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CHAPTER 1

So You Want To Be An RPM Packager?

So you want to be an RPM Packager (or you at least need to know how to package RPMs because of your dayjob or
otherwise)?

Well hopefully this guide will prove to be helpful.

Below you will find information about RPMs, source code and all sorts of things in between. If you are familiar with
what “Source Code” is and how it gets compiled or “built” into software then feel free to skip the General Topics and
Background section and move right on into the RPM Guide. More advanced topics and items otherwise considered out
of scope of getting you on the path to packaging software will be held in the Appendix. However, I hope all sections
of this guide do prove useful in some capacity.

This guide is meant to be used however the reader feels they would best like to use it. The sections are arranged such
that the reader may start from the beginning and go all the way through and the flow of topics should make sense with
each topic building upon the previous ones. However, if you as the reader feel you are comfortable with a topic or
would just like to use the guide as reference material please feel free to skip sections or jump around as you please.
The goal here is to be useful to someone with little to no background in software development or packaging so some
topics will likely seem oddly introductory for such a guide, but don’t worry that’s by design and you can skip past
those if you like.
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CHAPTER 2

Document Conventions

Code and command line out put will be placed into a block similar to the following:

This is a block! We can do all sorts of cool code and command line stuff
here!

Look, more lines!

$ echo "Here's some command line output!"
Here's some command line output!

#!/usr/bin/env python

def code_example:
print("And here's some code with syntax highlighting and everything!")

code_example()

Topics of interest or vocabulary terms will either be referred to as URLs to their respective documentation/website, as
a bold item, or in italics. The first encounter of the term should be a reference to its respective documentation.

Command line utilities, commands, or things otherwise found in code that are used through out paragraphs will be
written in a monospace font.
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CHAPTER 3

Prerequisites

In order to perform the following examples you will need a few packages installed on your system:

: The inclusion of some of the packages below are not actually necessary because they are a part of the default
installation of Fedora, RHEL, and CentOS but are listed explicitly for perspective of exactly the tools used within this
document.

• For Fedora:

$ dnf install gcc rpm-build rpm-devel rpmlint make python bash coreutils diffutils
patch rpmdevtools

• For RHEL or CentOS (this guide assumes version 7.x of either):

$ yum install gcc rpm-build rpm-devel rpmlint make python bash coreutils diffutils
patch rpmdevtools

Beyond these preliminary packages you will also need a text editor of your choosing. We will not be discussing or
recommending text editors in this document and we trust that everyone has at least one they are comfortable with at
their disposal.
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CHAPTER 4

Contents

4.1 RPM Packaging Guide

Hello! Welcome to RPM Packaging 101 (for lack of a more inventive title). Here you will find all of the information
you need in order to start packaging RPMs for various Linux Distributions that use the RPM Packaging Format.

This guide assumes no previous knowledge about packaging software for any Operating System, Linux or otherwise.
However, it should be noted that this guide is written to target the Red Hat “family” of Linux distributions, which are:

• Fedora

• CentOS

• Red Hat Enterprise Linux (often referred to as RHEL for short)

While these distros are the target environment, it should be noted that lessons learned here should be applicable across
all distributions that are RPM based but the examples will need to be adapted for distribution specific items such as
prerequisite installation items, guidelines, or macros. (More on macros later)

: If you have made it this far and don’t know what a software package or a GNU/Linux distribution is, you might be
best served by exploring some articles on the topics of Linux and Package Managers.

4.1.1 RPM Packages

In this section we are going to hopefully cover everything you ever wanted to know about the RPM Packaging format,
and if not then hopefully the contents of the Appendix will satisfy the craving for knowledge that has been left out of
this section.

What is an RPM?

To kick things off, let’s first define what an RPM actually is. An RPM package is simply a file that contains some
files as well as information the system needs to know about those files. More specifically, it is a file containing a cpio
archive and metadata about itself. The cpio archive is the payload and the RPM Header contains the metadata. The
package manager rpm uses this metadata to determine things like dependencies, where to install files, etc.

Conventionally speaking there are two different types of RPM, there is the Source RPM (SRPM) and the binary RPM.
Both of these share a file format and tooling, but they represent very different things. The payload of a SRPM is a
SPEC file (which describes how to build a binary RPM) and the actually source code that the resulting binary RPM
will be built out of (including any patches that may be needed).
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RPM Packaging Workspace

In the Prerequisites section we installed a package named rpmdevtools which provides a number of handy utilities
for RPM Packagers.

Feel free to explore the output of the following command and check out the various utilities manual pages or help
dialogs.

$ rpm -ql rpmdevtools | grep bin

For the sake of setting up our RPM Packaging workspace let’s use the rpmdev-setuptree utility to create our
directory layout. We will then define what each directory in the directory structure is meant for.

$ rpmdev-setuptree

$ tree ~/rpmbuild/
/home/maxamillion/rpmbuild/
|-- BUILD
|-- RPMS
|-- SOURCES
|-- SPECS
`-- SRPMS

5 directories, 0 files

Direc-
tory

Purpose

BUILD Various %buildroot directories will be created here when packages are built. This is useful for
inspecting a postmortem of a build that goes bad if the logs output don’t provide enough information.

RPMS Binary RPMs will land here in subdirectories of Architecture. For example: noarch and x86_64
SOURCESCompressed source archives and any patches should go here, this is where the rpmbuild command

will look for them.
SPECS SPEC files live here.
SRPMS When the correct arguments are passed to rpmbuild to build a Source RPM instead of a Binary RPM,

the Source RPMs (SRPMS) will land in this directory.

What is a SPEC File?

A SPEC file can be thought of the as the recipe that the rpmbuild utility uses to actually build an RPM. It tells the
build system what to do by defining instructions in a series of sections. The sections are defined between the Preamble
and the Body. Within the Preamble we will define a series of metadata items that will be used through out the Body
and the Body is where the bulk of the work is accomplished.

Preamble Items

In the table below you will find the items that are used in RPM Spec files in the Preamble section.
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SPEC
Directive

Definition

Name The (base) name of the package, which should match the SPEC file name
Version The upstream version number of the software.
Release The initial value should normally be 1%{?dist}, this value should be incremented each new release

of the package and reset to 1 when a new Version of the software is built.
Summary A brief, one-line summary of the package.
License The license of the software being packaged. For packages that are destined for community

distributions such as Fedora this must be an Open Source License abiding by the specific
distribution’s Licensing Guidelines.

URL The full URL for more information about the program (most often this is the upstream project
website for the software being packaged).

Source0 Path or URL to the compressed archive of the upstream source code (unpatched, patches are
handled elsewhere). This is ideally a listing of the upstream URL resting place and not just a local
copy of the source. If needed, more SourceX directives can be added, incrementing the number
each time such as: Source1, Source2, Source3, and so on.

Patch0 The name of the first patch to apply to the source code if necessary. If needed, more PatchX
directives can be added, incrementing the number each time such as: Patch1, Patch2, Patch3, and so
on.

BuildArch If the package is not architecture dependent, i.e. written entirely in an interpreted programming
language, this should be BuildArch: noarch otherwise it will automatically inherit the
Architecture of the machine it’s being built on.

BuildRequiresA comma or whitespace separated list of packages required for building (compiling) the program.
There can be multiple entries of BuildRequires each on its own line in the SPEC file.

Requires A comma or whitespace separated list of packages required by the software to run once installed.
There can be multiple entries of Requires each on its own line in the SPEC file.

ExcludeArchIn the event a piece of software can not operate on a specific processor architecture, you can
exclude it here.

There are three “special” directives listed above which are Name, Version, and Release which are used to create
the RPM package’s filename. You will often see these referred to by other RPM Package Maintainers and Systems
Administrators as N-V-R or just simply NVR as RPM package filenames are of NAME-VERSION-RELEASE format.

For example, if we were to query about a specific package:

$ rpm -q python
python-2.7.5-34.el7.x86_64

Here python is our Package Name, 2.7.5 is our Version, and 34.el7 is our Release. The final marker is x86_64
and is our architecture, which is not something we control as a RPM Packager (with the exception of noarch, more
on that later) but is a side effect of the rpmbuild build environment, something we will cover in more detail later.

Body Items

In the table below you will find the items that are used in RPM Spec files in the body.

4.1. RPM Packaging Guide 9
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SPEC
Directive

Definition

%descriptionA full description of the software packaged in the RPM, this can consume multiple lines and be
broken into paragraphs.

%prep Command or series of commands to prepare the software to be built. Example is to uncompress the
archive in Source0. This can contain shell script.

%build Command or series of commands used to actually perform the build procedure (compile) of the
software.

%install Command or series of commands used to actually install the various artifacts into a resulting
location in the FHS. Something to note is that this is done within the relative context of the
%buildroot (more on that later).

%check Command or series of commands to “test” the software. This is normally things such as unit tests.
%files The list of files that will be installed in their final resting place in the context of the target system.
%changelogA record of changes that have happened to the package between different Version or Release

builds.

Advanced items

There are a series of advanced items including what are known as scriptlets and triggers which take effect at different
points through out the installation process on the target machine (not the build process). These are out of the scope of
this document, but there is plenty of information on them in the Appendix.

BuildRoots

The term “buildroot” is unfortunately ambiguous and you will often get various different definitions. However in the
world of RPM Packages this is literally a chroot environment such that you are creating a filesystem hierarchy in a
new “fake” root directory much in the way these contents can be laid down upon an actual system’s filesystem and
not violate it’s integrity. Imagine this much in the same way that you would imagine creating the contents for a tarball
such that it would be expanded at the root (/) directory of an existing system as this is effectively what RPM will do
at a certain point during an installation transaction. Ultimately the payload of the resulting Binary RPM is extracted
from this environment and put into the cpio archive.

RPM Macros

A rpm macro is a straight text substitution that can be conditionally assigned based on the optional evaluation of
a statement when certain built-in functionality is used. What this means is that we can have RPM perform text
substitutions for us so that we don’t have to.

An example of how this can be extremely useful for a RPM Packager is if we wanted to reference the Version of the
software we are packaging multiple times through out our SPEC file but only want to define it one time. We would
then use the %{version} macro and it would be substituted in place by whatever the actual version number is that
was entered in the Version field of the SPEC.

: One handy utility of the rpm command for packagers is the --eval flag which allows you to ask rpm to evaluate
a macro. If you see a macro in a SPEC file that you’re not familiar with, you can quickly evaluate the expression.

$ rpm --eval %{_bindir}
/usr/bin

$ rpm --eval %{_libexecdir}
/usr/libexec
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A common macro we will encounter as a packager is %{?dist} which signifies the “distribution tag” allowing for a
short textual representation of the distribution used for the build to be injected into a text field.

For example:

# On a RHEL 7.x machine
$ rpm --eval %{?dist}
.el7

# On a Fedora 23 machine
$ rpm --eval %{?dist}
.fc23

For more information, please reference the More on Macros section of the Appendix.

Working with SPEC files

As a RPM Packager, you will likely spend a large majority of your time, when packaging software, editing the SPEC
file. The spec file is the recipe we use to tell rpmbuild how to actually perform a build. In this section we will
discuss how to create and modify a spec file.

When it comes time to package new software, a new SPEC file must be created. We could write one from scratch
from memory but that sounds boring and tedious, so let’s not do that. The good news is that we’re in luck and there’s
an utility called rpmdev-newspec. This utility will create a new spec file for us. We will just fill in the various
directives or add new fields as needed. This provides us with a nice baseline template.

If you have not already done so by way of another section of the guide, go ahead and download the example programs
now and place them in your ~/rpmbuild/SOURCES directory.

• bello-0.1.tar.gz

• pello-0.1.1.tar.gz

• cello-1.0.tar.gz

– cello-output-first-patch.patch

Let’s go ahead and create a SPEC file for each of our three implementations of our example and then we will look at
the SPEC files and the

: Some programmer focused text editors will pre-populate a new file with the extension .spec with a SPEC template
of their own but rpmdev-newspec is an editor-agnostic method which is why it is chosen here.

$ cd ~/rpmbuild/SPECS

$ rpmdev-newspec bello
bello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec cello
cello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec pello
pello.spec created; type minimal, rpm version >= 4.11.

You will now find three SPEC files in your ~/rpmbuild/SPECS/ directory all matching the names you passed
to rpmdev-newspec but with the .spec file extension. Take a moment to look at the files using your favorite
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text editor, the directives should look familiar from the What is a SPEC File? section. We will discuss the exact
information we will input into these fields in the following sections that will focus specifically on each example.

: The rpmdev-newspec utility does not use Linux Distribution specific guidelines or conventions, however this
document is targeted towards using conventions and guidelines for Fedora, CentOS, and RHEL so you will notice:

We remove the use of rm $RPM_BUILD_ROOT as it is no longer necessary to perform that task when building on
RHEL or CentOS 7.0 or newer or on Fedora version 18 or newer.

We also will favor the use of %{buildroot} notation over $RPM_BUILD_ROOT when referencing RPM’s Build-
root for consistency with all other defined or provided macros through out the SPEC

There are three examples below, each one is meant to be self-sufficient in instruction such that you can jump to
a specific one if it matches your needs for packaging. However, feel free to read them straight through for a full
exploration of packaging different kinds of software.

