PyWavelets Documentation

Release 0.2.0

Filip Wasilewski

July 21, 2012
Note: This document covers PyWavelets 0.2 release. Documentation for the 0.1.6 release is still available at http://www.pybytes.com/pywavelets/0.1.6/.

Contents:
PyWavelets is a free Open Source wavelet transform software for Python programming language. It is written in Python, Pyrex/Cython and C for a mix of easy and powerful high-level interface and the best performance.

PyWavelets is very easy to start with and use. Just install the package, open the Python interactive shell and type:

```python
>>> import pywt
>>> cA, cD = pywt.dwt([1, 2, 3, 4], 'db1')
```

Voilà! Computing wavelet transforms never before has been so simple :)

1.1 Main features

The main features of PyWavelets are:

- 1D and 2D Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)
- 1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)
- 1D and 2D Wavelet Packet decomposition and reconstruction
- Approximating wavelet and scaling functions
- Over seventy built-in wavelet filters and custom wavelets supported
- Single and double precision calculations supported
- Results compatibility with Matlab Wavelet Toolbox™

1.2 Requirements

PyWavelets is a Python programming language package and requires Python 2.4, 2.5 or 2.6 installed. The only external requirement is a recent version of NumPy numeric array module.

1.3 Download

Current release, including source and binary release for Windows, is available for download from the Python Package Index at:

http://pypi.python.org/pypi/PyWavelets/
The latest *development* version can be found in the wavelets.scipy.org’s SVN source code repository:

```
svn co http://wavelets.scipy.org/svn/multiresolution/pywt/trunk pywt
```

1.4 Install

The most convenient way to install *PyWavelets* is to use the *setuptools*’ *Easy Install* manager:

```
easy_install -U PyWavelets
```

In order to build *PyWavelets* from source, a working C compiler and a recent version of *Cython* is required.

After completing the build environment, open the shell prompt, go to the *PyWavelets* source code directory and type:

```
python setup.py install
```

See Also:

Development notes section contains more information on building from source code.

For Windows users there is a standard binary installer available for download from the *Python Package Index*. Just execute it to install the package on your computer.

Also binary packages for several Linux distributors are maintained by Open Source community contributors. Please consult your favourite package manager tool for *python-wavelets*, *python-pywt* or similar package name.

Note: If you happen to maintain a *PyWavelets* Linux binary package please put information and your name on the [wiki download page](https://wavelets.scipy.org) or contact me and I will update the page. Thanks for help!

To verify the installation process try running tests and examples from the [tests](https://wavelets.scipy.org) and [demo](https://wavelets.scipy.org) directories included in the source distribution. Note that most of the examples relies on the [matplotlib](https://matplotlib.org) plotting package.

1.5 License

PyWavelets is a free Open Source software available under the [MIT license terms](https://github.com/wavelets/scipy.org/blob/master/LICENSE).

1.6 Contact

Post your suggestions and questions to [PyWavelets discussions group](https://groups.google.com/group/pywavelets) (pywavelets@googlegroups.com). You can also contact me directly at en@ig.ma. Comments, bug reports and fixes are welcome.

There’s also a wiki and trac system available at the wavelets.scipy.org site to improve documentation, post cookbook recipes or submit enhancement proposals and bug reports.
2.1 Wavelets

2.1.1 Wavelet families()

pywt.families()
Returns a list of available built-in wavelet families. Currently the built-in families are:

- Haar (haar)
- Daubechies (db)
- Symlets (sym)
- Coiflets (coif)
- Biorthogonal (bior)
- Reverse biorthogonal (rbio)
- "Discrete" FIR approximation of Meyer wavelet (dmey)

Example:
```python
>>> import pywt
>>> print pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']
```

2.1.2 Built-in wavelets - wavelist()

pywt.wavelist([family])
The wavelist() function returns a list of names of the built-in wavelets.

If the family name is None then names of all the built-in wavelets are returned. Otherwise the function returns names of wavelets that belong to the given family.

Example:
```python
>>> import pywt
>>> print pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5']
```

Custom user wavelets are also supported through the Wavelet object constructor as described below.
2.1.3 Wavelet object

class pywt.Wavelet (name[, filter_bank=None])

Describes properties of a wavelet identified by the specified wavelet name. In order to use a built-in wavelet the name parameter must be a valid wavelet name from the pywt.wavelist() list.

Custom Wavelet objects can be created by passing a user-defined filters set with the filter_bank parameter.

Parameters

- name – Wavelet name
 - filter_bank – Use a user supplied filter bank instead of a built-in Wavelet.

The filter bank object can be a list of four filters coefficients or an object with filter_bank attribute, which returns a list of such filters in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

Note: The get_filters_coeffs() method is kept for compatibility with the previous versions of PyWavelets, but may be removed in a future version of the package.

Wavelet objects can also be used as a base filter banks. See section on using custom wavelets for more information.

Example:

```python
>>> import pywt
>>> wavelet = pywt.Wavelet('db1')

name
Wavelet name.

short_name
Short wavelet name.

dec_lo
Decomposition filter values.

dec_hi
Decomposition filter values.

rec_lo
Reconstruction filter values.

rec_hi
Reconstruction filter values.

dec_len
Decomposition filter length.

rec_len
Reconstruction filter length.

filter_bank
Returns filters list for the current wavelet in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

The get_filters_coeffs() method is deprecated.
inverse_filter_bank
Returns list of reverse wavelet filters coefficients. The mapping from the filter_coeffs list is as follows:

[rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-1]]

The get_reverse_filters_coeffs() method is deprecated.

short_family_name
Wavelet short family name

family_name
Wavelet family name

orthogonal
Set if wavelet is orthogonal

biorthogonal
Set if wavelet is biorthogonal

symmetry
asymmetric, near symmetric, symmetric

vanishing_moments_psi
Number of vanishing moments for the wavelet function

vanishing_moments_phi
Number of vanishing moments for the scaling function

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')
>>> print wavelet
Wavelet db1
  Family name: Daubechies
  Short name: db
  Filters length: 2
  Orthogonal: True
  Biorthogonal: True
  Symmetry: asymmetric

>>> print wavelet.dec_lo, wavelet.dec_hi
[0.70710678118654757, 0.70710678118654757] [-0.70710678118654757, 0.70710678118654757]

>>> print wavelet.rec_lo, wavelet.rec_hi
[0.70710678118654757, 0.70710678118654757] [0.70710678118654757, -0.70710678118654757]

Approximating wavelet and scaling functions - Wavelet.wavefun()

Wavelet.wavefun(level)
Changed in version 0.2: The time (space) localisation of approximation function points was added. The wavefun() method can be used to calculate approximations of scaling function (phi) and wavelet function (psi) at the given level of refinement.

For orthogonal wavelets returns approximations of scaling function and wavelet function with corresponding x-grid coordinates:

[phi, psi, x] = wavelet.wavefun(level)

Example:
```python
>>> import pywt
>>> wavelet = pywt.Wavelet('db2')
>>> phi, psi, x = wavelet.wavefun(level=5)
```

For other (biorthogonal but not orthogonal) wavelets returns approximations of scaling and wavelet function both for decomposition and reconstruction and corresponding x-grid coordinates:

```python
[phi_d, psi_d, phi_r, psi_r, x] = wavelet.wavefun(level)
```

**Example:**

```python
>>> import pywt
>>> wavelet = pywt.Wavelet('bior3.5')
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)
```

**See Also:**

You can find live examples of `wavefun()` usage and images of all the built-in wavelets on the [Wavelet Properties Browser page](#).

### 2.1.4 Using custom wavelets

`PyWavelets` comes with a long list of the most popular wavelets built-in and ready to use. If you need to use a specific wavelet which is not included in the list it is very easy to do so. Just pass a list of four filters or an object with a `filter_bank` attribute as a `filter_bank` argument to the `Wavelet` constructor.

The filters list, either in a form of a simple Python list or returned via the `filter_bank` attribute, must be in the following order:

- lowpass decomposition filter
- highpass decomposition filter
- lowpass reconstruction filter
- highpass reconstruction filter

just as for the `filter_bank` attribute of the `Wavelet` class.

The Wavelet object created in this way is a standard `Wavelet` instance.

The following example illustrates the way of creating custom Wavelet objects from plain Python lists of filter coefficients and a `filter_bank-like` objects.

**Example:**

```python
>>> import pywt, math
>>> c = math.sqrt(2)/2
>>> dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
>>> filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
>>> myWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)
```
2.2 Signal extension modes

Because the most common and practical way of representing digital signals in computer science is with finite arrays of values, some extrapolation of the input data has to be performed in order to extend the signal before computing the Discrete Wavelet Transform using the cascading filter banks algorithm.

Depending on the extrapolation method, significant artifacts at the signal’s borders can be introduced during that process, which in turn may lead to inaccurate computations of the DWT at the signal’s ends.

*PyWavelets* provides several methods of signal extrapolation that can be used to minimize this negative effect:

- **zpd** - zero-padding - signal is extended by adding zero samples:
  
  \[ ... 0 \ 0 \ | \ x_1 \ x_2 \ \ldots \ x_n \ | \ 0 \ 0 \ \ldots \ \]

- **cpd** - constant-padding - border values are replicated:
  
  \[ ... \ x_1 \ x_1 \ | \ x_1 \ x_2 \ \ldots \ x_n \ | \ x_n \ x_n \ \ldots \ \]

- **sym** - symmetric-padding - signal is extended by mirroring samples:
  
  \[ ... \ x_2 \ x_1 \ | \ x_1 \ x_2 \ \ldots \ x_n \ | \ x_n \ x_{n-1} \ \ldots \ \]

- **ppd** - periodic-padding - signal is treated as a periodic one:
  
  \[ ... \ x_{n-1} \ x_n \ | \ x_1 \ x_2 \ \ldots \ x_n \ | \ x_1 \ x_2 \ \ldots \ \]

- **spl** - smooth-padding - signal is extended according to the first derivatives calculated on the edges (straight line)

DWT performed for these extension modes is slightly redundant, but ensures perfect reconstruction. To receive the smallest possible number of coefficients, computations can be performed with the periodization mode:

- **per** - periodization - is like periodic-padding but gives the smallest possible number of decomposition coefficients. IDWT must be performed with the same mode.

Example:

```python
>>> import pywt
>>> print pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'spl', 'per']
```

Notice that you can use any of the following ways of passing wavelet and mode parameters:

```python
>>> import pywt
>>> (a, d) = pywt.dwt([1, 2, 3, 4, 5, 6], 'db2', 'spl')
>>> (a, d) = pywt.dwt([1, 2, 3, 4, 5, 6], pywt.Wavelet('db2'), pywt.MODES.spl)
```

**Note:** Extending data in context of *PyWavelets* does not mean reallocation of the data in computer’s physical memory and copying values, but rather computing the extra values only when they are needed. This feature saves extra memory and CPU resources and helps to avoid page swapping when handling relatively big data arrays on computers with low physical memory.

2.3 Discrete Wavelet Transform (DWT)

Wavelet transform has recently become a very popular when it comes to analysis, de-noising and compression of signals and images. This section describes functions used to perform single- and multilevel Discrete Wavelet Transforms.
2.3.1 Single level dwt

```python
pywt.dwt(data, wavelet[, mode='sym'])
```

The `dwt()` function is used to perform single level, one dimensional Discrete Wavelet Transform.

```python
(cA, cD) = dwt(data, wavelet, mode='sym')
```

**Parameters**

- **data** – Input signal can be NumPy array, Python list or other iterable object. Both single and double precision floating-point data types are supported and the output type depends on the input type. If the input data is not in one of these types it will be converted to the default double precision data format before performing computations.
- **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.
- **mode** – Signal extension mode to deal with the border distortion problem. See `MODES` for details.

The transform coefficients are returned as two arrays containing approximation (cA) and detail (cD) coefficients respectively. Length of returned arrays depends on the selected signal extension mode - see the signal extension modes section for the list of available options and the `dwt_coeff_len()` function for information on getting the expected result length:

- for all modes except periodization:
  ```
 len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)
  ```
- for periodization mode ("per"):  
  ```
 len(cA) == len(cD) == ceil(len(data) / 2)
  ```

**Example:**

```python
>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db1')
>>> print(cA)
[2.12132034 4.94974747 7.77817459]
>>> print(cD)
[-0.70710678 -0.70710678 -0.70710678]
```

2.3.2 Multilevel decomposition using wavedec

```python
pywt.wavedec(data, wavelet, mode='sym', level=None)
```

The `wavedec()` function performs 1D multilevel Discrete Wavelet Transform decomposition of given signal and returns ordered list of coefficients arrays in the form:

```
[cA_n, cD_n, cD_n-1, ..., cD2, cD1],
```

where n denotes the level of decomposition. The first element (cA_n) of the result is approximation coefficients array and the following elements (cD_n - cD_1) are details coefficients arrays.

**Parameters**

- **data** – Input signal can be NumPy array, Python list or other iterable object. Both single and double precision floating-point data types are supported and the output type depends on the input type. If the input data is not in one of these types it will be converted to the default double precision data format before performing computations.
• **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

• **mode** – Signal extension mode to deal with the border distortion problem. See `MODES` for details.

• **level** – Number of decomposition steps to perform. If the level is `None`, then the full decomposition up to the level computed with `dwt_max_level()` function for the given data and wavelet lengths is performed.

**Example:**

