasherOperatingState
ocfResourceType: x.com.st.operationalstate.dishwasher
version: 1

712 Chapter 198. Dishwasher Operating State

CHAPTER 199

Door Control

Allow for the control of a door

199.1 Definition

reviewed 2018-02-20
name: Door Control
status: live
attributes:

door:
schema:

type: object
properties:

value:
type: string
enum:

- closed
- closing
- open
- opening
- unknown

constraints:
type: object
properties:
values:
type: array
items:
type: string
enum:
- closed
- closing
- open
- opening
- unknown

required:
- value

type: ENUM
values:

- closed
- closing
- open

713

SmartThings Classic Developer Documentation, Release latest

- opening
- unknown

enumCommands:
- command: close

value: closed
- command: open

value: open
commands:

close:
arguments: [

]
open:
arguments: [

]
public: true
id: doorControl
ocfResourceType: x.com.st.doorcontrol
version: 1

714 Chapter 199. Door Control

CHAPTER 200

Dryer Mode

Allows for the control of the dryer.

200.1 Definition

name: Dryer Mode
status: proposed
attributes:

dryerMode:
schema:

type: object
properties:

value:
$ref: DryerMode

constraints:
type: object
properties:

values:
type: array
items:
$ref: DryerMode

required: ["value"]
type: ENUM
values:

- regular
- lowHeat
- highHeat

setter: setDryerMode
commands:

setDryerMode:
arguments:
- name: mode

required: true
schema:

$ref: DryerMode
type: ENUM
values:

- regular
- lowHeat
- highHeat

public: true

715

SmartThings Classic Developer Documentation, Release latest

id: dryerMode
ocfResourceType: x.com.st.mode.dryer
version: 1

716 Chapter 200. Dryer Mode

CHAPTER 201

Dryer Operating State

Allows for the control of the dryer operational state.

201.1 Definition

name: Dryer Operating State
status: proposed
attributes:

machineState:
schema:

type: object
properties:

value:
$ref: MachineState

constraints:
type: object
properties:

values:
type: array
items:
$ref: MachineState

required: ["value"]
type: ENUM
values:

- pause
- run
- stop

setter: setMachineState
supportedMachineStates:
schema:

type: object
properties:

value:
type: array
items:

$ref: MachineState
required: ["value"]

type: JSON_OBJECT
dryerJobState:
schema:

type: object

717

SmartThings Classic Developer Documentation, Release latest

properties:
value:
$ref: DryerJobState

constraints:
type: object
properties:
values:
type: array
items:
$ref: DryerJobState

required: ["value"]
type: ENUM
values:

- cooling
- delayWash
- drying
- finished
- none
- weightSensing
- wrinklePrevent

completionTime:
schema:

type: object
properties:

value:
$ref: Iso8601Date

required:
- value

type: DATE
commands:

setMachineState:
arguments:
- name: state

required: true
schema:

$ref: MachineState
type: ENUM
values:

- pause
- run
- stop

public: true
id: dryerOperatingState
ocfResourceType: x.com.st.operationalstate.dryer
version: 1

718 Chapter 201. Dryer Operating State

CHAPTER 202

Dust Sensor

Gets the reading of the dust sensor.

202.1 Definition

name: Dust Sensor
status: proposed
attributes:

fineDustLevel:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER

dustLevel:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER

commands: {
}

public: true
id: dustSensor
ocfResourceType: x.com.st.dustlevel
version: 1

719

SmartThings Classic Developer Documentation, Release latest

720 Chapter 202. Dust Sensor

CHAPTER 203

Energy Meter

Read the energy consumption of an energy metering device

203.1 Definition

reviewed 2018-02-20
name: Energy Meter
status: live
attributes:

energy:
schema:

type: object
properties:

value:
type: number

unit:
type: string
enum:

- kWh
default: kWh

required:
- value

type: NUMBER
commands: {

}
public: true
id: energyMeter
ocfResourceType: x.com.st.energymeter
version: 1

721

SmartThings Classic Developer Documentation, Release latest

722 Chapter 203. Energy Meter

CHAPTER 204

Estimated Time Of Arrival

Allow access to estimated time of arrival values for devices that support it, for example automobiles

204.1 Definition

reviewed 2018-02-20
name: Estimated Time Of Arrival
status: proposed
attributes:

eta:
schema:

type: object
properties:

value:
$ref: Iso8601Date

required:
- value

type: DATE
commands: {

}
public: true
id: estimatedTimeOfArrival
version: 1

723

SmartThings Classic Developer Documentation, Release latest

724 Chapter 204. Estimated Time Of Arrival

CHAPTER 205

Execute

Allows for raw messages to be passed to a device.

205.1 Definition

name: Execute
status: proposed
attributes:

data:
schema:

type: object
properties:
value:

$ref: JsonObject
required:
- value

type: JSON_OBJECT
actedOnBy:

- 'execute'
commands:

'execute':
arguments:

- name: command
required: true
type: STRING
schema:
$ref: String

- name: args
schema:
$ref: JsonObject

type: JSON_OBJECT
required: false

public: true
id: execute
version: 1

725

SmartThings Classic Developer Documentation, Release latest

726 Chapter 205. Execute

CHAPTER 206

Fan Speed

Allows for the control of the fan speed.

206.1 Definition

name: Fan Speed
status: proposed
attributes:

fanSpeed:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER
setter: setFanSpeed

commands:
setFanSpeed:
arguments:
- name: speed

required: true
schema:

$ref: PositiveInteger
type: NUMBER

public: true
id: fanSpeed
ocfResourceType: x.com.st.fanspeed
version: 1

727

SmartThings Classic Developer Documentation, Release latest

728 Chapter 206. Fan Speed

CHAPTER 207

Filter Status

Gets the status of the filter.

207.1 Definition

name: Filter Status
status: proposed
attributes:

filterStatus:
schema:

type: object
properties:

value:
type: string
enum:

- normal
- replace

required: ["value"]
type: ENUM
values:

- normal
- replace

commands: {
}

public: true
id: filterStatus
ocfResourceType: x.com.st.filter
version: 1

729

SmartThings Classic Developer Documentation, Release latest

730 Chapter 207. Filter Status

CHAPTER 208

Garage Door Control

Allow for the control of a garage door. Deprecated in favor of Door Control.

208.1 Definition

reviewed 2018-02-20
name: Garage Door Control
status: deprecated
attributes:

door:
schema:

type: object
properties:

value:
type: string
enum:

- closed
- closing
- open
- opening
- unknown

constraints:
type: object
properties:
values:
type: array
items:
type: string
enum:
- closed
- closing
- open
- opening
- unknown

required:
- value

type: ENUM
values:

- closed
- closing
- open

731

SmartThings Classic Developer Documentation, Release latest

- opening
- unknown

enumCommands:
- command: close

value: closed
- command: open

value: open
commands:

close:
arguments: [

]
open:
arguments: [

]
public: true
id: garageDoorControl
ocfResourceType: x.com.st.garagedoorcontrol
version: 1

732 Chapter 208. Garage Door Control

CHAPTER 209

Geolocation

Gets the value of the geo location.

209.1 Definition

id: geolocation
name: Geolocation
status: proposed
public: true
attributes:

latitude:
schema:

type: object
properties:

value:
type: integer
maximum: 90
minimum: -90

type: NUMBER
longitude:
schema:

type: object
properties:

value:
type: integer
maximum: 180
minimum: -180

type: NUMBER
method:
schema:

type: object
properties:

value:
$ref: String

type: STRING
accuracy:
schema:

type: object
properties:

value:
type: number

733

SmartThings Classic Developer Documentation, Release latest

minimum: 0
maximum: ??

type: NUMBER
altitudeAccuracy:
schema:

type: object
properties:

value:
type: number
minimum: 0
maximum: ??

type: NUMBER
heading:
schema:

type: object
properties:

value:
type: number
minimum: 0
maximum: 360

type: NUMBER
speed:
schema:

type: object
properties:

value:
type: number
minimum: 0
maximum: ??

type: NUMBER
lastUpdateTime:
schema:

type: object
properties:

value:
$ref: PositiveInteger

type: NUMBER

commands: {
}

version: 1

734 Chapter 209. Geolocation

CHAPTER 210

Holdable Button

A device with one or more holdable buttons. Deprecated in favor of Button.

210.1 Definition

reviewed 2018-2-20
name: Holdable Button
status: deprecated
attributes:

button:
schema:

type: object
properties:

value:
type: string
enum:

- held
- pushed

required:
- value

type: ENUM
values:

- held
- pushed

numberOfButtons:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required:
- value

type: NUMBER
commands: {

}
public: true
id: holdableButton
version: 1

735

SmartThings Classic Developer Documentation, Release latest

736 Chapter 210. Holdable Button

CHAPTER 211

Illuminance Measurement

Gives the illuminance reading from devices that support it

211.1 Definition

reviewed 2018-01-09
name: Illuminance Measurement
status: live
attributes:

illuminance:
schema:

type: object
properties:

value:
type: number
minimum: 0
maximum: 100000

unit:
type: string
enum:

- lux
default: lux

required: ["value"]
type: NUMBER
unit: lux

commands: {
}

public: true
id: illuminanceMeasurement
ocfResourceType: oic.r.sensor.illuminance
version: 1

737

SmartThings Classic Developer Documentation, Release latest

738 Chapter 211. Illuminance Measurement

CHAPTER 212

Image Capture

Allows for the capture of an image on devices that support it

212.1 Definition

reviewed 2018-2-20
name: Image Capture
status: proposed
attributes:

image:
schema:

type: object
properties:

value:
$ref: URL

required:
- value

type: STRING
setter: take

commands:
take:
arguments: [

]
public: true
id: imageCapture
ocfResourceType: x.com.st.imagecapture
version: 1

739

SmartThings Classic Developer Documentation, Release latest

740 Chapter 212. Image Capture

CHAPTER 213

Indicator

The indicator capability gives you the ability to set the indicator LED light on a Z-Wave switch. As such, the most
common use case for the indicator capability is in a Device Handler.

213.1 Definition

reviewed 2018-2-20
name: Indicator
status: deprecated
attributes:

indicatorStatus:
schema:

type: object
properties:

value:
type: string
enum:

- never
- when off
- when on

required:
- value

type: ENUM
values:
- never
- when off
- when on
enumCommands:

- command: indicatorNever
value: never

- command: indicatorWhenOff
value: when off

- command: indicatorWhenOn
value: when on

commands:
indicatorNever:
arguments: [

]
indicatorWhenOff:
arguments: [

]

741

SmartThings Classic Developer Documentation, Release latest

indicatorWhenOn:
arguments: [

]
public: true
id: indicator
version: 1

742 Chapter 213. Indicator

CHAPTER 214

Infrared Level

Allows for the control of the infrared level attribute of a device

214.1 Definition

reviewed 2018-2-20
name: Infrared Level
status: live
attributes:

infraredLevel:
schema:

$ref: Percent
type: NUMBER
setter: setInfraredLevel

commands:
setInfraredLevel:
arguments:
- name: level

required: true
schema:

type: number
minimum: 0
maximum: 100

type: NUMBER
public: true
id: infraredLevel
version: 1

743

SmartThings Classic Developer Documentation, Release latest

744 Chapter 214. Infrared Level

CHAPTER 215

Light

Allows for the control of a light device

215.1 Definition

reviewed 2018-01-11
name: Light
status: deprecated
attributes:

switch:
schema:

type: object
properties:

value:
$ref: SwitchState

required: ["value"]
type: ENUM
values:

- 'off'
- 'on'

enumCommands:
- command: 'on'

value: 'on'
- command: 'off'

value: 'off'
commands:

'off':
arguments: [

]
'on':
arguments: [

]
public: true
id: light
version: 1

745

SmartThings Classic Developer Documentation, Release latest

746 Chapter 215. Light

CHAPTER 216

Lock Only

Allow for the lock control of a lock device

216.1 Definition

reviewed 2018-02-22
name: Lock Only
status: deprecated
attributes:

lock:
schema:

type: object
properties:

value:
$ref: LockState

required:
- value

type: ENUM
values:

- locked
- unknown
- unlocked
- unlocked with timeout

enumCommands:
- command: lock

value: locked
commands:

lock:
arguments: [

]
public: true
id: lockOnly
version: 1

747

SmartThings Classic Developer Documentation, Release latest

748 Chapter 216. Lock Only

CHAPTER 217

Lock

Allow for the control of a lock device

217.1 Definition

reviewed 2018-02-22
name: Lock
status: proposed
attributes:

lock:
schema:

type: object
properties:

value:
$ref: LockState

data:
type: object
properties:

method:
type: string
enum:
- manual
- keypad
- auto
- command

codeId:
type: string

timeout:
$ref: Iso8601Date

required:
- value

type: ENUM
values:

- locked
- unknown
- unlocked
- unlocked with timeout

enumCommands:
- command: lock

value: locked
- command: unlock

749

SmartThings Classic Developer Documentation, Release latest

value: unlocked
commands:

lock:
arguments: [

]
unlock:
arguments: [

]
public: true
id: lock
ocfResourceType: oic.r.lock.status
version: 1

750 Chapter 217. Lock

CHAPTER 218

Media Controller

Allows for the control of a media controller device

218.1 Definition

reviewed 2018-02-22
name: Media Controller
status: proposed
attributes:

activities:
schema:

type: object
properties:
value:

$ref: JsonObject
required:
- value

type: JSON_OBJECT
actedOnBy:

- startActivity
currentActivity:
schema:

type: object
properties:
value:

$ref: String
required:
- value

type: STRING
actedOnBy:

- startActivity
commands:

startActivity:
arguments:
- type: STRING

required: true
schema:

$ref: String
name: activityId

public: true
id: mediaController
version: 1

751

SmartThings Classic Developer Documentation, Release latest

752 Chapter 218. Media Controller

CHAPTER 219

Media Input Source

Allows for the control of the media input source.

219.1 Definition

name: Media Input Source
status: proposed
attributes:

inputSource:
schema:

type: object
properties:

value:
$ref: MediaSource

required: ["value"]
type: ENUM
values:

- AM
- CD
- FM
- HDMI
- HDMI2
- USB
- YouTube
- aux
- bluetooth
- digital
- melon
- wifi

setter: setInputSource
supportedInputSources:
schema:

type: object
properties:

value:
type: array
items:
$ref: MediaSource

required: ["value"]

type: JSON_OBJECT

753

SmartThings Classic Developer Documentation, Release latest

commands:
setInputSource:
arguments:
- name: mode

required: true
schema:

$ref: MediaSource
type: ENUM
values:

- AM
- CD
- FM
- HDMI
- HDMI2
- USB
- YouTube
- aux
- bluetooth
- digital
- melon
- wifi

public: true
id: mediaInputSource
ocfResourceType: x.com.st.mediainputsource
version: 1

754 Chapter 219. Media Input Source

CHAPTER 220

Media Playback Repeat

Allows for the control of the media playback repeat.

220.1 Definition

name: Media Playback Repeat
status: proposed
attributes:

playbackRepeatMode:
schema:

type: object
properties:

value:
type: string
enum:

- all
- 'off'
- one

required: ["value"]
type: ENUM
values:

- all
- 'off'
- one

setter: setPlaybackRepeatMode
commands:

setPlaybackRepeatMode:
arguments:
- name: mode

required: true
schema:

type: string
enum:
- all
- 'off'
- one

type: ENUM
values:

- all
- 'off'
- one

755

SmartThings Classic Developer Documentation, Release latest

public: true
id: mediaPlaybackRepeat
ocfResourceType: x.com.st.mediarepeat
version: 1

756 Chapter 220. Media Playback Repeat

CHAPTER 221

Media Playback Shuffle

Allows for the control of media playback shuffle.

221.1 Definition

name: Media Playback Shuffle
status: proposed
attributes:

playbackShuffle:
schema:

type: object
properties:

value:
type: string
enum:

- disabled
- enabled

required: ["value"]
type: ENUM
values:

- disabled
- enabled

setter: setPlaybackShuffle
commands:

setPlaybackShuffle:
arguments:
- name: shuffle

required: true
schema:

type: string
enum:
- disabled
- enabled

type: ENUM
values:

- disabled
- enabled

public: true
id: mediaPlaybackShuffle
ocfResourceType: x.com.st.mediashuffle
version: 1

757

SmartThings Classic Developer Documentation, Release latest

758 Chapter 221. Media Playback Shuffle

CHAPTER 222

Media Playback

Allows for the control of the media playback.

222.1 Definition

name: Media Playback
status: proposed
attributes:

level:
schema:

type: object
properties:

value:
$ref: PositiveInteger

type: NUMBER
playbackStatus:
schema:

type: object
properties:

value:
type: string
enum:
- pause
- play
- stop

type: ENUM
values:

- pause
- play
- stop

setter: setPlaybackStatus
enumCommands:

- command: play
value: play

- command: pause
value: pause

- command: stop
value: stop

commands:
setPlaybackStatus:
arguments:

759

SmartThings Classic Developer Documentation, Release latest

- name: status
required: true
schema:

type: string
enum:
- pause
- play
- stop

type: ENUM
values:

- pause
- play
- stop

play:
arguments: [

]
pause:
arguments: [

]
stop:
arguments: [

]
public: true
id: mediaPlayback
ocfResourceType: x.com.st.mediaplayer
version: 1

760 Chapter 222. Media Playback

CHAPTER 223

Media Presets

Allows setting a preset from a know list of presets for the media player

223.1 Definition

name: Media Presets
status: proposed
attributes:

presets:
schema:

type: object
properties:

value:
type: array
items:

$ref: MediaPreset
type: JSON_OBJECT

commands:
selectPreset:
arguments:
- name: presetId

required: true
schema:

$ref: String
type: STRING

playPreset:
arguments:
- name: presetId

required: true
schema:

$ref: String
type: STRING

public: true
id: mediaPresets
version: 1

761

SmartThings Classic Developer Documentation, Release latest

762 Chapter 223. Media Presets

CHAPTER 224

Media Track Control

Allows for the media track control.

224.1 Definition

name: Media Track Control
status: proposed
attributes: {

}
commands:

nextTrack:
arguments: [

]
previousTrack:
arguments: [

]
public: true
id: mediaTrackControl
ocfResourceType: x.com.st.mediatrackcontrol
version: 1

763

SmartThings Classic Developer Documentation, Release latest

764 Chapter 224. Media Track Control

CHAPTER 225

Momentary

Allows for the control of a momentary switch device

225.1 Definition

reviewed 2018-02-22
name: Momentary
status: live
attributes: {

}
commands:

push:
arguments: [

]
public: true
id: momentary
ocfResourceType: x.com.st.momentary
version: 1

765

SmartThings Classic Developer Documentation, Release latest

766 Chapter 225. Momentary

CHAPTER 226

Motion Sensor

Allows for the ability to read motion sensor device states

226.1 Definition

reviewed 2018-01-09
name: Motion Sensor
status: live
attributes:

motion:
schema:

type: object
properties:

value:
$ref: ActivityState

required: ["value"]
type: ENUM
values:

- active
- inactive

commands: {
}

public: true
id: motionSensor
ocfResourceType: oic.r.sensor.motion
version: 1

767

SmartThings Classic Developer Documentation, Release latest

768 Chapter 226. Motion Sensor

CHAPTER 227

Music Player

Allows for control of a music playing device

227.1 Definition

reviewed 2018-02-22
name: Music Player
status: deprecated
attributes:

level:
schema:

type: object
properties:

value:
$ref: PositiveInteger

type: NUMBER
setter: setLevel

mute:
schema:

type: object
properties:

value:
$ref: MuteState

type: ENUM
values:

- muted
- unmuted

enumCommands:
- command: mute

value: muted
- command: unmute

value: unmuted
status:
schema:

type: object
properties:

value:
$ref: String

type: STRING
actedOnBy:

- nextTrack

769

SmartThings Classic Developer Documentation, Release latest

- pause
- play
- playTrack
- previousTrack
- restoreTrack
- resumeTrack
- setTrack
- stop

trackData:
schema:

type: object
properties:

value:
$ref: JsonObject

type: JSON_OBJECT
actedOnBy:

- nextTrack
- pause
- play
- playTrack
- previousTrack
- restoreTrack
- resumeTrack
- setTrack
- stop

trackDescription:
schema:

type: object
properties:

value:
$ref: String

type: STRING
commands:

mute:
arguments: [

]
nextTrack:
arguments: [

]
pause:
arguments: [

]
play:
arguments: [

]
playTrack:
arguments:
- name: trackToPlay

required: true
schema:

$ref: String
type: STRING

previousTrack:
arguments: [

]
restoreTrack:
arguments:
- name: trackToRestore

770 Chapter 227. Music Player

SmartThings Classic Developer Documentation, Release latest

required: true
schema:

$ref: String
type: STRING

resumeTrack:
arguments:
- name: trackToResume

required: true
schema:

$ref: String
type: STRING

setLevel:
arguments:
- name: level

required: true
schema:

$ref: PositiveInteger
type: NUMBER

setTrack:
arguments:
- name: trackToSet

required: true
schema:

$ref: String
type: STRING

stop:
arguments: [

]
unmute:
arguments: [

]
public: true
id: musicPlayer
version: 1

227.1. Definition 771

SmartThings Classic Developer Documentation, Release latest

772 Chapter 227. Music Player

CHAPTER 228

Notification

Allows for displaying notifications on devices that allow notifications to be displayed

228.1 Definition

name: Notification
status: live
attributes: {

}
commands:

deviceNotification:
arguments:
- name: notification

required: true
schema:

$ref: String
type: STRING

public: true
id: notification
version: 1

773

SmartThings Classic Developer Documentation, Release latest

774 Chapter 228. Notification

CHAPTER 229

Odor Sensor

Gets the odor sensor reading.

229.1 Definition

name: Odor Sensor
status: proposed
attributes:

odorLevel:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER

commands: {
}

public: true
id: odorSensor
ocfResourceType: x.com.st.gaslevel
version: 1

775

SmartThings Classic Developer Documentation, Release latest

776 Chapter 229. Odor Sensor

CHAPTER 230

Outlet

Allows for the control of an outlet device. Deprecated in favor of Switch.

230.1 Definition

reviewed 2018-2-20
name: Outlet
status: deprecated
attributes:

switch:
schema:

type: object
properties:

value:
$ref: SwitchState

required:
- value

type: ENUM
values:

- 'off'
- 'on'

enumCommands:
- command: 'on'

value: 'on'
- command: 'off'

value: 'off'
commands:

'off':
arguments: [

]
'on':
arguments: [

]
public: true
id: outlet
version: 1

777

SmartThings Classic Developer Documentation, Release latest

778 Chapter 230. Outlet

CHAPTER 231

Oven Mode

Allows for the control of the oven mode.

231.1 Definition

name: Oven Mode
status: proposed
attributes:

ovenMode:
schema:

type: object
properties:

value:
type: string
enum:

- heating
- grill
- warming
- defrosting

constraints:
constraints:
type: object
properties:
values:
type: array
items:
type: string
enum:
- heating
- grill
- warming
- defrosting

required: ["value"]
type: ENUM
values:

- heating
- grill
- warming
- defrosting

setter: setOvenMode
commands:

779

SmartThings Classic Developer Documentation, Release latest

setOvenMode:
arguments:
- name: mode

required: true
schema:

type: string
enum:
- heating
- grill
- warming
- defrosting

type: ENUM
values:

- heating
- grill
- warming
- defrosting

public: true
id: ovenMode
ocfResourceType: x.com.st.mode.oven
version: 1

780 Chapter 231. Oven Mode

CHAPTER 232

Oven Operating State

Allows for the control of the oven operational state.

232.1 Definition

name: Oven Operating State
status: proposed
attributes:

machineState:
schema:

type: object
properties:

value:
type: string
enum:

- ready
- running
- paused

type: ENUM
values:

- ready
- running
- paused

setter: setMachineState
actedOnBy:

- stop
supportedMachineStates:
schema:

type: object
properties:

value:
type: array
items:

type: string
enum:
- ready
- running
- paused

type: JSON_OBJECT
ovenJobState:
schema:

781

SmartThings Classic Developer Documentation, Release latest

type: object
properties:

value:
type: string
enum:
- cleaning
- cooking
- cooling
- draining
- preheat
- ready
- rinsing

type: ENUM
values:

- cleaning
- cooking
- cooling
- draining
- preheat
- ready
- rinsing

completionTime:
schema:

type: object
properties:

value:
$ref: Iso8601Date

required:
- value

type: DATE
operationTime:
schema:

type: object
properties:

value:
$ref: PositiveInteger

type: NUMBER
actedOnBy:

- stop
progress:
schema:

$ref: IntegerPercent
type: NUMBER

commands:
setMachineState:
arguments:
- name: state

required: true
schema:

type: string
enum:
- stop

type: ENUM
values:

- stop
stop:
arguments: [

]

782 Chapter 232. Oven Operating State

SmartThings Classic Developer Documentation, Release latest

public: true
id: ovenOperatingState
ocfResourceType: x.com.st.operationalstate.oven
version: 1

232.1. Definition 783

SmartThings Classic Developer Documentation, Release latest

784 Chapter 232. Oven Operating State

CHAPTER 233

Oven Setpoint

Allows for the control of the oven set point.

233.1 Definition

name: Oven Setpoint
status: proposed
attributes:

ovenSetpoint:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER
setter: setOvenSetpoint

commands:
setOvenSetpoint:
arguments:
- name: setpoint

required: true
schema:

$ref: PositiveInteger
type: NUMBER

public: true
id: ovenSetpoint
ocfResourceType: x.com.st.temperature.oven
version: 1

785

SmartThings Classic Developer Documentation, Release latest

786 Chapter 233. Oven Setpoint

CHAPTER 234

pH Measurement

Read the pH value off of a pH measurement capable device

234.1 Definition

reviewed 2018-2-20
name: pH Measurement
status: live
attributes:

pH:
schema:

type: object
properties:

value:
type: number
minimum: 0
maximum: 14

unit:
type: string
enum:

- pH
default: pH

required:
- value

type: NUMBER
commands: {

}
public: true
id: pHMeasurement
version: 1

787

SmartThings Classic Developer Documentation, Release latest

788 Chapter 234. pH Measurement

CHAPTER 235

Polling

Allows for the polling of devices that support it. Deprecated, devices should schedule their own polling using the
scheduling API or use the Ping capability.

235.1 Definition

reviewed 2018-2-20
name: Polling
status: deprecated
attributes: {

}
commands:

poll:
arguments: [

]
public: true
id: polling
version: 1

789

SmartThings Classic Developer Documentation, Release latest

790 Chapter 235. Polling

CHAPTER 236

Power Consumption Report

Allows periodically reporting the energy and power consumption

236.1 Definition

name: Power Consumption Report
status: proposed
attributes:

powerConsumption:
schema:

type: object
properties:

value:
$ref: PowerConsumption

required: ["value"]
type: JSON_OBJECT

commands: {
}

public: true
id: powerConsumptionReport
version: 1

791

SmartThings Classic Developer Documentation, Release latest

792 Chapter 236. Power Consumption Report

CHAPTER 237

Power Meter

Allows for reading the power consumption from devices that report it

237.1 Definition

reviewed 2018-02-20
name: Power Meter
status: live
attributes:

power:
schema:

type: object
properties:

value:
type: number

unit:
type: string
enum:

- W
default: W

required:
- value

type: NUMBER
commands: {

}
public: true
id: powerMeter
ocfResourceType: x.com.st.powermeter
version: 1

793

SmartThings Classic Developer Documentation, Release latest

794 Chapter 237. Power Meter

CHAPTER 238

Power Source

Gives the ability to determine the current power source of the device

238.1 Definition

name: Power Source
status: live
attributes:

powerSource:
schema:

type: object
properties:

value:
type: string
enum:

- battery
- dc
- mains
- unknown

required: ["value"]
type: ENUM
values:

- battery
- dc
- mains
- unknown

commands: {
}

public: true
id: powerSource
version: 1

795

SmartThings Classic Developer Documentation, Release latest

796 Chapter 238. Power Source

CHAPTER 239

Presence Sensor

The ability to see the current status of a presence sensor device

239.1 Definition

reviewed 2018-01-09
name: Presence Sensor
status: live
attributes:

presence:
schema:

type: object
properties:

value:
$ref: PresenceState

required: ["value"]
type: ENUM
values:

- not present
- present

commands: {
}

public: true
id: presenceSensor
ocfResourceType: oic.r.sensor.presence
version: 1

797

SmartThings Classic Developer Documentation, Release latest

798 Chapter 239. Presence Sensor

CHAPTER 240

Rapid Cooling

Allows for the control of rapid cooling.

240.1 Definition

name: Rapid Cooling
status: proposed
attributes:

rapidCooling:
schema:

type: object
properties:

value:
type: string
enum:

- 'off'
- 'on'

required: ["value"]
type: ENUM
values:

- 'off'
- 'on'

setter: setRapidCooling
commands:

setRapidCooling:
arguments:
- name: rapidCooling

required: true
schema:

type: string
enum:
- 'off'
- 'on'

type: ENUM
values:

- 'off'
- 'on'

public: true
id: rapidCooling
ocfResourceType: x.com.st.rapidcooling
version: 1

799

SmartThings Classic Developer Documentation, Release latest

800 Chapter 240. Rapid Cooling

CHAPTER 241

Refresh

Allow the execution of the refresh command for devices that support it

241.1 Definition

reviewed 2018-2-13
name: Refresh
status: live
attributes: {

}
commands:

refresh:
arguments: [

]
public: true
id: refresh
version: 1

801

SmartThings Classic Developer Documentation, Release latest

802 Chapter 241. Refresh

CHAPTER 242

Refrigeration Setpoint

Allows for the control of the refrigeration set point.

242.1 Definition

name: Refrigeration Setpoint
status: proposed
attributes:

refrigerationSetpoint:
schema:

$ref: Temperature
type: NUMBER
setter: setRefrigerationSetpoint

commands:
setRefrigerationSetpoint:
arguments:
- name: setpoint

required: true
schema:

$ref: TemperatureValue
type: NUMBER

public: true
id: refrigerationSetpoint
ocfResourceType: x.com.st.temperature.refrigeration
version: 1

803

SmartThings Classic Developer Documentation, Release latest

804 Chapter 242. Refrigeration Setpoint

CHAPTER 243

Relative Humidity Measurement

Allow reading the relative humidity from devices that support it

243.1 Definition

reviewed 2018-2-13
name: Relative Humidity Measurement
status: live
attributes:

humidity:
schema:

$ref: Percent
type: NUMBER

commands: {
}

public: true
id: relativeHumidityMeasurement
ocfResourceType: oic.r.humidity
version: 1

805

SmartThings Classic Developer Documentation, Release latest

806 Chapter 243. Relative Humidity Measurement

CHAPTER 244

Relay Switch

Allows for the control of a relay switch device. This is deprecated please use switch instead.

244.1 Definition

reviewed 2018-01-11
name: Relay Switch
status: deprecated
attributes:

switch:
schema:

type: object
properties:

value:
$ref: SwitchState

required: ["value"]
type: ENUM
values:

- 'off'
- 'on'

enumCommands:
- command: 'on'

value: 'on'
- command: 'off'

value: 'off'
commands:

'off':
arguments: [

]
'on':
arguments: [

]
public: true
id: relaySwitch
version: 1

807

SmartThings Classic Developer Documentation, Release latest

808 Chapter 244. Relay Switch

CHAPTER 245

Robot Cleaner Cleaning Mode

Allows for the control of the robot cleaner cleaning mode.

245.1 Definition

name: Robot Cleaner Cleaning Mode
status: proposed
attributes:

robotCleanerCleaningMode:
schema:

type: object
properties:

value:
type: string
enum:

- auto
- part
- repeat
- manual
- stop
- map

required: ["value"]
type: ENUM
values:

- auto
- part
- repeat
- manual
- stop
- map

setter: setRobotCleanerCleaningMode
commands:

setRobotCleanerCleaningMode:
arguments:
- name: mode

required: true
schema:

type: string
enum:
- auto
- part

809

SmartThings Classic Developer Documentation, Release latest

- repeat
- manual
- stop

type: ENUM
values:

- auto
- part
- repeat
- manual
- stop

public: true
id: robotCleanerCleaningMode
ocfResourceType: x.com.st.robot.cleaner.cleaning
version: 1

810 Chapter 245. Robot Cleaner Cleaning Mode

CHAPTER 246

Robot Cleaner Movement

Allows for the control of the robot cleaner movement.

246.1 Definition

name: Robot Cleaner Movement
status: proposed
attributes:

robotCleanerMovement:
schema:

type: object
properties:

value:
type: string
enum:

- homing
- idle
- charging
- alarm
- powerOff
- reserve
- point
- after
- cleaning

required: ["value"]
type: ENUM
values:

- homing
- idle
- charging
- alarm
- powerOff
- reserve
- point
- after
- cleaning

setter: setRobotCleanerMovement
commands:

setRobotCleanerMovement:
arguments:
- name: mode

811

SmartThings Classic Developer Documentation, Release latest

required: true
schema:

type: string
enum:
- homing

type: ENUM
values:

- homing
public: true
id: robotCleanerMovement
ocfResourceType: x.com.st.robot.cleaner.movement
version: 1

812 Chapter 246. Robot Cleaner Movement

CHAPTER 247

Robot Cleaner Turbo Mode

Allows for the control of the robot cleaner turbo mode.

247.1 Definition

name: Robot Cleaner Turbo Mode
status: proposed
attributes:

robotCleanerTurboMode:
schema:

type: object
properties:

value:
type: string
enum:

- 'on'
- 'off'
- 'silence'

required: ["value"]
type: ENUM
values:

- 'on'
- 'off'
- 'silence'

setter: setRobotCleanerTurboMode
commands:

setRobotCleanerTurboMode:
arguments:
- name: mode

required: true
schema:

type: string
enum:
- 'on'
- 'off'
- 'silence'

type: ENUM
values:

- 'on'
- 'off'
- 'silence'

813

SmartThings Classic Developer Documentation, Release latest

public: true
id: robotCleanerTurboMode
ocfResourceType: x.com.st.robot.cleaner.turbo
version: 1

814 Chapter 247. Robot Cleaner Turbo Mode

CHAPTER 248

Sensor

The Sensor capability is a “tagging” capability. It defines no attributes or commands. In SmartThings terms, it
represents that a Device has attributes.

248.1 Definition

reviewed 2018-01-11
name: Sensor
status: deprecated
attributes: {

}
commands: {

}
public: true
id: sensor
version: 1

815

SmartThings Classic Developer Documentation, Release latest

816 Chapter 248. Sensor

CHAPTER 249

Shock Sensor

A Device that senses whether or not there is a shock

249.1 Definition

reviewed 2018-01-11
name: Shock Sensor
status: deprecated
attributes:

shock:
schema:

type: object
properties:

value:
type: string
enum:

- clear
- detected

required: ["value"]
type: ENUM
values:

- clear
- detected

commands: {
}

public: true
id: shockSensor
version: 1

817

SmartThings Classic Developer Documentation, Release latest

818 Chapter 249. Shock Sensor

CHAPTER 250

Signal Strength

Gives the ability to read the signal stregth of Devices that support it

250.1 Definition

reviewed 2018-2-13
name: Signal Strength
status: live
attributes:

lqi:
schema:

type: object
properties:

value:
type: integer
minimum: 0
maximum: 255

required:
- value

type: NUMBER
rssi:
schema:

type: object
properties:

value:
type: number
minimum: -200
maximum: 0

unit:
type: string
enum:
- dBm

default: dBm
required:

- value
type: NUMBER

commands: {
}

public: true
id: signalStrength
ocfResourceType: x.com.st.signalstrength
version: 1

819

SmartThings Classic Developer Documentation, Release latest

820 Chapter 250. Signal Strength

CHAPTER 251

Sleep Sensor

A Device that senses whether or not someone is sleeping

251.1 Definition

reviewed 2018-01-11
name: Sleep Sensor
status: live
attributes:

sleeping:
schema:

type: object
properties:

value:
type: string
enum:

- not sleeping # if ever replaced deal with this space (awake)
- sleeping

required: ["value"]
type: ENUM
values:

- not sleeping
- sleeping

commands: {
}

public: true
id: sleepSensor
version: 1

821

SmartThings Classic Developer Documentation, Release latest

822 Chapter 251. Sleep Sensor

CHAPTER 252

Smoke Detector

A device that detects the presence or absence of smoke.

252.1 Definition

reviewed 2018-01-09
name: Smoke Detector
status: live
attributes:

smoke:
schema:

type: object
properties:

value:
type: string
enum:

- clear
- detected
- tested

required: ["value"]
type: ENUM
values:

- clear
- detected
- tested

commands: {
}

public: true
id: smokeDetector
ocfResourceType: x.com.st.smokedetector
version: 1

823

SmartThings Classic Developer Documentation, Release latest

824 Chapter 252. Smoke Detector

CHAPTER 253

Sound Pressure Level

Gets the value of the sound pressure level.

253.1 Definition

reviewed 2018-2-13
name: Sound Pressure Level
status: proposed
attributes:

soundPressureLevel:
schema:

type: object
properties:

value:
type: number

required:
- value

type: NUMBER
commands: {

}
public: true
id: soundPressureLevel
version: 1

825

SmartThings Classic Developer Documentation, Release latest

826 Chapter 253. Sound Pressure Level

CHAPTER 254

Sound Sensor

A Device that senses sound

254.1 Definition

reviewed 2018-01-11
name: Sound Sensor
status: live
attributes:

sound:
schema:

type: object
properties:

value:
type: string
enum:

- detected
- not detected

required: ["value"]
type: ENUM
values:

- detected
- not detected

commands: {
}

public: true
id: soundSensor
ocfResourceType: x.com.st.soundsensor
version: 1

827

SmartThings Classic Developer Documentation, Release latest

828 Chapter 254. Sound Sensor

CHAPTER 255

Speech Recognition

Gets the spoken phrase string.

255.1 Definition

reviewed 2018-2-13
name: Speech Recognition
status: proposed
attributes:

phraseSpoken:
schema:

type: object
properties:

value:
type: string
maxLength: 1000

required:
- value

type: STRING
commands: {

}
public: true
id: speechRecognition
version: 1

829

SmartThings Classic Developer Documentation, Release latest

830 Chapter 255. Speech Recognition

CHAPTER 256

Speech Synthesis

Allows for the control by speech.

256.1 Definition

reviewed 2018-2-13
name: Speech Synthesis
status: proposed
attributes: {

}
commands:

speak:
arguments:
- name: phrase

required: true
schema:

type: string
maxLength: 1000

type: STRING
public: true
id: speechSynthesis
version: 1

831

SmartThings Classic Developer Documentation, Release latest

832 Chapter 256. Speech Synthesis

CHAPTER 257

Step Sensor

A Device that works as a step counter

257.1 Definition

reviewed 2018-01-11
name: Step Sensor
status: proposed
attributes:

goal:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER

steps:
schema:

type: object
properties:

value:
$ref: PositiveInteger

required: ["value"]
type: NUMBER

commands: {
}

public: true
id: stepSensor
version: 1

833

SmartThings Classic Developer Documentation, Release latest

834 Chapter 257. Step Sensor

CHAPTER 258

Switch Level

Allows for the control of the level attribute of a light

258.1 Definition

reviewed 2018-01-09 pending decision on rate
name: Switch Level
status: live
attributes:

level:
schema:

$ref: IntegerPercent
type: NUMBER
setter: setLevel

commands:
setLevel:
arguments:
- name: level

schema:
type: integer
minimum: 0
maximum: 100

type: NUMBER
required: true

- name: rate
schema:

$ref: PositiveInteger
type: NUMBER
required: false

public: true
id: switchLevel
ocfResourceType: oic.r.light.dimming
version: 1

835

SmartThings Classic Developer Documentation, Release latest

836 Chapter 258. Switch Level

CHAPTER 259

Switch

Allows for the control of a switch device

259.1 Definition

reviewed 2018-01-09
name: Switch
status: live
attributes:

switch:
schema:

type: object
properties:

value:
$ref: SwitchState

required: ["value"]
type: ENUM
values:

- 'off'
- 'on'

enumCommands:
- command: 'on'

value: 'on'
- command: 'off'

value: 'off'
commands:

'off':
arguments: [

]
'on':
arguments: [

]
public: true
id: switch
ocfResourceType: x.com.st.powerswitch
version: 1

837

SmartThings Classic Developer Documentation, Release latest

838 Chapter 259. Switch

CHAPTER 260

Tamper Alert

Gets the value of the tamper alert.

