
schedule Documentation
Release 1.2.0

Daniel Bader

Apr 10, 2023

Contents

1 Example 3

2 When not to use Schedule 5

3 Read More 7
3.1 Installation . 7
3.2 Examples . 8
3.3 Run in the background . 13
3.4 Parallel execution . 14
3.5 Timezone & Daylight Saving Time . 15
3.6 Exception Handling . 16
3.7 Logging . 17
3.8 Multiple schedulers . 18
3.9 Frequently Asked Questions . 19
3.10 Reference . 20
3.11 Development . 24
3.12 History . 25

4 Issues 31

5 About Schedule 33

Python Module Index 35

Index 37

i

ii

schedule Documentation, Release 1.2.0

Python job scheduling for humans. Run Python functions (or any other callable) periodically using a friendly syntax.

• A simple to use API for scheduling jobs, made for humans.

• In-process scheduler for periodic jobs. No extra processes needed!

• Very lightweight and no external dependencies.

• Excellent test coverage.

• Tested on Python 3.7, 3.8, 3.9, 3.10 and 3.11

Contents 1

https://github.com/dbader/schedule/actions?query=workflow%3ATests+branch%3Amaster
https://coveralls.io/r/dbader/schedule
https://pypi.python.org/pypi/schedule

schedule Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Example

$ pip install schedule

import schedule
import time

def job():
print("I'm working...")

schedule.every(10).minutes.do(job)
schedule.every().hour.do(job)
schedule.every().day.at("10:30").do(job)
schedule.every().monday.do(job)
schedule.every().wednesday.at("13:15").do(job)
schedule.every().day.at("12:42", "Europe/Amsterdam").do(job)
schedule.every().minute.at(":17").do(job)

while True:
schedule.run_pending()
time.sleep(1)

More Examples

3

schedule Documentation, Release 1.2.0

4 Chapter 1. Example

CHAPTER 2

When not to use Schedule

Let’s be honest, Schedule is not a ‘one size fits all’ scheduling library. This library is designed to be a simple solution
for simple scheduling problems. You should probably look somewhere else if you need:

• Job persistence (remember schedule between restarts)

• Exact timing (sub-second precision execution)

• Concurrent execution (multiple threads)

• Localization (workdays or holidays)

Schedule does not account for the time it takes for the job function to execute. To guarantee a stable execution
schedule you need to move long-running jobs off the main-thread (where the scheduler runs). See Parallel execution
for a sample implementation.

5

schedule Documentation, Release 1.2.0

6 Chapter 2. When not to use Schedule

CHAPTER 3

Read More

3.1 Installation

3.1.1 Python version support

We recommend using the latest version of Python. Schedule is tested on Python 3.7, 3.8, 3.9, 3.10 and 3.11.

Want to use Schedule on earlier Python versions? See the History.

3.1.2 Dependencies

Schedule has no dependencies. None. Zero. Nada. Nopes. We plan to keep it that way.

3.1.3 Installation instructions

Problems? Check out Frequently Asked Questions.

PIP (preferred)

The recommended way to install this package is to use pip. Use the following command to install it:

$ pip install schedule

Schedule is now installed. Check out the examples or go to the the documentation overview.

Using another package manager

Schedule is available through some linux package managers. These packages are not maintained by the maintainers of
this project. It cannot be guarantee that these packages are up-to-date (and will stay up-to-date) with the latest released
version. If you don’t mind having an old version, you can use it.

7

schedule Documentation, Release 1.2.0

Ubuntu

OUTDATED! At the time of writing, the packages for 20.04LTS and below use version 0.3.2 (2015).

$ apt-get install python3-schedule

See package page.

Debian

OUTDATED! At the time of writing, the packages for buster and below use version 0.3.2 (2015).

$ apt-get install python3 schedule

See package page.

Arch

On the Arch Linux User repository (AUR) the package is available using the name python-schedule. See the package
page here. For yay users, run:

$ yay -S python-schedule

Conda (Anaconda)

Schedule is published in conda (the Anaconda package manager).

For installation instructions, visit the conda-forge Schedule repo. The release of Schedule on conda is maintained by
the conda-forge project.

Install manually

If you don’t have access to a package manager or need more control, you can manually copy the library into your
project. This is easy as the schedule library consists of a single sourcefile MIT licenced. However, this method is
highly discouraged as you won’t receive automatic updates.

1. Go to the Github repo.

2. Open file schedule/__init__.py and copy the code.

3. In your project, create a packaged named schedule and paste the code in a file named __init__.py.

3.2 Examples

Eager to get started? This page gives a good introduction to Schedule. It assumes you already have Schedule installed.
If you do not, head over to Installation.

8 Chapter 3. Read More

https://packages.ubuntu.com/search?keywords=python3-schedule
https://packages.debian.org/search?searchon=names&keywords=+python3-schedule
https://aur.archlinux.org/packages/python-schedule/
https://anaconda.org/conda-forge/schedule
https://github.com/conda-forge/schedule-feedstock#installing-schedule
https://conda-forge.org/
https://github.com/dbader/schedule

schedule Documentation, Release 1.2.0

3.2.1 Run a job every x minute

import schedule
import time

def job():
print("I'm working...")

