yaml Documentation
Release dev

Anthon van der Neut

December 21, 2016

Contents

Overview 3
Installing 5
2.1 Optional requirements oL e e e e 5
Details 7
3.1 Indentation of block sequences L e 7
3.2 Positioning *:’ in top level mappings, prefixin >o 8
3.3 Document VErsion SUPPOIT. v v v v v v i bt e e e e e e e e e e e e e e e e 8
3.4 Round trip including comments e e e e e e e e e e e 9
3.5 Configfileformats e e e e e e e 10
3.6 Extending e e e e e 10
37 Smartening L. e e e e e e e 10
Examples 11
Differences with PyYYAML 13
5.1 Defaulting to YAML 1.2 Support o o v it e e e e e e e e 13
52 PY2/PY3reinte@ration e e e e e e e e e e e e e e 13
5.3 FIXES . . o o e e e e e e e 13
54 Testing e e e e e 14

yaml Documentation, Release dev

BitBucket | PyPI

Contents:

Contents 1

https://bitbucket.org/ruamel/yaml
https://pypi.python.org/pypi/ruamel.yaml/

yaml Documentation, Release dev

2 Contents

CHAPTER 1

Overview

ruamel.yaml isa YAML 1.2 loader/dumper package for Python. It is a derivative of Kirill Simonov’s PyYAML
3.11

ruamel .yaml supports YAML 1.2 and has round-trip loaders and dumpers that preserves, among others:
e comments
* block style and key ordering are kept, so you can diff the round-tripped source
* flow style sequences (‘a: b, c, d’) (based on request and test by Anthony Sottile)
¢ anchors names that are hand-crafted (i.e. not of the form*‘‘idNNN*°)
* merges in dictionaries are preserved

This preservation is normally not broken unless you severely alter the structure of a component (delete a key in a
dict, remove list entries). Reassigning values or replacing list items, etc., is fine.

For the specific 1.2 differences see Defaulting to YAML 1.2 support

Although individual indentation is not preserved, you can specify both indentation and specific offset of block
sequence dashes within that indentation. There is a utility function that tries to determine the correct values for
indent and block_seq_indent that can then be passed to the dumper.

https://bitbucket.org/xi/pyyaml
https://bitbucket.org/xi/pyyaml
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/merge.html

yaml Documentation, Release dev

4 Chapter 1. Overview

CHAPTER 2

Installing

ruamel.yaml can be installed from PyPI_ using:

’pip install ruamel.yaml

There is a a commandline utility yam1 available after installing:

’pip install ruamel.yaml.cmd

that allows for round-trip testing/re-indenting and conversion of YAML files (JSON,INLHTML tables)

2.1 Optional requirements

If you have the C yaml library and headers installed, as well as the header files for your Python executables then
you can use the non-roundtrip but faster C loader and emitter.

On Debian systems you should use:

sudo apt—-get install libyaml-dev python-dev python3-dev

you can leave out python3-dev if you don’t use python3

For CentOS (7) based systems you should do:

sudo yum install libyaml-devel python-devel

yaml Documentation, Release dev

6 Chapter 2. Installing

CHAPTER 3

Details

* support for simple lists as mapping keys by transforming these to tuples

e !'lomap generates ordereddict (C) on Python 2, collections.OrderedDict on Python 3, and ! ! omap is
generated for these types.

» Tests whether the C yaml library is installed as well as the header files. That library doesn’t generate
CommentTokens, so it cannot be used to do round trip editing on comments. It can be used to speed up
normal processing (so you don’t need to install ruamel.yaml and PyYaml). See the section Optional
requirements.

* Basic support for multiline strings with preserved newlines and chomping (“|°, |+ ‘|=°). As this
subclasses the string type the information is lost on reassignment. (This might be changed in the future so
that the preservation/folding/chomping is part of the parent container, like comments).

* anchors names that are hand-crafted (not of the form*‘idNNN*) are preserved
* merges in dictionaries are preserved
* adding/replacing comments on block-style sequences and mappings with smart column positioning

¢ collection objects (when read in via RoundTripParser) have an 1c property that contains line and col-
umn info 1c.line and lc.col. Individual positions for mappings and sequences can also be retrieved
(lc.key("a’),lc.value(’a’) resp. lc.item(3))

* preservation of whitelines after block scalars. Contributed by Sam Thursfield.

3.1 Indentation of block sequences

Although ruamel.yaml doesn’t preserve individual indentations of block sequence items, it does properly dump:

[

back to:

if you specify indent=4.

PyYAML (and older versions of ruamel.yaml) gives you non-indented scalars (when specifying de-
fault_flow_style=False):

http://yaml.org/type/merge.html

yaml Documentation, Release dev

The dump routine also has an additional block_seq_indent parameter that can be used to push the dash
inwards, within the space defined by indent.

The above example with the often seen indent=4, block_seq_ indent=2 indentation:

X:
- b: 1
2

If the block_seq_indent equals indent, there is not enough room for the dash and the space that has to
follow. In that case the element itself would normally be pushed to the next line (and older versions of ruamel.yaml
did so). But this is prevented from happening. However the indent level is what is used for calculating the
cumulative indent for deeper levels and specifying indent=3 resp. block_seq_indent=2, gives correct,
but counter intuitive results.