260.1 Definition

reviewed 2018-2-13
name: Tamper Alert
status: live
attributes:

tamper:
schema:

type: object
properties:

value:
type: string
enum:

- clear
- detected

required:
- value

type: ENUM
values:

- clear
- detected

commands: {
}

public: true
id: tamperAlert
ocfResourceType: x.com.st.tamperalert
version: 1

839

SmartThings Classic Developer Documentation, Release latest

840 Chapter 260. Tamper Alert

CHAPTER 261

Temperature Measurement

Get the temperature from a Device that reports current temperature

261.1 Definition

reviewed 2018-01-30
name: Temperature Measurement
status: live
attributes:

temperature:
schema:

type: object
properties:

value:
$ref: TemperatureValue

unit:
$ref: TemperatureUnit

required: ["value", "unit"]
type: NUMBER

commands: {
}

public: true
id: temperatureMeasurement
ocfResourceType: x.com.st.temperature.measured
version: 1

841

SmartThings Classic Developer Documentation, Release latest

842 Chapter 261. Temperature Measurement

CHAPTER 262

Thermostat Cooling Setpoint

Allows for setting the cooling setpoint on a thermostat

262.1 Definition

reviewed 2018-01-30
name: Thermostat Cooling Setpoint
status: live
attributes:

coolingSetpoint:
schema:

$ref: Temperature
type: NUMBER
setter: setCoolingSetpoint

commands:
setCoolingSetpoint:
arguments:
- name: setpoint

required: true
schema:

$ref: TemperatureValue
type: NUMBER

public: true
id: thermostatCoolingSetpoint
ocfResourceType: x.com.st.temperature.cooling
version: 1

843

SmartThings Classic Developer Documentation, Release latest

844 Chapter 262. Thermostat Cooling Setpoint

CHAPTER 263

Thermostat Fan Mode

263.1 Definition

reviewed 2018-01-30
name: Thermostat Fan Mode
status: live
attributes:

thermostatFanMode:
schema:

type: object
properties:

value:
$ref: ThermostatFanMode

required:
- value

type: ENUM
values:

- auto
- circulate
- followschedule
- 'on'

setter: setThermostatFanMode
enumCommands:

- command: fanAuto
value: auto

- command: fanCirculate
value: circulate

- command: fanOn
value: 'on'

supportedThermostatFanModes:
schema:

type: object
properties:

value:
type: array
items:

$ref: ThermostatFanMode

type: JSON_OBJECT
commands:

fanAuto:
arguments: [

845

SmartThings Classic Developer Documentation, Release latest

]
fanCirculate:
arguments: [

]
fanOn:
arguments: [

]
setThermostatFanMode:
arguments:
- name: mode

required: true
schema:

$ref: ThermostatFanMode
type: ENUM
values:

- auto
- circulate
- followschedule
- 'on'

public: true
id: thermostatFanMode
ocfResourceType: x.com.st.mode.fan.thermostat
version: 1

846 Chapter 263. Thermostat Fan Mode

CHAPTER 264

Thermostat Heating Setpoint

Allows for setting the heating setpoint on a thermostat

264.1 Definition

reviewed 2018-01-30
name: Thermostat Heating Setpoint
status: live
attributes:

heatingSetpoint:
schema:

$ref: Temperature
type: NUMBER
setter: setHeatingSetpoint

commands:
setHeatingSetpoint:
arguments:
- name: setpoint

required: true
schema:

$ref: TemperatureValue
type: NUMBER

public: true
id: thermostatHeatingSetpoint
ocfResourceType: x.com.st.temperature.heating
version: 1

847

SmartThings Classic Developer Documentation, Release latest

848 Chapter 264. Thermostat Heating Setpoint

CHAPTER 265

Thermostat Mode

265.1 Definition

reviewed 2018-01-30
name: Thermostat Mode
status: live
attributes:

thermostatMode:
schema:

type: object
properties:

value:
$ref: ThermostatMode

required:
- value

type: ENUM
values:

- auto
- eco
- rush hour
- cool
- emergency heat
- heat
- 'off'

setter: setThermostatMode
enumCommands:

- command: auto
value: auto

- command: cool
value: cool

- command: emergencyHeat
value: emergency heat

- command: heat
value: heat

- command: 'off'
value: 'off'

supportedThermostatModes:
schema:

type: object
properties:

value:
type: array

849

SmartThings Classic Developer Documentation, Release latest

items:
$ref: ThermostatMode

type: JSON_OBJECT
commands:

auto:
arguments: [

]
cool:
arguments: [

]
emergencyHeat:
arguments: [

]
heat:
arguments: [

]
'off':
arguments: [

]
setThermostatMode:
arguments:
- name: mode

required: true
schema:

$ref: ThermostatMode
type: ENUM
values:

- auto
- eco
- rush hour
- cool
- emergency heat
- heat
- 'off'

public: true
id: thermostatMode
ocfResourceType: x.com.st.mode.thermostat
version: 1

850 Chapter 265. Thermostat Mode

CHAPTER 266

Thermostat Operating State

Gives the ability to see the current state that the thermostat is operating in

266.1 Definition

reviewed 2018-01-30
name: Thermostat Operating State
status: live
attributes:

thermostatOperatingState:
schema:

type: object
properties:

value:
$ref: ThermostatOperatingState

required:
- value

type: ENUM
values:

- cooling
- fan only
- heating
- idle
- pending cool
- pending heat
- vent economizer

commands: {
}

public: true
id: thermostatOperatingState
ocfResourceType: x.com.st.operationalstate.thermostat
version: 1

851

SmartThings Classic Developer Documentation, Release latest

852 Chapter 266. Thermostat Operating State

CHAPTER 267

Thermostat Setpoint

Gives the ability to read the current setpoint on a thermostat

267.1 Definition

reviewed 2018-01-30
name: Thermostat Setpoint
status: deprecated
attributes:

thermostatSetpoint:
schema:

$ref: Temperature
type: NUMBER

commands: {
}

public: true
id: thermostatSetpoint
ocfResourceType: x.com.st.temperature.setpoint
version: 1

853

SmartThings Classic Developer Documentation, Release latest

854 Chapter 267. Thermostat Setpoint

CHAPTER 268

Thermostat

Allows for the control of a thermostat device

268.1 Definition

reviewed 2018-01-30
name: Thermostat
status: deprecated
attributes:

coolingSetpoint:
schema:

$ref: Temperature
type: NUMBER
setter: setCoolingSetpoint

coolingSetpointRange:
schema:

type: object
properties:

value:
type: array
items:

- $ref: TemperatureValue
- $ref: TemperatureValue

minItems: 2
maxItems: 2

required:
- value

type: VECTOR3
heatingSetpoint:
schema:

$ref: Temperature
type: NUMBER
setter: setHeatingSetpoint

heatingSetpointRange:
schema:

type: object
properties:

value:
type: array
items:
- $ref: TemperatureValue

855

SmartThings Classic Developer Documentation, Release latest

- $ref: TemperatureValue
minItems: 2
maxItems: 2

required:
- value

type: VECTOR3
schedule:
schema:

type: object
properties:
value:
$ref: JsonObject

required:
- value

type: JSON_OBJECT
setter: setSchedule

temperature:
schema:

$ref: Temperature
type: NUMBER

thermostatFanMode:
schema:

type: object
properties:

value:
$ref: ThermostatFanMode

required:
- value

type: ENUM
values:

- auto
- circulate
- followschedule
- 'on'

setter: setThermostatFanMode
enumCommands:

- command: fanAuto
value: auto

- command: fanCirculate
value: circulate

- command: fanOn
value: 'on'

supportedThermostatFanModes:
schema:

type: object
properties:

value:
type: array
items:

$ref: ThermostatFanMode
type: JSON_OBJECT

thermostatMode:
schema:

type: object
properties:

value:
$ref: ThermostatMode

required:

856 Chapter 268. Thermostat

SmartThings Classic Developer Documentation, Release latest

- value
type: ENUM
values:

- auto
- eco
- rush hour
- cool
- emergency heat
- heat
- 'off'

setter: setThermostatMode
enumCommands:

- command: auto
value: auto

- command: cool
value: cool

- command: emergencyHeat
value: emergency heat

- command: heat
value: heat

- command: 'off'
value: 'off'

supportedThermostatModes:
schema:

type: object
properties:

value:
type: array
items:

$ref: ThermostatMode
type: JSON_OBJECT

thermostatOperatingState:
schema:

type: object
properties:

value:
$ref: ThermostatOperatingState

required:
- value

type: ENUM
values:

- cooling
- fan only
- heating
- idle
- pending cool
- pending heat
- vent economizer

thermostatSetpoint:
schema:

$ref: Temperature
type: NUMBER

thermostatSetpointRange:
schema:

type: object
properties:

value:
type: array

268.1. Definition 857

SmartThings Classic Developer Documentation, Release latest

items:
- $ref: TemperatureValue
- $ref: TemperatureValue

minItems: 2
maxItems: 2

type: VECTOR3
commands:

auto:
arguments: [

]
cool:
arguments: [

]
emergencyHeat:
arguments: [

]
fanAuto:
arguments: [

]
fanCirculate:
arguments: [

]
fanOn:
arguments: [

]
heat:
arguments: [

]
'off':
arguments: [

]
setCoolingSetpoint:
arguments:
- name: setpoint

required: true
schema:

$ref: TemperatureValue
type: NUMBER

setHeatingSetpoint:
arguments:
- name: setpoint

required: true
schema:

$ref: TemperatureValue
type: NUMBER

setSchedule:
arguments:
- name: schedule

required: true
schema:

$ref: JsonObject
type: JSON_OBJECT

setThermostatFanMode:
arguments:
- name: fanmode

required: true
schema:

$ref: ThermostatFanMode

858 Chapter 268. Thermostat

SmartThings Classic Developer Documentation, Release latest

type: ENUM
values:

- auto
- circulate
- followschedule
- 'on'

setThermostatMode:
arguments:
- name: mode

required: true
schema:

$ref: ThermostatMode
type: ENUM
values:

- auto
- eco
- rush hour
- cool
- emergency heat
- heat
- 'off'

public: true
id: thermostat
version: 1

268.1. Definition 859

SmartThings Classic Developer Documentation, Release latest

860 Chapter 268. Thermostat

CHAPTER 269

Three Axis

Gives the three axis coordinates for devices that support it

269.1 Definition

reviewed 2018-2-13
name: Three Axis
status: live
attributes:

threeAxis:
schema:

type: object
properties:

value:
type: array
items:

type: integer
minimum: -10000
maximum: 10000

minItems: 3
maxItems: 3

unit:
type: string
enum:

- mG
default: mG

required:
- value

type: VECTOR3
commands: {

}
public: true
id: threeAxis
version: 1

861

SmartThings Classic Developer Documentation, Release latest

862 Chapter 269. Three Axis

CHAPTER 270

Timed Session

Allows for the control of the timed session.

270.1 Definition

reviewed 2018-2-13
name: Timed Session
status: proposed
attributes:

sessionStatus:
schema:

type: object
properties:

value:
type: string
enum:

- canceled
- paused
- running
- stopped

constraints:
type: object
properties:
values:
type: array
items:
type: string
enum:
- canceled
- paused
- running
- stopped

required:
- value

type: ENUM
values:

- canceled
- paused
- running
- stopped

enumCommands:

863

SmartThings Classic Developer Documentation, Release latest

- command: cancel
value: canceled

- command: pause
value: paused

- command: start
value: running

- command: stop
value: stopped

completionTime:
schema:

type: object
properties:

value:
$ref: Iso8601Date

required:
- value

type: DATE
setter: setCompletionTime

commands:
cancel:
arguments: [

]
pause:
arguments: [

]
setCompletionTime:
arguments:
- name: completionTime

required: true
schema:

$ref: Iso8601Date
type: DATE

start:
arguments: [

]
stop:
arguments: [

]
public: true
id: timedSession
version: 1

864 Chapter 270. Timed Session

CHAPTER 271

Tone

Allows for the control of a device that can make an audible tone

271.1 Definition

reviewed 2018-02-15
name: Tone
status: live
attributes: {

}
commands:

beep:
arguments: [

]
public: true
id: tone
ocfResourceType: x.com.st.tone
version: 1

865

SmartThings Classic Developer Documentation, Release latest

866 Chapter 271. Tone

CHAPTER 272

Touch Sensor

Gives the ability to get the touched status for devices that are touch sensitive. This has been deprecated in favor of
the button capability

272.1 Definition

reviewed 2018-01-11
name: Touch Sensor
status: deprecated
attributes:

touch:
schema:

type: object
properties:

value:
type: string
enum:

- touched
type: ENUM
values:

- touched
commands: {

}
public: true
id: touchSensor
version: 1

867

SmartThings Classic Developer Documentation, Release latest

868 Chapter 272. Touch Sensor

CHAPTER 273

Tv Channel

Allows for the control of the TV channel.

273.1 Definition

name: Tv Channel
status: proposed
attributes:

tvChannel:
schema:

type: object
properties:

value:
$ref: String

type: STRING
setter: setTvChannel
actedOnBy:

- channelDown
- channelUp

commands:
setTvChannel:
arguments:
- name: channel

required: true
schema:

$ref: String
type: STRING

channelUp:
arguments: [

]
channelDown:
arguments: [

]
public: true
id: tvChannel
ocfResourceType: x.com.st.tvchannel
version: 1

869

SmartThings Classic Developer Documentation, Release latest

870 Chapter 273. Tv Channel

CHAPTER 274

Ultraviolet Index

Gives the ability to get the ultraviolet index from devices that report it

274.1 Definition

reviewed 2018-02-15
name: Ultraviolet Index
status: live
attributes:

ultravioletIndex:
schema:

type: object
properties:

value:
type: number
minimum: 0
maximum: 255

required: ["value"]
type: NUMBER

commands: {
}

public: true
id: ultravioletIndex
version: 1

871

SmartThings Classic Developer Documentation, Release latest

872 Chapter 274. Ultraviolet Index

CHAPTER 275

Valve

Allows for the control of a valve device

275.1 Definition

reviewed 2018-02-15
name: Valve
status: live
attributes:

valve:
schema:

type: object
properties:

value:
type: string
enum:

- closed
- open

required: ["value"]
type: ENUM
values:

- closed
- open

enumCommands:
- command: close

value: closed
- command: open

value: open
commands:

close:
arguments: [

]
open:
arguments: [

]
public: true
id: valve
ocfResourceType: x.com.st.valve
version: 1

873

SmartThings Classic Developer Documentation, Release latest

874 Chapter 275. Valve

CHAPTER 276

Video Clips

Video clip capture

276.1 Definition

name: Video Clips
status: proposed
attributes:

videoClip:
schema:

type: object
properties:
value:

$ref: VideoClip
required:
- value

type: JSON_OBJECT
actedOnBy:

- captureClip
commands:

captureClip:
arguments:

- name: duration
required: true
schema:
$ref: PositiveInteger

type: NUMBER
- name: preFetch

required: true
schema:
$ref: PositiveInteger

type: NUMBER
public: true
id: videoClips
version: 1

875

SmartThings Classic Developer Documentation, Release latest

876 Chapter 276. Video Clips

CHAPTER 277

Video Stream

Allows for the control of the video stream.

277.1 Definition

name: Video Stream
status: proposed
attributes:

stream:
schema:

type: object
properties:

value:
$ref: JsonObject

required:
- value

type: JSON_OBJECT
actedOnBy:

- startStream
- stopStream

commands:
startStream:
arguments: [

]
stopStream:
arguments: [

]
public: true
id: videoStream
ocfResourceType: x.com.st.videostream
version: 1

877

SmartThings Classic Developer Documentation, Release latest

878 Chapter 277. Video Stream

CHAPTER 278

Voltage Measurement

Get the value of voltage measured from devices that support it

278.1 Definition

reviewed 2018-02-15
name: Voltage Measurement
status: live
attributes:

voltage:
schema:

type: object
properties:

value:
$ref: Number

unit:
type: string
enum:

- V
default: V

required:
- value

type: NUMBER
commands: {

}
public: true
id: voltageMeasurement
version: 1

879

SmartThings Classic Developer Documentation, Release latest

880 Chapter 278. Voltage Measurement

CHAPTER 279

Washer Mode

Allows for the control of the washer mode.

279.1 Definition

name: Washer Mode
status: proposed
attributes:

washerMode:
schema:

type: object
properties:

value:
$ref: WasherMode

required: ["value"]
type: ENUM
values:

- regular
- heavy
- rinse
- spinDry

setter: setWasherMode
commands:

setWasherMode:
arguments:
- name: mode

required: true
schema:

$ref: WasherMode
type: ENUM
values:

- regular
- heavy
- rinse
- spinDry

public: true
id: washerMode
ocfResourceType: x.com.st.mode.washer
version: 1

881

SmartThings Classic Developer Documentation, Release latest

882 Chapter 279. Washer Mode

CHAPTER 280

Washer Operating State

Allows for the control of the washer operational state.

280.1 Definition

name: Washer Operating State
status: proposed
attributes:

machineState:
schema:

type: object
properties:

value:
$ref: MachineState

required: ["value"]
type: ENUM
values:

- pause
- run
- stop

setter: setMachineState
supportedMachineStates:
schema:

type: object
properties:

value:
type: array
items:
$ref: MachineState

type: JSON_OBJECT
washerJobState:
schema:

type: object
properties:

value:
type: string
enum:
- airWash
- cooling
- delayWash
- drying

883

SmartThings Classic Developer Documentation, Release latest

- finish
- none
- preWash
- rinse
- spin
- wash
- weightSensing
- wrinklePrevent

constraints:
type: object
properties:
values:
type: array
items:
type: string
enum:
- airWash
- cooling
- delayWash
- drying
- finish
- none
- preWash
- rinse
- spin
- wash
- weightSensing
- wrinklePrevent

required: ["value"]
type: ENUM
values:

- airWash
- cooling
- delayWash
- drying
- finish
- none
- preWash
- rinse
- spin
- wash
- weightSensing
- wrinklePrevent

completionTime:
schema:

type: object
properties:

value:
$ref: Iso8601Date

required:
- value

type: DATE
commands:

setMachineState:
arguments:
- name: state

required: true
schema:

884 Chapter 280. Washer Operating State

SmartThings Classic Developer Documentation, Release latest

$ref: MachineState
type: ENUM
values:

- pause
- run
- stop

public: true
id: washerOperatingState
ocfResourceType: x.com.st.operationalstate.washer
version: 1

280.1. Definition 885

SmartThings Classic Developer Documentation, Release latest

886 Chapter 280. Washer Operating State

CHAPTER 281

Water Sensor

Get the status off of a water sensor device

281.1 Definition

reviewed 2018-01-09
name: Water Sensor
status: live
attributes:

water:
schema:

type: object
properties:

value:
$ref: MoistureState

required: ["value"]
type: ENUM
values:

- dry
- wet

commands: {
}

public: true
id: waterSensor
ocfResourceType: oic.r.sensor.water
version: 1

887

SmartThings Classic Developer Documentation, Release latest

888 Chapter 281. Water Sensor

CHAPTER 282

Window Shade

Allows for the control of the window shade.

282.1 Definition

reviewed 2018-02-15
name: Window Shade
status: proposed
attributes:

windowShade:
schema:

type: object
properties:

value:
$ref: OpenableState

constraints:
type: object
properties:

values:
type: array
items:
$ref: OpenableState

required:
- value

type: ENUM
values:

- closed
- closing
- open
- opening
- partially open
- unknown

enumCommands:
- command: close

value: closed
- command: open

value: open
actedOnBy:

- presetPosition
commands:

close:

889

SmartThings Classic Developer Documentation, Release latest

arguments: [
]

open:
arguments: [

]
presetPosition:
arguments: [

]
public: true
id: windowShade
version: 1

890 Chapter 282. Window Shade

Part XX

API Documentation

891

SmartThings Classic Developer Documentation, Release latest

This is where you can find API-level documentation for the various objects available in your SmartApps and Device
Handlers.

893

SmartThings Classic Developer Documentation, Release latest

894

CHAPTER 283

How to read the docs

283.1 Objects

SmartThings objects are rarely created directly by SmartApp or Device Handler developers. Instead, various objects
are already created and available in your applications.

You will rarely see constructor documentation for this reason. Each object will contain a summary at the top of the
document that discusses some of the common ways to get a reference to the object.

Also worth noting is that some of the “objects” documented are not really objects at all. A SmartApp is not an object,
in the strict sense of the word, for example (neither is a Device Handler). But each running execution of a SmartApp
or Device Handler has available to it many methods and properties. For convenience, we have organized the methods
available to SmartApps and Device Handlers into the SmartApp or Device Handler API documentation.

283.2 Object wrappers

You may notice in various log messages or error messages that the objects are actually wrapper objects. For example,
Event is actually an instance of EventWrapper. We have wrapped many of our core objects with wrapper objects
to protect access to the underlying system object.

This should be transparent to developers, since these objects cannot be instantiated directly. The underlying wrapper
class may even change at some point (the supported APIs should not, without notice).

But, should you be confused about messages in the log, this is why.

283.3 Dynamic methods

The Groovy programming language offers a powerful feature called Metaprogramming that (among other things)
allows for Groovy programs to be written in a way that methods can be created dynamically at run time.

SmartThings makes use of this powerful feature in a few ways. For example, you can get a reference to a De-
vice configured in a SmartApp preference by simply referencing the name of the device configured in the prefer-
ence. Another example is getting various Attribute values for a Device by invoking a method in the form <someDe-
vice>.current<AttributeName>.

This powerful feature can make documenting all available methods difficult, since methods may not exist until runtime.
For any dynamic methods, the method or property will be enclosed in <>, and a description and example will be given.

895

http://www.groovy-lang.org/metaprogramming.html

SmartThings Classic Developer Documentation, Release latest

283.4 Conventions

All methods are listed in alphabetical order, with the exception of SmartApp and Device Handler methods that are
expected to be defined by SmartApps and Device Handlers - those will be listed first.

Note: Groovy follows the JavaBean convention, and adds some syntactic sugar on top. Any zero-arg getter can be
retrieved via property access directly. For example, getName() could be invoked as name. You’ll see this shortcut
syntax often in Groovy and SmartThings.

Some methods may have many signatures. For example, the schedule method available to SmartApps can be called
with a variety of arguments. We have documented all forms in one location (schedule()). All supported signatures
will be listed, as well as all parameters for the various signatures.

Optional parameters will be listed inside brackets ([]) in the method signature.

Code examples may not be executable as-is. Since SmartApps and Device Handlers execute in response to various
schedules or Events, and rely upon having other metdata defined, the examples have been written with brevity in mind.
The code samples may need to be defined inside an event handler or otherwise executable code block to fully function.

When appropriate, we have included various tips or warnings. In cases where an API is not adequately documented
currently, we have called attention to that. We plan to add the supporting documentation soon!

896 Chapter 283. How to read the docs

CHAPTER 284

API Contents

284.1 SmartApp

A SmartApp is a Groovy-based program that allows developers to create automations for users to tap into the capabil-
ities of their devices.

They are created through the “New SmartApp” action in the IDE. There is no “class” for a SmartApp per se, but there
are various methods and properties available to SmartApps that are documented below.

When a SmartApp executes, it executes in the context of a certain installation instance. That is, a user installs a
SmartApp on their mobile application, and configures it with devices or rules unique to them. A SmartApp is not
continuously running; it is executed in response to various schedules or subscribed-to Events.

The following methods should be defined by all SmartApps. They are called by the SmartThings platform at various
points in the SmartApp lifecycle.

284.1.1 installed()

Note: This method is expected to be defined by SmartApps.

Called when an instance of the app is installed. Typically subscribes to Events from the configured devices and creates
any scheduled jobs.

Signature: void installed()

Returns: void

Example:

def installed() {
log.debug "installed with settings: $settings"

// subscribe to events, create scheduled jobs.
}

897

SmartThings Classic Developer Documentation, Release latest

284.1.2 updated()

Note: This method is expected to be defined by SmartApps.

Called when the preferences of an installed app are updated. Typically unsubscribes and re-subscribes to Events from
the configured devices and unschedules/reschedules jobs.

Signature: void uninstalled()

Returns: void

Example:

def updated() {
unsubscribe()
// resubscribe to device events, create scheduled jobs

}

284.1.3 uninstalled()

Note: This method may be defined by SmartApps.

Called, if declared, when an app is uninstalled. Does not need to be declared unless you have some external cleanup
to do. subscriptions and scheduled jobs are automatically removed when an app is uninstalled, so you don’t need to
do that here.

Signature: void uninstalled()

Returns: void

Example:

def uninstalled() {
// external cleanup. No need to unsubscribe or remove scheduled jobs

}

The following methods and attributes are available to call in a SmartApp:

284.1.4 <device or capability preference name>

A reference to the device or devices selected during app installation or update.

Returns: Device (page 1003) or a list of Devices - the Device with the given preference name, or a list of Devices if
multiple:true is specified in the preferences.

Example:

preferences {
...
input "theswitch", "capability.switch"
input "theswitches", "capability.switch", multiple:true
...

898 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

}

...
// the name of the preference becomes the reference for the Device object
theswitch.on()
theswitch.off()

// multiple:true means we get a list of devices
theswitches.each {log.debug "Current switch value: ${it.currentSwitch"}

// we can still call methods directly on the list; it will apply the method to each device:

theswitches.on() // turn all switches on

284.1.5 <number or decimal preference name>

A reference to the value entered for a number or decimal input preference.

Returns: BigDecimal - the value entered for a number or decimal input preference.

Example:

preferences {
...
input "num1", "number"
input "dec1", "decimal"
...

}

...
// preference name is a reference to a BigDecimal that is the value the user entered.
log.debug "num1: $num1" //=> value user entered for num1 preference
log.debug "dec1: $dec1" //=> value user entered for dec1 preference
...

284.1.6 <text, mode, or time preference name>

A reference to the value entered for a text, mode, or time input type.

The following table explains the value and format returned for the various input types:

Input Type Return Value
text String - the value entered as text
mode String - the name of the mode selected
time String - the full date string in the format of “yyyy-MM-dd’T’HH:mm:ss.SSSZ”

Example:

preferences {
...
input "mytext", "text"
input "mymode", "mode"
input "mytime", "time"
...

284.1. SmartApp 899

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

}

log.debug "mytext: $mytext"
log.debug "mymode: $mymode"
log.debug "mytime: $mytime"

// time is in format compatible with most scheduling APIs.
// we can pass the value directly to the APIs that accept a date string:
runOnce(mytime, someHandlerMethod)
schedule(myTime, someHandlerMethod)

284.1.7 addChildApp()

Adds a child app to a SmartApp.

Warning: A SmartApp may have a maximum of 500 child SmartApps and devices, combined.

Signature: InstalledSmartApp addChildApp(String namespace, String
smartAppVersionName, String label, Map properties)

Throws: IllegalArgumentException - If a label was not supplied NotFoundException - If the given
SmartApp name was not found in the given Namespace.

Parameters: String namespace - the namespace of the child SmartApp

String smartAppVersionName - the name of the SmartApp

String label - a label to give the child app

Map properties (optional) - A map with SmartApp properties for the child app.

Returns: InstalledSmartApp (page 1031) - The InstalledSmartAppWrapper instance that represents the child Smar-
tApp that was created.

Throws: IllegalArgumentException - If the label is not provided.

NotFoundException - If the SmartApp cannot be found.

SizeLimitExceededException - If this SmartApp already has the maximum number of children allowed
(500).

284.1.8 addChildDevice()

Adds a child device to a SmartApp. An example use is in Service Manager SmartApps.

Warning: A parent may have at most 500 children.

Signature: DeviceWrapper addChildDevice(String typeName, String deviceNetworkId,
hubId, Map properties)

DeviceWrapper addChildDevice(String namespace, String typeName, String
deviceNetworkId, hubId, Map properties)

Parameters: String namespace - the namespace for the device. Defaults to
installedSmartApp.smartAppVersionDTO.smartAppDTO.namespace

String typeName - the device type name

900 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

String deviceNetworkId - the device network id of the device

hubId - (optional) The Hub id. Defaults to null

Map properties (optional) - A map with device properties.

Returns: Device (page 1003) - The device that was created.

Throws: UnknownDeviceTypeException - If a Device Handler with the specified name and namespace is not
found.

IllegalArgumentException - If the deviceNetworkId is not specified.

SizeLimitExceededException - If this SmartApp already has the maximum number of children allowed
(500).

284.1.9 apiServerUrl()

Returns the URL of the server where this SmartApp can be reached for API calls, along with the specified path
appended to it. Use this instead of hard-coding a URL to ensure that the correct server URL for this installed instance
is returned.

Signature: String apiServerUrl(String path)

Parameters: String path - the path to append to the URL

Returns: The URL of the server for this installed instance of the SmartApp.

Example:

// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("/my/path")}"

// The leading "/" will be added if you don't specify it
// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("my/path")}"

284.1.10 atomicState

A map of name/value pairs that SmartApp can use to save and retrieve data across SmartApp executions. This is
similar to state (page 941), but will immediately write and read from the backing data store. Prefer using state over
atomicState when possible.

Signature: Map atomicState

Returns: Map - a map of name/value pairs.

atomicState.count = 0
atomicState.count = atomicState.count + 1

log.debug "atomicState.count: ${atomicState.count}"

// use array notation if you wish
log.debug "atomicState['count']: ${atomicState['count']}"

// you can store lists and maps to make more intersting structures

284.1. SmartApp 901

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

atomicState.listOfMaps = [[key1: "val1", bool1: true],
[otherKey: ["string1", "string2"]]]

284.1.11 canSchedule()

Returns true if the SmartApp is able to schedule jobs. SmartApps are limited to 6 pending scheduled executions.

Signature: Boolean canSchedule()

Returns: Boolean - true if additional jobs can be scheduled, false otherwise.

Example:

log.debug "Can schedule? ${canSchedule()}"

284.1.12 createAccessToken()

Creates an access token for this installed SmartApp. This token is intended to be used by third-party services that need
to communicate with SmartThings during the OAuth installation flow of cloud-connected devices (page 546).

The created token will then be available in state.accessToken.

Signature: def createAccessToken()

Returns: May return the access token itself, though this is not guaranteed (the token will be available in
state.accessToken).

Example:

// Check to see if SmartApp has its own access token and create one if not.
if(!state.accessToken) {

// the createAccessToken() method will store the access token in state.accessToken
createAccessToken()

}

// Use token to allow third-party to communicate with SmartApp during setup

// Revoke the token once the third-party no longer needs it (after setup)
revokeAccessToken()

See also:

• Building the Service Manager (page 546)

• revokeAccessToken() (page 928)

284.1.13 findAllChildAppsByName()

Finds all child SmartApps matching the specified name. This includes child SmartApps that have both “complete”
and “incomplete” installation states (page 1033).

Signature: List<InstalledSmartApp> findAllChildAppsByName(String namespace,
String name)

902 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

SmartThings Classic Developer Documentation, Release latest

Parameters: String name - the name of the SmartApp to find.

Returns: A list of InstalledSmartApp (page 1031), or an empty list if none are found.

Example:

def children = findAllChildAppsByName("My Child App")
log.debug "found ${children.size()} child apps"

children.each { child ->
log.debug "child app ${child.id} has installation state ${child.installationState}"

}

284.1.14 findAllChildAppsByNamespaceAndName()

Finds all child SmartApps matching the specified namespace and name. This includes child SmartApps that have both
“complete” and “incomplete” installation states (page 1033).

Signature: List<InstalledSmartApp> findAllChildAppsByNamespaceAndName(String
namespace, String name)

Parameters: String namespace - the namespace of the SmartApp to find.

String name - the name of the SmartApp to find.

Returns: A list of InstalledSmartApp (page 1031), or an empty list if none are found.

Example:

def children = findAllChildAppsByNamespaceAndName("somenamespace", "My Child App")
log.debug "found ${children.size()} child apps"

children.each { child ->
log.debug "child app ${child.id} has installation state ${child.installationState}"

}

284.1.15 findChildAppByName()

Finds a child SmartApp matching the specified name. This includes child SmartApps that have both “complete” and
“incomplete” installation states (page 1033).

Signature: def findChildAppByName(String appName)

Parameters: String appName - the name of the SmartApp to find.

Returns: A InstalledSmartApp (page 1031) if a child app is found that matches the specified name; null if no child
app that matches the name is found. If there are multiple child apps that match the specified name, only the first
one found will be returned.

Example:

def child = findChildAppByName("My Child App")
log.debug "child app id ${child?.id} has installation state ${child.installationState}"

284.1. SmartApp 903

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.1.16 findChildAppByNamespaceAndName()

Finds a child SmartApp matching the specified namespace and name. This includes child SmartApps that have both
“complete” and “incomplete” installation states (page 1033).

Signature: def findChildAppsByNamespaceAndName(String namespace, String name)

Parameters: String namespace - the namespace of the SmartApp to find.

String name - the name of the SmartApp to find.

Returns: A InstalledSmartApp (page 1031), or null if no child app is found. If multiple child apps are found that
match the namespace and name, the first one will be returned.

Example:

def child = findChildAppByNamespaceAndName("somenamespace", "My Child App")
log.debug "child app id ${child?.id} has installation state ${child.installationState}"

284.1.17 getAllChildApps()

Gets a list of child apps associated with this SmartApp. This includes child SmartApps that have both “complete” and
“incomplete” installation states (page 1033).

Signature: List<InstalledSmartApp> getAllChildApps()

Returns: List < InstalledSmartApp (page 1031) > - A list of child SmartApps

Example:

def childApps = app.getAllChildApps()
log.debug "This app has ${childApps.size()} child apps"

childApps.each { child ->
log.debug "child app with id ${child.id} has installation state ${child.installationState}"

}

284.1.18 getChildApps()

Gets a list of child apps associated with this SmartApp. This only includes child SmartApps that have an installation
state (page 1033) of “complete”.

Signature: List<InstalledSmartApp> getChildApps()

Returns: List < InstalledSmartApp (page 1031) > - A list of child SmartApps

Example:

def childApps = getChildApps()

// Update the label for all child apps
childApps.each {

if (!it.label?.startsWith(app.name)) {
it.updateLabel("$app.name/$it.label")

}
}

904 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.1.19 deleteChildDevice()

Deletes the child device with the specified device network id.

Signature: void deleteChildDevice(String deviceNetworkId)

Throws: NotFoundException

Parameters: String deviceNetworkId - the device network id of the device

Returns: void

284.1.20 getAllChildDevices()

Returns a list of all child devices, including virtual devices. This is a wrapper for getChildDevices(true).

Signature: List getAllChildDevices()

Returns: List - a list of all child devices.

284.1.21 getApiServerUrl()

Returns the URL of the server where this SmartApp can be reached for API calls. Use this instead of hard-coding a
URL to ensure that the correct server URL for this installed instance is returned.

Signature: String getApiServerUrl()

Returns: String - the URL of the server where this SmartApp can be reached.

284.1.22 getChildDevice()

Returns a device based upon the specified device network id. This is mostly used in Service Manager SmartApps.

Signature: DeviceWrapper getChildDevice(String deviceNetworkId)

Parameters: String deviceNetworkId - the device network id of the device

Returns: DeviceWrapper - The device found with the given device network ID.

284.1.23 getChildDevices()

Returns a list of all child devices. An example use would be in Service Manager SmartApps.

Signature: List getChildDevices(Boolean includeVirtualDevices)

Parameters: Boolean true if the returned list should contain virtual devices. Defaults to false. (optional)

Returns: List - A list of all devices found.

284.1. SmartApp 905

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.1.24 getColorUtil()

Returns the ColorUtilities (page 1001) object.

Signature: ColorUtilities getColorUtil()

Returns: ColorUtilities (page 1001)

284.1.25 getLocation()

The Location (page 1036) into which this SmartApp has been installed.

Signature: Location getLocation()

Returns: Location (page 1036) - The Location into which this SmartApp has been installed.

284.1.26 getSunriseAndSunset()

Gets a map containing the local sunrise and sunset times.

Signature: Map getSunriseAndSunset([Map options])

Parameters:

Map options (optional)

The supported options are:

Option Description
zipCode

String - the zip code to use for determining the
times.
If not specified then the coordinates of the Hub
location are used.

locationString

String - any location string supported by the
Weather Underground APIs.
If not specified then the coordinates of the Hub
Location are used

sunriseOffset

String - adjust the sunrise time by this amount.
See timeOffset() (page 944) for supported formats

sunsetOffset

String - adjust the sunset time by this amount.
See timeOffset() (page 944) for supported formats

906 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Returns: Map - A Map containing the local sunrise and sunset times as Date objects: [sunrise: Date,
sunset: Date]

Example:

def noParams = getSunriseAndSunset()
def beverlyHills = getSunriseAndSunset(zipCode: "90210")
def thirtyMinsBeforeSunset = getSunriseAndSunset(sunsetOffset: "-00:30")

log.debug "sunrise with no parameters: ${noParams.sunrise}"
log.debug "sunset with no parameters: ${noParams.sunset}"
log.debug "sunrise and sunset in 90210: $beverlyHills"
log.debug "thirty minutes before sunset at current Location: ${thirtyMinsBeforeSunset.sunset}"

284.1.27 getTwcConditions()

Note: If you are considering the development of an application that makes extensive use of weather data, you should
consider gaining direct access to APIs from a weather data provider.

Get the current weather conditions.

Signature: def getTwcConditions(String locationString = null)

Parameters: String locationString - Optional. Must be a 5 digit US zip code or a latitude, longitude string
(e.g., “38.25,-76.45”). If not specified, the method will use the latitude and longitude of the Location as set in
the SmartThings mobile app.

Example Response:

{
cloudCeiling: null,
cloudCoverPhrase: "Clear",
dayOfWeek: "Wednesday",
dayOrNight: "D",
expirationTimeUtc: 1545249077,
iconCode: 32,
iconCodeExtend: 3200,
obsQualifierCode: null,
obsQualifierSeverity: null,
precip1Hour: 0,
precip6Hour: 0,
precip24Hour: 0,
pressureAltimeter: 1018.29,
pressureChange: -2.71,
pressureMeanSeaLevel: 1018.5,
pressureTendencyCode: 2,
pressureTendencyTrend: "Falling",
relativeHumidity: 55,
snow1Hour: 0,
snow6Hour: 0,
snow24Hour: 0,
sunriseTimeLocal: "2018-12-19T07:28:58-0500",
sunriseTimeUtc: 1545222538,
sunsetTimeLocal: "2018-12-19T17:10:52-0500",
sunsetTimeUtc: 1545257452,

284.1. SmartApp 907

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

temperature: 10,
temperatureChange24Hour: -2,
temperatureDewPoint: 2,
temperatureFeelsLike: 9,
temperatureHeatIndex: 10,
temperatureMax24Hour: 12,
temperatureMaxSince7Am: 10,
temperatureMin24Hour: -3,
temperatureWindChill: 9,
uvDescription: "Low",
uvIndex: 1,
validTimeLocal: "2018-12-19T14:41:17-0500",
validTimeUtc: 1545248477,
visibility: 16.09,
windDirection: 180,
windDirectionCardinal: "S",
windGust: null,
windSpeed: 6,
wxPhraseLong: "Sunny",
wxPhraseMedium: "Sunny",
wxPhraseShort: "Sunny"

}

284.1.28 getTwcForecast()

Note: If you are considering the development of an application that makes extensive use of weather data, you should
consider gaining direct access to APIs from a weather data provider.

Get the daily weather forecast at the specified location.

Signature: def getTwcForecast(String locationString=null)

Parameters: String locationString - Optional. Must be a 5 digit US zip code or a latitude, longitude string
(e.g., “38.25,-76.45”). If not specified, the method will use the latitude and longitude of the Location as set in
the SmartThings mobile app.

