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RPython is a translation and support framework for producing implementations of dynamic languages, emphasizing a
clean separation between language specification and implementation aspects.

By separating concerns in this way, our implementation of Python - and other dynamic languages - is able to auto-
matically generate a Just-in-Time compiler for any dynamic language. It also allows a mix-and-match approach to
implementation decisions, including many that have historically been outside of a user’s control, such as target plat-
form, memory and threading models, garbage collection strategies, and optimizations applied, including whether or
not to have a JIT in the first place.

Contents 1



RPython Documentation, Release 4.0.0

2 Contents



CHAPTER 1

General

1.1 Goals and Architecture Overview

1.1.1 High Level Goals

Traditionally, language interpreters are written in a target platform language such as C/Posix, Java or C#. Each
implementation provides a fundamental mapping between application source code and the target environment. One
of the goals of the “all-encompassing” environments, such as the .NET framework and to some extent the Java virtual
machine, is to provide standardized and higher level functionalities in order to support language implementers for
writing language implementations.

PyPy is experimenting with a more ambitious approach. We are using a subset of the high-level language Python,
called RPython Language, in which we write languages as simple interpreters with few references to and dependencies
on lower level details. The RPython toolchain produces a concrete virtual machine for the platform of our choice
by inserting appropriate lower level aspects. The result can be customized by selecting other feature and platform
configurations.

Our goal is to provide a possible solution to the problem of language implementers: having to write l * o * p
interpreters for l dynamic languages and p platforms with o crucial design decisions. PyPy aims at making it possible
to change each of these variables independently such that:

• l: the language that we analyze can be evolved or entirely replaced;

• o: we can tweak and optimize the translation process to produce platform specific code based on different
models and trade-offs;

• p: we can write new translator back-ends to target different physical and virtual platforms.

By contrast, a standardized target environment - say .NET - enforces p=1 as far as it’s concerned. This helps making
o a bit smaller by providing a higher-level base to build upon. Still, we believe that enforcing the use of one common
environment is not necessary. PyPy’s goal is to give weight to this claim - at least as far as language implementation
is concerned - showing an approach to the l * o * p problem that does not rely on standardization.

The most ambitious part of this goal is to generate Just-In-Time Compilers in a language-independent way, instead of
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only translating the source interpreter into an interpreter for the target platform. This is an area of language implemen-
tation that is commonly considered very challenging because of the involved complexity.

1.1.2 Architecture

The job of the RPython toolchain is to translate RPython Language programs into an efficient version of that program
for one of the various target platforms, generally one that is considerably lower-level than Python.

The approach we have taken is to reduce the level of abstraction of the source RPython program in several steps,
from the high level down to the level of the target platform, whatever that may be. Currently we support two broad
flavours of target platforms: the ones that assume a C-like memory model with structures and pointers, and the ones
that assume an object-oriented model with classes, instances and methods (as, for example, the Java and .NET virtual
machines do).

The RPython toolchain never sees the RPython source code or syntax trees, but rather starts with the code objects that
define the behaviour of the function objects one gives it as input. It can be considered as “freezing” a pre-imported
RPython program into an executable form suitable for the target platform.

The steps of the translation process can be summarized as follows:

• The code object of each source functions is converted to a control flow graph by the flow graph builder.

• The control flow graphs are processed by the Annotator, which performs whole-program type inference to
annotate each variable of the control flow graph with the types it may take at run-time.

• The information provided by the annotator is used by the RTyper to convert the high level operations of the
control flow graphs into operations closer to the abstraction level of the target platform.

• Optionally, various transformations <optional-transformations> can then be applied which, for example, per-
form optimizations such as inlining, add capabilities such as stackless-style concurrency, or insert code for the
garbage collector.

• Then, the graphs are converted to source code for the target platform and compiled into an executable.

This process is described in much more detail in the document about the RPython toolchain and in the paper Compiling
dynamic language implementations.

1.1.3 Further reading

• Getting Started with RPython: a hands-on guide to getting involved with the PyPy source code.

• PyPy’s approach to virtual machine construction: a paper presented to the Dynamic Languages Symposium
attached to OOPSLA 2006.

• The translation document: a detailed description of our translation process.

• JIT Generation in PyPy, describing how we produce a Just-in-time Compiler from an interpreter.

• A tutorial of how to use the RPython toolchain to implement your own interpreter.

1.2 Frequently Asked Questions

Contents

• Frequently Asked Questions
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– What is RPython?

– Can RPython compile normal Python programs to C?

– What is this RPython language?

– Does RPython have anything to do with Zope’s Restricted Python?

– What’s the "NOT_RPYTHON" I see in some docstrings?

– Couldn’t we simply take a Python syntax tree and turn it into Lisp?

– Do I have to rewrite my programs in RPython?

– Which backends are there for the RPython toolchain?

– Could we use LLVM?

– Compiling PyPy swaps or runs out of memory

– How do I compile my own interpreters?

– Can RPython modules for PyPy be translated independently?

– Why does the translator draw a Mandelbrot fractal while translating?

See also: Frequently ask questions about PyPy.

1.2.1 What is RPython?

RPython is a framework for implementing interpreters and virtual machines for programming languages, especially
dynamic languages.

1.2.2 Can RPython compile normal Python programs to C?

No, RPython is not a Python compiler.

In Python, it is mostly impossible to prove anything about the types that a program will manipulate by doing a static
analysis. It should be clear if you are familiar with Python, but if in doubt see [BRETT].

If you want a fast Python program, please use the PyPy JIT instead.

1.2.3 What is this RPython language?

RPython is a restricted subset of the Python language. It is used for implementing dynamic language interpreters within
the PyPy toolchain. The restrictions ensure that type inference (and so, ultimately, translation to other languages) of
RPython programs is possible.

The property of “being RPython” always applies to a full program, not to single functions or modules (the translation
toolchain does a full program analysis). The translation toolchain follows all calls recursively and discovers what
belongs to the program and what does not.

RPython program restrictions mostly limit the ability to mix types in arbitrary ways. RPython does not allow the
binding of two different types in the same variable. In this respect (and in some others) it feels a bit like Java. Other
features not allowed in RPython are the use of special methods (__xxx__) except __init__ and __del__, and
the use of reflection capabilities (e.g. __dict__).

1.2. Frequently Asked Questions 5
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You cannot use most existing standard library modules from RPython. The exceptions are some functions in os, math
and time that have native support.

To read more about the RPython limitations read the RPython description.

1.2.4 Does RPython have anything to do with Zope’s Restricted Python?

No. Zope’s RestrictedPython aims to provide a sandboxed execution environment for CPython. PyPy’s RPython is the
implementation language for dynamic language interpreters. However, PyPy also provides a robust sandboxed Python
Interpreter.

1.2.5 What’s the "NOT_RPYTHON" I see in some docstrings?

If you put “NOT_RPYTHON” into the docstring of a function and that function is found while trying to translate
an RPython program, the translation process stops and reports this as an error. You can therefore mark functions as
“NOT_RPYTHON” to make sure that they are never analyzed.

This method of marking a function as not RPython is outdated. For new code, please use the @objectmodel.
not_rpython decorator instead.

1.2.6 Couldn’t we simply take a Python syntax tree and turn it into Lisp?

It’s not necessarily nonsense, but it’s not really The PyPy Way. It’s pretty hard, without some kind of type inference,
to translate this Python:

a + b

into anything significantly more efficient than this Common Lisp:

(py:add a b)

And making type inference possible is what RPython is all about.

You could make #'py:add a generic function and see if a given CLOS implementation is fast enough to give a useful
speed (but I think the coercion rules would probably drive you insane first). – mwh

1.2.7 Do I have to rewrite my programs in RPython?

No, and you shouldn’t try. First and foremost, RPython is a language designed for writing interpreters. It is a restricted
subset of Python. If your program is not an interpreter but tries to do “real things”, like use any part of the standard
Python library or any 3rd-party library, then it is not RPython to start with. You should only look at RPython if you
try to write your own interpreter.

If your goal is to speed up Python code, then look at the regular PyPy, which is a full and compliant Python 2.7
interpreter (which happens to be written in RPython). Not only is it not necessary for you to rewrite your code in
RPython, it might not give you any speed improvements even if you manage to.

Yes, it is possible with enough effort to compile small self-contained pieces of RPython code doing a few performance-
sensitive things. But this case is not interesting for us. If you needed to rewrite the code in RPython, you could as well
have rewritten it in C or C++ or Java for example. These are much more supported, much more documented languages
:-)
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The above paragraphs are not the whole truth. It is true that there are cases where writing a program as
RPython gives you substantially better speed than running it on top of PyPy. However, the attitude of the
core group of people behind PyPy is to answer: “then report it as a performance bug against PyPy!”.

Here is a more diluted way to put it. The “No, don’t!” above is a general warning we give to new people.
They are likely to need a lot of help from some source, because RPython is not so simple nor extensively
documented; but at the same time, we, the pypy core group of people, are not willing to invest time in
supporting 3rd-party projects that do very different things than interpreters for dynamic languages — just
because we have other interests and there are only so many hours a day. So as a summary I believe it is
only fair to attempt to point newcomers at existing alternatives, which are more mainstream and where
they will get help from many people.

If anybody seriously wants to promote RPython anyway, they are welcome to: we won’t actively resist
such a plan. There are a lot of things that could be done to make RPython a better Java-ish language for
example, starting with supporting non-GIL-based multithreading, but we don’t implement them because
they have little relevance to us. This is open source, which means that anybody is free to promote and
develop anything; but it also means that you must let us choose not to go into that direction ourselves.

1.2.8 Which backends are there for the RPython toolchain?

Currently, the only backend is C. It can translate the entire PyPy interpreter. To learn more about backends take a look
at the translation document.

1.2.9 Could we use LLVM?

In theory yes. But we tried to use it 5 or 6 times already, as a translation backend or as a JIT backend — and failed
each time.

In more details: using LLVM as a (static) translation backend is pointless nowadays because you can generate C code
and compile it with clang. (Note that compiling PyPy with clang gives a result that is not faster than compiling it with
gcc.) We might in theory get extra benefits from LLVM’s GC integration, but this requires more work on the LLVM
side before it would be remotely useful. Anyway, it could be interfaced via a custom primitive in the C code. (The
latest such experimental backend is in the branch llvm-translation-backend, which can translate PyPy with
or without the JIT on Linux.)

On the other hand, using LLVM as our JIT backend looks interesting as well — but again we made an attempt, and it
failed: LLVM has no way to patch the generated machine code, and is not suited at all to tracing JITs. Even one big
method JIT trying to use LLVM has given up for similar reasons; read that blog post for more details.

So the position of the core PyPy developers is that if anyone wants to make an N+1’th attempt with LLVM, they are
welcome, and they will receive a bit of help on the IRC channel, but they are left with the burden of proof that it works.

1.2.10 Compiling PyPy swaps or runs out of memory

This is documented (here and here). It needs 4 GB of RAM to run “rpython targetpypystandalone” on top of PyPy,
a bit more when running on top of CPython. If you have less than 4 GB free, it will just swap forever (or fail if you
don’t have enough swap). And we mean free: if the machine has 4 GB in total, then it will swap.

On 32-bit, divide the numbers by two. (We didn’t try recently, but in the past it was possible to compile a 32-bit
version on a 2 GB Linux machine with nothing else running: no Gnome/KDE, for example.)

1.2.11 How do I compile my own interpreters?

Begin by reading Andrew Brown’s tutorial .
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1.2.12 Can RPython modules for PyPy be translated independently?

No, you have to rebuild the entire interpreter. This means two things:

• It is imperative to use test-driven development. You have to exhaustively test your module in pure Python, before
even attempting to translate it. Once you translate it, you should have only a few typing issues left to fix, but
otherwise the result should work out of the box.

• Second, and perhaps most important: do you have a really good reason for writing the module in RPython in the
first place? Nowadays you should really look at alternatives, like writing it in pure Python, using cffi if it needs
to call C code.

In this context it is not that important to be able to translate RPython modules independently of translating the complete
interpreter. (It could be done given enough efforts, but it’s a really serious undertaking. Consider it as quite unlikely
for now.)

1.2.13 Why does the translator draw a Mandelbrot fractal while translating?

Because it’s fun.
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CHAPTER 2

User Documentation

These documents are mainly interesting for users of interpreters written in RPython.

2.1 Cross-translating for ARM

Here we describe the setup required and the steps needed to follow to translate an interpreter using the RPython
translator to target ARM using a cross compilation toolchain.

To translate an RPython program for ARM we can either translate directly on an ARM device following the normal
translation steps. Unfortunately this is not really feasible on most ARM machines. The alternative is to cross-translate
using a cross-compilation toolchain.

To cross-translate we run the translation on a more powerful (usually x86) machine and generate a binary for ARM
using a cross-compiler to compile the generated C code. There are several constraints when doing this. In particular
we currently only support Linux as translation host and target platforms (tested on Ubuntu). Also we need a 32-bit
environment to run the translation. This can be done either on a 32bit host or in 32bit chroot.

2.1.1 Requirements

The tools required to cross translate from a Linux based host to an ARM based Linux target are:

• A checkout of PyPy (default branch).

• The GCC ARM cross compiler (on Ubuntu it is the gcc-arm-linux-gnueabi package) but other
toolchains should also work.

• Scratchbox 2, a cross-compilation engine (scratchbox2 Ubuntu package).

• A 32-bit PyPy or Python.

• And the following (or corresponding) packages need to be installed to create an ARM based chroot:

– debootstrap

– schroot

9
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– binfmt-support

– qemu-system

– qemu-user-static

• The dependencies above are in addition to the ones needed for a regular translation, listed here.

2.1.2 Creating a Qemu based ARM chroot

First we will need to create a rootfs containing the packages and dependencies required in order to translate PyPy or
other interpreters. We are going to assume, that the files will be placed in /srv/chroot/precise_arm.

Create the rootfs by calling:

mkdir -p /srv/chroot/precise_arm
qemu-debootstrap --variant=buildd --arch=armel precise /srv/chroot/precise_arm/
→˓http://ports.ubuntu.com/ubuntu-ports/

Next, copy the qemu-arm-static binary to the rootfs.

cp /usr/bin/qemu-arm-static /srv/chroot/precise_arm/usr/bin/qemu-arm-static

For easier configuration and management we will create a schroot pointing to the rootfs. We need to add a configuration
block (like the one below) to the schroot configuration file in /etc/schroot/schroot.conf.

[precise_arm]
directory=/srv/chroot/precise_arm
users=USERNAME
root-users=USERNAME
groups=users
aliases=default
type=directory

To verify that everything is working in the chroot, running schroot -c precise_arm should start a shell running
in the schroot environment using qemu-arm to execute the ARM binaries. Running uname -m in the chroot should
yield a result like armv7l. Showing that we are emulating an ARM system.

Start the schroot as the user root in order to configure the apt sources and to install the following packages:

schroot -c precise_arm -u root
echo "deb http://ports.ubuntu.com/ubuntu-ports/ precise main universe restricted" > /
→˓etc/apt/sources.list
apt-get update
apt-get install libffi-dev libgc-dev python-dev build-essential libncurses5-dev
→˓libbz2-dev

Now all dependencies should be in place and we can exit the schroot environment.

2.1.3 Configuring scratchbox2

To configure the scratchbox we need to cd into the root directory of the rootfs we created before. From there we
can call the sb2 configuration tools which will take the current directory as the base directory for the scratchbox2
environment.

cd /srv/chroot/precise_arm
sb2-init -c `which qemu-arm` ARM `which arm-linux-gnueabi-gcc`
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This will create a scratchbox2 based environment called ARM that maps calls to gcc done within the scratchbox to the
arm-linux-gnueabi-gcc outside the scratchbox. Now we should have a working cross compilation toolchain in place
and can start cross-translating programs for ARM.

2.1.4 Translation

Having performed all the preliminary steps we should now be able to cross translate a program for ARM. You can use
this minimal target to test your setup before applying it to a larger project.

Before starting the translator we need to set two environment variables, so the translator knows how to use the scratch-
box environment. We need to set the SB2 environment variable to point to the rootfs and the SB2OPT should contain
the command line options for the sb2 command. If our rootfs is in the folder /srv/chroot/precise_arm and the scratch-
box environment is called “ARM”, the variables would be defined as follows.

export SB2=/srv/chroot/precise_arm
export SB2OPT='-t ARM'

Once this is set, you can call the translator. For example save this file

def main(args):
print "Hello World"
return 0

def target(*args):
return main, None

and call the translator

pypy ~/path_to_pypy_checkout/rpython/bin/rpython -O2 --platform=arm target.py

If everything worked correctly this should yield an ARM binary. Running this binary in the ARM chroot or on an
ARM device should produce the output "Hello World".

To translate the full python pypy interpreter with a jit, you can cd into pypy/goal and call

pypy <path to rpython>/rpython/bin/rpython -Ojit --platform=arm targetpypystandalone.
→˓py

2.2 Logging environment variables

PyPy, and all other RPython programs, support some special environment variables used to tweak various advanced
parameters.