```python
>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
>>> cA2, cD2, cD1 = coeffs
>>> print cD1
[-0.70710678 -0.70710678 -0.70710678 -0.70710678]
>>> print cD2
[-2. -2.]
>>> print cA2
[5. 13.]
```

### 2.3.3 Partial Discrete Wavelet Transform data decomposition `downcoef`

`pywt.downcoef(part, data, wavelet[, mode='sym', level=1])`

Similar to `dwt()`, but computes only one set of coefficients. Useful when you need only approximation or only details at the given level.

**Parameters**

• **part** – decomposition type. For `a` computes approximation coefficients, for `d` - details coefficients.

• **data** – Input signal can be NumPy array, Python list or other iterable object. Both `single` and `double` precision floating-point data types are supported and the output type depends on the input type. If the input data is not in one of these types it will be converted to the default `double` precision data format before performing computations.

• **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

• **mode** – Signal extension mode to deal with the border distortion problem. See `MODES` for details.

• **level** – Number of decomposition steps to perform.

### 2.3.4 Maximum decomposition level - `dwt_max_level`

`pywt.dwt_max_level(data_len, filter_len)`

The `dwt_max_level()` function can be used to compute the maximum useful level of decomposition for the given input data length and wavelet filter length.

The returned value equals to:

```python
floor(log(data_len/(filter_len-1)) / log(2))
```

Although the maximum decomposition level can be quite high for long signals, usually smaller values are chosen depending on the application.
The `filter_len` can be either an `int` or `Wavelet` object for convenience.

Example:

```python
>>> import pywt
>>> w = pywt.Wavelet('sym5')
>>> print pywt.dwt_max_level(data_len=1000, filter_len=w.dec_len)
6
>>> print pywt.dwt_max_level(1000, w)
6
```

### 2.3.5 Result coefficients length - dwt_coeff_len

`pywt.dwt_coeff_len(data_len, filter_len, mode)`

Based on the given input data length, Wavelet decomposition filter length and signal extension mode, the `dwt_coeff_len()` function calculates length of resulting coefficients arrays that would be created while performing `dwt()` transform.

For periodization mode this equals:

\[
\text{ceil}(\text{data_len} / 2)
\]

which is the lowest possible length guaranteeing perfect reconstruction.

For other modes:

\[
\text{floor}((\text{data_len} + \text{filter_len} - 1) / 2)
\]

The `filter_len` can be either an `int` or `Wavelet` object for convenience.

### 2.4 Inverse Discrete Wavelet Transform (IDWT)

#### 2.4.1 Single level idwt

`pywt.idwt(cA, cD, wavelet[, mode='sym'[, correct_size=0 ]])`

The `idwt()` function reconstructs data from the given coefficients by performing single level Inverse Discrete Wavelet Transform.

Parameters

- `cA` – Approximation coefficients.
- `cD` – Detail coefficients.
- `wavelet` – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.
- `mode` – Signal extension mode to deal with the border distortion problem. See `MODES` for details. This is only important when DWT was performed in periodization mode.
- `correct_size` – Typically, `cA` and `cD` coefficients lists must have equal lengths in order to perform IDWT. Setting `correct_size` to `True` allows `cA` to be greater in size by one element compared to the `cD` size. This option is very useful when doing multilevel decomposition and reconstruction (as for example with the `wavedec()` function) of non-dyadic length signals when such minor differences can occur at various levels of IDWT.

Example:
```python
>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> print pywt.idwt(cA, cD, 'db2', 'sp1')
[1. 2. 3. 4. 5. 6.]
```

One of the neat features of `idwt()` is that one of the `cA` and `cD` arguments can be set to `None`. In that situation the reconstruction will be performed using only the other one. Mathematically speaking, this is equivalent to passing a zero-filled array as one of the arguments.

**Example:**
```python
>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> A = pywt.idwt(cA, None, 'db2', 'sp1')
>>> D = pywt.idwt(None, cD, 'db2', 'sp1')
>>> print A + D
[1. 2. 3. 4. 5. 6.]
```

**Multilevel reconstruction using waverec**

```python
pywt.waverec(coeffs, wavelet[, mode='sym'])
```
Performs multilevel reconstruction of signal from the given list of coefficients.

**Parameters**
- `coeffs` – Coefficients list must be in the form like returned by `wavedec()` decomposition function, which is:
  
  `[cAN, cDn, cDn-1, ..., cD2, cD1]`

- `wavelet` – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

- `mode` – Signal extension mode to deal with the border distortion problem. See `MODES` for details.

**Example:**
```python
>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db2', level=2)
>>> print pywt.waverec(coeffs, 'db2')
[1. 2. 3. 4. 5. 6. 7. 8.]
```

**Direct reconstruction with upcoef**

```python
pywt.upcoef(part, coeffs, wavelet[, level=1[, take=0]]
```
Direct reconstruction from coefficients.

**Parameters**
- `part` – Defines the input coefficients type:
  - `'a'` - approximations reconstruction is performed
  - `'d'` - details reconstruction is performed

- `coeffs` – Coefficients array to reconstruct.
• **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

• **level** – If `level` value is specified then a multilevel reconstruction is performed (first reconstruction is of type specified by `part` and all the following ones with `part` type `a`)

• **take** – If `take` is specified then only the central part of length equal to the `take` parameter value is returned.

Example:

```python
>>> import pywt
>>> data = [1, 2, 3, 4, 5, 6]
>>> (cA, cD) = pywt.dwt(data, 'db2', 'sp1')
>>> print pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
[-0.25 -0.4330127 1. 2. 3. 4. 5. 6. 1.78589838 -1.03108891]
>>> n = len(data)
>>> print pywt.upcoef('a', cA, 'db2', take=n) + pywt.upcoef('d', cD, 'db2', take=n)
[1. 2. 3. 4. 5. 6.]
```

### 2.5 2D Forward and Inverse Discrete Wavelet Transform

#### 2.5.1 Single level `dwt2`

```python
pywt.dwt2(data, wavelet[, mode='sym'])
```

The `dwt2()` function performs single level 2D Discrete Wavelet Transform.

**Parameters**

- **data** – 2D input data.

- **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

- **mode** – Signal extension mode to deal with the border distortion problem. See `MODES` for details. This is only important when DWT was performed in `periodization` mode.

Returns one average and three details 2D coefficients arrays. The coefficients arrays are organized in tuples in the following form:

\[
(cA, (cH, cV, cD))
\]

where `cA`, `cH`, `cV`, `cD` denote approximation, horizontal detail, vertical detail and diagonal detail coefficients respectively.

The relation to the other common data layout where all the approximation and details coefficients are stored in one big 2D array is as follows:

```

| | |
| cA(LL) | cH(LH) |
| | |
(cA, (cH, cV, cD)) <--- -------------------
| | |
| cV(HL) | cD(HH) |
| | |

```
PyWavelets does not follow this pattern because of pure practical reasons of simple access to particular type of the output coefficients.

Example:

```python
>>> import pywt, numpy
>>> data = numpy.ones((4,4), dtype=numpy.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> cA, (cH, cV, cD) = coeffs
>>> print cA
[[2. 2.]
 [2. 2.]]
>>> print cV
[[0. 0.]
 [0. 0.]]
```

2.5.2 Single level idwt2

`pywt.idwt2(coeffs, wavelet[, mode='sym'])`

The `idwt2()` function reconstructs data from the given coefficients set by performing single level 2D Inverse Discrete Wavelet Transform.

Parameters

- `coeffs` – A tuple with approximation coefficients and three details coefficients 2D arrays like from `dwt2()`:
  
  `(cA, (cH, cV, cD))`

- `wavelet` – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

- `mode` – Signal extension mode to deal with the border distortion problem. See `MODES` for details. This is only important when the `dwt()` was performed in the `periodization` mode.

Example:

```python
>>> import pywt, numpy
>>> data = numpy.array([[1,2], [3,4]], dtype=numpy.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> print pywt.idwt2(coeffs, 'haar')
[[1. 2.]
 [3. 4.]]
```

2.5.3 2D multilevel decomposition using wavedec2

`pywt.wavedec2(data, wavelet[, mode='sym'][, level=None])`

Performs multilevel 2D Discrete Wavelet Transform decomposition and returns coefficients list:

`[cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]`

where `n` denotes the level of decomposition and `cA`, `cH`, `cV` and `cD` are approximation, horizontal detail, vertical detail and diagonal detail coefficients arrays respectively.

Parameters
• **data** – Input signal can be NumPy array, Python list or other iterable object. Both *single* and *double* precision floating-point data types are supported and the output type depends on the input type. If the input data is not in one of these types it will be converted to the default *double* precision data format before performing computations.

• **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

• **mode** – Signal extension mode to deal with the border distortion problem. See `MODES` for details.

• **level** – Decomposition level. This should not be greater than the reasonable maximum value computed with the `dwt_max_level()` function for the smaller dimension of the input data.

**Example:**

```python
>>> import pywt, numpy
>>> coeffs = pywt.wavedec2(numpy.ones((8,8)), 'db1', level=2)
>>> cA2, (cH2, cV2, cD2), (cH1, cV1, cD1) = coeffs
>>> print cA2
[[4. 4.]
 [4. 4.]]
```

### 2.5.4 2D multilevel reconstruction using `waverec2`

`pywt.waverec2(coeffs, wavelet[, mode='sym'])`

Performs multilevel reconstruction from the given coefficients set.

**Parameters**

- **coeffs** – Coefficients set must be in the form like that from `wavedec2()` decomposition:

  ```python
 [cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]
  ```

- **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.

- **mode** – Signal extension mode to deal with the border distortion problem. See `MODES` for details.

**Example:**

```python
>>> import pywt, numpy
>>> coeffs = pywt.wavedec2(numpy.ones((4,4)), 'db1')
>>> print "levels:", len(coeffs)-1
levels: 2
>>> print pywt.waverec2(coeffs, 'db1')
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]
```

### 2.6 Stationary Wavelet Transform

Stationary Wavelet Transform (SWT), also known as *Undecimated wavelet transform* or *Algorithme à trous* is a translation-invariance modification of the *Discrete Wavelet Transform* that does not decimate coefficients at every
transformation level.

### 2.6.1 Multilevel `swt`

**`pywt.swt(data, wavelet, level[, start_level=0])`**

Performs multilevel Stationary Wavelet Transform.

**Parameters**

- **data** – Input signal can be NumPy array, Python list or other iterable object. Both single and double precision floating-point data types are supported and the output type depends on the input type. If the input data is not in one of these types it will be converted to the default double precision data format before performing computations.
- **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.
- **level** – Required transform level. See the `swt_max_level()` function.

Returned list of coefficient pairs is in the form:

```
[(cA1, cD1), (cA2, cD2), ..., (cAn, cDn)]
```

where `n` is the `level` value.

### 2.6.2 Multilevel `swt2`

**`pywt.swt2(data, wavelet, level[, start_level=0])`**

Performs multilevel 2D Stationary Wavelet Transform.

**Parameters**

- **data** – 2D array with input data.
- **wavelet** – Wavelet to use in the transform. This can be a name of the wavelet from the `pywt.wavelist` list or a `Wavelet` object instance.
- **level** – Number of decomposition steps to perform.
- **start_level** – The level at which the decomposition will begin.

The result is a set of coefficients arrays over the range of decomposition levels:

```
[
 (cA_n,
 (cH_n, cV_n, cD_n)
),
 (cA_n+1,
 (cH_n+1, cV_n+1, cD_n+1)
),
 ...
 (cA_n+level,
 (cH_n+level, cV_n+level, cD_n+level)
)
]
```

where `cA` is approximation, `cH` is horizontal details, `cV` is vertical details, `cD` is diagonal details, `n` is `start_level` and `m` equals `n+level`.

---

2.6. Stationary Wavelet Transform
2.6.3 Maximum decomposition level - `swt_max_level`

def swt_max_level(input_len):
    """Calculates the maximum level of Stationary Wavelet Transform for data of given length.
    """  
    Parameters
    ----------
    input_len -- Input data length.

2.7 Wavelet Packets

New in version 0.2. Version 0.2 of PyWavelets includes many new features and improvements. One of such new feature is a two-dimansional wavelet packet transform structure that is almost completely sharing programming interface with the one-dimensional tree structure.

In order to achieve this simplification, a new inheritance scheme was used in which a `BaseNode` base node class is a superclass for both `Node` and `Node2D` node classes.

The node classes are used as data wrappers and can be organized in trees (binary trees for 1D transform case and quad-trees for the 2D one). They are also superclasses to the `WaveletPacket` class and `WaveletPacket2D` class that are used as the decomposition tree roots and contain a couple additional methods.

The below diagram illustrates the inheritance tree:

- `BaseNode` - common interface for 1D and 2D nodes:
  - `Node` - data carrier node in a 1D decomposition tree
    - `WaveletPacket` - 1D decomposition tree root node
  - `Node2D` - data carrier node in a 2D decomposition tree
    - `WaveletPacket2D` - 2D decomposition tree root node

2.7.1 BaseNode - a common interface of WaveletPacket and WaveletPacket2D

class pywt.BaseNode
class pywt.Node(BaseNode)
class pywt.WaveletPacket(Node)
class pywt.Node2D(BaseNode)
class pywt.WaveletPacket2D(Node2D)

Note: The BaseNode is a base class for `Node` and `Node2D`. It should not be used directly unless creating a new transformation type. It is included here to documentat the common interface of 1D and 2D node an wavelet packet transform classes.

__init__ (parent, data, node_name)

Parameters

- `parent` -- parent node. If parent is `None` then the node is considered detached.
- `data` -- data associated with the node. 1D or 2D numeric array, depending on the transform type.
- `node_name` -- a name identifying the coefficients type. See `Node.node_name` and `Node2D.node_name` for information on the accepted subnodes names.
data
Data associated with the node. 1D or 2D numeric array (depends on the transform type).

parent
Parent node. Used in tree navigation. None for root node.

wavelet
Wavelet used for decomposition and reconstruction. Inherited from parent node.

mode
Signal extension mode for the dwt() (dwt2()) and idwt() (idwt2()) decomposition and reconstruction functions. Inherited from parent node.

level
Decomposition level of the current node. 0 for root (original data), 1 for the first decomposition level, etc.

path
Path string defining position of the node in the decomposition tree.

node_name
Node name describing data coefficients type of the current subnode.
See Node.node_name and Node2D.node_name.

maxlevel
Maximum allowed level of decomposition. Evaluated from parent or child nodes.

is_empty
Checks if data attribute is None.

has_any_subnode
Checks if node has any subnodes (is not a leaf node).

decompose()
Performs Discrete Wavelet Transform on the data and returns transform coefficients.

reconstruct([update=False])
Performs Inverse Discrete Wavelet Transform on subnodes coefficients and returns reconstructed data for the current level.

Parameters update – If set, the data attribute will be updated with the reconstructed value.

Note: Descends to subnodes and recursively calls reconstruct() on them.

get_subnode(part[, decompose=True ])
Returns subnode or None (see decomposition flag description).

Parameters
• part – Subnode name
• decompose – If True and subnode does not exist, it will be created using coefficients from the DWT decomposition of the current node.

__getitem__(path)
Used to access nodes in the decomposition tree by string path.

Parameters path – Path string composed from valid node names. See Node.node_name and Node2D.node_name for node naming convention.

Similar to get_subnode() method with decompose=True, but can access nodes on any level in the decomposition tree.

2.7. Wavelet Packets
If node does not exist yet, it will be created by decomposition of its parent node.

__setitem__ (path, data)
Used to set node or node’s data in the decomposition tree. Nodes are identified by string path.

Parameters
- **path** – Path string composed from valid node names. See Node.node_name and Node2D.node_name for node naming convention.
- **data** – numeric array or BaseNode subclass.

__delitem__ (path)
Used to delete node from the decomposition tree.

Parameters **path** – Path string composed from valid node names. See Node.node_name and Node2D.node_name for node naming convention.

get_leaf_nodes ([decompose=False])
Traverses through the decomposition tree and collects leaf nodes (nodes without any subnodes).

Parameters **decompose** – If decompose is True, the method will try to decompose the tree up to the maximum level.

walk (self, func[, args=()][, kwars={}][, decompose=True])
Traverses the decomposition tree and calls func(node, *args, **kwargs) on every node. If func returns True, descending to subnodes will continue.

Parameters
- **func** – callable accepting BaseNode as the first param and optional positional and keyword arguments:

  func(node, *args, **kwargs)

- **decompose** – If decompose is True (default), the method will also try to decompose the tree up to the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

walk_depth (self, func[, args=()][, kwars={}][, decompose=False])
Similar to walk() but traverses the tree in depth-first order.

Parameters
- **func** – callable accepting BaseNode as the first param and optional positional and keyword arguments:

  func(node, *args, **kwargs)

- **decompose** – If decompose is True, the method will also try to decompose the tree up to the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func
2.7.2 WaveletPacket and WaveletPacket tree Node