Example Response:

{
dayOfWeek:[

"Wednesday",
"Thursday",
"Friday",
"Saturday"

],
expirationTimeUtc:[

1545251268,
1545251268,
1545251268,
1545251268

],
moonPhase:[

"Waxing Gibbous",
"Waxing Gibbous",

908 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

"Waxing Gibbous",
"Full Moon"

],
moonPhaseCode:[

"WXG",
"WXG",
"WXG",
"F"

],
moonPhaseDay:[

11,
12,
13,
15

],
moonriseTimeLocal:[

"2018-12-19T15:04:06-0500",
"2018-12-20T15:44:43-0500",
"2018-12-21T16:32:25-0500",
"2018-12-22T17:26:58-0500"

],
moonriseTimeUtc:[

1545249846,
1545338683,
1545427945,
1545517618

],
moonsetTimeLocal:[

"2018-12-19T03:50:48-0500",
"2018-12-20T04:56:24-0500",
"2018-12-21T06:03:51-0500",
"2018-12-22T07:11:16-0500"

],
moonsetTimeUtc:[

1545209448,
1545299784,
1545390231,
1545480676

],
narrative:[

"A few clouds. Highs in the low 50s and lows in the upper 30s.",
"Cloudy, periods of rain. Highs in the upper 40s with temperatures nearly steady overnight.",
"Cloudy with rain. Highs in the mid 50s and lows in the upper 30s.",
"Mostly sunny. Highs in the upper 40s and lows in the low 30s."

],
qpf:[

0,
1.44,
0.49,
0

],
qpfSnow:[

0,
0,
0,
0

],
sunriseTimeLocal:[

284.1. SmartApp 909

SmartThings Classic Developer Documentation, Release latest

"2018-12-19T07:28:58-0500",
"2018-12-20T07:29:31-0500",
"2018-12-21T07:30:02-0500",
"2018-12-22T07:30:32-0500"

],
sunriseTimeUtc:[

1545222538,
1545308971,
1545395402,
1545481832

],
sunsetTimeLocal:[

"2018-12-19T17:10:52-0500",
"2018-12-20T17:11:19-0500",
"2018-12-21T17:11:47-0500",
"2018-12-22T17:12:18-0500"

],
sunsetTimeUtc:[

1545257452,
1545343879,
1545430307,
1545516738

],
temperatureMax:[

51,
49,
54,
49

],
temperatureMin:[

38,
47,
37,
31

],
validTimeLocal:[

"2018-12-19T07:00:00-0500",
"2018-12-20T07:00:00-0500",
"2018-12-21T07:00:00-0500",
"2018-12-22T07:00:00-0500"

],
validTimeUtc:[

1545220800,
1545307200,
1545393600,
1545480000

],
daypart:[

{
cloudCover:[

16,
79,
100,
100,
99,
85,
32,
14

910 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

],
dayOrNight:[

"D",
"N",
"D",
"N",
"D",
"N",
"D",
"N"

],
daypartName:[

"Today",
"Tonight",
"Tomorrow",
"Tomorrow night",
"Friday",
"Friday night",
"Saturday",
"Saturday night"

],
iconCode:[

34,
27,
12,
12,
12,
26,
34,
33

],
iconCodeExtend:[

3400,
2700,
1200,
1200,
1200,
2600,
3400,
3300

],
narrative:[

"Lots of sunshine. High 51F. Winds light and variable.",
"Partly cloudy early followed by cloudy skies overnight. Low 38F. Winds light and variable.",
"Rain likely. High 49F. Winds NE at 5 to 10 mph. Chance of rain 100%. Rainfall near an inch.",
"Rain likely. Low 47F. Winds light and variable. Chance of rain 90%. Rainfall near a half an inch.",
"Periods of rain. Thunder possible. High 54F. Winds SSW at 5 to 10 mph. Chance of rain 100%.",
"Cloudy. Low 37F. Winds WNW at 5 to 10 mph.",
"A few clouds early, otherwise mostly sunny. High 49F. Winds WNW at 5 to 10 mph.",
"Clear to partly cloudy. Low 31F. Winds light and variable."

],
precipChance:[

0,
20,
100,
90,
100,
20,

284.1. SmartApp 911

SmartThings Classic Developer Documentation, Release latest

0,
0

],
precipType:[

"rain",
"precip",
"rain",
"rain",
"rain",
"precip",
"rain",
"precip"

],
qpf:[

0,
0,
0.93,
0.51,
0.48,
0,
0,
0

],
qpfSnow:[

0,
0,
0,
0,
0,
0,
0,
0

],
qualifierCode:[

null,
null,
null,
null,
"Q8003",
null,
null,
null

],
qualifierPhrase:[

null,
null,
null,
null,
"Thunder possible.",
null,
null,
null

],
relativeHumidity:[

63,
85,
93,
96,

912 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

92,
76,
55,
72

],
snowRange:[

"",
"",
"",
"",
"",
"",
"",
""

],
temperature:[

51,
38,
49,
47,
54,
37,
49,
31

],
temperatureHeatIndex:[

50,
43,
48,
50,
54,
46,
48,
39

],
temperatureWindChill:[

44,
39,
41,
46,
43,
34,
33,
32

],
thunderCategory:[

"No thunder",
"No thunder",
"No thunder",
"No thunder",
"Thunder possible",
"No thunder",
"No thunder",
"No thunder"

],
thunderIndex:[

0,
0,

284.1. SmartApp 913

SmartThings Classic Developer Documentation, Release latest

0,
0,
1,
0,
0,
0

],
uvDescription:[

"Low",
"Low",
"Low",
"Low",
"Low",
"Low",
"Low",
"Low"

],
uvIndex:[

1,
0,
1,
0,
1,
0,
2,
0

],
windDirection:[

173,
44,
51,
125,
208,
292,
282,
274

],
windDirectionCardinal:[

"S",
"NE",
"NE",
"SE",
"SSW",
"WNW",
"WNW",
"W"

],
windPhrase:[

"Winds light and variable.",
"Winds light and variable.",
"Winds NE at 5 to 10 mph.",
"Winds light and variable.",
"Winds SSW at 5 to 10 mph.",
"Winds WNW at 5 to 10 mph.",
"Winds WNW at 5 to 10 mph.",
"Winds light and variable."

],
windSpeed:[

914 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

3,
1,
6,
5,
9,
9,
9,
3

],
wxPhraseLong:[

"Mostly Sunny",
"Mostly Cloudy",
"Rain",
"Rain",
"Rain",
"Cloudy",
"Mostly Sunny",
"Mostly Clear"

],
wxPhraseShort:[

"M Sunny",
"M Cloudy",
"Rain",
"Rain",
"Rain",
"Cloudy",
"M Sunny",
"M Clear"

]
}

]
}

284.1.29 getTwcLocation()

Note: If you are considering the development of an application that makes extensive use of weather data, you should
consider gaining direct access to APIs from a weather data provider.

Get location data, such as time zone and zip code at the specified location.

Signature: def getTwcLocation(String locationString = null)

Parameters: String locationString - Optional. Must be a 5 digit US zip code or a latitude, longitude string
(e.g., “38.25,-76.45”). If not specified, the method will use the latitude and longitude of the Location as set in
the SmartThings mobile app.

Example Response:

{
location:{

latitude:36.23,
longitude:-80.7,
city:"Boonville",
locale:{

284.1. SmartApp 915

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

locale1:null,
locale2:"Boonville",
locale3:null,
locale4:null

},
neighborhood:null,
adminDistrict:"North Carolina",
adminDistrictCode:"NC",
postalCode:"27011",
postalKey:"27011:US",
country:"United States",
countryCode:"US",
ianaTimeZone:"America/New_York",
displayName:"Boonville",
dstEnd:"2019-11-03T01:00:00-0500",
dstStart:"2019-03-10T03:00:00-0400",
dmaCd:"518",
placeId:"5a75bd28971b1f181dde5085446a99e4abf9adbf1754365bb5dc9ac53d6779a4",
disputedArea:false,
countyId:"NCC197",
locId:null,
pwsId:null,
type:"postal",
zoneId:"NCZ020"

}
}

284.1.30 getTwcAlerts()

Note: If you are considering the development of an application that makes extensive use of weather data, you should
consider gaining direct access to APIs from a weather data provider.

Get the current severe weather alerts at the specified location.

Signature: def getTwcAlerts(String geoLocation=null)

Parameters: String geoLocation - Optional. A latitude and longitude string (e.g., “38.25,-76.45”). Zip codes are
not supported by getTwcAlerts().

Example Response:

{
metadata:{

next:null
},
alerts:[

{
detailKey:"c991e7f1-7519-3501-9481-dce00c81bb9e",
messageTypeCode:2,
messageType:"Update",
productIdentifier:"FLS",
phenomena:"FL",
significance:"W",
eventTrackingNumber:"0087",

916 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

officeCode:"KLCH",
officeName:"Lake Charles",
officeAdminDistrict:"Louisiana",
officeAdminDistrictCode:"LA",
officeCountryCode:"US",
eventDescription:"River Flood Warning",
severityCode:3,
severity:"Moderate",
categories:[

{
category:"Met",
categoryCode:2

}
],
responseTypes:[

{
responseType:"Avoid",
responseTypeCode:5

}
],
urgency:"Unknown",
urgencyCode:5,
certainty:"Unknown",
certaintyCode:5,
effectiveTimeLocal:null,
effectiveTimeLocalTimeZone:null,
expireTimeLocal:"2018-12-20T00:50:00-06:00",
expireTimeLocalTimeZone:"CST",
expireTimeUTC:1545288600,
onsetTimeLocal:null,
onsetTimeLocalTimeZone:null,
flood:{

floodLocationId:"DWYT2",
floodLocationName:"Sabine River near Deweyville",
floodSeverityCode:"1",
floodSeverity:"Minor",
floodImmediateCauseCode:"ER",
floodImmediateCause:"Excessive Rainfall",
floodRecordStatusCode:"NO",
floodRecordStatus:"A record flood is not expected",
floodStartTimeLocal:"2018-11-04T05:07:00-06:00",
floodStartTimeLocalTimeZone:"CST",
floodCrestTimeLocal:"2018-12-13T09:00:00-06:00",
floodCrestTimeLocalTimeZone:"CST",
floodEndTimeLocal:null,
floodEndTimeLocalTimeZone:null

},
areaTypeCode:"C",
latitude:30.23,
longitude:-93.33,
areaId:"LAC019",
areaName:"Calcasieu Parish",
ianaTimeZone:"America/Chicago",
adminDistrictCode:"LA",
adminDistrict:"Louisiana",
countryCode:"US",
countryName:"UNITED STATES OF AMERICA",
headlineText:"River Flood Warning is in effect",

284.1. SmartApp 917

SmartThings Classic Developer Documentation, Release latest

source:"National Weather Service",
disclaimer:null,
issueTimeLocal:"2018-12-19T10:51:00-06:00",
issueTimeLocalTimeZone:"CST",
identifier:"e36df9092f95582ad3b5021bbc480481",
processTimeUTC:1545238316

}
]

}

284.1.31 getTwcAlertDetail()

Note: If you are considering the development of an application that makes extensive use of weather data, you should
consider gaining direct access to APIs from a weather data provider.

Get detailed description and text of the specified weather alert.

Signature: def getTwcAlertDetail(String alertId)

Parameters: String alertId - The alertId from the response from getTwcAlerts().

Example Response:

{
alertDetail:{

detailKey:"c991e7f1-7519-3501-9481-dce00c81bb9e",
messageTypeCode:2,
messageType:"Update",
productIdentifier:"FLS",
phenomena:"FL",
significance:"W",
eventTrackingNumber:"0087",
officeCode:"KLCH",
officeName:"Lake Charles",
officeAdminDistrict:"Louisiana",
officeAdminDistrictCode:"LA",
officeCountryCode:"US",
eventDescription:"River Flood Warning",
severityCode:3,
severity:"Moderate",
categories:[

{
category:"Met",
categoryCode:2

}
],
responseTypes:[

{
responseType:"Avoid",
responseTypeCode:5

}
],
urgency:"Unknown",
urgencyCode:5,

918 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

certainty:"Unknown",
certaintyCode:5,
effectiveTimeLocal:null,
effectiveTimeLocalTimeZone:null,
expireTimeLocal:"2018-12-20T00:50:00-06:00",
expireTimeLocalTimeZone:"CST",
expireTimeUTC:1545288600,
onsetTimeLocal:null,
onsetTimeLocalTimeZone:null,
flood:{

floodLocationId:"DWYT2",
floodLocationName:"Sabine River near Deweyville",
floodSeverityCode:"1",
floodSeverity:"Minor",
floodImmediateCauseCode:"ER",
floodImmediateCause:"Excessive Rainfall",
floodRecordStatusCode:"NO",
floodRecordStatus:"A record flood is not expected",
floodStartTimeLocal:"2018-11-04T05:07:00-06:00",
floodStartTimeLocalTimeZone:"CST",
floodCrestTimeLocal:"2018-12-13T09:00:00-06:00",
floodCrestTimeLocalTimeZone:"CST",
floodEndTimeLocal:null,
floodEndTimeLocalTimeZone:null

},
areaTypeCode:"C",
latitude:30.23,
longitude:-93.33,
areaId:"LAC019",
areaName:"Calcasieu Parish",
ianaTimeZone:"America/Chicago",
adminDistrictCode:"LA",
adminDistrict:"Louisiana",
countryCode:"US",
countryName:"UNITED STATES OF AMERICA",
headlineText:"River Flood Warning is in effect",
source:"National Weather Service",
disclaimer:null,
issueTimeLocal:"2018-12-19T10:51:00-06:00",
issueTimeLocalTimeZone:"CST",
identifier:"e36df9092f95582ad3b5021bbc480481",
processTimeUTC:1545238316,
texts:[

{
languageCode:"en-US",
description:"The Flood Warning continues for The Sabine River Near Deweyville. * until further notice...or until the warning is cancelled. * At 9:45 AM Wednesday the stage was 24.4 feet. * Minor flooding is occurring and Minor flooding is forecast. * Flood stage is 24.0 feet. * Forecast...The river will remain near 24.4 feet. * Impact...At stages near 24.0 feet...Minor lowland flooding will occur. && ",
instruction:null,
overview:"...The Flood Warning continues for the following rivers in Texas... Neches River Near Town Bluff Neches River at Neches River Saltwater Barrier ...The Flood Warning continues for the following rivers in Louisiana...Texas.. Sabine River Near Deweyville Neches River Near Evadale "

}
],
polygon:[

{
lat:30.57,
lon:-93.63

},
{

lat:30.11,
lon:-93.64

284.1. SmartApp 919

SmartThings Classic Developer Documentation, Release latest

},
{

lat:30.11,
lon:-93.78

},
{

lat:30.31,
lon:-93.81

},
{

lat:30.62,
lon:-93.78

},
{

lat:30.57,
lon:-93.63

}
],
synopsis:null

}
}

284.1.32 getWeatherFeature() - Deprecated

Warning: Effective January 1, 2019, this API will be removed. See getTwcConditions() (page 907), getTwcFore-
cast() (page 908), getTwcAlerts() (page 916), getTwcLocation() (page 915), or getTwcAlertDetail() (page 918) for
alternative weather APIs.

Calls the Weather Underground API to to return weather forecasts and related data.

Signature: Map getWeatherFeature(String featureName [, String location])

Note: getWeatherFeature simply delegates to the Weather Underground API, using the specfied
featureName and location (if specified). For full descriptions on the available features and return informa-
tion, please consult the Weather Underground API docs.

Parameters: String featureName The weather feature to get. This corresponds to the available “Data Features” in
the Weather Underground API.

String location (optional) The location to get the weather information for (ZIP code). If not specified, the
Location of the user’s Hub will be used.

Returns: Map - a Map containing the weather information requested. The data returned will vary depending on the
feature requested. See the Weather Underground API documentation for more information.

284.1.33 httpDelete()

Executes an HTTP DELETE request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

920 Chapter 284. API Contents

http://www.wunderground.com/weather/api/d/docs?
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html

SmartThings Classic Developer Documentation, Release latest

Signature: void httpDelete(String uri, Closure closure)

void httpDelete(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP DELETE call to.

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Returns: void

284.1.34 httpError()

Throws a SmartAppException with the specified status code and message.

This should be used to send an HTTP error to any calling client.

Signature: def httpError(Integer status, message)

Parameters: Integer status - The HTTP error code to send. message - the error message.

Example:

def someMethod() {
httpError(400, "something went wrong")

}

284.1.35 httpGet()

Executes an HTTP GET request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpGet(String uri, Closure closure)

void httpGet(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP GET call to

Map params - A map of parameters for configuring the request. The valid parameters are:

284.1. SmartApp 921

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure - closure - The closure that will be called with the response of the request.

Example:

def params = [
uri: "http://httpbin.org",
path: "/get"

]

try {
httpGet(params) { resp ->

resp.headers.each {
log.debug "${it.name} : ${it.value}"

}
log.debug "response contentType: ${resp.contentType}"
log.debug "response data: ${resp.data}"
}

} catch (e) {
log.error "something went wrong: $e"

}

284.1.36 httpHead()

Executes an HTTP HEAD request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

Signature: void httpHead(String uri, Closure closure)

void httpHead(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP HEAD call to

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

922 Chapter 284. API Contents

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

284.1.37 httpPost()

Executes an HTTP POST request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPost(String uri, String body, Closure closure)

void httpPost(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP POST call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Example:

try {
httpPost("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->

log.debug "response data: ${resp.data}"
log.debug "response contentType: ${resp.contentType}"

}
} catch (e) {

log.debug "something went wrong: $e"
}

284.1.38 httpPostJson()

Executes an HTTP POST request with a JSON-encoded body and content type, and passes control to the specified
closure. The closure is passed one HttpResponseDecorator argument from which the response content and header
information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPostJson(String uri, String body, Closure closure)

void httpPostJson(String uri, Map body, Closure closure)

void httpPostJson(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP POST call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

284.1. SmartApp 923

http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Example:

def params = [
uri: "http://postcatcher.in/catchers/<yourUniquePath>",
body: [

param1: [subparam1: "subparam 1 value",
subparam2: "subparam2 value"],

param2: "param2 value"
]

]

try {
httpPostJson(params) { resp ->

resp.headers.each {
log.debug "${it.name} : ${it.value}"

}
log.debug "response contentType: ${resp.contentType}"

}
} catch (e) {

log.debug "something went wrong: $e"
}

284.1.39 httpPut()

Executes an HTTP PUT request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPut(String uri, String body, Closure closure)

void httpPut(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP PUT call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

924 Chapter 284. API Contents

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Example:

try {
httpPut("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->

log.debug "response data: ${resp.data}"
log.debug "response contentType: ${resp.contentType}"

}
} catch (e) {

log.error "something went wrong: $e"
}

284.1.40 httpPutJson()

Executes an HTTP PUT request with a JSON-encoded body and content type, and passes control to the specified
closure. The closure is passed one HttpResponseDecorator argument from which the response content and header
information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPutJson(String uri, String body, Closure closure)

void httpPutJson(String uri, Map body, Closure closure)

void httpPutJson(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP PUT call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Forced response content type and request Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

284.1. SmartApp 925

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

284.1.41 nextOccurrence()

Returns a Date when the time specified in the input occurs next.

Signature: Date nextOccurrence(String timeString)

Parameters: String timeString - An ISO-8601 date string as returned from time input preferences of the Smar-
tApp.

Note: Note that if the input timeString does not contain time zone, this method will throw an
IllegalArgumentException.

Returns: Date - The Date when the time specified in the timeString occurs next. If the specified time has already
occurred, then returns the next day Date object when the specified time occurs next. If the specified time has not
yet occurred, then returns today’s Date object when the specified time will occur.

Example:

preferences {

section() {
input "Time1", "time", title: "Time1"
input "Time2", "time", title: "Time2"

}
}

...

// Current time is 16:25 October 24, 2016, Time1 input is 16:23 and Time2 input is 16:34
log.debug "nextOccurrence(Time1) value is: ${nextOccurrence(Time1)}"
log.debug "nextOccurrence(Time2) value is: ${nextOccurrence(Time2)}"
// The above log statements will print the following:
nextOccurrence(Time1) value is: Tue Oct 25 23:23:00 UTC 2016
nextOccurrence(Time2) value is: Mon Oct 24 23:34:00 UTC 2016

284.1.42 now()

Gets the current Unix time in milliseconds.

Signature: Long now()

Returns: Long - the current Unix time.

284.1.43 parseJson()

Parses the specified string into a JSON data structure.

Signature: Map parseJson(stringToParse)

Parameters: String stringToParse - The string to parse into JSON

Returns: Map - a map that represents the passed-in string in JSON format.

926 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Long.
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

284.1.44 parseXml()

Parses the specified string into an XML data structure.

Signature: GPathResult parseXml(stringToParse)

Parameters: String stringToParse - The string to parse into XML

Returns: GPathResult - A GPathResult instance that represents the passed-in string in XML format.

284.1.45 parseLanMessage()

Parses a Base64-encoded LAN message received from the Hub into a map with header and body elements, as well as
parsing the body into an XML document.

Signature: Map parseLanMessage(stringToParse)

Parameters: String stringToParse - The string to parse

Returns: Map - a map with the following structure:

key type description
header String the headers of the request as a single string
headers Map a Map of string/name value pairs for each header
body String the request body as a string

284.1.46 parseSoapMessage()

Parses a Base64-encoded LAN message received from the Hub into a map with header and body elements, as well as
parsing the body into an XML document. This method is commonly used to parse UPNP SOAP messages.

Signature: Map parseLanMessage(stringToParse)

Parameters: String stringToParse - The string to parse

Returns: Map - A map with the following structure:

key type description
header String the headers of the request as a single string
headers Map a Map of string/name value pairs for each header
body String the request body as a string
xml GPathResult the request body as a GPathResult object
xmlError String error message from parsing the body, if any

284.1.47 render()

Returns a HTTP response to the calling client with the options specified.

Signature: def render(Map options)

284.1. SmartApp 927

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/slurpersupport/GPathResult.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://www.w3.org/TR/soap12-part1/
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/slurpersupport/GPathResult.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/slurpersupport/GPathResult.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Parameters: Map options - the options for what is returned to the client:

option description
contentType The value of the “Content-Type” request header. “application/json” if not specified.
status The HTTP status of the response. 200 if not specified.
data Required. The data for this response.

Example:

def someMethod() {
def html = """

<!DOCTYPE HTML>
<html>

<head><title>Some Title</title></head>
<body><p>Some Text</p></body>

</html>
"""

render contentType: "text/html", data: html
}

284.1.48 revokeAccessToken()

Revokes the access token created with createAccessToken() (page 902) for this installed SmartApp.

Signature: def revokeAccessToken()

Example:

// Check to see if SmartApp has its own access token and create one if not.
if(!state.accessToken) {

// the createAccessToken() method will store the access token in state.accessToken
createAccessToken()

}

// Use token to allow third-party to communicate with SmartApp during setup

// Revoke the token once the third-party no longer needs it (after setup)
revokeAccessToken()

See also:

• Building the Service Manager (page 546)

• createAccessToken() (page 902)

284.1.49 runIn()

Executes a specified handlerMethod after delaySeconds have elapsed.

Signature: void runIn(delayInSeconds, handlerMethod [, options])

928 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Tip: It’s important to note that we will attempt to run this method at this time, but cannot guarantee exact precision.
We typically expect per-minute level granularity, so if using with values less than sixty seconds, your mileage will
vary.

Parameters: delayInSeconds - The number of seconds to execute the handlerMethod after.

handlerMethod - The method to call after delayInSeconds has passed. Can be a string or a reference to
the method. Make sure that the method being referenced is not scoped to private and/or the method name being
used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possi-
ble
values

Description

over-
write

true or
false

Specify [overwrite: false] to not overwrite any existing pending schedule
handler for the given method (the default behavior is to overwrite the pending
schedule). Specifying [overwrite: false] can lead to multiple different
schedules for the same handler method, so be sure your handler method can handle this.

data A map
of data

A map of data that will be passed to the handler method.

Returns: void

Example:

runIn(300, myHandlerMethod)
runIn(400, "myOtherHandlerMethod", [data: [flag: true]])

def myHandlerMethod() {
log.debug "handler method called"

}

def myOtherHandlerMethod(data) {
log.debug "other handler method called with flag: $data.flag"

}

284.1.50 runEvery1Minute()

Creates a recurring schedule that executes the specified handlerMethod every minute. Using this method will pick
a random start time in the next minute, and run every minute after that.

Signature: void runEvery1Minute(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the 1 minute period.

Parameters: handlerMethod - The method to call every minute. Can be the name of the method as a string, or a
reference to the method. Make sure that the method being referenced is not scoped to private and/or the method
name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

284.1. SmartApp 929

SmartThings Classic Developer Documentation, Release latest

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery1Minute(handlerMethod1)
runEvery1Minute(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.1.51 runEvery5Minutes()

Creates a recurring schedule that executes the specified handlerMethod every five minutes. Using this method will
pick a random start time in the next five minutes, and run every five minutes after that.

Signature: void runEvery5Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the 5 minute period.

Parameters: handlerMethod - The method to call every five minutes. Can be the name of the method as a string,
or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the
method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery5Minutes(handlerMethod1)
runEvery5Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

930 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

284.1.52 runEvery10Minutes()

Creates a recurring schedule that executes the specified handlerMethod every ten minutes. Using this method will
pick a random start time in the next ten minutes, and run every ten minutes after that.

Signature: void runEvery10Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the ten minute period.

Parameters: handlerMethod - The method to call every ten minutes. Can be the name of the method as a string,
or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the
method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery10Minutes(handlerMethod1)
runEvery10Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.1.53 runEvery15Minutes()

Creates a recurring schedule that executes the specified handlerMethod every fifteen minutes. Using this method
will pick a random start time in the next five minutes, and run every five minutes after that.

Signature: void runEvery15Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the fifteen minute period.

Parameters: handlerMethod - The method to call every fifteen minutes. Can be the name of the method as a
string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or
the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

284.1. SmartApp 931

SmartThings Classic Developer Documentation, Release latest

Returns: void

Example:

runEvery15Minutes(handlerMethod1)
runEvery15Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.1.54 runEvery30Minutes()

Creates a recurring schedule that executes the specified handlerMethod every thirty minutes. Using this method
will pick a random start time in the next thirty minutes, and run every thirty minutes after that.

Signature: void runEvery30Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the thirty minute period.

Parameters: handlerMethod - The method to call every thirty minutes. Can be the name of the method as a
string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or
the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery30Minutes(handlerMethod1)
runEvery30Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

932 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

284.1.55 runEvery1Hour()

Creates a recurring schedule that executes the specified handlerMethod every hour. Using this method will pick a
random start time in the next hour, and run every hour after that.

Signature: void runEvery1Hour(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the one hour period.

Parameters: handlerMethod- The method to call every hour. Can be the name of the method as a string, or a
reference to the method. Make sure that the method being referenced is not scoped to private and/or the method
name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery1Hour(handlerMethod1)
runEvery1Hour(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.1.56 runEvery3Hours()

Creates a recurring schedule that executes the specified handlerMethod every three hours. Using this method will
pick a random start time in the next hour, and run every three hours after that.

Signature: void runEvery3Hours(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the three hour period.

Parameters: handlerMethod - The method to call every three hours. Can be the name of the method as a string,
or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the
method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

284.1. SmartApp 933

SmartThings Classic Developer Documentation, Release latest

Returns: void

Example:

runEvery3Hours(handlerMethod1)
runEvery3Hours(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.1.57 runOnce()

Executes the handlerMethod once at the specified date and time.

Signature: void runOnce(dateTime, handlerMethod [, options])

Parameters: dateTime - When to execute the handlerMethod. Can be either a Date object or an
ISO-8601 date string. For example, new Date() + 1 would run at the current time tomorrow, and
"2017-07-04T12:00:00.000Z" would run at noon GMT on July 4th, 2017.

handlerMethod - The method to execute at the specified dateTime. This can be a reference to the method,
or the method name as a string. Make sure that the method being referenced is not scoped to private and/or the
method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possi-
ble
values

Description

over-
write

true or
false

Specify [overwrite: false] to not overwrite any existing pending schedule
handler for the given method (the default behavior is to overwrite the pending
schedule). Specifying [overwrite: false] can lead to multiple different
schedules for the same handler method, so be sure your handler method can handle this.

data A map
of data

A map of data that will be passed to the handler method.

Returns: void

Example:

// execute handler at 4 PM CST on October 21, 2015 (e.g., Back to the Future 2 Day!)
runOnce("2015-10-21T16:00:00.000-0600", handler)

def handler() {
...

}

934 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html

SmartThings Classic Developer Documentation, Release latest

284.1.58 schedule()

Creates a scheduled job that calls the handlerMethod once per day at the time specified, or according to a cron
schedule.

Signature: void schedule(dateTime, handlerMethod [, options])

void schedule(cronExpression, handlerMethod [, options])

Parameters:

dateTime - A Date object, an ISO-8601 formatted date time string.

String cronExpression - A cron expression that specifies the schedule to execute on.

handlerMethod - The method to call. This can be a reference to the method itself, or the method name
as a string. Make sure that the method being referenced is not scoped to private and/or the method name
being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Tip: Since calling schedule() with a dateTime argument creates a recurring scheduled job to execute every day
at the specified time, the date information is ignored. Only the time portion of the argument is used.

Tip: Full documentation for the cron expression format can be found in the Quartz Cron Trigger Tutorial

Example:

preferences {
section() {

input "timeToRun", "time"
}

}

...
// call handlerMethod1 at time specified by user input
schedule(timeToRun, handlerMethod1)

// call handlerMethod2 every day at 3:36 PM CST
schedule("2015-01-09T15:36:00.000-0600", handlerMethod2)

// execute handlerMethod3 every hour on the half hour (using a randomly chosen seconds field)
schedule("12 30 * * * ?", handlerMethod3)
...

def handlerMethod1() {...}
def handlerMethod2() {...}
def handlerMethod3() {...}

284.1. SmartApp 935

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html

SmartThings Classic Developer Documentation, Release latest

284.1.59 sendEvent()

Creates and sends an Event constructed from the specified properties. If a device is specified, then a DEVICE Event
will be created, otherwise an APP Event will be created.

Note: SmartApps typically respond to Events, not create them. In more rare cases, certain SmartApps or Service
Manager SmartApps may have reason to send Events themselves. sendEvent can be used for those cases.

Signature: void sendEvent(Map properties)

void sendEvent(Device device, Map properties)

Parameters: Map properties - The properties of the Event to create and send.

Here are the available properties:

Property Description
name
(required)

String - The name of the Event. Typically corresponds to an attribute name of a capability.

value
(required)

The value of the Event. The value is stored as a string, but you can pass numbers or other
objects.

descrip-
tionText

String - The description of this Event. This appears in the mobile application activity for the
device. If not specified, this will be created using the Event name and value.

displayed Pass true to display this Event in the mobile application activity feed, false to not display.
Defaults to true.

linkText String - Name of the Event to show in the mobile application activity feed.
isState-
Change

true if this Event caused a device attribute to change state. Typically not used, since it will
be set automatically.

unit String - a unit string, if desired. This will be used to create the descriptionText if it (the
descriptionText option) is not specified.

Device
(page 1003)

device - The device for which this Event is created for.

data A map of additional information to store with the Event

Tip: Not all Event properties need to be specified. ID properties like deviceId and locationId are automati-
cally set, as are properties like isStateChange, displayed, and linkText.

Returns: void

Example:

// create and send an event with name "temperature" and value 72
sendEvent(name: "temperature", value: 72, unit: "F")

// create and send event with additional data
sendEvent(name: "myevent", value: "myvalue", data: [moreInfo: "more information", evenMoreInfo: 42])

284.1.60 sendHubCommand()

Sends a command to the Hub, with the details of the command encapsulated within a HubAction object.

Signature: void sendHubCommand(HubAction action)

void sendHubCommand(List<HubAction> actions, delay)

936 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Parameters: HubAction action - A HubAction object

List<HubAction> actions - A list of HubAction objects

delay - An integer number representing milliseconds. This is the delay between commands when a list of
HubAction objects are sent using List<HubAction> actions parameter. The default value of delay is
1000.

Returns: void

Example: During the discovery phase of a LAN-connected device the following discovery command can be sent to
the Hub.

// Send a single HubAction command to the Hub
void ssdpDiscover() {

sendHubCommand(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:ZonePlayer:1", physicalgraph.device.Protocol.LAN))
}
// Send a List of HubAction commands to the Hub with a delay of 3 seconds between each HubAction command
void sendMultiDevice() {

List actions = []
actions.add(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:ZonePlayer:1", physicalgraph.device.Protocol.LAN))
actions.add(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:MediaRenderer:1", physicalgraph.device.Protocol.LAN))
actions.add(new physicalgraph.device.HubAction("lan discovery urn:samsung.com:device:RemoteControlReceiver:1", physicalgraph.device.Protocol.LAN))
sendHubCommand(actions, 3000)

}

284.1.61 sendLocationEvent()

Sends a LOCATION Event constructed from the specified properties. See the Event (page 1017) reference for a list
of available properties. Other SmartApps can receive Location Events by subscribing to the Location. Examples of
existing Location Events include sunrise and sunset.

Signature: void sendLocationEvent(Map properties)

Parameters: Map properties - The properties from which to create and send the Event.

Here are the available properties:

Prop-
erty

Description

name
(re-
quired)

String - The name of the Event. Typically corresponds to an attribute name of a capability.

value
(re-
quired)

The value of the Event. The value is stored as a string, but you can pass numbers or other
objects.

descrip-
tionText

String - The description of this Event. This appears in the mobile application activity for the
device. If not specified, this will be created using the Event name and value.

dis-
played

Pass true to display this Event in the mobile application activity feed, false to not display.
Defaults to true.

linkText String - Name of the Event to show in the mobile application activity feed.
isState-
Change

true if this Event caused a device attribute to change state. Typically not used, since it will be
set automatically.

unit String - a unit string, if desired. This will be used to create the descriptionText if it (the
descriptionText option) is not specified.

data A map of additional information to store with the Event

284.1. SmartApp 937

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Returns: void

284.1.62 sendNotification()

Sends the specified message and displays it in the Hello, Home portion of the mobile application.

Signature: void sendNotification(String message [, Map options])

Parameters: String message - The message to send to Hello, Home

Map options (optional) - Options for the message. The following options are available:

op-
tion

description

methodString - One of "phone", "push", or "both". Defaults to “both”.
event false to supress displaying in Hello, Home. Defaults to true.
phone String - The phone number to send the SMS message to. Required when the method is "phone".

If not specified and method is “both”, then no SMS message will be sent.

Returns: void

Example:

sendNotification("test notification - no params")
sendNotification("test notification - push", [method: "push"])
sendNotification("test notification - sms", [method: "phone", phone: "1234567890"])
sendNotification("test notification - both", [method: "both", phone: "1234567890"])
sendNotification("test notification - no event", [event: false])

284.1.63 sendNotificationEvent()

Displays a message in Hello, Home, but does not send a push notification or SMS message.

Signature: void sendNotificationEvent(String message)

Parameters: String message - The message to send to Hello, Home

Returns: void

Example:

sendNotificationEvent("some message")

284.1.64 sendNotificationToContacts()

Sends the specified message to the specified contacts.

Signature: void sendNotificationToContacts(String message, String contact, Map
options=[:])

void sendNotificationToContacts(String message, Collection contacts, Map
options=[:])

938 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Parameters: String message - the message to send

String contact - the contact to send the notification to. Typically set through the contact input type.

Collection contacts - the collection of contacts to send the notification to. Typically set through the
contact input type.

Map options (optional) - a map of additional parameters. The valid parameter is [event: boolean]
to specify if the message should be displayed in the Notifications feed. Defaults to true (message will be
displayed in the Notifications feed).

Returns: void

Example:

preferences {
section("Send Notifications?") {

input("recipients", "contact", title: "Send notifications to") {
input "phone", "phone", title: "Warn with text message (optional)",

description: "Phone Number", required: false
}

}
}

...
if (location.contactBookEnabled) {

sendNotificationToContacts("Your house talks!", recipients)
}
...

Tip: It’s a good idea to assume that a user may not have any contacts configured. That’s why you see the
nested "phone" input in the preferences (user will only see that if they don’t have contacts), and why we check
location.contactBookEnabled.

284.1.65 sendPush()

Sends the specified message as a push notification to users mobile devices and displays it in Hello, Home.

Signature: void sendPush(String message)

Parameters: String message - The message to send

Returns: void

Example:

sendPush("some message")

284.1.66 sendPushMessage()

Sends the specified message as a push notification to users mobile devices but does not display it in Hello, Home.

Signature: void sendPushMessage(String message)

Parameters: String message - The message to send

Returns: void

284.1. SmartApp 939

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Example:

sendPushMessage("some message")

284.1.67 sendSms()

Sends the message as an SMS message to the specified phone number and displays it in Hello, Home. The message
can be no longer than 140 characters.

Signature: void sendSms(String phoneNumber, String message)

Parameters: String phoneNumber - the phone number to send the SMS message to.

String message - the message to send. Can be no longer than 140 characters.

Returns: void

Example:

sendSms("somePhoneNumber", "some message")

284.1.68 sendSmsMessage()

Sends the message as an SMS message to the specified phone number but does not display it in Hello, Home. The
message can be no longer than 140 characters.

Signature: void sendSmsMessage(String phoneNumber, String message)

Parameters: String phoneNumber - the phone number to send the SMS message to.

String message - the message to send. Can be no longer than 140 characters.

Returns: void

Example:

sendSms("somePhoneNumber", "some message")

284.1.69 setLocationMode()

Set the Mode for this Location.

Signature: void setLocationMode(String mode) void setLocationMode(Mode mode)

Returns: void

Warning: setMode() will raise an error if the specified Mode does not exist for the Location. You should
verify the Mode exists as in the example below.

See Also: location.setMode() (page 1038)

940 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.1.70 settings

A map of name/value pairs containing all of the installed SmartApp’s preferences.

Signature: Map settings

Returns: Map - a map containing all of the installed SmartApp’s preferences.

Example:

preferences {
section() {

input "myswitch", "capability.switch"
input "mytext", "text"
input "mytime", "time"

}
}

...

log.debug "settings.mytext: ${settings.mytext}"
log.debug "settings.mytime: ${settings.mytime}"

// if the input is a device/capability, you can get the device object
// through the settings:
log.debug "settings.myswitch.currentSwitch: ${settings.myswitch.currentSwitch}"
...

284.1.71 state

A map of name/value pairs that SmartApps can use to save and retrieve data across SmartApp executions.

Signature: Map state

Returns: Map - a map of name/value pairs.

state.count = 0
state.count = state.count + 1

log.debug "state.count: ${state.count}"

// use array notation if you wish
log.debug "state['count']: ${state['count']}"

// you can store lists and maps to make more intersting structures
state.listOfMaps = [[key1: "val1", bool1: true],

[otherKey: ["string1", "string2"]]]

Warning: Though state can be treated as a map in most regards, certain convenience operations that you may
be accustomed to in maps will not work with state. For example, state.count++ will not increment the
count - use the longer form of state.count = state.count + 1.

284.1. SmartApp 941

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

284.1.72 stringToMap()

Parses a comma-delimited string into a map.

Signature: Map stringToMap(String string)

Parameters: String string - A comma-delimited string to parse into a map.

Returns: Map - a map created from the comma-delimited string.

Example:

def testStr = "key1: value1, key2: value2"
def testMap = stringToMap(testStr)

log.debug "stringToMap: ${testMap}"
log.debug "stringToMap.key1: ${testMap.key1}" // => value1
log.debug "stringToMap.key2: ${testMap.key2}" // => value2

284.1.73 subscribe()

Subscribes to the various Events for a device or Location. The specified handlerMethod will be called when the
Event is fired.

All event handler methods will be passed an Event (page 1017) that represents the Event causing the handler method
to be called.

Signature: void subscribe(deviceOrDevices, String attributeName, handlerMethod)

void subscribe(deviceOrDevices, String attributeNameAndValue,
handlerMethod)

void subscribe(Location location, handlerMethod)

void subscribe(Location location, String eventName, handlerMethod)

void subscribe(app, handlerMethod)

Parameters: deviceOrDevices - The Device (page 1003) or list of devices to subscribe to.

String attributeName - The attribute to subscribe to.

String attributeNameAndValue - The specific attribute value to subscribe to, in the format
"<attributeName>.<attributeValue>"

handlerMethod - The method to call when the Event is fired. Can be a String of the method name or the
method reference itself.