2.2.1 Garbage collector

Right now the default GC is (an incremental version of) MiniMark. It has a number of environment variables that can
be tweaked. Their default value should be ok for most usages.

2.2.2 PYPYLOG

The PYPYLOG environment variable enables debugging output. For example:

2.2. Logging environment variables 11

garbage_collection.html#minimark-gc
https://pypy.readthedocs.io/en/latest/man/pypy3.1.html#minimark-environment-variables


RPython Documentation, Release 4.0.0

PYPYLOG=jit:log

means enabling all debugging output from the JIT, and writing to a file called log. More precisely, the condition jit
means enabling output of all sections whose name start with jit; other interesting names to use here are gc to get
output from the GC, or jit-backend to get only output from the JIT’s machine code backend. It is possible to use
several prefixes, like in the following example:

PYPYLOG=jit-log-opt,jit-backend:log

which outputs sections containing to the optimized loops plus anything produced from the JIT backend. The above
example is what you need for jitviewer.

The filename can be given as - to dump the log to stderr.

As a special case, the value PYPYLOG=+filenamemeans that only the section markers are written (for any section).
This is mostly only useful for rpython/tool/logparser.py.

2.2.3 PYPYSTM

Only available in pypy-stm. Names a log file into which the PyPy-STM will output contention information. Can be
read with pypy/stm/print_stm_log.py.

12 Chapter 2. User Documentation
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CHAPTER 3

Writing your own interpreter in RPython

3.1 RPython Language

3.1.1 Definition

RPython is a restricted subset of Python that is amenable to static analysis. Although there are additions to the language
and some things might surprisingly work, this is a rough list of restrictions that should be considered. Note that there
are tons of special cased restrictions that you’ll encounter as you go. The exact definition is “RPython is everything
that our translation toolchain can accept” :)

3.1.2 Flow restrictions

variables

variables should contain values of at most one type as described in Object restrictions at each control flow
point, that means for example that joining control paths using the same variable to contain both a string
and a int must be avoided. It is allowed to mix None (basically with the role of a null pointer) with many
other types: wrapped objects, class instances, lists, dicts, strings, etc. but not with int, floats or tuples.

constants

all module globals are considered constants. Their binding must not be changed at run-time. Moreover,
global (i.e. prebuilt) lists and dictionaries are supposed to be immutable: modifying e.g. a global list will
give inconsistent results. However, global instances don’t have this restriction, so if you need mutable
global state, store it in the attributes of some prebuilt singleton instance.

control structures

all allowed, for loops restricted to builtin types, generators very restricted.

range

range and xrange are identical. range does not necessarily create an array, only if the result is
modified. It is allowed everywhere and completely implemented. The only visible difference to CPython
is the inaccessibility of the xrange fields start, stop and step.
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definitions

run-time definition of classes or functions is not allowed.

generators

generators are supported, but their exact scope is very limited. you can’t merge two different generator in
one control point.

exceptions

fully supported. see below Exception rules for restrictions on exceptions raised by built-in operations

3.1.3 Object restrictions

We are using

integer, float, boolean

works.

strings

a lot of, but not all string methods are supported and those that are supported, not necesarilly accept all
arguments. Indexes can be negative. In case they are not, then you get slightly more efficient code if
the translator can prove that they are non-negative. When slicing a string it is necessary to prove that the
slice start and stop indexes are non-negative. There is no implicit str-to-unicode cast anywhere. Simple
string formatting using the % operator works, as long as the format string is known at translation time; the
only supported formatting specifiers are %s, %d, %x, %o, %f, plus %r but only for user-defined instances.
Modifiers such as conversion flags, precision, length etc. are not supported. Moreover, it is forbidden to
mix unicode and strings when formatting.

tuples

no variable-length tuples; use them to store or return pairs or n-tuples of values. Each combination of
types for elements and length constitute a separate and not mixable type.

There is no general way to convert a list into a tuple, because the length of the result would not be known
statically. (You can of course do t = (lst[0], lst[1], lst[2]) if you know that lst has got
3 items.)

lists

lists are used as an allocated array. Lists are over-allocated, so list.append() is reasonably fast. However, if
you use a fixed-size list, the code is more efficient. Annotator can figure out most of the time that your list
is fixed-size, even when you use list comprehension. Negative or out-of-bound indexes are only allowed
for the most common operations, as follows:

• indexing: positive and negative indexes are allowed. Indexes are checked when requested by an
IndexError exception clause.

• slicing: the slice start must be within bounds. The stop doesn’t need to, but it must not be smaller
than the start. All negative indexes are disallowed, except for the [:-1] special case. No step. Slice
deletion follows the same rules.

• slice assignment: only supports lst[x:y] = sublist, if len(sublist) == y - x. In
other words, slice assignment cannot change the total length of the list, but just replace items.

• other operators: +, +=, in, *, *=, ==, != work as expected.

• methods: append, index, insert, extend, reverse, pop. The index used in pop() follows the same rules
as for indexing above. The index used in insert() must be within bounds and not negative.

14 Chapter 3. Writing your own interpreter in RPython
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dicts

dicts with a unique key type only, provided it is hashable. Custom hash functions and custom equality
will not be honored. Use rpython.rlib.objectmodel.r_dict for custom hash functions.

sets

sets are not directly supported in RPython. Instead you should use a plain dict and fill the values with
None. Values in that dict will not consume space.

list comprehensions

May be used to create allocated, initialized arrays.

functions

• function declarations may use defaults and *args, but not **keywords.

• function calls may be done to a known function or to a variable one, or to a method. You can call with positional
and keyword arguments, and you can pass a *args argument (it must be a tuple).

• as explained above, tuples are not of a variable length. If you need to call a function with a dynamic number of
arguments, refactor the function itself to accept a single argument which is a regular list.

• dynamic dispatch enforces the use of signatures that are equal for all possible called function, or at least “compat-
ible enough”. This concerns mainly method calls, when the method is overridden or in any way given different
definitions in different classes. It also concerns the less common case of explicitly manipulated function objects.
Describing the exact compatibility rules is rather involved (but if you break them, you should get explicit errors
from the rtyper and not obscure crashes.)

builtin functions

A number of builtin functions can be used. The precise set can be found in rpython/annotator/builtin.py
(see def builtin_xxx()). Some builtin functions may be limited in what they support, though.

int, float, str, ord, chr. . . are available as simple conversion functions. Note that int,
float, str. . . have a special meaning as a type inside of isinstance only.

classes

• methods and other class attributes do not change after startup

• single inheritance is fully supported

• use rpython.rlib.objectmodel.import_from_mixin(M) in a class body to copy the whole content of a class M. This
can be used to implement mixins: functions and staticmethods are duplicated (the other class attributes are just
copied unmodified).

• classes are first-class objects too

objects

Normal rules apply. The only special methods that are honoured are __init__, __del__,
__len__, __getitem__, __setitem__, __getslice__, __setslice__, and __iter__.
To handle slicing, __getslice__ and __setslice__ must be used; using __getitem__ and
__setitem__ for slicing isn’t supported. Additionally, using negative indices for slicing is still not
support, even when using __getslice__.

Note that the destructor __del__ should only contain simple operations; for any kind of more complex
destructor, consider using instead rpython.rlib.rgc.FinalizerQueue.

This layout makes the number of types to take care about quite limited.
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3.1.4 Integer Types

While implementing the integer type, we stumbled over the problem that integers are quite in flux in CPython right
now. Starting with Python 2.4, integers mutate into longs on overflow. In contrast, we need a way to perform wrap-
around machine-sized arithmetic by default, while still being able to check for overflow when we need it explicitly.
Moreover, we need a consistent behavior before and after translation.

We use normal integers for signed arithmetic. It means that before translation we get longs in case of overflow, and
after translation we get a silent wrap-around. Whenever we need more control, we use the following helpers (which
live in rpython/rlib/rarithmetic.py):

ovfcheck()

This special function should only be used with a single arithmetic operation as its argument, e.g. z =
ovfcheck(x+y). Its intended meaning is to perform the given operation in overflow-checking mode.

At run-time, in Python, the ovfcheck() function itself checks the result and raises OverflowError if it is
a long. But the code generators use ovfcheck() as a hint: they replace the whole ovfcheck(x+y)
expression with a single overflow-checking addition in C.

intmask()

This function is used for wrap-around arithmetic. It returns the lower bits of its argument, masking
away anything that doesn’t fit in a C “signed long int”. Its purpose is, in Python, to convert from a
Python long that resulted from a previous operation back to a Python int. The code generators ignore
intmask() entirely, as they are doing wrap-around signed arithmetic all the time by default anyway. (We
have no equivalent of the “int” versus “long int” distinction of C at the moment and assume “long ints”
everywhere.)

r_uint

In a few cases (e.g. hash table manipulation), we need machine-sized unsigned arithmetic. For these
cases there is the r_uint class, which is a pure Python implementation of word-sized unsigned integers that
silently wrap around. (“word-sized” and “machine-sized” are used equivalently and mean the native size,
which you get using “unsigned long” in C.) The purpose of this class (as opposed to helper functions as
above) is consistent typing: both Python and the annotator will propagate r_uint instances in the program
and interpret all the operations between them as unsigned. Instances of r_uint are special-cased by the
code generators to use the appropriate low-level type and operations. Mixing of (signed) integers and
r_uint in operations produces r_uint that means unsigned results. To convert back from r_uint to signed
integers, use intmask().

3.1.5 Type Enforcing and Checking

RPython provides a helper decorator to force RPython-level types on function arguments. The decorator, called
enforceargs(), accepts as parameters the types expected to match the arguments of the function.

Functions decorated with enforceargs() have their function signature analyzed and their RPython-level type
inferred at import time (for further details about the flavor of translation performed in RPython, see the Annotation
pass documentation). Encountering types not supported by RPython will raise a TypeError.

enforceargs() by default also performs type checking of parameter types each time the function is invoked. To
disable this behavior, it’s possible to pass the typecheck=False parameter to the decorator.

3.1.6 Exception rules

Exceptions are by default not generated for simple cases.:
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#!/usr/bin/python

lst = [1,2,3,4,5]
item = lst[i] # this code is not checked for out-of-bound access

try:
item = lst[i]

except IndexError:
# complain

Code with no exception handlers does not raise exceptions (after it has been translated, that is. When you run it on
top of CPython, it may raise exceptions, of course). By supplying an exception handler, you ask for error checking.
Without, you assure the system that the operation cannot fail. This rule does not apply to function calls: any called
function is assumed to be allowed to raise any exception.

For example:

x = 5.1
x = x + 1.2 # not checked for float overflow
try:

x = x + 1.2
except OverflowError:

# float result too big

But:

z = some_function(x, y) # can raise any exception
try:

z = some_other_function(x, y)
except IndexError:

# only catches explicitly-raised IndexErrors in some_other_function()
# other exceptions can be raised, too, and will not be caught here.

The ovfcheck() function described above follows the same rule: in case of overflow, it explicitly raise OverflowError,
which can be caught anywhere.

Exceptions explicitly raised or re-raised will always be generated.

3.1.7 PyPy is debuggable on top of CPython

PyPy has the advantage that it is runnable on standard CPython. That means, we can run all of PyPy with all exception
handling enabled, so we might catch cases where we failed to adhere to our implicit assertions.

3.2 Generally Useful RPython Modules

Contents

• Generally Useful RPython Modules

– listsort

– nonconst

– objectmodel
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– rarithmetic

– rbigint

– rrandom

– rsocket

– rstrategies

– streamio

– unroll

– rsre

– parsing

– Regular Expressions

– EBNF

– Parse Trees

* Visitors

– Tree Transformations

* [symbol_1 symbol_2 . . . symbol_n]

* <symbol>

* >nonterminal_1 nonterminal_2 . . . nonterminal_n<

– Extensions to the EBNF grammar format

– Full Example

This page lists some of the modules in rpython/rlib together with some hints for what they can be used for. The
modules here will make up some general library useful for RPython programs (since most of the standard library
modules are not RPython). Most of these modules are somewhat rough still and are likely to change at some point.
Usually it is useful to look at the tests in rpython/rlib/test to get an impression of how to use a module.

3.2.1 listsort

The rpython/rlib/listsort.py module contains an implementation of the timsort sorting algorithm (the sort
method of lists is not RPython). To use it, make (globally) one class by calling MySort = listsort.
make_timsort_class(lt=my_comparison_func). There are also other optional arguments, but usually
you give with lt=... a function that compares two objects from your lists. You need one class per “type” of list and
per comparison function.

The constructor of MySort takes a list as an argument, which will be sorted in place when the sort method of the
MySort instance is called.

3.2.2 nonconst

The rpython/rlib/nonconst.py module is useful mostly for tests. The flow graph builder and the annotator do quite
some constant folding, which is sometimes not desired in a test. To prevent constant folding on a certain value, use the
NonConst class. The constructor of NonConst takes an arbitrary value. The instance of NonConst will behave
during annotation like that value, but no constant folding will happen.
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3.2.3 objectmodel

The rpython/rlib/objectmodel.py module is a mixed bag of various functionality. Some of the more useful ones are:

ComputedIntSymbolic: Instances of ComputedIntSymbolic are treated like integers of unknown value by
the annotator. The value is determined by a no-argument function (which needs to be passed into the constructor
of the class). When the backend emits code, the function is called to determine the value.

CDefinedIntSymbolic: Instances of CDefinedIntSymbolic are also treated like integers of unknown value
by the annotator. When C code is emitted they will be represented by the attribute expr of the symbolic (which
is also the first argument of the constructor).

r_dict: An RPython dict-like object. The constructor of r_dict takes two functions: key_eq and key_hash
which are used for comparing and hashing the entries in the dictionary.

instantiate(cls): Instantiate class cls without calling __init__.

we_are_translated(): This function returns False when run on top of CPython, but the annotator thinks its
return value is True. Therefore it can be used to do different things on top of CPython than after translation.
This should be used extremely sparingly (mostly for optimizations or debug code).

cast_object_to_weakaddress(obj): Returns a sort of “weak reference” to obj, just without any conve-
nience. The weak address that it returns is not invalidated if the object dies, so you need to take care yourself to
know when the object dies. Use with extreme care.

cast_weakadress_to_object(obj): Inverse of the previous function. If the object died then a segfault will
ensue.

UnboxedValue: This is a class which should be used as a base class for a class which carries exactly one integer
field. The class should have __slots__ with exactly one entry defined. After translation, instances of this
class won’t be allocated but represented by tagged pointers*, that is pointers that have the lowest bit set.

3.2.4 rarithmetic

The rpython/rlib/rarithmetic.py module contains functionality to handle the small differences in the behaviour of arith-
metic code in regular Python and RPython code. Most of them are already described in the RPython description.

3.2.5 rbigint

The rpython/rlib/rbigint.py module contains a full RPython implementation of the Python long type (which itself is
not supported in RPython). The rbigint class contains that implementation. To construct rbigint instances use
the static methods fromint, frombool, fromfloat and fromdecimalstr. To convert back to other types
use the methods toint, tobool, touint and tofloat. Since RPython does not support operator overloading,
all the special methods of rbigint that would normally start and end with “__” have these underscores left out for
better readability (so a.add(b) can be used to add two rbigint instances).

3.2.6 rrandom

The rpython/rlib/rrandom.py module contains an implementation of the mersenne twister random number generator.
It contains one class Random which most importantly has a random method which returns a pseudo-random floating
point number between 0.0 and 1.0.
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3.2.7 rsocket

The rpython/rlib/rsocket.py module contains an RPython implementation of the functionality of the socket standard
library with a slightly different interface. The difficulty with the Python socket API is that addresses are not “well-
typed” objects: depending on the address family they are tuples, or strings, and so on, which is not suitable for
RPython. Instead, rsocket contains a hierarchy of Address classes, in a typical static-OO-programming style.

3.2.8 rstrategies

The rpython/rlib/rstrategies module contains a library to implement storage strategies in RPython VMs. The library is
language-independent and extensible. More details and examples can be found in the rstrategies documentation.

3.2.9 streamio

The rpython/rlib/streamio.py contains an RPython stream I/O implementation (which was started by Guido van
Rossum as sio.py in the CPython sandbox as a prototype for the upcoming new file implementation in Python 3000).

3.2.10 unroll

The rpython/rlib/unroll.py module most importantly contains the function unrolling_iterable which wraps an
iterator. Looping over the iterator in RPython code will not produce a loop in the resulting flow graph but will unroll
the loop instead.

3.2.11 rsre

The implementation of regular expressions we use for PyPy. Note that it is hard to reuse in other languages: in Python,
regular expressions are first compiled into a bytecode format by pure Python code from the standard library. This
lower-level module only understands this bytecode format. Without a complete Python interpreter you can’t translate
the regexp syntax to the bytecode format. (There are hacks for limited use cases where you have only static regexps:
they can be precompiled during translation. Alternatively, you could imagine executing a Python subprocess just to
translate a regexp at runtime. . . )

3.2.12 parsing

The rpython/rlib/parsing/ module is a still in-development module to generate tokenizers and parsers in RPython. It is
still highly experimental and only really used by the Prolog interpreter (although in slightly non-standard ways). The
easiest way to specify a tokenizer/grammar is to write it down using regular expressions and simple EBNF format.