Software
Name

Explanation of example

bello Software written in a raw interpreted programming language does doesn’t require a build but only
needs files installed. If a pre-compiled binary needs to be packaged, this method could also be used
since the binary would also just be a file.

pello Software written in a byte-compiled interpreted programming language used to demonstrate the
installation of a byte compile process and the installation of the resulting pre-optimized files.

cello Software written in a natively compiled programming language to demonstrate an common build
and installation process using tooling for compiling native code.

bello

Our first SPEC file will be for our example written in bash shell script that you downloaded (or you created
a simulated upstream release in the General Topics and Background Section) and placed its source code into
~/rpmbuild/SOURCES/ earlier. Let’s go ahead and open the file ~/rpmbuild/SPECS/bello.spec and
start filling in some fields.

The following is the output template we were given from rpmdev-newspec.

Name: bello
Version:
Release: 1%{?dist}
Summary:

License:
URL:
Source0:

BuildRequires:
Requires:

%description

%prep
%setup -q

%build
%configure
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make %{?_smp_mflags}

%install
rm -rf $RPM_BUILD_ROOT
%make_install

%files
%doc

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org>
-

Let us begin with the first set of directives that rpmdev-newspec has grouped together at the top of the file:
Name, Version, Release, Summary. The Name is already specified because we provided that information to the
command line for rpmdev-newspec.

Let’s set the Version to match what the “upstream” release version of the bello source code is, which we can observe
is 0.1 as set by the example code we downloaded (or we created in the General Topics and Background Section).

The Release is already set to 1%{?dist} for us, the numerical value which is initially 1 should be incremented
every time the package is updated for any reason, such as including a new patch to fix an issue, but doesn’t have a new
upstream release Version. When a new upstream release happens (for example, bello version 0.2 were released)
then the Release number should be reset to 1. The disttag of %{?dist} should look familiar from the previous
section’s coverage of RPM Macros.

The Summary should be a short, one-line explanation of what this software is.

After your edits, the first section of the SPEC file should resemble the following:

Name: bello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

Now, let’s move on to the second set of directives that rpmdev-newspec has grouped together in our SPEC file:
License, URL, Source0.

The License field is the Software License associated with the source code from the upstream release. The exact
format for how to label the License in your SPEC file will vary depending on which specific RPM based Linux
distribution guidelines you are following, we will use the notation standards in the Fedora License Guidelines for this
document and as such this field will contain the text GPLv3+

The URL field is the upstream software’s website, not the source code download link but the actual project, product, or
company website where someone would find more information about this particular piece of software. Since we’re just
using an example, we will call this https://example.com/bello. However, we will use the rpm macro variable
of %{name} in it’s place for consistency and the resulting entry will be https://example.com/%{name}.

The Source0 field is where the upstream software’s source code should be able to be downloaded
from. This URL should link directly to the specific version of the source code release that this
RPM Package is packaging. Once again, since this is an example we will use an example value:
https://example.com/bello/releases/bello-0.1.tar.gz and while we might want to, we
should note that this example URL has hard coded values in it that are possible to change in the fu-
ture and are potentially even likely to change such as the release version 0.1. We can simplify this
by only needing to update one field in the SPEC file and allowing it to be reused. we will use the
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value https://example.com/%{name}/releases/%{name}-%{version}.tar.gz instead of the hard
coded examples string previously listed.

After your edits, the top portion of your spec file should look like the following:

Name: bello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

License: GPLv3+
URL: https://example.com/%{name}
Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Next up we have BuildRequires and Requires, each of which define something that is required by the package.
However, BuildRequires is to tell rpmbuild what is needed by your package at build time and Requires
is what is needed by your package at run time. In this example there is no build because the bash script is a raw
interpreted programming language so we will only be installing files into locations on the system, but it does require
the bash shell environment in order to execute so we will need to define bash as a requirement using the Requires
directive.

Since we don’t have a build step, we can simply omit the BuildRequires directive. There is no need to define is
as “undefined” or otherwise, omitting it’s inclusion will suffice.

Something we need to add here since this is software written in an interpreted programming language with no natively
compiled extensions is a BuildArch entry that is set to noarch in order to tell RPM that this package does not
need to be bound to the processor architecture that it is built using.

After your edits, the top portion of your spec file should look like the following:

Name: bello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

License: GPLv3+
URL: https://example.com/%{name}
Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Requires: bash

BuildArch: noarch

The following directives can be thought of as “section headings” because they are directives that can define multi-line,
multi-instruction, or scripted tasks to occur. We will walk through them one by one just as we did with the previous
items.

The %description should be a longer, more full length description of the software being packaged than what is
found in the Summary directive. For the sake of our example, this isn’t really going to contain much content but this
section can be a full paragraph or more than one paragraph if desired.

The %prep section is where we prepare our build environment or workspace for building. Most often what happens
here is the expansion of compressed archives of the source code, application of patches, and potentially parsing of
information provided in the source code that is necessary in a later portion of the SPEC. In this section we will simply
use the provided macro %setup -q.

The %build section is where we tell the system how to actually build the software we are packaging. However, since
this software doesn’t need to be built we can simply leave this section blank (removing what was provided by the
template).
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The %install section is where we instruct rpmbuild how to install our previously built software (in the event
of a build process) into the BUILDROOT which is effectively a chroot base directory with nothing in it and we will
have to construct any paths or directory hierarchies that we will need in order to install our software here in their
specific locations. However, our RPM Macros help us accomplish this task without having to hardcode paths. Since
the only thing we need to do in order to install bello into this environment is create the destination directory for
the executable bash script file and then install the file into that directory, we can do so by using the same install
command but we will make a slight modification since we are inside the SPEC file and we will use the macro variable
of %{name} in it’s place for consistency.

The %install section should look like the following after your edits:

%install

mkdir -p %{buildroot}/%{_bindir}

install -m 0755 %{name} %{buildroot}/%{_bindir}/%{name}

The %files section is where we provide the list of files that this RPM provides and where it’s intended for them to
live on the system that the RPM is installed upon. Note here that this isn’t relative to the %{buildroot} but the full
path for the files as they are expected to exist on the end system after installation. Therefore, the listing for the bello
file we are installing will be %{_bindir}/%{name} (this would be /usr/bin/bello if we weren’t using the
rpm macros).

Also within this section, you will sometimes need a built-in macro to provide context on a file. This can be useful
for Systems Administrators and end users who might want to query the system with rpm about the resulting package.
The built-in macro we will use here is %license which will tell rpmbuild that this is a software license file in the
package file manifest metadata.

The %files section should look like the following after your edits:

%files
%license LICENSE
%{_bindir}/%{name}

The last section, %changelog is a list of date-stamped entries that correlate to a specific Version-Release of the
package. This is not meant to be a log of what changed in the software from release to release, but specifically to
packaging changes. For example, if software in a package needed patching or there was a change needed in the build
procedure listed in the %build section that information would go here. Each change entry can contain multiple items
and each item should start on a new line and begin with a - character. Below is our example entry:

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First bello package
- Example second item in the changelog for version-release 0.1-1

Note the format above, the date-stamp will begin with a * character, followed by the calendar day of the week, the
month, the day of the month, the year, then the contact information for the RPM Packager. From there we have a
- character before the Version-Release, which is an often used convention but not a requirement. Then finally the
Version-Release.

That’s it! We’ve written an entire SPEC file for bello! In the next section we will cover how to build the RPM!

The full SPEC file should now look like the following:

Name: bello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

License: GPLv3+
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URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Requires: bash

BuildArch: noarch

%description
The long-tail description for our Hello World Example implemented in
bash script

%prep
%setup -q

%build

%install

mkdir -p %{buildroot}/%{_bindir}

install -m 0755 %{name} %{buildroot}/%{_bindir}/%{name}

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First bello package
- Example second item in the changelog for version-release 0.1-1

pello

Our second SPEC file will be for our example written in the Python programming language that you downloaded (or
you created a simulated upstream release in the General Topics and Background Section) and placed it’s source code
into ~/rpmbuild/SOURCES/ earlier. Let’s go ahead and open the file ~/rpmbuild/SPECS/bello.spec and
start filling in some fields.

Before we start down this path, we need to address something somewhat unique about byte-compiled interpreted
software. Since we we will be byte-compiling this program, the shebang is no longer applicable because the resulting
file will not contain the entry. It is common practice to either have a non-byte-compiled shell script that will call
the executable or have a small bit of the Python code that isn’t byte-compiled as the “entry point” into the program’s
execution. This might seem silly for our small example but for large software projects with many thousands of lines
of code, the performance increase of pre-byte-compiled code is sizeable.

: The creation of a script to call the byte-compiled code or having a non-byte-compiled entry point into the software is
something that upstream software developers most often address before doing a release of their software to the world,
however this is not always the case and this exercise is meant to help address what to do in those situations. For more
information on how Python code is normally released and distributed please reference the Software Packaging and
Distribution documentation.

We will make a small shell script to call our byte compiled code to be the entry point into our software. We will do
this as a part of our SPEC file itself in order to demonstrate how you can script actions inside the SPEC file. We will
cover the specifics of this in the %install section later.
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Let’s go ahead and open the file ~/rpmbuild/SPECS/pello.spec and start filling in some fields.

The following is the output template we were given from rpmdev-newspec.

Name: pello
Version:
Release: 1%{?dist}
Summary:

License:
URL:
Source0:

BuildRequires:
Requires:

%description

%prep
%setup -q

%build
%configure
make %{?_smp_mflags}

%install
rm -rf $RPM_BUILD_ROOT
%make_install

%files
%doc

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org>
-

Just as with the first example, let’s begin with the first set of directives that rpmdev-newspec has grouped together
at the top of the file: Name, Version, Release, Summary. The Name is already specified because we provided
that information to the command line for rpmdev-newspec.

Let’s set the Version to match what the “upstream” release version of the pello source code is, which we can observe
is 0.1.1 as set by the example code we downloaded (or we created in the General Topics and Background Section).

The Release is already set to 1%{?dist} for us, the numerical value which is initially 1 should be incremented
every time the package is updated for any reason, such as including a new patch to fix an issue, but doesn’t have a
new upstream release Version. When a new upstream release happens (for example, pello version 0.1.2 were
released) then the Release number should be reset to 1. The disttag of %{?dist} should look familiar from the
previous section’s coverage of RPM Macros.

The Summary should be a short, one-line explanation of what this software is.

After your edits, the first section of the SPEC file should resemble the following:
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Name: pello
Version: 0.1.1
Release: 1%{?dist}
Summary: Hello World example implemented in Python

Now, let’s move on to the second set of directives that rpmdev-newspec has grouped together in our SPEC file:
License, URL, Source0.

The License field is the Software License associated with the source code from the upstream release. The exact
format for how to label the License in your SPEC file will vary depending on which specific RPM based Linux
distribution guidelines you are following, we will use the notation standards in the Fedora License Guidelines for this
document and as such this field will contain the text GPLv3+

The URL field is the upstream software’s website, not the source code download link but the actual project, product,
or company website where someone would find more information about this particular piece of software. Since we’re
just using an example, we will call this https://example.com/pello. However, we will use the rpm macro
variable of %{name} in it’s place for consistency.

The Source0 field is where the upstream software’s source code should be able to be downloaded
from. This URL should link directly to the specific version of the source code release that this
RPM Package is packaging. Once again, since this is an example we will use an example value:
https://example.com/pello/releases/pello-0.1.1.tar.gz

We should note that this example URL has hard coded values in it that are possible to change in the fu-
ture and are potentially even likely to change such as the release version 0.1.1. We can simplify this
by only needing to update one field in the SPEC file and allowing it to be reused. we will use the
value https://example.com/%{name}/releases/%{name}-%{version}.tar.gz instead of the hard
coded examples string previously listed.

After your edits, the top portion of your spec file should look like the following:

Name: pello
Version: 0.1.1
Release: 1%{?dist}
Summary: Hello World example implemented in Python

License: GPLv3+
URL: https://example.com/%{name}
Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Next up we have BuildRequires and Requires, each of which define something that is required by the package.
However, BuildRequires is to tell rpmbuild what is needed by your package at build time and Requires is
what is needed by your package at run time.

In this example we will need the python package in order to perform the byte-compile build process. We will also
need the python package in order to execute the byte-compiled code at runtime and therefore need to define python
as a requirement using the Requires directive. We will also need the bash package in order to execute the small
entry-point script we will use here.

Something we need to add here since this is software written in an interpreted programming language with no natively
compiled extensions is a BuildArch entry that is set to noarch in order to tell RPM that this package does not
need to be bound to the processor architecture that it is built using.

After your edits, the top portion of your spec file should look like the following:

Name: pello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in Python
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License: GPLv3+
URL: https://example.com/%{name}
Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

BuildRequires: python
Requires: python
Requires: bash

BuildArch: noarch

The following directives can be thought of as “section headings” because they are directives that can define multi-line,
multi-instruction, or scripted tasks to occur. We will walk through them one by one just as we did with the previous
items.

The %description should be a longer, more full length description of the software being packaged than what is
found in the Summary directive. For the sake of our example, this isn’t really going to contain much content but this
section can be a full paragraph or more than one paragraph if desired.

The %prep section is where we prepare our build environment or workspace for building. Most often what happens
here is the expansion of compressed archives of the source code, application of patches, and potentially parsing of
information provided in the source code that is necessary in a later portion of the SPEC. In this section we will simply
use the provided macro %setup -q.

The %build section is where we tell the system how to actually build the software we are packaging. Here we will
perform a byte-compilation of our software. For those who read the General Topics and Background Section, this
portion of the example should look familiar. The %build section of our SPEC file should look as follows.

