
R3D2 Documentation
Release 0.1

Alice Harpole and Ian Hawke

Nov 29, 2018

Contents

1 Installation 3

2 Usage 5

3 Contents 7
3.1 Riemann Problems . 7
3.2 eos_defns . 10
3.3 States . 11
3.4 Waves . 12
3.5 The effect of tangential velocities . 16
3.6 Reactive case . 20
3.7 Parametric plots . 22

i

ii

R3D2 Documentation, Release 0.1

R3D2 (Relativistic Reactive Riemann problem solver for Deflagrations and Detonations) solves the Riemann problem
for the relativistic Euler equation. It also includes the option to include reaction terms, for “infinitely” fast reactions,
leading to deflagrations and detonations.

Models of ideal hydrodynamics, where there is no viscosity or dissipation, can have solutions with discontinuities
such as shocks. A simple case is the Riemann Problem, where two constant states are separated by a barrier. After the
barrier is removed the solution develops, with waves (such as shocks and rarefactions) separating constant states.

The Riemann Problem has three main uses. Efficient, often approximate, solvers are an integral part of many modern
hydrodynamic evolution codes. Second, the exact solution is a standard test for such codes. Finally, the solver can
illustrate features of discontinuous solutions in more complex scenarios.

This code is intended for exploring possible solutions and relativistic effects, or for comparing against a compressible
code with reactive sources. It is optimized for use with Jupyter notebooks. It is not intended for use within a HRSC
evolution code: the performance is far too poor, and the assumptions made to extreme.

Contents 1

R3D2 Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

A standard:

python setup.py install

or:

pip install r3d2

should work.

3

R3D2 Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Usage

Import the equations of state, State class, and Riemann Problem class:

>>> from r3d2 import eos_defns, State, RiemannProblem

Set up an equation of state:

>>> eos = eos_defns.eos_gamma_law(5.0/3.0)

Set up the left and right states:

>>> U_L = State(rho=1.0, v=0.0, vt=0.0, eps=1.5, eos=eos)
>>> U_R = State(rho=0.125, v=0.0, vt=0.0, eps=1.2, eos=eos)

Solve the Riemann Problem:

>>> rp = RiemannProblem(U_L, U_R)

The output can be examined for details of the solution and its wave structure. For example, the three waves are each
built of wave sections, which can be examined to check their type, via e.g.

>>> rp.waves[0].wave_sections

and its speed (or the range of speeds) can be examined via

>>> rp.waves[0].wavespeed

The states that the waves separate can be found via, e.g.,

>>> rp.waves[0].q_r

and the detailed values via

>>> rp.waves[0].q_r.state()

However, the classes are optimized for display in a Jupyter notebook. See the documentation for more detail.

5

R3D2 Documentation, Release 0.1

6 Chapter 2. Usage

CHAPTER 3

Contents

3.1 Riemann Problems

The code solves Riemann Problems for the relativistic Euler equations

𝜕𝑡

⎛⎜⎜⎝
𝐷
𝑆𝑥

𝑆𝑡

𝜏

⎞⎟⎟⎠+ 𝜕𝑥

⎛⎜⎜⎝
𝑆𝑥

𝑆𝑥𝑣𝑥 + 𝑝
𝑆𝑡𝑣𝑥

(𝜏 + 𝑝)𝑣𝑥

⎞⎟⎟⎠ = 0.

For further details on this system of equations, see the Living Review of Martí and Müller, particularly section 3.1 for
the equations and section 8.5 for the solution of the Riemann Problem.

The initial data is piecewise constant: two states 𝑤𝐿,𝑅 are specified, each in terms of 𝑤 = (𝜌0, 𝑣𝑥, 𝑣𝑡, 𝜖), (the specific
rest mass density, normal (𝑥) and tangential (𝑡) velocity components, and the specific internal energy). At 𝑡 = 0 the
data is set by 𝑤𝐿 for 𝑥 < 0 and 𝑤𝑅 for 𝑥 > 0. Each state has associated with it an equation of state (EOS) to close the
set of equations: the EOS does not need to be the same for each state.

3.1.1 Code

To set up a Riemann problem, first set up a left and right state. Each state has its own equation of state. Here we use
the first test from the Test Bench section of the Living Review:

In [1]: from r3d2 import eos_defns, State, RiemannProblem

In [2]: eos = eos_defns.eos_gamma_law(5.0/3.0)
test_1_U_left = State(10.0, 0.0, 0.0, 2.0, eos, label="L")
test_1_U_right = State(1.0, 0.0, 0.0, 1.5e-6, eos, label="R")
test_1_rp = RiemannProblem(test_1_U_left, test_1_U_right)

The Riemann Problem will produce output directly in the notebook:

In [3]: test_1_rp

7

http://computastrophys.livingreviews.org/Articles/lrca-2015-3/
http://computastrophys.livingreviews.org/Articles/lrca-2015-3/articlese3.html#x6-190003.1
http://computastrophys.livingreviews.org/Articles/lrca-2015-3/articlese8.html#x11-1150008.5
http://computastrophys.livingreviews.org/Articles/lrca-2015-3/articlese6.html#x9-690006.3
http://computastrophys.livingreviews.org/Articles/lrca-2015-3/