Run job every 3 second/minute/hour/day/week,
Starting 3 second/minute/hour/day/week from now
schedule.every(3).seconds.do(job)
schedule.every(3).minutes.do(job)
schedule.every(3).hours.do(job)
schedule.every(3).days.do(job)
schedule.every(3).weeks.do(job)

Run job every minute at the 23rd second
schedule.every().minute.at(":23").do(job)

Run job every hour at the 42nd minute
schedule.every().hour.at(":42").do(job)

Run jobs every 5th hour, 20 minutes and 30 seconds in.
If current time is 02:00, first execution is at 06:20:30
schedule.every(5).hours.at("20:30").do(job)

Run job every day at specific HH:MM and next HH:MM:SS
schedule.every().day.at("10:30").do(job)
schedule.every().day.at("10:30:42").do(job)
schedule.every().day.at("12:42", "Europe/Amsterdam").do(job)

Run job on a specific day of the week
schedule.every().monday.do(job)
schedule.every().wednesday.at("13:15").do(job)
schedule.every().minute.at(":17").do(job)

while True:
schedule.run_pending()
time.sleep(1)

3.2.2 Use a decorator to schedule a job

Use the @repeat to schedule a function. Pass it an interval using the same syntax as above while omitting the
.do().

from schedule import every, repeat, run_pending
import time

@repeat(every(10).minutes)
def job():

print("I am a scheduled job")

while True:
run_pending()
time.sleep(1)

3.2. Examples 9

schedule Documentation, Release 1.2.0

The @repeat decorator does not work on non-static class methods.

3.2.3 Pass arguments to a job

do() passes extra arguments to the job function

import schedule

def greet(name):
print('Hello', name)

schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

from schedule import every, repeat

@repeat(every().second, "World")
@repeat(every().day, "Mars")
def hello(planet):

print("Hello", planet)

3.2.4 Cancel a job

To remove a job from the scheduler, use the schedule.cancel_job(job) method

import schedule

def some_task():
print('Hello world')

job = schedule.every().day.at('22:30').do(some_task)
schedule.cancel_job(job)

3.2.5 Run a job once

Return schedule.CancelJob from a job to remove it from the scheduler.

import schedule
import time

def job_that_executes_once():
Do some work that only needs to happen once...
return schedule.CancelJob

schedule.every().day.at('22:30').do(job_that_executes_once)

while True:
schedule.run_pending()
time.sleep(1)

3.2.6 Get all jobs

To retrieve all jobs from the scheduler, use schedule.get_jobs()

10 Chapter 3. Read More

schedule Documentation, Release 1.2.0

import schedule

def hello():
print('Hello world')

schedule.every().second.do(hello)

all_jobs = schedule.get_jobs()

3.2.7 Cancel all jobs

To remove all jobs from the scheduler, use schedule.clear()

import schedule

def greet(name):
print('Hello {}'.format(name))

schedule.every().second.do(greet)

schedule.clear()

3.2.8 Get several jobs, filtered by tags

You can retrieve a group of jobs from the scheduler, selecting them by a unique identifier.

import schedule

def greet(name):
print('Hello {}'.format(name))

schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')

friends = schedule.get_jobs('friend')

Will return a list of every job tagged as friend.

3.2.9 Cancel several jobs, filtered by tags

You can cancel the scheduling of a group of jobs selecting them by a unique identifier.

import schedule

def greet(name):
print('Hello {}'.format(name))

schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')

(continues on next page)

3.2. Examples 11

schedule Documentation, Release 1.2.0

(continued from previous page)

schedule.clear('daily-tasks')

Will prevent every job tagged as daily-tasks from running again.

3.2.10 Run a job at random intervals

def my_job():
print('Foo')

Run every 5 to 10 seconds.
schedule.every(5).to(10).seconds.do(my_job)

every(A).to(B).seconds executes the job function every N seconds such that A <= N <= B.

3.2.11 Run a job until a certain time

import schedule
from datetime import datetime, timedelta, time

def job():
print('Boo')

run job until a 18:30 today
schedule.every(1).hours.until("18:30").do(job)

run job until a 2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)

Schedule a job to run for the next 8 hours
schedule.every(1).hours.until(timedelta(hours=8)).do(job)

Run my_job until today 11:33:42
schedule.every(1).hours.until(time(11, 33, 42)).do(job)

run job until a specific datetime
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

The until method sets the jobs deadline. The job will not run after the deadline.

3.2.12 Time until the next execution

Use schedule.idle_seconds() to get the number of seconds until the next job is scheduled to run. The returned
value is negative if the next scheduled jobs was scheduled to run in the past. Returns None if no jobs are scheduled.

import schedule
import time

def job():
print('Hello')

schedule.every(5).seconds.do(job)

(continues on next page)

12 Chapter 3. Read More

schedule Documentation, Release 1.2.0

(continued from previous page)

while 1:
n = schedule.idle_seconds()
if n is None:

no more jobs
break

elif n > 0:
sleep exactly the right amount of time
time.sleep(n)

schedule.run_pending()

3.2.13 Run all jobs now, regardless of their scheduling

To run all jobs regardless if they are scheduled to run or not, use schedule.run_all(). Jobs are re-scheduled
after finishing, just like they would if they were executed using run_pending().

import schedule

def job_1():
print('Foo')

def job_2():
print('Bar')

schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)

schedule.run_all()

Add the delay_seconds argument to run the jobs with a number
of seconds delay in between.
schedule.run_all(delay_seconds=10)

3.3 Run in the background

Out of the box it is not possible to run the schedule in the background. However, you can create a thread yourself and
use it to run jobs without blocking the main thread. This is an example of how you could do this:

import threading
import time

import schedule

def run_continuously(interval=1):
"""Continuously run, while executing pending jobs at each
elapsed time interval.
@return cease_continuous_run: threading. Event which can
be set to cease continuous run. Please note that it is