%build

python -m compileall pello.py

The %install section is where we instruct rpmbuild how to install our previously built software into the
BUILDROOT which is effectively a chroot base directory with nothing in it and we will have to construct any paths or
directory hierarchies that we will need in order to install our software here in their specific locations. However, our
RPM Macros help us accomplish this task without having to hardcode paths.

We had previously discussed that since we will lose the context of a file with the shebang line in it when we byte
compile that we will need to create a simple wrapper script in order to accomplish that task. There are many options
on how to accomplish this including, but not limited to, making a separate script and using that as a separate SourceX
directive and the option we’re going to show in this example which is to create the file in-line in the SPEC file. The
reason for showing the example option that we are is simply to demonstrate that the SPEC file itself is scriptable. What
we’re going to do is create a small “wrapper script” which will execute the Python byte-compiled code by using a here
document. We will also need to actually install the byte-compiled file into a library directory on the system such that
it can be accessed.

: You will notice below that we are hard coding the library path. There are various methods to avoid needing to
do this, many of which are addressed in the Appendix, under the More on Macros section, and are specific to the
programming language in which the software that is being packaged was written in. In this example we hard code the
path for simplicity as to not cover too many topics simultaneously.

The %install section should look like the following after your edits:

%install

mkdir -p %{buildroot}/%{_bindir}
mkdir -p %{buildroot}/usr/lib/%{name}
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cat > %{buildroot}/%{_bindir}/%{name} <<-EOF
#!/bin/bash
/usr/bin/python /usr/lib/%{name}/%{name}.pyc
EOF

chmod 0755 %{buildroot}/%{_bindir}/%{name}

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

The %files section is where we provide the list of files that this RPM provides and where it’s intended for them to
live on the system that the RPM is installed upon. Note here that this isn’t relative to the %{buildroot} but the full
path for the files as they are expected to exist on the end system after installation. Therefore, the listing for the pello
file we are installing will be %{_bindir}/pello. We will also need to provide a %dir listing to define that this
package “owns” the library directory we created as well as all the files we placed in it.

Also within this section, you will sometimes need a built-in macro to provide context on a file. This can be useful
for Systems Administrators and end users who might want to query the system with rpm about the resulting package.
The built-in macro we will use here is %license which will tell rpmbuild that this is a software license file in the
package file manifest metadata.

The %files section should look like the following after your edits:

%files
%license LICENSE
%dir /usr/lib/%{name}/
%{_bindir}/%{name}
/usr/lib/%{name}/%{name}.py*

The last section, %changelog is a list of date-stamped entries that correlate to a specific Version-Release of the
package. This is not meant to be a log of what changed in the software from release to release, but specifically to
packaging changes. For example, if software in a package needed patching or there was a change needed in the build
procedure listed in the %build section that information would go here. Each change entry can contain multiple items
and each item should start on a new line and begin with a - character. Below is our example entry:

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First bello package
- Example second item in the changelog for version-release 0.1-1

Note the format above, the date-stamp will begin with a * character, followed by the calendar day of the week, the
month, the day of the month, the year, then the contact information for the RPM Packager. From there we have a
- character before the Version-Release, which is an often used convention but not a requirement. Then finally the
Version-Release.

That’s it! We’ve written an entire SPEC file for pello! In the next section we will cover how to build the RPM!

The full SPEC file should now look like the following:

Name: pello
Version: 0.1.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

License: GPLv3+
URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

BuildRequires: python
Requires: python
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Requires: bash

BuildArch: noarch

%description
The long-tail description for our Hello World Example implemented in
Python

%prep
%setup -q

%build

python -m compileall %{name}.py

%install

mkdir -p %{buildroot}/%{_bindir}
mkdir -p %{buildroot}/usr/lib/%{name}

cat > %{buildroot}/%{_bindir}/%{name} <<-EOF
#!/bin/bash
/usr/bin/python /usr/lib/%{name}/%{name}.pyc
EOF

chmod 0755 %{buildroot}/%{_bindir}/%{name}

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

%files
%license LICENSE
%dir /usr/lib/%{name}/
%{_bindir}/%{name}
/usr/lib/%{name}/%{name}.py*

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1.1-1

- First pello package

cello

Our third SPEC file will be for our example written in the C programming language that we created a simulated
upstream release of previously (or you downloaded) and placed it’s source code into ~/rpmbuild/SOURCES/
earlier.

Let’s go ahead and open the file ~/rpmbuild/SPECS/cello.spec and start filling in some fields.

The following is the output template we were given from rpmdev-newspec.

Name: cello
Version:
Release: 1%{?dist}
Summary:

License:
URL:

4.1. RPM Packaging Guide 21

https://en.wikipedia.org/wiki/C_%28programming_language%29


RPM Packaging Guide Documentation, 0.0.1

Source0:

BuildRequires:
Requires:

%description

%prep
%setup -q

%build
%configure
make %{?_smp_mflags}

%install
rm -rf $RPM_BUILD_ROOT
%make_install

%files
%doc

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org>
-

Just as with the previous examples, let’s begin with the first set of directives that rpmdev-newspec has grouped
together at the top of the file: Name, Version, Release, Summary. The Name is already specified because we
provided that information to the command line for rpmdev-newspec.

Let’s set the Version to match what the “upstream” release version of the cello source code is, which we can observe
is 1.0 as set by the example code we downloaded (or we created in the General Topics and Background Section).

The Release is already set to 1%{?dist} for us, the numerical value which is initially 1 should be incremented
every time the package is updated for any reason, such as including a new patch to fix an issue, but doesn’t have a new
upstream release Version. When a new upstream release happens (for example, cello version 2.0 were released)
then the Release number should be reset to 1. The disttag of %{?dist} should look familiar from the previous
section’s coverage of RPM Macros.

The Summary should be a short, one-line explanation of what this software is.

After your edits, the first section of the SPEC file should resemble the following:

Name: cello
Version: 1.0
Release: 1%{?dist}
Summary: Hello World example implemented in C

Now, let’s move on to the second set of directives that rpmdev-newspec has grouped together in our SPEC file:
License, URL, Source0. However, we will add one to this grouping as it is closely related to the Source0 and
that is our Patch0 which will list the first patch we need against our software.

The License field is the Software License associated with the source code from the upstream release. The exact
format for how to label the License in your SPEC file will vary depending on which specific RPM based Linux
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distribution guidelines you are following, we will use the notation standards in the Fedora License Guidelines for this
document and as such this field will contain the text GPLv3+

The URL field is the upstream software’s website, not the source code download link but the actual project, product,
or company website where someone would find more information about this particular piece of software. Since we’re
just using an example, we will call this https://example.com/cello. However, we will use the rpm macro
variable of %{name} in it’s place for consistency.

The Source0 field is where the upstream software’s source code should be able to be downloaded
from. This URL should link directly to the specific version of the source code release that this
RPM Package is packaging. Once again, since this is an example we will use an example value:
https://example.com/cello/releases/cello-1.0.tar.gz

We should note that this example URL has hard coded values in it that are possible to change in the fu-
ture and are potentially even likely to change such as the release version 1.0. We can simplify this
by only needing to update one field in the SPEC file and allowing it to be reused. we will use the
value https://example.com/%{name}/releases/%{name}-%{version}.tar.gz instead of the hard
coded examples string previously listed.

The next item is to provide a listing for the .patch file we created earlier such that we can apply it to the code later
in the %setup section. We will need a listing of Patch0: cello-output-first-patch.patch.

After your edits, the top portion of your spec file should look like the following:

Name: cello
Version: 1.0
Release: 1%{?dist}
Summary: Hello World example implemented in C

License: GPLv3+
URL: https://example.com/%{name}
Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Patch0: cello-output-first-patch.patch

Next up we have BuildRequires and Requires, each of which define something that is required by the package.
However, BuildRequires is to tell rpmbuild what is needed by your package at build time and Requires is
what is needed by your package at run time.

In this example we will need the gcc and make packages in order to perform the compilation build process. Runtime
requirements are fortunately handled for us by rpmbuild because this program does not require anything outside of the
core C standard libraries and we therefore will not need to define anything by hand as a Requires and can omit that
directive.

After your edits, the top portion of your spec file should look like the following:

Name: cello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in C

License: GPLv3+
URL: https://example.com/%{name}
Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

BuildRequires: gcc
BuildRequires: make

The following directives can be thought of as “section headings” because they are directives that can define multi-line,
multi-instruction, or scripted tasks to occur. We will walk through them one by one just as we did with the previous
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items.

The %description should be a longer, more full length description of the software being packaged than what is
found in the Summary directive. For the sake of our example, this isn’t really going to contain much content but this
section can be a full paragraph or more than one paragraph if desired.

The %prep section is where we prepare our build environment or workspace for building. Most often what happens
here is the expansion of compressed archives of the source code, application of patches, and potentially parsing of
information provided in the source code that is necessary in a later portion of the SPEC. In this section we will simply
use the provided macro %setup -q.

The %build section is where we tell the system how to actually build the software we are packaging. Since
wrote a simple Makefile for our C implementation, we can simply use the GNU make command provided by
rpmdev-newspec. However, we need to remove the call to %configure because we did not provide a configure
script. The %build section of our SPEC file should look as follows.

%build
make %{?_smp_mflags}

The %install section is where we instruct rpmbuild how to install our previously built software into the
BUILDROOT which is effectively a chroot base directory with nothing in it and we will have to construct any paths or
directory hierarchies that we will need in order to install our software here in their specific locations. However, our
RPM Macros help us accomplish this task without having to hardcode paths.

Once again, since we have a simple Makefile the installation step can be accomplished easily by leaving in place
the %make_install macro that was again provided for us by the rpmdev-newspec command.

The %install section should look like the following after your edits:

%install
%make_install

The %files section is where we provide the list of files that this RPM provides and where it’s intended for them to
live on the system that the RPM is installed upon. Note here that this isn’t relative to the %{buildroot} but the full
path for the files as they are expected to exist on the end system after installation. Therefore, the listing for the cello
file we are installing will be %{_bindir}/cello.

Also within this section, you will sometimes need a built-in macro to provide context on a file. This can be useful
for Systems Administrators and end users who might want to query the system with rpm about the resulting package.
The built-in macro we will use here is %license which will tell rpmbuild that this is a software license file in the
package file manifest metadata.

The %files section should look like the following after your edits:

%files
%license LICENSE
%{_bindir}/%{name}

The last section, %changelog is a list of date-stamped entries that correlate to a specific Version-Release of the
package. This is not meant to be a log of what changed in the software from release to release, but specifically to
packaging changes. For example, if software in a package needed patching or there was a change needed in the build
procedure listed in the %build section that information would go here. Each change entry can contain multiple items
and each item should start on a new line and begin with a - character. Below is our example entry:

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First cello package

Note the format above, the date-stamp will begin with a * character, followed by the calendar day of the week, the
month, the day of the month, the year, then the contact information for the RPM Packager. From there we have a
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- character before the Version-Release, which is an often used convention but not a requirement. Then finally the
Version-Release.

That’s it! We’ve written an entire SPEC file for cello! In the next section we will cover how to build the RPM!

The full SPEC file should now look like the following:

Name: cello
Version: 1.0
Release: 1%{?dist}
Summary: Hello World example implemented in C

License: GPLv3+
URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Patch0: cello-output-first-patch.patch

BuildRequires: gcc
BuildRequires: make

%description
The long-tail description for our Hello World Example implemented in
C

%prep
%setup -q

%patch0

%build
make %{?_smp_mflags}

%install
%make_install

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 1.0-1
- First cello package

4.1.2 Building RPMS

When building RPMs there are is one main command, which is rpmbuild and we will use that through out the guide.
It has been eluded to in various sections in the guide but now we’re actually going to dig in and get our hands dirty.

We will cover a couple different combinations of arguments we can pass to rpmbuild based on scenario and desired
outcome but we will focus primarily on the two main targets of building an RPM and that is creating Source and
Binary RPMs.

One of the things you may notice about rpmbuild is that it expects the directory structure created in a certain way
and for various items such as source code to exist within the context of that directory structure. Luckily, this is the
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same directory structure that was setup by the rpmdev-setuptree utility that we used previously to setup our
RPM workspace and we have been placing files in the correct place through out the duration of the guide.

Source RPMs

Before we actually build a Source RPM, let’s quickly address why we would want to do this. First, we might want
to preserve the exact source of a Name-Version-Release of RPM that we deployed to our environment that included
the exact SPEC file, the source code, and all relevant patches. This can be useful when looking back in history and/or
debugging if something has gone wrong. Another reason is if we want to build a Binary RPM on a different hardware
platform or architecture.

In order to create a Source RPM we need to pass the “build source” or -bs option to rpmbuild and we will provide
a SPEC file as the argument. We will do so for each of our examples we’ve created above.

$ cd ~/rpmbuild/SPECS/

$ rpmbuild -bs bello.spec
Wrote: /home/admiller/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

$ rpmbuild -bs pello.spec
Wrote: /home/admiller/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

$ rpmbuild -bs cello.spec
Wrote: /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

That’s it! That’s all there is to building a Source RPM or SRPM. Do note the directory that it was placed in though,
this is also a part of the directory hierarchy that we covered previously.

Now it’s time to move on to Binary RPMs!

Binary RPMS

When building Binary RPMs there are a few methods by which we could do this, we could “rebuild” a SRPM by
passing the --rebuild option to rpmbuild. We could tell rpmbuild to “build binary” or -bb and pass a SPEC
file as the argument similar to how we did for the Source RPMs.