3.2 Positioning ‘" in top level mappings, prefix in 2’

If you want your toplevel mappings to look like:

library version: 1
comment HE
this is just a first try

then call round_trip_dump () with top_level_colon_align=True (and indent=4). True causes
calculation based on the longest key, but you can also explicitly set a number.

If you want an extra space between a mapping key and the colon specify prefix_colon=' ’:

- https://myurl/abc.tar.xz : 23445
~ extra space here
- https://myurl/def.tar.xz : 944

If you combine prefix_colon withtop_level_colon_align, the top level mapping doesn’t get the extra
prefix. If you want that anyway, specify top_level_colon_align=12 where 12 has to be an integer that is
one more than length of the widest key.

3.3 Document version support.

In YAML a document version can be explicitly set by using:

SYAML 1.x

before the document start (at the top or before a ———). For ruamel.yaml x has to be 1 or 2. If no explicit
version is set version 1.2 is assumed (which has been released in 2009).

The 1.2 version does not support:
* sexagesimals like 12:34:56
* octals that start with 0 only: like 012 for number 10 (0012 is supported by YAML 1.2)
* Unquoted Yes and On as alternatives for True and No and Off for False.
If you cannot change your YAML files and you need them to load as 1.1 you can load with:
ruamel.yaml.load(some_str, Loader=ruamel.yaml.RoundTripLoader, version=(1, 1))
or the equivalent (version can be a tuple, list or string):

ruamel.yaml.round_trip_load(some_str, version="1.1")

8 Chapter 3. Details

http://www.yaml.org/spec/1.2/spec.html

yaml Documentation, Release dev

this also works for 1load_all/round_trip_load_all.

If you cannot change your code, stick with ruamel.yaml==0.10.23 and let me know if it would help to be able to
set an environment variable.

This does not affect dump as ruamel.yaml never emitted sexagesimals, nor octal numbers, and emitted booleans
always as true resp. false

3.4 Round trip including comments

The major motivation for this fork is the round-trip capability for comments. The integration of the sources was
just an initial step to make this easier.

3.4.1 adding/replacing comments

Starting with version 0.8, you can add/replace comments on block style collections (mappings/sequences resuting
in Python dict/list). The basic for for this is:

from _ future import print_function

import ruamel.yaml

inp = """\
abc:
- a # comment 1
XY7Z:
a: 1 # comment 2
b: 2
c: 3
d: 4
e: 5
f: 6 # comment 3
data = ruamel.yaml.load(inp, ruamel.yaml.RoundTripLoader)
data['abc'] .append('b")
data['abc'].yaml_add_eol_comment ('comment 4', 1) # takes column of comment 1
data['xyz'].yaml_add_eol_comment ('comment 5', 'c') # takes column of comment 2
data['xyz'].yaml_add_eol_comment ('comment 6', 'e') # takes column of comment 3
data['xyz'].yaml_add_eol_comment ('comment 7', 'd', column=20)
print (ruamel.yaml.dump (data, Dumper=ruamel.yaml.RoundTripDumper), end="")

Resulting in:

abc:
- a # comment 1
- b # comment 4
XYZ:
a: 1 # comment 2
b: 2
c: 3 # comment 5
d: 4 # comment 7
e: 5 # comment 6
f: 6 # comment 3

If the comment doesn’t start with ‘#’, this will be added. The key is the element index for list, the actual key for
dictionaries. As can be seen from the example, the column to choose for a comment is derived from the previous,
next or preceding comment column (picking the first one found).

3.4. Round trip including comments 9

yaml Documentation, Release dev

3.5 Config file formats

There are only a few configuration file formats that are easily readable and editable: JSON, INI/ConfigParser,
YAML (XML is to cluttered to be called easily readable).

Unfortunately JSON doesn’t support comments, and although there are some solutions with pre-processed filtering
of comments, there are no libraries that support round trip updating of such commented files.

INI files support comments, and the excellent ConfigObj library by Foord and Larosa even supports round trip
editing with comment preservation, nesting of sections and limited lists (within a value). Retrieval of particular
value format is explicit (and extensible).

YAML has basic mapping and sequence structures as well as support for ordered mappings and sets. It sup-
ports scalars various types including dates and datetimes (missing in JSON). YAML has comments, but these are
normally thrown away.

Block structured YAML is a clean and very human readable format. By extending the Python YAML parser to
support round trip preservation of comments, it makes YAML a very good choice for configuration files that are
human readable and editable while at the same time interpretable and modifiable by a program.

3.6 Extending

There are normally six files involved when extending the roundtrip capabilities: the reader, parser, composer and
constructor to go from YAML to Python and the resolver, representer, serializer and emitter to go the other way.

Extending involves keeping extra data around for the next process step, eventuallly resulting in a different Python
object (subclass or alternative), that should behave like the original, but on the way from Python to YAML gener-
ates the original (or at least something much closer).