The regular expressions are implemented using finite automatons. The parsing engine uses packrat parsing, which has
O(n) parsing time but is more powerful than LL(n) and LR(n) grammars.

3.2.13 Regular Expressions

The regular expression syntax is mostly a subset of the syntax of the re module. Note: this is different from rlib.rsre.
By default, non-special characters match themselves. If you concatenate regular expressions the result will match the
concatenation of strings matched by the single regular expressions.

| R|S matches any string that either matches R or matches S.

* R* matches 0 or more repetitions of R.
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+ R+ matches 1 or more repetitions of R.

? R? matches 0 or 1 repetition of R.

(...) Parenthesis can be used to group regular expressions (note that in contrast to Python’s re module you cannot
later match the content of this group).

{m} R{m} matches exactly m repetitions of R.

{m, n} R{m, n} matches between m and n repetitions of R (including m and n).

[] Matches a set of characters. The characters to be matched can be listed sequentially. A range of characters can
be specified using -. For examples [ac-eg] matches the characters a, c, d, e and g. The whole set can be
inverted by starting it with ^. So [^a] matches anything except a.

To parse a regular expression and to get a matcher for it, you can use the function make_runner(s) in the
rpython.rlib.parsing.regexparse module. It returns a object with a recognize(input) method that
returns True or False depending on whether input matches the string or not.

3.2.14 EBNF

To describe a tokenizer and a grammar the rpython.rlib.parsing.ebnfparse defines a syntax for doing
that.

The syntax file contains a sequence or rules. Every rule either describes a regular expression or a grammar rule.

Regular expressions rules have the form:

NAME: "regex";

NAME is the name of the token that the regular expression produces (it has to consist of upper-case letters), regex is
a regular expression with the syntax described above. One token name is special-cased: a token called IGNORE will
be filtered out of the token stream before being passed on to the parser and can thus be used to match comments or
non-significant whitespace.

Grammar rules have the form:

name: expansion_1 | expansion_2 | ... | expansion_n;

Where expansion_i is a sequence of nonterminal or token names:

symbol_1 symbol_2 symbol_3 ... symbol_n

This means that the nonterminal symbol name (which has to consist of lower-case letters) can be expanded into any
of the expansions. The expansions can consist of a sequence of token names, nonterminal names or literals, which are
strings in quotes that are matched literally.

An example to make this clearer:

IGNORE: " ";
DECIMAL: "0|[1-9][0-9]*";
additive: multitive "+" additive |

multitive;
multitive: primary "*" multitive |

primary;
primary: "(" additive ")" | DECIMAL;

This grammar describes the syntax of arithmetic impressions involving addition and multiplication. The tokenizer
produces a stream of either DECIMAL tokens or tokens that have matched one of the literals “+”, “*”, “(” or “)”. Any
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space will be ignored. The grammar produces a syntax tree that follows the precedence of the operators. For example
the expression 12 + 4 * 5 is parsed into the following tree:

additive

multitive __0_+
'+' additive

primary

DECIMAL
'12'

multitive

primary __1_*
'*' multitive

DECIMAL
'4' primary

DECIMAL
'5'

3.2.15 Parse Trees

The parsing process builds up a tree consisting of instances of Symbol and Nonterminal, the former corresponding
to tokens, the latter to nonterminal symbols. Both classes live in the rpython/rlib/parsing/tree.py module. You can use
the view() method Nonterminal instances to get a pygame view of the parse tree.

Symbol instances have the following attributes: symbol, which is the name of the token and additional_info
which is the matched source.

Nonterminal instances have the following attributes: symbol is the name of the nonterminal and children
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which is a list of the children attributes.

Visitors

To write tree visitors for the parse trees that are RPython, there is a special baseclass RPythonVisitor in
rpython/rlib/parsing/tree.py to use. If your class uses this, it will grow a dispatch(node) method, that calls
an appropriate visit_<symbol> method, depending on the node argument. Here the <symbol> is replaced by the
symbol attribute of the visited node.

For the visitor to be RPython, the return values of all the visit methods need to be of the same type.

3.2.16 Tree Transformations

As the tree of arithmetic example above shows, by default the parse tree contains a lot of nodes that are not really
conveying useful information. To get rid of some of them, there is some support in the grammar format to automatically
create a visitor that transforms the tree to remove the additional nodes. The simplest such transformation just removes
nodes, but there are more complex ones.

The syntax for these transformations is to enclose symbols in expansions of a nonterminal by [. . . ], <. . . > or >. . . <.

[symbol_1 symbol_2 . . . symbol_n]

This will produce a transformer that completely removes the enclosed symbols from the tree.

Example:

IGNORE: " ";
n: "A" [","] n | "A";

Parsing the string “A, A, A” gives the tree:
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n

__0_A
'A'

__1_,
',' n

__0_A
'A'

__1_,
',' n

__0_A
'A'

After transformation the tree has the “,” nodes removed:
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n

__0_A
'A' n

__0_A
'A' n

__0_A
'A'

<symbol>

This will replace the parent with symbol. Every expansion can contain at most one symbol that is enclosed by <. . . >,
because the parent can only be replaced once, obviously.

Example:

IGNORE: " ";
n: "a" "b" "c" m;
m: "(" <n> ")" | "d";

Parsing the string “a b c (a b c d)” gives the tree:
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n

__0_a
'a'

__1_b
'b'

__2_c
'c' m

__3_(
'(' n __4_)

')'

__0_a
'a'

__1_b
'b'

__2_c
'c' m

__5_d
'd'

After transformation the tree looks like this:
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n

__0_a
'a'

__1_b
'b'

__2_c
'c' n

__0_a
'a'

__1_b
'b'

__2_c
'c' m

__5_d
'd'

>nonterminal_1 nonterminal_2 . . . nonterminal_n<

This replaces the nodes nonterminal_1 to nonterminal_n by their children.

Example:

IGNORE: " ";
DECIMAL: "0|[1-9][0-9]*";
list: DECIMAL >list< | DECIMAL;

Parsing the string “1 2” gives the tree:
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list

DECIMAL
'1' list

DECIMAL
'2'

after the transformation the tree looks like:

list

DECIMAL
'1'

DECIMAL
'2'

Note that the transformation works recursively. That means that the following also works: if the string “1 2 3 4 5” is
parsed the tree at first looks like this:
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list

DECIMAL
'1' list

DECIMAL
'2' list

DECIMAL
'3' list

DECIMAL
'4' list

DECIMAL
'5'

But after transformation the whole thing collapses to one node with a lot of children:
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list

DECIMAL
'1'

DECIMAL
'2'

DECIMAL
'3'

DECIMAL
'4'

DECIMAL
'5'

3.2.17 Extensions to the EBNF grammar format

There are some extensions to the EBNF grammar format that are really only syntactic sugar but make writing grammars
less tedious. These are:

symbol?: matches 0 or 1 repetitions of symbol

symbol*: matches 0 or more repetitions of symbol. After the tree transformation all these repetitions are children
of the current symbol.

symbol+: matches 1 or more repetitions of symbol. After the tree transformation all these repetitions are children
of the current symbol.

These are implemented by adding some more rules to the grammar in the correct way. Examples: the grammar:

s: a b? c;

is transformed to look like this:

s: a >_maybe_symbol_0_< c | a c;
_maybe_symbol_0_: b;

The grammar:

s: a b* c;

is transformed to look like this:

s: a >_star_symbol_0< c | a c;
_star_symbol_0: b >_symbol_star_0< | b;

The grammar:

s: a b+ c;

is transformed to look like this:

s: a >_plus_symbol_0< c;
_plus_symbol_0: b >_plus_symbol_0< | b;
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3.2.18 Full Example

A semi-complete parser for the json format:

STRING: "\\"[^\\\\"]*\\"";
NUMBER: "\-?(0|[1-9][0-9]*)(\.[0-9]+)?([eE][\+\-]?[0-9]+)?";
IGNORE: " |\n";
value: <STRING> | <NUMBER> | <object> | <array> | <"null"> |

<"true"> | <"false">;
object: ["{"] (entry [","])* entry ["}"];
array: ["["] (value [","])* value ["]"];
entry: STRING [":"] value;

The resulting tree for parsing the string:

{"a": "5", "b": [1, null, 3, true, {"f": "g", "h": 6}]}

looks like this:

object

entry entry

STRING
'a'

STRING
'5'

STRING
'b' array

NUMBER
'1'

__0_null
'null'

NUMBER
'3'

__1_true
'true' object

entry entry

STRING
'f'

STRING
'g'

STRING
'h'

NUMBER
'6'

3.3 Foreign Function Interface for RPython

3.3.1 Purpose

This document describes an FFI for the RPython language, concentrating on low-level backends like C. It describes
how to declare and call low-level (C) functions from RPython level.
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3.3.2 Declaring low-level external function

Declaring external C function in RPython is easy, but one needs to remember that low level functions eat low level
types (like lltype.Signed or lltype.Array) and memory management must be done by hand. To declare a function, we
write:

from rpython.rtyper.lltypesystem import rffi

external_function = rffi.llexternal(name, args, result)

where:

• name - a C-level name of a function (how it would be rendered)

• args - low level types of args

• result - low level type of a result

You can pass in additional information about C-level includes, libraries and sources by passing in the optional
compilation_info parameter:

from rpython.rtyper.lltypesystem import rffi
from rpython.translator.tool.cbuild import ExternalCompilationInfo

info = ExternalCompilationInfo(includes=[], libraries=[])

external_function = rffi.llexternal(
name, args, result, compilation_info=info
)

See cbuild for more info on ExternalCompilationInfo.

3.3.3 Types

In rffi there are various declared types for C-structures, like CCHARP (char*), SIZE_T (size_t) and others. Refer
to file for details. Instances of non-primitive types must be alloced by hand, with call to lltype.malloc, and freed by
lltype.free both with keyword argument flavor=’raw’. There are several helpers like string -> char* converter, refer to
the source for details.

3.3.4 Registering function as external

Once we provided low-level implementation of an external function, would be nice to wrap call to some library
function (like os.open) with such a call. For this, there is a register_external routine, located in extfunc.py, which
provides nice API for declaring such a functions, passing llimpl as an argument and eventually llfakeimpl as a fake
low-level implementation for tests performed by an llinterp.

3.4 Projects Using RPython

A very time-dependent list of interpreters written in RPython. Corrections welcome, this list was last curated in Nov
2016

Actively Developed:

• PyPy, Python2 and Python3, very complete and maintained, http://pypy.org
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• Pydgin, CPU emulation framework, supports ARM well, jitted, active development, https://github.com/
cornell-brg/pydgin

• RSqueak VM, Smalltalk, core complete, JIT working, graphics etc getting there, in active development https:
//github.com/HPI-SWA-Lab/RSqueak

• Pixie, ‘A small, fast, native lisp with “magical” powers’, jitted, maintained, https://github.com/pixie-lang/pixie

• Monte, ‘A dynamic language inspired by Python and E.’ has an rpython implementation, in active development,
https://github.com/monte-language/typhon

• Typhon, ‘A virtual machine for Monte’, in active development, https://github.com/monte-language/typhon

• Tulip, an untyped functional language, in language design mode, maintained, https://github.com/tulip-lang/tulip/

• Pycket, a Racket implementation, proof of concept, small language core working, a lot of primitives are missing.
Slow development https://github.com/samth/pycket

• Lever, a dynamic language with a modifiable grammar, actively developed, https://github.com/cheery/lever

Complete, functioning, but inactive

• Converge 2, complete, last release version 2.1 in Feb 2015, http://convergepl.org/

• Pyrolog, Prolog, core complete, extensions missing, last commit in Nov 2015, http://bitbucket.org/cfbolz/
pyrolog

• PyPy.js, compiles PyPy to Javascript via emscripten, with a custom JIT backend that emits asm.js code at
runtime, http://pypyjs.org

Inactive (last reviewed Sept 2015):

• Topaz, Ruby, major functionality complete, library missing, inactive http://topazruby.com

• Rapydo, R, execution semantics complete, most builtins missing, inactive, http://bitbucket.org/cfbolz/rapydo

• Hippy, PHP, proof of concept, inactive, http://morepypy.blogspot.de/2012/07/hello-everyone.html

• Scheme, no clue about completeness, inactive, http://bitbucket.org/pypy/lang-scheme/

• PyGirl, Gameboy emulator, works but there is a bug somewhere, does not use JIT, unmaintained, http:
//bitbucket.org/pypy/lang-gameboy

• Javascript, proof of concept, inactive, http://bitbucket.org/pypy/lang-js

• An implementation of Notch’s DCPU-16, https://github.com/AlekSi/dcpu16py/tree/pypy-again

• Haskell, core of the language works, but not many libraries, inactive http://bitbucket.org/cfbolz/haskell-python

• IO, no clue about completeness, inactive https://bitbucket.org/pypy/lang-io

• Qoppy, an implementation Qoppa, which is a scheme without special forms: https://github.com/timfel/qoppy

• XlispX, a toy Lisp: https://bitbucket.org/rxe/xlispx

• RPySOM, an RPython implementation of SOM (Simple Object Model) https://github.com/SOM-st/RPySOM

• SQPyte, really experimental implementation of the SQLite bytecode VM, jitted, probably inactive, https:
//bitbucket.org/softdevteam/sqpyte

• Icbink, an implementation of Kernel, core complete, naive, no JIT optimizations yet, on hiatus https://github.
com/euccastro/icbink
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CHAPTER 4

RPython internals

4.1 Glossary

annotator The component of the RPython toolchain that performs a form of type inference on the flow graph. See
The Annotation Pass in the documentation.

backend Code generator that converts an RPython Language program to a target language using the RPython
toolchain.

compile-time In the context of the JIT , compile time is when the JIT is generating machine code “just in time”.

external function Functions that we don’t want to implement in Python for various reasons (e.g. they need to make
calls into the OS) and whose implementation will be provided by the backend.

garbage collection framework Code that makes it possible to write RPython’s garbage collectors in Python itself.

guard a small test that checks if assumptions the JIT makes during tracing are still true

JIT just in time compiler.

llinterpreter Piece of code that is able to interpret flow graphs. This is very useful for testing purposes, especially if
you work on the RPython Typer.

lltypesystem A C-like type model that contains structs and pointers. A backend that uses this type system is also
called a low-level backend. The C backend uses this typesystem.

low-level helper A function that the RTyper can use a call to as part of implementing some operation in terms of the
target type system.

ootypesystem An object oriented type model containing classes and instances. A backend that uses this type system
is also called a high-level backend. The JVM and CLI backends all use this typesystem.

prebuilt constant In RPython module globals are considered constants. Moreover, global (i.e. prebuilt) lists and
dictionaries are supposed to be immutable (“prebuilt constant” is sometimes abbreviated to “pbc”).

promotion JIT terminology. promotion is a way of “using” a run-time value at compile-time, essentially by deferring
compilation until the run-time value is known. See if the jit docs help.
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RPython RPython Language, a limited subset of the Python language. The limitations make type inference possible.
It is also the language that the PyPy interpreter itself is written in.

RPython toolchain The Annotation Pass, The RPython Typer, and various backends.

rtyper Based on the type annotations, The RPython Typer turns the flow graph into one that fits the model of the target
platform/backend using either the lltypesystem or the ootypesystem.

run-time In the context of the JIT , run time is when the code the JIT has generated is executing.

specialization A way of controlling how a specific function is handled by the annotator. One specialization is to treat
calls to a function with different argument types as if they were calls to different functions with identical source.

transformation Code that modifies flowgraphs to weave in translation aspects

translation-time In the context of the JIT , translation time is when the PyPy source is being analyzed and the JIT
itself is being created.

translator Tool based on the PyPy interpreter which can translate sufficiently static Python programs into low-level
code.

type system The RTyper can target either the lltypesystem or the ootypesystem.

type inference Deduces either partially or fully the type of expressions as described in this type inference article on
Wikipedia. The RPython toolchain’s flavour of type inference is described in The Annotation Pass section.

4.2 Getting Started with RPython

Contents

• Getting Started with RPython

– Trying out the translator

* Trying out the type annotator

* Translating the flow graph to C code

* A slightly larger example

* Translating Full Programs

– Sources

Warning: Please read this FAQ entry first!

RPython is a subset of Python that can be statically compiled. The PyPy interpreter is written mostly in RPython
(with pieces in Python), while the RPython compiler is written in Python. The hard to understand part is that Python
is a meta-programming language for RPython, that is, “being valid RPython” is a question that only makes sense on
the live objects after the imports are done. This might require more explanation. You start writing RPython from
entry_point, a good starting point is rpython/translator/goal/targetnopstandalone.py. This does not do all that
much, but is a start. Now if code analyzed (in this case entry_point) calls some functions, those calls will be
followed. Those followed calls have to be RPython themselves (and everything they call etc.), however not entire
module files. To show how you can use metaprogramming, we can do a silly example (note that closures are not
RPython):
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def generator(operation):
if operation == 'add':

def f(a, b):
return a + b

else:
def f(a, b):

return a - b
return f

add = generator('add')
sub = generator('sub')

def entry_point(argv):
print add(sub(int(argv[1]), 3) 4)
return 0

In this example entry_point is RPython, add and sub are RPython, however, generator is not.