Location (page 1036) location - The Location to subscribe to

app - Pass in the available app property in the SmartApp to subscribe to touch Events in the app.

Returns: void

Example:

preferences {
section() {

input "mycontact", "capability.contactSensor"
input "myswitches", "capability.switch", multiple: true

}
}

942 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

// subscribe to all state change Events for ``contact`` attribute of a contact sensor
subscribe(mycontact, "contact", handlerMethod)

// subscribe to all state changes for all switch devices configured
subscribe(myswitches, "switch", handlerMethod)

// subscribe to the "open" event for the contact sensor - only when the state changes to "open" will the handlerMethod be called
subscribe(mycontact, "contact.open", handlerMethod)

// subscribe to all state change Events for the installed SmartApp's Location
subscribe(location, handlerMethod)

// subscribe to touch Events for this app - handlerMethod called when app is touched
subscribe(app, appTouchMethod)

// all event handler methods must accept an event parameter
def handlerMethod(evt) {

log.debug "event name: ${evt.name}"
log.debug "event value: ${evt.value}"

}

284.1.74 subscribeToCommand()

Subscribes to device commands that are sent to a device. The specified handlerMethod will be called whenever
the specified command is sent.

Signature: void subscribeToCommand(device, commandName, handlerMethod)

Parameters:

device - The Device (page 1003) to subscribe to.

String commandName - The command to subscribe to

handlerMethod - the method to call when the command is called.

Returns: void

Example:

preferences {
section() {

input "switch1", "capability.switch"
}

}
...
subscribeToCommand(switch1, "on", onCommand)
...
// called when the on() command is called on switch1
def onCommand(evt) {...}

284.1.75 timeOfDayIsBetween()

Find if a given date is between a lower and upper bound.

284.1. SmartApp 943

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Signature: Boolean timeOfDayIsBetween(Date start, Date stop, Date value,
TimeZone timeZone)

Parameters: Date start - The start date to compare against.

Date stop - The end date to compare against.

Date value - The date to compare to start and stop.

TimeZone timeZone - The time zone for this comparison.

Returns: Boolean - true if the specified date is between the start and stop dates, false otherwise.

Example:

def between = timeOfDayIsBetween(new Date() - 1, new Date() + 1,
new Date(), location.timeZone)

log.debug "between: $between" => true

284.1.76 timeOffset()

Gets a time offset in milliseconds for the specified input.

Signature: Long timeOffset(Number minutes)

Long timeOffset(String hoursAndMinutesString)

Parameters: Number minutes - The number of minutes to get the offset in milliseconds for.

String hoursAndMinutesString - A string in the format of "hh:mm" to get the offset in milliseconds for.
Negative offsets are specified by prefixing the string with a minus sign ("-02:30").

Returns: Long - the time offset in milliseconds for the specified input.

Example:

def off1 = timeOffset(24) // => 1440000
def off2 = timeOffset("2:30") // => 9000000
def off2again = timeOffset(150) // => 9000000
def off3 = timeOffset("-02:30") // => -9000000

284.1.77 timeToday()

Gets a Date object for today’s date, for the specified time in the date-time parameter.

Signature: Date timeToday(String timeString [, TimeZone timeZone])

Parameters: String timeString - Either an ISO-8601 date string as returned from time input preferences, or a
simple time string in "hh:mm" format (“21:34”).

TimeZone timeZone (optional) - The time zone to use for determining the current day.

Warning: Although the timeZone argument is optional, it is strongly encouraged that you use it. Not specifying
the timeZone results in the SmartThings platform trying to calculate the time zone based on the date and time
zone offsets in the input string.
To avoid time zone errors, you should specify the timeZone argument (you can get the time zone from the
location object: location.timeZone)
Future releases may remove the option to call timeToday without a time zone.

944 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Long.
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

SmartThings Classic Developer Documentation, Release latest

Returns: Date - the Date that represents today’s date for the specified time.

Example:

preferences {
section() {

input "startTime", "time"
input "endTime", "time"

}
}
...
def start = timeToday(startTime, location.timeZone)
def end = timeToday(endTime, location.timeZone)

284.1.78 timeTodayAfter()

Returns a Date of the next occurrence of the time specified in the input, relative to a reference time.

Signature: Date timeTodayAfter(String startTimeString, String timeString [,
TimeZone timeZone])

Parameters: String startTimeString - The reference time. Can be an ISO-8601 date string as returned from
time input preferences, or a simple time string in "hh:mm" format (“21:34”).

String timeString - The time string whose next occurrence is queried. Can be an ISO-8601 date string as
returned from time input preferences, or a simple time string in "hh:mm" format (“21:34”).

TimeZone timeZone (optional) - The time zone used for determining the current date and time.

Warning: Although the timeZone argument is optional, it is strongly encouraged that you use it. Not specifying
the timeZone results in the SmartThings platform trying to calculate the time zone based on the date and time
zone offsets in the input string.
To avoid time zone errors, you should specify the timeZone argument (you can get the time zone from the
location object: location.timeZone)
Future releases may remove the option to call timeToday without a time zone.

Returns: Date - If time specified by timeString has already occurred prior to startTimeString then returns
the next day Date object when the timeString time occurs next. If timeString time has not yet occurred
relative to startTimeString, then returns today’s Date object when the timeString time will occur.
Since only the occurrence of timeString after the elapse of startTimeString time is considered, the
Date returned is guaranteed to be later than the startTimeString date.

Example:

preferences {
section() {

input "time1", "time"
input "time2", "time"

}
}
...
// assume time1 entered as 20:20
// assume time2 entered as 14:05
// since 14:05 time today has already elapsed prior to 20:20 reference time today,
// the nextTime would be tomorrow's date, 14:05 time (the next occurrence of 14:05 time)
def nextTime = timeTodayAfter(time1, time2, location.timeZone)

284.1. SmartApp 945

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html

SmartThings Classic Developer Documentation, Release latest

284.1.79 timeZone()

Get a TimeZone object for the specified time value entered as a SmartApp preference. This will get the current time
zone of the mobile app (not the Hub Location).

Signature: TimeZone timeZone(String timePreferenceString)

Parameters: String timePreferenceString - The time value string in IS0-8061 format as entered as input in
SmartApp time preferences.

Returns: TimeZone - the TimeZone for the time value as specified by the timePreferenceString.

Example:

preferences {
section() {

input "mytime", "time"
}

}

...
def enteredTimeZone = timeZone(mytime)
...

284.1.80 toDateTime()

Get a Date object for the specified string.

Signature: Date toDateTime(dateTimeString)

Parameters: String dateTimeString - the date-time string for which to get a Date object, in ISO-8061 format as
used by time preferences

Returns: Date - the Date for the specified dateTimeString.

Example:

preferences {
section() {

input "mytime", "time"
}

}
...
Date myTimeAsDate = toDateTime(mytime)
...

284.1.81 unschedule()

Deletes all scheduled jobs for the SmartApp. If using the optional method parameter, then it deletes the scheduled
job for the specified handler name only.

Signature: void unschedule(String method = ’’)

Returns: void

946 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html

SmartThings Classic Developer Documentation, Release latest

Note: This can be an expensive operation if unscheduling all scheduled jobs; make sure you need to do this before
calling. Typically called in the updated() (page 898) method if the SmartApp has set up recurring schedules.

284.1.82 unsubscribe()

Deletes all subscriptions for the installed SmartApp, or for a specific device or devices if specified.

Typically should be called in the updated() (page 898) method, since device preferences may have changed.

Signature: unsubscribe([deviceOrDevices])

Paramters: deviceOrDevices (optional) - The device or devices for which to unsubscribe from. If not specified,
all subscriptions for this installed SmartApp will be deleted.

Returns: void

Example:

def updated() {
unsubscribe()

}

284.2 Device Handler

Device Handlers are the virtual representation of a physical device.

A Device Handler defines a metadata() (page 964) method that defines the device’s definition, UX information, as
well as how it should behave in the IDE simulator.

A Device Handler typically also defines a parse() (page 948) method that is responsible for transforming raw messages
from the device into Events for the SmartThings platform.

Device Handlers must also define methods for any supported commands, either through its supported capabilities, or
device-specific commands.

For more information about the structure of Device Handlers, refer to the Device Handler’s Guide.

Tip: Writing a Device Handler is considered a somewhat advanced topic. Understanding of how a Device Handler
is organized and operates is assumed in this reference documentation. You should be familiar with the contents of the
Device Handler’s Guide to get the most out of this documentation.

Methods expected to be defined by Device Handlers:

284.2. Device Handler 947

SmartThings Classic Developer Documentation, Release latest

284.2.1 <command name>()

Note: This method is expected to be defined by Device Handlers.

The definition for a Command supported by this Device Handler. Every Command that a Device Handler supports,
either through its capabilities or custom commands, must have a corresponding command method defined.

Commands are the things that a device can do. For example, the “Switch” capability defines the commands “on” and
“off”. Every Device that supports the “Switch” capability must define an implementation of these commands. This is
done by defining methods with the name of the command. For example, def on() {} and def off().

The exact implementation of a command method will vary greatly depending upon the device. The command method
is responsible for sending protocol and device-specific commands to the physical device.

Signature: Object <command name([arguments])>

Returns: Object - Commands may return any object, but typically do not return anything since they perform some
type of action.

Example:

metadata {
// Automatically generated. Make future change here.
definition (name: "CentraLite Switch", namespace: "smartthings", author: "SmartThings") {

...
capability "Switch"
...

}
...
// capability "Switch" declared, so all supported commands
// of "Switch" must be implemented:
def on() {

// device-specific commands to turn the switch on
}

def off() {
// device-specific commands to turn the switch off

}
...

284.2.2 parse()

Note: This method is expected to be defined by Device Handlers.

Called when messages from a device are received from the Hub. The parse method is responsible for interpreting
those messages and returning Event (page 1017) definitions. Event definitions are maps that contain, at a minimum,
name and value entries. They may also contain unit, displayText, displayed, isStateChange, and linkText entries if the
default, automatically generated values of these Event properties are to be overridden. See the createEvent() (page 955)
documentation for a description of these properties.

Because the parse() method is responsible for handling raw device messages, their implementations vary greatly
across different Device Handlers.

948 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

SmartThings Classic Developer Documentation, Release latest

The parse() method may return a map defining the Event (page 1017) to create and propagate through the Smart-
Things platform, or a list of Events if multiple Events should be created. It may also return a HubAction or list of
HubAction objects in the case of LAN-connected devices.

Signature: Map parse(String description)

List<Map> parse(String description)

HubAction parse(String description)

List<HubAction> parse(String description)

Example:

def parse(String description) {
log.debug "Parse description $description"
def name = null
def value = null
if (description?.startsWith("read attr -")) {

def descMap = parseDescriptionAsMap(description)
log.debug "Read attr: $description"
if (descMap.cluster == "0006" && descMap.attrId == "0000") {

name = "switch"
value = descMap.value.endsWith("01") ? "on" : "off"

} else {
def reportValue = description.split(",").find {it.split(":")[0].trim() == "value"}?.split(":")[1].trim()
name = "power"
// assume 16 bit signed for encoding and power divisor is 10
value = Integer.parseInt(reportValue, 16).intdiv(10)

}
} else if (description?.startsWith("on/off:")) {

log.debug "Switch command"
name = "switch"
value = description?.endsWith(" 1") ? "on" : "off"

}

// createEvent returns a Map that defines an Event
def result = createEvent(name: name, value: value)
log.debug "Parse returned ${result?.descriptionText}"

// returning the Event definition map creates an Event
// in the SmartThings platform, and propagates it to
// SmartApps subscribed to the device events.
return result

}

284.2.3 addChildDevice()

Adds a child device to a Device Handler. An example use is in a composite device Device Handler.

A parent may have multiple children, but only one level of children is allowed (i.e., if a device has a parent, it may not
have children itself).

Warning: A parent may have at most 500 children.

Signature: DeviceWrapper addChildDevice(String typeName, String deviceNetworkId,
hubId, Map properties)

284.2. Device Handler 949

SmartThings Classic Developer Documentation, Release latest

DeviceWrapper addChildDevice(String namespace, String typeName, String
deviceNetworkId, hubId, Map properties)

Parameters: String namespace - the namespace for the device. If not specified, defaults to the namespace of the
current Device Handler executing the call.

String typeName - the device type name

String deviceNetworkId - the device network id of the device

hubId - (optional) The hub id. Defaults to null

Map properties (optional) - A map with device properties. Available options are:

Option Description
isCom-
ponent

Allowed values are true and false. When true hides the device from the Things view and
doesn’t let it be separately deleted. (Example: This value is true for the ZooZ ZEN 20 and
false for Hue bridge.)

compo-
nent-
Name

A way to refer to this particular child. It should be a Java Bean name (i.e. no spaces). It is used
to refer to the device in the parent’s detail view. This option is only needed when
isComponent is true.

compo-
nentLa-
bel

The plain-english name (or i18n key) to be used by the UX.

complet-
edSetup

Specify true to complete the setup for the child device; false to have the user complete the
installation. It should be true if isComponent is true. Defaults to false.

label The label for the device.

Returns: Device (page 1003) - The device that was created.

Throws: UnknownDeviceTypeException - If a Device Handler with the specified name and namespace is not
found.

IllegalArgumentException - If the deviceNetworkId is not specified.

ValidationException - If the this device already has a parent.

SizeLimitExceededException - If this device already has the maximum number of children allowed
(500).

Example:

// on installation, create child devices
def installed() {

createChildDevices()
}

def createChildDevices() {

// This device (power strip) has five outlets
for (i in 1..5) {

// can omit namespace (first arg) if it is the same as this device
addChildDevice("smartthings", "Zooz Power Strip Outlet", "${device.deviceNetworkId}-ep${i}", null,

[completedSetup: true, label: "${device.displayName} (CH${i})",
isComponent: true, componentName: "ch$i", componentLabel: "Channel $i"])

}
}

950 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

284.2.4 apiServerUrl()

Returns the URL of the server where this Device Handler can be reached for API calls, along with the specified path
appended to it. Use this instead of hard-coding a URL to ensure that the correct server URL for this installed instance
is returned.

Signature: String apiServerUrl(String path)

Parameters: String path - the path to append to the URL

Returns: The URL of the server for this installed instance of the Device Handler.

Example:

// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("/my/path")}"

// The leading "/" will be added if you don't specify it
// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("my/path")}"

284.2.5 attribute()

Called within the definition() (page 956) method to declare that this Device Handler supports an attribute not defined
by any of its declared capabilities.

For any supported attribute, it is expected that the Device Handler creates and sends Events with the name of the
attribute in the parse() (page 948) method.

Signature: void attribute(String attributeName, String attributeType [, List
possibleValues])

Parameter: String attributeName - the name of the attribute

String attributeType - the type of the attribute. Available types are “string”, “number”, and “enum”

List possibleValues (optional) - the possible values for this attribute. Only valid with the "enum" at-
tributeType.

Returns: void

Example:

metadata {
definition (name: "Some Device Name", namespace: "somenamespace",

author: "Some Author") {
capability "Switch"
capability "Polling"
capability "Refresh"

// also support the attribute "myCustomAttriute" - not defined by supported capabilities.
attribute "myCustomAttribute", "number"

// enum attribute with possible values "light" and "dark"
attribute "someOtherName", "enum", ["light", "dark"]

}
...

}

284.2. Device Handler 951

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.2.6 capability()

Called in the definition() (page 956) method to define that this device supports the specified capability.

Important: Whatever commands and attributes defined by that capability should be implemented by the Device
Handler. For example, the “Switch” capability specifies support for the “switch” attribute and the “on” and “off”
commands - any Device Handler supporting the “Switch” capability must define methods for the commands, and
support the “switch” attribute by creating the appropriate Events (with the name of the attribute, e.g., “switch”)

Signature: void capability(String capabilityName)

Parameters: String capabilityName - the name of the capability. This is the long-form name of the Capability
name, not the “preferences reference”.

Returns: void

Example:

metadata {
definition (name: "Cerbco Light Switch", namespace: "lennyv62",

author: "Len Veil") {
capability "Switch"
...

}
...

}

def parse(description) {
// handle device messages, determine what value of the Event is
return createEvent(name: "switch", value: someValue)

}

// need to define the on and off commands, since those
// are supported by "Switch" capability
def on() {

...
}

def off() {

}

284.2.7 carouselTile()

Called within the tiles() (page 979) method to define a tile often used in conjunction with the Image Capture capability,
to allow users to scroll through recent pictures.

Signature: void carouselTile(String tileName, String attributeName [,Map
options, Closure closure])

Parameters: String tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of
the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.water".

Map options (optional) - Various options for this tile. Valid options are found in the table below:

952 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

option type description
width Inte-

ger
controls how wide the tile is. Default is 1.

height Inte-
ger

controls how tall this tile is. Default is 1.

canChangeIcon Boolean true to allow the user to pick their own icon. Defaults to false.
canChangeBack-
ground

Boolean true to allow a user to choose their own background image for the tile.
Defaults to false.

decoration String specify "flat" for the tile to render without a ring.
range String used to specify a custom range. In the form of "(<lower

bound>..<upper bound>)"

Closure closure (optional) - a closure that defines any states for the tile.

Returns: void

Example:

tiles {
carouselTile("cameraDetails", "device.image", width: 3, height: 2) { }

}

284.2.8 childDeviceTile()

Called within the tiles() (page 979) method in a parent Device Handler of a composite device to define the display of
a child device tile. The mobile user interface of a composite parent device is built typically by combining tiles from
multiple child devices.

Signature: void childDeviceTile(String tileName, String componentName [, Map
options, Closure closure])

Returns: void

Parameters: String tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String componentName - the name of the component child device. This name is the same as the
componentName in the addChildDevice() in the composite parent Device Handler.

Map options (optional) - Various options for this tile. Valid options are found in the table below:

option type description
width Integer controls how wide the tile is. Default is 1.
height Integer controls how tall this tile is. Default is 1.
childTileName String name of the tile in the child Device Handler.

Closure closure (optional) - A closure that calls any state() (page 975) methods to define how the tile should
appear for various attribute values.

Example:

metadata {
definition (name: "Simulated Refrigerator", namespace: "smartthings/testing", author: "SmartThings") {

capability "Contact Sensor"
}
tiles {
childDeviceTile("mainDoor", "mainDoor", height: 2, width: 2, childTileName: "mainDoor")

}
...

284.2. Device Handler 953

https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

}
def installed() {

state.counter = state.counter ? state.counter + 1 : 1
if (state.counter == 1) {

// A tile with the name "mainDoor" exists in the tiles() method of the child Device Handler "Simulated Refrigerator Door"
addChildDevice(

"Simulated Refrigerator Door",
"${device.deviceNetworkId}.2",
null,
[completedSetup: true, label: "${device.label} (Main Door)", componentName: "mainDoor", componentLabel: "Main Door"])

}
}

284.2.9 command()

Called within the definition() (page 956) method to declare that this Device Handler supports a command not defined
by any of its declared capabilities.

For any supported command, it is expected that the Device Handler define a <command name>() (page 948) method
with a corresponding name.

Signature: void command(String commandName [, List parameterTypes])

Parameter: String commandName - the name of the command.

List parameterTypes (optional) - a list of strings that defines the types of the parameters the command
requires (in order), if any. Typical values are “string”, “number”, and “enum”.

Returns: void

Example:

metadata {
definition (name: "Some Device Name", namespace: "somenamespace",

author: "Some Author") {
capability "Switch"
capability "Polling"
capability "Refresh"

// also support the attribute "myCustomCommand" - not defined by supported capabilities.
command "myCustomCommand"

// commands can take parameters
command "myCustomCommandWithParams", ["string", "number"]

}
...

}

def myCustomCommand() {
...

}

def myCustomCommandWithParams(def stringArg, def numArg) {
...

}

954 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.2.10 controlTile()

Called within the tiles() (page 979) method to define a tile that allows the user to input a value within a range. A
common use case for a control tile is a light dimmer.

Signature: void controlTile(String tileName, String attributeName, String
controlType [, Map options, Closure closure])

Returns: void

Parameters: String tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of
the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.water".

String controlType - the type of control. Either "slider" or "control".

Map options (optional) - Various options for this tile. Valid options are found in the table below:

option type description
width Inte-

ger
controls how wide the tile is. Default is 1.

height Inte-
ger

controls how tall this tile is. Default is 1.

canChangeIcon Boolean true to allow the user to pick their own icon. Defaults to false.
canChangeBack-
ground

Boolean true to allow a user to choose their own background image for the tile.
Defaults to false.

decoration String specify "flat" for the tile to render without a ring.
range String used to specify a custom range. In the form of "(<lower

bound>..<upper bound>)"

Closure closure (optional) - A closure that calls any state() (page 975) methods to define how the tile should
appear for various attribute values.

Example:

tiles {
controlTile("levelSliderControl", "device.level", "slider", height: 1,

width: 2, inactiveLabel: false, range:"(0..100)") {
state "level", action:"switch level.setLevel"

}
}

284.2.11 createEvent()

Creates a Map that represents an Event (page 1017) object. Typically used in the parse() (page 948) method to define
Events for particular attributes. The resulting map is then returned from the parse() method. The SmartThings
platform will then create an Event object and propagate it through the system.

Signature: Map createEvent(Map options)

Parameters: Map options - The various properties that define this Event. The available options are listed below.
It is not necessary, or typical, to define all the available options. Typically only the name and value options
are required.

284.2. Device Handler 955

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Prop-
erty

Type Description

name
(re-
quired)

String the name of the Event. Typically corresponds to an attribute name of a capability.

value
(re-
quired)

Ob-
ject

the value of the Event. The value is stored as a string, but you can pass numbers or other
objects.

descrip-
tionText

String the description of this Event. This appears in the mobile application activity for the
device. If not specified, this will be created using the Event name and value.

dis-
played

Booleanspecify true to display this Event in the mobile application activity feed, false to not
display. Defaults to true.

linkText String name of the Event to show in the mobile application activity feed.
isState-
Change

Booleanspecify true if this Event caused a device attribute to change state. Typically not used,
since it will be set automatically.

unit String a unit string, if desired. This will be used to create the descriptionText if it (the
descriptionText option) is not specified.

data Map A map of additional information to store with the Event

Example:

def parse(String description) {
...

def evt1 = createEvent(name: "someName", value: "someValue")
def evt2 = createEvent(name: "someOtherName", value: "someOtherValue")

return [evt1, evt2]
}

284.2.12 definition()

Called within the metadata() (page 964) method, and defines some basic information about the device, as well as the
supported capabilities, commands, and attributes.

Signature: void definition(Map definitionData, Closure closure)

Parameters: Map definitionData - defines various metadata about this Device Handler. Valid options are:

option type description
name String the name of this Device Handler
names-
pace

String the namespace for this Device Handler. Typically the same as the author’s github user
name.

author String the name of the author.

Closure closure - A closure with method calls to capability() (page 952) , command() (page 954) , or at-
tribute() (page 951) .

Returns: void

Example:

metadata {
definition (name: "My Device Name", namespace: "mynamespace",

author: "My Name") {
capability "Switch"

956 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

capability "Polling"
capability "Refresh"

command "someCustomCommand"

attribute "someCustomAttribute", "number"
}
...

}

284.2.13 details()

Used within the tiles() (page 979) method to define the order that the tiles should appear in.

Signature: void details(List<String> tileDefinitions)

Parameters: List < String > tileDefinitions - A list of tile names that defines the order of the tiles (left-to-right,
top-to-bottom)

Returns: void

Example:

tiles {
standardTile("switchTile", "device.switch", width: 2, height: 2,

canChangeIcon: true) {
state "off", label: '${name}', action: "switch.on",

icon: "st.switches.switch.off", backgroundColor: "#ffffff"
state "on", label: '${name}', action: "switch.off",

icon: "st.switches.switch.on", backgroundColor: "#E60000"
}
valueTile("powerTile", "device.power", decoration: "flat") {

state "power", label:'${currentValue} W'
}
standardTile("refreshTile", "device.power", decoration: "ring") {

state "default", label:'', action:"refresh.refresh",
icon:"st.secondary.refresh",

}

main "switchTile"

// defines what order the tiles are defined in
details(["switchTile","powerTile","refreshTile"])

}

284.2.14 device

The Device object, from which its current properties and history can be accessed. As of now this object is a different
type than the Device object available in SmartApps. At some point these will be merged, but for now the properties
and methods of the device object available to the Device Handler are discussed in the example below:

284.2. Device Handler 957

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

...
// Gets the most recent State for the given attribute
def state1 = device.currentState("someAttribute")
def state2 = device.latestState("someOtherAttribute")

// Gets the current value for the given attribute
// Return type will vary depending on the device
def curVal1 = device.currentValue("someAttribute")
def curVal2 = device.latestValue("someOtherAttribute")

// gets the display name of the device
def displayName = device.displayName

// gets the internal unique system identifier for this device
def thisId = device.id

// gets the internal name for this device
def thisName = device.name

// gets the user-defined label for this device
def thisLabel = device.label

284.2.15 fingerprint()

Called within the definition() (page 956) method to define the information necessary to pair this device to the Hub.

See the Fingerprinting Section of the Device Handler guide for more information.

284.2.16 getApiServerUrl()

Returns the URL of the server where this Device Handler can be reached for API calls. Use this instead of hard-coding
a URL to ensure that the correct server URL for this installed instance is returned.

Signature: String getApiServerUrl()

Returns: String - the URL of the server where this Device Handler can be reached.

284.2.17 getChildDevices()

Gets a list of all child devices for this device.

Signature: List<ChildDeviceWrapper> getChildDevices()

Returns: List <Device (page 1003)> - a list of child devices for this device

Example:

def children = getChildDevices()

log.debug "device has ${children.size()} children"
children.each { child ->

log.debug "child ${child.displayName} has deviceNetworkId ${child.deviceNetworkId}"
}

958 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.2.18 getColorUtil()

Returns the ColorUtilities (page 1001) object.

Signature: ColorUtilities getColorUtil()

Returns: ColorUtilities (page 1001)

284.2.19 getImage()

Returns a ByteArrayInputStream for the image stored using storeImage() (page 976) or storeTemporaryImage()
(page 977) with the specified name.

An exception is thrown if the requested image does not exist for this device.

Signature: ByteArrayInputStream getImage(String name)

Parameters: String name - The name of the image to retrieve.

Returns: ByteArrayInputStream - The input stream of bytes for this image.

Example:

ByteArrayInputStream imgStream = getImage("some-existing-image-name")

284.2.20 httpDelete()

Executes an HTTP DELETE request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

Signature: void httpDelete(String uri, Closure closure)

void httpDelete(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP DELETE call to.

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Returns: void

284.2. Device Handler 959

https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

284.2.21 httpGet()

Executes an HTTP GET request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpGet(String uri, Closure closure)

void httpGet(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP GET call to

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure - closure - The closure that will be called with the response of the request.

Example:

def params = [
uri: "http://httpbin.org",
path: "/get"

]

try {
httpGet(params) { resp ->

resp.headers.each {
log.debug "${it.name} : ${it.value}"

}
log.debug "response contentType: ${resp.contentType}"
log.debug "response data: ${resp.data}"

} catch (e) {
log.error "something went wrong: $e"

}

284.2.22 httpHead()

Executes an HTTP HEAD request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

Signature: void httpHead(String uri, Closure closure)

void httpHead(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP HEAD call to

Map params - A map of parameters for configuring the request. The valid parameters are:

960 Chapter 284. API Contents

http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

284.2.23 httpPost()

Executes an HTTP POST request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPost(String uri, String body, Closure closure)

void httpPost(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP GET call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Example:

try {
httpPost("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->

log.debug "response data: ${resp.data}"
log.debug "response contentType: ${resp.contentType}"

}
} catch (e) {

log.debug "something went wrong: $e"
}

284.2. Device Handler 961

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

284.2.24 httpPostJson()

Executes an HTTP POST request with a JSON-encoded body and content type, and passes control to the specified
closure. The closure is passed one HttpResponseDecorator argument from which the response content and header
information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPostJson(String uri, String body, Closure closure)

void httpPostJson(String uri, Map body, Closure closure)

void httpPostJson(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP POST call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Example:

def params = [
uri: "http://postcatcher.in/catchers/<yourUniquePath>",
body: [

param1: [subparam1: "subparam 1 value",
subparam2: "subparam2 value"],

param2: "param2 value"
]

]

try {
httpPostJson(params) { resp ->

resp.headers.each {
log.debug "${it.name} : ${it.value}"

}
log.debug "response contentType: ${resp. contentType}"

}
} catch (e) {

log.debug "something went wrong: $e"
}

284.2.25 httpPut()

Executes an HTTP PUT request and passes control to the specified closure. The closure is passed one HttpRe-
sponseDecorator argument from which the response content and header information can be extracted.

962 Chapter 284. API Contents

http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html

SmartThings Classic Developer Documentation, Release latest

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPut(String uri, String body, Closure closure)

void httpPut(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP GET call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

Example:

try {
httpPut("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->

log.debug "response data: ${resp.data}"
log.debug "response contentType: ${resp.contentType}"

}
} catch (e) {

log.error "something went wrong: $e"
}

284.2.26 httpPutJson()

Executes an HTTP PUT request with a JSON-encoded boday and content type, and passes control to the specified
closure. The closure is passed one HttpResponseDecorator argument from which the response content and header
information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

Signature: void httpPutJson(String uri, String body, Closure closure)

void httpPutJson(String uri, Map body, Closure closure)

void httpPutJson(Map params, Closure closure)

Parameters: String uri - The URI to make the HTTP PUT call to

String body - The body of the request

Map params - A map of parameters for configuring the request. The valid parameters are:

284.2. Device Handler 963

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Parameter Description
uri Either a URI or URL of of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
contentType Request content type and Accept header.
requestContent-
Type

Content type for the request, if it is different from the expected response
content-type.

body Request body that will be encoded based on the given contentType.

Closure closure - The closure that will be called with the response of the request.

284.2.27 main()

Used to define what tile appears on the main “Things” view in the mobile application. Can be called within the tiles()
(page 979) method.

Signature: void main(String tileName)

Parameters: String tileName - the name of the tile to display as the main tile.

Returns: void

Example:

tiles {
standardTile("switchTile", "device.switch", width: 2, height: 2,

canChangeIcon: true) {
state "off", label: '${name}', action: "switch.on",

icon: "st.switches.switch.off", backgroundColor: "#ffffff"
state "on", label: '${name}', action: "switch.off",

icon: "st.switches.switch.on", backgroundColor: "#E60000"
}
valueTile("powerTile", "device.power", decoration: "flat") {

state "power", label:'${currentValue} W'
}
standardTile("refreshTile", "device.power", decoration: "ring") {

state "default", label:'', action:"refresh.refresh",
icon:"st.secondary.refresh",

}

// The "switchTile" will be main tile, displayed in the "Things" view
main "switchTile"
details(["switchTile","powerTile","refreshTile"])

}

284.2.28 metadata()

Used to define metadata such as this Device Handler’s supported capabilities, attributes, commands, and UX informa-
tion.

Signature: void metadata(Closure closure)

964 Chapter 284. API Contents

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Parameters: Closure closure - a closure that defines the metadata. The closure is expected to have the following
methods called in it: definition() (page 956) , simulator() (page 973) , and tiles() (page 979) .

Returns: void

Example:

metadata {
definition(name: "device name", namespace: "yournamespace", author: "your name") {

// supported capabilities, commands, attributes,
}
simulator {

// simulator metadata
}
tiles {

// tiles metadata
}

}

284.2.29 reply()

Called in the simulator() (page 973) method to model the behavior of a physical device when a virtual instance of the
Device Handler is run in the IDE.

The simulator matches command strings generated by the device to those specified in the commandString argu-
ment of a reply method and, if a match is found, calls the Device Handler’s parse method with the corresponding
messageDescription.

For example, the reply method reply "2001FF,2502": "command: 2503, payload: FF" models
the behavior of a physical Z-Wave switch in responding to an Basic Set command followed by a Switch Binary Get
command. The result will be a call to the parse method with a Switch Binary Report command with a value of 255, i.e.,
the turning on of the switch. Modeling turn off would be done with the reply method reply "200100,2502":
"command: 2503, payload: 00".

Signature: void reply(String commandString, String messageDescription)

Parameters: String commandString - a String that represents the command.

String messageDescription - a String that represents the message description.

Returns: void

Example:

metadata {
...

// simulator metadata
simulator {

// 'on' and 'off' will appear in the messages dropdown, and send
// "on/off: 1 to the parse method"
status "on": "on/off: 1"
status "off": "on/off: 0"

// simulate reply messages from the device
reply "zcl on-off on": "on/off: 1"
reply "zcl on-off off": "on/off: 0"

284.2. Device Handler 965

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

}
...

}

284.2.30 runEvery1Minute()

Creates a recurring schedule that executes the specified handlerMethod every minute. Using this method will pick
a random start time in the next minute, and run every minute after that.

Signature: void runEvery1Minute(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the 1 minute period.

Parameters: handlerMethod - The method to call every minute. Can be the name of the method as a string, or a
reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery1Minute(handlerMethod1)
runEvery1Minute(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2.31 runEvery5Minutes()

Creates a recurring schedule that executes the specified handlerMethod every five minutes. Using this method will
pick a random start time in the next five minutes, and run every five minutes after that.

Signature: void runEvery5Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the 5 minute period.

966 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Parameters: handlerMethod - The method to call every five minutes. Can be the name of the method as a string,
or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery5Minutes(handlerMethod1)
runEvery5Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2.32 runEvery10Minutes()

Creates a recurring schedule that executes the specified handlerMethod every ten minutes. Using this method will
pick a random start time in the next ten minutes, and run every ten minutes after that.

Signature: void runEvery10Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the ten minute period.

Parameters: handlerMethod - The method to call every ten minutes. Can be the name of the method as a string,
or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery10Minutes(handlerMethod1)
runEvery10Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2. Device Handler 967

SmartThings Classic Developer Documentation, Release latest

284.2.33 runEvery15Minutes()

Creates a recurring schedule that executes the specified handlerMethod every fifteen minutes. Using this method
will pick a random start time in the next five minutes, and run every five minutes after that.

Signature: void runEvery15Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the fifteen minute period.

Parameters: handlerMethod - The method to call every fifteen minutes. Can be the name of the method as a
string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery15Minutes(handlerMethod1)
runEvery15Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2.34 runEvery30Minutes()

Creates a recurring schedule that executes the specified handlerMethod every thirty minutes. Using this method
will pick a random start time in the next thirty minutes, and run every thirty minutes after that.

Signature: void runEvery30Minutes(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the thirty minute period.

Parameters: handlerMethod - The method to call every thirty minutes. Can be the name of the method as a
string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

968 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Example:

runEvery30Minutes(handlerMethod1)
runEvery30Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2.35 runEvery1Hour()

Creates a recurring schedule that executes the specified handlerMethod every hour. Using this method will pick a
random start time in the next hour, and run every hour after that.

Signature: void runEvery1Hour(handlerMethod[, options])

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the one hour period.

Parameters: handlerMethod- The method to call every hour. Can be the name of the method as a string, or a
reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery1Hour(handlerMethod1)
runEvery1Hour(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2.36 runEvery3Hours()

Creates a recurring schedule that executes the specified handlerMethod every three hours. Using this method will
pick a random start time in the next hour, and run every three hours after that.

Signature: void runEvery3Hours(handlerMethod[, options])

284.2. Device Handler 969

SmartThings Classic Developer Documentation, Release latest

Tip: This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule
like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method,
the executions will be spread out over the three hour period.

Parameters: handlerMethod - The method to call every three hours. Can be the name of the method as a string,
or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possible values Description
data A map of data A map of data that will be passed to the handler method.

Returns: void

Example:

runEvery3Hours(handlerMethod1)
runEvery3Hours(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
log.debug "handlerMethod1"

}

def handlerMethod2(data) {
log.debug "handlerMethod2, data: $data"

}

284.2.37 runIn()

Executes a specified handlerMethod after delaySeconds have elapsed.

Signature: void runIn(delayInSeconds, handlerMethod [, options])

Tip: It’s important to note that we will attempt to run this method at this time, but cannot guarantee exact precision.
We typically expect per-minute level granularity, so if using with values less than sixty seconds, your mileage will
vary.

Parameters: delayInSeconds - The number of seconds to execute the handlerMethod after.

handlerMethod - The method to call after delayInSeconds has passed. Can be a string or a reference to
the method.

options (optional) - A map of parameters, with the following keys supported:

Key Possi-
ble
values

Description

over-
write

true or
false

Specify [overwrite: false] to not overwrite any existing pending schedule
handler for the given method (the default behavior is to overwrite the pending
schedule). Specifying [overwrite: false] can lead to multiple different
schedules for the same handler method, so be sure your handler method can handle this.

data A map
of data

A map of data that will be passed to the handler method.

970 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Returns: void

Example:

runIn(300, myHandlerMethod)
runIn(400, "myOtherHandlerMethod", [data: [flag: true]])

def myHandlerMethod() {
log.debug "handler method called"

}

def myOtherHandlerMethod(data) {
log.debug "other handler method called with flag: $data.flag"

}

284.2.38 runOnce()

Executes the handlerMethod once at the specified date and time.

Signature: void runOnce(dateTime, handlerMethod [, options])

Parameters: dateTime - When to execute the handlerMethod. Can be either a Date object or an
ISO-8601 date string. For example, new Date() + 1 would run at the current time tomorrow, and
"2017-07-04T12:00:00.000Z" would run at noon GMT on July 4th, 2017.

handlerMethod - The method to execute at the specified dateTime. This can be a reference to the method,
or the method name as a string.

options (optional) - A map of parameters, with the following keys supported:

Key Possi-
ble
values

Description

over-
write

true or
false

Specify [overwrite: false] to not overwrite any existing pending schedule
handler for the given method (the default behavior is to overwrite the pending
schedule). Specifying [overwrite: false] can lead to multiple different
schedules for the same handler method, so be sure your handler method can handle this.

data A map
of data

A map of data that will be passed to the handler method.

Returns: void

Example:

// execute handler at 4 PM CST on October 21, 2015 (e.g., Back to the Future 2 Day!)
runOnce("2015-10-21T16:00:00.000-0600", handler)

def handler() {
...

}

284.2.39 schedule()

Creates a scheduled job that calls the handlerMethod once per day at the time specified, or according to a cron
schedule.

284.2. Device Handler 971

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html

SmartThings Classic Developer Documentation, Release latest

Signature: void schedule(dateTime, handlerMethod)

void schedule(cronExpression, handlerMethod)

Parameters:

dateTime - A Date object, an ISO-8601 formatted date time string.

String cronExpression - A cron expression that specifies the schedule to execute on.

handlerMethod - The method to call. This can be a reference to the method itself, or the method name
as a string.

Returns: void

Tip: Since calling schedule() with a dateTime argument creates a recurring scheduled job to execute every day
at the specified time, the date information is ignored. Only the time portion of the argument is used.

Tip: Full documentation for the cron expression format can be found in the Quartz Cron Trigger Tutorial

Example:

preferences {
section() {

input "timeToRun", "time"
}

}

...
// call handlerMethod1 at time specified by user input
schedule(timeToRun, handlerMethod1)

// call handlerMethod2 every day at 3:36 PM CST
schedule("2015-01-09T15:36:00.000-0600", handlerMethod2)

// execute handlerMethod3 every hour on the half hour (using a randomly chosen seconds field)
schedule("12 30 * * * ?", handlerMethod3)
...

def handlerMethod1() {...}
def handlerMethod2() {...}
def handlerMethod3() {...}

284.2.40 sendEvent()

Create and fire an Event (page 1017) . Typically a Device Handler will return the map returned from createEvent()
(page 955) , which will allow the platform to create and fire the Event. In cases where you need to fire the Event
(outside of the parse() (page 948) method), sendEvent() is used.

Signature: void sendEvent(Map properties)

Parameters: Map properties - The properties of the Event to create and send.

