
rvlm.entrypoint Documentation
Release 0.0.2

Pavel Kretov

February 08, 2014

Contents

Python Module Index 3

i

ii

rvlm.entrypoint Documentation, Release 0.0.2

Converts function’s arguments to getopt-style command line options and arguments. This may definitely help in
writing small and clear scripts, with no ugly command line parsing code.

This module can:

• Automatically generate argument parsers basing on “main” function signature and docstring.

• Automatically run the “main” function when a script is called directly, but not when it is included as a module.

Right after this module was written, its author discovered for himself the entrypoint module
(https://pypi.python.org/pypi/entrypoint). But it appeared to be that original entrypoint behaves sometimes in
a strange way. So, it was decided to continue development, and also to rename this module to rvlm.entrypoint
from former rvlm.argmap, becase this name sounds better still doesn’t introduce names conflict by having a prefix.

copyright 2014, Pavel Kretov

license MIT

exception rvlm.entrypoint.ParserError
Exception to throw

rvlm.entrypoint.call(func, args=None, emptyVarArgs=True, helpOptions=True, shortOptions=True,
docStrings=True, changeNames=True, raiseOnError=True)

Convert function func argument convention to command line options and runs it with converted arguments.

Parameters

• func – Function to be run. Must have parameter information available through inspection.
It also must not have **kwargs parameter.

• args – Getopt-style command line parameters. It is a list of command line options and ar-
guments mostly like sys.argv array, but unlike it without first item (sys.argv[0]) which
commonly contains script name. Default value None means that sys.argv will be used
to get that list.

• emptyVarArgs – Specifies whether target function ‘func’ can take empty arguments list as
its *vararg parameter. Default value True represents the fact that there is no way to set this
restriction in Python syntax. But setting it to False will require at least one getopt-style
argument to be passed as *vararg (if it is present, of course).

• helpOption – Specifies whether to generate --help (and -h) option or not. Default value
is True which means help option will be enabled. Setting this to False will disable
help messages and also will make shorthand -h available for use by another option (see
parameter shortOptions for more info).

• shortOptions – Enables automatic generation of short options. Short options will be the
first letters of arguments name comverted to lower case. If several optional arguments start
with the same letter, no short option will be generated. Default value is True. Note that
short option -h is reserved for help message display if helpOption parameter is set to True.

• docStrings – Try to find parameters description in function’s docstring (__doc__). De-
scription are found using very simple regular expression, so this feature may fail sometimes.
For this to work parameters must be described on separate lines like in the following:

"""

* cmd Command to run interactively.
- cmd Command to run interactively.

* cmd: Command to run interactively.

*** cmd - Command to run interactively.
:param cmd: Command to run interactively.
@param cmd Command to run interactively.
"""

Contents 1

https://pypi.python.org/pypi/entrypoint

rvlm.entrypoint Documentation, Release 0.0.2

where cmd must be the exact parameter name. Some more variants are available, though.
Default value is True.

• changeNames – Enables automatic arguments renaming. Setting this to True will change
naming convention of function arguments to dash-style. For the following example function:

def func(logFile=None, StartDate=None, stop_at_exit=False):
pass;

arguments will be converted to --log-file, --start-date and --stop-at-exit.
But the usage clause will look something like this:

Usage: func.py [--log-file LOG_FILE] [--start-date START_DATE] ...

Returns Function conveys return value from target function func.

rvlm.entrypoint.mainfunction(**kwargs)
Runs the function if the module in which it is declared is being run directly from the command line. Putting the
following before the function definition would be similar to:

if __name__ == ’__main__’:
func()

This will work most expectedly as the outermost decorator, as it will call the function before any more outwards
decorators have been applied.

2 Contents

Python Module Index

r
rvlm.entrypoint, 1

3

	Python Module Index