The following introductory level articles are available:

• Laurence Tratt – Fast Enough VMs in Fast Enough Time.

• How to write interpreters in RPython and part 2 by Andrew Brown.

4.2.1 Trying out the translator

The translator is a tool based on the PyPy interpreter which can translate sufficiently static RPython programs into
low-level code (in particular it can be used to translate the full Python interpreter). To be able to experiment with it
you need to download and install the usual (CPython) version of:

• Pygame

• Dot Graphviz

To start the interactive translator shell do:

cd rpython
python bin/translatorshell.py

Test snippets of translatable code are provided in the file rpython/translator/test/snippet.py, which is imported under
the name snippet. For example:

>>> t = Translation(snippet.is_perfect_number, [int])
>>> t.view()

After that, the graph viewer pops up, that lets you interactively inspect the flow graph. To move around, click on
something that you want to inspect. To get help about how to use it, press ‘H’. To close it again, press ‘Q’.

Trying out the type annotator

We have a type annotator that can completely infer types for functions like is_perfect_number (as well as for
much larger examples):

>>> t.annotate()
>>> t.view()

Move the mouse over variable names (in red) to see their inferred types.
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Translating the flow graph to C code

The graph can be turned into C code:

>>> t.rtype()
>>> lib = t.compile_c()

The first command replaces the operations with other low level versions that only use low level types that are available
in C (e.g. int). The compiled version is now in a .so library. You can run it say using ctypes:

>>> f = get_c_function(lib, snippet.is_perfect_number)
>>> f(5)
0
>>> f(6)
1

A slightly larger example

There is a small-to-medium demo showing the translator and the annotator:

python bin/rpython --view --annotate translator/goal/bpnn.py

This causes bpnn.py to display itself as a call graph and class hierarchy. Clicking on functions shows the flow graph
of the particular function. Clicking on a class shows the attributes of its instances. All this information (call graph,
local variables’ types, attributes of instances) is computed by the annotator.

To turn this example to C code (compiled to the executable bpnn-c), type simply:

python bin/rpython translator/goal/bpnn.py

Translating Full Programs

To translate full RPython programs, there is the script bin/rpython in rpython/bin/. Examples for this are a slightly
changed version of Pystone:

python bin/rpython translator/goal/targetrpystonedalone

This will produce the executable “targetrpystonedalone-c”.

The largest example of this process is to translate the full Python interpreter. There is also an FAQ about how to set up
this process for your own interpreters.

There are several environment variables you can find useful while playing with the RPython:

PYPY_USESSION_DIR RPython uses temporary session directories to store files that are generated during the trans-
lation process(e.g., translated C files). PYPY_USESSION_DIR serves as a base directory for these session dirs.
The default value for this variable is the system’s temporary dir.

PYPY_USESSION_KEEP By default RPython keeps only the last PYPY_USESSION_KEEP (defaults to 3) session
dirs inside PYPY_USESSION_DIR. Increase this value if you want to preserve C files longer (useful when
producing lots of lldebug builds).
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4.2.2 Sources

• rpython/translator contains the code analysis and generation stuff. Start reading from translator.py, from which
it should be easy to follow the pieces of code involved in the various translation phases.

• rpython/annotator contains the data model for the type annotation that can be inferred about a graph. The graph
“walker” that uses this is in rpython/annotator/annrpython.py.

• rpython/rtyper contains the code of the RPython typer. The typer transforms annotated flow graphs in a
way that makes them very similar to C code so that they can be easy translated. The graph transforma-
tions are controlled by the code in rpython/rtyper/rtyper.py. The object model that is used can be found in
rpython/rtyper/lltypesystem/lltype.py. For each RPython type there is a file rxxxx.py that contains the low level
functions needed for this type.

• rpython/rlib contains the RPython standard library, things that you can use from rpython.

4.3 RPython directory cross-reference

Here is a fully referenced alphabetical two-level deep directory overview of RPython:

Directory explanation/links
rpython/annotator/ type inferencing code for RPython programs
rpython/config/ handles the numerous options for RPython
rpython/flowspace/ the flow graph builder implementing abstract interpretation
rpython/rlib/ a “standard library” for RPython programs
rpython/rtyper/ the RPython Typer
rpython/rtyper/lltypesystem/ the low-level type system for C-like backends
rpython/memory/ the garbage collector construction framework
rpython/tool/algo/ general-purpose algorithmic and mathematic tools
rpython/translator/ translation backends and support code
rpython/translator/backendopt/ general optimizations that run before a backend generates code
rpython/translator/c/ the GenC backend, producing C code from an RPython program (generally via the

rtyper)
rpython/translator/jvm/ the Java backend
rpython/translator/tool/ helper tools for translation
dotviewer/ graph viewer

4.4 JIT documentation

abstract When a interpreter written in RPython is translated into an executable, the executable contains
a full virtual machine that can optionally include a Just-In-Time compiler. This JIT compiler is
generated automatically from the interpreter that we wrote in RPython.

This JIT Compiler Generator can be applied on interpreters for any language, as long as the inter-
preter itself is written in RPython and contains a few hints to guide the JIT Compiler Generator.

4.4.1 Content

Motivating JIT Compiler Generation
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Contents

• Motivating JIT Compiler Generation

– Motivation

* Overview

* The path we followed

* Practical results

– Alternative approaches to improve speed

– Further reading

This is a non-technical introduction and motivation for RPython’s approach to Just-In-Time compiler generation.

Motivation

Overview

Writing an interpreter for a complex dynamic language like Python is not a small task, especially if, for performance
goals, we want to write a Just-in-Time (JIT) compiler too.

The good news is that it’s not what we did. We indeed wrote an interpreter for Python, but we never wrote any JIT
compiler for Python in PyPy. Instead, we use the fact that our interpreter for Python is written in RPython, which is a
nice, high-level language – and we turn it automatically into a JIT compiler for Python.

This transformation is of course completely transparent to the user, i.e. the programmer writing Python programs.
The goal (which we achieved) is to support all Python features – including, for example, random frame access and
debuggers. But it is also mostly transparent to the language implementor, i.e. to the source code of the Python
interpreter. It only needs a bit of guidance: we had to put a small number of hints in the source code of our interpreter.
Based on these hints, the JIT compiler generator produces a JIT compiler which has the same language semantics
as the original interpreter by construction. This JIT compiler itself generates machine code at runtime, aggressively
optimizing the user’s program and leading to a big performance boost, while keeping the semantics unmodified. Of
course, the interesting bit is that our Python language interpreter can evolve over time without getting out of sync with
the JIT compiler.

The path we followed

Our previous incarnations of PyPy’s JIT generator were based on partial evaluation. This is a well-known and much-
researched topic, considered to be very promising. There have been many attempts to use it to automatically transform
an interpreter into a compiler. However, none of them have lead to substantial speedups for real-world languages. We
believe that the missing key insight is to use partial evaluation to produce just-in-time compilers, rather than classical
ahead-of-time compilers. If this turns out to be correct, the practical speed of dynamic languages could be vastly
improved.

All these previous JIT compiler generators were producing JIT compilers similar to the hand-written Psyco. But today,
starting from 2009, our prototype is no longer using partial evaluation – at least not in a way that would convince paper
reviewers. It is instead based on the notion of tracing JIT, recently studied for Java and JavaScript. When compared to
all existing tracing JITs so far, however, partial evaluation gives us some extra techniques that we already had in our
previous JIT generators, notably how to optimize structures by removing allocations.

The closest comparison to our current JIT is Tamarin’s TraceMonkey. However, this JIT compiler is written manually,
which is quite some effort. Instead, we write a JIT generator at the level of RPython, which means that our final JIT
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does not have to – indeed, cannot – be written to encode all the details of the full Python language. These details are
automatically supplied by the fact that we have an interpreter for full Python.

Practical results

The JIT compilers that we generate use some techniques that are not in widespread use so far, but they are not exactly
new either. The point we want to make here is not that we are pushing the theoretical limits of how fast a given dynamic
language can be run. Our point is: we are making it practical to have reasonably good Just-In-Time compilers for
all dynamic languages, no matter how complicated or non-widespread (e.g. Open Source dynamic languages without
large industry or academic support, or internal domain-specific languages). By practical we mean that this should be:

• Easy: requires little more efforts than writing the interpreter in the first place.

• Maintainable: our generated JIT compilers are not separate projects (we do not generate separate source code,
but only throw-away C code that is compiled into the generated VM). In other words, the whole JIT compiler is
regenerated anew every time the high-level interpreter is modified, so that they cannot get out of sync no matter
how fast the language evolves.

• Fast enough: we can get some rather good performance out of the generated JIT compilers. That’s the whole
point, of course.

Alternative approaches to improve speed

NOTE Please take the following section as just a statement of opinion. In order to be debated over,
the summaries should first be expanded into full arguments. We include them here as links; we
are aware of them, even if sometimes pessimistic about them :-)

There are a large number of approaches to improving the execution speed of dynamic programming languages, most of
which only produce small improvements and none offer the flexibility and customisability provided by our approach.
Over the last 6 years of tweaking, the speed of CPython has only improved by a factor of 1.3 or 1.4 (depending on
benchmarks). Many tweaks are applicable to PyPy as well. Indeed, some of the CPython tweaks originated as tweaks
for PyPy.

IronPython initially achieved a speed of about 1.8 times that of CPython by leaving out some details of the language
and by leveraging the large investment that Microsoft has put into making the .NET platform fast; the current, more
complete implementation has roughly the same speed as CPython. In general, the existing approaches have reached the
end of the road, speed-wise. Microsoft’s Dynamic Language Runtime (DLR), often cited in this context, is essentially
only an API to make the techniques pioneered in IronPython official. At best, it will give another small improvement.

Another technique regularly mentioned is adding types to the language in order to speed it up: either explicit optional
typing or soft typing (i.e., inferred “likely” types). For Python, all projects in this area have started with a simplified
subset of the language; no project has scaled up to anything close to the complete language. This would be a major
effort and be platform- and language-specific. Moreover maintenance would be a headache: we believe that many
changes that are trivial to implement in CPython, are likely to invalidate previous carefully-tuned optimizations.

For major improvements in speed, JIT techniques are necessary. For Python, Psyco gives typical speedups of 2 to 4
times - up to 100 times in algorithmic examples. It has come to a dead end because of the difficulty and huge costs
associated with developing and maintaining it. It has a relatively poor encoding of language semantics - knowledge
about Python behavior needs to be encoded by hand and kept up-to-date. At least, Psyco works correctly even when
encountering one of the numerous Python constructs it does not support, by falling back to CPython. The PyPy JIT
started out as a metaprogrammatic, non-language-specific equivalent of Psyco.
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A different kind of prior art are self-hosting JIT compilers such as Jikes. Jikes is a JIT compiler for Java written in
Java. It has a poor encoding of language semantics; it would take an enormous amount of work to encode all the details
of a Python-like language directly into a JIT compiler. It also has limited portability, which is an issue for Python; it
is likely that large parts of the JIT compiler would need retargetting in order to run in a different environment than the
intended low-level one.

Simply reusing an existing well-tuned JIT like that of the JVM does not really work, because of concept mismatches
between the implementor’s language and the host VM language: the former needs to be compiled to the target envi-
ronment in such a way that the JIT is able to speed it up significantly - an approach which essentially has failed in
Python so far: even though CPython is a simple interpreter, its Java and .NET re-implementations are not significantly
faster.

More recently, several larger projects have started in the JIT area. For instance, Sun Microsystems is investing in
JRuby, which aims to use the Java Hotspot JIT to improve the performance of Ruby. However, this requires a lot of
hand crafting and will only provide speedups for one language on one platform. Some issues are delicate, e.g., how
to remove the overhead of constantly boxing and unboxing, typical in dynamic languages. An advantage compared
to PyPy is that there are some hand optimizations that can be performed, that do not fit in the metaprogramming ap-
proach. But metaprogramming makes the PyPy JIT reusable for many different languages on many different execution
platforms. It is also possible to combine the approaches - we can get substantial speedups using our JIT and then feed
the result to Java’s Hotspot JIT for further improvement. One of us is even a member of the JSR 292 Expert Group to
define additions to the JVM to better support dynamic languages, and is contributing insights from our JIT research,
in ways that will also benefit PyPy.

Finally, tracing JITs are now emerging for dynamic languages like JavaScript with TraceMonkey. The code generated
by PyPy is very similar (but not hand-written) to the concepts of tracing JITs.

Further reading

The description of the current RPython JIT generator is given in PyJitPl5 (draft).

PyJitPl5

This document describes the fifth generation of the RPython JIT generator.

Implementation of the JIT

The JIT’s theory is great in principle, but the actual code is a different story. This section tries to give a high level
overview of how RPython’s JIT is implemented. It’s helpful to have an understanding of how the RPython translation
toolchain works before digging into the sources.

Almost all JIT specific code is found in rpython/jit subdirectories. Translation time code is in the codewriter directory.
The metainterp directory holds platform independent code including the the tracer and the optimizer. Code in the
backend directory is responsible for generating machine code.

JIT hints

To add a JIT to an interpreter, RPython only requires two hints to be added to the target interpreter. These are
jit_merge_point and can_enter_jit. jit_merge_point is supposed to go at the start of opcode dispatch. It allows the
JIT to bail back to the interpreter in case running machine code is no longer suitable. can_enter_jit goes at the end of
a application level loop. In the Python interpreter, this is the JUMP_ABSOLUTE bytecode. The Python interpreter
defines its hints in pypy/module/pypyjit/interp_jit.py in a few overridden methods of the default interpreter loop.
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An interpreter wishing to use the RPython JIT generator must define a list of green variables and a list of red variables.
The green variables are loop constants. They are used to identify the current loop. Red variables are for everything
else used in the execution loop. For example, the Python interpreter passes the code object and the instruction pointer
as greens and the frame object and execution context as reds. These objects are passed to the JIT at the location of the
JIT hints.

JIT Generation

After the RTyping phase of translation, where high level Python operations are turned into low-level ones for the
backend, the translation driver calls apply_jit() in metainterp/warmspot.py to add a JIT compiler to the currently
translating interpreter. apply_jit() decides what assembler backend to use then delegates the rest of the work to the
WarmRunnerDesc class. WarmRunnerDesc finds the two JIT hints in the function graphs. It rewrites the graph
containing the jit_merge_point hint, called the portal graph, to be able to handle special JIT exceptions, which indicate
special conditions to the interpreter upon exiting from the JIT. The location of the can_enter_jit hint is replaced with
a call to a function, maybe_compile_and_run in warmstate.py, that checks if current loop is “hot” and should be
compiled.

Next, starting with the portal graph, codewriter/*.py converts the graphs of the interpreter into JIT bytecode. Since
this bytecode is stored in the final binary, it’s designed to be concise rather than fast. The bytecode codewriter doesn’t
“see” (what it sees is defined by the JIT’s policy) every part of the interpreter. In these cases, it simply inserts an
opaque call.

Finally, translation finishes, including the bytecode of the interpreter in the final binary, and interpreter is ready to use
the runtime component of the JIT.

Tracing

Application code running on the JIT-enabled interpreter starts normally; it is interpreted on top of the usual eval-
uation loop. When an application loop is closed (where the can_enter_jit hint was), the interpreter calls the
maybe_compile_and_run() method of WarmEnterState. This method increments a counter associated with the cur-
rent green variables. When this counter reaches a certain level, usually indicating the application loop has been run
many times, the JIT enters tracing mode.

Tracing is where JIT interprets the bytecode, generated at translation time, of the interpreter interpreting the application
level code. This allows it to see the exact operations that make up the application level loop. Tracing is performed by
MetaInterp and MIFrame classes in metainterp/pyjitpl.py. maybe_compile_and_run() creates a MetaInterp and calls
its compile_and_run_once() method. This initializes the MIFrame for the input arguments of the loop, the red and
green variables passed from the jit_merge_point hint, and sets it to start interpreting the bytecode of the portal graph.

Before starting the interpretation, the loop input arguments are wrapped in a box. Boxes (defined in metain-
terp/history.py) wrap the value and type of a value in the program the JIT is interpreting. There are two main varieties
of boxes: constant boxes and normal boxes. Constant boxes are used for values assumed to be known during tracing.
These are not necessarily compile time constants. All values which are “promoted”, assumed to be constant by the JIT
for optimization purposes, are also stored in constant boxes. Normal boxes contain values that may change during the
running of a loop. There are three kinds of normal boxes: BoxInt, BoxPtr, and BoxFloat, and four kinds of constant
boxes: ConstInt, ConstPtr, ConstFloat, and ConstAddr. (ConstAddr is only used to get around a limitation in the
translation toolchain.)