*intended behavior that run_continuously() does not run
missed jobs*. For example, if you've registered a job that
should run every minute and you set a continuous run

(continues on next page)

3.3. Run in the background 13

schedule Documentation, Release 1.2.0

(continued from previous page)

interval of one hour then your job won't be run 60 times
at each interval but only once.
"""
cease_continuous_run = threading.Event()

class ScheduleThread(threading.Thread):
@classmethod
def run(cls):

while not cease_continuous_run.is_set():
schedule.run_pending()
time.sleep(interval)

continuous_thread = ScheduleThread()
continuous_thread.start()
return cease_continuous_run

def background_job():
print('Hello from the background thread')

schedule.every().second.do(background_job)

Start the background thread
stop_run_continuously = run_continuously()

Do some other things...
time.sleep(10)

Stop the background thread
stop_run_continuously.set()

3.4 Parallel execution

I am trying to execute 50 items every 10 seconds, but from the my logs it says it executes every item in 10 second
schedule serially, is there a work around?

By default, schedule executes all jobs serially. The reasoning behind this is that it would be difficult to find a model
for parallel execution that makes everyone happy.

You can work around this limitation by running each of the jobs in its own thread:

import threading
import time
import schedule

def job():
print("I'm running on thread %s" % threading.current_thread())

def run_threaded(job_func):
job_thread = threading.Thread(target=job_func)
job_thread.start()

schedule.every(10).seconds.do(run_threaded, job)
schedule.every(10).seconds.do(run_threaded, job)

(continues on next page)

14 Chapter 3. Read More

schedule Documentation, Release 1.2.0

(continued from previous page)

schedule.every(10).seconds.do(run_threaded, job)
schedule.every(10).seconds.do(run_threaded, job)
schedule.every(10).seconds.do(run_threaded, job)

while 1:
schedule.run_pending()
time.sleep(1)

If you want tighter control on the number of threads use a shared jobqueue and one or more worker threads:

import time
import threading
import schedule
import queue

def job():
print("I'm working")

def worker_main():
while 1:

job_func = jobqueue.get()
job_func()
jobqueue.task_done()

jobqueue = queue.Queue()

schedule.every(10).seconds.do(jobqueue.put, job)
schedule.every(10).seconds.do(jobqueue.put, job)
schedule.every(10).seconds.do(jobqueue.put, job)
schedule.every(10).seconds.do(jobqueue.put, job)
schedule.every(10).seconds.do(jobqueue.put, job)

worker_thread = threading.Thread(target=worker_main)
worker_thread.start()

while 1:
schedule.run_pending()
time.sleep(1)

This model also makes sense for a distributed application where the workers are separate processes that receive jobs
from a distributed work queue. I like using beanstalkd with the beanstalkc Python library.

3.5 Timezone & Daylight Saving Time

3.5.1 Timezone in .at()

Schedule supports setting the job execution time in another timezone using the .at method.

To work with timezones pytz must be installed! Get it:

pip install pytz

Timezones are only available in the .at function, like so:

3.5. Timezone & Daylight Saving Time 15

https://pypi.org/project/pytz/

schedule Documentation, Release 1.2.0

Pass a timezone as a string
schedule.every().day.at("12:42", "Europe/Amsterdam").do(job)

Pass an pytz timezone object
from pytz import timezone
schedule.every().friday.at("12:42", timezone("Africa/Lagos")).do(job)

Schedule uses the timezone to calculate the next runtime in local time. All datetimes inside the library are stored naive.
This causes the next_run and last_run to always be in Pythons local timezone.

3.5.2 Daylight Saving Time

When scheduling jobs with relative time (that is when not using .at()), daylight saving time (DST) is not taken into
account. A job that is set to run every 4 hours might execute after 3 realtime hours when DST goes into effect. This is
because schedule is timezone-unaware for relative times.

However, when using .at(), DST is handed correctly: the job will always run at (or close after) the set timestamp.
A job scheduled during a moment that is skipped, the job will execute after the clock is moved. For example, a job is
scheduled .at("02:30"), clock moves from 02:00 to 03:00, the job will run at 03:00.

3.5.3 Example

Let’s say we are in Europe/Berlin and local datetime is 2022 march 20, 10:00:00. At the moment day-
light saving time is not in effect in Berlin (UTC+1).

We schedule a job to run every day at 10:30:00 in America/New_York. At this time, daylight saving time is in effect
in New York (UTC-4).

s = every().day.at("10:30", "America/New_York").do(job)

Because of the 5 hour time difference between Berlin and New York the job should effectively run at 15:30:00. So
the next run in Berlin time is 2022 march 20, 15:30:00:

print(s.next_run)
2022-03-20 15:30:00

print(repr(s))
Every 1 day at 10:30:00 do job() (last run: [never], next run: 2022-03-20 15:30:00)

3.6 Exception Handling

Schedule doesn’t catch exceptions that happen during job execution. Therefore any exceptions thrown during job
execution will bubble up and interrupt schedule’s run_xyz function.

If you want to guard against exceptions you can wrap your job function in a decorator like this:

import functools

def catch_exceptions(cancel_on_failure=False):
def catch_exceptions_decorator(job_func):

@functools.wraps(job_func)
def wrapper(*args, **kwargs):

(continues on next page)

16 Chapter 3. Read More

https://docs.python.org/3/library/datetime.html

schedule Documentation, Release 1.2.0

(continued from previous page)

try:
return job_func(*args, **kwargs)

except:
import traceback
print(traceback.format_exc())
if cancel_on_failure:

return schedule.CancelJob
return wrapper

return catch_exceptions_decorator

@catch_exceptions(cancel_on_failure=True)
def bad_task():

return 1 / 0

schedule.every(5).minutes.do(bad_task)

Another option would be to subclass Schedule like @mplewis did in this example.