3.7 Smartening

When you use round-tripping, then the complex data you get are already subclasses of the built-in types. So you
can patch in extra methods or override existing ones. Some methods are already included and you can do:

yaml_str — nn n\
a:

c: 42
- d:
f: 196
e:

nuwn

data = yaml.load(yaml_str, Loader=yaml.RoundTripLoader)

assert data.mlget(['a', 1, 'd', 'f'], list_ok=True) == 196

10 Chapter 3. Details

http://www.json.org/
http://www.voidspace.org.uk/python/configobj.html

CHAPTER 4

Examples

Basic round trip of parsing YAML to Python objects, modifying and generating YAML:
from _ future import print_function
import ruamel.yaml
il’lp — nnn \
example
name:

details

family: Smith # very common

given: Alice # one of the siblings
mnn
code = ruamel.yaml.load(inp, ruamel.yaml.RoundTripLoader)
code['name'] ['given'] = 'Bob'
print (ruamel.yaml.dump (code, Dumper=ruamel.yaml.RoundTripDumper), end='")

Resulting in

example

name:
details
family: Smith # very common
given: Bob # one of the siblings

YAML handcrafted anchors and references as well as key merging are preserved. The merged keys can transpar-
ently be accessed using [] and .get ():

import ruamel.yaml

inp = """\

- &CENTER {x: 1, y: 2}
&LEFT {x: 0, y: 2}
&BIG {r: 10}

- &SMALL {r: 1}

All the following maps are equal:
Explicit keys
- x: 1

y: 2

r: 10

label: center/big
Merge one map
- <<: *CENTER

r: 10

11

yaml Documentation, Release dev

label: center/big

Merge multiple maps

— <<: [*CENTER, *BIG]
label: center/big

Override

- <<: [*BIG, *LEFT, *SMALL]
x: 1
label: center/big

nuwn

data = ruamel.yaml.load(inp, ruamel.yaml.RoundTripLoader)
assert datal[7]['y'] == 2

The CommentedMap, which is the dict like construct one gets when round-trip loading, supports insertion of
a key into a particular position, while optionally adding a comment:

yaml_str = """\

first_name: Art

occupation: Architect # This is an occupation comment

about: Art Vandelay is a fictional character that George invents...

nun

data = ruamel.yaml.round_trip_load(yaml_str)
data.insert (1, 'last name', 'Vandelay', comment="new key")
print (ruamel.yaml.round_trip_dump (data))

gives:

first_name: Art

last name: Vandelay # new key

occupation: Architect # This is an occupation comment

about: Art Vandelay is a fictional character that George invents...

Please note that the comment is aligned with that of its neighbour (if available).

The above was inspired by a question posted by demux on StackOverflow.

12 Chapter 4. Examples

http://stackoverflow.com/a/36970608/1307905

CHAPTER 5

Differences with PyYAML

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton (1676)

ruamel . yaml is a derivative of Kirill Simonov’s PyYAML 3.11 and would not exist without that excellent base
to start from.

The following a summary of the major differences with PyYAML 3.11

5.1

Defaulting to YAML 1.2 support

PyYAML supports the YAML 1.1 standard, ruamel.yaml supports YAML 1.2 as released in 2009.

YAML 1.2 dropped support for several features unquoted Yes, No, On, Of £

YAML 1.2 no longer accepts strings that start with a 0 and solely consist of number characters as octal, you
need to specify such strings with 0o [0-71] + (zero + lower-case o for octal + one or more octal characters).

YAML 1.2 no longer supports sexagesimals, so the string scalar 12 : 34 : 56 doesn’t need quoting.
\ / escape for JSON compatibility

correct parsing of floating point scalars with exponentials

unless the YAML document is loaded with an explicit version==1.1 or the document starts with:

% YAML 1.1

, ruamel .yaml will load the document as version 1.2.

5.2

PY2/PY3 reintegration

ruamel .yaml re-integrates the Python 2 and 3 sources, running on Python 2.6, 2.7 (CPython, PyPy), 3.3, 3.4,
3.5. It is more easy to extend and maintain as only a miniscule part of the code is version specific.

5.3

Fixes

ruamel .yaml follows the indent keyword argument on scalars when dumping.

13

https://bitbucket.org/xi/pyyaml
http://www.yaml.org/spec/1.1/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://en.wikipedia.org/wiki/Sexagesimal

yaml Documentation, Release dev

5.4 Testing

ruamel.yaml is tested using tox and py.test. In addition to new tests the original PyYAML test framework is
called from within t ox runs.

Before versions are pushed to PyPI, tox is invoked, and has to pass, on all Python versions, PyPI as well as
flake8/pep8

14 Chapter 5. Differences with PyYAML

https://pypi.python.org/pypi/tox
http://pytest.org/latest/

	Overview
	Installing
	Optional requirements

	Details
	Indentation of block sequences
	Positioning `:' in top level mappings, prefix in `:'
	Document version support.
	Round trip including comments
	Config file formats
	Extending
	Smartening

	Examples
	Differences with PyYAML
	Defaulting to YAML 1.2 support
	PY2/PY3 reintegration
	Fixes
	Testing