R3D2 Documentation, Release 0.1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
𝐿

=

⎛⎜⎜⎜⎝
10.0000

0.0000

0.0000

2.0000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
𝑅

=

⎛⎜⎜⎜⎝
1.0000

0.0000

0.0000

0.0000

⎞⎟⎟⎟⎠ ,

=⇒ ℛ←𝒞𝒮→, 𝑝* = 1.4479,

⎧⎪⎨⎪⎩
ℛ← : 𝜆(0) ∈ [−0.7161, 0.1672],

𝒞 : 𝜆(1) = 0.7140,

𝒮→ : 𝜆(2) = 0.8284,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
2.6393

0.7140

0.0000

0.8229

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
5.0708

0.7140

0.0000

0.4283

⎞⎟⎟⎟⎠ .

(3.1)
This output should be interpreted as follows. First it displays the initial states U𝐿,𝑅. It then gives the resulting wave
pattern: in this case a left going rarefaction, a contact, and a right going shock. It then gives the pressure 𝑝* in the
central states (the pressure and normal velocity do not jump across the contact). Next it gives the speeds of each wave.
Finally, it gives the constant states between the left wave and the contact U*𝐿 and between the contact and the right
state U*𝑅 .

We can also display the output graphically in the notebook:

In [4]: from IPython.display import display_png

In [5]: display_png(test_1_rp)

The first (top left) plot is the wave pattern in the (𝑥, 𝑡) plane. Rarefactions are shaded with thin solid lines. Contacts
are dashed lines. Discontinuities such as shocks are thick solid lines.

All the other plots show a single quantity as a function of space at a fixed time, or equivalently as a function of the
characteristic variable 𝜉 = 𝑥/𝑡.

Changing equation of state

There is no need for the two states to have the same equation of state. For example:

8 Chapter 3. Contents

R3D2 Documentation, Release 0.1

In [6]: eos_air = eos_defns.eos_gamma_law(1.4)
U_vary_eos_L = State(1.0, -0.5, 0.0, 2.0, eos, label="L")
U_vary_eos_R = State(1.0, +0.5, 0.0, 2.0, eos_air, label="R")
test_vary_eos_rp = RiemannProblem(U_vary_eos_L, U_vary_eos_R)
test_vary_eos_rp⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
𝐿

=

⎛⎜⎜⎜⎝
1.0000

−0.5000

0.0000

2.0000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
𝑅

=

⎛⎜⎜⎜⎝
1.0000

0.5000

0.0000

2.0000

⎞⎟⎟⎟⎠ ,

=⇒ ℛ←𝒞ℛ→, 𝑝* = 0.2598,

⎧⎪⎨⎪⎩
ℛ← : 𝜆(0) ∈ [−0.8955,−0.5734],

𝒞 : 𝜆(1) = 0.1224,

ℛ→ : 𝜆(2) ∈ [0.6019, 0.8202],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
0.3748

0.1224

0.0000

1.0397

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.4478

0.1224

0.0000

1.4504

⎞⎟⎟⎟⎠ .

(3.2)

In [7]: display_png(test_vary_eos_rp)

Reactive problems

To include a reaction, make the equation of state of at least one of the states be a reactive EOS:

In [8]: q_unburnt = 0.1
gamma = 5/3
Cv = 1.0
t_ignition = 2
eos_burnt = eos_defns.eos_gamma_law(gamma)
eos_unburnt = eos_defns.eos_gamma_law_react(gamma, q_unburnt, Cv, t_ignition, eos_burnt)
U_reactive_left = State(1, 0, 0, 2, eos_burnt)
U_reactive_right = State(10, 0, 0, 3, eos_unburnt)

3.1. Riemann Problems 9

R3D2 Documentation, Release 0.1

test_reactive_rp = RiemannProblem(U_reactive_left, U_reactive_right)
test_reactive_rp⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1.0000

0.0000

0.0000

2.0000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

𝑞

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
10.0000

0.0000

0.0000

3.0000

0.1000

⎞⎟⎟⎟⎟⎟⎟⎠ ,

=⇒ 𝒮←𝒞 (ℛ→𝒞𝒥𝒟ℱ→) , 𝑝* = 5.0558,

⎧⎪⎨⎪⎩
𝒮← : 𝜆(0) = −0.8710,

𝒞 : 𝜆(1) = −0.5305,

(ℛ→𝒞𝒥𝒟ℱ→) : 𝜆(2) ∈ [0.2763, 0.6612],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
2.1685

−0.5305

0.0000

3.4972

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
4.3776

−0.5305

0.0000

1.7324

⎞⎟⎟⎟⎠ .

(3.3)

In [9]: display_png(test_reactive_rp)

3.2 eos_defns

This is a set of pre-defined equations of state (EOS) for use with the Riemann Solver.

In general an equation of state means specifying the internal energy in terms of two thermodynamic variables, such as
the volume and the temperature. All other quantities are derived from the Maxwell relations.