3.7 Logging

Schedule logs messages to the Python logger named schedule at DEBUG level. To receive logs from Schedule, set
the logging level to DEBUG.

import schedule
import logging

logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
schedule_logger.setLevel(level=logging.DEBUG)

def job():
print("Hello, Logs")

schedule.every().second.do(job)

schedule.run_all()

schedule.clear()

This will result in the following log messages:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

3.7.1 Customize logging

The easiest way to add reusable logging to jobs is to implement a decorator that handles logging. As an example,
below code adds the print_elapsed_time decorator:

3.7. Logging 17

https://gist.github.com/mplewis/8483f1c24f2d6259aef6

schedule Documentation, Release 1.2.0

import functools
import time
import schedule

This decorator can be applied to any job function to log the elapsed time of each
→˓job
def print_elapsed_time(func):

@functools.wraps(func)
def wrapper(*args, **kwargs):

start_timestamp = time.time()
print('LOG: Running job "%s"' % func.__name__)
result = func(*args, **kwargs)
print('LOG: Job "%s" completed in %d seconds' % (func.__name__, time.time() -

→˓start_timestamp))
return result

return wrapper

@print_elapsed_time
def job():

print('Hello, Logs')
time.sleep(5)

schedule.every().second.do(job)

schedule.run_all()

This outputs:

LOG: Running job "job"
Hello, Logs
LOG: Job "job" completed in 5 seconds

3.8 Multiple schedulers

You can run as many jobs from a single scheduler as you wish. However, for larger installations it might be desirable
to have multiple schedulers. This is supported:

import time
import schedule

def fooJob():
print("Foo")

def barJob():
print("Bar")

Create a new scheduler
scheduler1 = schedule.Scheduler()

Add jobs to the created scheduler
scheduler1.every().hour.do(fooJob)
scheduler1.every().hour.do(barJob)

(continues on next page)

18 Chapter 3. Read More

schedule Documentation, Release 1.2.0

(continued from previous page)

Create as many schedulers as you need
scheduler2 = schedule.Scheduler()
scheduler2.every().second.do(fooJob)
scheduler2.every().second.do(barJob)

while True:
run_pending needs to be called on every scheduler
scheduler1.run_pending()
scheduler2.run_pending()
time.sleep(1)

3.9 Frequently Asked Questions

Frequently asked questions on the usage of schedule. Did you get here using an ‘old’ link and expected to see more
questions?

3.9.1 AttributeError: ‘module’ object has no attribute ‘every’

I’m getting

AttributeError: 'module' object has no attribute 'every'

when I try to use schedule.

This happens if your code imports the wrong schedule module. Make sure you don’t have a schedule.py file
in your project that overrides the schedule module provided by this library.

3.9.2 ModuleNotFoundError: No module named ‘schedule’

It seems python can’t find the schedule package. Let’s check some common causes.

Did you install schedule? If not, follow Installation. Validate installation:

• Did you install using pip? Run pip3 list | grep schedule. This should return schedule 0.6.0
(or a higher version number)

• Did you install using apt? Run dpkg -l | grep python3-schedule. This should return something
along the lines of python3-schedule 0.3.2-1.1 Job scheduling for humans (Python
3) (or a higher version number)

Are you used python 3 to install Schedule, and are running the script using python 3? For example, if you installed
schedule using a version of pip that uses Python 2, and your code runs in Python 3, the package won’t be found. In
this case the solution is to install Schedule using pip3: pip3 install schedule.

Are you using virtualenv? Check that you are running the script inside the same virtualenv where you installed
schedule.

Is this problem occurring when running the program from inside and IDE like PyCharm or VSCode? Try to run your
program from a commandline outside of the IDE. If it works there, the problem is with your IDE configuration. It
might be that your IDE uses a different Python interpreter installation.

Still having problems? Use Google and StackOverflow before submitting an issue.

3.9. Frequently Asked Questions 19

schedule Documentation, Release 1.2.0

3.9.3 ModuleNotFoundError: ModuleNotFoundError: No module named ‘pytz’

This error happens when you try to set a timezone in .at() without having the pytz package installed. Pytz is a
required dependency when working with timezones. To resolve this issue, install the pytz module by running pip
install pytz.

3.9.4 Does schedule support time zones?

Yes! See Timezones.

3.9.5 What if my task throws an exception?

See Exception Handling.

3.9.6 How can I run a job only once?

See Examples.

3.9.7 How can I cancel several jobs at once?

See Examples.

3.9.8 How to execute jobs in parallel?

See Parallel Execution.

3.9.9 How to continuously run the scheduler without blocking the main thread?

Background Execution.

3.9.10 Another question?

If you are left with an unanswered question, browse the issue tracker to see if your question has been asked before.
Feel free to create a new issue if that’s not the case. Thank you

3.10 Reference

This part of the documentation covers all the interfaces of schedule.