Here are the available properties:

972 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Prop-
erty

Description

name
(re-
quired)

String - The name of the Event. Typically corresponds to an attribute name of a capability.

value
(re-
quired)

The value of the Event. The value is stored as a string, but you can pass numbers or other
objects.

descrip-
tionText

String - The description of this Event. This appears in the mobile application activity for the
device. If not specified, this will be created using the Event name and value.

dis-
played

Pass true to display this Event in the mobile application activity feed, false to not display.
Defaults to true.

linkText String - Name of the Event to show in the mobile application activity feed.
isState-
Change

true if this Event caused a device attribute to change state. Typically not used, since it will be
set automatically.

unit String - a unit string, if desired. This will be used to create the descriptionText if it (the
descriptionText option) is not specified.

data A map of additional information to store with the Event

Tip: Not all Event properties need to be specified. ID properties like deviceId and locationId are automati-
cally set, as are properties like isStateChange, displayed, and linkText.

Returns: void

Example:

sendEvent(name: "temperature", value: 72, unit: "F")

284.2.41 simulator()

Defines information used to simulate device interaction in the IDE. Can be called in the metadata() (page 964) method.

Signature: void simulator(Closure closure)

Parameters: Closure closure - the closure that defines the status() (page 976) and reply() (page 965) messages.

Returns: void

Example:

metadata {
...

// simulator metadata
simulator {

// 'on' and 'off' will appear in the messages dropdown, and send
// "on/off: 1 to the parse method"
status "on": "on/off: 1"
status "off": "on/off: 0"

// simulate reply messages from the device
reply "zcl on-off on": "on/off: 1"
reply "zcl on-off off": "on/off: 0"

}

284.2. Device Handler 973

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

...
}

284.2.42 standardTile()

Called within the tiles() (page 979) method to define a tile to display current state information. For example, to show
that a switch is on or off, or that there is or is not motion.

Signature: void standardTile(String tileName, String attributeName [, Map
options, Closure closure])

Returns: void

Parameters: String tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of
the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.water".

Map options (optional) - Various options for this tile. Valid options are found in the table below:

option type description
width Inte-

ger
controls how wide the tile is. Default is 1.

height Inte-
ger

controls how tall this tile is. Default is 1.

canChangeIcon Boolean true to allow the user to pick their own icon. Defaults to false.
canChangeBack-
ground

Boolean true to allow a user to choose their own background image for the tile.
Defaults to false.

decoration String specify "flat" for the tile to render without a ring.

Closure closure (optional) - A closure that calls any state() (page 975) methods to define how the tile should
appear for various attribute values.

Example:

tile {
standardTile("water", "device.water", width: 2, height: 2) {

state "dry", icon:"st.alarm.water.dry", backgroundColor:"#ffffff"
state "wet", icon:"st.alarm.water.wet", backgroundColor:"#53a7c0"

}
}

284.2.43 state

A map of name/value pairs that a Device Handler can use to save and retrieve data across executions.

Signature: Map state

Returns: Map - a map of name/value pairs.

state.count = 0
state.count = state.count + 1

log.debug "state.count: ${state.count}"

974 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

// use array notation if you wish
log.debug "state['count']: ${state['count']}"

// you can store lists and maps to make more intersting structures
state.listOfMaps = [[key1: "val1", bool1: true],

[otherKey: ["string1", "string2"]]]

Warning: Though state can be treated as a map in most regards, certain convenience operations that you may
be accustomed to in maps will not work with state. For example, state.count++ will not increment the
count - use the longer form of state.count = state.count + 1.

284.2.44 state()

Called within any of the various tiles method’s closure to define options to be used when the current value of the tile’s
attribute matches the value argument.

Signature: void state(stateName, Map options)

Parameters: String stateName - the name of the attribute value for which to display this state for.

Map options - a map that defines additional information for this state. The valid options are:

option type description
action String the action to take when this tile is pressed. The form is

<capabilityReference>.<command>.
back-
ground-
Color

String a hexadecimal color code to use for the background color. This has no effect if the tile
has decoration: “flat”.

back-
ground-
Colors

String specify a list of maps of attribute values and colors. The mobile app will match and
interpolate between these entries to select a color based on the value of the attribute.

default-
State

Booleanspecify true if this state should be the active state displayed for this tile.

icon String the identifier of the icon to use for this state. You can view the icon options here.
label String the label for this state.

Returns: void

Example:
...
standardTile("water", "device.water", width: 2, height: 2) {

// when the "water" attribute has the value "dry", show the
// specified icon and background color
state "dry", icon:"st.alarm.water.dry", backgroundColor:"#ffffff"

// when the "water" attribute has the value "wet", show the
// specified icon and background color
state "wet", icon:"st.alarm.water.wet", backgroundColor:"#53a7c0"

}

valueTile("temperature", "device.temperature", width: 2, height: 2) {
state("temperature", label:'${currentValue}°',

backgroundColors:[
[value: 31, color: "#153591"],

284.2. Device Handler 975

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

[value: 44, color: "#1e9cbb"],
[value: 59, color: "#90d2a7"],
[value: 74, color: "#44b621"],
[value: 84, color: "#f1d801"],
[value: 95, color: "#d04e00"],
[value: 96, color: "#bc2323"]

]
)

}
...

284.2.45 status()

The status method is called in the simulator() (page 973) method, and populates the select box that appears under
virtual devices in the IDE. Can be called in the simulator() (page 973) method.

Signature: void status(String name, String messageDescription)

Parameters: String name - any unique string and is used to refer to this status message in the select box.

String messageDescription - should be a parseable message for this Device Handler. It’s passed to the
Device Handler’s parse method when select box entry is sent in the simulator. For example, status "on":
"command: 2003, payload: FF" will send a Z-Wave Basic Report command to the Device Han-
dler’s parse method when the on option is selected and sent.

Returns: void

Example:

metadata {
...

// simulator metadata
simulator {

// 'on' and 'off' will appear in the messages dropdown, and send
// "on/off: 1 to the parse method"
status "on": "on/off: 1"
status "off": "on/off: 0"

// simulate reply messages from the device
reply "zcl on-off on": "on/off: 1"
reply "zcl on-off off": "on/off: 0"

}
...

}

284.2.46 storeImage()

Stores an image represented by a ByteArrayInputStream and emits an Event with name “image”.

storeImage() is often in used in conjunction with the carouselTile() (page 952) and cloud-connected camera
devices to store and display images.

JPEG and PNG image formats are supported.

976 Chapter 284. API Contents

https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html

SmartThings Classic Developer Documentation, Release latest

Note: Images stored using storeImage() are stored for 365 days, after which they will be permanently deleted.

The carouselTile() can display images for the past seven days.

Signature: void storeImage(String name, ByteArrayInputStream is, String
contentType = "image/jpeg") throws Exception

Parameters: String name - The name associated with the image, consisting of alphanumeric, ‘_’, ‘-‘, and ‘.’ charac-
ters. This name must be unique per device instance, and should not include the file extension.

ByteArrayInputStream is - The input stream of bytes representing the image. The total size may not exceed 1
megabyte.

String contentType (optional) - The content type of the image. Optional, and defaults to "image/jpeg".
Other supported values are "image/jpg" and "image/png".

Throws: InvalidParameterException if the name does not solely consist of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters.

InvalidParameterException if the size of total bytes to be stored exceeds one megabyte.

Exception - if the current Device Handler execution is attempting to store more than two images.

Example:

def params = [
uri: "http://static.tvtropes.org/pmwiki/pub/images/catsbeard_9105.jpg"

]

try {
httpGet(params) { response ->

if (response.status == 200 && response.headers.'Content-Type'.contains("image/jpeg")) {
def imageBytes = response.data
if (imageBytes) {

state.imgCount = state.imgCount + 1
def name = "test$state.imgCount"

// the response data is already a ByteArrayInputStream, no need to convert
try {

storeImage(name, imageBytes)
} catch (e) {

log.error "error storing image: $e"
}

}
}

}
} catch (err) {

log.error ("Error making request: $err")
}

284.2.47 storeTemporaryImage()

Transfers an image temporarily stored via a HubAction (page 1029) request to a LAN-connected camera device to
longer-lasting storage, and emits an event with name “image”. Typically used in conjunction with the carouselTile()
(page 952) to store and display images captured by a camera device.

Only the JPEG image format is supported.

284.2. Device Handler 977

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/security/InvalidParameterException.html
https://docs.oracle.com/javase/7/docs/api/java/security/InvalidParameterException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

SmartThings Classic Developer Documentation, Release latest

Note: Images stored using storeTemporaryImage() are stored for 365 days, after which they will be perma-
nently deleted.

The carouselTile() can display images for the past seven days.

Signature: void storeTemporaryImage(String key, String name)

Parameters: String key - The key for this image, extracted from the response map sent to the parse() (page 948)
method.

String name - The name associated with the image, consisting of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters. This
name must be unique per device instance, and should not include the file extension.

Throws: InvalidParameterException if the name does not solely consist of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters.

Example:

// take() command method from the Image Capture capability
def take() {

def host = getHostAddress()
def port = host.split(":")[1]

def path = "/some/path/"

def hubAction = new physicalgraph.device.HubAction(
method: "GET",
path: path,
headers: [HOST:host]

)

// outputMsgToS3: true required to store this image temporarily!
hubAction.options = [outputMsgToS3:true]

return hubAction
}

/**
* Utility method to get the host addresses

*/
private getHostAddress() {

def parts = device.deviceNetworkId.split(":")
def ip = convertHexToIP(parts[0])
def port = convertHexToInt(parts[1])
return ip + ":" + port

}

def parse(String description) {

def map = stringToMap(description)

// if the message has the tempImageKey, we know it's a response from
// an image stored via the HubAction. Need to move it to longer-lasting
// storage with storeTemporaryImage()
if (map.tempImageKey) {

try {
storeTemporaryImage(map.tempImageKey, getPictureName())

} catch (Exception e) {
log.error e

}

978 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/security/InvalidParameterException.html

SmartThings Classic Developer Documentation, Release latest

} else if (map.error) {
log.error ("Error: ${map.error}")

}

// parse other messages too
}

/**
* Utility method to get a unique picture name

*/
private getPictureName() {

return java.util.UUID.randomUUID().toString().replaceAll('-', '')
}

284.2.48 tiles()

Defines the user interface for the device in the mobile app. It’s composed of one or more standardTile() (page 974) ,
valueTile() (page 979) , carouselTile() (page 952) , or controlTile() (page 955) methods, as well as a main() (page 964)
and details() (page 957) method.

Signature: void tiles(Closure closure)

Parameters: Closure closure - A closure that defines the various tiles and metadata.

Returns: void

Example:

tiles {
standardTile("switchTile", "device.switch", width: 2, height: 2,

canChangeIcon: true) {
state "off", label: '${name}', action: "switch.on",

icon: "st.switches.switch.off", backgroundColor: "#ffffff"
state "on", label: '${name}', action: "switch.off",

icon: "st.switches.switch.on", backgroundColor: "#E60000"
}
valueTile("powerTile", "device.power", decoration: "flat") {

state "power", label:'${currentValue} W'
}
standardTile("refreshTile", "device.power", decoration: "ring") {

state "default", label:'', action:"refresh.refresh",
icon:"st.secondary.refresh",

}

main "switchTile"
details(["switchTile","powerTile","refreshTile"])

}

284.2.49 valueTile()

Defines a tile that displays a specific value. Typical examples include temperature, humidity, or power values. Called
within the tiles() (page 979) method.

284.2. Device Handler 979

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

Signature: void valueTile(String tileName, String attributeName [, Map options,
Closure closure])

Returns: void

Parameters: String tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of
the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.power".

Map options (optional) - Various options for this tile. Valid options are found in the table below:

option type description
width Inte-

ger
controls how wide the tile is. Default is 1.

height Inte-
ger

controls how tall this tile is. Default is 1.

canChangeIcon Boolean true to allow the user to pick their own icon. Defaults to false.
canChangeBack-
ground

Boolean true to allow a user to choose their own background image for the tile.
Defaults to false.

decoration String specify "flat" for the tile to render without a ring.

Closure closure (optional) - A closure that calls any state() (page 975) methods to define how the tile should
appear for various attribute values.

Example:

tiles {
valueTile("power", "device.power", decoration: "flat") {

state "power", label:'${currentValue} W'
}

}

284.2.50 zigbee

A utility class for parsing and formatting ZigBee messages.

Signature: Zigbee zigbee

Returns: A reference to the ZigBee utility class (page 1046).

284.2.51 zwave

The utility class for parsing and formatting Z-Wave command messages.

Signature: ZWave zwave

Returns: A reference to the ZWave helper class. See the Z-Wave Reference (page 1059) for more information.

Example:

// On command implementation for a Z-Wave switch
def on() {

delayBetween([
zwave.basicV1.basicSet(value: 0xFF).format(),
zwave.switchBinaryV1.switchBinaryGet().format()

980 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

SmartThings Classic Developer Documentation, Release latest

])
}

284.3 AppState

The AppState object encapsulates information about the state of a SmartApp attribute. These attributes are usually
set in SmartApps using the sendEvent method. Here is a small code snippet that illustrates a potential use case.

// If the current state of the "status" attribute is not what is expected,
// then send and event to update it.
if (app.currentState("status")?.value != "expectedValue") {

def text = "$app.label someAction"
sendEvent(name: "status", value: "expectedValue", linkText: app.label,

descriptionText: text, eventType:"SOLUTION_EVENT", data: [icon: icon, backgroundColor: color])
}

284.3.1 getDateValue()

The value of this Event, if the value can be parsed to a Date.

Signature: Date getDateValue()

Returns: Date - the value of this Event as a Date.

Warning: getDateValue() will throw an Exception if the value of the Event is not parseable to a Date.
You should wrap calls in a try/catch block.

Example:

def eventHander(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as an Double
// throws an exception of the value is not convertable to a Date
try {

log.debug "The dateValue of this event is ${myState.dateValue}"
log.debug "myState.dateValue instanceof Date? ${myState.dateValue instanceof Date}"

} catch (e) {
log.debug("Trying to get the dateValue for ${myState.name} threw an exception", e)

}
}

284.3.2 getId()

The unique system identifier for this Event.

Signature: String getId()

Returns: String - the unique device identifier for this Event.

Example:

284.3. AppState 981

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "event id: ${myState.id}"

}

284.3.3 getDescriptionText()

The description of the Event that is to be displayed to the user in the mobile application.

Signature: String getDescriptionText()

Returns: String - the description of this Event to be displayed to the user in the mobile application.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "event description text: ${myState.descriptionText}"

}

284.3.4 getDoubleValue()

The value of this Event, if the value can be parsed to a Double.

Signature: Double getDoubleValue()

Returns: Double - the value of this Event as a Double.

Warning: getDoubleValue() will throw an Exception if the value of the Event is not parseable to a Double.
You should wrap calls in a try/catch block.

Example:

def eventHander(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as a Double
// throws an exception of the value is not convertible to a Double
try {

log.debug "The doubleValue of this event is ${myState.doubleValue}"
log.debug "myState.doubleValue instanceof Double? ${myState.doubleValue instanceof Double}"

} catch (e) {
log.debug("Trying to get the doubleValue for ${myState.name} threw an exception", e)

}
}

982 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html?is-external=true

SmartThings Classic Developer Documentation, Release latest

284.3.5 getFloatValue()

The value of this Event as a Float, if it can be parsed into a Float.

Signature: Float getFoatValue()

Returns: Float - the value of this Event as a Float.

Warning: getFloatValue() will throw an Exception if the Event’s value is not parseable to a Float.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as an Float
// throws an exception if not convertable to Float
try {

log.debug "The floatValue of this event is ${myState.floatValue}"
log.debug "myState.floatValue instanceof Float? ${myState.floatValue instanceof Float}"

} catch (e) {
log.debug("Trying to get the floatValue for ${myState.name} threw an exception", e)

}
}

284.3.6 getIntegerValue()

The value of this Event as an Integer.

Signature: Integer getIntegerValue()

Returns: Integer - the value of this Event as an Integer.

Warning: getIntegerValue() throws an Exception of the Event value cannot be parsed to an Integer.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as an Integer
// throws an exception if not convertable to Integer
try {

log.debug "The integerValue of this event is ${myState.integerValue}"
log.debug "The integerValue of this event is an Integer: ${myState.integerValue instanceof Integer}"

} catch (e) {
log.debug("Trying to get the integerValue for ${myState.name} threw an exception", e)

}
}

284.3. AppState 983

https://docs.oracle.com/javase/7/docs/api/java/lang/Float.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

SmartThings Classic Developer Documentation, Release latest

284.3.7 getIsoDate()

Acquisition time of this Event as an ISO-8601 String.

Signature: String getIsoDate()

Returns: String - The acquisition time of this Event as an ISO-8601 String.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "event isoDate: ${myState.isoDate}"

}

284.3.8 getJsonValue()

Value of the Event as a parsed JSON data structure.

Signature: Object getJsonValue()

Returns: Object - The value of the Event as a JSON structure

Warning: getJsonValue() throws an Exception if the value of the Event cannot be parsed into a JSON
object.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as a JSON structure
// throws an exception if the value is not convertable to JSON
try {

log.debug "The jsonValue of this event is ${myState.jsonValue}"
} catch (e) {

log.debug("Trying to get the jsonValue for ${myState.name} threw an exception", e)
}

}

284.3.9 getLastUpdated()

The last time this Event was updated as a Date.

Signature: Date getLastUpdated()

Returns: Date - The last time this Event was updated as a Date.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "event was last updated: ${myState.lastUpdated}"

}

984 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html

SmartThings Classic Developer Documentation, Release latest

284.3.10 getLongValue()

The value of this Event as a Long.

Signature: Long getLongValue()

Returns: Long - the value of this Event as a Long.

Warning: getLongValue() throws an Exception if the value of the Event cannot be parsed to a Long.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as an Long
// throws an exception if not convertable to Long
try {

def evtLongValue = myState.longValue
log.debug "The longValue of this event is $evtLongValue"
log.debug "evt.longValue instanceof Long? ${evtLongValue instanceof Long}"

} catch (e) {
log.debug("Trying to get the longValue for ${myState.name} threw an exception", e)

}
}

284.3.11 getName()

The name of this Event.

Signature: String getName()

Returns: String - the name of this Event.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "the name of this event: ${myState.name}"

}

284.3.12 getNumberValue()

The value of this Event as a Number.

Signature: Number getNumberValue()

Returns: Number - the value of this Event as a BigDecimal.

Warning: getNumberValue() throws an Exception if the value of the Event cannot be parsed to a Number.
You should wrap calls in a try/catch block.

Example:

284.3. AppState 985

https://docs.oracle.com/javase/7/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html

SmartThings Classic Developer Documentation, Release latest

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as an Number
// throws an exception if the value is not convertable to a Number
try {

def evtNumberValue = myState.numberValue
log.debug "The numberValue of this event is ${evtNumberValue}"
log.debug "evt.numberValue instanceof BigDecimal? ${evtNumberValue instanceof Number}"

} catch (e) {
log.debug("Trying to get the numberValue for ${myState.name} threw an exception", e)

}
}

284.3.13 getNumericValue()

The value of this Event as a Number.

Signature: Number getNumericValue()

Returns: Number - the value of this Event as a BigDecimal.

Warning: getNumericValue() throws an Exception if the value of the Event cannot be parsed to a Number.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as an Number
// throws an exception if the value is not convertable to a BigDecimal
try {

def evtNumberValue = myState.numericValue
log.debug "The numericValue of this event is ${evtNumberValue}"
log.debug "evt.numericValue instanceof Number? ${evtNumberValue instanceof Number}"

} catch (e) {
log.debug("Trying to get the numericValue for ${myState.name} threw an exception", e)

}
}

284.3.14 getUnit()

The unit of measure for this Event, if applicable.

Signature: String getUnit()

Returns: String - the unit of measure of this Event, if applicable. null otherwise.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "The unit for this event: ${myState.unit}"

}

986 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.3.15 getValue()

The value of this Event as a String.

Signature: String getValue()

Returns: String - the value of this Event as a String.

Example:

def eventHandler(evt) {
def myState = app.currentState("someAttribute")
log.debug "The value of this event as a string: ${myState.getValue()}"

}

284.3.16 getXyzValue()

Value of the Event as a 3-entry Map with keys ‘x’, ‘y’, and ‘z’ with BigDecimal values. For example:

[x: 1001, y: -23, z: -1021]

Typically only useful for getting position data from the “Three Axis” Capability.

Signature: Map<String, BigDecimal> getXyzValue()

Returns: Map < String , BigDecimal > - A map representing the X, Y, and Z coordinates.

Warning: getXyzValue() throws an Exception if the value of the Event cannot be parsed to an X-Y-Z data
structure.
You should wrap calls in a try/catch block.

Example:

def positionChangeHandler(evt) {
def myState = app.currentState("someAttribute")
// get the value of this event as a 3 entry map with keys
//'x', 'y', 'z', and BigDecimal values
// throws an exception if the value is not convertable to a Date
try {

log.debug "The xyzValue of this event is ${myState.xyzValue }"
log.debug "myState.xyzValue instanceof Map? ${myState.xyzValue instanceof Map}"

} catch (e) {
log.debug("Trying to get the xyzValue for ${myState.name} threw an exception", e)

}
}

284.4 Async HTTP API (Beta)

Beta Feature

The ability to make asynchronous HTTP requests is currently available as a beta development feature.

All beta asynchronous HTTP APIs exist in the asynchttp_v1 namespace (page 374). Approximately 30 days after
the launch of this beta feature, we will evaluate metrics and your feedback, and make adjustments as necessary.

284.4. Async HTTP API (Beta) 987

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

SmartThings Classic Developer Documentation, Release latest

When released generally, it is likely that the v1 postfix will be dropped, and a deprecation period will be announced
to change existing usages accordingly.

If, for unexpected reasons, usage of asynchronous HTTP requests has negative impacts on the SmartThings platform,
SmartThings reserves the right to alter or remove any impacted asynchronous HTTP APIs without notice. This is
highly unlikely and every effort will be made to avoid such a scenario.

If you experience issues or have feedback on these asynchronous HTTP APIs, please share them on this community
thread.

All asynchronous HTTP APIs are only availble after including the “asynchttp_v1” API:

include 'asynchttp_v1'

def initialize() {
// invoke methods on the injected asynchttp_v1 object that was included
asynchttp_v1.get(...)

}

This documentation is specific to making requests using the Async HTTP API. For reference documentation on work-
ing with the response, see the AsyncResponse (Beta) (page 993) documentation.

284.4.1 delete()

Make a DELETE request which will not block execution and therefore can run longer than the execution timeout.

Signature: void delete(String callbackMethod = null, Map params, Map data =
null)

Parameters:

String callbackMethod - the name of the method to call with the response. If null the response will be
discarded after the request is made.

Map params - parameters for the request. Supported keys below:

Key Description
uri
(required)

Either a URI or URL of the endpoint to make a request from.

path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
request-
Content-
Type

The value of the Content-Type request header. Defaults to
’application/json’.

content-
Type

The value of the Accept request header. Defaults to the value of the
requestContentType parameter if not specified.

body The request body to send. Can be a string, or if the requestContentType is
"application/json", a Map or List (will be serialized to JSON).

Map data (optional) - A map of data to pass to the response handler.

Example:

988 Chapter 284. API Contents

https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280
https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
body: [key1: 'value 1']

]
asynchttp_v1.delete(processResponse, params)

}

def processResponse(response, data) { ... }

284.4.2 get()

Make a GET request which will not block execution and therefore can run longer than the execution timeout.

Signature: void get(String callbackMethod = null, Map params, Map data = null)

Parameters:

String callbackMethod - the name of the method to call with the response. If null the response will be
discarded after the request is made.

Map params - parameters for the request. Supported keys below:

Key Description
uri (required) Either a URI or URL of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
requestCon-
tentType

The value of the Content-Type request header. Defaults to
’application/json’.

contentType The value of the Accept request header. Defaults to the value of the
requestContentType parameter if not specified.

Map data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://api.github.com',
path: '/search/code',
query: [q: "httpGet+repo:SmartThingsCommunity/SmartThingsPublic"],
contentType: 'application/json'

]
asynchttp_v1.get(processResponse, params)

}

def processResponse(response, data) { ... }

284.4. Async HTTP API (Beta) 989

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

284.4.3 head()

Make a HEAD request which will not block execution and therefore can run longer than the execution timeout.

Signature: void head(String callbackMethod = null, Map params, Map data = null)

Parameters:

String callbackMethod - the name of the method to call with the response. If null the reponse will be
discarded after the request is made.

Map params - parameters for the request. Supported keys below:

Key Description
uri (required) Either a URI or URL of the endpoint to make a request from.
path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
requestCon-
tentType

The value of the Content-Type request header. Defaults to
’application/json’.

contentType The value of the Accept request header. Defaults to the value of the
requestContentType parameter if not specified.

Map data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
query: [key1: 'value 1']

]
asynchttp_v1.head(processResponse, params)

}

def processResponse(response, data) { ... }

284.4.4 patch()

Make a PATCH request which will not block execution and therefore can run longer than the execution timeout.

Signature: void patch(String callbackMethod = null, Map params, Map data = null)

Parameters:

String callbackMethod - the name of the method to call with the response. If null the response will be
discarded after the request is made.

Map params - parameters for the request. Supported keys below:

990 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Key Description
uri
(required)

Either a URI or URL of the endpoint to make a request from.

path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
request-
Content-
Type

The value of the Content-Type request header. Defaults to
’application/json’.

content-
Type

The value of the Accept request header. Defaults to the value of the
requestContentType parameter if not specified.

body The request body to send. Can be a string, or if the requestContentType is
"application/json", a Map or List (will be serialized to JSON).

Map data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
body: [key1: 'value 1']

]
asynchttp_v1.patch(processResponse, params)

}

def processResponse(response, data) { ... }

284.4.5 post()

Make a POST request which will not block execution and therefore can run longer than the execution timeout.

Signature: void post(String callbackMethod = null, Map params, Map data = null)

Parameters:

String callbackMethod - the name of the method to call with the response. If null the response will be
discarded after the request is made.

Map params - parameters for the request. Supported keys below:

284.4. Async HTTP API (Beta) 991

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Key Description
uri
(required)

Either a URI or URL of the endpoint to make a request from.

path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
request-
Content-
Type

The value of the Content-Type request header. Defaults to
’application/json’.

content-
Type

The value of the Accept request header. Defaults to the value of the
requestContentType parameter if not specified.

body The request body to send. Can be a string, or if the requestContentType is
"application/json", a Map or List (will be serialized to JSON).

Map data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
body: [key1: 'value 1']

]
asynchttp_v1.post(processResponse, params)

}

def processResponse(response, data) { ... }

284.4.6 put()

Make a PUT request which will not block execution and therefore can run longer than the execution timeout.

Signature: void put(String callbackMethod = null, Map params, Map data = null)

Parameters:

String callbackMethod - the name of the method to call with the response. If null the response will be
discarded after the request is made.

Map params - parameters for the request. Supported keys below:

992 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

Key Description
uri
(required)

Either a URI or URL of the endpoint to make a request from.

path Request path that is merged with the URI.
query Map of URL query parameters.
headers Map of HTTP headers.
request-
Content-
Type

The value of the Content-Type request header. Defaults to
’application/json’.

content-
Type

The value of the Accept request header. Defaults to the value of the
requestContentType parameter if not specified.

body The request body to send. Can be a string, or if the requestContentType is
"application/json", a Map or List (will be serialized to JSON).

Map data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
body: [key1: 'value 1']

]
asynchttp_v1.put(processResponse, params)

}

def processResponse(response, data) { ... }

284.5 AsyncResponse (Beta)

Beta Feature

The ability to make asynchronous HTTP requests is currently available as a beta development feature.

All beta asynchronous HTTP APIs exist in the asynchttp_v1 namespace (page 374). Approximately 30 days after
the launch of this beta feature, we will evaluate metrics and your feedback, and make adjustments as necessary.

When released generally, it is likely that the v1 postfix will be dropped, and a deprecation period will be announced
to change existing usages accordingly.

If, for unexpected reasons, usage of asynchronous HTTP requests has negative impacts on the SmartThings platform,
SmartThings reserves the right to alter or remove any impacted asynchronous HTTP APIs without notice. This is
highly unlikely and every effort will be made to avoid such a scenario.

If you experience issues or have feedback on these asynchronous HTTP APIs, please share them on this community
thread.

The AsyncResponse object represents the response of an asynchronous HTTP request. An instance of it is passed
to the response handler specified when making the request.

This documentation is specific to handling responses from asynchronous HTTP requests. For reference documentation
regarding making the request, see the Async HTTP API (Beta) (page 987) documentation.

284.5. AsyncResponse (Beta) 993

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280
https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280

SmartThings Classic Developer Documentation, Release latest

284.5.1 getData()

Return the response as a string. Throws an exception if the request failed to get a response (e.g. Connection timeout,
Response timeout), or if the status code was not 2XX.

Signature: String getData()

Example:

def responseHandler(response, data) {
log.debug "raw response: $response.data"

}

284.5.2 getErrorData()

In the Event of an error response, returns the response body as a string. Throws an exception if the response is
successful and has a 2XX response.

Signature: String getErrorData()

Example:

def responseHandler(response, data) {
if (response.hasError()) {

log.debug "raw response: $response.errorData"
}

}

284.5.3 getErrorJson()

If the response has an error, parses the response body as JSON and returns the corresponding data structure. Throws
an exception if the response is successful and has a 2XX response, or if the body fails to parse as JSON.

Signature: JSONElement getErrorJson()

Example:

def responseHandler(response, data) {
if (response.hasError()) {

try {
log.debug "error json: $response.errorJson"

} catch (e) {
log.debug "error parsing json - raw error data is $response.errorData"

}
}

}

994 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

284.5.4 getErrorMessage()

Gets a human-readable error message if the request failed to get a response (e.g. Connection timeout, Response
timeout), or if the status code was not 2XX.

Signature: String getErrorMessage()

Example:

def responseHandler(response, data) {
if (response.hasError()) {

log.debug "error on response: $response.errorMessage"
}

}

284.5.5 getErrorXml()

If the response has an error, parses the response body as XML and returns the corresponding data structure. Throws
an exception if the response is successful and has a 2XX response, or if the body fails to parse as XML.

Note: You can learn more about Groovy XML parsing and GPath here.

Signature: GPathResult getErrorXml()

Example:

def responseHandler(response, data) {
if (response.hasError()) {

try {
def xml = response.errorXml

} catch(e) {
log.warn "could not parse body to XML"

}
}

}

284.5.6 getHeaders()

Get the headers of the response.

Signature: Map<String, String> getHeaders()

Returns: Map < String , String > - A map of response headers keyed by the header name.

Example:

def responseHandler(response, data) {
def headers = response.headers
headers.each {header, value ->

log.debug "$header: $value"
}

}

284.5. AsyncResponse (Beta) 995

http://groovy-lang.org/processing-xml.html#_gpath
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.5.7 getJson()

Parses the response body as JSON and returns the corresponding data structure. Throws an exception if the body fails
to parse as JSON, if the request failed to get a response (e.g. Connection timeout, Response timeout), or if the status
code was not 2XX).

Signature: JSONElement getJson()

Example:

include 'asynchttp_v1'

def initialize() {
def params = [

uri: 'https://someapi.com',
path: '/some/path',
requestContentType: 'application/json'

]
asynchttp_v1.get(processResponse, params)

}

def processResponse(response, data) {
try {

log.debug "json response is: $response.json"
} catch (e) {

log.error("exception during response processing", e)
}

}

284.5.8 getStatus()

Get the status code of the response.

Signature: int getStatus()

Example:

def responseHandler(response, data) {
log.debug "response status code is: $response.status"

}

284.5.9 getWarningMessages()

Gets a list of warning messages, if applicable. Returns an empty list if there are no warning messages.

Typically used for debugging purposes. For example, a warning message will be found if the response is larger than
the allowable limit.

Signature: List<String> getWarningMessages()

Example:

996 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

def responseHandler(response, data) {
log.debug "warning messages: $response.warningMessages"

}

284.5.10 getXml()

Parses the response body as XML and returns the corresponding data structure. Throws an exception if the body fails
to parse as XML, if the request failed to get a response (e.g. Connection timeout, Response timeout), or if the status
code was not 2XX).

Note: You can learn more about Groovy XML parsing and GPath here.

Signature: GPathResult getXml()

Example:

def responseHandler(response, data) {
if (!response.hasError()) {

try {
def xml = response.xml

} catch(e) {
log.warn "could not parse body to XML"

}
}

}

284.5.11 hasError()

Return if the request has an error of some sort. This will be true if the request failed to complete or returned a
non-2XX status code, and false if the request succeeded with a 2XX status code.

Signature: boolean hasError()

Example:

def responseHandler(response, data) {
if (response.hasError()) {

log.error "response has error: ${response.getErrorMessage()}"
}

}

284.6 Attribute

An Attribute represents specific information about the state of a device. For example, the “Temperature Measurement”
capability has an attribute named “temperature” that represents the temperature data.

The Attribute object contains metadata information about the Attribute itself - its name, data type, and possible values.

284.6. Attribute 997

http://groovy-lang.org/processing-xml.html#_gpath

SmartThings Classic Developer Documentation, Release latest

You will typically interact with Attributes values directly, for example, using the current<Uppercase attribute name>
(page 1005) method on a Device (page 1003) instance. That will get the value of the Attribute, which is typically what
SmartApps are most interested in.

You can get the supported Attributes of a Device through the Device’s getSupportedAttributes() (page 1011) method.

Warning: Referring to an Attribute directly from a Device by calling someDevice.getAttributeName()
will return an Attribute object with only the name property available. This is available for legacy purposes only,
and will likely be removed at some time.
To get a reference to an Attribute object, you should use the getSupportedAttributes() method on the
Device object, and then find the desired Attribute in the returned List.

You can view the available attributes for all Capabilities in our Capabilities Reference (page 655).

284.6.1 getDataType()

Gets the data type of this Attribute.

Signature: String getDataType()

Returns: String - the data type of this Attribute. Possible types are “STRING”, “NUMBER”, “VECTOR3”,
“ENUM”.

Example:

preferences {
section() {

input "thetemp", "capability.temperatureMeasurement"
}

}
...
def attrs = thetemp.supportedAttributes
attrs.each {

log.debug "${thetemp.displayName}, attribute ${it.name}, dataType: ${it.dataType}"
}
...

284.6.2 getName()

The name of the Attribute.

Signature: String getName()

Returns: String - the name of this attribute

Example:

preferences {
section() {

input "myswitch", "capability.switch"
}

}
...
// switch capability has an attribute named "switch"

998 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

def switchAttr = myswitch.switch
log.debug "switch attribute name: ${switchAttr.name}"
...

284.6.3 getValues()

The possible values for this Attribute, if the data type is “ENUM”.

Signature: List<String> getValues()

Returns: List < String > - the possible values for this Attribute, if the data type is “ENUM”. An empty list is returned
if there are no possible values or if the data type is not “ENUM”.

Example:

preferences {
section() {

input "thetemp", "capability.temperatureMeasurement"
}

}
...
def attrs = thetemp.supportedAttributes
attrs.each {

log.debug "${thetemp.displayName}, attribute ${it.name}, values: ${it.values}"
log.debug "${thetemp.displayName}, attribute ${it.name}, dataType: ${it.dataType}"

}
...

284.7 Capability

The Capability object encapsulates information about a certain Capability.

A Capability object cannot be created. You can get the Capabilities for a given device using the capabilities method
on a Device (page 1003) instance:

def capabilities = mydevice.capabilities

For documentation for the available Capabilities, you can refer to the Capabilities Reference (page 655).

284.7.1 getAttributes()

Signature: List<Attribute> getAttributes()

Returns: List <Attribute (page 997)> - A list of Attributes of this capability. An empty list will be returned if this
Capability has no Attributes.

Example:

284.7. Capability 999

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

preferences {
section() {

input "mySwitch", "capability.switch"
}

}
...
def mySwitchCaps = mySwitch.capabilities

// log each capability supported by the "mySwitch" device, along
// with all its supported attributes
mySwitchCaps.each {cap ->

log.debug "Capability name: ${cap.name}"
cap.attributes.each {attr ->

log.debug "-- Attribute name; ${attr.name}"
}

}
...

284.7.2 getCommands()

Signature: List<Command> getCommands()

Returns: List <Command (page 1002)> - A list of Commands of this capability. An empty list will be returned if this
Capability has no commands.

Example:

preferences {
section() {

input "mySwitch", "capability.switch"
}

}
...
def mySwitchCaps = mySwitch.capabilities

// log each capability supported by the "mySwitch" device, along
// with all its supported commands
mySwitchCaps.each {cap ->

log.debug "Capability name: ${cap.name}"
cap.commands.each {comm ->

log.debug "-- Command name: ${comm.name}"
}

}
...

284.7.3 getName()

The name of the capability.

Signature: String getName()

Returns: String - the name of the capability.

Example:

1000 Chapter 284. API Contents

https://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

preferences {
section() {

input "mySwitch", "capability.switch"
}

}
...
def mySwitchCaps = mySwitch.capabilities

// log each capability supported by the "mySwitch" device
mySwitchCaps.each {cap ->

log.debug "Capability name: ${cap.name}"
}
...

284.8 ColorUtilities

Provides conversion utilities for working with different color representations. Every SmartApp and Device Handler
can get a reference to the ColorUtilities class using the getColorUtil() method (or the shorthand property
reference colorUtil, if you prefer).

def deepSkyBlueInHex = colorUtil.rgbToHex(0, 191, 255)
log.debug "RGB 0,191,255 in Hex is $deepSkyBlueInHex"

The ColorUtilities class works with RGB and hex color values. A full discussion of web colors is beyond the scope of
this document, but the basic definitions used for SmartThings development are defined below.

RGB (Red, Green, Blue) The RGB (Red, Green, Blue) color model “is an additive color model in which red, green,
and blue light are added together in various ways to reproduce a broad array of colors.” 1

HEX “A hex triplet is a six-digit, three-byte hexadecimal number used in HTML, CSS, SVG, and other computing
applications to represent colors. The bytes represent the red, green and blue components of the color. One byte
represents a number in the range 00 to FF (in hexadecimal notation), or 0 to 255 in decimal notation.” 2

284.8.1 hexToRgb()

Converts a hex color string to RGB. Assumes the hex value is three or six characters in length, and may or may not
include the leading “#” character.

Signature: static List hexToRgb(String hex)

Parameters: String hex - The hex color string to convert

Returns: List - The RGB color representation, ordered as [red, green, blue]

Example:

def skyBlueInRgb = colorUtil.hexToRgb('#00BFFF')
log.debug "sky blue in RGB: $skyBlueInRgb"

1 Wikipedia: https://en.wikipedia.org/wiki/RGB_color_model
2 Wikipedia: https://en.wikipedia.org/wiki/Web_colors

284.8. ColorUtilities 1001

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/Web_colors

SmartThings Classic Developer Documentation, Release latest

284.8.2 rgbToHex()

Converts an RGB value to a hexadecimal color string.

Signature: static String rgbToHex(red, green, blue) throws IllegalArgumentException

Parameters: Integer red - The red value, between 0 and 255

Integer green - The green value, between 0 and 255

Integer blue - The blue value, between 0 and 255

Returns: String - The hexadecimal representation of the RGB value

Throws: IllegalArgumentException - An IllegalArgumentException is thrown if any of the RGB values are
not within the 0 to 255 range.

Example:

def deepSkyBlueInHex = colorUtil.rgbToHex(0, 191, 255)
log.debug "RGB 0,191,255 in Hex is $deepSkyBlueInHex"

284.9 Command

A Command represents an action you can perform on a Device.

An instance of a Command object encapsulates information about that Command. You cannot create a Command
object; you can retrieve them from a Capability (page 999) or from a Device (page 1003):

preferences {
section() {

input "theswitch", "capability.switch"
}

}
...

// Get a list of Commands supported by theswitch:
def switchCommands = theswitch.supportedCommands
log.debug "switchCommands: $switchCommands"

// Iterate through the supported capabilities, log all suported commands:
// commands property available via the Capability object
def caps = theswitch.capabilities
caps.commands.each {comm ->

log.debug "-- Command name: ${comm.name}"
}

284.9.1 getArguments()

The list of argument types for the command.

Signature: List<String> getArguments()

Returns: List < String > - A list of the argument types for this command. One of “STRING”, “NUMBER”, “VEC-
TOR3”, or “ENUM”.

1002 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Example:

preferences {
section() {

input "theSwitchLevel", "capability.switchLevel"
}

}
...
def supportedCommands = theSwitchLevel.supportedCommands

// logs each command's arguments
supportedCommands.each {

log.debug "arguments for swithLevel command ${it.name}: ${it.arguments}"
}
...