For our purposes, an EOS is a Python dictionary containing the essential relations needed.

3.2.1 Functions needed

1. p_from_rho_eps(rho, eps). 𝑝(𝜌0, 𝜖). Pressure given rest mass density and specific internal energy.

10 Chapter 3. Contents

R3D2 Documentation, Release 0.1

2. h_from_rho_eps(rho, eps). ℎ(𝜌0, 𝜖). Specific enthalpy given rest mass density and specific internal
energy.

3. cs_from_rho_eps(rho, eps). 𝑐𝑠(𝜌0, 𝜖). Speed of sound given rest mass density and specific internal
energy.

4. h_from_rho_p(rho, p). ℎ(𝜌0, 𝑝). Specific enthalpy given rest mass density and pressure.

3.2.2 Information needed for reactions

1. q_available. 𝑞. Amount of energy available for a reaction.

2. t_ignition. 𝑡𝑖. Temperature at which the reaction takes place.

3. t_from_rho_eps(rho, eps). 𝑇 (𝜌0, 𝜖). Temperature given rest mass density and specific internal energy.

4. eos_inert. The equation of state to use after the reaction has taken place.

3.2.3 Provided EOS

1. eos_gamma_law(gamma). Standard 𝛾-law EOS where 𝑒(𝑉, 𝑇) = 𝐶𝑉 𝑇 and so 𝑝(𝜌0, 𝜖) = (𝛾 − 1)𝜌0𝜖.

2. eos_gamma_law_react(gamma, q, Cv, t_i, eos_inert). Reactive EOS where 𝑒(𝑉, 𝑇) =
𝐶𝑉 𝑇 + 𝑞 and so 𝑝(𝜌0, 𝜖) = (𝛾 − 1)𝜌0(𝜖− 𝑞), where 𝑞 is the chemical binding energy.

3.3 States

A Riemann Problem is specified by the state of the material to the left and right of the interface. In this hydrodynamic
problem, the state is fully determined by an equation of state and the variables

U =

⎛⎜⎜⎝
𝜌0
𝑣𝑥
𝑣𝑡
𝜖

⎞⎟⎟⎠ ,

where 𝜌0 is the rest-mass density, 𝑣𝑥 the velocity normal to the interface, 𝑣𝑡 the velocity tangential to the interface,
and 𝜖 the specific internal energy.

3.3.1 Defining a state

In r3d2 we define a state from an equation of state and the values of the key variables:

In [1]: from r3d2 import eos_defns, State

In [2]: eos = eos_defns.eos_gamma_law(5.0/3.0)
U = State(1.0, 0.1, 0.0, 2.0, eos)

Inside the notebook, the state will automatically display the values of the key variables:

In [3]: U ⎛⎜⎜⎝
𝜌
𝑣𝑥
𝑣𝑡
𝜖

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1.0000
0.1000
0.0000
2.0000

⎞⎟⎟⎠ (3.4)

Adding a label to the state for output purposes requires an extra keyword:

3.3. States 11

eos_defns.html

R3D2 Documentation, Release 0.1

In [4]: U2 = State(10.0, -0.3, 0.1, 5.0, eos, label="L")
U2 ⎛⎜⎜⎝

𝜌
𝑣𝑥
𝑣𝑡
𝜖

⎞⎟⎟⎠
𝐿

=

⎛⎜⎜⎝
10.0000
−0.3000
0.1000
5.0000

⎞⎟⎟⎠ (3.5)

3.3.2 Reactive states

If the state has energy available for reactions, that information is built into the equation of state. The definition of the
equation of state changes: the definition of the state itself does not:

In [5]: q_available = 0.1
t_ignition = 10.0
Cv = 1.0
eos_reactive = eos_defns.eos_gamma_law_react(5.0/3.0, q_available, Cv, t_ignition, eos)
U_reactive = State(5.0, 0.1, 0.1, 2.0, eos_reactive, label="Reactive")
U_reactive ⎛⎜⎜⎜⎜⎝

𝜌
𝑣𝑥
𝑣𝑡
𝜖
𝑞

⎞⎟⎟⎟⎟⎠
𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒

=

⎛⎜⎜⎜⎜⎝
5.0000
0.1000
0.1000
2.0000
0.1000

⎞⎟⎟⎟⎟⎠ (3.6)

3.3.3 Additional functions

A state knows its own wavespeeds. Given a wavenumber (the left acoustic wave is 0, the middle contact or advective
wave is 1, and the right acoustic wave is 2), we have:

In [6]: print("Left wavespeed of first state is {}".format(U.wavespeed(0)))
print("Middle wavespeed of second state is {}".format(U2.wavespeed(1)))
print("Right wavespeed of reactive state is {}".format(U.wavespeed(2)))

Left wavespeed of first state is -0.6636390537799616
Middle wavespeed of second state is -0.3
Right wavespeed of reactive state is 0.7615771981098584

A state will return the key primitive variables (𝜌, 𝑣𝑥, 𝑣𝑡, 𝜖):

In [7]: print("Primitive variables of first state are {}".format(U.prim()))

Primitive variables of first state are [1. 0.1 0. 2.]