The meta-interpreter starts interpreting the JIT bytecode. Each operation is executed and then recorded in a list
of operations, called the trace. Operations can have a list of boxes they operate on, arguments. Some operations
(like GETFIELD and GETARRAYITEM) also have special objects that describe how their arguments are laid out in
memory. All possible operations generated by tracing are listed in metainterp/resoperation.py. When a (interpreter-
level) call to a function the JIT has bytecode for occurs during tracing, another MIFrame is added to the stack and the
tracing continues with the same history. This flattens the list of operations over calls. Most importantly, it unrolls the
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opcode dispatch loop. Interpretation continues until the can_enter_jit hint is seen. At this point, a whole iteration of
the application level loop has been seen and recorded.

Because only one iteration has been recorded the JIT only knows about one codepath in the loop. For example, if
there’s a if statement construct like this:

if x:
do_something_exciting()

else:
do_something_else()

and x is true when the JIT does tracing, only the codepath do_something_exciting will be added to the trace.
In future runs, to ensure that this path is still valid, a special operation called a guard operation is added to the trace.
A guard is a small test that checks if assumptions the JIT makes during tracing are still true. In the example above, a
GUARD_TRUE guard will be generated for x before running do_something_exciting.

Once the meta-interpreter has verified that it has traced a loop, it decides how to compile what it has. There is an
optional optimization phase between these actions which is covered future down this page. The backend converts the
trace operations into assembly for the particular machine. It then hands the compiled loop back to the frontend. The
next time the loop is seen in application code, the optimized assembly can be run instead of the normal interpreter.

Optimizations

The JIT employs several techniques, old and new, to make machine code run faster.

Virtuals and Virtualizables

A virtual value is an array, struct, or RPython level instance that is created during the loop and does not escape from it
via calls or longevity past the loop. Since it is only used by the JIT, it can be “optimized out”; the value doesn’t have
to be allocated at all and its fields can be stored as first class values instead of deferencing them in memory. Virtuals
allow temporary objects in the interpreter to be unwrapped. For example, a W_IntObject in the PyPy interpreter can
be unwrapped to just be its integer value as long as the object is known not to escape the machine code.

A virtualizable is similar to a virtual in that its structure is optimized out in the machine code. Virtualizables, however,
can escape from JIT controlled code.

Other optimizations

Most of the JIT’s optimizer is contained in the subdirectory metainterp/optimizeopt/. Refer to it for more
details.

More resources

More documentation about the current JIT is available as a first published article:

• Tracing the Meta-Level: PyPy’s Tracing JIT Compiler

Chapters 5 and 6 of Antonio Cuni’s PhD thesis contain an overview of how Tracing JITs work in general and more
informations about the concrete case of PyPy’s JIT.

The blog posts with the JIT tag might also contain additional information.
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Trace Optimizer

Traces of user programs are not directly translated into machine code. The optimizer module implements several
different semantic preserving transformations that either allow operations to be swept from the trace or convert them
to operations that need less time or space.

The optimizer is in rpython/jit/metainterp/optimizeopt/. When you try to make sense of this module, this page might
get you started.

Before some optimizations are explained in more detail, it is essential to understand how traces look
like. The optimizer comes with a test suit. It contains many trace examples and you might want to
take a look at it (in rpython/jit/metainterp/optimizeopt/test/*.py). The allowed operations can be found in
rpython/jit/metainterp/resoperation.py. Here is an example of a trace:

[p0,i0,i1]
label(p0, i0, i1)
i2 = getarray_item_raw(p0, i0, descr=<Array Signed>)
i3 = int_add(i1,i2)
i4 = int_add(i0,1)
i5 = int_le(i4, 100) # lower-or-equal
guard_true(i5)
jump(p0, i4, i3)

At the beginning it might be clumsy to read but it makes sense when you start to compare the Python code that
constructed the trace:

from array import array
a = array('i',range(101))
sum = 0; i = 0
while i <= 100: # can be seen as label

sum += a[i]
i += 1
# jumps back to the while header

There are better ways to compute the sum from [0..100], but it gives a better intuition on how traces are constructed
than sum(range(101)). Note that the trace syntax is the one used in the test suite. It is also very similar to traces
printed at runtime by PYPYLOG. The first line gives the input variables, the second line is a label operation, the last
one is the backwards jump operation.

These instructions mentioned earlier are special:

• the input defines the input parameter type and name to enter the trace.

• label is the instruction a jump can target. Label instructions have a JitCellToken associated that uniquely
identifies the label. Any jump has a target token of a label.

The token is saved in a so called descriptor of the instruction. It is not written explicitly because it is not done in the
tests either. But the test suite creates a dummy token for each trace and adds it as descriptor to label and jump.
Of course the optimizer does the same at runtime, but using real values. The sample trace includes a descriptor in
getarrayitem_raw. Here it annotates the type of the array. It is a signed integer array.

High level overview

Before the JIT backend transforms any trace into machine code, it tries to transform the trace into an equivalent trace
that executes faster. The method optimize_trace in rpython/jit/metainterp/optimizeopt/__init__.py is the main entry
point.

Optimizations are applied in a sequence one after another and the base sequence is as follows:
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intbounds:rewrite:virtualize:string:earlyforce:pure:heap:unroll

Each of the colon-separated name has a class attached, inheriting from the Optimization class. The Optimizer class
itself also derives from the Optimization class and implements the control logic for the optimization. Most of the
optimizations only require a single forward pass. The trace is ‘propagated’ into each optimization using the method
propagate_forward. Instruction by instruction, it flows from the first optimization to the last optimization. The method
emit_operation is called for every operation that is passed to the next optimizer.

A frequently encountered pattern

To find potential optimization targets it is necessary to know the instruction type. Simple solution is to switch using
the operation number (= type):

for op in operations:
if op.getopnum() == rop.INT_ADD:

# handle this instruction
pass

elif op.getopnum() == rop.INT_FLOOR_DIV:
pass

# and many more

Things get worse if you start to match the arguments (is argument one constant and two variable or vice versa?).
The pattern to tackle this code bloat is to move it to a separate method using make_dispatcher_method. It associates
methods with instruction types:

class OptX(Optimization):
def prefix_INT_ADD(self, op):

pass # emit, transform, ...

dispatch_opt = make_dispatcher_method(OptX, 'prefix_',
default=OptX.emit_operation)

OptX.propagate_forward = dispatch_opt

optX = OptX()
for op in operations:

optX.propagate_forward(op)

propagate_forward searches for the method that is able to handle the instruction type. As an example INT_ADD
will invoke prefix_INT_ADD. If there is no function for the instruction, it is routed to the default implementation
(emit_operation in this example).

Rewrite optimization

The second optimization is called ‘rewrite’ and is commonly also known as strength reduction. A simple example
would be that an integer multiplied by 2 is equivalent to the bits shifted to the left once (e.g. x * 2 == x << 1).
Not only strength reduction is done in this optimization but also boolean or arithmetic simplifications. Other examples
would be: x & 0 == 0, x - 0 == x

Whenever such an operation is encountered (e.g. y = x & 0), no operation is emitted. Instead the variable y is made
equal to 0 (= make_equal_to(op.result, 0)). The variables found in a trace are instances of Box classes
that can be found in rpython/jit/metainterp/history.py. OptValue wraps those variables again and maps the boxes to the
optimization values in the optimizer. When a value is made equal, the two variable’s boxes are made to point to the
same OptValue instance.

NOTE: this OptValue organization is currently being refactored in a branch.
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Pure optimization

Is interwoven into the basic optimizer. It saves operations, results, arguments to be known to have pure semantics.

“Pure” here means the same as the jit.elidable decorator: free of “observable” side effects and referentially
transparent (the operation can be replaced with its result without changing the program semantics). The operations
marked as ALWAYS_PURE in resoperation.py are a subset of the NOSIDEEFFECT operations. Operations such as
new, new array, getfield_(raw/gc) are marked as NOSIDEEFFECT but not as ALWAYS_PURE.

Pure operations are optimized in two different ways. If their arguments are constants, the operation is removed and the
result is turned into a constant. If not, we can still use a memoization technique: if, later, we see the same operation on
the same arguments again, we don’t need to recompute its result, but can simply reuse the previous operation’s result.

Unroll optimization

A detailed description can be found the document Loop-Aware Optimizations in PyPy’s Tracing JIT

This optimization does not fall into the traditional scheme of one forward pass only. In a nutshell it unrolls the trace
_once_, connects the two traces (by inserting parameters into the jump and label of the peeled trace) and uses informa-
tion to iron out allocations, propagate constants and do any other optimization currently present in the ‘optimizeopt’
module.

It is prepended to all optimizations and thus extends the Optimizer class and unrolls the loop once before it proceeds.

Vectorization

• Vectorization

What is missing from this document

• Guards are not explained

• Several optimizations are not explained

Further references

• Allocation Removal by Partial Evaluation in a Tracing JIT

• Loop-Aware Optimizations in PyPy’s Tracing JIT

Virtualizables

Note: this document does not have a proper introduction as to how to understand the basics. We should write some.
If you happen to be here and you’re missing context, feel free to pester us on IRC.

Problem description

The JIT is very good at making sure some objects are never allocated if they don’t escape from the trace. Such objects
are called virtuals. However, if we’re dealing with frames, virtuals are often not good enough. Frames can escape
and they can also be allocated already at the moment we enter the JIT. In such cases we need some extra object that
can still be optimized away, despite existing on the heap.
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Solution

We introduce virtualizables. They’re objects that exist on the heap, but their fields are not always in sync with whatever
happens in the assembler. One example is that virtualizable fields can store virtual objects without forcing them. This
is very useful for frames. Declaring an object to be virtualizable works like this:

class Frame(object):
_virtualizable_ = ['locals[*]', 'stackdepth']

And we use them in JitDriver like this:

jitdriver = JitDriver(greens=[], reds=['frame'], virtualizables=['frame'])

This declaration means that stackdepth is a virtualizable field, while locals is a virtualizable array (a list stored
on a virtualizable). There are various rules about using virtualizables, especially using virtualizable arrays that can be
very confusing. Those will usually end up with a compile-time error (as opposed to strange behavior). The rules are:

• A virtualizable array must be a fixed-size list. After it is initialized (e.g. in Frame.__init__) you cannot
resize it at all. You cannot assign a different list to the field, or even pass around the list. You can only access
frame.array[index] directly.

• Each array access must be with a known positive index that cannot raise an IndexError. Using index =
jit.hint(index, promote=True) might be useful to get a constant-number access. This is only safe
if the index is actually constant or changing rarely within the context of the user’s code.

• If you initialize a new virtualizable in the JIT, it has to be done like this (for example if we’re in Frame.
__init__):

self = hint(self, access_directly=True, fresh_virtualizable=True)

that way you can populate the fields directly.

• If you use virtualizable outside of the JIT – it’s very expensive and sometimes aborts tracing. Consider it
carefully as to how do it only for debugging purposes and not every time (e.g. sys._getframe call).

• If you have something equivalent of a Python generator, where the virtualizable survives for longer, you want
to force it before returning. It’s better to do it that way than by an external call some time later. It’s done using
jit.hint(frame, force_virtualizable=True)

• Your interpreter should have a local variable similar to frame above. It must not be modified as long as it runs
its jit_merge_point loop, and in the loop it must be passed directly to the jit_merge_point() and
can_enter_jit() calls. The JIT generator is known to produce buggy code if you fetch the virtualizable
from somewhere every iteration, instead of reusing the same unmodified local variable.

Vectorization

To find parallel instructions the tracer must provide enough information about memory load/store operations. They
must be adjacent in memory. The requirement for that is that they use the same index variable and offset can be
expressed as a a linear or affine combination.

Command line flags:

• –jit vec=1: turns on the vectorization for marked jitdrivers (e.g. those in the NumPyPy module).

• –jit vec_all=1: turns on the vectorization for any jit driver. See parameters for the filtering heuristics of traces.

48 Chapter 4. RPython internals



RPython Documentation, Release 4.0.0

Features

Currently the following operations can be vectorized if the trace contains parallel operations:

• float32/float64: add, substract, multiply, divide, negate, absolute

• int8/int16/int32/int64 arithmetic: add, substract, multiply, negate, absolute

• int8/int16/int32/int64 logical: and, or, xor

Reduction

Reduction is implemented:

• sum, prod, any, all

Constant & Variable Expansion

Packed arithmetic operations expand scalar variables or contants into vector registers.

Guard Strengthening

Unrolled guards are strengthend on an arithmetical level (See GuardStrengthenOpt). The resulting vector trace will
only have one guard that checks the index.

Calculations on the index variable that are redundant (because of the merged load/store instructions) are not removed.
The backend removes these instructions while assembling the trace.

In addition a simple heuristic (enabled by –jit vec_all=1) tries to remove array bound checks for application level
loops. It tries to identify the array bound checks and adds a transitive guard at the top of the loop:

label(...)
...
guard(i < n) # index guard
...
guard(i < len(a))
a = load(..., i, ...)
...
jump(...)
# becomes
guard(n < len(a))
label(...)
guard(i < n) # index guard
...
a = load(..., i, ...)
...
jump(...)

Future Work and Limitations

• The only SIMD instruction architecture currently supported is SSE4.1

• Packed mul for int8,int64 (see PMUL). It would be possible to use PCLMULQDQ. Only supported by some
CPUs and must be checked in the cpuid.
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• Loop that convert types from int(8|16|32|64) to int(8|16) are not supported in the current SSE4.1 assembler
implementation. The opcode needed spans over multiple instructions. In terms of performance there might only
be little to non advantage to use SIMD instructions for this conversions.

• For a guard that checks true/false on a vector integer regsiter, it would be handy to have 2 xmm registers (one
filled with zero bits and the other with one every bit). This cuts down 2 instructions for guard checking, trading
for higher register pressure.

• prod, sum are only supported by 64 bit data types

• isomorphic function prevents the following cases for combination into a pair: 1) getarrayitem_gc, getar-
rayitem_gc_pure 2) int_add(v,1), int_sub(v,-1)

PyPy’s assembler backends

Draft notes about the organization of assembler backends in the PyPy JIT, in 2016

input: linear sequence of instructions, called a “trace”.

A trace is a sequence of instructions in SSA form. Most instructions correspond to one or a few CPU-level instructions.
There are a few meta-instructions like label and debugging stuff. All branching is done with guards, which are
instructions that check that a condition is true and exit the trace if not. A failing guard can have a new trace added to it
later, called a “bridge”. A patched guard becomes a direct Jcond instruction going to the bridge, with no indirection,
no register spilling, etc.

A trace ends with either a return or a jump to label. The target label is either inside the same trace, or in some older
one. For historical reasons we call a “loop” a trace that is not a bridge. The machine code that we generate is organized
as a forest of trees; the trunk of the tree is a “loop”, and the branches are all bridges (branching off the trunk or off
another branch).

• every trunk or branch that ends in a jump to label can target a label from a different tree, too.

• the whole process of assembling a loop or a branch is basically single-threaded, so no synchronization issue
there (including to patch older generated instructions).

• the generated assembler has got a “frame” in %rbp, which is actually not on the stack at all, but is a GC object
(called a “jitframe”). Spilling goes there.

• the guards are Jcond to a very small piece of generated code, which is basically pushing a couple of constants on
the stack and then jumping to the general guard-recovery code. That code will save the registers into the jitframe
and then exit the whole generated function. The caller of that generated function checks how it finished: if it
finished by hitting a guard, then the caller is responsible for calling the “blackhole interpreter”. This is the
part of the front-end that recovers from failing guards and finishes running the frame (including, possibly, by
jumping again into generated assembler).

Details about the JITting process:

• front-end and optimization pass

• rewrite (includes gc related transformation as well as simplifactions)

• assembler generation

Front-end and optimization pass

Not discussed here in detail. This produces loops and bridges using an instruction set that is “high-level” in some
sense: it contains intructions like “new”/”new_array”, and “setfield”/”setarrayitem”/”setinteriorfield” which describe
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the action of storing a value in a precise field of the structure or array. For example, the “setfield” action might require
implicitly a GC write barrier. This is the high-level trace that we send to the following step.

Rewrite

A mostly but not completely CPU-independent phase: lowers some instructions. For example, the variants of “new”
are lowered to “malloc” and a few “gc_store”: it bumps the pointer of the GC and then sets a few fields explicitly in the
newly allocated structure. The “setfield” is replaced with a “cond_gc_wb_call” (conditional call to the write barrier)
if needed, followed by a “gc_store”.

The “gc_store” instruction can be encoded in a single MOV assembler instruction, but is not as flexible as a MOV.
The address is always specified as “some GC pointer + an offset”. We don’t have the notion of interior pointer for GC
objects.

A different instruction, “gc_store_indexed”, offers additional operands, which can be mapped to a single MOV in-
struction using forms like [rax+8*rcx+24].

Some other complex instructions pass through to the backend, which must deal with them: for example, “card mark-
ing” in the GC. (Writing an object pointer inside an array would require walking the whole array later to find “young”
references. Instead of that, we flip a bit for every range of 128 entries. This is a common GC optimization.) Setting
the card bit of a GC object requires a sequence of assembler instructions that depends too much on the target CPU to
be expressed explicitly here (moreover, it contains a few branches, which are hard to express at this level).