```python
class pywt.Node (BaseNode)
class pywt.WaveletPacket (Node)
```

**node_name**

Node name describing data coefficients type of the current subnode.

For **WaveletPacket** case it is just as in ```dwt()```:

- a - approximation coefficients
- d - details coefficients

```python
def decompose()
```

See Also:

- ```dwt()``` for 1D Discrete Wavelet Transform output coefficients.

```python
class pywt.WaveletPacket (Node)
```

```python
__init__ (data, wavelet[, mode='sym', maxlevel=None])
```

**Parameters**

- **data** – data associated with the node. 1D numeric array.
- **wavelet** – Wavelet to use for decomposition and reconstruction.
- **mode** – Signal extension mode for the ```dwt()``` and ```idwt()``` decomposition and reconstruction functions.
- **maxlevel** – Maximum allowed level of decomposition. If not specified it will be calculated based on the ```wavelet``` and ```data``` length using ```pywt.dwt_max_level()```.

```python
def get_level(level[, order='natural', decompose=True])
```

Collects nodes from the given level of decomposition.

**Parameters**

- **level** – Specifies decomposition level from which the nodes will be collected.
- **order** – Specifies nodes order - natural (```natural```) or frequency (```freq```).
- **decompose** – If set then the method will try to decompose the data up to the specified ```level```.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the ```decompose``` is set to ```False``` only existing nodes will be returned.

2.7.3 WaveletPacket2D and WaveletPacket2D tree Node2D

```python
class pywt.Node2D (BaseNode)
class pywt.WaveletPacket2D (Node2D)
```

**node_name**

For **WaveletPacket2D** case it is just as in ```dwt2()```:
• a - approximation coefficients \((LL)\)
• h - horizontal detail coefficients \((LH)\)
• v - vertical detail coefficients \((HL)\)
• d - diagonal detail coefficients \((HH)\)

decompose()

See Also:
dwt2() for 2D Discrete Wavelet Transform output coefficients.

expand_2d_path(self, path):

class pywt.WaveletPacket2D(Node2D)

__init__(data, wavelet[, mode='sym'][, maxlevel=None])

Parameters

• data – data associated with the node. 2D numeric array.
• wavelet – Wavelet to use for decomposition and reconstruction.
• mode – Signal extension mode for the dwt() and idwt() decomposition and reconstruction functions.
• maxlevel – Maximum allowed level of decomposition. If not specified it will be calculated based on the wavelet and data length using pywt.dwt_max_level().

get_level(level[, order="natural", decompose=True])

Collects nodes from the given level of decomposition.

Parameters

• level – Specifies decomposition level from which the nodes will be collected.
• order – Specifies nodes order - natural (natural) or frequency (freq).
• decompose – If set then the method will try to decompose the data up to the specified level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to False, only existing nodes will be returned.

2.8 Thresholding functions

The thresholding helper module implements the most popular signal thresholding functions.

2.8.1 Hard thresholding

pywt.thresholding.hard(data, value[, substitute=0])

Hard thresholding. Replace all data values with substitute where their absolute value is less than the value param.

Data values with absolute value greater or equal to the thresholding value stay untouched.

Parameters
• data – numeric data
• value – thresholding value
• substitute – substitute value

Returns array

2.8.2 Soft thresholding

pywt.thresholding.soft(data, value[, substitute=0])
Soft thresholding.

Parameters
• data – numeric data
• value – thresholding value
• substitute – substitute value

Returns array

2.8.3 Greater

pywt.thresholding.greater(data, value[, substitute=0])
Replace data with substitute where data is below the thresholding value.
Greater data values pass untouched.

Parameters
• data – numeric data
• value – thresholding value
• substitute – substitute value

Returns array

2.8.4 Less

pywt.thresholding.less(data, value[, substitute=0])
Replace data with substitute where data is above the thresholding value.
Less data values pass untouched.

Parameters
• data – numeric data
• value – thresholding value
• substitute – substitute value

Returns array
2.9 Other functions

2.9.1 Single-level n-dimensional Discrete Wavelet Transform.

\[ \text{pywt.dwt}(\text{data}, \text{wavelet}, \text{mode}='\text{sym}') \]

Performs single-level n-dimensional Discrete Wavelet Transform.

**Parameters**

- **data** – n-dimensional array
- **wavelet** – wavelet to use (Wavelet object or name string)
- **mode** – signal extension mode, see MODES

Results are arranged in a dictionary, where key specifies the transform type on each dimension and value is a n-dimensional coefficients array.