284.9.2 getName()

The name of the command.

Signature: String getName()

Returns: String - the name of this command.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
}

}
...
def supportedCommands = theswitch.supportedCommands

// logs each command name supported by theswitch
supportedCommands.each {

log.debug "command name: ${it.name}"
}
...

284.10 Device

The Device object represents a physical device in a SmartApp. When a user installs a SmartApp, they typically will
select the devices to be used by the SmartApp. SmartApps can then interact with these Device objects to get device
information, or send commands to the Device.

Device objects cannot be instantiated, but are created by the SmartThings platform and available via the name given
in the preferences definition of a SmartApp:

preferences {
section() {

// prompt user to select a device that supports the switch capability.
// assign the chosen device to a variable named "theswitch"
input "theswitch", "capability.switch"

}

284.10. Device 1003

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

}
...
// access Device instance using the input name:
def deviceDisplayName = theswitch.displayName
...

Note: Event history is limited to the last seven days. Methods that query devices for Event history will only query
the last seven days. This will be called out in those methods, but is good to be generally aware of.

284.10.1 <attribute name>State

The latest State (page 1040) instance for the specified Attribute.

The exact name will vary depending on the device and its available attributes.

For example, the Thermostat capability supports several attributes. To get the State for any of the attributes, simply
use the attribute name to construct the call. Consider the case of the “temperature” and “heatingSetpoint” attributes:

somethermostat.temperatureState
somethermostat.heatingSetpointState

Signature: State <attribute name>State

Returns: State (page 1040) - The latest State instance for the specified Attribute.

Example:

preferences {
section() {

input "thetemp", "capability.temperatureMeasurement"
}

}
...
// The Temperature Measurement has a "temperature" attribute.
// so the form is <attribute name>State = temperatureState
def tempState = thetemp.temperatureState
...

284.10.2 <command name>()

Executes the specified command on the Device.

The method name will vary on the Device and Command being called.

For example, a Device that supports the Switch capability has both the on() and off() commands.

Some commands may take parameters; you will pass those parameters to the command as well.

Signature: void <command name>()

void <command name>([delay: Number])

void <command name>(arguments)

void <command name>(arguments, [delay: Number’)])

1004 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Parameters: arguments - The arguments to the command, if required.

Map options - A map of options to send to the command. Only the delay option is currently supported:

option type description
delay Number The number of milliseconds to wait before sending the command to the device.

Returns: void

Example:

preferences {
section() {

input "theswitch", "capability.switch"
input "thethermostat", "capability.thermostat"

}
}
...
// call the "on" command on theswitch - no arguments
theswitch.on()

// call the "setHeatingSetpoint" command on thethermostat - takes an argument:
thethermostat.setHeatingSetpoint(72)

// A map specifiying command options can be specified as the last parameter.
// Only supported options are "delay":
theswitch.on([delay: 30000]) // send command after 30 seconds
thethermostat.setHeatingSetpoint(72, [delay: 30000])
...

284.10.3 current<Uppercase attribute name>

The latest reported values for the specified attribute.

The specific signature will vary depending on the attribute name. Follow the patter of current plus the attribute
name, with the first letter capitalized.

For example, the Carbon Monoxide Detector capability has an attribute “carbonMonoxide”. To get the latest value for
this attribute, you would call:

def currentCarbon = somedevice.currentCarbonMonoxide

Signature: Object current<Uppercase attribute name>

Returns: Object - the latest reported values for the specified attribute. The specific type of object returned will vary
depending on the specific attribute.

Tip: The exact returned type for various attributes depends upon the underlying capability and Device Handler.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
input "thetemp", "capability.temperatureMeasurement"

}
}

284.10. Device 1005

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

SmartThings Classic Developer Documentation, Release latest

...
def switchattr = theswitch.currentSwitch
def tempattr = thetemp.currentTemperature

log.debug "current switch: $switchattr"
log.debug "current temp: $tempattr"

// switch attribute returned as a string
log.debug "switchattr instanceof String? ${switchattr instanceof String}"

// temperature attribute returned as a Number
log.debug "tempatt instanceof Number? ${tempattr instanceof Number}"

...

284.10.4 currentState()

Gets the latest State (page 1040) for the specified attribute.

Signature: State currentState(String attributeName)

Parameters: String attributeName - The name of the attribute to get the State for.

Returns: State (page 1040) - The latest State instance for the specified attribute.

Example:

preferences {
section() {

input "temp", "capability.temperatureMeasurement"
}

}
...
def tempState = temp.currentState("temperature")
log.debug "state value: ${tempState.value}"
...

284.10.5 currentValue()

Gets the latest reported values of the specified attribute.

Signature: Object currentValue(String attributeName)

Parameters: String attributeName - The name of the attribute to get the latest values for.

Returns: Object - The latest reported values of the specified attribute. The exact return type will vary depending upon
the attribute.

Warning: The exact returned type for various attributes is not adequately documented at this time.
Until they are, we recommend that you save often and experiment, or even look at the specific Device Handler for
the device you are working with.

Example:

1006 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

SmartThings Classic Developer Documentation, Release latest

preferences {
section() {

input "theswitch", "capability.switch"
input "thetemp", "capability.temperatureMeasurement"

}
}
...
def switchattr = theswitch.currentValue("switch")
def tempattr = thetemp.currentValue("temperature")

log.debug "current switch: $switchattr"
log.debug "current temp: $tempattr"

// switch attribute returned as a string
log.debug "switchattr instanceof String? ${switchattr instanceof String}"

// temperature attribute returned as a Number
log.debug "tempatt instanceof Number? ${tempattr instanceof Number}"

...

284.10.6 events()

Get a list of Events for the Device in reverse chronological order (newest first).

Note: Only Events in the last seven days will be returned via the events() method.

Signature: List<Event> events([max: N])

Parameters: Map options (optional) - Options for the query. Supported options below:

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <Event (page 1017)> - A list of Events in reverse chronological order (newest first).

Example:

def theEvents = somedevice.events()
def mostRecent20Events = somedevice.events(max: 20)

284.10.7 eventsBetween()

Get a list of Events between the specified start and end dates.

Note: Only Events from the last seven days is query-able. Using a date range that ends more than seven days ago
will return zero Events.

Signature: List<Event> eventsBetween(Date startDate, Date endDate [, Map
options])

284.10. Device 1007

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

Parameters: Date startDate - the lower Date range for the query.

Date endDate - the upper Date range for the query.

Map options (optional) - Options for the query. Supported options below:

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <:ref:event_ref> - a list of Events between the specified start and end dates.

Example:

// 3 days ago
def startDate = new Date() - 3

// today
def endDate = new Date()

def theEvents = somedevice.eventsBetween(startDate, endDate)
log.debug "there were ${theEvents.size()} events in the last three days"

// events in the last 3 days - maximum of 5 events
def limitedEvents = somedevice.eventsBetween(startDate, endDate, [max: 5])

284.10.8 eventsSince()

Get a list of Events since the specified date.

Note: Only Events from the last seven days is query-able. Using a date range that ends more than seven days ago
will return zero Events.

Signature: List<Event> eventsSince(Date startDate [, Map options])

Parameters: Date startDate - the date to start the query from.

Map options (optional) - options for the query. Supported options below:

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <Event (page 1017)> - a list of Events since the specified date.

Example:

def eventsSinceYesterday = somedevice.eventsSince(new Date() - 1)
log.debug "there have been ${eventsSinceYesterday.size()} since yesterday"

284.10.9 getCapabilities()

The List of Capabilities provided by this Device.

Signature: List<Capability> getCapabilities()

Returns: List <Capability (page 999)> - a List of Capabilities supported by this Device.

1008 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

Example:

def supportedCaps = somedevice.capabilities
supportedCaps.each {cap ->

log.debug "This device supports the ${cap.name} capability"
}

284.10.10 getDeviceNetworkId()

Gets the device network ID for the device.

Signature: String getDeviceNetworkId()

Returns: String - the network ID for the device

284.10.11 getDisplayName()

The label of the Device assigned by the user.

Signature: String getDisplayName()

Returns: String - the label of the Device assigned by the user, null if no label iset.

Example:

def devLabel = somedevice.displayName
if (devLabel) {

log.debug "label set by user: $devLabel"
} else {

log.debug "no label set by user for this device"
}

284.10.12 getHub()

The Hub associated with this Device.

Signature: Hub getHub()

Returns: Hub (page 1027) - the Hub for this Device.

Example:

log.debug "Hub: ${someDevice.hub.name}"

284.10.13 getId()

The unique system identifier for this Device.

Signature: String getId()

Returns: String - the unique system identifer for this Device.

284.10. Device 1009

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.10.14 getLabel()

The name of the Device set by the user in the mobile application or Web IDE.

Signature: String getLabel()

Returns: String - the name of the Device as configured by the user.

284.10.15 getLastActivity()

The date of the last Event with a source of device. (i.e. not commands)

Signature: String getLastActivity()

Returns: Date - Date of the last Event with a source of device.

284.10.16 getManufacturerName()

Gets the manufacturer name of the device, as specified in the Device Handler’s fingerprint (page 471). If the device
was joined using a generic fingerprint, it is whatever the device reported while joining.

Not applicable for cloud or LAN-connected devices (null will be returned).

Signature: String getManufacturerName()

Returns: String - the manufacturer name of the device, or null.

Example:

preferences {
input "switches", "capability.switch", multiple: true

}

def installed() {
switches.each {

log.debug "switch id: ${it.id}, manufacturer name: ${it.getManufacturerName()}"
}

}

284.10.17 getModelName()

Gets the model name of the device, as specified in the Device Handler’s fingerprint (page 471). If the device was
joined using a generic fingerprint, it is whatever the device reported while joining.

Not applicable for cloud or LAN-connected devices (null will be returned).

Signature: String getModelName()

Returns: String - the model name of the device, or null.

Example:

1010 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

preferences {
input "switches", "capability.switch", multiple: true

}

def installed() {
switches.each {

log.debug "switch id: ${it.id}, model name: ${it.getModelName()}"
}

}

284.10.18 getStatus()

Get the current status of the Device. If no status is found then INACTIVE is returned.

Signature: String getStatus()

Returns: String - the status of the Device or INACTIVE if one doesn’t exist.

284.10.19 getName()

The internal name of the Device. Typically assigned by the system and editable only by a user in the IDE.

Signature: String getName()

Returns: String - the internal name of the Device.

284.10.20 getSupportedAttributes()

The list of Attribute (page 997) s for this Device.

Signature: List<Attribute> getSupportedAttributes()

Returns: List <Attribute (page 997)> - the list of Attributes for this Device. Includes both capability attributes as well
as Device-specific attributes.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
}

}
...
def theAtts = theswitch.supportedAttributes
theAtts.each {att ->

log.debug "Supported Attribute: ${att.name}"
}
...

284.10. Device 1011

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.10.21 getSupportedCommands()

The list of Command (page 1002) s for this Device.

Signature: List<Command> getSupportedCommands()

Returns: List <Command (page 1002)> - the list of Commands for this Device. Includes both capability commands
as well as Device-specific commands.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
}

}
...
def theCommands = theswitch.supportedCommands
theCommands.each {com ->

log.debug "Supported Command: ${com.name}"
}
...

284.10.22 getTypeName()

The type of the device.

Signature: String getTypeName()

Returns: String - the type of the device.

284.10.23 hasAttribute()

Determine if this Device has the specified attribute.

Tip: Attribute names are case-sensitive.

Signature: Boolean hasAttribute(String attributeName)

Parameters: String attributeName - the name of the attribute to check if the Device supports.

Returns: Boolean - true if this Device has the specified attribute. Returns a non-true value if not (may be null).

Example:

preferences {
section() {

input "theswitch", "capability.switch"
input "thetemp", "capability.temperatureMeasurement"

}
}
...
def hasTempAttr = thetemp.hasAttribute("temperature")
// true, since this device supports the 'temperature' capability

1012 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

SmartThings Classic Developer Documentation, Release latest

log.debug "${thetemp.displayName} has temperature attribute? $hasTempAttr"

def hasTempAttrCaseSensitive = thetemp.hasAttribute("Temperature")
if (hasTempAttrCaseSensitive) {

log.debug "${thetemp.displayName} supports the Temperature attribute."
} else {

// this block will execute, since attribute names are case sensitive
log.debug "${thetemp.displayName} does NOT support the Temperature attribute."

}

...

284.10.24 hasCapability()

Determine if this Device supports the specified capability name.

Tip: Capability names are case-sensitive.

Signature: Boolean hasCapability(String capabilityName)

Parameters: String capabilityName - the name of the capability to check if the Device supports.

Returns: Boolean - true if this Device has the specified capability. Returns a non-true value if not (may be null).

Example:

preferences {
section() {

input "theswitch", "capability.switch"
input "thetemp", "capability.temperatureMeasurement"

}
}
...
def hasSwitch = theswitch.hasCapability("Switch")
def hasSwitchCaseSensitive = theswitch.hasCapability("switch")
def hasPower = theswitch.hasCapability("Power")

// true
log.debug "${theswitch.displayName} has Switch capability? $hasSwitch"

if (!hasSwitchCaseSensitive) {
// enters this block (names are case-sensitive!)
log.debug "${theswitch.displayName} does not have the switch capability"

}

// true
log.debug "${theswitch.displayName} also has Power capability? $multiCapabilities"

...

284.10. Device 1013

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

SmartThings Classic Developer Documentation, Release latest

284.10.25 hasCommand()

Determine if this Device has the specified command name.

Tip: Command names are case-sensitive.

Signature: Boolean hasCommand(String commandName)

Parameters: String commandName - the name of the command to check if the Device supports.

Returns: Boolean - true if this Device has the specified command. Returns a non-true value if not (may be null).

Example:

preferences {
section() {

input "theswitch", "capability.switch"
input "switchlevel", "capability.switchLevel"

}
}
...

def hasOn = theswitch.hasCommand("on")
def hasOnCaseSensitive = theswitch.hasCommand("On")

// true
log.debug "${theswitch.displayName} has on command? $hasOn"

if (!hasOnCaseSensitive) {
// enters this block - case-sensitive!
log.debug "${theswitch.displayName} does not have On command"

}

def hasSetLevelCommand = switchlevel.hasCommand("setLevel")
// true
log.debug "${switchlevel.displayName} has command setLevel? $hasSetLevelCommand"
...

284.10.26 latestState()

Get the latest Device State record for the specified attribute.

Signature: State latestState(String attributeName)

Parameters: String attributeName - The name of the attribute to get the State record for.

Returns: State (page 1040) - The latest State record for the attribute specified for this Device.

Example:

def latestDeviceState = somedevice.latestState("someAttribute")
log.debug "latest state value: ${latestDeviceState.value}"

1014 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

SmartThings Classic Developer Documentation, Release latest

284.10.27 latestValue()

Get the latest reported value for the specified attribute.

Signature: Object latestValue(String attributeName)

Parameters: String attributeName - the name of the attribute to get the latest value for.

Returns: Object - the latest reported value. The exact type returned will vary depending upon the attribute.

Warning: The exact returned type for various attributes is not adequately documented at this time.
Until they are, we recommend that you save often and experiment, or even look at the specific Device Handler for
the device you are working with.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
input "thetemp", "capability.temperatureMeasurement"

}
}
...
def switchattr = theswitch.latestValue("switch")
def tempattr = thetemp.latestValue("temperature")

log.debug "current switch: $switchattr"
log.debug "current temp: $tempattr"

// switch attribute returned as a string
log.debug "switchattr instanceof String? ${switchattr instanceof String}"

// temperature attribute returned as a Number
log.debug "tempatt instanceof Number? ${tempattr instanceof Number}"

...

284.10.28 statesBetween()

Get a list of Device State (page 1040) objects for the specified attribute between the specified times in reverse chrono-
logical order (newest first).

Note: Only State instances from the last seven days is query-able. Using a date range that ends more than seven days
ago will return zero State objects.

Signature: List<State> statesBetween(String attributeName, Date startDate, Date
endDate [, Map options])

Parameters: String attributeName - The name of the attribute to get the States for.

Date startDate - The beginning date for the query.

Date endDate - The end date for the query.

Map options (optional) - options for the query. Supported options below:

284.10. Device 1015

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

SmartThings Classic Developer Documentation, Release latest

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <State (page 1040)> - A list of State objects between the dates specified. A maximum of 1000 State
(page 1040) objects will be returned.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
}

}
...
def start = new Date() - 5
def end = new Date() - 1

def theStates = theswitch.statesBetween("switch", start, end)
log.debug "There are ${theStates.size()} between five days ago and yesterday"
...

284.10.29 statesSince()

Get a list of Device State (page 1040) objects for the specified attribute since the date specified.

Note: Only State instances from the last seven days is query-able. Using a date range that ends more than seven days
ago will return zero State objects.

Signature: List<State> statesSince(String attributeName, Date startDate [, Map
options])

Parameters: String attributeName - The name of the attribute to get the States for.

Date startDate - The beginning date for the query.

Map options (optional) - options for the query. Supported options below:

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <State (page 1040)> - A list of State records since the specified start date. A maximum of 1000 State
(page 1040) instances will be returned.

Example:

preferences {
section() {

input "theswitch", "capability.switch"
}

}
...
def theStates = theswitch.statesSince("switch", new Date() -3)
log.debug "There are ${theStates.size()} State records in the last 3 days"
...

1016 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.11 Event

Events are core to the SmartThings platform. They allow SmartApps to respond to changes in the physical environ-
ment, and build automations around them.

Event instances are not created directly by SmartApp or Device Handlers. They are created internally by the Smart-
Things platform, and passed to SmartApp event handlers that have subscribed to those events.

Note: In a SmartApp or Device Handler, the method createEvent() exists to create a Map that defines properties
of an Event. Only by returning the resulting map from a Device Handler’s parse() method is an actual Event
instance created and propagated through the SmartThings system.

The reference documentation here lists all methods available on an Event object instance.

284.11.1 getData()

A map of any additional data on the Event.

Signature: String getData()

Returns: String - A JSON string representing a map of the additional data (if any) on the Event.

Example:

Consider an Event created like this:

createEvent(name: "myevent", value: "myvalue", data: [key1: "val", key2: 42])

Then in an event handler method, we can get at the data like this:

def eventHandler(evt) {
def data = parseJson(evt.data)
log.debug "event data: ${data}"
log.debug "event key1: ${data.key1}"
log.debug "event key2: ${data.key2}"

}

284.11.2 getDate()

Acquisition time of this device state record.

Signature: Date getDate()

Returns: Date - the date and time this Event record was created.

Example:

def eventHandler(evt) {
log.debug "event created at: ${evt.date}"

}

284.11. Event 1017

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html

SmartThings Classic Developer Documentation, Release latest

284.11.3 getDateValue()

The value of the Event as a Date object, if applicable.

Signature: Date getDateValue()

Returns: Date - If the value of this Event is date, a Date will be returned. null will be returned if the value of the
Event is not parseable to a Date.

Example:

def eventHandler(evt) {
// get the value of this event as a Date
log.debug "The dateValue of this event is ${evt.dateValue}"
log.debug "evt.dateValue instanceof Date? ${evt.dateValue instanceof Date}"

}

284.11.4 getDescription()

The raw description that generated this Event.

Signature: String getDescription()

Returns: String - the raw description that generated this Event.

Example:

def eventHandler(evt) {
log.debug "event raw description: ${evt.description}"

}

284.11.5 getDescriptionText()

The description of the Event that is to be displayed to the user in the mobile application.

Signature: String getDescriptionText()

Returns: String - the description of this Event to be displayed to the user in the mobile application.

Example:

def eventHandler(evt) {
log.debug "event description text: ${evt.descriptionText}"

}

284.11.6 getDevice()

The Device (page 1003) associated with this Event.

Signature: Device getDevice()

Returns: Device (page 1003) - the Device associated with this Event, or null if no Device is associated with this
Event.

1018 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.11.7 getDisplayName()

Signature: String getDisplayName()

Returns: String - The user-friendly name of the source of this Event. Typically the user-assigned device label.

Example:

def eventHandler(evt) {
log.debug "event display name: ${evt.displayName}"

}

284.11.8 getDeviceId()

The unique system identifer of the Device (page 1003) associated with this Event.

Signature: String getDeviceId()

Returns: String - the unique system identifier of the device assocaited with this Event, or null if there is no device
associated with this Event.

Example:

def eventHandler(evt) {
log.debug "The device id for this event: ${evt.deviceId}"

}

284.11.9 getId()

The unique system identifier for this Event.

Signature: String getId()

Returns: String - the unique device identifier for this Event.

Example:

def eventHandler(evt) {
log.debug "event id: ${evt.id}"

}

284.11.10 getDoubleValue()

The value of this Event, if the value can be parsed to a Double.

Signature: Double getDoubleValue()

Returns: Double - the value of this Event as a Double.

Warning: doubleValue will throw an Exception if the value of the Event is not parseable to a Double.
You should wrap calls in a try/catch block.

Example:

284.11. Event 1019

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html?is-external=true

SmartThings Classic Developer Documentation, Release latest

def eventHander(evt) {
// get the value of this event as an Double
// throws an exception of the value is not convertable to a Double
try {

log.debug "The doubleValue of this event is ${evt.doubleValue}"
log.debug "evt.doubleValue instanceof Double? ${evt.doubleValue instanceof Double}"

} catch (e) {
log.debug("Trying to get the doubleValue for ${evt.name} threw an exception", e)

}
}

284.11.11 getFloatValue()

The value of this Event as a Float, if it can be parsed into a Float.

Signature: Float getFloatValue()

Returns: Float - the value of this Event as a Float.

Warning: floatValue will throw an Exception if the Event’s value is not parseable to a Float.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
// get the value of this event as an Float
// throws an exception if not convertable to Float
try {

log.debug "The floatValue of this event is ${evt.floatValue}"
log.debug "evt.floatValue instanceof Float? ${evt.floatValue instanceof Float}"

} catch (e) {
log.debug("Trying to get the floatValue for ${evt.name} threw an exception", e)

}
}

284.11.12 getHubId()

The unique system identifer of the Hub associated with this Event.

Signature: String getHubId()

Returns: String - the unique system identifier of the Hub associated with this Event, or null if no Hub is associated
with this Event.

Example:

def eventHandler(evt) {
log.debug "The hub id associated with this event: ${evt.hubId}"

}

1020 Chapter 284. API Contents

https://docs.oracle.com/javase/7/docs/api/java/lang/Float.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.11.13 getInstalledSmartAppId()

The unique system identifier of the SmartApp instance associated with this Event.

Signature: String getInstalledSmartAppId()

Returns: String - the unique system identifier of the SmartApp instance associated with this Event.

Example:

def eventHandler(evt) {
log.debug "The installed SmartApp id associated with this event: ${evt.installedSmartAppId}"

}

284.11.14 getIntegerValue()

The value of this Event as an Integer.

Signature: Integer getIntegerValue()

Returns: Integer - the value of this Event as an Integer.

Warning: integerValue throws an Exception of the Event value cannot be parsed to an Integer.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
// get the value of this event as an Integer
// throws an exception if not convertable to Integer
try {

log.debug "The integerValue of this event is ${evt.integerValue}"
log.debug "The integerValue of this event is an Integer: ${evt.integerValue instanceof Integer}"

} catch (e) {
log.debug("Trying to get the integerValue for ${evt.name} threw an exception", e)

}
}

284.11.15 getIsoDate()

Acquisition time of this Event as an ISO-8601 String.

Signature: String getIsoDate()

Returns: String - The acquisition time of this Event as an ISO-8601 String.

Example:

def eventHandler(evt) {
log.debug "event isoDate: ${evt.isoDate}"

}

284.11. Event 1021

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.11.16 getJsonValue()

Value of the Event as a parsed JSON data structure.

Signature: Object getJsonValue()

Returns: Object - The value of the Event as a JSON structure

Warning: jsonValue throws an Exception if the value of the Event cannot be parsed into a JSON object.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
// get the value of this event as a JSON structure
// throws an exception if the value is not convertable to JSON
try {

log.debug "The jsonValue of this event is ${evt.jsonValue}"
} catch (e) {

log.debug("Trying to get the jsonValue for ${evt.name} threw an exception", e)
}

}

284.11.17 getLinkText()

Warning: Deprecated.
getLinkText() is deprecated. Use getDisplayName() (page 1019) instead.

The user-friendly name of the source of this Event. Typically the user-assigned device label.

284.11.18 getLocation()

The Location associated with this Event.

Signature: Location getLocation()

Returns: Location (page 1036) - The Location associated with this Event, or null if no Location is associated with
this Event.

284.11.19 getLocationId()

The unique system identifier for the Location (page 1036) associated with this Event.

Signature: String getLocationId()

Returns: String - the unique system identifier for the Location (page 1036) associated with this Event.

1022 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.11.20 getLongValue()

The value of this Event as a Long.

Signature: Long getLongValue()

Returns: Long - the value of this Event as a Long.

Warning: longValue throws an Exception if the value of the Event cannot be parsed to a Long.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
// get the value of this event as an Long
// throws an exception if not convertable to Long
try {

def evtLongValue = evt.longVaue
log.debug "The longValue of this event is evtLongValue"
log.debug "evt.longValue instanceof Long? ${evtLongValue instanceof Long}"

} catch (e) {
log.debug("Trying to get the longValue for ${evt.name} threw an exception", e)

}
}

284.11.21 getName()

The name of this Event.

Signature: String getName()

Returns: String - the name of this Event.

Example:

def eventHandler(evt) {
log.debug "the name of this event: ${evt.name}"

}

284.11.22 getNumberValue()

The value of this Event as a Number.

Signature: Number getNumberValue()

Returns: Number - the value of this Event as a Number.

Warning: numberValue throws an Exception if the value of the Event cannot be parsed to a Number.
You should wrap calls in a try/catch block.

Example:

284.11. Event 1023

https://docs.oracle.com/javase/7/docs/api/java/lang/Long.
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html

SmartThings Classic Developer Documentation, Release latest

def eventHandler(evt) {
// get the value of this event as an Number
// throws an exception if the value is not convertable to a Number
try {

def evtNumberValue = evt.numberValue
log.debug "The numberValue of this event is ${evtNumberValue}"
log.debug "evt.numberValue instanceof Number? ${evtNumberValue instanceof Number}"

} catch (e) {
log.debug("Trying to get the numberValue for ${evt.name} threw an exception", e)

}
}

284.11.23 getNumericValue()

The value of this Event as a Number.

Signature: Number getNumericValue()

Returns: Number - the value of this Event as a Number.

Warning: numericValue throws an Exception if the value of the Event cannot be parsed to a Number.
You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
// get the value of this event as an Number
// throws an exception if the value is not convertable to a Number
try {

def evtNumberValue = evt.numericValue
log.debug "The numericValue of this event is ${evtNumberValue}"
log.debug "evt.numericValue instanceof Number? ${evtNumberValue instanceof Number}"

} catch (e) {
log.debug("Trying to get the numericValue for ${evt.name} threw an exception", e)

}
}

284.11.24 getSource()

The source of the Event.

Signature: String getSource()

Returns: String - the source of the Event. The following table lists the possible sources and their meaning:

Source Description
“APP” Event originated by an app touch Event in the mobile application.
“APP_COMMAND”Event originated by using the mobile application (for example, using the mobile

application to turn a light off)
“COMMAND” Event originated by a SmartApp or Device Handler calling a command on a device.
“DEVICE“ Event originated by the physical actuation of a device.
“HUB” Event originated on the Hub.
“LOCATION” Event originated by a Location state change (for example, sunrise and sunset events)
“USER”

1024 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Example:

def eventHandler(evt) {
log.debug "The source of this event is: ${evt.source}"

}

284.11.25 getStringValue()

The value of this Event as a String.

Signature: String getStringValue()

Returns: String - the value of this Event as a String.

Example:

def eventHandler(evt) {
log.debug "The value of this event as a string: ${evt.stringValue}"

}

284.11.26 getUnit()

The unit of measure for this Event, if applicable.

Signature: String getUnit()

Returns: String - the unit of measure of this Event, if applicable. null otherwise.

Example:

def eventHandler(evt) {
log.debug "The unit for this event: ${evt.unit}"

}

284.11.27 getValue()

The value of this Event as a String.

Signature: String getValue()

Returns: String - the value of this Event as a String.

Example:

def eventHandler(evt) {
log.debug "The value of this event as a string: ${evt.value}"

}

284.11. Event 1025

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.11.28 getXyzValue()

Value of the Event as a 3-entry Map with keys ‘x’, ‘y’, and ‘z’ with BigDecimal values. For example:

[x: 1001, y: -23, z: -1021]

Typically only useful for getting position data from the “Three Axis” Capability.

Signature: Map<String, BigDecimal> getXyzValue()

Returns: Map < String , BigDecimal > - A map representing the X, Y, and Z coordinates.

Warning: xyzValue throws an Exception if the value of the Event cannot be parsed to an X-Y-Z data structure.
You should wrap calls in a try/catch block.

Example:

def positionChangeHandler(evt) {
// get the value of this event as a 3 entry map with keys
//'x', 'y', 'z', and BigDecimal values
// throws an exception if the value is not convertable to a Date
try {

log.debug "The xyzValue of this event is ${evt.xyzValue }"
log.debug "evt.xyzValue instanceof Map? ${evt.xyzValue instanceof Map}"

} catch (e) {
log.debug("Trying to get the xyzValue for ${evt.name} threw an exception", e)

}
}

284.11.29 isDigital()

true if the Event is from the digital actuation (non-physical) of a Device, false otherwise.

Signature: Boolean physical()

Returns: Boolean - true if the Event is from the digital actuation of a Device, false otherwise.

Example:

def eventHandler(evt) {
log.debug "event from digital actuation? ${evt.isDigital()}"

}

284.11.30 isPhysical()

true if the Event is from the physical actuation of a Device, false otherwise.

Signature: Boolean physical()

Returns: Boolean - true if the Event is from the physical actuation of a Device, false otherwise.

Example:

1026 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

SmartThings Classic Developer Documentation, Release latest

def eventHandler(evt) {
log.debug "event from physical actuation? ${evt.isPhysical()}"

}

284.11.31 isStateChange()

true if the Attribute value for this Event is different than the previous one.

Signature: Boolean stateChange()

Returns: Boolean - true if the Attribute value for this Event is different than the previous one.

Example:

def eventHandler(evt) {
log.debug "Is this event a state change? ${evt.isStateChange()}"

}

284.12 Hub

The Hub object encapsulates information about the Hub.

Here’s a code snippet of a SmartApp that logs all available information for the Hub when the SmartApp is installed:

def installed() {
def hub = location.hubs[0]

log.debug "id: ${hub.id}"
log.debug "zigbeeId: ${hub.zigbeeId}"
log.debug "zigbeeEui: ${hub.zigbeeEui}"

// PHYSICAL or VIRTUAL
log.debug "type: ${hub.type}"

log.debug "name: ${hub.name}"
log.debug "firmwareVersionString: ${hub.firmwareVersionString}"
log.debug "localIP: ${hub.localIP}"
log.debug "localSrvPortTCP: ${hub.localSrvPortTCP}"

}

Below are the available properties on a Hub:

284.12.1 getFirmwareVersionString()

Signature: String getFirmwareVersionString()()

Returns: String - The firmware version of the Hub

Example:

284.12. Hub 1027

http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

List getRealHubFirmwareVersions() {
return location.hubs*.firmwareVersionString.findAll { it }

}

284.12.2 getId()

The unique system identifier for this Hub.

Signature: String getId()

Returns: String - the unique device identifier for this Hub.

Example:

def eventHandler(evt) {
log.debug "Hub ID associated with event: ${evt?.hub.id}"

}

284.12.3 getLocalIP()

The local IP address of the Hub.

Signature: String getLocalIP()

Returns: String - The IP address of the Hub.

284.12.4 getLocalSrvPortTCP()

The local server TCP port of the Hub.

Signature: String getLocalSrvPortTCP()

Returns: String - the TCP port for the Hub.

284.12.5 getName()

The name of the Hub.

Signature: String getName()

Returns: String - the name of the Hub.

1028 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.12.6 getType()

The type of the Hub. Either “PHYSICAL” or “VIRTUAL”.

Signature: String getType()

Returns: String - the type of the Hub.

284.12.7 getZigbeeEui()

The ZigBee Extended Unique Identifier of the Hub.

Signature: String getZigbeeEui()

Returns: String - The ZigBee EUI

284.12.8 getZigbeeId()

The ZigBee ID of the Hub.

Signature: String getZigbeeId()

Returns: String - the ZigBee ID

284.13 HubAction

The HubAction class is used to encapsulate a detailed request string while communicating with the devices in your
network. For example, this request string can be used for search and discovery of devices in your network. HubAction
can also be used in a SmartApp or in a Device Handler to communicate with the device.

Signature: HubAction myhubAction = new physicalgraph.device.HubAction(String
action, Protocol protocol)

HubAction myhubAction = new physicalgraph.device.HubAction(String action,
Protocol protocol, String dni, Map options)

HubAction myhubAction = new physicalgraph.device.HubAction(Map params,
String dni = null, [Map options])

Parameters: String action - A string comprised of the request details targeted for the device.

Protocol protocol - Specific protocol to be used. Default value is Protocol.LAN.

String dni - Device Network ID of the device. Default value is null. For dni, we recommend using MAC
address and not use IP and port numbers.

Map options - Default value is null. Available options are:

284.13. HubAction 1029

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

Op-
tion

Description

call-
back

Name of the callback method

type Type of LAN request. Allowed values are: LAN_TYPE_CLIENT, LAN_TYPE_SERVER. Default
value is LAN_TYPE_CLIENT.

pro-
to-
col

Allowed values are LAN_PROTOCOL_TCP and LAN_PROTOCOL_UDP and default value is
LAN_PROTOCOL_TCP. Note the difference in allowed values of this parameter when used in
Maps params and Protocol protocol signatures.

Map params - Available parameters are:

Pa-
rame-
ter

Description

path Allowed values are any string of the form "/somepath". Default value is "/".
method Allowed values are "POST", "GET", "PUT" and "PATCH". Default value is "POST".
proto-
col

Allowed values are Protocol.LAN. Default value is also Protocol.LAN.

head-
ers

A map of HTTP headers. The HOST should be the "IP":"port" string of the device. Default
values are [’Accept’: ’*/*’, ’User-Agent’: ’Linux UPnP/1.0
SmartThings’,]. If ’Content-Type’ is not included, then it is set to
’application/json’ if params:body is a Map; otherwise ’Content-Type’ is set to
’text/xml; charset="utf-8"’.

query A map of URL query parameters.
body Request body.

Example:

Send a device discovery command string to look for Samsung SmartCam device in your LAN network, via SSDP
protocol.

// Send a device discovery command string to look for Samsung SmartCam device in your LAN network, via SSDP protocol.
sendHubCommand(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:WANDevice:1", physicalgraph.device.Protocol.LAN))

Note: Typically, the device discovery is done mainly via SSDP protocol. After the device is discovered, either REST
or UPnP calls can be made for verification and communication with the device.

See Building the Service Manager (page 562) for more information.

Also note that, in the above example, while "urn:schemas-upnp-org:device:WANDevice:1" portion
of the request string represents the notation defined by UPnP standard for device types, the terms "lan" and
"discovery" are SmartThings-specific terms.

After the device is discovered, additional device information, such as device IP, MAC, port id, is available. Now it
is possible to interact with the device using this additional information. Send a HubAction to the device as shown
below, where myMAC is the MAC address string of the SmartCam device and calledBackHandler is the name
of the method that is to be called when the device responds to this HubAction request object.

sendHubCommand(new physicalgraph.device.HubAction("""GET /xml/device_description.xml HTTP/1.1\r\nHOST: $ip\r\n\r\n""", physicalgraph.device.Protocol.LAN, myMAC, [callback: calledBackHandler]))

...

// the below calledBackHandler() is triggered when the device responds to the sendHubCommand() with "device_description.xml" resource

void calledBackHandler(physicalgraph.device.HubResponse hubResponse) {
log.debug "Entered calledBackHandler()..."

1030 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

def body = hubResponse.xml
def devices = getDevices()
def device = devices.find { it?.key?.contains(body?.device?.UDN?.text()) }
if (device) {

device.value << [name: body?.device?.roomName?.text(), model: body?.device?.modelName?.text(), serialNumber: body?.device?.serialNum?.text(), verified: true]
}
log.debug "device in calledBackHandler() is: ${device}"
log.debug "body in calledBackHandler() is: ${body}"

}

Returns: HubAction object.

Note: A Device Handler’s parse() method can also return a HubAction object, in adddition to the above-
described usage by explicitly calling sendHubCommand.

See Building the Device Type (page 567) for more information.

284.14 InstalledSmartApp

The InstalledSmartApp class represents a SmartApp. Every SmartApp has an instance of
InstalledSmartApp available to it via the app object. InstalledSmartApp is also used in Parent-
Child SmartApps (page 393), specifically it is the return type of addChildApp() (page 900).

284.14.1 currentState()

Gets the current state of the given attribute.

Signature: AppState currentState(String attributeName)

Parameters: String attributeName - The attribute name to get the state for

Returns: AppState (page 981) - The latest state information for the specified attribute

Example:
...
def myAppState = app.currentState("someAttribute")
log.debug "state value: ${myAppState.value}"
...

284.14.2 getAccountId()

Gets the account ID of the owner of the Location in to which this SmartApp is installed.

Signature: String getAccountId()

Returns: String - The account ID of the owner of the Location in to which this SmartApp is installed.

Example:

284.14. InstalledSmartApp 1031

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

def accountId = app.getAccountId()
log.debug "This account ID of this installed SmartApp is $accountId"

284.14.3 getAllChildApps()

Gets a list of child SmartApps associated with this SmartApp. This returns child SmartApps that have both “complete”
and “incomplete” installation states (page 1033).

Signature: def getAllChildApps()

Returns: List < InstalledSmartApp (page 1031) > - A list of child SmartApps

Example:

def childApps = app.getAllChildApps()
log.debug "The app has ${childApps.size()} child SmartApps"

284.14.4 getAppSettings()

Gets the settings currently associated with this SmartApp.

Note: This method applies to the SmartApp’s Private settings (page 312).

Signature: Map app.getAppSettings()

Returns: Map - A map of key, value pairs that represent the current SmartApp settings

284.14.5 getChildApps()

Gets a list of child apps associated with this SmartApp. This only returns child SmartApps that have an installation
states (page 1033) of “complete”.

Signature: def getChildApps()

Returns: List < InstalledSmartApp (page 1031) > - A list of child SmartApps

Example:

def childApps = app.childApps

// Update the label for all child apps
childApps.each {

if (!it.label?.startsWith(app.name)) {
it.updateLabel("$app.name/$it.label")

}
}

1032 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

284.14.6 getChildDevices()

Gets a list of child devices associated with this SmartApp.

Signature: List<Device> getChildDevices()

Returns: List < Device (page 1003) > - A list of child devices

Example:

def children = app.getChildDevices()
log.debug "SmartApp with id $app.id has ${children.size()} child devices"

children.each { child ->
log.debug "child device id $child.id with label $child.label"

}

284.14.7 getExecutionIsModeRestricted()

Returns true if the SmartApp’s execution is restricted by modes. The restrictive modes would have been configured
when the SmartApp was installed.

Signature: Boolean getExecutionIsModeRestricted()()

Returns: Boolean - True if the execution of the SmartApp is restricted to certain modes

284.14.8 getExecutableModes()

Get a list of modes that this SmartApp is allowed to execute in.

Signature: Mode (page 1039) getExecutableModes()

Returns: Mode (page 1039) - A list of modes that this SmartApp is allowed to execute in

284.14.9 getId()

Get the id of the SmartApp

Signature: String getId()

Returns: The ID of the SmartApp

284.14.10 getInstallationState()

Get the current installation state of the SmartApp.

Signature: String getInstallationState()

Returns: The current installation state of the SmartApp. Can be incomplete or complete

284.14. InstalledSmartApp 1033

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

SmartThings Classic Developer Documentation, Release latest

284.14.11 getLabel()

Get the label of the SmartApp

Signature: String getLabel()

Returns: The label of the SmartApp

284.14.12 getName()

Get the name of the SmartApp

Signature: String getName()

Returns: The name of the SmartApp

284.14.13 getNamespace()

Get the namespace of the SmartApp

Signature: String getNamespace()

Returns: The namespace of the SmartApp

284.14.14 getParent()

Gets the parent of the SmartApp.