Assembly

No fancy code generation technique, but greedy forward pass that tries to avoid some pitfalls

Handling instructions

• One by one (forward direction). Each instruction asks the register allocator to ensure that some arguments are
in registers (not in the jitframe); asks for a register to put its result into; and asks for additional scratch registers
that will be freed at the end of the instruction. There is a special case for boolean variables: they are stored in
the condition code flags instead of being materialized as a 0/1 value. (They are materialized later, except in the
common case where they are only used by the next guard_false or guard_true and then forgotten.)

• Instruction arguments are loaded into a register on demand. This makes the backend quite easy to write, but
leads do some bad decisions.

Linear scan register allocation

Although it’s always a linear trace that we consider, we don’t use advanced techniques for register allocation: we do
forward, on-demand allocation as the backend produces the assembler. When it asks for a register to put some value
into, we give it any free register, without consideration for what will be done with it later. We compute the longevity
of all variables, but only use it when choosing which register to spill (we spill the variable with the longest longevity).

This works to some extend because it is well integrated with the earlier optimization pass. Loops are unrolled once by
the optimization pass to allow more powerful optimizations—the optimization pass itself is the place that benefits the
most, but it also has benefits here in the assembly pass. These are:

• The first peeling initializes the register binding on the first use.

• This leads to an already allocated register of the trace loop.

• As well as allocated registers when exiting bridges
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[Try to better allocate registers to match the ABI (minor to non benefit in the current state)]

More complex mappings

Some instructions generate more complex code. These are either or both of:

• complex instructions generating some local control flow, like “cond_gc_wb_call” (for write barriers),
“call_assembler” (a call followed by a few checks).

• instructions that invoke custom assembler helpers, like the slow-path of write barriers or the slow-path of al-
locations. These slow-paths are typically generated too, so that we are not constrained by the usual calling
conventions.

GC pointers

Around most CALL instructions, we need to record a description of where the GC pointers are (registers and stack
frame). This is needed in case the CALL invokes a garbage collection. The GC pointers can move; the pointers in the
registers and stack frame are updated by the GC. That’s a reason for why we don’t have explicit interior pointers.

GC pointers can appear as constants in the trace. We are busy changing that to use a constant table and MOV REG,
(%RIP+offset). The “constant” in the table is actually updated by the GC if the object move.

Vectorization

Optimization developed to use SIMD instructions for trace loops. Primary idea was to use it as an optimization of
micro numpy. It has several passes on the already optimized trace.

Shortly explained: It builds dependencies for an unrolled trace loop, gathering pairs/packs of operations that could be
executed in parallel and finally schedules the operations.

What did it add to the code base:

• Dependencies can be constructed

• Code motion of guards to relax dependencies

• Scheduler to reorder trace

• Array bound check removal (especially for unrolled traces)

What can it do:

• Transform vector loops (element wise operations)

• Accumulation (reduce([. . . ],operator,0)). Requires Operation to be associative and commutative

• SSE 4.1 as “vector backend”

We do not

• Keep tracing data around to reoptimize the trace tree. (Once a trace is compiled, minimal data is kept.) This
is one reason (there are others in the front-end) for the following result: JIT-compiling a small loop with two
common paths ends up as one “loop” and one bridge assembled, and the bridge-following path is slightly less
efficient. This is notably because this bridge is assembled with two constraints: the input registers are fixed (from
the guard), and the output registers are fixed (from the jump target); usually these two sets of fixed registers are
different, and copying around is needed.
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• We don’t join trace tails: we only assemble trees.

• We don’t do any reordering (neither of trace instructions nor of individual assembler instructions)

• We don’t do any cross-instruction optimization that makes sense only for the backend and can’t easily be ex-
pressed at a higher level. I’m sure there are tons of examples of that, but e.g. loading a large constant in a
register that will survive for several instructions; moving out of loops parts of some instruction like the address
calculation; etc. etc.

• Other optimization opportunities I can think about: look at the function prologue/epilogue; look at the overhead
(small but not zero) at the start of a bridge. Also check if the way guards are implemented makes sense. Also,
we generate large-ish sequences of assembler instructions with tons of Jcond that are almost never followed; any
optimization opportunity there? (They all go forward, if it changes anything.) In theory we could also replace
some of these with a signal handler on segfault (e.g. guard_nonnull_class).

a GCC or LLVM backend?

At least for comparison we’d like a JIT backend that emits its code using GCC or LLVM (irrespective of the time it
would take). But it’s hard to map reasonably well the guards to the C language or to LLVM IR. The problems are: (1)
we have many guards, we would like to avoid having many paths that each do a full saving-all-local-variables-that-
are-still-alive; (2) it’s hard to patch a guard when a bridge is compiled from it; (3) instructions like a CALL need to
expose the local variables that are GC pointers; CALL_MAY_FORCE need to expose all local variables for optional
off-line reconstruction of the interpreter state.

• Overview: motivating our approach

• Notes about the current work in PyPy

• Optimizer: the step between tracing and writing machine code

• Virtualizable: how virtualizables work and what they are (in other words how to make frames more efficient).

• Assembler backend: draft notes about the organization of the assembler backends

4.5 Architecture specific notes

Here you can find some architecture specific notes.

4.5.1 IBM Mainframe S390X

Our JIT implements the 64 bit version of the IBM Mainframe called s390x. Note that this architecture is big endian.

Currently supported ISAs:

• z13 (released January 2015)

• zEC12 (released September 2012)

• z196 (released August 2010)

• z10 (released February 2008)

To check if all the necessary CPU facilities are installed on the subject machine, please run the test using a copy of the
pypy source code:

$ ./pytest.py rpython/jit/backend/zarch/test/test_assembler -v -k 'test_facility'
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In addition you can run the auto encoding test to check if your Linux GCC tool chain is able to compile all instructions
used in the JIT backend:

$ ./pytest.py rpython/jit/backend/zarch/test/test_auto_encoding.py -v

Translating

Specifically check for these two dependencies. On old versions of some Linux distributions ship older versions.

• libffi (version should do > 3.0.+).

• CPython 2.7.+.

4.6 The RPython Toolchain

Contents

• The RPython Toolchain

– Overview

– Building Flow Graphs

* Introduction

* Abstract interpretation

– The Flow Model

– The Annotation Pass

* Mutable Values and Containers

* User-defined Classes and Instances

– The RPython Typer

– Backend Optimizations

* Function Inlining

* Malloc Removal

* Escape Analysis and Stack Allocation

– Preparation for Source Generation

* Making Exception Handling Explicit

* Memory Management Details

– The C Backend

– A Historical Note

– How It Fits Together

This document describes the toolchain that we have developed to analyze and “compile” RPython programs (like PyPy
itself) to various target platforms.
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It consists of three broad sections: a slightly simplified overview, a brief introduction to each of the major components
of our toolchain and then a more comprehensive section describing how the pieces fit together. If you are reading this
document for the first time, the Overview is likely to be most useful, if you are trying to refresh your PyPy memory
then the How It Fits Together is probably what you want.

4.6.1 Overview

The job of the translation toolchain is to translate RPython programs into an efficient version of that program for one
of various target platforms, generally one that is considerably lower-level than Python. It divides this task into several
steps, and the purpose of this document is to introduce them.

To start with we describe the process of translating an RPython program into C (which is the default and original
target).

The RPython translation toolchain never sees Python source code or syntax trees, but rather starts with the code objects
that define the behaviour of the function objects one gives it as input. The flow graph builder works through these code
objects using abstract interpretation to produce a control flow graph (one per function): yet another representation of
the source program, but one which is suitable for applying type inference and translation techniques and which is the
fundamental data structure most of the translation steps operate on.

It is helpful to consider translation as being made up of the following steps (see also the figure below):

1. The complete program is imported, at which time arbitrary run-time initialization can be performed. Once this
is done, the program must be present in memory as a form that is “static enough” in the sense of RPython.

2. The Annotator performs a global analysis starting from a specified entry point to deduce type and other infor-
mation about what each variable can contain at run-time, building flow graphs as it encounters them.

3. The RPython Typer (or RTyper) uses the high-level information inferred by the Annotator to turn the operations
in the control flow graphs into low-level operations.

4. After the RTyper there are several optional optimizations which can be applied and are intended to make the
resulting program go faster.

5. The next step is preparing the graphs for source generation, which involves computing the names that the
various functions and types in the program will have in the final source and applying transformations which
insert explicit exception handling and memory management operations.

6. The C backend (colloquially known as “GenC”) produces a number of C source files (as noted above, we are
ignoring the other backends for now).

7. These source files are compiled to produce an executable.

(although these steps are not quite as distinct as you might think from this presentation).

There is an interactive interface called rpython/bin/translatorshell.py to the translation process which allows you to
interactively work through these stages.

The following figure gives a simplified overview (PDF color version):
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4.6.2 Building Flow Graphs

Introduction

The task of the flow graph builder (the source is at rpython/flowspace/) is to generate a control-flow graph from a
function. This graph will also contain a trace of the individual operations, so that it is actually just an alternate
representation for the function.

The basic idea is that if an interpreter is given a function, e.g.:

def f(n):
return 3*n+2

it will compile it to bytecode and then execute it on its VM. Instead, the flow graph builder contains an abstract
interpreter which takes the bytecode and performs whatever stack-shuffling and variable juggling is needed, but merely
records any actual operation performed on a Python object into a structure called a basic block. The result of the
operation is represented by a placeholder value that can appear in further operations.

For example, if the placeholder v1 is given as the argument to the above function, the bytecode interpreter will
call v2 = space.mul(space.wrap(3), v1) and then v3 = space.add(v2, space.wrap(2)) and
return v3 as the result. During these calls, the following block is recorded:

Block(v1): # input argument
v2 = mul(Constant(3), v1)
v3 = add(v2, Constant(2))
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Abstract interpretation

build_flow() works by recording all operations issued by the bytecode interpreter into basic blocks. A basic
block ends in one of two cases: when the bytecode interpreters calls is_true(), or when a joinpoint is reached.

• A joinpoint occurs when the next operation is about to be recorded into the current block, but there is already
another block that records an operation for the same bytecode position. This means that the bytecode interpreter
has closed a loop and is interpreting already-seen code again. In this situation, we interrupt the bytecode inter-
preter and we make a link from the end of the current block back to the previous block, thus closing the loop
in the flow graph as well. (Note that this occurs only when an operation is about to be recorded, which allows
some amount of constant-folding.)

• If the bytecode interpreter calls is_true(), the abstract interpreter doesn’t generally know if the answer
should be True or False, so it puts a conditional jump and generates two successor blocks for the current basic
block. There is some trickery involved so that the bytecode interpreter is fooled into thinking that is_true()
first returns False (and the subsequent operations are recorded in the first successor block), and later the same
call to is_true() also returns True (and the subsequent operations go this time to the other successor block).

(This section to be extended. . . )

4.6.3 The Flow Model

Here we describe the data structures produced by build_flow(), which are the basic data structures of the transla-
tion process.

All these types are defined in rpython/flowspace/model.py (which is a rather important module in the PyPy source
base, to reinforce the point).

The flow graph of a function is represented by the class FunctionGraph. It contains a reference to a collection of
Blocks connected by Links.

A Block contains a list of SpaceOperations. Each SpaceOperation has an opname and a list of args and
result, which are either Variables or Constants.

We have an extremely useful PyGame viewer, which allows you to visually inspect the graphs at various stages of the
translation process (very useful to try to work out why things are breaking). It looks like this:
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It is recommended to play with python bin/translatorshell.py on a few examples to get an idea of the
structure of flow graphs. The following describes the types and their attributes in some detail:

FunctionGraph A container for one graph (corresponding to one function).

startblock the first block. It is where the control goes when the function is called. The input argu-
ments of the startblock are the function’s arguments. If the function takes a *args argument,
the args tuple is given as the last input argument of the startblock.

returnblock the (unique) block that performs a function return. It is empty, not actually containing
any return operation; the return is implicit. The returned value is the unique input variable of
the returnblock.

exceptblock the (unique) block that raises an exception out of the function. The two input variables
are the exception class and the exception value, respectively. (No other block will actually link
to the exceptblock if the function does not explicitly raise exceptions.)

Block A basic block, containing a list of operations and ending in jumps to other basic blocks. All the values that are
“live” during the execution of the block are stored in Variables. Each basic block uses its own distinct Variables.

inputargs list of fresh, distinct Variables that represent all the values that can enter this block from
any of the previous blocks.

operations list of SpaceOperations.

exitswitch see below
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exits list of Links representing possible jumps from the end of this basic block to the beginning of
other basic blocks.

Each Block ends in one of the following ways:

• unconditional jump: exitswitch is None, exits contains a single Link.

• conditional jump: exitswitch is one of the Variables that appear in the Block, and exits contains one or
more Links (usually 2). Each Link’s exitcase gives a concrete value. This is the equivalent of a “switch”:
the control follows the Link whose exitcase matches the run-time value of the exitswitch Variable. It is a
run-time error if the Variable doesn’t match any exitcase.

• exception catching: exitswitch is Constant(last_exception). The first Link has exitcase set to
None and represents the non-exceptional path. The next Links have exitcase set to a subclass of Exception,
and are taken when the last operation of the basic block raises a matching exception. (Thus the basic block
must not be empty, and only the last operation is protected by the handler.)

• return or except: the returnblock and the exceptblock have operations set to an empty tuple, exitswitch to
None, and exits empty.

Link A link from one basic block to another.

prevblock the Block that this Link is an exit of.

target the target Block to which this Link points to.

args a list of Variables and Constants, of the same size as the target Block’s inputargs, which gives
all the values passed into the next block. (Note that each Variable used in the prevblock may
appear zero, one or more times in the args list.)

exitcase see above.

last_exception None or a Variable; see below.

last_exc_value None or a Variable; see below.

Note that args uses Variables from the prevblock, which are matched to the target block’s inputargs by
position, as in a tuple assignment or function call would do.

If the link is an exception-catching one, the last_exception and last_exc_value are set to two fresh
Variables that are considered to be created when the link is entered; at run-time, they will hold the exception
class and value, respectively. These two new variables can only be used in the same link’s args list, to be
passed to the next block (as usual, they may actually not appear at all, or appear several times in args).

SpaceOperation A recorded (or otherwise generated) basic operation.

opname the name of the operation. build_flow() produces only operations from the list in
rpython.flowspace.operation, but later the names can be changed arbitrarily.

args list of arguments. Each one is a Constant or a Variable seen previously in the basic block.

result a new Variable into which the result is to be stored.

Note that operations usually cannot implicitly raise exceptions at run-time; so for example, code generators
can assume that a getitem operation on a list is safe and can be performed without bound checking. The
exceptions to this rule are: (1) if the operation is the last in the block, which ends with exitswitch ==
Constant(last_exception), then the implicit exceptions must be checked for, generated, and caught
appropriately; (2) calls to other functions, as per simple_call or call_args, can always raise whatever
the called function can raise — and such exceptions must be passed through to the parent unless they are caught
as above.

Variable A placeholder for a run-time value. There is mostly debugging stuff here.
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name it is good style to use the Variable object itself instead of its name attribute to reference a
value, although the name is guaranteed unique.

Constant A constant value used as argument to a SpaceOperation, or as value to pass across a Link to initialize an
input Variable in the target Block.

value the concrete value represented by this Constant.

key a hashable object representing the value.

A Constant can occasionally store a mutable Python object. It represents a static, pre-initialized, read-only
version of that object. The flow graph should not attempt to actually mutate such Constants.

4.6.4 The Annotation Pass

We describe briefly below how a control flow graph can be “annotated” to discover the types of the objects. This
annotation pass is a form of type inference. It operates on the control flow graphs built by the Flow Object Space.

For a more comprehensive description of the annotation process, see the corresponding section of our EU report about
translation.

The major goal of the annotator is to “annotate” each variable that appears in a flow graph. An “annotation” describes
all the possible Python objects that this variable could contain at run-time, based on a whole-program analysis of all
the flow graphs – one per function.

An “annotation” is an instance of a subclass of SomeObject. Each subclass that represents a specific family of
objects.

Here is an overview (see pypy/annotation/model/):

• SomeObject is the base class. An instance of SomeObject() represents any Python object, and as such
usually means that the input program was not fully RPython.

• SomeInteger() represents any integer. SomeInteger(nonneg=True) represent a non-negative integer
(>=0).

• SomeString() represents any string; SomeChar() a string of length 1.

• SomeTuple([s1,s2,..,sn]) represents a tuple of length n. The elements in this tuple are them-
selves constrained by the given list of annotations. For example, SomeTuple([SomeInteger(),
SomeString()]) represents a tuple with two items: an integer and a string.

The result of the annotation pass is essentially a large dictionary mapping Variables to annotations.

All the SomeXxx instances are immutable. If the annotator needs to revise its belief about what a Variable can contain,
it does so creating a new annotation, not mutating the existing one.

Mutable Values and Containers

Mutable objects need special treatment during annotation, because the annotation of contained values needs to be
possibly updated to account for mutation operations, and consequently the annotation information reflown through the
relevant parts of the flow graphs.