A state will return all the variables it computes, which is 𝜌, 𝑣𝑥, 𝑣𝑡, 𝜖, 𝑝,𝑊, ℎ, 𝑐𝑠: the primitive variables as above, the
pressure 𝑝, Lorentz factor 𝑊 , specific enthalpy ℎ, and speed of sound 𝑐𝑠:

In [8]: print("All variables of second state are {}".format(U.state()))

All variables of second state are [1. 0.1 0. 2. 1.33333333 1.00503782
4.33333333 0.71611487]

3.4 Waves

The solution to the Riemann problem is built out of waves. These are regions where the variables change, separating
constant states. There are two basic types of wave: those across which the variables change continuously (which, for

12 Chapter 3. Contents

R3D2 Documentation, Release 0.1

fluid problems, are known as rarefactions), and those across which the variables change discontinuously (which break
down into more subclasses).

We will assume that the state is known on one side of the wave, which will be denoted U𝑘. The state on the other side
will be unknown. Given the value of one variable, typically the pressure 𝑝, on the unknown side, the solution across
the wave can be found.

The equations here are adapted from the Living Review of Martí and Müller. The approach to reactive waves follows
the paper of Zhang and Zheng, extended to the Relativistic case.

3.4.1 Wave sections

In general any wave can be built from multiple sections, pieced together. A wave may “split” into two discontinuous
pieces moving at different speeds. A wave may contain a discontinuous section attached to a continuous section. In
the most complex cases, the wave may have an arbitrarily large number of sections.

In the inert case, and when the equation of state is convex, each wave contains a single section. If the pressure decreases
across the wave, 𝑝𝑘 > 𝑝, then the wave is a continuous rarefaction. If the pressure increases across the wave, 𝑝𝑘 < 𝑝,
then the wave is a discontinuous shock. If the pressure does not change, the wave is either trivial (the state does not
change) or a contact discontinuity (where quantities except 𝑝 and 𝑣𝑥 may jump).

In the reactive case, all the reactions that we can model will take place “instantly”. This means that reactions must
take place across discontinuous wave sections. The reactive waves may now contain multiple wave sections. If
the equation of state is convex, and the reaction exothermic, then across a reactive discontinuous wave the pressure
increases. Therefore if the pressure is to decrease across the wave as a whole, there must be an inert precursor shock
before the reactive discontinuity.

Finally, we note that not all reactive discontinuous waves are stable. This can be checked by looking at the wave speed
on the unknown side of the wave. If the wave speed leads to characteristics coming out of the discontinuity, then the
wave is unstable. In this case we need to add another wave section. We find the fastest stable reactive discontinuity (a
Chapman-Jouget discontinuity), where the wave speed matches the speed of the discontinuity, and attach to it an inert
rarefaction.

3.4.2 Rarefactions

Across a rarefaction the normal velocity satisfies

d𝑣𝑥
d𝑝

= ± 1

𝜌0ℎ𝑊 2𝑐𝑠

1√︀
1 + 𝑔 (𝜉±, 𝑣𝑥, 𝑣𝑡)

.

The sign corresponds to the wavenumber: plus for the right acoustic wave and minus for the left. In the code this
corresponds to lr_sign = wavenumber - 1.

The function 𝑔 quantifies the effect of the tangential velocity, and is

𝑔 =
(𝑣𝑡)

2
(𝜉± − 1)

(1− 𝜉±𝑣𝑥)
2 .

The wavespeed itself is 𝜉±.

We also solve for the rest mass density and specific internal energy across the wave using

d
d𝑝

(︂
𝜌0
𝜖

)︂
=

(︃
1

ℎ𝑐2𝑠
𝑝

𝜌2
0ℎ𝑐

2
𝑠

)︃
.

3.4. Waves 13

http://computastrophys.livingreviews.org/Articles/lrca-2015-3/articlese8.html#x11-1150008.5
http://dx.doi.org/10.1016/0022-0396(89)90142-3

R3D2 Documentation, Release 0.1

Having solved across the wave, the tangential velocity follows as

𝑣𝑡 = ℎ𝑘𝑊𝑘 (𝑣𝑡)𝑘
1− 𝑣2𝑥

ℎ2 + (ℎ𝑘𝑊𝑘 (𝑣𝑡)𝑘)
2 .

The relation for the tangential velocity holds across both continuous and discontinuous waves.

3.4.3 Shocks

Across an inert shock we first find the post shock density and enthalpy by solving the nonlinear equation

ℎ2 − ℎ2
𝑘 −

(︂
ℎ

𝜌0
+

ℎ𝑘

(𝜌0)𝑘

)︂
(𝑝− 𝑝𝑘) = 0.

This assumes the post shock pressure 𝑝𝑘 is known, and that the equation of state gives the enthalpy ℎ𝑘 = ℎ ((𝜌0)𝑘 , 𝑝𝑘).