Rebuild

Let’s first rebuild each of our examples. Below you will see the example output generated from rebuilding each
example SRPM. You will notice the output will vary differently based on the specific example you view and that the
amount of detail provided is quite verbose. This maybe seem daunting at first but as you become a seasoned RPM
Packager you will learn to appreciate and even welcome this level of detail as it can prove to be very valuable when
diagnosing issues.

One important distinction to make about when rpmbuild is invoked with the --rebuild argument is that it
actually installs the contents of the SRPM into your ~/rpmbuild directory which will install the SPEC file and
source code, then the build is performed and the SPEC file and Source code are removed. This might seem odd at
first, but know that this is expected behavior and you can perform a --recompile which will not do the “clean up”
operation at the end. We selected to use --rebuild in this guide to demonstrate how this happens and how you can
“recover” from it to get the SPEC files and SOURCES back which is covered in the following section.

The commands required for each are as follows, with detailed output provided for each below:
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$ rpmbuild --rebuild ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Now you’ve built RPMs!

You will now find the resulting Binary RPMs in ~/rpmbuild/RPMS/ depending on your architecture and/or if the
package was noarch.

At the end of each of these commands you will find that there are no longer SPEC files or contents in SOURCES
for the specific SRPMs that you rebuilt because of how --rebuild cleans up after itself. We can resolve this by
executing the following rpm commands which will perform an install of the SRPMs. You will want to do this after
running a --rebuild if you want to continue to interact with the SPEC and SOURCES which we will want to do
for the duration of this guide.

$ rpm -Uvh ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm
Updating / installing...

1:bello-0.1-1.el7 ################################# [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm
Updating / installing...

1:pello-0.1.1-1.el7 ################################# [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
Updating / installing...

1:cello-1.0-1.el7 ################################# [100%]

bello
$ rpmbuild --rebuild ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm
Installing /home/admiller/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.GHTHCO
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf bello-0.1
+ /usr/bin/gzip -dc /home/admiller/rpmbuild/SOURCES/bello-0.1.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd bello-0.1
+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.xmnIiZ
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd bello-0.1
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.WXBLZ9
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ '[' /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64 '!=' / ']'
+ rm -rf /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
++ dirname /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT
+ mkdir /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64

4.1. RPM Packaging Guide 27

https://en.wikipedia.org/wiki/Microarchitecture
http://rpm.org/


RPM Packaging Guide Documentation, 0.0.1

+ cd bello-0.1
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64//usr/bin
+ install -m 0755 bello /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64//usr/bin/bello
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /home/admiller/rpmbuild/BUILD/bello-0.1
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 0 CRC32s did match.
+ '[' noarch = noarch ']'
+ case "${QA_CHECK_RPATHS:-}" in
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: bello-0.1-1.el7.noarch
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.7wU0nl
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd bello-0.1
+ LICENSEDIR=/home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64/usr/share/licenses/bello-0.1
+ export LICENSEDIR
+ /usr/bin/mkdir -p /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64/usr/share/licenses/bello-0.1
+ cp -pr LICENSE /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64/usr/share/licenses/bello-0.1
+ exit 0
Provides: bello = 0.1-1.el7
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: /bin/bash
Checking for unpackaged file(s): /usr/lib/rpm/check-files /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
Wrote: /home/admiller/rpmbuild/RPMS/noarch/bello-0.1-1.el7.noarch.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.R9eRPW
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd bello-0.1
+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
+ exit 0
Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.S59sAf
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf bello-0.1
+ exit 0

pello
$ rpmbuild --rebuild ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm
Installing /home/admiller/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.kRf2qV
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf pello-0.1.1
+ /usr/bin/gzip -dc /home/admiller/rpmbuild/SOURCES/pello-0.1.1.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd pello-0.1.1
+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.h0DkgE
+ umask 022
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+ cd /home/admiller/rpmbuild/BUILD
+ cd pello-0.1.1
+ python -m compileall pello.py
Compiling pello.py ...
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.k0YN9m
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ '[' /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64 '!=' / ']'
+ rm -rf /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
++ dirname /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT
+ mkdir /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
+ cd pello-0.1.1
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64//usr/bin
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/lib/pello
+ cat
+ chmod 0755 /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64//usr/bin/pello
+ install -m 0644 pello.py pello.pyc /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/lib/pello/
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /home/admiller/rpmbuild/BUILD/pello-0.1.1
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 0 CRC32s did match.
find: 'debug': No such file or directory
+ '[' noarch = noarch ']'
+ case "${QA_CHECK_RPATHS:-}" in
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: pello-0.1.1-1.el7.noarch
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.22ODva
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd pello-0.1.1
+ LICENSEDIR=/home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/share/licenses/pello-0.1.1
+ export LICENSEDIR
+ /usr/bin/mkdir -p /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/share/licenses/pello-0.1.1
+ cp -pr LICENSE /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/share/licenses/pello-0.1.1
+ exit 0
Provides: pello = 0.1.1-1.el7
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PartialHardlinkSets) <= 4.0.4-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: /bin/bash
Checking for unpackaged file(s): /usr/lib/rpm/check-files /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
Wrote: /home/admiller/rpmbuild/RPMS/noarch/pello-0.1.1-1.el7.noarch.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.kZTRbM
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd pello-0.1.1
+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
+ exit 0
Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.WChx3z
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf pello-0.1.1
+ exit 0

cello
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$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
Installing /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.ySAWzh
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf cello-1.0
+ /usr/bin/gzip -dc /home/admiller/rpmbuild/SOURCES/cello-1.0.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd cello-1.0
+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ echo 'Patch #0 (cello-output-first-patch.patch):'
Patch #0 (cello-output-first-patch.patch):
+ /usr/bin/cat /home/admiller/rpmbuild/SOURCES/cello-output-first-patch.patch
+ /usr/bin/patch -p0 --fuzz=0
patching file cello.c
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.LZZAxn
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd cello-1.0
+ make -j3
gcc -o cello cello.c
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.SSAzEt
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ '[' /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64 '!=' / ']'
+ rm -rf /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
++ dirname /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT
+ mkdir /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
+ cd cello-1.0
+ /usr/bin/make install DESTDIR=/home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
mkdir -p /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/bin
install -m 0755 cello /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/bin/cello
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /home/admiller/rpmbuild/BUILD/cello-1.0
extracting debug info from /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/bin/cello
dwz: Too few files for multifile optimization
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 1 CRC32s did match.
+ '[' '%{buildarch}' = noarch ']'
+ QA_CHECK_RPATHS=1
+ case "${QA_CHECK_RPATHS:-}" in
+ /usr/lib/rpm/check-rpaths
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: cello-1.0-1.el7.x86_64
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.L0PliA
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd cello-1.0
+ LICENSEDIR=/home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/share/licenses/cello-1.0
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+ export LICENSEDIR
+ /usr/bin/mkdir -p /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/share/licenses/cello-1.0
+ cp -pr LICENSE /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/share/licenses/cello-1.0
+ exit 0
Provides: cello = 1.0-1.el7 cello(x86-64) = 1.0-1.el7
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: libc.so.6()(64bit) libc.so.6(GLIBC_2.2.5)(64bit) rtld(GNU_HASH)
Processing files: cello-debuginfo-1.0-1.el7.x86_64
Provides: cello-debuginfo = 1.0-1.el7 cello-debuginfo(x86-64) = 1.0-1.el7
Requires(rpmlib): rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 rpmlib(CompressedFileNames) <= 3.0.4-1
Checking for unpackaged file(s): /usr/lib/rpm/check-files /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm
Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-debuginfo-1.0-1.el7.x86_64.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.oexkNU
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd cello-1.0
+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
+ exit 0
Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.ENKUE1
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf cello-1.0
+ exit 0

Build Binary

Next up, let’s “build binary” for each of our examples. Just as in the previous example, you will again see the example
output generated from building each example. Similarly you will notice the output will vary differently based on the
specific example you view and that the amount of detail provided is quite verbose.

The commands required for each are as follows, with detailed output provided for each below:

$ rpmbuild -bb ~/rpmbuild/SPECS/bello.spec

$ rpmbuild -bb ~/rpmbuild/SPECS/pello.spec

$ rpmbuild -bb ~/rpmbuild/SPECS/cello.spec

Now you’ve built RPMs!

You will now find the resulting Binary RPMs in ~/rpmbuild/RPMS/ depending on your architecture and/or if the
package was noarch.

bello
$ rpmbuild -bb ~/rpmbuild/SPECS/bello.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.aaCBH0
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf bello-0.1
+ /usr/bin/gzip -dc /home/admiller/rpmbuild/SOURCES/bello-0.1.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd bello-0.1
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+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.mOSeGQ
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd bello-0.1
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.LW9TFG
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ '[' /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64 '!=' / ']'
+ rm -rf /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
++ dirname /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT
+ mkdir /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
+ cd bello-0.1
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64//usr/bin
+ install -m 0755 bello /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64//usr/bin/bello
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /home/admiller/rpmbuild/BUILD/bello-0.1
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 0 CRC32s did match.
+ '[' noarch = noarch ']'
+ case "${QA_CHECK_RPATHS:-}" in
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: bello-0.1-1.el7.noarch
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.wAswQw
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd bello-0.1
+ LICENSEDIR=/home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64/usr/share/licenses/bello-0.1
+ export LICENSEDIR
+ /usr/bin/mkdir -p /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64/usr/share/licenses/bello-0.1
+ cp -pr LICENSE /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64/usr/share/licenses/bello-0.1
+ exit 0
Provides: bello = 0.1-1.el7
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: /bin/bash
Checking for unpackaged file(s): /usr/lib/rpm/check-files /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
Wrote: /home/admiller/rpmbuild/RPMS/noarch/bello-0.1-1.el7.noarch.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.74OMCd
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd bello-0.1
+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64
+ exit 0

pello
$ rpmbuild -bb pello.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.dvOeYv
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf pello-0.1.1
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+ /usr/bin/gzip -dc /home/admiller/rpmbuild/SOURCES/pello-0.1.1.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd pello-0.1.1
+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.QD4XFU
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd pello-0.1.1
+ python -m compileall pello.py
Compiling pello.py ...
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.qEbZqj
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ '[' /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64 '!=' / ']'
+ rm -rf /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
++ dirname /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT
+ mkdir /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
+ cd pello-0.1.1
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64//usr/bin
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/lib/pello
+ cat
+ chmod 0755 /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64//usr/bin/pello
+ install -m 0644 pello.py pello.pyc /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/lib/pello/
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /home/admiller/rpmbuild/BUILD/pello-0.1.1
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 0 CRC32s did match.
find: 'debug': No such file or directory
+ '[' noarch = noarch ']'
+ case "${QA_CHECK_RPATHS:-}" in
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: pello-0.1.1-1.el7.noarch
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.Vc2ApI
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd pello-0.1.1
+ LICENSEDIR=/home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/share/licenses/pello-0.1.1
+ export LICENSEDIR
+ /usr/bin/mkdir -p /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/share/licenses/pello-0.1.1
+ cp -pr LICENSE /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64/usr/share/licenses/pello-0.1.1
+ exit 0
Provides: pello = 0.1.1-1.el7
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PartialHardlinkSets) <= 4.0.4-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: /bin/bash
Checking for unpackaged file(s): /usr/lib/rpm/check-files /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
Wrote: /home/admiller/rpmbuild/RPMS/noarch/pello-0.1.1-1.el7.noarch.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.4tTJSw
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd pello-0.1.1
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+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64
+ exit 0

cello
$ rpmbuild -bb ~/rpmbuild/SPECS/cello.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.FveYdS
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd /home/admiller/rpmbuild/BUILD
+ rm -rf cello-1.0
+ /usr/bin/gzip -dc /home/admiller/rpmbuild/SOURCES/cello-1.0.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd cello-1.0
+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ echo 'Patch #0 (cello-output-first-patch.patch):'
Patch #0 (cello-output-first-patch.patch):
+ /usr/bin/cat /home/admiller/rpmbuild/SOURCES/cello-output-first-patch.patch
+ /usr/bin/patch -p0 --fuzz=0
patching file cello.c
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.ros7nt
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd cello-1.0
+ make -j3
gcc -o cello cello.c
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.qSW6D4
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ '[' /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64 '!=' / ']'
+ rm -rf /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
++ dirname /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
+ mkdir -p /home/admiller/rpmbuild/BUILDROOT
+ mkdir /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
+ cd cello-1.0
+ /usr/bin/make install DESTDIR=/home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
mkdir -p /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/bin
install -m 0755 cello /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/bin/cello
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /home/admiller/rpmbuild/BUILD/cello-1.0
extracting debug info from /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/bin/cello
dwz: Too few files for multifile optimization
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 1 CRC32s did match.
+ '[' '%{buildarch}' = noarch ']'
+ QA_CHECK_RPATHS=1
+ case "${QA_CHECK_RPATHS:-}" in
+ /usr/lib/rpm/check-rpaths
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: cello-1.0-1.el7.x86_64
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.IqHIpG
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+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd cello-1.0
+ LICENSEDIR=/home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/share/licenses/cello-1.0
+ export LICENSEDIR
+ /usr/bin/mkdir -p /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/share/licenses/cello-1.0
+ cp -pr LICENSE /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64/usr/share/licenses/cello-1.0
+ exit 0
Provides: cello = 1.0-1.el7 cello(x86-64) = 1.0-1.el7
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: libc.so.6()(64bit) libc.so.6(GLIBC_2.2.5)(64bit) rtld(GNU_HASH)
Processing files: cello-debuginfo-1.0-1.el7.x86_64
Provides: cello-debuginfo = 1.0-1.el7 cello-debuginfo(x86-64) = 1.0-1.el7
Requires(rpmlib): rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 rpmlib(CompressedFileNames) <= 3.0.4-1
Checking for unpackaged file(s): /usr/lib/rpm/check-files /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm
Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-debuginfo-1.0-1.el7.x86_64.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.ZRORXv
+ umask 022
+ cd /home/admiller/rpmbuild/BUILD
+ cd cello-1.0
+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64
+ exit 0

4.1.3 Checking RPMs For Sanity

Once we have created a package, we may desire to perform some sort of checks for quality on the package itself and
not necessarily just the software we’re delivering with the RPM.