• SomeList stands for a list of homogeneous type (i.e. all the elements of the list are represented by a single
common SomeXxx annotation).

• SomeDict stands for a homogeneous dictionary (i.e. all keys have the same SomeXxx annotation, and so have
all values).
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User-defined Classes and Instances

SomeInstance stands for an instance of the given class or any subclass of it. For each user-defined class seen by
the annotator, we maintain a ClassDef (pypy.annotation.classdef) describing the attributes of the instances
of the class; essentially, a ClassDef gives the set of all class-level and instance-level attributes, and for each one, a
corresponding SomeXxx annotation.

Instance-level attributes are discovered progressively as the annotation progresses. Assignments like:

inst.attr = value

update the ClassDef of the given instance to record that the given attribute exists and can be as general as the given
value.

For every attribute, the ClassDef also records all the positions where the attribute is read. If, at some later time, we
discover an assignment that forces the annotation about the attribute to be generalized, then all the places that read the
attribute so far are marked as invalid and the annotator will restart its analysis from there.

The distinction between instance-level and class-level attributes is thin; class-level attributes are essentially considered
as initial values for instance-level attributes. Methods are not special in this respect, except that they are bound to the
instance (i.e. self = SomeInstance(cls)) when considered as the initial value for the instance.

The inheritance rules are as follows: the union of two SomeInstance annotations is the SomeInstance of the
most precise common base class. If an attribute is considered (i.e. read or written) through a SomeInstance of a
parent class, then we assume that all subclasses also have the same attribute, and that the same annotation applies to
them all (so code like return self.x in a method of a parent class forces the parent class and all its subclasses to
have an attribute x, whose annotation is general enough to contain all the values that all the subclasses might want to
store in x). However, distinct subclasses can have attributes of the same names with different, unrelated annotations if
they are not used in a general way through the parent class.

4.6.5 The RPython Typer

See The RPython Typer.

4.6.6 Backend Optimizations

The point of the backend optimizations are to make the compiled program run faster. Compared to many parts of the
PyPy translator, which are very unlike a traditional compiler, most of these will be fairly familiar to people who know
how compilers work.

Function Inlining

To reduce the overhead of the many function calls that occur when running the PyPy interpreter we implemented
function inlining. This is an optimization which takes a flow graph and a callsite and inserts a copy of the flow graph
into the graph of the calling function, renaming occurring variables as appropriate. This leads to problems if the
original function was surrounded by a try: ... except: ... guard. In this case inlining is not always
possible. If the called function is not directly raising an exception (but an exception is potentially raised by further
called functions) inlining is safe, though.

In addition we also implemented heuristics which function to inline where. For this purpose we assign every function
a “size”. This size should roughly correspond to the increase in code-size which is to be expected should the function
be inlined somewhere. This estimate is the sum of two numbers: for one every operations is assigned a specific
weight, the default being a weight of one. Some operations are considered to be more effort than others, e.g. memory
allocation and calls; others are considered to be no effort at all (casts. . . ). The size estimate is for one the sum of the
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weights of all operations occurring in the graph. This is called the “static instruction count”. The other part of the size
estimate of a graph is the “median execution cost”. This is again the sum of the weight of all operations in the graph,
but this time weighted with a guess how often the operation is executed. To arrive at this guess we assume that at every
branch we take both paths equally often, except for branches that are the end of loops, where the jump back to the
end of the loop is considered more likely. This leads to a system of equations which can be solved to get approximate
weights for all operations.

After the size estimate for all function has been determined, functions are being inlined into their callsites, starting
from the smallest functions. Every time a function is being inlined into another function, the size of the outer function
is recalculated. This is done until the remaining functions all have a size greater than a predefined limit.

Malloc Removal

Since RPython is a garbage collected language there is a lot of heap memory allocation going on all the time, which
would either not occur at all in a more traditional explicitly managed language or results in an object which dies at a
time known in advance and can thus be explicitly deallocated. For example a loop of the following form:

for i in range(n):
...

which simply iterates over all numbers from 0 to n - 1 is equivalent to the following in Python:

l = range(n)
iterator = iter(l)
try:

while 1:
i = iterator.next()
...

except StopIteration:
pass

Which means that three memory allocations are executed: The range object, the iterator for the range object and the
StopIteration instance, which ends the loop.

After a small bit of inlining all these three objects are never even passed as arguments to another function and are also
not stored into a globally reachable position. In such a situation the object can be removed (since it would die anyway
after the function returns) and can be replaced by its contained values.

This pattern (an allocated object never leaves the current function and thus dies after the function returns) occurs quite
often, especially after some inlining has happened. Therefore we implemented an optimization which “explodes”
objects and thus saves one allocation in this simple (but quite common) situation.

Escape Analysis and Stack Allocation

Another technique to reduce the memory allocation penalty is to use stack allocation for objects that can be proved
not to life longer than the stack frame they have been allocated in. This proved not to really gain us any speed, so over
time it was removed again.

4.6.7 Preparation for Source Generation

This, perhaps slightly vaguely named, stage is the most recent to appear as a separate step. Its job is to make the final
implementation decisions before source generation – experience has shown that you really don’t want to be doing any
thinking at the same time as actually generating source code. For the C backend, this step does three things:

• inserts explicit exception handling,
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• inserts explicit memory management operations,

• decides on the names functions and types will have in the final source (this mapping of objects to names is
sometimes referred to as the “low-level database”).

Making Exception Handling Explicit

RPython code is free to use exceptions in much the same way as unrestricted Python, but the final result is a C program,
and C has no concept of exceptions. The exception transformer implements exception handling in a similar way to
CPython: exceptions are indicated by special return values and the current exception is stored in a global data structure.

In a sense the input to the exception transformer is a program in terms of the lltypesystem with exceptions and the
output is a program in terms of the bare lltypesystem.

Memory Management Details

As well as featuring exceptions, RPython is a garbage collected language; again, C is not. To square this circle,
decisions about memory management must be made. In keeping with PyPy’s approach to flexibility, there is freedom
to change how to do it. There are three approaches implemented today:

• reference counting (deprecated, too slow)

• using the Boehm-Demers-Weiser conservative garbage collector

• using one of our custom exact GCs implemented in RPython

Almost all application-level Python code allocates objects at a very fast rate; this means that the memory management
implementation is critical to the performance of the PyPy interpreter.

You can choose which garbage collection strategy to use with :config:‘translation.gc‘.

4.6.8 The C Backend

rpython/translator/c/

This is currently the sole code generation backend.

4.6.9 A Historical Note

As this document has shown, the translation step is divided into more steps than one might at first expect. It is certainly
divided into more steps than we expected when the project started; the very first version of GenC operated on the high-
level flow graphs and the output of the annotator, and even the concept of the RTyper didn’t exist yet. More recently,
the fact that preparing the graphs for source generation (“databasing”) and actually generating the source are best
considered separately has become clear.

4.6.10 How It Fits Together

As should be clear by now, the translation toolchain of PyPy is a flexible and complicated beast, formed from many
separate components.
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Input or Output

Transformation Step

Input Program

Flow Analysis

Annotator

RTyper

Backend Optimizations (optional)

Exception Transformer

GC Transformer

GenC

ANSI C code

A detail that has not yet been emphasized is the interaction of the various components. It makes for a nice presentation
to say that after the annotator has finished the RTyper processes the graphs and then the exception handling is made
explicit and so on, but it’s not entirely true. For example, the RTyper inserts calls to many low-level helpers which must
first be annotated, and the GC transformer can use inlining (one of the backend optimizations) of some of its small
helper functions to improve performance. The following picture attempts to summarize the components involved in
performing each step of the default translation process:
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A component not mentioned before is the “MixLevelAnnotator”; it provides a convenient interface for a “late” (after
RTyping) translation step to declare that it needs to be able to call each of a collection of functions (which may refer
to each other in a mutually recursive fashion) and annotate and rtype them all at once.

4.7 The RPython Typer

Contents

• The RPython Typer

– Overview

– Example: Integer operations
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– The process in more details

– Representations

– Low-Level Types

* Primitive Types

* Structure Types

* Array Types

* Pointer Types

* Function Types

* Opaque Types

– Implementing RPython types

– HighLevelOp interface

– The LLInterpreter

The RPython Typer lives in the directory rpython/rtyper/.

4.7.1 Overview

The RPython Typer is the bridge between the Annotator and the code generators. The annotations of the Annotator
are high-level, in the sense that they describe RPython types like lists or instances of user-defined classes.

To emit code we need to represent these high-level annotations in the low-level model of the target language; for
C, this means structures and pointers and arrays. The Typer both determines the appropriate low-level type for each
annotation and replaces each high-level operation in the control flow graphs with one or a few low-level operations.
Just like low-level types, there is only a fairly restricted set of low-level operations, along the lines of reading or writing
from or to a field of a structure.

In theory, this step is optional; a code generator might be able to read the high-level types directly. Our experience,
however, suggests that this is very unlikely to be practical. “Compiling” high-level types into low-level ones is rather
more messy than one would expect. This was the motivation for making this step explicit and isolated in a single place.
After RTyping, the graphs only contain operations that already live on the level of the target language, making the job
of the code generators much simpler.

4.7.2 Example: Integer operations

Integer operations are the easiest. Assume a graph containing the following operation:

v3 = add(v1, v2)

annotated:

v1 -> SomeInteger()
v2 -> SomeInteger()
v3 -> SomeInteger()

then obviously we want to type it and replace it with:

v3 = int_add(v1, v2)

66 Chapter 4. RPython internals

https://bitbucket.org/pypy/pypy/src/default/rpython/rtyper/


RPython Documentation, Release 4.0.0

where – in C notation – all three variables v1, v2 and v3 are typed int. This is done by attaching an attribute
concretetype to v1, v2 and v3 (which might be instances of Variable or possibly Constant). In our model, this
concretetype is rpython.rtyper.lltypesystem.lltype.Signed. Of course, the purpose of replac-
ing the operation called add with int_add is that code generators no longer have to worry about what kind of
addition (or concatenation maybe?) it means.

4.7.3 The process in more details

The RPython Typer has a structure similar to that of the Annotator both consider each block of the flow graphs in turn,
and perform some analysis on each operation. In both cases the analysis of an operation depends on the annotations of
its input arguments. This is reflected in the usage of the same __extend__ syntax in the source files (compare e.g.
rpython/annotator/binaryop.py and rpython/rtyper/rint.py).

The analogy stops here, though: while it runs, the Annotator is in the middle of computing the annotations, so it might
need to reflow and generalize until a fixpoint is reached. The Typer, by contrast, works on the final annotations that the
Annotator computed, without changing them, assuming that they are globally consistent. There is no need to reflow:
the Typer considers each block only once. And unlike the Annotator, the Typer completely modifies the flow graph,
by replacing each operation with some low-level operations.

In addition to replacing operations, the RTyper creates a concretetype attribute on all Variables and Constants in
the flow graphs, which tells code generators which type to use for each of them. This attribute is a low-level type, as
described below.

4.7.4 Representations

Representations – the Repr classes – are the most important internal classes used by the RTyper. (They are internal
in the sense that they are an “implementation detail” and their instances just go away after the RTyper is finished; the
code generators should only use the concretetype attributes, which are not Repr instances but low-level types.)

A representation contains all the logic about mapping a specific SomeXxx() annotation to a specific low-level type.
For the time being, the RTyper assumes that each SomeXxx() instance needs only one “canonical” representation.
For example, all variables annotated with SomeInteger() will correspond to the Signed low-level type via the
IntegerRepr representation. More subtly, variables annotated SomeList() can correspond either to a structure
holding an array of items of the correct type, or – if the list in question is just a range() with a constant step – a
structure with just start and stop fields.

This example shows that two representations may need very different low-level implementations for the same high-
level operations. This is the reason for turning representations into explicit objects.

The base Repr class is defined in rpython/rtyper/rmodel.py. Most of the rpython/r*.py files define one or a few
subclasses of Repr. The method getrepr() of the RTyper will build and cache a single Repr instance per SomeXxx()
instance; moreover, two SomeXxx() instances that are equal get the same Repr instance.

The key attribute of a Repr instance is called lowleveltype, which is what gets copied into the attribute
concretetype of the Variables that have been given this representation. The RTyper also computes a
concretetype for Constants, to match the way they are used in the low-level operations (for example,
int_add(x, 1) requires a Constant(1) with concretetype=Signed).

In addition to lowleveltype, each Repr subclass provides a set of methods called rtype_op_xxx() which
define how each high-level operation op_xxx is turned into low-level operations.

4.7.5 Low-Level Types

The RPython Typer uses a standard low-level model which we believe can correspond rather directly to various target
languages such as C. This model is implemented in the first part of rpython/rtyper/lltypesystem/lltype.py.
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The second part of rpython/rtyper/lltypesystem/lltype.py is a runnable implementation of these types, for testing pur-
poses. It allows us to write and test plain Python code using a malloc() function to obtain and manipulate structures
and arrays. This is useful for example to implement and test RPython types like ‘list’ with its operations and methods.

The basic assumption is that Variables (i.e. local variables and function arguments and return value) all contain
“simple” values: basically, just integers or pointers. All the “container” data structures (struct and array) are allocated
in the heap, and they are always manipulated via pointers. (There is no equivalent to the C notion of local variable of
a struct type.)

Here is a quick tour:

>>> from rpython.rtyper.lltypesystem.lltype import *

Here are a few primitive low-level types, and the typeOf() function to figure them out:

>>> Signed
<Signed>
>>> typeOf(5)
<Signed>
>>> typeOf(r_uint(12))
<Unsigned>
>>> typeOf('x')
<Char>

Let’s say that we want to build a type “point”, which is a structure with two integer fields “x” and “y”:

>>> POINT = GcStruct('point', ('x', Signed), ('y', Signed))
>>> POINT
<GcStruct point { x: Signed, y: Signed }>

The structure is a GcStruct, which means a structure that can be allocated in the heap and eventually freed by
some garbage collector. (For platforms where we use reference counting, think about GcStruct as a struct with an
additional reference counter field.)

Giving a name (‘point’) to the GcStruct is only for clarity: it is used in the representation.

>>> p = malloc(POINT)
>>> p
<* struct point { x=0, y=0 }>
>>> p.x = 5
>>> p.x
5
>>> p
<* struct point { x=5, y=0 }>

malloc() allocates a structure from the heap, initializes it to 0 (currently), and returns a pointer to it. The
point of all this is to work with a very limited, easily controllable set of types, and define implementations of
types like list in this elementary world. The malloc() function is a kind of placeholder, which must eventually
be provided by the code generator for the target platform; but as we have just seen its Python implementation in
rpython/rtyper/lltypesystem/lltype.py works too, which is primarily useful for testing, interactive exploring, etc.

The argument to malloc() is the structure type directly, but it returns a pointer to the structure, as typeOf() tells
you:

>>> typeOf(p)
<* GcStruct point { x: Signed, y: Signed }>

For the purpose of creating structures with pointers to other structures, we can declare pointer types explicitly:
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>>> typeOf(p) == Ptr(POINT)
True
>>> BIZARRE = GcStruct('bizarre', ('p1', Ptr(POINT)), ('p2', Ptr(POINT)))
>>> b = malloc(BIZARRE)
>>> b.p1
<* None>
>>> b.p1 = b.p2 = p
>>> b.p1.y = 42
>>> b.p2.y
42

The world of low-level types is more complicated than integers and GcStructs, though. The next pages are a reference
guide.

Primitive Types

Signed a signed integer in one machine word (a long, in C)

Unsigned a non-signed integer in one machine word (unsigned long)

Float a 64-bit float (double)

Char a single character (char)

Bool a boolean value

Void a constant. Meant for variables, function arguments, structure fields, etc. which should disappear from the
generated code.

Structure Types

Structure types are built as instances of rpython.rtyper.lltypesystem.lltype.Struct:

MyStructType = Struct('somename', ('field1', Type1), ('field2', Type2)...)
MyStructType = GcStruct('somename', ('field1', Type1), ('field2', Type2)...)

This declares a structure (or a Pascal record) containing the specified named fields with the given types. The field
names cannot start with an underscore. As noted above, you cannot directly manipulate structure objects, but only
pointer to structures living in the heap.

By contrast, the fields themselves can be of primitive, pointer or container type. When a structure contains another
structure as a field we say that the latter is “inlined” in the former: the bigger structure contains the smaller one as part
of its memory layout.

A structure can also contain an inlined array (see below), but only as its last field: in this case it is a “variable-sized”
structure, whose memory layout starts with the non-variable fields and ends with a variable number of array items.
This number is determined when a structure is allocated in the heap. Variable-sized structures cannot be inlined in
other structures.

GcStructs have a platform-specific GC header (e.g. a reference counter); only these can be dynamically malloc()ed.
The non-GC version of Struct does not have any header, and is suitable for being embedded (“inlined”) inside other
structures. As an exception, a GcStruct can be embedded as the first field of a GcStruct: the parent structure uses the
same GC header as the substructure.