20 Chapter 3. Read More

https://pypi.org/project/pytz/
http://github.com/dbader/schedule/issues

schedule Documentation, Release 1.2.0

3.10.1 Main Interface

schedule.default_scheduler = <schedule.Scheduler object>
Default Scheduler object

schedule.jobs = []
Default Jobs list

schedule.every(interval: int = 1)→ schedule.Job
Calls every on the default scheduler instance.

schedule.run_pending()→ None
Calls run_pending on the default scheduler instance.

schedule.run_all(delay_seconds: int = 0)→ None
Calls run_all on the default scheduler instance.

schedule.get_jobs(tag: Optional[collections.abc.Hashable] = None)→ List[schedule.Job]
Calls get_jobs on the default scheduler instance.

schedule.clear(tag: Optional[collections.abc.Hashable] = None)→ None
Calls clear on the default scheduler instance.

schedule.cancel_job(job: schedule.Job)→ None
Calls cancel_job on the default scheduler instance.

schedule.next_run(tag: Optional[collections.abc.Hashable] = None)→ Optional[datetime.datetime]
Calls next_run on the default scheduler instance.

schedule.idle_seconds()→ Optional[float]
Calls idle_seconds on the default scheduler instance.

3.10.2 Classes

class schedule.Scheduler
Objects instantiated by the Scheduler are factories to create jobs, keep record of scheduled jobs and handle
their execution.

run_pending()→ None
Run all jobs that are scheduled to run.

Please note that it is intended behavior that run_pending() does not run missed jobs. For example, if you’ve
registered a job that should run every minute and you only call run_pending() in one hour increments then
your job won’t be run 60 times in between but only once.

run_all(delay_seconds: int = 0)→ None
Run all jobs regardless if they are scheduled to run or not.

A delay of delay seconds is added between each job. This helps distribute system load generated by the
jobs more evenly over time.

Parameters delay_seconds – A delay added between every executed job

get_jobs(tag: Optional[collections.abc.Hashable] = None)→ List[schedule.Job]
Gets scheduled jobs marked with the given tag, or all jobs if tag is omitted.

Parameters tag – An identifier used to identify a subset of jobs to retrieve

clear(tag: Optional[collections.abc.Hashable] = None)→ None
Deletes scheduled jobs marked with the given tag, or all jobs if tag is omitted.

Parameters tag – An identifier used to identify a subset of jobs to delete

3.10. Reference 21

schedule Documentation, Release 1.2.0

cancel_job(job: schedule.Job)→ None
Delete a scheduled job.

Parameters job – The job to be unscheduled

every(interval: int = 1)→ schedule.Job
Schedule a new periodic job.

Parameters interval – A quantity of a certain time unit

Returns An unconfigured Job

get_next_run(tag: Optional[collections.abc.Hashable] = None)→ Optional[datetime.datetime]
Datetime when the next job should run.

Parameters tag – Filter the next run for the given tag parameter

Returns A datetime object or None if no jobs scheduled

next_run
Datetime when the next job should run.

Parameters tag – Filter the next run for the given tag parameter

Returns A datetime object or None if no jobs scheduled

idle_seconds

Returns Number of seconds until next_run or None if no jobs are scheduled

class schedule.Job(interval: int, scheduler: Optional[schedule.Scheduler] = None)
A periodic job as used by Scheduler.

Parameters

• interval – A quantity of a certain time unit

• scheduler – The Scheduler instance that this job will register itself with once it has
been fully configured in Job.do().

Every job runs at a given fixed time interval that is defined by:

• a time unit

• a quantity of time units defined by interval

A job is usually created and returned by Scheduler.every() method, which also defines its interval.

second

seconds

minute

minutes

hour

hours

day

days

week

weeks

monday

22 Chapter 3. Read More

schedule Documentation, Release 1.2.0

tuesday

wednesday

thursday

friday

saturday

sunday

tag(*tags)
Tags the job with one or more unique identifiers.

Tags must be hashable. Duplicate tags are discarded.

Parameters tags – A unique list of Hashable tags.

Returns The invoked job instance

at(time_str: str, tz: Optional[str] = None)
Specify a particular time that the job should be run at.

Parameters

• time_str – A string in one of the following formats:

– For daily jobs -> HH:MM:SS or HH:MM

– For hourly jobs -> MM:SS or :MM

– For minute jobs -> :SS

The format must make sense given how often the job is repeating; for example, a job that
repeats every minute should not be given a string in the form HH:MM:SS. The difference
between :MM and :SS is inferred from the selected time-unit (e.g. every().hour.at(‘:30’)
vs. every().minute.at(‘:30’)).

• tz – The timezone that this timestamp refers to. Can be a string that can be parsed by
pytz.timezone(), or a pytz.BaseTzInfo object

Returns The invoked job instance

to(latest: int)
Schedule the job to run at an irregular (randomized) interval.

The job’s interval will randomly vary from the value given to every to latest. The range defined is inclusive
on both ends. For example, every(A).to(B).seconds executes the job function every N seconds such that A
<= N <= B.

Parameters latest – Maximum interval between randomized job runs

Returns The invoked job instance

until(until_time: Union[datetime.datetime, datetime.timedelta, datetime.time, str])
Schedule job to run until the specified moment.

The job is canceled whenever the next run is calculated and it turns out the next run is after the until_time.
The job is also canceled right before it runs, if the current time is after until_time. This latter case can
happen when the the job was scheduled to run before until_time, but runs after until_time.

If until_time is a moment in the past, ScheduleValueError is thrown.

Parameters until_time – A moment in the future representing the latest time a job can be
run. If only a time is supplied, the date is set to today. The following formats are accepted:

3.10. Reference 23

schedule Documentation, Release 1.2.0

• datetime.datetime

• datetime.timedelta

• datetime.time

• String in one of the following formats: “%Y-%m-%d %H:%M:%S”, “%Y-%m-%d
%H:%M”, “%Y-%m-%d”, “%H:%M:%S”, “%H:%M” as defined by strptime() behaviour.
If an invalid string format is passed, ScheduleValueError is thrown.