From this we can compute the mass flux 𝑗 across the shock, as

𝑗 =

√︃
𝑝𝑘 − 𝑝

ℎ2−ℎ2
𝑘

𝑝−𝑝𝑘
− 2ℎ𝑘

𝑝𝑘

.

This gives the shock velocity as

𝑣𝑆 = ±
(𝜌0)

2
𝑘 𝑊

2
𝑘 (𝑣𝑥)𝑘 ± 𝑗2

√︂
1 +

(𝜌0)
2
𝑘𝑊

2
𝑘 (1−(𝑣𝑥)

2)
𝑗2

(𝜌0)
2
𝑘 𝑊

2
𝑘 + 𝑗2

.

Again, the sign corresponds to the wave number.

Given the shock velocity we can compute the shock “Lorentz factor” 𝑊𝑆 = (1− 𝑣2𝑆)
−1/2, from which the post shock

normal velocity is

𝑣𝑥 =

(︃
ℎ𝑘𝑊𝑘𝑣𝑆 ± 𝑝− 𝑝𝑘

𝑗
√︀
1− 𝑣2𝑆

)︃[︂
ℎ𝑘𝑊𝑘 + (𝑝− 𝑝𝑘)

(︂
1

(𝜌0)𝑘 𝑊𝑘
±

(𝑣𝑥)𝑘 𝑊𝑆

𝑗

)︂]︂−1
.

The tangential velocity follows as in the rarefaction case.

3.4.4 Detonation

A detonation is a discontinuous reactive wave section across which the pressure increases. The equations are identical
to those for the shock case, but the interpretation changes. All “known” (pre shock) variables have the reactive equation
of state. All “unknown” (post shock) variables use the inert equation of state - the reaction has taken place across the
discontinuity.

As noted above, it is possible for the resulting detonation wave section to be unstable. In general, detonations fall into
two classes: weak detonations (which are unstable) and strong detonations (which are stable). For the stable strong
detonations the characteristic waves impinge on the discontinuity from both sides. For the unstable weak detonations
the characteristics only enter the discontinuity on one side.

If an unstable weak detonation is found, the section should be replaced by the fastest detonation that is stable. This
Chapman-Jouget, or CJ detonation, is where the characteristic wave is parallel to the discontinuity. In this case, the
post detonation pressure will not match the required post wave pressure, and an additional rarefaction wave section is
needed to complete the wave.

14 Chapter 3. Contents

R3D2 Documentation, Release 0.1

3.4.5 Deflagration

A deflagration is a discontinuous wave section across which the pressure decreases. As a reaction cannot take place
across a rarefaction wave, this requires a discontinuity. However, this discontinuity will reduce the temperature along
with the pressure. This means that, unless the material was already at the right temperature to react, any reaction across
this wave would be unphysical.

The solution is to start with an inert precursor shock which raises the temperature of the material to the ignition
temperature. This first section follows the exact equations in the shock section above. Next, there is a deflagration
wave section, across which the reaction takes place and the pressure drops. Again, this follows the shock equations,
but with the same interpretation as in the detonation case.

Again, the deflagration wave section need not be stable. As with detonations, deflagrations fall into two classes: weak
deflagrations (which are stable), and strong deflagrations (which are unstable). For the stable weak deflagrations the
characteristic waves from one side impinge on the discontinuity, but not the other. For the unstable strong deflagrations,
neither set of characteristic waves impinges on the discontinuity.

Again, if an unstable strong deflagration is found it is replaced with a CJ deflagration, and the full wave is completed
with a rarefaction wave section.

3.4.6 Code

The Wave class in r3d2 in intended for internal use, but can be used to construct single waves directly. We need a
known state with an equation of state first:

In [1]: from r3d2 import eos_defns, State, wave

In [2]: eos = eos_defns.eos_gamma_law(5.0/3.0)
U = State(1.0, 0.1, 0.05, 0.2, eos, label="known")
U ⎛⎜⎜⎝

𝜌
𝑣𝑥
𝑣𝑡
𝜖

⎞⎟⎟⎠
𝑘𝑛𝑜𝑤𝑛

=

⎛⎜⎜⎝
1.0000
0.1000
0.0500
0.2000

⎞⎟⎟⎠ (3.7)

We then solve for a left going (wavenumber 0) inert acoustic wave with post-wave pressure of 10 or 0.1:

In [3]: wave_1 = wave.Wave(U, unknown_value=10, wavenumber=0)
wave_2 = wave.Wave(U, unknown_value=0.1, wavenumber=0)

The first wave is a shock. When output in the notebook, it gives the type, wave number, and wave speed:

In [4]: wave_1

𝒮← : 𝜆(0) = −0.9614 (3.8)

The second wave is a rarefaction. In this case, as it’s a continuous wave, its wave speed is a range:

In [5]: wave_2

ℛ← : 𝜆(0) ∈ [−0.3209,−0.2383] (3.9)

The right going (wavenumber 2) acoustic waves follow the same structure:

In [6]: wave_right = wave.Wave(U, unknown_value=100, wavenumber=2)
wave_right

𝒮→ : 𝜆(2) = 0.9978 (3.10)