Array Types

An array type is built as an instance of rpython.rtyper.lltypesystem.lltype.Array:
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MyIntArray = Array(Signed)
MyOtherArray = Array(MyItemType)
MyOtherArray = GcArray(MyItemType)

Or, for arrays whose items are structures, as a shortcut:

MyArrayType = Array(('field1', Type1), ('field2', Type2)...)

You can build arrays whose items are either primitive or pointer types, or (non-GC non-varsize) structures.

GcArrays can be malloc()ed. The length must be specified when malloc() is called, and arrays cannot be resized; this
length is stored explicitly in a header.

The non-GC version of Array can be used as the last field of a structure, to make a variable-sized structure. The whole
structure can then be malloc()ed, and the length of the array is specified at this time.

Pointer Types

As in C, pointers provide the indirection needed to make a reference modifiable or sharable. Pointers can only point
to a structure, an array or a function (see below). Pointers to primitive types, if needed, must be done by pointing to a
structure with a single field of the required type. Pointer types are declared by:

Ptr(TYPE)

At run-time, pointers to GC structures (GcStruct, GcArray) hold a reference to what they are pointing to. Pointers to
non-GC structures that can go away when their container is deallocated (Struct, Array) must be handled with care: the
bigger structure of which they are part of could be freed while the Ptr to the substructure is still in use. In general,
it is a good idea to avoid passing around pointers to inlined substructures of malloc()ed structures. (The testing
implementation of rpython/rtyper/lltypesystem/lltype.py checks to some extent that you are not trying to use a pointer
to a structure after its container has been freed, using weak references. But pointers to non-GC structures are not
officially meant to be weak references: using them after what they point to has been freed just crashes.)

The malloc() operation allocates and returns a Ptr to a new GC structure or array. In a refcounting implementation,
malloc() would allocate enough space for a reference counter before the actual structure, and initialize it to 1. Note
that the testing implementation also allows malloc() to allocate a non-GC structure or array with a keyword argument
immortal=True. Its purpose is to declare and initialize prebuilt data structures which the code generators will turn
into static immortal non-GC’ed data.

Function Types

The declaration:

MyFuncType = FuncType([Type1, Type2, ...], ResultType)

declares a function type taking arguments of the given types and returning a result of the given type. All these types
must be primitives or pointers. The function type itself is considered to be a “container” type: if you wish, a function
contains the bytes that make up its executable code. As with structures and arrays, they can only be manipulated
through pointers.

The testing implementation allows you to “create” functions by calling functionptr(TYPE, name,

**attrs). The extra attributes describe the function in a way that isn’t fully specified now, but the following
attributes might be present:

_callable a Python callable, typically a function object.

graph the flow graph of the function.
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Opaque Types

Opaque types represent data implemented in a back-end specific way. This data cannot be inspected or manipulated.

There is a predefined opaque type RuntimeTypeInfo; at run-time, a value of type RuntimeTypeInfo represents
a low-level type. In practice it is probably enough to be able to represent GcStruct and GcArray types. This is useful
if we have a pointer of type Ptr(S) which can at run-time point either to a malloc’ed S alone, or to the S first field
of a larger malloc’ed structure. The information about the exact larger type that it points to can be computed or passed
around as a Ptr(RuntimeTypeInfo). Pointer equality on Ptr(RuntimeTypeInfo) can be used to check the
type at run-time.

At the moment, for memory management purposes, some back-ends actually require such information to be available
at run-time in the following situation: when a GcStruct has another GcStruct as its first field. A reference-counting
back-end needs to be able to know when a pointer to the smaller structure actually points to the larger one, so that it can
also decref the extra fields. Depending on the situation, it is possible to reconstruct this information without having to
store a flag in each and every instance of the smaller GcStruct. For example, the instances of a class hierarchy can be
implemented by nested GcStructs, with instances of subclasses extending instances of parent classes by embedding the
parent part of the instance as the first field. In this case, there is probably already a way to know the run-time class of the
instance (e.g. a vtable pointer), but the back-end cannot guess this. This is the reason for which RuntimeTypeInfo
was originally introduced: just after the GcStruct is created, the function attachRuntimeTypeInfo() should be called to
attach to the GcStruct a low-level function of signature Ptr(GcStruct) -> Ptr(RuntimeTypeInfo). This
function will be compiled by the back-end and automatically called at run-time. In the above example, it would follow
the vtable pointer and fetch the opaque Ptr(RuntimeTypeInfo) from the vtable itself. (The reference-counting
GenC back-end uses a pointer to the deallocation function as the opaque RuntimeTypeInfo.)

4.7.6 Implementing RPython types

As hinted above, the RPython types (e.g. ‘list’) are implemented in some “restricted-restricted Python” format by
manipulating only low-level types, as provided by the testing implementation of malloc() and friends. What occurs
then is that the same (tested!) very-low-level Python code – which looks really just like C – is then transformed into a
flow graph and integrated with the rest of the user program. In other words, we replace an operation like add between
two variables annotated as SomeList, with a direct_call operation invoking this very-low-level list concatenation.

This list concatenation flow graph is then annotated as usual, with one difference: the annotator has to be taught about
malloc() and the way the pointer thus obtained can be manipulated. This generates a flow graph which is hopefully
completely annotated with SomePtr() annotation. Introduced just for this case, SomePtr maps directly to a low-level
pointer type. This is the only change needed to the Annotator to allow it to perform type inference of our very-low-level
snippets of code.

See for example rpython/rtyper/rlist.py.

4.7.7 HighLevelOp interface

In the absence of more extensive documentation about how RPython types are implemented, here is the interface and
intended usage of the ‘hop’ argument that appears everywhere. A ‘hop’ is a HighLevelOp instance, which represents
a single high-level operation that must be turned into one or several low-level operations.

hop.llops A list-like object that records the low-level operations that correspond to the current block’s
high-level operations.

hop.genop(opname, list_of_variables, resulttype=resulttype) Append a low-
level operation to hop.llops. The operation has the given opname and arguments, and returns
the given low-level resulttype. The arguments should come from the hop.input*() functions
described below.
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hop.gendirectcall(ll_function, var1, var2...) Like hop.genop(), but produces a
direct_call operation that invokes the given low-level function, which is automatically an-
notated with low-level types based on the input arguments.

hop.inputargs(r1, r2...) Reads the high-level Variables and Constants that are the arguments
of the operation, and convert them if needed so that they have the specified representations. You
must provide as many representations as the operation has arguments. Returns a list of (possibly
newly converted) Variables and Constants.

hop.inputarg(r, arg=i) Same as inputargs(), but only converts and returns the ith argument.

hop.inputconst(lltype, value) Returns a Constant with a low-level type and value.

Manipulation of HighLevelOp instances (this is used e.g. to insert a ‘self’ implicit argument to translate method calls):

hop.copy() Returns a fresh copy that can be manipulated with the functions below.

hop.r_s_popfirstarg() Removes the first argument of the high-level operation. This doesn’t
really changes the source SpaceOperation, but modifies ‘hop’ in such a way that methods like in-
putargs() no longer see the removed argument.

hop.v_s_insertfirstarg(v_newfirstarg, s_newfirstarg) Insert an argument in
front of the hop. It must be specified by a Variable (as in calls to hop.genop()) and a corresponding
annotation.

hop.swap_fst_snd_args() Self-descriptive.

Exception handling:

hop.has_implicit_exception(cls) Checks if hop is in the scope of a branch catching the
exception ‘cls’. This is useful for high-level operations like ‘getitem’ that have several low-
level equivalents depending on whether they should check for an IndexError or not. Calling
has_implicit_exception() also has a side-effect: the rtyper records that this exception is being taken
care of explicitly.

hop.exception_is_here() To be called with no argument just before a llop is generated. It means
that the llop in question will be the one that should be protected by the exception catching. If
has_implicit_exception() was called before, then exception_is_here() verifies that all except links
in the graph have indeed been checked for with an has_implicit_exception(). This is not verified if
has_implicit_exception() has never been called – useful for ‘direct_call’ and other operations that
can just raise any exception.

hop.exception_cannot_occur() The RTyper normally verifies that exception_is_here() was re-
ally called once for each high-level operation that is in the scope of exception-catching links. By
saying exception_cannot_occur(), you say that after all this particular operation cannot raise any-
thing. (It can be the case that unexpected exception links are attached to flow graphs; e.g. any
method call within a try:finally: block will have an Exception branch to the finally part,
which only the RTyper can remove if exception_cannot_occur() is called.)

4.7.8 The LLInterpreter

The LLInterpreter is a simple piece of code that is able to interpret flow graphs. This is very useful for testing purposes,
especially if you work on the RPython Typer. The most useful interface for it is the interpret function in the file
rpython/rtyper/test/test_llinterp.py. It takes as arguments a function and a list of arguments with which the function
is supposed to be called. Then it generates the flow graph, annotates it according to the types of the arguments you
passed to it and runs the LLInterpreter on the result. Example:
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def test_invert():
def f(x):

return ~x
res = interpret(f, [3])
assert res == ~3

Furthermore there is a function interpret_raises which behaves much like py.test.raises. It takes an
exception as a first argument, the function to be called as a second and the list of function arguments as a third.
Example:

def test_raise():
def raise_exception(i):

if i == 42:
raise IndexError

elif i == 43:
raise ValueError

return i
res = interpret(raise_exception, [41])
assert res == 41
interpret_raises(IndexError, raise_exception, [42])
interpret_raises(ValueError, raise_exception, [43])

4.8 Garbage Collection in RPython

Contents

• Garbage Collection in RPython

– Introduction

– Garbage collectors currently written for the GC framework

* Mark and Sweep

* Semispace copying collector

* Generational GC

* Hybrid GC

* Mark & Compact GC

* Minimark GC

4.8.1 Introduction

The overview and description of our garbage collection strategy and framework can be found in the EU-report on this
topic. Please refer to that file for an old, but still more or less accurate, description. The present document describes
the specific garbage collectors that we wrote in our framework.
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4.8.2 Garbage collectors currently written for the GC framework

Reminder: to select which GC you want to include in a translated RPython program, use the --gc=NAME option of
translate.py. For more details, see the overview of command line options for translation.

The following overview is written in chronological order, so the “best” GC (which is the default when translating) is
the last one below.

Mark and Sweep

Classical Mark and Sweep collector. Also contained a lot of experimental and half-unmaintained features. Was
removed.

Semispace copying collector

Two arenas of equal size, with only one arena in use and getting filled with new objects. When the arena is full,
the live objects are copied into the other arena using Cheney’s algorithm. The old arena is then cleared. See
rpython/memory/gc/semispace.py.

On Unix the clearing is done by reading /dev/zero into the arena, which is extremely memory efficient at least on
Linux: it lets the kernel free the RAM that the old arena used and replace it all with allocated-on-demand memory.

The size of each semispace starts at 8MB but grows as needed when the amount of objects alive grows.

Generational GC

This is a two-generations GC. See rpython/memory/gc/generation.py.

It is implemented as a subclass of the Semispace copying collector. It adds a nursery, which is a chunk of the current
semispace. Its size is computed to be half the size of the CPU Level 2 cache. Allocations fill the nursery, and when it
is full, it is collected and the objects still alive are moved to the rest of the current semispace.

The idea is that it is very common for objects to die soon after they are created. Generational GCs help a lot in this
case, particularly if the amount of live objects really manipulated by the program fits in the Level 2 cache. Moreover,
the semispaces fill up much more slowly, making full collections less frequent.

Hybrid GC

This is a three-generations GC.

It is implemented as a subclass of the Generational GC. The Hybrid GC can handle both objects that are inside and
objects that are outside the semispaces (“external”). The external objects are not moving and collected in a mark-and-
sweep fashion. Large objects are allocated as external objects to avoid costly moves. Small objects that survive for a
long enough time (several semispace collections) are also made external so that they stop moving.

This is coupled with a segregation of the objects in three generations. Each generation is collected much less often
than the previous one. The division of the generations is slightly more complicated than just nursery / semispace /
external; see the diagram at the start of the source code, in rpython/memory/gc/hybrid.py.

Mark & Compact GC

Killed in trunk. The following documentation is for historical purposes only.
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Inspired, at least partially, by Squeak’s garbage collector, this is a single-arena GC in which collection compacts
the objects in-place. The main point of this GC is to save as much memory as possible (to be not worse than the
Semispace), but without the peaks of double memory usage during collection.

Unlike the Semispace GC, collection requires a number of passes over the data. This makes collection quite slower.
Future improvements could be to add a nursery to Mark & Compact in order to mitigate this issue.

During a collection, we reuse the space in-place if it is still large enough. If not, we need to allocate a new, larger
space, and move the objects there; however, this move is done chunk by chunk, and chunks are cleared (i.e. returned
to the OS) as soon as they have been moved away. This means that (from the point of view of the OS) a collection will
never cause an important temporary growth of total memory usage.

More precisely, a collection is triggered when the space contains more than N*M bytes, where N is the number of bytes
alive after the previous collection and M is a constant factor, by default 1.5. This guarantees that the total memory
usage of the program never exceeds 1.5 times the total size of its live objects.

The objects themselves are quite compact: they are allocated next to each other in the heap, separated by a GC header
of only one word (4 bytes on 32-bit platforms) and possibly followed by up to 3 bytes of padding for non-word-sized
objects (e.g. strings). There is a small extra memory usage during collection: an array containing 2 bytes per surviving
object is needed to make a backup of (half of) the surviving objects’ header, in order to let the collector store temporary
relation information in the regular headers.

Minimark GC

This is a simplification and rewrite of the ideas from the Hybrid GC. It uses a nursery for the young objects, and
mark-and-sweep for the old objects. This is a moving GC, but objects may only move once (from the nursery to the
old stage).

The main difference with the Hybrid GC is that the mark-and-sweep objects (the “old stage”) are directly handled by
the GC’s custom allocator, instead of being handled by malloc() calls. The gain is that it is then possible, during a
major collection, to walk through all old generation objects without needing to store a list of pointers to them. So as a
first approximation, when compared to the Hybrid GC, the Minimark GC saves one word of memory per old object.

There are a number of environment variables that can be tweaked to influence the GC. (Their default value should be
ok for most usages.)

In more detail:

• The small newly malloced objects are allocated in the nursery (case 1). All objects living in the nursery are
“young”.

• The big objects are always handled directly by the system malloc(). But the big newly malloced objects are still
“young” when they are allocated (case 2), even though they don’t live in the nursery.

• When the nursery is full, we do a minor collection, i.e. we find which “young” objects are still alive (from cases
1 and 2). The “young” flag is then removed. The surviving case 1 objects are moved to the old stage. The dying
case 2 objects are immediately freed.

• The old stage is an area of memory containing old (small) objects. It is handled by
rpython/memory/gc/minimarkpage.py. It is organized as “arenas” of 256KB or 512KB, subdivided into
“pages” of 4KB or 8KB. Each page can either be free, or contain small objects of all the same size. Furthermore
at any point in time each object location can be either allocated or freed. The basic design comes from
obmalloc.c from CPython (which itself comes from the same source as the Linux system malloc()).

• New objects are added to the old stage at every minor collection. Immediately after a minor collection, when
we reach some threshold, we trigger a major collection. This is the mark-and-sweep step. It walks over all
objects (mark), and then frees some fraction of them (sweep). This means that the only time when we want to
free objects is while walking over all of them; we never ask to free an object given just its address. This allows
some simplifications and memory savings when compared to obmalloc.c.
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• As with all generational collectors, this GC needs a write barrier to record which old objects have a reference to
young objects.

• Additionally, we found out that it is useful to handle the case of big arrays specially: when we allocate a big
array (with the system malloc()), we reserve a small number of bytes before. When the array grows old, we use
the extra bytes as a set of bits. Each bit represents 128 entries in the array. Whenever the write barrier is called
to record a reference from the Nth entry of the array to some young object, we set the bit number (N/128) to
1. This can considerably speed up minor collections, because we then only have to scan 128 entries of the array
instead of all of them.

• As usual, we need special care about weak references, and objects with finalizers. Weak references are allocated
in the nursery, and if they survive they move to the old stage, as usual for all objects; the difference is that
the reference they contain must either follow the object, or be set to NULL if the object dies. And the objects
with finalizers, considered rare enough, are immediately allocated old to simplify the design. In particular their
__del__ method can only be called just after a major collection.

• The objects move once only, so we can use a trick to implement id() and hash(). If the object is not in the
nursery, it won’t move any more, so its id() and hash() are the object’s address, cast to an integer. If the object
is in the nursery, and we ask for its id() or its hash(), then we pre-reserve a location in the old stage, and return
the address of that location. If the object survives the next minor collection, we move it there, and so its id() and
hash() are preserved. If the object dies then the pre-reserved location becomes free garbage, to be collected at
the next major collection.

The exact name of this GC is either minimark or incminimark. The latter is a version that does major collections
incrementally (i.e. one major collection is split along some number of minor collections, rather than being done all
at once after a specific minor collection). The default is incminimark, as it seems to have a very minimal impact on
performance and memory usage at the benefit of avoiding the long pauses of minimark.
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