For example, for a 2D case the result will look something like this:

```python
{
 'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
 'ad': <coeffs> # H(LH) - approx. on 1st dim, det. on 2nd dim
 'da': <coeffs> # V(HL) - det. on 1st dim, approx. on 2nd dim
 'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim
}
```

2.9.2 Integrating wavelet functions - `intwave()`

\[ \text{pywt.intwave}(\text{wavelet}[, \text{precision=}8]) \]

Integration of wavelet function approximations as well as any other signals can be performed using the `pywt.intwave()` function.

The result of the call depends on the `wavelet` argument:

- for orthogonal wavelets - an integral of the wavelet function specified on an x-grid:
  \[ \text{[int_psi, x]} = \text{intwave(wavelet, precision)} \]

- for other wavelets - integrals of decomposition and reconstruction wavelet functions and a corresponding x-grid:
  \[ \text{[int_psi_d, int_psi_r, x]} = \text{intwave(wavelet, precision)} \]

- for a tuple of coefficients data and a x-grid - an integral of function and the given x-grid is returned (the x-grid is used for computations):
  \[ \text{[int_function, x]} = \text{intwave((data, x), precision)} \]

**Example:**

```python
>>> import pywt
>>> wavelet1 = pywt.Wavelet('db2')
>>> [int_psi, x] = pywt.intwave(wavelet1, precision=5)
>>> wavelet2 = pywt.Wavelet('bior1.3')
>>> [int_psi_d, int_psi_r, x] = pywt.intwave(wavelet2, precision=5)
```
2.9.3 Central frequency of \( \psi \) wavelet function

\[
\text{pywt.} \text{centfrq} (\text{wavelet[, precision=8]}) \\
\text{pywt.} \text{centfrq} ((\text{function_aprox, x}))
\]

**Parameters**

- **wavelet** – \texttt{Wavelet}, wavelet name string or \texttt{wavelet function approx., x grid} pair
- **precision** – Precision that will be used for wavelet function approximation computed with \texttt{Wavelet.wavefun()} method.
3.1 The Wavelet object

3.1.1 Wavelet families and builtin Wavelets names

Wavelet objects are really a handy carriers of a bunch of DWT-specific data like quadrature mirror filters and some general properties associated with them.

At first let’s go through the methods of creating a Wavelet object. The easiest and the most convenient way is to use builtin named Wavelets.

These wavelets are organized into groups called wavelet families. The most commonly used families are:

```python
>>> import pywt

>>> pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']
```

The `wavelist()` function with family name passed as an argument is used to obtain the list of wavelet names in each family.

```python
>>> for family in pywt.families():
... print(f'family: {family},', ', '.join(pywt.wavelist(family)))
haar family: haar
db family: db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, db11, db12, db13, db14, db15, db16, db17
sym family: sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, sym11, sym12, sym13, sym14, sym15
coif family: coif1, coif2, coif3, coif4, coif5
bior family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5
rbio family: rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5
dmey family: dmey
```

To get the full list of builtin wavelets' names just use the `wavelist()` with no argument. As you can see currently there are 76 builtin wavelets.

```python
>>> len(pywt.wavelist())
76
```

3.1.2 Creating Wavelet objects

Now when we know all the names let’s finnally create a Wavelet object:
>>> w = pywt.Wavelet('db3')

So.. that’s it.

## 3.1.3 Wavelet properties

But what can we do with Wavelet objects? Well, they carry some interesting information.

First, let’s try printing a Wavelet object. This shows a brief information about it’s name, it’s family name and some properties like orthogonality and symmetry.

```python
>>> print w
Wavelet db3
 Family name: Daubechies
 Short name: db
 Filters length: 6
 Orthogonal: True
 Biorthogonal: True
 Symmetry: asymmetric
```

But the most important information are the wavelet filters coefficients, which are used in Discrete Wavelet Transform. These coefficients can be obtained via the `dec_lo`, `Wavelet.dec_hi`, `rec_lo` and `rec_hi` attributes, which corresponds to lowpass and highpass decomposition filters and lowpass and highpass reconstruction filters respectively:

```python
>>> w.dec_lo
[0.035226291882100656, -0.085441273882241486, -0.13501102001039084, 0.45987750211933132, 0.80689150931333875, 0.33267055295095688]
>>> w.dec_hi
[-0.33267055295095688, 0.80689150931333875, -0.45987750211933132, -0.13501102001039084, 0.085441273882241486, 0.035226291882100656]
>>> w.rec_lo
[0.33267055295095688, 0.80689150931333875, 0.45987750211933132, -0.13501102001039084, -0.085441273882241486, 0.035226291882100656]
>>> w.rec_hi
[0.035226291882100656, 0.085441273882241486, -0.13501102001039084, -0.45987750211933132, 0.80689150931333875, -0.33267055295095688]
```

Another way to get the filters data is to use the `filter_bank` attribute, which returns all four filters in a tuple:

```python
>>> w.filter_bank == (w.dec_lo, w.dec_hi, w.rec_lo, w.rec_hi)
True
```

Other Wavelet’s properties are:

- **Wavelet name, short_family_name and family_name:**
  ```python
 >>> print w.name
db3
 >>> print w.short_family_name
db
 >>> print w.family_name
 Daubechies
  ```

- **Decomposition (`dec_len`) and reconstruction (`rec_len`) filter lengths:**
  ```python
 >>> w.dec_len
 6
 >>> w.rec_len
 6
  ```

- **Orthogonality (`orthogonal`) and biorthogonality (`biorthogonal`):**

---

Chapter 3. Usage examples
>>> w.orthogonal
True
>>> w.biorthogonal
True

• Symmetry (symmetry):

>>> print w.symmetry
asymmetric

• Number of vanishing moments for the scaling function \( \phi \) (vanishing_moments_phi) and the wavelet function \( \psi \) (vanishing_moments_psi) associated with the filters:

>>> w.vanishing_moments_phi
0
>>> w.vanishing_moments_psi
3

Now when we know a bit about the builtin Wavelets, let’s see how to create custom Wavelets objects. These can be done in two ways:

1. Passing the filter bank object that implements the \texttt{filter\_bank} attribute. The attribute must return four filters coefficients.

```python
>>> class MyHaarFilterBank(object):
... @property
... def filter_bank(self):
... from math import sqrt
... return ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])
>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=MyHaarFilterBank())
```

2. Passing the filters coefficients directly as the \texttt{filter\_bank} parameter.

```python
>>> from math import sqrt
>>> my_filter_bank = ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])
>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=my_filter_bank)
```

Note that such custom wavelets will not have all the properties set to correct values:

```python
>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:
Filters length: 2
Orthogonal: False
Biorthogonal: False
Symmetry: unknown
```

You can however set a few of them on your own:

```python
>>> my_wavelet.orthogonal = True
>>> my_wavelet.biorthogonal = True
>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:
```
3.1.4 And now... the wavefun!