The advective waves are different. The pressure must be constant across the wave, so if anything jumps it must be
related to the state: either the thermodynamic variables or the equation of state:

3.4. Waves 15

R3D2 Documentation, Release 0.1

In [7]: eos2 = eos_defns.eos_gamma_law(4.0/3.0)
U2 = State(2.0, U.v, -0.3, U.p/2.0*3.0, eos2)
wave_contact = wave.Wave(U, unknown_value=U2, wavenumber=1)
wave_contact

𝒞 : 𝜆(1) = 0.1000 (3.11)

For a reactive wave, we first need a reactive equation of state:

In [8]: eos_reactive = eos_defns.eos_gamma_law_react(5.0/3.0, 0.1, 1.0, 1.0, eos)
U_reactive = State(5.0, 0.0, 0.0, 2.0, eos_reactive)
U_reactive ⎛⎜⎜⎜⎜⎝

𝜌
𝑣𝑥
𝑣𝑡
𝜖
𝑞

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
5.0000
0.0000
0.0000
2.0000
0.1000

⎞⎟⎟⎟⎟⎠ (3.12)

We can now connect this to states with large (𝑝 = 10) and small (𝑝 = 0.1) pressures again:

In [9]: wave_1_reactive = wave.Wave(U_reactive, unknown_value=10, wavenumber=0)
wave_2_reactive = wave.Wave(U_reactive, unknown_value=0.1, wavenumber=0)

The analogue of the inert shock is the strong detonation:

In [10]: wave_1_reactive

𝒮𝒟𝒯 ← : 𝜆(0) = −0.7979 (3.13)

The analogue of the rarefaction is the weak deflagration:

In [11]: wave_2_reactive

(𝒞𝒥𝒟ℱ←ℛ←) : 𝜆(0) ∈ [−0.6097, 0.7607] (3.14)

In this case we have a CJ deflagration, which is attached to a rarefaction to complete the wave.

3.5 The effect of tangential velocities

It was first noted by Rezzolla, Zanotti and Pons that there is one effect that is specific to relativistic Riemann problems.
Thanks to the Lorentz factor coupling the tangential velocities more tightly to the other terms, it is possible to change
the wave pattern in the problem solely by changing the tangential velocity. This cannot happen in the Newtonian case.

The examples used in their paper use a modified relativistic Sod problem as a base. We set that problem up first:

In [1]: from r3d2 import eos_defns, State, RiemannProblem
from IPython.display import display, display_png

In [2]: eos = eos_defns.eos_gamma_law(5.0/3.0)
U_left_sod_modified = State(1.0, 0.5, 0.0, 1.5, eos)
U_right_sod_modified = State(0.125, 0.0, 0.0, 1.2, eos)
rp_sod_modified = RiemannProblem(U_left_sod_modified, U_right_sod_modified)
display(rp_sod_modified)
display_png(rp_sod_modified)

16 Chapter 3. Contents

http://dx.doi.org/10.1017/S0022112002003506

R3D2 Documentation, Release 0.1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1.0000

0.5000

0.0000

1.5000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1250

0.0000

0.0000

1.2000

⎞⎟⎟⎟⎠ ,

=⇒ ℛ←𝒞𝒮→, 𝑝* = 0.5974,

⎧⎪⎨⎪⎩
ℛ← : 𝜆(0) ∈ [−0.2902,−0.0488],

𝒞 : 𝜆(1) = 0.6407,

𝒮→ : 𝜆(2) = 0.8900,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
0.7341

0.6407

0.0000

1.2207

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.3427

0.6407

0.0000

2.6154

⎞⎟⎟⎟⎠ .

(3.15)

We see the wave pattern has a left going rarefaction and a right going shock.

Now, by modifying the tangential velocity of the right state, the wave pattern changes:

In [3]: U_right_vt_0_9 = State(0.125, 0.0, 0.9, 1.2, eos)
rp_vt_0_9 = RiemannProblem(U_left_sod_modified, U_right_vt_0_9)
display(rp_vt_0_9)
display_png(rp_vt_0_9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1.0000

0.5000

0.0000

1.5000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1250

0.0000

0.9000

1.2000

⎞⎟⎟⎟⎠ ,

=⇒ 𝒮←𝒞𝒮→, 𝑝* = 1.1509,

⎧⎪⎨⎪⎩
𝒮← : 𝜆(0) = −0.3224,

𝒞 : 𝜆(1) = 0.4549,

𝒮→ : 𝜆(2) = 0.7638,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
1.0879

0.4549

0.0000

1.5868

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.4748

0.4549

0.5873

3.6363

⎞⎟⎟⎟⎠ .

(3.16)

3.5. The effect of tangential velocities 17

R3D2 Documentation, Release 0.1

The result is a left going shock, rather than a rarefaction.