Returns The invoked job instance

do(job_func: Callable, *args, **kwargs)
Specifies the job_func that should be called every time the job runs.

Any additional arguments are passed on to job_func when the job runs.

Parameters job_func – The function to be scheduled

Returns The invoked job instance

should_run

Returns True if the job should be run now.

run()
Run the job and immediately reschedule it. If the job’s deadline is reached (configured using .until()),
the job is not run and CancelJob is returned immediately. If the next scheduled run exceeds the job’s
deadline, CancelJob is returned after the execution. In this latter case CancelJob takes priority over any
other returned value.

Returns The return value returned by the job_func, or CancelJob if the job’s deadline is reached.

3.10.3 Exceptions

exception schedule.CancelJob
Can be returned from a job to unschedule itself.

3.11 Development

These instructions are geared towards people who want to help develop this library.

3.11.1 Preparing for development

All required tooling and libraries can be installed using the requirements-dev.txt file:

pip install -r requirements-dev.txt

3.11.2 Running tests

pytest is used to run tests. Run all tests with coverage and formatting checks:

py.test test_schedule.py --flake8 schedule -v --cov schedule --cov-report term-missing

24 Chapter 3. Read More

schedule Documentation, Release 1.2.0

3.11.3 Formatting the code

This project uses black formatter. To format the code, run:

black .

Make sure you use version 20.8b1 of black.

3.11.4 Compiling documentation

The documentation is written in reStructuredText. It is processed using Sphinx using the alabaster theme. After
installing the development requirements it is just a matter of running:

cd docs
make html

The resulting html can be found in docs/_build/html

3.11.5 Publish a new version

Update the HISTORY.rst and AUTHORS.rst files. Bump the version in setup.py and docs/conf.py.
Merge these changes into master. Finally:

git tag X.Y.Z -m "Release X.Y.Z"
git push --tags

pip install --upgrade setuptools twine wheel
python setup.py sdist bdist_wheel --universal
twine upload --repository schedule dist/*

This project follows semantic versioning.‘

3.12 History

3.12.1 1.2.0 (2023-04-10)

• Dropped support for Python 3.6, add support for Python 3.10 and 3.11.

• Add timezone support for .at(). See #517. Thanks @chrimaho!

• Get next run by tag (#463) Thanks @jweijers!

• Add py.typed file. See #521. Thanks @Akuli!

• Fix the re pattern of the ‘days’. See #506 Thanks @sunpro108!

• Fix test_until_time failure when run early. See #563. Thanks @emollier!

• Fix crash repr on partially constructed job. See #569. Thanks @CPickens42!

• Code cleanup and modernization. See #567, #536. Thanks @masa-08 and @SergBobrovsky!

• Documentation improvements and fix typos. See #469, #479, #493, #519, #520. Thanks to @NaelsonDouglas,
@chrimaho, @rudSarkar

3.12. History 25

https://black.readthedocs.io/en/stable/
https://docutils.sourceforge.io/rst.html
http://www.sphinx-doc.org/en/1.4.8/tutorial.html
https://alabaster.readthedocs.io/en/latest/
https://semver.org/

schedule Documentation, Release 1.2.0

3.12.2 1.1.0 (2021-04-09)

• Added @repeat() decorator. See #148. Thanks @rhagenaars!

• Added execute .until(). See #195. Thanks @fredthomsen!

• Added job retrieval filtered by tags using get_jobs(‘tag’). See #419. Thanks @skenvy!

• Added type annotations. See #427. Thanks @martinthoma!

• Bugfix: str() of job when there is no __name__. See #430. Thanks @biggerfisch!

• Improved error messages. See #280, #439. Thanks @connorskees and @sosolidkk!

• Improved logging. See #193. Thanks @zcking!

• Documentation improvements and fix typos. See #424, #435, #436, #453, #437, #448. Thanks @ebllg!

3.12.3 1.0.0 (2021-01-20)

Depending on your configuration, the following bugfixes might change schedule’s behaviour:

• Fix: idle_seconds crashes when no jobs are scheduled. See #401. Thanks @yoonghm!

• Fix: day.at(‘HH:MM:SS’) where HMS=now+10s doesn’t run today. See #331. Thanks @qmorek!

• Fix: hour.at(‘MM:SS’), the seconds are set to 00. See #290. Thanks @eladbi!

• Fix: Long-running jobs skip a day when they finish in the next day #404. Thanks @4379711!

Other changes:

• Dropped Python 2.7 and 3.5 support, added 3.8 and 3.9 support. See #409

• Fix RecursionError when the job is passed to the do function as an arg. See #190. Thanks @connorskees!

• Fix DeprecationWarning of ‘collections’. See #296. Thanks @gaguirregabiria!

• Replaced Travis with Github Actions for automated testing

• Revamp and extend documentation. See #395

• Improved tests. Thanks @connorskees and @Jamim!

• Changed log messages to DEBUG level. Thanks @aisk!

3.12.4 0.6.0 (2019-01-20)

• Make at() accept timestamps with 1 second precision (#267). Thanks @NathanWailes!

• Introduce proper exception hierarchy (#271). Thanks @ConnorSkees!