Signature: InstalledSmartApp (page 1031) getParent()

Returns: InstalledSmartApp (page 1031) - The parent of this SmartApp

284.14.15 getSubscriptions()

Signature: List<EventSubscriptionWrapper> getSubscriptions()

Returns List<EventSubscriptionWrapper[] - A list of subscriptions associated with this SmartApp

1034 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

284.14.16 statesBetween()

Get a list of app AppState (page 981) objects for the specified attribute between the specified times in reverse chrono-
logical order (newest first).

Note: Only State instances from the last seven days is query-able. Using a date range that ends more than seven days
ago will return zero State objects.

Signature: List<AppState> statesBetween(String attributeName, Date startDate,
Date endDate [, Map options])

Parameters: String attributeName - The name of the attribute to get the States for.

Date startDate - The beginning date for the query.

Date endDate - The end date for the query.

Map options (optional) - options for the query. Supported options below:

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <AppState (page 981)> - A list of State objects between the dates specified. A maximum of 1000 State
(page 1040) objects will be returned.

Example:
...
def start = new Date() - 5
def end = new Date() - 1

def theStates = app.statesBetween("myAttribute", start, end)
log.debug "There are ${theStates.size()} between five days ago and yesterday"
...

284.14.17 statesSince()

Get a list of app AppState (page 981) objects for the specified attribute since the date specified.

Note: Only State instances from the last seven days is query-able. Using a date range that ends more than seven days
ago will return zero State objects.

Signature: List<AppState> statesSince(String attributeName, Date startDate [,
Map options])

Parameters: String attributeName - The name of the attribute to get the States for.

Date startDate - The beginning date for the query.

Map options (optional) - options for the query. Supported options below:

option Type Description
max Number The maximum number of Events to return. By default, the maximum is 10.

Returns: List <AppState (page 981)> - A list of State records since the specified start date. A maximum of 1000 State
(page 1040) instances will be returned.

284.14. InstalledSmartApp 1035

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

SmartThings Classic Developer Documentation, Release latest

Example:

def theStates = app.statesSince("myAttribute", new Date() -3)
log.debug "There are ${theStates.size()} State records in the last 3 days"
...

284.14.18 updateLabel()

Update the label of this SmartApp.

Signature: void updateLabel(String label)

Parameters: String label - The updated label value

Returns: void

284.15 Location

A Location represents a user’s geo-location, such as “Home” or “office”. Locations do not have to have a SmartThings
Hub, but generally do.

All SmartApps and Device Handlers are injected with a location property that is the Location into which the
SmartApp is installed.

284.15.1 getContactBookEnabled()

true if this Location has Contact Book enabled (has Contacts), false otherwise.

Signature: Boolean getContactBookEnabled()

Returns: true if this Location has Contact Book enabled (has Contacts), false otherwise.

284.15.2 getCurrentMode()

The current Mode for the Location.

Signature: Mode getCurrentMode()

Returns: Mode (page 1039) - The current mode for the Location.

Example:

log.debug "location.currentMode: ${location.currentMode}"

1036 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.15.3 getId()

The unique internal system identifier for the Location.

Signature: String getId()

Returns: String - the unique internal system identifier for the Location.

Example:

log.debug "location.id: ${location.id}"

284.15.4 getHubs()

The list of Hubs for this Location. Currently only Hub can be installed into a Location, though this API returns a List
to allow for future expandability.

Signature: List<Hub> getHubs()

Returns: List <Hub (page 1027)> - the Hubs for this Location.

Example:

log.debug "Hubs: ${location.hubs*.id}"

284.15.5 getLatitude()

Geographical latitude of the Location. Southern latitudes are negative. Requires that location services are enabled in
the mobile app.

Signature: BigDecimal getLatitude()

Returns: BigDecimal - the latitude for the Location.

Example:

log.debug "location.latitude: ${location.latitude}"

284.15.6 getLongitude()

Geographical longitude of the Location. Western longitudes are negative. Requires that location services are enabled
in the mobile app.

Signature: BigDecimal getLongitude()

Returns: BigDecimal - the longitude for the Location.

Example:

log.debug "location.longitude: ${location.longitude}"

284.15. Location 1037

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

SmartThings Classic Developer Documentation, Release latest

284.15.7 getMode()

The current Mode name for the Location.

Signature: String getMode()

Returns: String - the name of the current Mode for the Location.

Example:

log.debug "location mode name: ${location.mode}"

284.15.8 getModes()

List of Modes for the Location.

Signature: List<Mode> getModes()

Returns: List <Mode (page 1039)> - the List of Modes for the Location.

Example:

log.debug "Modes for this Location: ${location.modes}"

284.15.9 getName()

The name of the Location, as assigned by the user.

Signature: String getName()

Returns: String - the name of the Location as assigned by the user.

Example:

log.debug "The name of this Location is: ${location.name}"

284.15.10 setMode()

Set the mode for this Location.

Signature: void setMode(String mode) void setMode(Mode mode)

Returns: void

Warning: setMode() will raise an error if the specified mode does not exist for the Location. You should verify
the mode exists as in the example below.

Example:

def modeToSetTo = "Home"
if (location.modes?.find {it.name == modeToSetTo}) {

location.setMode("Home")
}

1038 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.15.11 getTemperatureScale()

The temperature scale (“F” for fahrenheit, “C” for celsius) for this Location.

Signature: String getTemperatureScale()

Returns: String - the temperature scale set for this Location. Either “F” for fahrenheit or “C” for celsius.

Example:

def tempScale = location.temperatureScale
log.debug "Temperature scale for this Location is $tempScale"

284.15.12 getTimeZone()

The time zone for the Location. Requires that location services are enabled in the mobile application.

Signature: TimeZone getTimeZone()

Returns: TimeZone - the time zone for the Location.

Example:

log.debug "The time zone for this Location is: ${location.timeZone}"

284.15.13 getZipCode()

The ZIP code for the Location, if in the USA. Requires that location services be enabled in the mobile application.

Signature: String getZipCode()

Returns: String - the ZIP code for the Location.

Example:

log.debug "The zip code for this Location: ${location.zipCode}"

284.16 Mode

Modes can be thought of as behavior filters for your home. Users want to change how things act or behave in their
home based on the Mode you’re in.

SmartThings developers cannot create a new Mode. The most common way to interact with a Mode instance is by
using the Location (page 1036) to get Mode information:

// Get the current Mode
def curMode = location.currentMode

// Get a list of all Modes for this location
def allModesForLocation = location.modes

284.16. Mode 1039

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.16.1 getId()

The unique internal system identifier of the Mode.

Signature: String getId()

Returns: String - the unique internal system identifier for the Mode.

def curMode = location.currentMode
log.debug "The current Mode ID is: ${curMode.id}"

284.16.2 getName()

The name of the Mode.

Signature: String getName()

Returns: String - the name of the Mode, usually assigned by the user.

Example:

def curMode = location.currentMode
log.debug "The current mode name is: ${curMode.name}"

284.17 State

A State object encapsulates information about a particular Attribute (page 997) at a particular moment in time.

State objects are associated with a Device (page 1003) - a Device may have zero-to-many Attribute (page 997) s, and
an Attribute has zero-to-many associated State records.

Refer to the Devices section of the SmartApp Guide for more information about the relationship between Devices,
Attributes, and State.

A few ways to get a State object instance from a device (See the Device (page 1003) API reference for detailed
information):

preferences {
section() {

input "thecontact", "capability.contactSensor"
}

}
...
// <device>.<attributeName>State
def latestState = thecontact.contactState

// <device>.currentState(<attributeName>)
def latestState2 = thecontact.currentState("contact")

// get a list of states between two dates
def recentStates = thecontact.statesBetween(new Date() - 5, new Date())

1040 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

284.17.1 getDate()

The date and time the State object was created.

Signature: Date getDate()

Returns: Date - the Date this State object was created.

Example:

def stateDate = contactSensor?.currentState("contact").date

284.17.2 getDateValue()

The value of the underlying attribute as a Date.

Signature: Date getDateValue()

Returns: Date - the value if the underlying attribute as a Date. Returns null if the attribute value cannot be parsed
into a Date.

284.17.3 getDoubleValue()

The value of the underlying Attribute as a Double.

Signature: Double getDoubleValue()

Returns: Double - the value of the underlying attribute as a Double.

Warning: getDoubleValue() throws an Exception if the underlying attribute value cannot be parsed into a
Double.
You should wrap calls in a try/catch block.

Example:

try {
def latestStateAsDouble = someDevice.currentState("someAttribute").doubleValue
log.debug "latestStateAsDouble: $latestStateAsDouble"

} catch (e) {
log.debug "caught exception trying to get double for state record"

}

284.17.4 getFloatValue()

The value of the underlying Attribute as a Float.

Signature: Float getFloatValue()

Returns: Float - the value of the underlying Attribute as a Float.

284.17. State 1041

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html?is-external=true
https://docs.oracle.com/javase/7/docs/api/java/lang/Float.html

SmartThings Classic Developer Documentation, Release latest

Warning: getFloatValue() throws an Exception if the underlying attribute value cannot be parsed into a
Double.
You should wrap calls in a try/catch block.

Example:

try {
def latestStateAsFloat = someDevice.currentState("someAttribute").floatValue
log.debug "latestStateAsFloat: $latestStateAsFloat"

} catch (e) {
log.debug "caught exception trying to get floatValue for state record"

}

284.17.5 getId()

The unique system identifier for the State object.

Signature: String getId()

Returns: String - the unique system identifer for the State object.

Example:

def latestState = someDevice.currentState("someAttribute")
log.debug "latest state id: ${latestState.id}"

284.17.6 getIntegerValue()

The value of the underlying Attribute as an Integer.

Signature: Integer getIntegerValue()

Returns: Integer - the value of the underlying Attribute as a Integer.

Warning: getIntegerValue() throws an Exception if the underlying attribute value cannot be parsed into a
Integer.
You should wrap calls in a try/catch block.

Example:

try {
def latestStateAsInt = someDevice.currentState("someAttribute").integerValue
log.debug "latestStateAsInt: $latestStateAsInt"

} catch (e) {
log.debug "caught exception trying to get integerValue for state record"

}

1042 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

SmartThings Classic Developer Documentation, Release latest

284.17.7 getIsoDate()

The acquisition time of this State object as an ISO-8601 String

Signature: String getIsoDate()

Returns: String - the time this Sate object was created as an ISO-8601 Strring

Example:

def latestState = someDevice.currentState("someAttribute")
log.debug "latest state isoDate: ${latestState.isoDate}"

284.17.8 getJsonValue()

Value of the underlying Attribute parsed into a JSON data structure.

Signature: Object getJsonValue()

Returns: Object - the value if the underlying Attribute parsed into a JSON data structure.

Warning: getJsonValue() throws an Exception of the underlying attribute value cannot be parsed into a
Integer.
You should wrap calls in a try/catch block.

Example:

try {
def latestStateAsJSONValue = someDevice.currentState("someAttribute").jsonValue
log.debug "latestStateAsJSONValue: $latestStateAsJSONValue"

} catch (e) {
log.debug "caught exception trying to get jsonValue for state record"

}

284.17.9 getLongValue()

The value of the underlying Attribute as a Long.

Signature: Long getLongValue()

Returns: Long - the value if the underlying Attribute as a Long.

Warning: getLongValue() throws an Exception of the underlying attribute value cannot be parsed into a
Long.
You should wrap calls in a try/catch block.

Example:

try {
def latestStateAsLong = someDevice.currentState("someAttribute").longValue
log.debug "latestStateAsLong: $latestStateAsLong"

} catch (e) {
log.debug "caught exception trying to get longValue for state record"

}

284.17. State 1043

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Long.

SmartThings Classic Developer Documentation, Release latest

284.17.10 getName()

The name of the underlying Attribute.

Signature: String getName()

Returns: String - the name of the underlying Attribute.

Example:

def latest = contactSensor.currentState("contact")
log.debug "name: ${latest.name}"

284.17.11 getNumberValue()

The value of the underlying Attribute as a BigDecimal.

Signature: BigDecimal getNumberValue()

Returns: Number - the value if the underlying Attribute as a Number.

Warning: getNumberValue() throws an Exception of the underlying attribute value cannot be parsed into a
getNumberValue().
You should wrap calls in a try/catch block.

Example:

try {
def latestStateAsNumber = someDevice.currentState("someAttribute").numberValue
log.debug "latestStateAsNumber: $latestStateAsNumber"

} catch (e) {
log.debug "caught exception trying to get numberValue for state record"

}

284.17.12 getNumericValue()

The value of the underlying Attribute as a Number.

Signature: Number getNumericValue()

Returns: Number - the value if the underlying Attribute as a Number.

Warning: getNumericValue() throws an Exception of the underlying attribute value cannot be parsed into
a Number.
You should wrap calls in a try/catch block.

Example:

1044 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html

SmartThings Classic Developer Documentation, Release latest

try {
def latestStateAsNumber = someDevice.currentState("someAttribute").numericValue
log.debug "latestStateAsNumber: $latestStateAsNumber"

} catch (e) {
log.debug "caught exception trying to get numericValue for state record"

}

284.17.13 getStringValue()

The value of the underlying Attribute as a String

Signature: String getStringValue()

Returns: String - the value of the underlying Attribute as a String.

Example:

def latest = contactSensor.currentState("contact")
log.debug "stringValue: ${latest.stringValue}"

284.17.14 getUnit()

The unit of measure for the underlying Attribute.

Signature: String getUnit()

Returns: String - the unit of measure for the underlying Attribute, if applicable, null otherwise.

Example:

def latest = tempSensor.currentState("temperature")
log.debug "unit: ${latest.unit}"

284.17.15 getValue()

The value of the underlying Attribute as a String

Signature: String getUnit()

Returns: String - the value of the underlying Attribute as a String.

Example:

def latest = contactSensor.currentState("contact")
log.debug "stringValue: ${latest.value}"

284.17.16 getXyzValue()

Value of the underlying Attribute as a 3-entry Map with keys ‘x’, ‘y’, and ‘z’ with BigDecimal values. For example:

284.17. State 1045

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

SmartThings Classic Developer Documentation, Release latest

[x: 1001, y: -23, z: -1021]

Typically only useful for getting position data from the “Three Axis” Capability.

Signature: Map<String, BigDecimal> getXyzValue()

Returns: Map < String , BigDecimal > - A map representing the X, Y, and Z coordinates.

Warning: xyzValue throws an Exception if the value of the Event cannot be parsed to an X-Y-Z data structure.
You should wrap calls in a try/catch block.

Example:

def latest = threeAxisDevice.currentState("threeAxis")

// get the value of this event as a 3 entry map with keys
//'x', 'y', 'z', and BigDecimal values
// throws an exception if the value is not convertable to a Date
try {

log.debug "The xyzValue of this event is ${latest.xyzValue}"
log.debug "latest.xyzValue instanceof Map? ${latest.xyzValue instanceof Map}"

} catch (e) {
log.debug "Trying to get the xyzValue threw an exception: $e"

}

284.18 ZigBee Reference

Note: As of now, any time the ZigBee library logs a message, an error will be seen. This is a known issue and will
be fixed with the next deploy.

The ZigBee library contains many shorthands and conveniences for developing ZigBee Device Handlers.

ZigBee devices have fingerprints that define what the device is when it joins a ZigBee network. Currently you define
the expected fingerprint for a device in the Device Handler metadata block as part of the definition. An example would
look like this:

metadata {
// Automatically generated. Make future change here.
definition (name: "SmartPower Outlet", namespace: "smartthings", author: "SmartThings") {

capability "Actuator"
capability "Switch"
capability "Power Meter"
capability "Configuration"
capability "Refresh"
capability "Sensor"

// indicates that device keeps track of heartbeat (in state.heartbeat)
attribute "heartbeat", "string"

fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019", manufacturer: "CentraLite", model: "3200", deviceJoinName: "Outlet"
fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019", manufacturer: "CentraLite", model: "3200-Sgb", deviceJoinName: "Outlet"
fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019", manufacturer: "CentraLite", model: "4257050-RZHAC", deviceJoinName: "Outlet"
fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019"

}

1046 Chapter 284. API Contents

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

SmartThings Classic Developer Documentation, Release latest

If the fingerprint declaration contains a value for both the manufacturer and model attributes, you have the option
to add the deviceJoinName attribute.

Fingerprint
Attribute

Type Value

deviceJoin-
Name

StringOverrides the device type name when pairing. This allows the developer to customize
the device name while joining a ZigBee device.

284.18.1 Parse methods

zigbee.getEvent()

The getEvent() method will try to parse ZigBee Clusters into a map whose key/value pairs can be directly handled
by the sendEvent() method.

Signature:

Map(String:String) zigbee.getEvent(String description)

Parameters:

• description: The description value passed to the parse method from the device.

Return Values: Map: [name: <event name>, value: <event value>]

Example

def parse(String description) {
def result = zigbee.getEvent(description)

if(result) {
sendEvent(result)

} else {
// zigbee.getEvent was unable to parse description. Description must be parsed manually.

}
}

The zigbee.getEvent()method can parse the following event types with work being done to for additional event
types:

Event Type Cluster value
switch 0x0006
level 0x0008
power 0x0702 and 0x0B04
colorTemperature 0x0300

Note: Only color temperature can be parsed. Full color control is in the works.

Note: For the power event type, the value can be reported in mW, W, or kW. This means that it is up to the developer
to make adjustments to the value before calling sendEvent so it will be displayed correctly.

284.18. ZigBee Reference 1047

SmartThings Classic Developer Documentation, Release latest

284.18.2 Low level commands

additionalParams

There are several ZigBee methods that support an optional map parameter called additionalParams. This is intended
to be used to support future params without affecting backward compatibility. The following keys are supported:

Key Type Description
mfgCode integer The ZigBee manufacturing code (e.g. 0x110A)
destEndpoint integer The destination endpoint for the given message (e.g. 0x02)

zigbee.command()

Send a Cluster specific Command. This method is overloaded and has a couple of signatures.

Signature:

zigbee.command(Integer Cluster, Integer Command, [String... payload])

Parameters:

• Cluster: The Cluster ID

• Command: The Command ID

• payload (optional): Zero or more arguments required by the Command. Each argument should be passed
as an ASCII hex string in little endian format of the appropriate width for the data type. For example, to
pass the value 5 for a UINT24 (24-bit unsigned integer) you would pass “050000”.

Signature:

zigbee.command(Integer Cluster, Integer Command, String payload, additionalParams=[:])

Parameters:

• Cluster: The Cluster ID

• Command: The Command ID

• payload: An ASCII hex string in little endian format of the appropriate width for the data type. For
example, to pass the value 5 for a UINT24 (24-bit unsigned integer) you would pass “050000”. You can
also use the DataType.pack() (page 1058) method described below. If you have multiple arguments, they
can just be appended in order.

• additionalParams: An optional map to specify additional parameters. See additionalParams (page 1048)
for supported attributes.

Examples:

• Send Move To Level Command to Level Control Cluster.

zigbee.command(0x0008, 0x04, "FE", "0500")

Where Level equals 0xFE (full on) and Transition Time equals 0x0005 (5 seconds)

• Send Off Command to On/Off Cluster.

zigbee.command(0x0006, 0x00)

1048 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

zigbee.readAttribute()

Read the current attribute value of the specified Cluster.

Signature:

zigbee.readAttribute(Integer Cluster, Integer attributeId, Map additionalParams=[:])

Parameters:

• Cluster: The Cluster ID to read from

• attributeId: The ID of the attribute to read

• additionalParams: An optional map to specify additional parameters. See additionalParams (page 1048)
for supported attributes.

Example:

• Read CurrentLevel attribute of the Level Control Cluster.

zigbee.readAttribute(0x0008, 0x0000)

• Read a manufacturer specific attribute on the SmartThings multi-sensor

zigbee.readAttribute(0xFC02, 0x0010, [mfgCode: 0x110A])

zigbee.writeAttribute()

Write the attribute value of the specified Cluster.

Signature:

zigbee.writeAttribute(Integer Cluster, Integer attributeId, Integer dataType, value, Map additionalParams=[:])

Parameters:

• Cluster: The Cluster ID to write

• attributeId: The attribute ID to write

• dataType: The data type ID of the attribute as specified in the ZigBee Cluster library

• value: The Integer value to write for data types of boolean, unsigned int, signed int, general data, and
enumerations. Other data types are not currently supported but will be added in the future. Let us know if
you need a data type that is not currently supported.

• additionalParams: An optional map to specify additional parameters. See additionalParams (page 1048)
for supported attributes.

Example:

• Write the value 0x12AB to a unsigned 16-bit integer attribute

zigbee.writeAttribute(0x0008, 0x0010, 0x21, 0x12AB)

• Write a manufacturer specific attribute on the SmartThings multi-sensor

zigbee.writeAttribute(0xFC02, 0x0000, 0x20, 1, [mfgCode: 0x110A])

284.18. ZigBee Reference 1049

http://www.zigbee.org/download/standards-zigbee-cluster-library/

SmartThings Classic Developer Documentation, Release latest

zigbee.configureReporting()

Configure a ZigBee device’s reporting properties. Refer to the Configure Reporting Command in the ZigBee Cluster
Library for more information.

Signature:

zigbee.configureReporting(Integer Cluster,
Integer attributeId, Integer dataType,
Integer minReportTime, Integer MaxReportTime,
[Integer reportableChange],
Map additionalParams=[:])

Parameters:

• Cluster: The Cluster ID of the requested report

• attributeId: The attribute ID for the requested report

• dataType: The two byte ZigBee type value for the requested report (see DataType (page 1056))

• minReportTime: Minimum number of seconds between reports

• maxReportTime: Maximum number of seconds between reports

• reportableChange (optional): Amount of change needed to trigger a report. Required for analog data
types. Discrete data types should always provide null for this value.

• additionalParams: An optional map to specify additional parameters. See additionalParams (page 1048)
for supported attributes.

Examples:

• Discrete data type

zigbee.configureReporting(0x0006, 0x0000, 0x10, 0, 600, null)

• Analog data type

zigbee.configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)

• Configure a manufacturer specific report on the SmartThings multi-sensor

zigbee.configureReporting(0xFC02, 0x0010, 0x18, 10, 3600, 0x01, [mfgCode: 0x110A])

284.18.3 ZigBee Capabilities

The following table outlines the Commands necessary to both configure and get updated information from ZigBee
devices that support the capabilities outlined below.

Note: All methods outlined in the table need the zigbee. prefix

1050 Chapter 284. API Contents

http://www.zigbee.org/download/standards-zigbee-cluster-library/
http://www.zigbee.org/download/standards-zigbee-cluster-library/

SmartThings Classic Developer Documentation, Release latest

Capa-
bility

Configure Refresh Notes

Battery configureReporting(0x0001,
0x0020, 0x20, 30, 21600, 0x01)

Color
Temp

configureReporting(0x0300,
0x0007, 0x21, 1, 3600, 0x10)

readAt-
tribute(0x0300,
0x0007)

For devices that support the Color
Control Cluster (0x0300)

Level configureReporting(0x0008,
0x0000, 0x20, 1, 3600, 0x01)

readAt-
tribute(0x0008,
0x0000)

Power configureReporting(0x0702,
0x0400, 0x2A, 1, 600, 0x05)

readAt-
tribute(0x0704,
0x0400)

For devices that support the Metering
Cluster (0x0704)

Power configureReporting(0x0B04,
0x050B, 0x29, 1, 600, 0x0005)

readAt-
tribute(0x0B04,
0x050B)

For devices that support the Electrical
Measurement Cluster (0x0B04)

Switch configureReporting(0x0006,
0x0000, 0x10, 0, 600, null)

readAt-
tribute(0x0006,
0x0000)

Tem-
pera-
ture

configureReporting(0x0402,
0x0000, 0x29, 30, 3600, 0x0064)

Examples:

• Get the latest level value from a dimmer switch. From the table above, we find the level capability and look at
the Refresh column to find the correct Command to execute.

readAttribute(0x0008, 0x0000)

• Configure the level capability for a dimmer type switch. The configure reporting Command from the table above
for level configures the device for a min reporting interval of 5 seconds, a reporting interval of 1 hour (3600 s)
if there has been no activity, and a min level change of 01.

configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)

The following utility methods are available as capability based Commands.

zigbee.on()

Sends the on Command, 0x01, to the on/off Cluster, 0x0006

Signature:

zigbee.on()

zigbee.off()

Sends the off Command, 0x00, to the onoff Cluster, 0x0006

Signature:

zigbee.off()

284.18. ZigBee Reference 1051

SmartThings Classic Developer Documentation, Release latest

zigbee.setLevel()

Sends the level Command, 0x04, to the level control Cluster, 0x0008 with the passed in rate.

Signature:

zigbee.setLevel(Integer level, Integer rate)

Parameters:

• level: A value between 0-100 inclusive.

• rate: Time in tenths of a second. E.g. rate = 100 //max value translates to 10 seconds.

zigbee.setColorTemperature()

Sets the color to the specified temperature value in K.

Signature:

zigbee.setColorTemperature(Integer value)

Parameters:

• value: The temperature value to set the color to in K. Usually greater than 2700

284.18.4 ZigBee helper commands

zigbee.parseDescriptionAsMap()

Parses a device description into a map that contains data and capabilities.

Signature:

zigbee.parseDescriptionAsMap(String description)

Parameters:

• description: The description string from the device

zigbee.convertToHexString()

Convert the given value to a hex string of given width

Signature:

zigbee.convertToHexString(Integer value, Integer width)

Parameters:

• value: Integer value to be converted

• width: the minimum width of the hex string. Default value is 2

Examples:

zigbee.convertToHexString(10, 2) //result: 0A
zigbee.convertToHexString(10, 4) //result: 000A

1052 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

zigbee.convertHexToInt()

Convert the given hex value to an Integer

Signature:

zigbee.convertHexToInt(String value)

Parameters:

• value: The hex value to be converted to an Integer

Example:

zigbee.convertHexToInt("0001") //result: 1
zigbee.convertHexToInt("000F") //result: 15
def myInt = zigbee.convertHexToInt("12AB") // result = 4779. The result of calling Integer.parseInt()

assert myInt == 4779 //true
assert myInt == 0x12AB //also true

zigbee.hexNotEqual()

Returns true if the compared hex values are not equal.

Signature:

zigbee.hexNotEqual(String hex1, String hex2)

Parameters:

• hex1: Hex value to compare

• hex2: Hex value to compare against first value

zigbee.parseZoneStatus()

Returns a ZoneStatus object (see below) withe the parsed value form the message description. The description should
be of the form “zone status {number}” where {number} is a hex number.

Signature:

zigbee.parseZoneStatus(String description)

Parameters:

• description: A zone status message description.

284.18.5 Additional ZigBee classes

There are some additional classes that are provided to make interacting with and handling Zigbee messages easier.

ZoneStatus

The purpose of the ZoneStatus class is to handle the ZoneStatus attribute in the IAS Zone cluster. It has a single
constructor that takes an int which is the ZoneStatus attribute value.

Constructor:

284.18. ZigBee Reference 1053

SmartThings Classic Developer Documentation, Release latest

ZoneStatus(int zonestatus)

Example:

ZoneStatus zs = ZoneStatus(0x41) // Trouble & Alarm1

Accessing a Property/attribute

Once you have created the ZoneStatus object you can query the individual bits in a number of ways. First you can get
the value of each individual bit (1 or 0) by accessing the property with the same name. The properties are as follows:

1054 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Bit Number Property Name Values
0 alarm1

1 - opened or alarmed
0 - closed or not alarmed

1 alarm2

1 - opened or alarmed
0 - closed or not alarmed

2 tamper

1 - tampered
0 - not tampered

3 battery

1 - low battery
0 - battery OK

4 supervisionReports

1 - reports
0 - does not report

5 restoreReports

1 - reports restore
0 - does not report restore

6 trouble

1 - trouble/failure
0 - OK

7 ac

1 - ac/mains fault
0 - ac/mains OK

8 test

1 - sensor is in test mode
0 - sensor is in operation mode

9 batteryDefect

1 - sensor detects a defective battery
0 - sensor battery is functioning
normally

See the ZigBee Home Automation (HA) specification and the ZigBee Cluster Library (ZCL) specification for more
information.

Example:

284.18. ZigBee Reference 1055

http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeehomeautomation/
http://www.zigbee.org/download/standards-zigbee-cluster-library/

SmartThings Classic Developer Documentation, Release latest

ZoneStatus zs = ZoneStatus(0x41) // Trouble & Alarm1

zs.alarm1 // 1
zs.alarm2 // 0
zs.trouble // 1

The ZoneStatus object also exposes a number of query methods for getting a true/false for each attribute value. They
are as follows:

Property Name Query method
alarm1 isAlarm1Set()
alarm2 isAlarm2Set()
tamper isTamperSet()
battery isBatterySet()
supervisionReports isSupervisionReportsSet()
restoreReports isRestoreReportsSet()
trouble isTroubleSet()
ac isAcSet()
test isTestSet()
batteryDefect isBatteryDefectSet()

Example of DTH parseIasMessage for a motion sensor:

private Map parseIasMessage(String description) {
ZoneStatus zs = zigbee.parseZoneStatus(description)
Map resultMap = [:]

resultMap.name = 'motion'
resultMap.value = zs.isAlarm1Set() ? 'active' : 'inactive'

return resultMap
}

DataType

The DataType class contains information and some utility methods for ZCL data types.

DataType constants

The list of types and their DataType constant name are as follows:

ZCL Data Type DataType constant name ZCL numeric value
No Data NO_DATA 0x00
8-bit data DATA8 0x08
16-bit data DATA16 0x09
24-bit data DATA24 0x0a
32-bit data DATA32 0x0b
40-bit data DATA40 0x0c
48-bit data DATA48 0x0d
56-bit data DATA56 0x0e
64-bit data DATA64 0x0f
Boolean BOOLEAN 0x10
8-bit bitmap BITMAP8 0x18

Continued on next page

1056 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Table 284.1 – continued from previous page
ZCL Data Type DataType constant name ZCL numeric value
16-bit bitmap BITMAP16 0x19
24-bit bitmap BITMAP24 0x1a
32-bit bitmap BITMAP32 0x1b
40-bit bitmap BITMAP40 0x1c
48-bit bitmap BITMAP48 0x1d
56-bit bitmap BITMAP56 0x1e
64-bit bitmap BITMAP64 0x1f
Unsigned 8-bit int UINT8 0x20
Unsigned 16-bit int UINT16 0x21
Unsigned 24-bit int UINT24 0x22
Unsigned 32-bit int UINT32 0x23
Unsigned 40-bit int UINT40 0x24
Unsigned 48-bit int UINT48 0x25
Unsigned 56-bit int UINT56 0x26
Unsigned 64-bit int UINT64 0x27
Signed 8-bit int INT8 0x28
Signed 16-bit int INT16 0x29
Signed 24-bit int INT24 0x2a
Signed 32-bit int INT32 0x2b
Signed 40-bit int INT40 0x2c
Signed 48-bit int INT48 0x2d
Signed 56-bit int INT56 0x2e
Signed 64-bit int INT64 0x2f
8-bit enumeration ENUM8 0x30
16-bit enumeration ENUM16 0x31
Semi-precision FLOAT2 0x38
Single precision FLOAT4 0x39
Double precision FLOAT8 0x3a
Octet String STRING_OCTET 0x41
Character String STRING_CHAR 0x42
Long Octet String STRING_LONG_OCTET 0x43
Long Character String STRING_LONG_CHAR 0x44
Array ARRAY 0x48
Structure STRUCTURE 0x4c
Set SET 0x50
Bag BAG 0x51
Time of day TIME_OF_DAY 0xe0
Date DATE 0xe1
UTCTime UTCTIME 0xe2
Cluster ID CLUSTER_ID 0xe8
Attribute ID ATTRIBUTE_ID 0xe9
BACnet OID BACNET_OID 0xea
IEEE address IEEE_ADDRESS 0xf0
128-bit security key SECKEY128 0xf1
Unknown UNKNOWN 0xff

See the ZigBee Cluster Library (ZCL) specification for more information on the different data types and how they are
used.

284.18. ZigBee Reference 1057

http://www.zigbee.org/download/standards-zigbee-cluster-library/

SmartThings Classic Developer Documentation, Release latest

DataType.getLength()

This method is used to get the length of a variable of the given type. This length is in number of bytes. For variable
length or unknown types it will return null

Signature:

DataType.isVariableLength(type)

Parameters:

• type: The type to check. This should be one of the DataType Constants (page 1056) defined above.

Example

DataType.getLength(DataType.UINT8) // returns 1
DataType.getLength(DataType.CLUSTER_ID) // returns 2
DataType.getLength(DataType.STRING_CHAR) // returns null

DataType.isVariableLength()

This method is used to test if a given type is variable length or not.

Signature:

DataType.isVariableLength(type)

Parameters:

• type: The type to check. This should be one of the DataType Constants (page 1056) defined above.

Example

DataType.isVariableLength(DataType.UINT8) // returns false
DataType.isVariableLength(DataType.STRING_CHAR) // returns true

DataType.isDiscrete()

This method is used to test if a given type is discrete.

Signature:

DataType.isDiscrete(type)

Parameters:

• type: The type to check. This should be one of the DataType Constants (page 1056) defined above.

Example

DataType.isDiscrete(DataType.UINT8) // returns true
DataType.isDiscrete(DataType.FLOAT2) // returns false

DataType.pack()

This method is used to pack data of a given type into hex string form. Currently not all DataTypes are supported by this
method. All discrete data types are supported, but only STRING_CHAR is supported for variable length data types. If
the type passed in is null, an empty string, or DataType.UNKNOWN the value of data will be returned unmodified.

1058 Chapter 284. API Contents

SmartThings Classic Developer Documentation, Release latest

Signature:

DataType.pack(data, type, littleEndian=false)

Parameters:

• data: The data to pack, the type of this should be appropriate for the type argument

• type: The type of the data being packed. This should be one of the DataType Constants (page 1056)
defined above.

• littleEndian: If true it will pack it with the least significant bits first.

Example

DataType.pack(0x01, DataType.UINT8) // returns "01"
DataType.pack(0x01, DataType.UINT64) // returns "0000000000000001"
DataType.pack(0x01, DataType.UINT32, true) // returns "01000000"

284.19 Z-Wave Reference

You can find the reference documentation for the SmartThings Z-Wave library here (requires login).

The Z-Wave public specification can be found here.

284.19. Z-Wave Reference 1059

https://graph.api.smartthings.com/ide/doc/zwave-utils.html
http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification

SmartThings Classic Developer Documentation, Release latest

1060 Chapter 284. API Contents

Part XXI

Contributing to the Docs

1061

CHAPTER 285

Writing Style Guide

When you write for SmartThings platform, your audience should find your documentation readable, interesting and
informative. To accomplish these goals, we encourage you to stick to our recommended writing style.

285.1 Titles and headings

Wherever possible, write purpose-driven documentation. This means writing document titles and section headings
that state the benefit explicitly. Such titles or headings can be written as either calls to actions or tasks that can be
done. This approach makes it easier for the reader to learn how to get her job done.

Examples:

• Preferred: Writing Your First SmartApp (document title)

• Avoid: SmartApp Fundamentals (document title isn’t purpose-driven)

• Preferred: Create your own RESTful API (section heading)

• Avoid: Parent-child SmartApps (document title isn’t purpose-driven)

• Preferred: Combine Multiple Automations (document title)

Note:

• A document title is the main title of a document page. A document has only one document title. Example:
“Writing Style Guide” at the beginning of this page. The document title also appears at the top level in the
navigation bar, so it must be short, preferably four to five words or less.

• A section heading is the title for an individual section within a document page. Example: “Titles and headings”
at the top of this section. A document page can have multiple sections, and hence multiple section headings.

285.1.1 Avoid framing as questions

Avoid using questions in document titles and section headings.

Example:

• Avoid: How does the switch turn on?

• Preferred: How the switch turns on (section heading)

1063

SmartThings Classic Developer Documentation, Release latest

285.1.2 Avoid italics (emphasis)

Avoid using emphasis (italics) in document titles or section headings. See Page structure (page 1066).

285.1.3 Document titles

Use title case, as in “Document Titles” and not “Document titles.”

Example:

• The title of this document, “Writing Style Guide.”

285.1.4 What not to capitalize in title

• as (SmartApp as a Wakeup Device)

• to (How to Subscribe to Events)

• on (Trigger on Time)

• at (Alarm at a Specific Time)

• of, the (No More Rules of the Game)

• in (Your First SmartApp in Five Minutes)

• the (Motion at the Garage Door)

• a (Three Critical Triggers in a Day)

• for (Temperature Control for Basement)

285.1.5 What to capitalize in title

• is (Device Health Is Reported Weekly)

• was (Motion Was Detected)

• then (Set a Sunrise Automation, Then Sit Back)

• up (Biff Stood Up to Trigger the Alarm)

• that (The Battery That Lasts Forever)

• with (The Day Ends With Cheers All Around)

285.1.6 Section headings

Use sentence case, as in “Subscription management,” and not the title case, as in “Subscription Management.”

Note:

• A sentence case is where you only capitalize the first letter of the sentence.

• A title case is where you capitalize first letter of every word of the sentence.

1064 Chapter 285. Writing Style Guide

SmartThings Classic Developer Documentation, Release latest

285.2 UI elements

Always use italics emphasis when quoting a UI element label such as a button label or an icon label.

Example:

Go to the Simulator menu, and click on Browse SmartApp Templates in the dropdown list.

Here it is in reStructuredText:

Go to the *Simulator* menu, and click on *Browse SmartApp Templates* in the dropdown list.

285.3 List elements

Always start a list segment with a heading and a colon.

Example:

To publish a SmartApp or a Device Handler for yourself, follow these steps:

• Make sure that you are in the proper Location.

• From your SmartApp or Device Handler view, click on Publish button. Then click the For Me
option.

If it is a complete sentence, always end the list element, numbered or unordered, with a period.

Note: This applies also for a list element that has multiple sentences.

Example:

To publish a SmartApp or a Device Handler for yourself, follow these steps:

• Make sure that you are in the proper Location.

• From your SmartApp or Device Handler view, click on Publish button. Then click the For Me
option.

If it is an incomplete sentence, do not end the list element with a period.

Example:

When you finish this tutorial, you will know:

• Key components of a SmartApp

• Features of IDE

• Controlling devices

Always write a list sentence in the sentence case.

Example:

285.2. UI elements 1065

SmartThings Classic Developer Documentation, Release latest

• (YES) Make sure that you are in the proper Location.

• (NO) Make Sure That You Are In the Proper Location.

Avoid more than two levels of lists.

Example:

(YES) SmartThings platform supports various Hub scenarios such as:

• There may not be a hub at all

– There may be a third-party Hub present

– An all-cloud environment with no Hub whatsoever

• SmartApps may run across both cloud and Hub connected devices

• There may be multiple Hubs

(NO) SmartThings platform supports various Hub scenarios such as:

• There may not be a hub at all

– There may be a third-party Hub present

* Highlight supported third-party Hubs

• An all-cloud environment with no Hub whatsoever

• SmartApps may run across both cloud and Hub connected devices

• There may be multiple Hubs

285.4 Page structure

Each document should be named with a .rst file extension. Each page is composed of a title, followed by some short
text outlining the purpose of the document.

Sections should be delimited by ----, to insert a line separator.

The structure should look like this:

==========
Page Title
==========

Some introductory material.

Section 1

Section text.

Section 2

1066 Chapter 285. Writing Style Guide

SmartThings Classic Developer Documentation, Release latest

Section text.

Subsection 2.1
^^^^^^^^^^^^^^

Subsection text.

285.4.1 Page title

Page titles appear at the top of the document, and have a row of === characters above and below. Page titles should
have title capitalization:

====================
This is a Page Title
====================

285.4.2 Headings

Top-level section headings are followed by a row of --- characters. They should have sentence capitalization:

This is a section

Subsection headings are followed by a row of ^^ characters. They should have sentence capitalization.