A shock-rarefaction problem can be modified, via a tangential velocity, to a two rarefaction problem in a similar
fashion:

In [4]: U_left_sod_modified2 = State(1.0, 0., 0.0, 1.5, eos)
U_right_sod_modified2 = State(0.125, 0.5, 0.0, 1.2, eos)
rp_sod_modified2 = RiemannProblem(U_left_sod_modified2, U_right_sod_modified2)
display(rp_sod_modified2)
display_png(rp_sod_modified2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1.0000

0.0000

0.0000

1.5000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1250

0.5000

0.0000

1.2000

⎞⎟⎟⎟⎠ ,

=⇒ ℛ←𝒞𝒮→, 𝑝* = 0.1546,

⎧⎪⎨⎪⎩
ℛ← : 𝜆(0) ∈ [−0.6901, 0.0309],

𝒞 : 𝜆(1) = 0.6206,

𝒮→ : 𝜆(2) = 0.8996,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
0.3262

0.6206

0.0000

0.7108

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.1621

0.6206

0.0000

1.4302

⎞⎟⎟⎟⎠ .

(3.17)

18 Chapter 3. Contents

R3D2 Documentation, Release 0.1

And now with tangential velocity:

In [5]: U_left_vt_0_9 = State(1.0, 0.0, 0.9, 1.5, eos)
rp2_vt_0_9 = RiemannProblem(U_left_vt_0_9, U_right_sod_modified2)
display(rp2_vt_0_9)
display_png(rp2_vt_0_9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1.0000

0.0000

0.9000

1.5000

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1250

0.5000

0.0000

1.2000

⎞⎟⎟⎟⎠ ,

=⇒ ℛ←𝒞ℛ→, 𝑝* = 0.0513,

⎧⎪⎨⎪⎩
ℛ← : 𝜆(0) ∈ [−0.3838, 0.1375],

𝒞 : 𝜆(1) = 0.2809,

ℛ→ : 𝜆(2) ∈ [0.7773, 0.8750],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
0.1683

0.2809

0.9324

0.4573

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.0838

0.2809

0.0000

0.9189

⎞⎟⎟⎟⎠ .

(3.18)

3.5. The effect of tangential velocities 19

R3D2 Documentation, Release 0.1

3.6 Reactive case

An interesting question is on the potential impact of this relativistic effect on detonations and deflagrations. Let us set
up a reference reactive problem and add tangential velocities:

In [6]: eos_reactive = eos_defns.eos_gamma_law_react(5.0/3.0, 0.25, 1.0, 1.0, eos)
U_reactive = State(1.0, -0.5, 0.0, 1.5, eos_reactive)
U_burnt = State(0.125, 0.0, 0., 1.2, eos)
rp_reactive_base = RiemannProblem(U_reactive, U_burnt)
display(rp_reactive_base)
display_png(rp_reactive_base)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

𝑞

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1.0000

−0.5000

0.0000

1.5000

0.2500

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1250

0.0000

0.0000

1.2000

⎞⎟⎟⎟⎠ ,

=⇒ (𝒞𝒥𝒟ℱ←ℛ←) 𝒞𝒮→, 𝑝* = 0.1464,

⎧⎪⎨⎪⎩
(𝒞𝒥𝒟ℱ←ℛ←) : 𝜆(0) ∈ [−0.7887,−0.4919],

𝒞 : 𝜆(1) = 0.1532,

𝒮→ : 𝜆(2) = 0.7187,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
0.3120

0.1532

0.0000

0.7039

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.1570

0.1532

0.0000

1.3989

⎞⎟⎟⎟⎠ .

(3.19)

20 Chapter 3. Contents

R3D2 Documentation, Release 0.1

We see that this is a deflagration-shock problem.

Now add tangential velocities to the unburnt material:

In [7]: U_reactive_vt_0_9 = State(1.0, -0.5, 0.8, 1.5, eos_reactive)
rp_reactive_vt_reactive = RiemannProblem(U_reactive_vt_0_9, U_burnt)
display(rp_reactive_vt_reactive)
display_png(rp_reactive_vt_reactive)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

𝑞

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1.0000

−0.5000

0.8000

1.5000

0.2500

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1250

0.0000

0.0000

1.2000

⎞⎟⎟⎟⎠ ,

=⇒ (𝒞𝒥𝒟ℱ←ℛ←) 𝒞ℛ→, 𝑝* = 0.0464,

⎧⎪⎨⎪⎩
(𝒞𝒥𝒟ℱ←ℛ←) : 𝜆(0) ∈ [−0.6382,−0.4005],

𝒞 : 𝜆(1) = −0.2901,

ℛ→ : 𝜆(2) ∈ [0.4159, 0.6667],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝐿

=

⎛⎜⎜⎜⎝
0.1567

−0.2901

0.9377

0.4445

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝜌

𝑣𝑥

𝑣𝑡

𝜖

⎞⎟⎟⎟⎠
⋆𝑅

=

⎛⎜⎜⎜⎝
0.0789

−0.2901

0.0000

0.8828

⎞⎟⎟⎟⎠ .

(3.20)

3.6. Reactive case 21

R3D2 Documentation, Release 0.1

Again, by adding tangential velocities to the right state the shock has become a rarefaction.