For this the main tool of choice for RPM Packagers is rpmlint which performs many sanity and error checks that
help assist with packaging in more maintainable and less error prone fashion. Something to keep in mind is that this
is going to report things based on very strict guidelines and by way of static analysis. There is going to be lack of
perspective by the rpmlint tool and what your primary objective is and thus it is sometimes alright to allow Errors or
Warnings reported by rpmlint to persist in your packages, but the key is to understand why we would allow these to
persist. In the follow sections we will explore a couple examples of just that.

Another really useful feature of rpmlint is that we can use it to check against Binary RPMs, Source RPMs, and SPEC
files so that it can be used during all stages of packaging and not just after the fact. We will show examples of each
below.

: For each example below we run rpmlint without any options, if you would like detailed explanations of what each
Error or Warning means, then you can pass the -i option and run each command as rpmlint -i instead of just
rpmlint. The shorter output is selected for brevity of the document.

bello

Let’s get started by looking at some output and dive into each set of output.

$ rpmlint bello.spec
bello.spec: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

When checking bello‘s spec file we can see that we only have one warning and that is the URL listed in the Source0
directive can not be reached which is something that we would expect given that example.com doesn’t actually exist
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out in the real world and we’ve not setup a system with a local DNS entry to point to this URL. Since we know why
the Warning was emitted and that it was expect, this can be safely ignored.

$ rpmlint ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm
bello.src: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.src: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error 404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

When checking bello‘s SRPM we can see very similar output from the check against the spec file but we also see that
the check against the SRPM looks for the URL directive as well as the Source0 directive, neither can be reached but
as we know is expected and these can also be safely ignored.

$ rpmlint ~/rpmbuild/RPMS/noarch/bello-0.1-1.el7.noarch.rpm
bello.noarch: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.noarch: W: no-documentation
bello.noarch: W: no-manual-page-for-binary bello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

Now things will change a bit when looking at Binary RPMs as the rpmlint utility is going to check for other things that
should be commonly found in Binary RPMs such as documentation and/or man pages as well as things like consistent
use of the Filesystem Hierarchy Standard. As we can see, this is exactly what is being reported and we know that there
are no man pages or other documentation because we didn’t provide any. Also, once again our old friend the HTTP
Error 404: Not Found is present but we’re well aware as to why.

Other than our few items that we are carrying over because this is a simple example, our RPM is passing the rpmlint
checks and all is well!

pello

Next up, let’s get look at some more output and dive into it one by one.

$ rpmlint pello.spec
pello.spec:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.spec:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.spec:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.spec:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.spec:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.spec: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.1.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 5 errors, 1 warnings.

Now, I know you might be thinking “That’s a lot of errors, this example must be really wrong” and you would be
correct but it is wrong for good reason. The goal here is two fold, first to make a byte-compiled example that was not
too complicated and allowed to demonstrate some scripting in a SPEC file and second to show some examples of what
we can expect rpmlint to report other than just a simple URL missing.

Looking at the output from the check on pello‘s spec file we can see that we have a new Error entitled
hardcoded-library-path and it was mentioned during the previous section that this was known to be in-
correct but we were doing it anyways. The reality is that this is a half truth. Almost always, you should be using the
%{_libdir} rpm macro or some other more sophisticated macro (more on this in the Appendix. The reason we do
not use %{_libdir} in this instance is because that macro will expand to be either /usr/lib/ or /usr/lib64/
depending on a 32-bit or 64-bit architecture. Since we are packaging noarch that would have become problematic
for one arch or the other in the event of a compile on one, run on the other. We also don’t dive into more clever rpm
macros as they are out of scope when trying to learn RPM Packaging at and introductory level, which is already a feat
of it’s own. For the sake of this example, we can ignore this Error but in a real packaging scenario you should either
have a reasonable justification or find the appropriate rpm macro to use.

Once again, the URL listed in the Source0 directive can not be reached which is something that we expect for the
same reasons given in the previous example. Since we know why the Warning was emitted and that it was expect, this
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can be safely ignored also.

$ rpmlint ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm
pello.src: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.src:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.src:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.src:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.src:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.src:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.src: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.1.tar.gz HTTP Error 404: Not Found
1 packages and 0 specfiles checked; 5 errors, 2 warnings.

When checking pello‘s SRPM we can see very similar output from the check against the spec file but we also see that
the check against the SRPM looks for the URL directive as well as the Source0 directive, neither can be reached but
as we know is expected and these can also be safely ignored.

Once again, the explanation for the hardcoded-library-path is the same as we covered previously in the
rpmlint output for the SPEC file.

$ rpmlint ~/rpmbuild/RPMS/noarch/pello-0.1.1-1.el7.noarch.rpm
pello.noarch: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.noarch: W: only-non-binary-in-usr-lib
pello.noarch: W: no-documentation
pello.noarch: E: non-executable-script /usr/lib/pello/pello.py 0644L /usr/bin/env
pello.noarch: W: no-manual-page-for-binary pello
1 packages and 0 specfiles checked; 1 errors, 4 warnings.

As with the previous example, things change a bit when looking at Binary RPMs as the rpmlint utility is now checking
for other things that should be commonly found in Binary RPMs such as documentation and/or man pages as well as
things like consistent use of the Filesystem Hierarchy Standard. As we can see, this is exactly what is being reported
and we know that there are no man pages or other documentation because we didn’t provide any. Also, once again our
old friend the HTTP Error 404: Not Found is present but we’re well aware as to why.

The two new ones are non-executable-script and only-non-binary-in-usr-lib.

First is W: only-non-binary-in-usr-lib which means that we’ve provided only non-binary artifacts in
/usr/lib/ which is normally reserved for shared object files which are binary data files and rpmlint therefore
expects at least some of our files in /usr/lib/ to be binary. This again rounds back to compliance with the Filesys-
tem Hierarchy Standard as well as files ending up in incorrect or inconsistent locations because we are not using the
appropriate rpm macros. This is of course by design only for the course of this example.

Next up is E: non-executable-script /usr/lib/pello/pello.py 0644L /usr/bin/env
which is telling us that rpmlint has found a file with a shebang directive which would normally be an executable and
have permissions more likely to be 0755 instead of 0644 (meaning it can not be executed), but since we’re simply
leaving it as an install artifact reference library because we used this as an example for doing byte-compilation at
build time this can also be safely ignored.

Other than our items that we are carrying over for the purposes of the example, our RPM is passing the rpmlint checks
and all is well!

cello

Next up, let’s get look at some more output and dive into each.

$ rpmlint ~/rpmbuild/SPECS/cello.spec
/home/admiller/rpmbuild/SPECS/cello.spec: W: invalid-url Source0: https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.
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When checking cello‘s spec file we can see that things appear much more as they did in our first example and we only
have one warning. This is again that the URL listed in the Source0 directive can not be reached which is something
expected. Since we know why the Warning was emitted and that it was expect, this can be safely ignored.

$ rpmlint ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
cello.src: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.src: W: invalid-url Source0: https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

When checking cello‘s SRPM we can see very similar output from the check against the spec file but we also see that
the check against the SRPM looks for the URL directive as well as the Source0 directive, neither can be reached but
as we know is expected and these can also be safely ignored.

$ rpmlint ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm
cello.x86_64: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.x86_64: W: no-documentation
cello.x86_64: W: no-manual-page-for-binary cello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

As before, the output has changed when looking at Binary RPMs as the rpmlint utility is going to check for other
things that should be commonly found in Binary RPMs such as documentation and/or man pages as well as things like
consistent use of the Filesystem Hierarchy Standard. As we can see, this is exactly what is being reported just as in the
previous examples and we know that there are no man pages or other documentation because we didn’t provide any.
Also, once again the HTTP Error 404: Not Found is present but we’re well aware as to why.

Other than our few items that we are carrying over because this is a simple example, our RPM is passing the rpmlint
checks and all is well!

That’s it!

Our RPMs are sanitized (or we know and understand why they aren’t) and it is now time to either go forth and Package
RPMs or travel on into the Appendix.

4.2 General Topics and Background

In this section will we walk through various topics about building software that are helpful background or otherwise
general topics that are important for a good RPM Packager to be familiar with.

• What is Source Code?

• How Programs Are Made

• Building from source into an output artifact (what type of artifact will depend on the scenario and we will define
what this means more specifically with examples).

• Patching Software

• Placing those output artifacts somewhere on the system that is useful within the Filesystem Hierarchy Standard.

4.2.1 What is Source Code?

: If you are familiar with what the following terms mean then feel free to skip this section: source code, programming,
programming languages.

In the world of computer software, source code is the term used to the representation of instructions to the computer
about how to perform a task in a way that is human readable, normally as simple text. This human readable format is

38 Chapter 4. Contents

https://github.com/rpm-software-management/rpmlint
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Man_page
https://github.com/rpm-software-management/rpmlint
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard


RPM Packaging Guide Documentation, 0.0.1

expressed using a programming language which basically boils down to a set of rules about that programmers learn so
that the text they write is meaningful to the computer.

: There are many thousands of programming languages in the world. In this document we will provide examples
of only a couple, some finer points of various programming languages are going to vary but hopefully this guide will
prove to be a good conceptual overview.

For example, the following three examples are all a very simple program that will display the text Hello World
to the command line. The reason for three versions of the example will become apparent in the next section but this
is three implementations of the same program written in different programming languages. The program is a very
common starting place for newcomers to the programming world so it may appear familiar to some readers, but if it
doesn’t do not worry.

: In the first two examples below, the #! line is known as a shebang and is not technically part of the programming
language source code.

This version of the example is written in the bash shell built in scripting language.

bello

#!/bin/bash

printf "Hello World\n"

This version of the example is written in a programming language named Python.

pello.py

#!/usr/bin/env python

print("Hello World")

This version of the example is written in a programming language named C.

cello.c

#include <stdio.h>

int main(void) {
printf("Hello World\n");
return 0;

}

The finer points of how to write software isn’t necessarily important at this time but if you felt so inclined to learn to
program that would certainly be beneficial in your adventures as a software packager.

As mentioned before, the output of both examples to the command line will be simply, Hello World when the
source code is built and run. The topic of how that happens is up next!

4.2.2 How Programs Are Made

Before we dive too far into how to actually build code it is best to first understand a few items about software source
code and how it becomes instructions to the computer. Effectively, how programs are actually made. There many
ways in which a program can be executed but it boils down to effectively two common methods:

1. Natively Compiled
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2. Interpreted (Byte Compiled and Raw Interpreted)

Natively Compiled Code

Software written in programming languages that compile to machines code or directly to a binary executable (i.e. -
something that the computer natively understands without an help) that can be run stand alone is considered to be
Natively Compiled. This is important for building RPM Packages because packages built this way are what is known
as architecture specific, meaning that if you compile this particular piece of software on a computer that uses a 64-bit
(x86_64) AMD or Intel processor, it will not execute on a (x86) 32-bit AMD or Intel processor. The method by which
this happens will be covered in the next section.

Interpreted Code

There are certain programming languages that do not compile down to a representation of program that the computer
natively understands. These programs are Interpreted and require a Language Interpreter or Language Virtual Ma-
chine(VM). The name interpreter comes from it’s similarities with how human language interpreters convert between
two representations of human speech to allow two people to talk, a programming language interpreter converts from a
format that the computer doesn’t “speak” to one that it does.

There are two types of Interpreted Languages, Byte Compiled and Raw Interpreted and the distinction between these
is useful to keep in mind when packaging software because of the actual %build process is going to be very different
and sometimes in the case of Raw Interpreted Languages there will be no series of steps required at all for the %build.
(What %build means in detail will be explained later, but the short version is this is how we tell the RPM Packaging
system to actually perform the build). Where as Byte Compiled programming languages will perform a build task that
will “compile” or “translate” the code from the programming language source that is human readable to an intermediate
representation of the program that is more efficient for the programming language interpreter to execute.

Software written entirely in programming languages such as bash shell script and Python (as used in our example) are
Interpreted and therefore are not architecture specific which means the resulting RPM Package that is created will be
considered noarch. Indicating that it does not have an architecture associated with it.

4.2.3 Building Software from Source

In this section we will discuss and provide examples of building software from it’s source code.

: If you are comfortable building software from source code please feel free to skip this section and move on.
However, if you’d like to stick around and read it then please feel free and it will hopefully serve as a refresher or
possibly contain something interesting that’s new to you.

Source code must go through a build process and that process will vary based on specific programming language
but most often this is referred to as compiling or translating the software. For software written in interpreted pro-
gramming languages this step may not be necessary but sometimes it is desirable to perform what is known as byte
compiling as it’s build process. We will cover each scenario below. The resulting built software can then be run or
“executed” which tells the computer to perform the task described to it in the source code provided by the programmer
who authored the software.