This is a section

This is a subsection
^^^^^^^^^^^^^^^^^^^^

Note: Not all documents currently follow the guideline of using ^^^ for subsections. If you are editing a document
and see a different heading syntax, feel free to change it.

285.5 reStructuredText syntax

285.5.1 Links

Links to external targets look like this:

`SmartThings <http://smartthings.com>`_

Links to sections within the document can be included like this:

Section name

See `Other section`_ for more information.

Other section

285.5. reStructuredText syntax 1067

SmartThings Classic Developer Documentation, Release latest

The :ref: target allows us to link to other documents or document sections. It requires placing a label above a
section, title, or image:

.. _section_label:

Some section

Another document can then link to Some section like this:

See :ref:`section_label` for more information.

285.5.2 Lists

Ordered lists appear like this:

#. Item 1
#. Item 2
#. Item 3

Which results in:

1. Item 1

2. Item 2

3. Item 3

Unordered lists use a - or * character:

- First bullet
- Second bullet

285.5.3 Inline markup

• Surround text with * for italics text.

• Surround text with ** for strong text.

• Surround text with ‘‘ for code samples (someMethod()).

When referring to method calls in the documentation, place () after the method name: methodName(). This helps
distinguish methods from other code literals.

285.5.4 Code examples

Code blocks can be included using the code-block directive. Use the appropriate language for the code sample.
Code blocks may appear with line numbers (use :linenos:) and may emphasize certain lines:

.. code-block:: groovy
:linenos:
:emphasize-lines: 3

def someMethod() {
def myVar = 14
doSomethingAmazing(myVar)

}

1068 Chapter 285. Writing Style Guide

SmartThings Classic Developer Documentation, Release latest

The above code block renders as:

1 def someMethod() {
2 def myVar = 14
3 doSomethingAmazing(myVar)
4 }

285.5.5 Images

Images are found in the /img directory of the documentation, and can be included like this (you may need to alter the
path depending on the location of the document):

.. image:: ../img/getting-started/building-img.png

The above will render as:

285.5.6 Admonitions

Admonitions are ways of calling out certain bodies of text:

.. note::

A note provides more information about the content, in a side-bar like format.

.. tip::

A tip is some extra information that while not strictly necessary, may lead to the reader learning a new way of doing something.

.. warning::

285.5. reStructuredText syntax 1069

SmartThings Classic Developer Documentation, Release latest

A warning is just that - a warning of something that the reader should be aware of.

.. error::

An error is for error conditions.

The above results in:

Note: A note provides more information about the content, in a side-bar like format.

Tip: A tip is some extra information that while not strictly necessary, may lead to the reader learning a new way of
doing something.

Warning: A warning is just that - a warning of something that the reader should be aware of.

Error: An error is for error conditions.

285.5.7 Tables

Simple tables in RST look like this:

========= =========
Heading 1 Heading 2
========= =========
1.1 1.2
2.1 2.2
========= =========

The above renders as:

Heading 1 Heading 2
1.1 1.2
2.1 2.2

Grid tables can be written like this:

+------------+------------+-----------+
| Header 1 | Header 2 | Header 3 |
+============+============+===========+
| body row 1 | column 2 | column 3 |
+------------+------------+-----------+
| body row 2 | Cells may span columns.|
+------------+------------+-----------+
| body row 3 | Cells may | - Cells |
+------------+ span rows. | - contain |
| body row 4 | | - blocks. |
+------------+------------+-----------+

Which results in:

1070 Chapter 285. Writing Style Guide

SmartThings Classic Developer Documentation, Release latest

Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.
body row 3 Cells may span rows.

Cells

contain

blocks.

body row 4

285.6 API reference documents

The API reference documentation contains all public API method definitions. API reference documentation is located
in the ref-docs/ directory.

285.6.1 Organization

API reference documents include an introduction and a listing of all APIs in alphabetical order.

Note: The SmartApp and Device Handler API reference documentation lists all required callback methods to be
listed first. The remaining APIs are then listed in alphabetical order.

285.6.2 Introduction

Each API reference document contains a brief overview of the API, along with a quick example of how to reference
the object (if applicable).

Consider the example of the Device API reference documentation:

••• ======
Device
======

The Device object represents a physical device in a SmartApp.
When a user installs a SmartApp, they typically will select the devices to be used by the SmartApp.
SmartApps can then interact with these Device objects to get device information, or send commands to the Device.

Device objects cannot be instantiated, but are created by the SmartThings platform and available via the name given in the preferences definition of a SmartApp:

.. code-block:: groovy

preferences {
section() {

// prompt user to select a device that supports the switch capability.
// assign the chosen device to a variable named "theswitch"
input "theswitch", "capability.switch"

}
}
...
// access Device instance using the input name:
def deviceDisplayName = theswitch.displayName
...

285.6. API reference documents 1071

SmartThings Classic Developer Documentation, Release latest

285.6.3 Method documentation

Method documentation adheres to these rules:

• The method name is a first-level heading followed by an open and close parentheses (to denote it is a method,
not a property).

• A brief description of the method follows the first-level heading.

• The method’s signature, parameters, return type, any declared exceptions, and a brief example follows.

The example below illustrates this, and can be used as a template when writing API documentation. Each component
title (Signature, Parameters, etc.) of the API documentation is bolded, and the content follows on the next line,
indented by one tab (or four spaces). Details about each component follows.

rgbToHex()

Converts an RGB value to a hexadecimal color string.

Signature:
``static String rgbToHex(red, green, blue) throws IllegalArgumentException``

Parameters:
`Integer`_ red - The red value, between 0 and 255

`Integer`_ green - The green value, between 0 and 255

`Integer`_ blue - The blue value, between 0 and 255

Returns:
`String`_ - The hexadecimal representation of the RGB value

Throws:
`IllegalArgumentException`_ - An ``IllegalArgumentException`` is thrown if any of the RGB values are not within the 0 to 255 range.

Example:

.. code-block:: groovy

def deepSkyBlueInHex = colorUtil.rgbToHex(0, 191, 255)
log.debug "RGB 0,191,255 in Hex is $deepSkyBlueInHex"

Signature

The method signature is the same as the method’s source definition, formatted as an inline code block.

Parameters

Method parameters are documented according to the following rules:

• Each parameter is listed, in order, with a link to the return type.

• All external links are defined at the bottom of the document.

• In cases of standard Java return types, a link to the Java 7 JavaDocs for the type is used. If the return type is a
SmartThings object, a link to that SmartThings object reference document is used.

• If the method does not accept parameters, the entire parameters block is omitted.

1072 Chapter 285. Writing Style Guide

SmartThings Classic Developer Documentation, Release latest

• Optional parameters are placed inside square brackets.

• Parameters that accept a map include a table listing all the supported key/value pairs:

Signature:
``List<Event> events([max: N])``

Parameters:
`Map`_ options *(optional)* - Options for the query. Supported options:

======= ========== ===========
option Type Description
======= ========== ===========
``max`` `Number`_ The maximum number of Events to return. By default, the maximum is 10.
======= ========== ===========

Returns

Method return values are documented according to the following rules:

• The return statement begins with a link to the return type (external or internal), along with a brief description of
the value returned.

• In the case of void return types, do not include the “Returns” component.

For example:

Returns:
`String`_ - The hexadecimal representation of the RGB value

Throws

Methods that throw an exception as part of their contract include a “Throws” component, with a link to the exception
type, and when the exception is thrown:

Throws:
`IllegalArgumentException`_ - An ``IllegalArgumentException`` is thrown if any of the RGB values are not within the 0 to 255 range.

Example

Most methods include an example of their usage. The example code should include the minimum amount of code to
highlight the documented method.

Some simple methods may not require an example–use your judgement.

285.7 Miscellaneous tips

• Spell check before committing.

• Show, don’t tell - include example code.

• Place each sentence on a new line to help with review and readability.

285.7. Miscellaneous tips 1073

SmartThings Classic Developer Documentation, Release latest

• Not all documents currently follow these guidelines. See the Contributing guide to learn how you can contribute,
and help address that. :)

285.8 SmartThings glossary

Recommended style Not recommended
Cloud-connected cloud-connected, cloud connected, Cloud connected
Composite Device CompositeDevice, Composite device, composite device
Contact Book contact book
Contacts contacts
Device Handler Device handler, DeviceHandler, Device Type Handler, device handler,

devicehandler
editor Editor
Event event
event handler Event Handler, Event handler
Hub hub
“Hub version 2” first time, then
“Hub v2”

Hub v 2, Hub v.2, Hub V2.

“Internet of Things” first time, then
“IoT”

IOT

internet Internet
LAN-connected lan-connected, lan connected, LAN connected
Location location
Marketplace Market place, Market Place, MarketPlace
Mode mode
My Home MyHome, myHome, My home
Routines routines, Hello Home actions
Samsung SmartThings Hub SamsungSmartThings Hub, Samsung SmartThings hub
Simulator simulator
smart home SmartHome, Smart Home, smarthome
Smart Home Monitor SMH, smarthome monitor, SmartHome monitor
SmartApp Smart app, Smart App, Smartapp, smartapp, smart app
SmartThings Smart Things, Smartthings, Smart things
Welcome Code Welcome code, WelcomeCode, Claim code, ClaimCode
Z-Wave ZWave, Z-wave
ZigBee Zigbee, Zig Bee

285.9 Further reading

• Sphinx documentation

• reStructuredText Reference

1074 Chapter 285. Writing Style Guide

https://github.com/SmartThingsCommunity/Documentation/blob/master/README.md
http://sphinx-doc.org/contents.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

Part XXII

Samsung SmartThings Hub FAQ

1075

SmartThings Classic Developer Documentation, Release latest

A collection of frequently asked questions about the new Samsung SmartThings Hub, and updated SmartThings mobile
applications, for SmartThings developers.

What can developers do with the new Samsung SmartThings Hub and updated mobile apps?

Developers can use the new Contact Book feature to easily send notifications to a user’s selected contacts, without
requesting the user to enter in a phone number for each SmartApp. You can learn more about it in the Sending
Notifications (page 385) documentation.

The new iOS and Android mobile apps also make use of a new Device Tiles layout, that uses a 6 column grid. There
is also a new tile available to use for devices - multi-attribute tiles allow a single tile to display information about more
than one attribute of a device. You can learn more in the Tiles (page 473) documentation.

With the new Hub and mobile experience, we’ve also laid the groundwork for exciting new developer features in the
near future. Our developers are what makes SmartThings great, and we’re excited to build together!

Do I need to update my SmartApps or Device Handlers?

Most custom SmartApps and Device Types will continue to work without the need for code changes. There are some
features that you may wish to take advantage of, however, like the new multi-attribute device tile. SmartApps that
send notifications should be updated to use the new Contact Book feature, but they will continue to function as they
did before without updating your code.

Despite our best intentions and precautions, it is possible that your custom SmartApp or Device Type may not work as
it did before. If this is the case, please report the issue to support at support@smartthings.com (include example code,
relevant log messages, and screenshots if applicable). The SmartThings Community Forums are also a good place for
developers to help one another. The SmartThings Community Team will be monitoring the forums to identify and help
with issues, and incorporating feedback into our documentation.

Hello Home Actions now appear as “Routines” in the mobile application. Do I need to update any of my
SmartApps to get or execute Routines?

No. SmartApps that work with Routines still use the methods discussed in the Routines (page 339) documentation.

At some point in the future, we may create new methods that reflect the terminology change, but we will not do so
without advanced notification.

How does local SmartApp or Device Type processing work?

Certain automations can now execute locally on the Samsung SmartThings Hub. The SmartThings internal team spec-
ifies which automations are eligible for local execution. This process requires evaluation and testing of the SmartApp
and devices, as well as ensuring that the necessary code artifacts are delivered to the Hub.

Any locally executing SmartApps or Device Handlers still send events to the SmartThings cloud. This is necessary
so that the mobile application can accurately reflect the current state of the devices, as well as perform any cloud-
required services (e.g., sending notifications). In the event of an internet outage, the events will be queued and sent to
the SmartThings cloud when internet is restored.

It is not possible for developers to specify that certain Device Types or SmartApps execute in any particular location
(cloud or on the Hub). SmartApps or Device Types that have not been reviewed, tested, and delivered to the Hub by
the SmartThings team will execute in the SmartThings cloud.

What happens when the internet to the Hub goes out?

1077

mailto:support@smartthings.com
http://community.smartthings.com

SmartThings Classic Developer Documentation, Release latest

Provided there is still power to the Hub (wired or battery), any SmartApps that are able to execute locally will still run
without an internet connection. The mobile app will report the Hub is offline, and because there are no events being
sent to the SmartThings cloud, notifications will not work.

The radios in the Hub will still function without internet. Events to the cloud will be queued, and sent when the internet
is restored.

The mobile app has some new video-related features. How can developers utilize those capabilities?

The APIs for working with the new video features are not yet available, but we are excited to bring them to you soon!

Does the Hub have UDP support?

UDP access for developers is not currently supported, but may come in future updates.

Does the Hub support local file storage?

The Samsung SmartThings Hub stores some information about SmartApps, Device Types, and Locations locally, but
this is not publicly accessible.

Can I SSH into the Hub?

No, you cannot SSH into the Samsung SmartThings Hub.

What about Bluetooth?

The Samsung SmartThings Hub ships with BLE to support future expandability, but will be inactive at product launch.

What can I do with the USB ports?

Adding USB ports to the Samsung SmartThings Hub allows for future expandability, but will have no functionality at
product launch.

Does the Hub support IPv6?

No. This may come in future updates.

Does the Hub support WebSocket or Telnet for developers?

The Samsung SmartThings Hub does not support WebSocket, Telnet, or raw socket access for developers.

Does the Hub support getting local device status, or controlling local devices, without going through the Smart-
Things cloud? For example, can I just access the Hub to get device status or control devices?

Currently, no. We know this is a requested feature, and have identified it for future roadmap consideration.

1078

	I Latest Updates
	July 07 2017
	June 08 2017
	May 04 2017
	April 20 2017
	March 22 2017
	March 08 2017
	March 02 2017
	February 10 2017
	February 08 2017
	January 23 2017
	January 03 2017
	December 08 2016
	November 30 2016
	November 17 2016
	November 15 2016
	November 14 2016
	November 10 2016
	November 03 2016
	October 26 2016
	October 17 2016
	October 13 2016
	October 11 2016
	October 06 2016
	October 05 2016
	September 23 2016
	September 14 2016
	September 09 2016
	September 02 2016 (3)
	September 02 2016 (2)
	September 02 2016
	August 17 2016
	August 16 2016
	August 15 2016
	August 04 2016
	July 28 2016
	July 25 2016
	July 21 2016
	July 07 2016
	June 23 2016
	June 17 2016
	June 13 2016
	June 9 2016
	May 27 2016
	May 23 2016

	II Overview
	Developer highlights
	How it works
	SmartApps
	Device Handlers

	An open platform
	What's next

	III Up and Running
	Register
	Explore
	Account management
	IDE and Simulator

	Next steps

	IV Groovy Basics
	Overview
	Installing Groovy
	Optional semicolons
	Comments
	Objects
	Optionally typed
	Operators
	Strings
	Lists and Maps
	Control structures
	Calling methods
	Getters and setters
	Defining methods
	Exception handling
	Closures
	Groovy truth
	Default imports
	What about classes?
	Further reading
	Next steps

	V Groovy With SmartThings
	How it works
	Language simplifications
	Classes and JARs
	Restricted methods
	Global variables
	Constants
	Mutable variables

	Other notable restrictions

	Allowed classes
	Summary and next steps

	VI Writing Your First SmartApp
	Goals
	Prerequisites
	Create a SmartApp
	Editor
	Simulator
	SmartApp basics
	Definition
	Preferences
	Capabilities

	Events and callback methods
	Event Handler methods
	Controlling devices
	Using the Simulator
	Publishing and installing
	Turn off when motion inactive
	Going further–adding flexibility
	Complete code listing
	How the switch turns on (or off)
	Summary
	Next steps
	More about SmartApps
	Fork it!
	Device Handler development

	VII Getting Help
	Developer documentation
	Community
	SmartThings developer support

	VIII Architecture
	Big picture
	Devices
	Hub
	Connectivity management
	Device Handler execution
	Subscription management
	SmartApp execution
	Web UI and IDE

	Important concepts
	Asynchronous and eventually consistent programming
	Containers
	Accounts
	Locations and users
	Groups

	Capability taxonomy
	Attributes and events
	Commands
	Custom capabilities

	SmartThings cloud
	Hubs and Locations
	Consequences of sharding

	IX Tools and IDE
	Account Managment
	Locations
	Hubs
	Devices
	SmartApps
	Device Handlers
	Publication requests
	Live logging

	Editor and Simulator
	Creating a new SmartApp
	Creating a new Device Handler
	Using the editor
	Using the Simulator

	Logging
	Overview
	Logging levels
	Logging exceptions
	Logging examples

	GitHub Integration
	Overview
	Setup
	Step 1 - Enable GitHub integration
	Step 2 - Connect your GitHub account to SmartThings
	Step 3 - Create a fork
	Step 4 - Clone the forked repository
	Step 5 - Configure Git to sync fork with SmartThings

	Repository structure
	GitHub integration IDE tour
	Color-coded names
	GitHub actions buttons
	Commit Changes
	Update from Repo
	Settings

	How to
	Add files from repository to the IDE
	Get latest code from SmartThingsPublic repository
	Commit changes in the IDE
	Keep your cloned repo in sync with origin

	Best practices
	Sync with upstream repository frequently

	FAQ
	Getting help

	X SmartApps
	Anatomy and Life Cycle of a SmartApp
	Types of SmartApps
	Event Handler SmartApps
	Solution Module SmartApps
	Service Manager SmartApps

	SmartApp structure
	Definition
	Preferences
	Pre-defined callbacks
	Event Handlers

	SmartApp execution
	Device preferences
	Event subscriptions
	SmartApp sandboxing
	Execution location

	Preferences and Settings
	Preferences overview
	Page definition
	Section definition
	Single preferences page
	Multiple preferences pages
	Preference elements and inputs
	paragraph
	icon
	href
	mode
	label
	app
	input
	Using device-specific inputs

	Hide when empty
	Working with other input types

	Custom Remove button
	Dynamic preferences
	dynamicPage() options

	Private settings
	Examples

	Storing Data With State
	Quick example
	State and Atomic State overview
	Persistence model
	How State works
	State and potential race conditions
	How Atomic State works
	Choosing between State and Atomic State
	What can be stored in State and Atomic State
	Supported types
	Other object types

	Working with the state object
	Adding values
	Retrieving values
	Updating values
	Removing values
	Iterating over state
	Working with collections

	Working with the atomicState object
	Adding values
	Updating values
	Removing values
	Iterating over all values
	Working with collections

	Storage size limits
	State in parent-child relationships
	Summary

	Events and Subscriptions
	Subscribe to specific device Events
	Subscribe to all device Events
	Subscribe to multiple devices
	Subscribe to Location Events
	The Event object
	See also

	Working with Devices
	Device overview
	Preferences–selecting the devices
	Interacting with devices
	Device attributes
	Device commands
	Getting device current values
	Querying event history
	Sending commands
	Interacting with multiple devices
	See also

	Modes
	Overview
	Getting the current Mode
	Getting all Modes
	Setting the Mode
	Allowing users to select Modes
	Mode events
	Example
	Further reading

	Routines
	Overview
	Get available Routines
	Execute Routines
	Allowing users to select Routines
	Routine Events
	Example
	Further reading

	Scheduling
	Overview
	Schedule from now–runIn()
	Run once in the future–runOnce()
	Run on a recurring schedule
	Schedule once per day
	Schedule every X minutes or hours
	Schedule using cron

	Passing data to the handler method
	Removing scheduled executions
	Viewing schedules in the IDE
	Best practices
	Avoid chained runIn() calls
	Prefer runEvery*() over cron
	Execution time may not be in exact seconds
	Do not aggressively schedule
	unschedule() is expensive
	Number of scheduled executions limit

	Examples

	Working With Time
	Taking action within a time window
	Execute only on certain days
	Working with time zones

	Sunset and Sunrise
	Sunrise and sunset Events
	Taking action at sunrise or sunset
	Taking action before or after

	Looking up sunrise or sunset directly
	Polling for sunrise or sunset
	Examples

	App Touch
	Subscribe to app

	Making Synchronous External HTTP Requests
	HTTP methods
	Configuring the request
	Handling the response
	Host and timeout limitations
	Host and IP address restrictions
	Request timeout limit

	Try it out
	See also

	Making Asynchronous External HTTP Requests (Beta)
	Overview
	Quick example
	Synchronous versus asynchronous
	The include Statement
	Configuring the request
	URI and path
	Request headers
	Query parameters
	Request body

	Handling the response
	Response status code
	Response headers
	Error responses
	JSON responses
	XML responses
	Getting the raw response

	Passing data to the request handler
	Available methods
	Host, timeout, response, and data size limits
	Host and IP address restrictions
	Request timeout limit
	Response size limit
	Data size limit

	Using asynchronous HTTP in parent-child relationships
	When to use asynchronous HTTP requests
	Refactoring to asynchronous HTTP requests
	Find high-value opportunities
	Refactoring strategies

	Example
	Related documentation

	Sending Notifications
	Send notifications with Contact Book
	Selecting Contacts to notify
	Send notifications to Contacts
	Handling disabled Contact Book
	Complete example

	Send push notifications
	Send SMS notifications
	Send both push and SMS notifications
	Only display message in the notifications feed
	Examples
	Related API documentation

	Parent-Child SmartApps
	Overview
	The parent SmartApp
	The child SmartApp
	Communicating between parent and children
	Preventing more than one parent instance
	Example
	Tips and best practices
	Summary

	Example: Bon Voyage
	Bon Voyage
	SmartApp preferences
	Monitor and react
	Related documentation
	Complete source code

	XI Web Services SmartApps
	Web Services SmartApps Overview
	Introduction
	Concepts
	How it works
	OAuth-integrated app installation flow

	The end-user journey
	Initiate connection from external system
	Authentication and authorization
	Application configuration

	Web Services Tutorial–SmartApp
	Overview
	Create a new SmartApp
	Define preferences
	Specify endpoints
	GET switch information
	UPDATE the switches
	Self-publish the SmartApp
	Run the SmartApp in the Simulator
	Make API calls to the SmartApp
	Uninstall the SmartApp
	Summary

	Web Services SmartApp Tutorial–Authorization Flow
	Overview
	Prerequisites
	Bootstrap the Sinatra app
	Get an authorization code
	Get an access token
	Discover the endpoint
	Make API calls
	Summary

	The SmartApp
	Enable OAuth
	Preferences
	Mapping endpoints
	Request handling
	Path variables
	Query parameters
	Request body parameters

	Response handling
	Defaults
	Automatic JSON serialization
	Using render() to control the response

	Error handling
	Default errors
	Custom errors

	Authorization
	Overview
	Get authorization code
	Get access token
	Get SmartApp endpoints
	Make REST calls

	Troubleshooting
	General
	Errors during installation
	``<clientID> is not associated with a SmartApp in Location'' after selecting Location
	``Please select at least one device to authorize'' error after clicking Authorize

	XII Device Handlers
	Quick Start
	Create a new Device Handler
	Create a Virtual Device
	Test your Device Handler with Virtual Device
	Next steps

	Overview
	Core concepts
	Capabilities
	Commands
	Attributes
	Actuator and Sensor

	Protocols
	Execution location

	Simulator
	Overview
	Status
	Reply
	Summary

	Definition
	Capabilities
	Attributes
	Commands
	Fingerprinting
	ZigBee fingerprinting
	Z-Wave fingerprinting
	Z-Wave raw description
	New Z-Wave fingerprint format
	Legacy Z-Wave fingeprint format

	Fingerprinting best practices
	Add multiple fingerprints
	Device pairing process
	Overly general fingerprints

	Tiles
	Overview
	Tiles basics
	Main and details tiles configuration
	Grid layout
	Tile size
	Allowing the user to change the icon

	Tiles and Attribute state
	State actions
	Transition states
	State labels
	Background color
	State selection algorithm
	Icons

	Single-Attribute Tiles
	Standard Tile
	Value Tile
	Slider Control Tile
	Color Control Tile
	Carousel Tile

	Multi-Attribute Tiles
	Basics
	Multi-Attribute Tile types
	Attribute state and control keys
	Lighting Multi-Attribute Tile
	Thermostat Multi-Attribute Tile
	Multimedia Multi-Attribute Tile
	Generic Multi-Attribute Tile
	Controls summary

	Color standards
	Colors
	Examples

	Additional information
	Examples

	Preferences
	Overview
	Defining preferences
	Device preferences are flat
	Display on setup
	Supported input types
	Getting preference input values
	Example
	Additional notes

	Parse and Events
	Overview
	Parse, Events, and Attributes
	Creating Events
	Multiple Events
	Generating Events outside of parse

	Tips

	Z-Wave Primer
	Command classes
	Listening and sleepy devices
	Configuration
	Association

	Building Z-Wave Device Handlers
	Parsing Events
	Sending commands
	Sending commands in response to Events

	Z-Wave Example
	ZigBee Primer
	Device Network ID
	Endpoints
	Clusters
	Commands
	Read and Write Attributes
	Configure reporting
	Device discovery
	Useful ZigBee references

	Building ZigBee Device Handlers
	Commands
	Read
	Write
	Command
	Configure

	ZigBee utilities
	Best practices
	Using the ZigBee Device Form
	What it does
	Use it if
	How to use

	ZigBee Example
	Other Useful Methods
	Scheduling
	Storing data
	Making external HTTP requests

	Device Certification Overview

	XIII Cloud- and LAN-connected Devices
	Service Manager Design Pattern
	Basic overview
	Cloud-connected devices
	LAN-connected devices

	Building Cloud-connected Device Types
	Division of Labor
	Service Manager responsibilities
	Device Handler responsibilities
	How it all works

	Building the Service Manager
	Authentication using OAuth
	End user experience
	Implementation
	Initialize endpoint
	Callback endpoint
	Refreshing the OAuth token

	Discovery
	Identifying devices in the third-party device cloud
	Creating child devices
	Getting initial device state

	Handling adds, changes, deletes
	singleInstance Service Manager
	Implicit creation of new child Devices
	Implicit removal of child Devices
	Changes in Device name
	Explicit delete actions

	Building the Device Handler
	The Parse method
	Sending commands to the third-party cloud
	Receiving Events from the third-party cloud
	Generating Events at the request of the Service Manager

	Building LAN-connected Device Types
	Division of Labor
	Service Manager responsibilities
	Device Handler responsibilities
	How it all works

	Building the Service Manager
	Discovery
	Verification
	Inclusion
	Health
	Best practices
	References and resources

	Building the Device Type
	Making outbound HTTP calls with HubAction
	Overview
	Creating a HubAction object
	Parsing the response
	Getting the addresses
	Wake on LAN (WOL)
	REST requests
	UPnP/SOAP requests
	Subscribing to device Events
	References and resources

	Automatic LAN Device Discovery
	Impact on the developer
	Supported LAN-connected Devices

	Capturing and Displaying Camera Pictures
	Image Capture Capability
	Tiles for taking and viewing pictures
	Capture and display images
	LAN-connected cameras
	Cloud-connected cameras

	Retrieving an image
	Image size limits
	Allowed image name characters
	Image storage duration
	Supported image formats
	Related documentation

	XIV Composite Devices
	Device Handler for a Composite Device
	Parent Device Handler
	Child Device Handler

	Deleting a Composite Device
	Composite Device Tiles
	Example: Simulated refrigerator
	Example composite tile code

	XV Arduino ThingShield
	Installing the library
	Pairing the shield
	Changing the Device Handler
	Arduino examples

	XVI Rate Limits
	SmartApp and Device Handler rate limits
	Execution count limits
	Execution time limits

	Web services rate limit headers
	SMS rate limits
	Parent-child relationship limit
	Avoiding rate limits

	XVII Publishing Code
	For yourself
	Ensure proper Location
	Publish

	For public distribution
	Review process

	XVIII Code Review Guidelines and Best Practices
	General
	Code should be readable
	Don't repeat yourself
	Methods should serve a single purpose
	Do not submit unused code
	Do not use offensive, profane, or libelous language
	Comment appropriately
	Handle all if() and switch() cases
	Verify assumptions
	Use consistent return values
	Be careful indexing into arrays
	Use the Elvis operator correctly
	Handle null values
	Use Groovy truth correctly

	Using State
	state is not an unbounded database
	Understand how state works
	Understand when to use atomicState vs. state
	Take care when storing collections in atomicState

	Web Services
	Document external HTTP requests
	Document any exposed endpoints

	Scheduling
	Avoid recurring short schedules
	Avoid chained runIn() calls

	Security considerations
	Subscriptions should be clear
	Subscriptions should be specific
	Do not use dynamic method execution
	Do not hard-code SMS messages

	Performance
	Do not use busy loops
	Do not use synchronized()

	LAN-specific
	Use the device-specific search
	Handle IP change

	Parent-child relationships
	Use separate files

	XIX Capabilities Reference
	Introduction
	Data Types
	Acceleration Sensor
	Definition

	Actuator
	Definition

	Air Conditioner Mode
	Definition

	Air Quality Sensor
	Definition

	Alarm
	Definition

	Audio Mute
	Definition

	Audio Notification
	Definition

	Audio Track Data
	Definition

	Audio Volume
	Definition

	Battery
	Definition

	Beacon
	Definition

	Bridge
	Definition

	Bulb
	Definition

	Button
	Definition

	Carbon Dioxide Measurement
	Definition

	Carbon Monoxide Detector
	Definition

	Color Control
	Definition

	Color Temperature
	Definition

	Color
	Definition

	Color Mode
	Definition

	Configuration
	Definition

	Consumable
	Definition

	Contact Sensor
	Definition

	Demand Response Load Control
	Definition

	Dishwasher Mode
	Definition

	Dishwasher Operating State
	Definition

	Door Control
	Definition

	Dryer Mode
	Definition

	Dryer Operating State
	Definition

	Dust Sensor
	Definition

	Energy Meter
	Definition

	Estimated Time Of Arrival
	Definition

	Execute
	Definition

	Fan Speed
	Definition

	Filter Status
	Definition

	Garage Door Control
	Definition

	Geolocation
	Definition

	Holdable Button
	Definition

	Illuminance Measurement
	Definition

	Image Capture
	Definition

	Indicator
	Definition

	Infrared Level
	Definition

	Light
	Definition

	Lock Only
	Definition

	Lock
	Definition

	Media Controller
	Definition

	Media Input Source
	Definition

	Media Playback Repeat
	Definition

	Media Playback Shuffle
	Definition

	Media Playback
	Definition

	Media Presets
	Definition

	Media Track Control
	Definition

	Momentary
	Definition

	Motion Sensor
	Definition

	Music Player
	Definition

	Notification
	Definition

	Odor Sensor
	Definition

	Outlet
	Definition

	Oven Mode
	Definition

	Oven Operating State
	Definition

	Oven Setpoint
	Definition

	pH Measurement
	Definition

	Polling
	Definition

	Power Consumption Report
	Definition

	Power Meter
	Definition

	Power Source
	Definition

	Presence Sensor
	Definition

	Rapid Cooling
	Definition

	Refresh
	Definition

	Refrigeration Setpoint
	Definition

	Relative Humidity Measurement
	Definition

	Relay Switch
	Definition

	Robot Cleaner Cleaning Mode
	Definition

	Robot Cleaner Movement
	Definition

	Robot Cleaner Turbo Mode
	Definition

	Sensor
	Definition

	Shock Sensor
	Definition

	Signal Strength
	Definition

	Sleep Sensor
	Definition

	Smoke Detector
	Definition

	Sound Pressure Level
	Definition

	Sound Sensor
	Definition

	Speech Recognition
	Definition

	Speech Synthesis
	Definition

	Step Sensor
	Definition

	Switch Level
	Definition

	Switch
	Definition

	Tamper Alert
	Definition

	Temperature Measurement
	Definition

	Thermostat Cooling Setpoint
	Definition

	Thermostat Fan Mode
	Definition

	Thermostat Heating Setpoint
	Definition

	Thermostat Mode
	Definition

	Thermostat Operating State
	Definition

	Thermostat Setpoint
	Definition

	Thermostat
	Definition

	Three Axis
	Definition

	Timed Session
	Definition

	Tone
	Definition

	Touch Sensor
	Definition

	Tv Channel
	Definition

	Ultraviolet Index
	Definition

	Valve
	Definition

	Video Clips
	Definition

	Video Stream
	Definition

	Voltage Measurement
	Definition

	Washer Mode
	Definition

	Washer Operating State
	Definition

	Water Sensor
	Definition

	Window Shade
	Definition

	XX API Documentation
	How to read the docs
	Objects
	Object wrappers
	Dynamic methods
	Conventions

	API Contents
	SmartApp
	installed()
	updated()
	uninstalled()
	<device or capability preference name>
	<number or decimal preference name>
	<text, mode, or time preference name>
	addChildApp()
	addChildDevice()
	apiServerUrl()
	atomicState
	canSchedule()
	createAccessToken()
	findAllChildAppsByName()
	findAllChildAppsByNamespaceAndName()
	findChildAppByName()
	findChildAppByNamespaceAndName()
	getAllChildApps()
	getChildApps()
	deleteChildDevice()
	getAllChildDevices()
	getApiServerUrl()
	getChildDevice()
	getChildDevices()
	getColorUtil()
	getLocation()
	getSunriseAndSunset()
	getTwcConditions()
	getTwcForecast()
	getTwcLocation()
	getTwcAlerts()
	getTwcAlertDetail()
	getWeatherFeature() - Deprecated
	httpDelete()
	httpError()
	httpGet()
	httpHead()
	httpPost()
	httpPostJson()
	httpPut()
	httpPutJson()
	nextOccurrence()
	now()
	parseJson()
	parseXml()
	parseLanMessage()
	parseSoapMessage()
	render()
	revokeAccessToken()
	runIn()
	runEvery1Minute()
	runEvery5Minutes()
	runEvery10Minutes()
	runEvery15Minutes()
	runEvery30Minutes()
	runEvery1Hour()
	runEvery3Hours()
	runOnce()
	schedule()
	sendEvent()
	sendHubCommand()
	sendLocationEvent()
	sendNotification()
	sendNotificationEvent()
	sendNotificationToContacts()
	sendPush()
	sendPushMessage()
	sendSms()
	sendSmsMessage()
	setLocationMode()
	settings
	state
	stringToMap()
	subscribe()
	subscribeToCommand()
	timeOfDayIsBetween()
	timeOffset()
	timeToday()
	timeTodayAfter()
	timeZone()
	toDateTime()
	unschedule()
	unsubscribe()

	Device Handler
	<command name>()
	parse()
	addChildDevice()
	apiServerUrl()
	attribute()
	capability()
	carouselTile()
	childDeviceTile()
	command()
	controlTile()
	createEvent()
	definition()
	details()
	device
	fingerprint()
	getApiServerUrl()
	getChildDevices()
	getColorUtil()
	getImage()
	httpDelete()
	httpGet()
	httpHead()
	httpPost()
	httpPostJson()
	httpPut()
	httpPutJson()
	main()
	metadata()
	reply()
	runEvery1Minute()
	runEvery5Minutes()
	runEvery10Minutes()
	runEvery15Minutes()
	runEvery30Minutes()
	runEvery1Hour()
	runEvery3Hours()
	runIn()
	runOnce()
	schedule()
	sendEvent()
	simulator()
	standardTile()
	state
	state()
	status()
	storeImage()
	storeTemporaryImage()
	tiles()
	valueTile()
	zigbee
	zwave

	AppState
	getDateValue()
	getId()
	getDescriptionText()
	getDoubleValue()
	getFloatValue()
	getIntegerValue()
	getIsoDate()
	getJsonValue()
	getLastUpdated()
	getLongValue()
	getName()
	getNumberValue()
	getNumericValue()
	getUnit()
	getValue()
	getXyzValue()

	Async HTTP API (Beta)
	delete()
	get()
	head()
	patch()
	post()
	put()

	AsyncResponse (Beta)
	getData()
	getErrorData()
	getErrorJson()
	getErrorMessage()
	getErrorXml()
	getHeaders()
	getJson()
	getStatus()
	getWarningMessages()
	getXml()
	hasError()

	Attribute
	getDataType()
	getName()
	getValues()

	Capability
	getAttributes()
	getCommands()
	getName()

	ColorUtilities
	hexToRgb()
	rgbToHex()

	Command
	getArguments()
	getName()

	Device
	<attribute name>State
	<command name>()
	current<Uppercase attribute name>
	currentState()
	currentValue()
	events()
	eventsBetween()
	eventsSince()
	getCapabilities()
	getDeviceNetworkId()
	getDisplayName()
	getHub()
	getId()
	getLabel()
	getLastActivity()
	getManufacturerName()
	getModelName()
	getStatus()
	getName()
	getSupportedAttributes()
	getSupportedCommands()
	getTypeName()
	hasAttribute()
	hasCapability()
	hasCommand()
	latestState()
	latestValue()
	statesBetween()
	statesSince()

	Event
	getData()
	getDate()
	getDateValue()
	getDescription()
	getDescriptionText()
	getDevice()
	getDisplayName()
	getDeviceId()
	getId()
	getDoubleValue()
	getFloatValue()
	getHubId()
	getInstalledSmartAppId()
	getIntegerValue()
	getIsoDate()
	getJsonValue()
	getLinkText()
	getLocation()
	getLocationId()
	getLongValue()
	getName()
	getNumberValue()
	getNumericValue()
	getSource()
	getStringValue()
	getUnit()
	getValue()
	getXyzValue()
	isDigital()
	isPhysical()
	isStateChange()

	Hub
	getFirmwareVersionString()
	getId()
	getLocalIP()
	getLocalSrvPortTCP()
	getName()
	getType()
	getZigbeeEui()
	getZigbeeId()

	HubAction
	InstalledSmartApp
	currentState()
	getAccountId()
	getAllChildApps()
	getAppSettings()
	getChildApps()
	getChildDevices()
	getExecutionIsModeRestricted()
	getExecutableModes()
	getId()
	getInstallationState()
	getLabel()
	getName()
	getNamespace()
	getParent()
	getSubscriptions()
	statesBetween()
	statesSince()
	updateLabel()

	Location
	getContactBookEnabled()
	getCurrentMode()
	getId()
	getHubs()
	getLatitude()
	getLongitude()
	getMode()
	getModes()
	getName()
	setMode()
	getTemperatureScale()
	getTimeZone()
	getZipCode()

	Mode
	getId()
	getName()

	State
	getDate()
	getDateValue()
	getDoubleValue()
	getFloatValue()
	getId()
	getIntegerValue()
	getIsoDate()
	getJsonValue()
	getLongValue()
	getName()
	getNumberValue()
	getNumericValue()
	getStringValue()
	getUnit()
	getValue()
	getXyzValue()

	ZigBee Reference
	Parse methods
	zigbee.getEvent()

	Low level commands
	additionalParams
	zigbee.command()
	zigbee.readAttribute()
	zigbee.writeAttribute()
	zigbee.configureReporting()

	ZigBee Capabilities
	zigbee.on()
	zigbee.off()
	zigbee.setLevel()
	zigbee.setColorTemperature()

	ZigBee helper commands
	zigbee.parseDescriptionAsMap()
	zigbee.convertToHexString()
	zigbee.convertHexToInt()
	zigbee.hexNotEqual()
	zigbee.parseZoneStatus()

	Additional ZigBee classes
	ZoneStatus
	Accessing a Property/attribute

	DataType
	DataType constants
	DataType.getLength()
	DataType.isVariableLength()
	DataType.isDiscrete()
	DataType.pack()

	Z-Wave Reference

	XXI Contributing to the Docs
	Writing Style Guide
	Titles and headings
	Avoid framing as questions
	Avoid italics (emphasis)
	Document titles
	What not to capitalize in title
	What to capitalize in title
	Section headings

	UI elements
	List elements
	Page structure
	Page title
	Headings

	reStructuredText syntax
	Links
	Lists
	Inline markup
	Code examples
	Images
	Admonitions
	Tables

	API reference documents
	Organization
	Introduction
	Method documentation
	Signature
	Parameters
	Returns
	Throws
	Example

	Miscellaneous tips
	SmartThings glossary
	Further reading

	XXII Samsung SmartThings Hub FAQ