3.7 Parametric plots

When looking at Riemann problems, it is common to think about how a wave connects a state that is known to other
states. For example, the Hugoniot curve gives the set of states that can be connected to a known state by a shock.
Solutions to Riemann problems can be illustrated by the intersections of such curves in some parametric space.

Here we will illustrate this by showing how the curves for various problems behave in the pressure-velocity (𝑃 − 𝑣)
space.

3.7.1 Inert case

In [1]: from r3d2 import eos_defns, State, RiemannProblem, utils
from matplotlib import pyplot
%matplotlib inline

In [2]: gamma = 5.0/3.0
eos = eos_defns.eos_gamma_law(gamma)
test_1_U_left = State(10.0, 0.0, 0.0, 2.0, eos, label="L")
test_1_U_right = State(1.0, 0.0, 0.0, 0.5, eos, label="R")

test_1_rp = RiemannProblem(test_1_U_left, test_1_U_right)

This Riemann problem has a simple rarefaction-shock structure: a left going rarefaction, a contact, and a right going
shock.

In [3]: from IPython.display import display, display_png
display_png(test_1_rp)

22 Chapter 3. Contents

R3D2 Documentation, Release 0.1

The solution in parameter space shows the curves that can connect to the left and right states. Both a shock and a
rarefaction can connect to either state. However, the only intersection (for the central, “star” state) is when a left going
rarefaction connects to the left state, and a right going shock connects to the right state:

In [4]: fig = pyplot.figure(figsize=(10,6))
ax = fig.add_subplot(111)
utils.plot_P_v(test_1_rp, ax, fig)

/home/alice/anaconda3/lib/python3.6/site-packages/scipy/integrate/odepack.py:218: ODEintWarning: Excess work done on this call (perhaps wrong Dfun type). Run with full_output = 1 to get quantitative information.
warnings.warn(warning_msg, ODEintWarning)

3.7. Parametric plots 23

R3D2 Documentation, Release 0.1

3.7.2 Varying EOS

As noted previously, it’s not necessary for the equation of state to match in the different states. Here is a problem with
two inert EOSs. This problem is solved by two rarefactions.

In [5]: gamma_air = 1.4
eos_air = eos_defns.eos_gamma_law(gamma_air)
U_vary_eos_L = State(1.0, -0.5, 0.0, 2.0, eos, label="L")
U_vary_eos_R = State(1.0, +0.5, 0.0, 2.0, eos_air, label="R")
test_vary_eos_rp = RiemannProblem(U_vary_eos_L, U_vary_eos_R)
display_png(test_vary_eos_rp)

24 Chapter 3. Contents

R3D2 Documentation, Release 0.1

The parametric solution in this case shows the pressure decreasing across both curves along rarefactions to get to the
star state:

In [6]: fig2 = pyplot.figure(figsize=(10,6))
ax2 = fig2.add_subplot(111)
utils.plot_P_v(test_vary_eos_rp, ax2, fig2)

3.7. Parametric plots 25

R3D2 Documentation, Release 0.1

3.7.3 Reactive cases

Once reactions start, the behaviour gets more complex, and the parametric pictures can clarify some aspects. An
example would be a single deflagration wave that is preceded by a shock to ignite the reaction:

In [7]: eos = eos_defns.eos_gamma_law(5.0/3.0)
eos_reactive = eos_defns.eos_gamma_law_react(5.0/3.0, 0.1, 1.0, 1.0, eos)
U_reactive_right = State(0.5, 0.0, 0.0, 1.0, eos_reactive)
U_reactive_left = State(0.24316548798524526, -0.39922932397353039, 0.0,

0.61686385086179807, eos)
test_precursor_rp = RiemannProblem(U_reactive_left, U_reactive_right)
display_png(test_precursor_rp)

/home/alice/anaconda3/lib/python3.6/site-packages/scipy/integrate/odepack.py:218: ODEintWarning: Excess work done on this call (perhaps wrong Dfun type). Run with full_output = 1 to get quantitative information.
warnings.warn(warning_msg, ODEintWarning)

The structure here looks like previous Riemann problems, but there is in fact only one wave. The right state is con-
nected directly to the left state across a compound wave formed from a precursor shock, which raises the temperature
until the gas ignites, then a Chapman-Jouget deflagration which is attached to a rarefaction.

In parameter space we see this behaviour more directly:

In [8]: fig3 = pyplot.figure(figsize=(10,6))
ax3 = fig3.add_subplot(111)
utils.plot_P_v(test_precursor_rp, ax3, fig3)

26 Chapter 3. Contents

R3D2 Documentation, Release 0.1

The smooth joining of the deflagration and rarefaction curves at the Chapman-Jouget (CJ) point is expected, as the
propagation speed of the waves must match there. The ignition point (where the temperature is high enough for the
reaction to take place) is illustrated by the “𝑖”.

3.7. Parametric plots 27

	Installation
	Usage
	Contents
	Riemann Problems
	eos_defns
	States
	Waves
	The effect of tangential velocities
	Reactive case
	Parametric plots