: There are various methods by which software written in different programming languages can vary heavily. If the
software you are interested in packaging doesn’t follow the exact examples here, this will hopefully be an objective
guideline.
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Natively Compiled Code

Referencing the example previously used that is written in C (listed again below for the sake of those who may have
skipped the previous section), we will build this source code into something the computer can execute.

cello.c

#include <stdio.h>

int main(void) {
printf("Hello World\n");
return 0;

}

Build Process

In the below example we are going to invoke the C compiler from the GNU Compiler Collection (GCC).

gcc -o cello cello.c

From here we can actually execute the resulting output binary.

$ ./cello
Hello World

That’s it! You’ve built natively compiled software from source code!

Let’s take this one step further and add a GNU make Makefile which will help automate the building of our code.
This is an extremely common practice by real large scale software and is a good thing to become familiar with as a
RPM Packager. Let’s create a file named Makefile in the same directory as our example C source code file named
cello.c.

Makefile

cello:
gcc -o cello cello.c

clean:
rm cello

Now to build our software we can simply run the command make, below you will see the command run more than
once just for the sake of seeing what is expected behavior.

$ make
make: 'cello' is up to date.

$ make clean
rm cello

$ make
gcc -o cello cello.c

$ make
make: 'cello' is up to date.

+$ ./cello
Hello World

Congratulations! You have now both compiled software manually and used a build tool!

4.2. General Topics and Background 41

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://gcc.gnu.org/
http://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/C_%28programming_language%29


RPM Packaging Guide Documentation, 0.0.1

Interpreted Code

For software written in interpreted programming languages, we know that we don’t need to compile it, but if it’s a byte
compiled language such as Python there may still be a step required.

Referencing the two examples previously (listed again below for the sake of those who may have skipped the previ-
ous section), for Python we will build this source code into something the Python Language Interpreter (known as
CPython) can execute.

: In the two examples below, the #! line is known as a shebang and is not technically part of the programming
language source code.

The shebang allows us to use a text file as an executable and the system program loader will parse the line at the top
of the file containing a #! character sequence looking a path to the binary executable to use as the programming
language interpreter.

Byte Compiled Code

As mentioned previously, this version of the example is written in a programming language named Python and it’s
default language virtual machine is one that executes byte compiled code. This will “compile” or “translate” the source
code into an intermediate format that is optimized and will be much faster for the language virtual machine to execute.

pello.py

#!/usr/bin/env python

print("Hello World")

The exact procedure to byte compile programs based on language will differ heavily based on the programming lan-
guage, it’s language virtual machine, and the tools or processes that are common within that programming language’s
community. Below is an example using Python.

: The practice of byte compiling Python is common but the exact procedure shown here is not. This is meant to be a
simple example. For more information, please reference the Software Packaging and Distribution documentation.

$ python -m compileall pello.py
$ python pello.pyc
Hello World

$ file pello.pyc
pello.pyc: python 2.7 byte-compiled

You can see here that after we byte-compiled the source .py file we now have a .pyc file which is of python
2.7 byte-compiled filetype. This file can be run with the python language virtual machine and is more efficient
than passing in just the raw source file, which is a desired attribute of resulting software we as a RPM Packager will
distribute out to systems.

Raw Interpreted

This version of the example is written in the bash shell built in scripting language.

bello
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#!/bin/bash

printf "Hello World\n"

UNIX-style shells have scripting languages, much like bash does, but programs written in these languages do not have
any kind of byte compile procedure and are interpreted directly as they are written so the only procedure we have to
do is make the file executable and then run it.

$ chmod +x bello
$ ./bello
Hello World

4.2.4 Patching Software

In software and computing a patch is the term given to source code that is meant to fix other code, this is similar to the
way that someone will use a piece of cloth to patch another piece of cloth that is part of a shirt or a blanket. Patches
in software are formatted as what is called a diff since it represents what is different between to pieces of source code.
A diff is created using the diff command line utility that is provided by diffutils and then it is applied to the original
source code using the tool patch.

: Software developer will often use “Version Control Systems” such as git to manage their code base. Tools like these
provide their own methods of creating diffs or patching software but those are outside the scope of this document.

Let’s walk through an example where we create a patch from the original source code using diff and then apply it
using the patch utility. We will revisit patching software in a later section when it comes to actually building RPMs and
hopefully this exercise will prove it’s usefulness at that time. First step in patching software is to preserve the original
source code because we want to keep the original source code in pristine condition as we will “patch it” instead of
simply modifying it. A common practice for this is to copy it and append .orig to the filename. Let’s do that now.

$ cp cello.c cello.c.orig

Next, we want to make an edit to cello.c using our favorite text editor. Update your cello.c to match the output
below.

#include <stdio.h>

int main(void) {
printf("Hello World from my very first patch!\n");
return 0;

}

Now that we have our original source code preserved and the updated source code written, we can generate a patch
using the diff utility.

: Here we are using a handful of common arguments for the diff utility and their documentation is out of the scope
of this document. Please reference the manual page on your local machine with: man diff for more information.

$ diff -Naur cello.c.orig cello.c
--- cello.c.orig 2016-05-26 17:21:30.478523360 -0500
+++ cello.c 2016-05-27 14:53:20.668588245 -0500
@@ -1,6 +1,6 @@
#include<stdio.h>

4.2. General Topics and Background 43

http://www.gnu.org/software/diffutils/diffutils.html
http://savannah.gnu.org/projects/patch/
https://git-scm.com/
http://savannah.gnu.org/projects/patch/


RPM Packaging Guide Documentation, 0.0.1

int main(void){
- printf("Hello World!\n");
+ printf("Hello World from my very first patch!\n");

return 1;
}

\ No newline at end of file

This is the output, you can see lines that start with a - are being removed from the original source code and replaced
by the line that starts with +. Let’s now save that output to a file this time by redirecting the output to a file so that we
can use it later with the patch utility. It is not a requirement but it’s good practice to use a meaningful filename when
creating patches.

$ diff -Naur cello.c.orig cello.c > cello-output-first-patch.patch

Now we want to restore the cello.c file to it’s original source code such that it is restored to it’s pristine state and
we we can patch it with our new patch file. The reason this particular process is important is because this is how it is
done when building RPMs, the original source code is left in pristine condition and we patch it during the process that
prepares to source code to be built.

$ cp cello.c.orig cello.c

Next up, let’s go ahead and patch the source code by redirecting the patch file to the patch command.

$ patch < cello-output-first-patch.patch
patching file cello.c

$ cat cello.c
#include<stdio.h>

int main(void){
printf("Hello World from my very first patch!\n");
return 1;

}

From the output of the cat command we can see that the patch has been successfully applied, let’s build and run it
now.

$ make clean
rm cello

$ make
gcc -o cello cello.c

$ ./cello
Hello World from my very first patch!

Congratulations, you have successfully created a patch, patched software, built the patched software and run it!

Next up, installing things!

4.2.5 Installing Arbitrary Artifacts

One of the many really nice things about Linux systems is the Filesystem Hierarchy Standard (FHS) which defines
areas of the filesystem in which things should be placed. As a RPM Packager this is extremely useful because we will
always know where to place things that come from our source code.

This section references the concept of an Arbitrary Artifact which in this context is anything you can imagine that
is a file that you want to install somewhere on the system within the FHS. It could be a simple script, a pre-existing
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binary, the binary output of source code that you have created as a side effect of a build process, or anything else you
can think up. We discuss it in such a vague vocabulary in order to demonstrate that the system nor RPM care what the
Artifact in question is. To both RPM and the system, it is just a file that needs to exist in a pre-determined place. The
permissions and the type of file it is makes it special to the system but that is for us as a RPM Packager to decide.

For example, once we have built our software we can then place it on the system somewhere that will end up in the
system $PATH so that they can be found and executed easily by users, developers, and sysadmins alike. We will
explore two ways to accomplish this as they each are quite popular approaches used by RPM Packagers.

install command

When placing arbitrary artifacts onto the system without build automation tooling such as GNU make or because it
is a simple script and such tooling would be seen as unnecessary overhead, it is a very common practice to use the
install command (provided to the system by coreutils) to place the artifact in a correct location on the filesystem
based on where it should exist in the FHS along with appropriate permissions on the target file or directory.

The example below is going to use the bello file that we had previously created as the arbitrary artifact subject to
our installation method. Note that you will either need sudo permissions or run this command as root excluding the
sudo portion of the command.

$ sudo install -m 0755 bello /usr/bin/bello

As this point, we can execute bello from our shell no matter what our current working directory is because it has
been installed into our $PATH.

$ cd ~/

$ bello
Hello World

make install

A very popular mechanism by which you will install software from source after it’s built is by using a command called
make install and in order to do that we need to enhance the Makefile we created previously just a little bit.

: The creation of Makefile is normally done by the developer who writes the original source code of the software
in question and as a RPM Packager this is not generally something you will need to do. This is purely an exercise for
background knowledge and we will expand upon this as it relates to RPM Packaging later.

Open the Makefile file up in your favorite text editor and make the appropriate edits needed so that it ends up
looking exactly as the following.

: The use of $(DESTDIR) is a GNU make built-in and is commonly used to install into alternative destination
directories.

Makefile

cello:
gcc -o cello cello.c

clean:
rm cello
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install:
mkdir -p $(DESTDIR)/usr/bin
install -m 0755 cello $(DESTDIR)/usr/bin/cello

Now we are able to use the make file to both build and install the software from source. Note that for the installation
portion, like before when we ran the raw install command, you will need either sudo permissions or be the root
user and omit the sudo portion of the command.

The following will build and install the simple cello.c program that we had written previously.

$ make
gcc -o cello cello.c

$ sudo make install
install -m 0755 cello /usr/bin/cello

Just as in the previous example, we can now execute cello from our shell no matter what our current working
directory is because it has been installed into our $PATH.

$ cd ~/

$ cello
Hello World

Congratulations, you have now installed a build artifact into it’s proper location on the system!

4.2.6 Prepping our example upstream source code

: If you’re familiar with how upstream software is distributed and would like to skip this, please feel free to download
the example source code for our fake upstream projects skip this section. However if you are curious how the examples
are created please feel free to read along.

Now that we have our RPM Packaging Workspace setup, we should create simulated upstream compressed archives
of the example programs we have made. We will once again list them here just in case a previous section was skipped.

: What we are about to do here in this section is not normally something a RPM Packager has to do, this is normally
what happens from an upstream software project, product, or developer who actually releases the software as source
code. This is simply to setup the RPM Build example space and give some insight into where everything actually
comes from.

We will also assume GPLv3 as the Software License for all of these simulated upstream software releases. As such,
we will need a LICENSE file included with each source code release. We include this in our simulated upstream
software release because encounters with a Software License when packaging RPMs is a very common occurrence for
a RPM Packager and we should know how to properly handle them.

: The method used below to create the LICENSE file is known as a here document.

Let us go ahead and make a LICENSE file that can be included in the source code “release” for each example.

$ cat > /tmp/LICENSE <<EOF
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
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the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
EOF

Each implementation of the Hello World example script will be created into a gzip compressed tarball which will
be used to simulate what an upstream project might release as it’s source code to then be consumed and packaged for
distribution.

Below is an example procedure for each example implementation.

bello

For the bash example implementation we will have a fake project called bello and since the project named bello
produces one thing and that’s a shell script named bello then it will only contain that in it’s resulting tar.gz. Let’s
pretend that this is version 0.1 of that software and we’ll mark the tar.gz file as such.

Here is the listing of the file as mentioned before.

bello

#!/bin/bash

printf "Hello World\n"

Let’s make a project tar.gz out of our source code.

$ mkdir /tmp/bello-0.1

$ mv ~/bello /tmp/bello-0.1/

$ cp /tmp/LICENSE /tmp/bello-0.1/

$ cd /tmp/

$ tar -cvzf bello-0.1.tar.gz bello-0.1
bello-0.1/
bello-0.1/LICENSE
bello-0.1/bello

$ mv /tmp/bello-0.1.tar.gz ~/rpmbuild/SOURCES/

pello

For the Python example implementation we will have a fake project called pello and since the project named pello pro-
duces one thing and that’s a small program named pello.py then it will only contain that in it’s resulting tar.gz.
Let’s pretend that this is version 0.1.1 of this software and we’ll mark the tar.gz file as such.

Here is the listing of the file as mentioned before.

pello.py
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#!/usr/bin/env python

print("Hello World")

Let’s make a project tar.gz out of our source code.

$ mkdir /tmp/pello-0.1.1

$ mv ~/pello.py /tmp/pello-0.1.1/

$ cp /tmp/LICENSE /tmp/pello-0.1.1/

$ cd /tmp/

$ tar -cvzf pello-0.1.1.tar.gz pello-0.1.1
pello-0.1.1/
pello-0.1.1/LICENSE
pello-0.1.1/pello.py

$ mv /tmp/pello-0.1.1.tar.gz ~/rpmbuild/SOURCES/

cello

For the C example implementation we will have a fake project called cello and since the project named cello produces
two things, the source code to our program named cello.c and a Makefile we will need to make sure and include
both of these in our tar.gz. Let’s pretend that this is version 1.0 of the software and we’ll mark the tar.gz file
as such.

Here is the listing of the files involved as mentioned before.