3.12.5 0.5.0 (2017-11-16)

• Keep partially scheduled jobs from breaking the scheduler (#125)

• Add support for random intervals (Thanks @grampajoe and @gilbsgilbs)

3.12.6 0.4.3 (2017-06-10)

• Improve docs & clean up docstrings

26 Chapter 3. Read More

schedule Documentation, Release 1.2.0

3.12.7 0.4.2 (2016-11-29)

• Publish to PyPI as a universal (py2/py3) wheel

3.12.8 0.4.0 (2016-11-28)

• Add proper HTML (Sphinx) docs available at https://schedule.readthedocs.io/

• CI builds now run against Python 2.7 and 3.5 (3.3 and 3.4 should work fine but are untested)

• Fixed an issue with run_all() and having more than one job that deletes itself in the same iteration. Thanks
@alaingilbert.

• Add ability to tag jobs and to cancel jobs by tag. Thanks @Zerrossetto.

• Improve schedule docs. Thanks @Zerrossetto.

• Additional docs fixes by @fkromer and @yetingsky.

3.12.9 0.3.2 (2015-07-02)

• Fixed issues where scheduling a job with a functools.partial as the job function fails. Thanks @dylwhich.

• Fixed an issue where scheduling a job to run every >= 2 days would cause the initial execution to happen one
day early. Thanks @WoLfulus for identifying this and providing a fix.

• Added a FAQ item to describe how to schedule a job that runs only once.

3.12.10 0.3.1 (2014-09-03)

• Fixed an issue with unicode handling in setup.py that was causing trouble on Python 3 and Debian (https:
//github.com/dbader/schedule/issues/27). Thanks to @waghanza for reporting it.

• Added an FAQ item to describe how to deal with job functions that throw exceptions. Thanks @mplewis.

3.12.11 0.3.0 (2014-06-14)

• Added support for scheduling jobs on specific weekdays. Example: schedule.every().tuesday.
do(job) or schedule.every().wednesday.at("13:15").do(job) (Thanks @abultman.)

• Run tests against Python 2.7 and 3.4. Python 3.3 should continue to work but we’re not actively testing it on CI
anymore.

3.12.12 0.2.1 (2013-11-20)

• Fixed history (no code changes).

3.12.13 0.2.0 (2013-11-09)

• This release introduces two new features in a backwards compatible way:

• Allow jobs to cancel repeated execution: Jobs can be cancelled by calling schedule.cancel_job() or by
returning schedule.CancelJob from the job function. (Thanks to @cfrco and @matrixise.)

3.12. History 27

https://schedule.readthedocs.io/
https://github.com/dbader/schedule/issues/27
https://github.com/dbader/schedule/issues/27

schedule Documentation, Release 1.2.0

• Updated at_time() to allow running jobs at a particular time every hour. Example: every().hour.
at(':15').do(job) will run job 15 minutes after every full hour. (Thanks @mattss.)

• Refactored unit tests to mock datetime in a cleaner way. (Thanks @matts.)

3.12.14 0.1.11 (2013-07-30)

• Fixed an issue with next_run() throwing a ValueError exception when the job queue is empty. Thanks
to @dpagano for pointing this out and thanks to @mrhwick for quickly providing a fix.

3.12.15 0.1.10 (2013-06-07)

• Fixed issue with at_time jobs not running on the same day the job is created (Thanks to @mattss)

3.12.16 0.1.9 (2013-05-27)

• Added schedule.next_run()

• Added schedule.idle_seconds()

• Args passed into do() are forwarded to the job function at call time

• Increased test coverage to 100%

3.12.17 0.1.8 (2013-05-21)

• Changed default delay_seconds for schedule.run_all() to 0 (from 60)

• Increased test coverage

3.12.18 0.1.7 (2013-05-20)

• API change: renamed schedule.run_all_jobs() to schedule.run_all()

• API change: renamed schedule.run_pending_jobs() to schedule.run_pending()

• API change: renamed schedule.clear_all_jobs() to schedule.clear()

• Added schedule.jobs

3.12.19 0.1.6 (2013-05-20)

• Fix packaging

• README fixes

3.12.20 0.1.4 (2013-05-20)

• API change: renamed schedule.tick() to schedule.run_pending_jobs()

• Updated README and setup.py packaging

28 Chapter 3. Read More

schedule Documentation, Release 1.2.0

3.12.21 0.1.0 (2013-05-19)

• Initial release

3.12. History 29

schedule Documentation, Release 1.2.0

30 Chapter 3. Read More

CHAPTER 4

Issues

If you encounter any problems, please file an issue along with a detailed description. Please also use the search feature
in the issue tracker beforehand to avoid creating duplicates. Thank you

31

http://github.com/dbader/schedule/issues

schedule Documentation, Release 1.2.0

32 Chapter 4. Issues

CHAPTER 5

About Schedule

Created by Daniel Bader - @dbader_org

Inspired by Adam Wiggins’ article “Rethinking Cron” and the clockwork Ruby module.

Distributed under the MIT license. See LICENSE.txt for more information.