You will notice the patch file is listed here, but it will not go in our project tarball because it is something that
we as the RPM Packager will apply and not something that comes from the upstream source code. RPM Packages
are built in such a way that the original upstream source code in preserved in it’s pristine form just as released by
it’s creator. All patches required to the software happen at RPM Build time, not before. We will place that in the
~/rpmbuild/SOURCES/ directory along side the “upstream” source code that we are simulating here. (More on
this later).

cello.c

#include <stdio.h>

int main(void) {
printf("Hello World\n");
return 0;

}

cello-output-first-patch.patch

--- cello.c.orig 2016-05-26 17:21:30.478523360 -0500
+++ cello.c 2016-05-27 14:53:20.668588245 -0500
@@ -1,6 +1,6 @@
#include<stdio.h>

int main(void){
- printf("Hello World\n");
+ printf("Hello World from my very first patch!\n");

return 1;
}
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Makefile

cello:
gcc -o cello cello.c

clean:
rm cello

install:
mkdir -p $(DESTDIR)/usr/bin
install -m 0755 cello $(DESTDIR)/usr/bin/cello

Let’s make a project tar.gz out of our source code.

$ mkdir /tmp/cello-1.0

$ mv ~/cello.c /tmp/cello-1.0/

$ mv ~/Makefile /tmp/cello-1.0/

$ cp /tmp/LICENSE /tmp/cello-1.0/

$ cd /tmp/

$ tar -cvzf cello-1.0.tar.gz cello-1.0
cello-1.0/
cello-1.0/Makefile
cello-1.0/cello.c
cello-1.0/LICENSE

$ mv /tmp/cello-1.0.tar.gz ~/rpmbuild/SOURCES/

$ mv ~/cello-output-first-patch.patch ~/rpmbuild/SOURCES/

Great, now we have all of our upstream source code prep’d and ready to be turned into RPMs!

4.3 Appendix

Here you will find supplementary information that is very good to know and will likely prove to helpful for anyone
who is going to be building RPMs in an serious capacity but isn’t necessarily a hard requirement to learn how to
package RPMs in the first place which is what the main goal of this document is.

4.3.1 Mock

“Mock is a tool for building packages. It can build packages for different architectures and different Fedora or RHEL
versions than the build host has. Mock creates chroots and builds packages in them. Its only task is to reliably populate
a chroot and attempt to build a package in that chroot.

Mock also offers a multi-package tool, mockchain, that can build chains of packages that depend on each other.

Mock is capable of building SRPMs from source configuration management if the mock-scm package is present, then
building the SRPM into RPMs. See –scm-enable in the documentation.” (From the upstream documentation)

: In order to use Mock on a RHEL or CentOS system, you will need to enable the “Extra Packages for Enterprise
Linux” (EPEL) repository. This is a repository provided by the Fedora community and has many useful tools for RPM
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Packagers, systems administrators, and developers.

One of the most common use cases RPM Packagers have for Mock is to create what is known as a “pristine build
environment”. By using mock as a “pristine build environment”, nothing about the current state of your system has
an effect on the RPM Package itself. Mock uses different configurations to specify what the build “target” is, these
are found on your system in the /etc/mock/ directory (once you’ve installed the mock package). You can build
for different distributions or releases just by specifying it on the command line. Something to keep in mind is that the
configuration files the come with mock are targeted at Fedora RPM Packagers and as such RHEL and CentOS release
versions are labeled as “epel” because that is the “target” repository these RPMs would be built for. You simply specify
the configuration you want to use (minus the .cfg file extension). For example, you could build our cello example
for both RHEL 7 and Fedora 23 using the following commands without ever having to use different machines.

$ mock -r epel-7-x86_64 ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

$ mock -r fedora-23-x86_64 ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

One example of why you might want to use mock is if you were packaging RPMs on your laptop and you had a
package installed (we’ll call it foo for this example) that was a BuildRequires of that package you were creating
but forgot to actually make the BuildRequires: foo entry. The build would succeed when you run rpmbuild
because foo was needed to build and it was found on the system at build time. However, if you took the SRPM to
another system that lacked foo it would fail, causing an unexpected side effect. Mock solves this by first parsing the
contents of the SRPM and installing the BuildRequires into it’s chroot which means that if you were missing the
BuildRequires entry the build would fail because mock would not know to install it and it would therefore not be
present in the buildroot.

Another example is the opposite scenario, let’s say you need gcc to build a package but don’t have it installed on
your system (which is unlikely as a RPM Packager, but just for the sake of the example let us pretend that is true).
With Mock, you don’t have to install gcc on your system because it will get installed in the chroot as part of mock’s
process.

Below is an example of attempting to rebuild a package that has a dependency that I’m missing on my system. The key
thing to note is that while gcc is commonly on most RPM Packager’s systems, some RPM Packages can have over a
dozen BuildRequires and this allows you to not need to clutter up your workstation with otherwise un-needed or
un-necessary packages.

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
Installing /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
error: Failed build dependencies: gcc is needed by cello-1.0-1.el7.x86_64

$ mock -r epel-7-x86_64 ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm
INFO: mock.py version 1.2.17 starting (python version = 2.7.5)...
Start: init plugins
INFO: selinux enabled
Finish: init plugins
Start: run
INFO: Start(/home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm) Config(epel-7-x86_64)
Start: clean chroot
Finish: clean chroot
Start: chroot init
INFO: calling preinit hooks
INFO: enabled root cache
Start: unpacking root cache
Finish: unpacking root cache
INFO: enabled yum cache
Start: cleaning yum metadata
Finish: cleaning yum metadata
Mock Version: 1.2.17
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INFO: Mock Version: 1.2.17
Start: yum update
base | 3.6 kB 00:00:00
epel | 4.3 kB 00:00:00
extras | 3.4 kB 00:00:00
updates | 3.4 kB 00:00:00
No packages marked for update
Finish: yum update
Finish: chroot init
Start: build phase for cello-1.0-1.el7.src.rpm
Start: build setup for cello-1.0-1.el7.src.rpm
warning: Could not canonicalize hostname: rhel7
Building target platforms: x86_64
Building for target x86_64
Wrote: /builddir/build/SRPMS/cello-1.0-1.el7.centos.src.rpm
Getting requirements for cello-1.0-1.el7.centos.src
--> Already installed : gcc-4.8.5-4.el7.x86_64
--> Already installed : 1:make-3.82-21.el7.x86_64

No uninstalled build requires
Finish: build setup for cello-1.0-1.el7.src.rpm
Start: rpmbuild cello-1.0-1.el7.src.rpm
Building target platforms: x86_64
Building for target x86_64
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.v9rPOF
+ umask 022
+ cd /builddir/build/BUILD
+ cd /builddir/build/BUILD
+ rm -rf cello-1.0
+ /usr/bin/gzip -dc /builddir/build/SOURCES/cello-1.0.tar.gz
+ /usr/bin/tar -xf -
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd cello-1.0
+ /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .
Patch #0 (cello-output-first-patch.patch):
+ echo 'Patch #0 (cello-output-first-patch.patch):'
+ /usr/bin/cat /builddir/build/SOURCES/cello-output-first-patch.patch
patching file cello.c
+ /usr/bin/patch -p0 --fuzz=0
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.UxRVtI
+ umask 022
+ cd /builddir/build/BUILD
+ cd cello-1.0
+ make -j2
gcc -o cello cello.c
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.K3i2dL
+ umask 022
+ cd /builddir/build/BUILD
+ '[' /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64 '!=' / ']'
+ rm -rf /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64
++ dirname /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64
+ mkdir -p /builddir/build/BUILDROOT
+ mkdir /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64
+ cd cello-1.0
+ /usr/bin/make install DESTDIR=/builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64
mkdir -p /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64/usr/bin
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install -m 0755 cello /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64/usr/bin/cello
+ /usr/lib/rpm/find-debuginfo.sh --strict-build-id -m --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 /builddir/build/BUILD/cello-1.0
extracting debug info from /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64/usr/bin/cello
dwz: Too few files for multifile optimization
/usr/lib/rpm/sepdebugcrcfix: Updated 0 CRC32s, 1 CRC32s did match.
+ /usr/lib/rpm/check-buildroot
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/brp-python-bytecompile /usr/bin/python 1
+ /usr/lib/rpm/redhat/brp-python-hardlink
+ /usr/lib/rpm/redhat/brp-java-repack-jars
Processing files: cello-1.0-1.el7.centos.x86_64
Executing(%license): /bin/sh -e /var/tmp/rpm-tmp.vxtAuO
+ umask 022
+ cd /builddir/build/BUILD
+ cd cello-1.0
+ LICENSEDIR=/builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64/usr/share/licenses/cello-1.0
+ export LICENSEDIR
+ /usr/bin/mkdir -p /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64/usr/share/licenses/cello-1.0
+ cp -pr LICENSE /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64/usr/share/licenses/cello-1.0
+ exit 0
Provides: cello = 1.0-1.el7.centos cello(x86-64) = 1.0-1.el7.centos
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires: libc.so.6()(64bit) libc.so.6(GLIBC_2.2.5)(64bit) rtld(GNU_HASH)
Processing files: cello-debuginfo-1.0-1.el7.centos.x86_64
Provides: cello-debuginfo = 1.0-1.el7.centos cello-debuginfo(x86-64) = 1.0-1.el7.centos
Requires(rpmlib): rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 rpmlib(CompressedFileNames) <= 3.0.4-1
Checking for unpackaged file(s): /usr/lib/rpm/check-files /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64
Wrote: /builddir/build/RPMS/cello-1.0-1.el7.centos.x86_64.rpm
warning: Could not canonicalize hostname: rhel7
Wrote: /builddir/build/RPMS/cello-debuginfo-1.0-1.el7.centos.x86_64.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.JuPOtY
+ umask 022
+ cd /builddir/build/BUILD
+ cd cello-1.0
+ /usr/bin/rm -rf /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64
+ exit 0
Finish: rpmbuild cello-1.0-1.el7.src.rpm
Finish: build phase for cello-1.0-1.el7.src.rpm
INFO: Done(/home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm) Config(epel-7-x86_64) 0 minutes 16 seconds
INFO: Results and/or logs in: /var/lib/mock/epel-7-x86_64/result
Finish: run

As you can see, mock is a fairly verbose tool. You will also notice a lot of yum or dnf output (depending on RHEL7,
CentOS7, or Fedora mock target) that is not found in this output which was omitted for brevity and is often omitted
after you have done an --init on a mock target, such as mock -r epel-7-x86_64 --init which will pre-
download all the required packages, cache them, and pre-stage the build chroot.

For more information, please consult the Mock upstream documentation.

4.3.2 Version Control Systems

When working with RPMs, it is often desireable to utilize a Version Control System (VCS) such as git for managing
components of the software we are packaging. Something to note is that storing binary files in a VCS is not favorable
because it will drastically inflate the size of the source repository as these tools are engineered to handle differentials
in files (often optimized for text files) and this is not something that binary files lend themselves to so normally each
whole binary file is stored. As a side effect of this there are some clever utilities that are popular among upstream Open

52 Chapter 4. Contents

http://yum.baseurl.org/
https://github.com/rpm-software-management/dnf
https://fedoraproject.org/wiki/Mock
https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/


RPM Packaging Guide Documentation, 0.0.1

Source projects that work around this problem by either storing the SPEC file where the source code is in a VCS (i.e.
- it is not in a compressed archive for redistribution) or place only the SPEC file and patches in the VCS and upload
the compressed archive of the upstream release source to what is called a “look aside cache”.

In this section we will cover two different options for using a VCS system, git, for managing the contents that will
ultimately be turned into a RPM package. One is called tito and the other is dist-git.

: For the duration of this section you will need to install the git package on you system in order to follow along.

tito

Tito is an utility that assumes all the source code for the software that is going to be packaged is already in a git source
control repository. This is good for those practicing a DevOps workflow as it allows for the team writing the software
to maintain their normal Branching Workflow. Tito will then allow for the software to be incrementally packaged,
built in an automated fashion, and still provide a native installation experience for RPM based systems.

: The tito package is available in Fedora as well as in the EPEL repository for use on RHEL 7 and CentOS 7.

Tito operates based on git tags and will manage tags for you if you elect to allow it, but can optionally operate under
whatever tagging scheme you prefer as this functionality is configurable.

Let’s explore a little bit about tito by looking at an upstream project already using it. We will actually be using the
upstream git repository of the project that is our next section’s subject, dist-git. Since this project is publicly hosted on
is publicly hosted on GitHub, let’s go ahead and clone the git repo.

$ git clone https://github.com/release-engineering/dist-git.git
Cloning into 'dist-git'...
remote: Counting objects: 425, done.
remote: Total 425 (delta 0), reused 0 (delta 0), pack-reused 425
Receiving objects: 100% (425/425), 268.76 KiB | 0 bytes/s, done.
Resolving deltas: 100% (184/184), done.
Checking connectivity... done.

$ cd dist-git/

$ ls *.spec
dist-git.spec

$ tree rel-eng/
rel-eng/
-- packages
| -- dist-git
-- tito.props

1 directory, 2 files

As we can see here, the SPEC file is at the root of the git repository and there is a rel-eng directory in the repository
which is used by tito for general book keeping, configuration, and various advanced topics like custom tito modules.
We can see in the directory layout that there is a sub-directory entitled packages which will store a file per package
that tito manages in the repository as you can have many RPMs in a single git repository and tito will handle that just
fine. In this scenario however, we see only a single package listing and it should be noted that it matches the name of
our SPEC file. All of this is setup by the command tito init when the developers of dist-git first initialized their
git repo to be managed by tito.
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If we were to follow a common workflow of a DevOps Practitioner then we would likely want to use this as part of a
Continuous Integration (CI) or Continuous Delivery (CD) process. What we can do in that scenario is perform what
is known as a “test build” to tito, we can even use mock to do this. We could then use the output as the installation
point for some other component in the pipeline. Below is a simple example of commands that could accomplish this
and they could be adapted to other environments.