Thanks to all the wonderful folks who have contributed to schedule over the years:

• mattss <https://github.com/mattss>

• mrhwick <https://github.com/mrhwick>

• cfrco <https://github.com/cfrco>

• matrixise <https://github.com/matrixise>

• abultman <https://github.com/abultman>

• mplewis <https://github.com/mplewis>

• WoLfulus <https://github.com/WoLfulus>

• dylwhich <https://github.com/dylwhich>

• fkromer <https://github.com/fkromer>

• alaingilbert <https://github.com/alaingilbert>

• Zerrossetto <https://github.com/Zerrossetto>

• yetingsky <https://github.com/yetingsky>

• schnepp <https://github.com/schnepp> <https://bitbucket.org/saschaschnepp>

• grampajoe <https://github.com/grampajoe>

• gilbsgilbs <https://github.com/gilbsgilbs>

• Nathan Wailes <https://github.com/NathanWailes>

• Connor Skees <https://github.com/ConnorSkees>

• qmorek <https://github.com/qmorek>

33

https://dbader.org/
https://twitter.com/dbader_org
https://github.com/adamwiggins
https://adam.herokuapp.com/past/2010/4/13/rethinking_cron/
https://github.com/Rykian/clockwork
https://github.com/mattss
https://github.com/mrhwick
https://github.com/cfrco
https://github.com/matrixise
https://github.com/abultman
https://github.com/mplewis
https://github.com/WoLfulus
https://github.com/dylwhich
https://github.com/fkromer
https://github.com/alaingilbert
https://github.com/Zerrossetto
https://github.com/yetingsky
https://github.com/schnepp
https://bitbucket.org/saschaschnepp
https://github.com/grampajoe
https://github.com/gilbsgilbs
https://github.com/NathanWailes
https://github.com/ConnorSkees
https://github.com/qmorek

schedule Documentation, Release 1.2.0

• aisk <https://github.com/aisk>

• MichaelCorleoneLi <https://github.com/MichaelCorleoneLi>

• sijmenhuizenga <https://github.com/SijmenHuizenga>

• eladbi <https://github.com/eladbi>

• chankeypathak <https://github.com/chankeypathak>

• vubon <https://github.com/vubon>

• gaguirregabiria <https://github.com/gaguirregabiria>

• rhagenaars <https://github.com/RHagenaars>

• Skenvy <https://github.com/skenvy>

• zcking <https://github.com/zcking>

• Martin Thoma <https://github.com/MartinThoma>

• ebllg <https://github.com/ebllg>

• fredthomsen <https://github.com/fredthomsen>

• biggerfisch <https://github.com/biggerfisch>

• sosolidkk <https://github.com/sosolidkk>

• rudSarkar <https://github.com/rudSarkar>

• chrimaho <https://github.com/chrimaho>

• jweijers <https://github.com/jweijers>

• Akuli <https://github.com/Akuli>

• NaelsonDouglas <https://github.com/NaelsonDouglas>

• SergBobrovsky <https://github.com/SergBobrovsky>

• CPickens42 <https://github.com/CPickens42>

• emollier <https://github.com/emollier>

• sunpro108 <https://github.com/sunpro108>

34 Chapter 5. About Schedule

https://github.com/aisk
https://github.com/MichaelCorleoneLi
https://github.com/SijmenHuizenga
https://github.com/eladbi
https://github.com/chankeypathak
https://github.com/vubon
https://github.com/gaguirregabiria
https://github.com/RHagenaars
https://github.com/skenvy
https://github.com/zcking
https://github.com/MartinThoma
https://github.com/ebllg
https://github.com/fredthomsen
https://github.com/biggerfisch
https://github.com/sosolidkk
https://github.com/rudSarkar
https://github.com/chrimaho
https://github.com/jweijers
https://github.com/Akuli
https://github.com/NaelsonDouglas
https://github.com/SergBobrovsky
https://github.com/CPickens42
https://github.com/emollier
https://github.com/sunpro108

Python Module Index

s
schedule, 20

35

schedule Documentation, Release 1.2.0

36 Python Module Index

Index

A
at() (schedule.Job method), 23

C
cancel_job() (in module schedule), 21
cancel_job() (schedule.Scheduler method), 21
CancelJob, 24
clear() (in module schedule), 21
clear() (schedule.Scheduler method), 21

D
day (schedule.Job attribute), 22
days (schedule.Job attribute), 22
default_scheduler (in module schedule), 21
do() (schedule.Job method), 24

E
every() (in module schedule), 21
every() (schedule.Scheduler method), 22

F
friday (schedule.Job attribute), 23

G
get_jobs() (in module schedule), 21
get_jobs() (schedule.Scheduler method), 21
get_next_run() (schedule.Scheduler method), 22

H
hour (schedule.Job attribute), 22
hours (schedule.Job attribute), 22

I
idle_seconds (schedule.Scheduler attribute), 22
idle_seconds() (in module schedule), 21

J
Job (class in schedule), 22

jobs (in module schedule), 21

M
minute (schedule.Job attribute), 22
minutes (schedule.Job attribute), 22
monday (schedule.Job attribute), 22

N
next_run (schedule.Scheduler attribute), 22
next_run() (in module schedule), 21

R
run() (schedule.Job method), 24
run_all() (in module schedule), 21
run_all() (schedule.Scheduler method), 21
run_pending() (in module schedule), 21
run_pending() (schedule.Scheduler method), 21

S
saturday (schedule.Job attribute), 23
schedule (module), 20
Scheduler (class in schedule), 21
second (schedule.Job attribute), 22
seconds (schedule.Job attribute), 22
should_run (schedule.Job attribute), 24
sunday (schedule.Job attribute), 23

T
tag() (schedule.Job method), 23
thursday (schedule.Job attribute), 23
to() (schedule.Job method), 23
tuesday (schedule.Job attribute), 22

U
until() (schedule.Job method), 23

W
wednesday (schedule.Job attribute), 23
week (schedule.Job attribute), 22
weeks (schedule.Job attribute), 22

37

	Example
	When not to use Schedule
	Read More
	Installation
	Examples
	Run in the background
	Parallel execution
	Timezone & Daylight Saving Time
	Exception Handling
	Logging
	Multiple schedulers
	Frequently Asked Questions
	Reference
	Development
	History

	Issues
	About Schedule
	Python Module Index
	Index