$ tito build --test --srpm
Building package [dist-git-0.13-1]
Wrote: /tmp/tito/dist-git-git-0.efa5ab8.tar.gz

Wrote: /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.fc23.src.rpm

$ tito build --builder=mock --arg mock=epel-7-x86_64 --test --rpm
Building package [dist-git-0.13-1]
Creating rpms for dist-git-git-0.efa5ab8 in mock: epel-7-x86_64
Wrote: /tmp/tito/dist-git-git-0.efa5ab8.tar.gz

Wrote: /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.fc23.src.rpm

Using srpm: /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.fc23.src.rpm
Initializing mock...
Installing deps in mock...
Building RPMs in mock...
Wrote:

/tmp/tito/dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm
/tmp/tito/dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm

$ sudo yum localinstall /tmp/tito/dist-git-*.noarch.rpm
Loaded plugins: product-id, search-disabled-repos, subscription-manager
Examining /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm: dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch
Marking /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm to be installed
Examining /tmp/tito/dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm: dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch
Marking /tmp/tito/dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package dist-git.noarch 0:0.13-1.git.0.efa5ab8.el7.centos will be installed

Note that the final command would need to be run with either sudo or root permissions and that much of the output
has been omitted for brevity as the dependency list is quite long.

This concludes our simple example of how to use tito but it has many amazing features for traditional Systems Ad-
ministrators, RPM Packagers, and DevOps Practitioners alike. I would highly recommend consulting the upstream
documentation found at the tito GitHub site for more information on how to quickly get started using it for your project
as well as various advanced features it offers.

dist-git

The dist-git utility takes a slightly different approach from that of tito such that instead of keeping the raw source code
in git it instead will keep SPEC files and patches in a git repository and upload the compressed archive of the source
code to what is known as a “look-aside cache”. The “look-aside-cache” is a term that was coined by the use of RPM
Build Systems storing large files like these “on the side”. A system like this is generally tied to a proper RPM Build
System such as Koji. The build system is then configured to pull the items that are listed as SourceX entries in the
SPEC files in from this look-aside-cache, while the SPEC and patches remain in a version control system. There is
also a helper command line tool to assist in this.

In an effort to not duplicate documentation, for more information on how to setup a system such as this please refer to
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the upstream dist-git docs. upstream docs.

4.3.3 More on Macros

There are many built-in RPM Macros and we will cover a few in the following section, however an exhaustive list can
be found rpm.org’s rpm macro official documentation.

There are also macros that are provided by your Linux Distribution, we will cover some of those provided by Fedora,
CentOS and RHEL in this section as well as provide information on how to inspect your system to learn about others
that we don’t cover or for discovering them on other RPM-based Linux Distributions.

Defining Your Own

You can define your own Macros, below is an excerpt from the RPM Official Documentation and I recommend anyone
interested in an exhaustive explanation of the many possibilities of defining their own macros to visit that resource.
It’s really quite good and there’s little reason to duplicate the bulk of that content here.

To define a macro use:

%define <name>[(opts)] <body>

All whitespace surrounding \<body\> is removed. Name may be composed of alphanumeric characters, and the
character _ and must be at least 3 characters in length. A macro without an (opts) field is “simple” in that only
recursive macro expansion is performed. A parameterized macro contains an (opts) field. The opts (i.e. string between
parentheses) is passed exactly as is to getopt(3) for argc/argv processing at the beginning of a macro invocation.

%files

Common “advanced” RPM Macros needed in the %files section are as follows:

Macro Definition
%license This identifies the file listed as a LICENSE file and it will be installed and labeled as such by RPM.

Example: %license LICENSE
%doc This identifies the file listed as documentation and it will be installed and labeled as such by RPM.

This is often used not only for documentation about the software being packaged but also code
examples and various items that should accompany documentation. In the event code examples are
included, care should be taken to remove executable mode from the file. Example: %doc README

%dir Identifies that the path is a directory that should be owned by this RPM. This is important so that
the rpm file manifest accurately knows what directories to clean up on uninstall. Example: %dir
%{_libdir}/%{name}

%con-
fig(noreplace)

Specifies that the following file is a configuration file and therefore should not be overwritten (or
replaced) on a package install or update if the file has been modified from the original installation
checksum. In the event that there is a change, the file will be created with .rpmnew appended to
the end of the filename upon upgrade or install so that the pre-existing or modified file on the target
system is not modified. Example: %config(noreplace)
%{_sysconfdir}/%{name}/%{name}.conf

Built In Macros

Your system has many built in RPM Macros and the fastest way to view them all is to simply run the rpm --showrc
command, however note that this will contain a lot of output so it’s often used in combination with a pipe to grep (or
a clever shell Process Substitution).
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You can also find information about the RPMs macros that come directly with your system’s version of RPM by
looking at the output of the command rpm -ql rpm taking note of the files titled macros in the directory structure.

RPM Distribution Macros

Different distributions will supply different sets of recommended RPM Macros based on the language implementation
of the software being packaged or the specific Guidelines of the distribution in question.

These are often provided as RPM Packages themselves and can be installed with the distribution package manager,
such as yum or dnf. The macro files themselves once installed can be found in /usr/lib/rpm/macros.d/ and
will be included in the rpm --showrc output by default once installed.

One primary example of this is the Fedora Packaging Guidelines section pertaining specifically to Application Specific
Guidelines which at the time of this writing has over 30 different sets of guidelines along with associated RPM Macro
sets for subject matter specific RPM Packaging.

One example of these kinds of RPMs would be for Python version 2.x and if we have the python2-rpm-macros
package installed (available in EPEL for RHEL 7 and CentOS 7), we have a number of python2 specific macros
available to us.

$ rpm -ql python2-rpm-macros
/usr/lib/rpm/macros.d/macros.python2

$ rpm --showrc | grep python2
-14: __python2 /usr/bin/python2
CFLAGS="%{optflags}" %{__python2} %{py_setup} %{?py_setup_args} build --executable="%{__python2} %{py2_shbang_opts}" %{?1}
CFLAGS="%{optflags}" %{__python2} %{py_setup} %{?py_setup_args} install -O1 --skip-build --root %{buildroot} %{?1}
-14: python2_sitearch %(%{__python2} -c "from distutils.sysconfig import get_python_lib; print(get_python_lib(1))")
-14: python2_sitelib %(%{__python2} -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())")
-14: python2_version %(%{__python2} -c "import sys; sys.stdout.write('{0.major}.{0.minor}'.format(sys.version_info))")
-14: python2_version_nodots %(%{__python2} -c "import sys; sys.stdout.write('{0.major}{0.minor}'.format(sys.version_info))")

The above output displays the raw RPM Macro definitions, but we are likely more interested in what these will evaluate
to which we can do with rpm --eval in order to determine what they do as well as how they may be helpful to us
when packaging RPMs.

$ rpm --eval %{__python2}
/usr/bin/python2

$ rpm --eval %{python2_sitearch}
/usr/lib64/python2.7/site-packages

$ rpm --eval %{python2_sitelib}
/usr/lib/python2.7/site-packages

$ rpm --eval %{python2_version}
2.7

$ rpm --eval %{python2_version_nodots}
27

4.3.4 Advanced SPEC File Topics

There are various topics in the world of RPM SPEC Files that are considered advanced because they have implications
on not only the SPEC file, how the package is built, but also on the end machine that the resulting RPM is installed
upon. In this section we will cover the most common of these such as Epoch, Scriptlets, and Triggers.
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Epoch

First on the list is Epoch, epoch is a way to define weighted dependencies based on version numbers. It’s default
value is 0 and this is assumed if an Epoch directive is not listed in the RPM SPEC file. This was not covered in the
SPEC File section of this guide because it is almost always a bad idea to introduce an Epoch value as it will skew what
you would normally otherwise expect RPM to do when comparing versions of packages.

For example if a package foobar with Epoch: 1 and Version: 1.0 was installed and someone else pack-
aged foobar with Version: 2.0 but simply omitted the Epoch directive either because they were unaware of
it’s necessity or simply forgot, that new version would never be considered an update because the Epoch version would
win out over the traditional Name-Version-Release marker that signifies versioning for RPM Packages.

This approach is generally only used when absolutely necessary (as a last resort) to resolve an upgrade ordering
issue which can come up as a side effect of upstream software changing versioning number schemes or versions
incorporating alphabetical characters that can not always be compared reliably based on encoding.

Triggers and Scriptlets

In RPM Packages, there are a series of directives that can be used to inflict necessary or desired change on a system
during install time of the RPM. These are called scriptlets.

One primary example of when and why you’d want to do this is when a system service RPM is installed and it
provides a systemd unit file. At install time we will need to notify systemd that there is a new unit so that the system
administrator can run a command similar to systemctl start foo.service after the fictional RPM foo
(which provides some service daemon in this example) has been installed. Similarly, we would need to inverse of this
action upon uninstallation so that an administrator would not get errors due to the daemon’s binary no longer being
installed but the unit file still existing in systemd’s running configuration.

There are a small handful of common scriptlet directives, they are similar to the “section headers” like %build or
%install in that they are defined by multi-line segments of code, often written as standard POSIX shell script but
can be a few different programming languages such that RPM for the target machine’s distribution is configured to
allow them. An exhaustive list of these available languages can be found in the RPM Official Documentation.

Scriptlet directives are as follows:

Directive Definition
%pre Scriptlet that is executed just before the package is installed on the target system.
%post Scriptlet that is executed just after the package is installed on the target system.
%preun Scriptlet that is executed just before the package is uninstalled from the target system.
%postun Scriptlet that is executed just after the package is uninstalled from the target system.

Is is also common for RPM Macros to exist for this function. In our previous example we discussed systemd needing
to be notified about a new unit file, this is easily handled by the systemd scriptlet macros as we can see from the below
example output. More information on this can be found in the Fedora systemd Packaging Guidelines.

$ rpm --showrc | grep systemd
-14: __transaction_systemd_inhibit %{__plugindir}/systemd_inhibit.so
-14: _journalcatalogdir /usr/lib/systemd/catalog
-14: _presetdir /usr/lib/systemd/system-preset
-14: _unitdir /usr/lib/systemd/system
-14: _userunitdir /usr/lib/systemd/user
/usr/lib/systemd/systemd-binfmt %{?*} >/dev/null 2>&1 || :
/usr/lib/systemd/systemd-sysctl %{?*} >/dev/null 2>&1 || :
-14: systemd_post
-14: systemd_postun
-14: systemd_postun_with_restart
-14: systemd_preun
-14: systemd_requires
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Requires(post): systemd
Requires(preun): systemd
Requires(postun): systemd
-14: systemd_user_post %systemd_post --user --global %{?*}
-14: systemd_user_postun %{nil}
-14: systemd_user_postun_with_restart %{nil}
-14: systemd_user_preun
systemd-sysusers %{?*} >/dev/null 2>&1 || :
echo %{?*} | systemd-sysusers - >/dev/null 2>&1 || :
systemd-tmpfiles --create %{?*} >/dev/null 2>&1 || :

$ rpm --eval %{systemd_post}

if [ $1 -eq 1 ] ; then
# Initial installation
systemctl preset >/dev/null 2>&1 || :

fi

$ rpm --eval %{systemd_postun}

systemctl daemon-reload >/dev/null 2>&1 || :

$ rpm --eval %{systemd_preun}

if [ $1 -eq 0 ] ; then
# Package removal, not upgrade
systemctl --no-reload disable > /dev/null 2>&1 || :
systemctl stop > /dev/null 2>&1 || :

fi

Another item that provides even more fine grained control over the RPM Transaction as a whole is what is known
as triggers. These are effectively the same thing as a scriptlet but are executed in a very specific order of operations
during the RPM install or upgrade transaction allowing for a more fine grained control over the entire process.

The order in which each is executed and the details of which are provided below.

all-%pretrans
...
any-%triggerprein (%triggerprein from other packages set off by new install)
new-%triggerprein
new-%pre for new version of package being installed
... (all new files are installed)
new-%post for new version of package being installed

any-%triggerin (%triggerin from other packages set off by new install)
new-%triggerin
old-%triggerun
any-%triggerun (%triggerun from other packages set off by old uninstall)

old-%preun for old version of package being removed
... (all old files are removed)
old-%postun for old version of package being removed

old-%triggerpostun
any-%triggerpostun (%triggerpostun from other packages set off by old un

install)
...
all-%posttrans
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The above items are from the included RPM documentation found in /usr/share/doc/rpm/triggers on
Fedora systems and /usr/share/doc/rpm-4.*/triggers on RHEL 7 and CentOS 7 systems.

4.3.5 References

Below are references to various topics of interest around RPMs, RPM Packaging, and RPM Building. Some of these
will be advanced and extend far beyond the introductory material included in this guide.

• RPM Official Documentation

• Gurulabs CREATING RPMS (Student Version)

• Fedora How To Create An RPM Package Guide

• Fedora Packaging Guidelines

• OpenSUSE Packaging Guidelines

• IBM RPM Packaging Guide: Part 1, Part 2, Part 3

• Maximum RPM (Some material is dated, but this is still a great resource for advanced topics.)
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CHAPTER 5

Contributing to this guide

If you are currently a RPM Packager and would like to contribute either by way of feedback or pull request, please
do! Both forms of contribution are greatly appreciate and certainly welcome. Feel free to file an issue ticket with
feedback, submit a pull request on GitHub, or both!

Thank you for your time.
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