We all know that the fun with wavelets is in wavelet functions. Now what would be this package without a tool to
compute wavelet and scaling functions approximations?

This is the purpose of the wavefun() method, which is used to approximate scaling function (\( \phi \)) and wavelet
function (\( \psi \)) at the given level of refinement, based on the filters coefficients.

The number of returned values varies depending on the wavelet’s orthogonality property. For orthogonal wavelets the
result is tuple with scaling function, wavelet function and xgrid coordinates.

```python
>>> w = pywt.Wavelet('sym3')
>>> w.orthogonal
True
>>> (phi, psi, x) = w.wavefun(level=5)
```

For biorthogonal (non-orthogonal) wavelets different scaling and wavelet functions are used for decomposition and
reconstruction, and thus five elements are returned: decomposition scaling and wavelet functions approximations,
reconstruction scaling and wavelet functions approximations, and the xgrid.

```python
>>> w = pywt.Wavelet('bior1.3')
>>> w.orthogonal
False
>>> (phi_d, psi_d, phi_r, psi_r, x) = w.wavefun(level=5)
```

See Also:
You can find live examples of wavefun() usage and images of all the built-in wavelets on the Wavelet Properties
Browser page.

3.2 Signal Extension Modes

Import pywt first

```python
>>> import pywt
```

```python
>>> def format_array(a):
... """Consistent array representation across different systems""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)
```

List of available signal extension modes:

```python
>>> print pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']
```

Test that dwt() and idwt() can be performed using every mode:
```python
>>> x = [1, 2, 1, 5, -1, 8, 4, 6]
>>> for mode in pywt.MODES.modes:
... cA, cD = pywt.dwt(x, 'db2', mode)
... print("Mode:", mode)
... print("cA:", format_array(cA))
... print("cD:", format_array(cD))
... print("Reconstruction:", pywt.idwt(cA, cD, 'db2', mode))
```

```
Mode: zpd
 cA: [-0.03468, 1.73309, 3.40612, 6.32929, 6.95095]
 cD: [-0.12941, -2.156, -5.95035, -1.21545, -1.8625]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: cpd
 cA: [1.2848, 1.73309, 3.40612, 6.32929, 7.51936]
 cD: [-0.48296, -2.156, -5.95035, -1.21545, 0.25882]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: sym
 cA: [1.76777, 1.73309, 3.40612, 6.32929, 7.77817]
 cD: [-0.61237, -2.156, -5.95035, -1.21545, 1.22474]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: ppd
 cA: [6.91627, 1.73309, 3.40612, 6.32929, 6.91627]
 cD: [-1.99191, -2.156, -5.95035, -1.21545, -1.99191]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: sp1
 cA: [-0.51764, 1.73309, 3.40612, 6.32929, 7.45001]
 cD: [0, -2.156, -5.95035, -1.21545, 0.]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: per
 cA: [4.05317, 3.05257, 2.85381, 8.42522]
 cD: [0.18947, 4.18258, 4.33738, 2.60428]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
```

Invalid mode name should raise a `ValueError`:

```python
>>> pywt.dwt([1, 2, 3, 4], 'db2', 'invalid')
Traceback (most recent call last):
...
ValueError: Unknown mode name 'invalid'.
```

You can also refer to modes via `MODES` class attributes:

```python
>>> for mode_name in ['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']:
... mode = getattr(pywt.MODES, mode_name)
... cA, cD = pywt.dwt([1, 2, 1, 5, -1, 8, 4, 6], 'db2', mode)
... print("Mode:", mode, "(\%s)" % mode_name)
... print("cA:", format_array(cA))
... print("cD:", format_array(cD))
... print("Reconstruction:", pywt.idwt(cA, cD, 'db2', mode))
```

```
Mode: 0 (zpd)
 cA: [-0.03468, 1.73309, 3.40612, 6.32929, 6.95095]
 cD: [-0.12941, -2.156, -5.95035, -1.21545, -1.8625]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: 2 (cpd)
 cA: [1.2848, 1.73309, 3.40612, 6.32929, 7.51936]
 cD: [-0.48296, -2.156, -5.95035, -1.21545, 0.25882]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
Mode: 1 (sym)
 cA: [1.76777, 1.73309, 3.40612, 6.32929, 7.77817]
 cD: [-0.61237, -2.156, -5.95035, -1.21545, 1.22474]
 Reconstruction: [1, 2, 1, 5, -1, 8, 4, 6]
```
Reconstruction: [ 1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 4 (ppd)
cA: [ 6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [ 1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 3 (spl)
cA: [-0.51764 1.73309 3.40612 6.32928 7.45001]
cD: [ 0. -2.156 -5.95035 -1.21545 0. ]
Reconstruction: [ 1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 5 (per)
cA: [ 4.05317 3.05257 2.85381 8.42522]
cD: [ 0.18947 4.18258 4.33738 2.60428]
Reconstruction: [ 1. 2. 1. 5. -1. 8. 4. 6.]

Some invalid mode values:

```python
>>> pywt.dwt(x, 'db2', -1)
Traceback (most recent call last):
...
ValueError: Invalid mode.
```

```python
>>> pywt.dwt(x, 'db2', 7)
Traceback (most recent call last):
...
ValueError: Invalid mode.
```

```python
>>> pywt.dwt(x, 'db2', None)
Traceback (most recent call last):
...
TypeError: expected string or Unicode object, NoneType found
```

The default mode is `sym`:

```python
>>> cA, cD = pywt.dwt(x, 'db2')
>>> print cA
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt(cA, cD, 'db2')
[1. 2. 1. 5. -1. 8. 4. 6.]
```

And using a keyword argument:

```python
>>> cA, cD = pywt.dwt(x, 'db2', mode='sym')
>>> print cA
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt(cA, cD, 'db2')
[1. 2. 1. 5. -1. 8. 4. 6.]
```

### 3.3 DWT and IDWT

#### 3.3.1 Discrete Wavelet Transform

Let's do a **Discrete Wavelet Transform** of a sample data `x` using the `db2` wavelet. It's simple..
```python
>>> import pywt

>>> x = [3, 7, 1, 1, -2, 5, 4, 6]

>>> cA, cD = pywt.dwt(x, 'db2')

And the approximation and detail coefficients are in `cA` and `cD` respectively:

```python
>>> print cA
[ 5.65685425  7.39923721  0.22414387  3.33677403  7.77817459]

>>> print cD
[-2.44948974 -1.60368225 -4.44140056 -0.41361256  1.22474487]
```

3.3.2 Inverse Discrete Wavelet Transform

Now let’s do an opposite operation - *Inverse Discrete Wavelet Transform*:

```python
>>> print pywt.idwt(cA, cD, 'db2')
[ 3.  7.  1.  1. -2.  5.  4.  6.]
```

Violla! That’s it!

3.3.3 More Examples

Now let’s experiment with the `dwt()` some more. For example let’s pass a `Wavelet` object instead of the wavelet name and specify signal extension mode (the default is `sym`) for the border effect handling:

```python
>>> w = pywt.Wavelet('sym3')

>>> cA, cD = pywt.dwt(x, wavelet=w, mode='cpd')

>>> print cA
[ 4.38354585  3.80302657  7.31813271 -0.58565539  4.09727044  7.81994027]

>>> print cD
[-1.33068221 -2.78795192 -3.16825651 -0.67715519 -0.09722957 -0.07045258]
```

Note that the output coefficients array length depends not only on the input data length but also on the `Wavelet` type (particularly on its filters length that are used in the transformation).

To find out what will be the output data size use the `dwt_coeff_len()` function:

```python
>>> pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode='sym')
6

>>> pywt.dwt_coeff_len(len(x), w, 'sym')
6

>>> len(cA)
6
```

Looks fine. (And if you expected that the output length would be a half of the input data length, well, that’s the tradeoff that allows for the perfect reconstruction...).

The third argument of the `dwt_coeff_len()` is the already mentioned signal extension mode (please refer to the PyWavelets’ documentation for the `modes` description). Currently there are six `extension modes` available:

```python
>>> pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

>>> [pywt.dwt_coeff_len(len(x), w.dec_len, mode) for mode in pywt.MODES.modes]
[6, 6, 6, 6, 6, 4]
```

3.3. DWT and IDWT
As you see in the above example, the `per` (periodization) mode is slightly different from the others. It’s aim when doing the DWT transform is to output coefficients arrays that are half of the length of the input data.

Knowing that, you should never mix the periodization mode with other modes when doing DWT and IDWT. Otherwise, it will produce invalid results:

```python
>>> x
[3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='per')
>>> print pywt.idwt(cA, cD, 'sym3', 'sym') # invalid mode
[ 1.  -1.  -2.  5.]
>>> print pywt.idwt(cA, cD, 'sym3', 'per')
[ 3.  7.  1.  1.  -2.  5.  4.  6.]
```

3.3.4 Tips & tricks

Passing None instead of coefficients data to `idwt()`

Now some tips & tricks. Passing `None` as one of the coefficient arrays parameters is similar to passing a zero-filled array. The results are simply the same:

```python
>>> print pywt.idwt([1, 2, 0, 1], None, 'db2', 'sym')
[ 1.19006969  1.54362308 -0.44828774 -0.25881905  0.48296291  0.8365163 ]
>>> print pywt.idwt([1, 2, 0, 1], [0, 0, 0, 0], 'db2', 'sym')
[ 1.19006969  1.54362308 -0.44828774 -0.25881905  0.48296291  0.8365163 ]
>>> print pywt.idwt(None, [1, 2, 0, 1], 'db2', 'sym')
[ 0.57769726 -0.93125065  1.67303261 -0.96592583 -0.12940952 -0.22414387]
>>> print pywt.idwt([0, 0, 0, 0], [1, 2, 0, 1], 'db2', 'sym')
[ 0.57769726 -0.93125065  1.67303261 -0.96592583 -0.12940952 -0.22414387]
```

Remember that only one argument at a time can be `None`:

```python
>>> print pywt.idwt(None, None, 'db2', 'sym')
Traceback (most recent call last):
 ... ValueError: At least one coefficient parameter must be specified.
```

Coefficients data size in `idwt`

When doing the IDWT transform, usually the coefficient arrays must have the same size.

```python
>>> print pywt.idwt([1, 2, 3, 4], [1, 2, 3, 4], 'db2', 'sym')
Traceback (most recent call last):
 ... ValueError: Coefficients arrays must have the same size.
```

But for some applications like multilevel DWT and IDWT it is sometimes convenient to allow for a small departure from this behaviour. When the `correct_size` flag is set, the approximation coefficients array can be larger from the details coefficient array by one element:

```python
>>> print pywt.idwt([1, 2, 3, 4], [1, 2, 3, 4], 'db2', 'sym', correct_size=True)
[ 1.76776695  0.61237244  3.18198052  0.61237244  4.59619408  0.61237244]
```
>>> print pywt.idwt([1, 2, 3, 4], [1, 2, 3, 4, 5], 'db2', 'sym', correct_size=True)
Traceback (most recent call last):
...
ValueError: Coefficients arrays must satisfy (0 <= len(cA) - len(cD) <= 1).

Not every coefficient array can be used in IDWT. In the following example the idwt() will fail because the input arrays are invalid - they couldn’t be created as a result of DWT, because the minimal output length for dwt using db4 wavelet and the sym mode is 4, not 3:

>>> pywt.idwt([1,2,4], [4,1,3], 'db4', 'sym')
Traceback (most recent call last):
...
ValueError: Invalid coefficient arrays length for specified wavelet. Wavelet and mode must be the same.

>>> pywt.dwt_coeff_len(1, pywt.Wavelet('db4').dec_len, 'sym')
4

3.4 Multilevel DWT, IDWT and SWT

3.4.1 Multilevel DWT decomposition

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> db1 = pywt.Wavelet('db1')
>>> cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
>>> print cA3
[8.83883476]
>>> print cD3
[-0.35355339]
>>> print cD2
[4. -3.5]
>>> print cD1
[-2.82842712 0.94974747 -1.41421356]

>>> pywt.dwt_max_level(len(x), db1)
3

>>> cA2, cD2, cD1 = pywt.wavedec(x, db1, mode='cpd', level=2)

3.4.2 Multilevel IDWT reconstruction

>>> coeffs = pywt.wavedec(x, db1)
>>> print pywt.waverec(coeffs, db1)
[3. 7. 1. 1. -2. 5. 4. 6.]

3.4.3 Multilevel SWT decomposition

>>> x = [3, 7, 1, 3, -2, 6, 4, 6]
>>> (cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=2)
>>> print cA1
[7.07106781 5.6585425 2.82842712 0.70710678 2.82842712 7.07106781
 7.07106781 6.36396103]
>>> print cD1
[-2.82842712 4.24264069 -1.41421356 3.53553391 -5.65685425 1.41421356
 -1.41421356 2.12132034]
>>> print cA2
[7. 4.5 5. 9.5 10. 8.5]
>>> print cD2
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> [(cA2, cD2)] = pywt.swt(cA1, db1, level=1, start_level=1)
>>> print cA2
[7. 4.5 5. 9.5 10. 8.5]
>>> print cD2
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> coeffs = pywt.swt(x, db1)
>>> len(coeffs)
3

3.5 Wavelet Packets

3.5.1 Import pywt

>>> import pywt

>>> def format_array(a):
... """Consistent array representation across different systems""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

3.5.2 Create Wavelet Packet structure

Ok, let's create a sample WaveletPacket:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

The input data and decomposition coefficients are stored in the WaveletPacket.data attribute:

>>> print wp.data
[1, 2, 3, 4, 5, 6, 7, 8]

Nodes are identified by paths. For the root node the path is "" and the decomposition level is 0.

>>> print repr(wp.path)
''

>>> print wp.level
0

The maxlevel, if not given as param in the constructor, is automatically computed:
```python
>>> print wp['ad'].maxlevel
3

3.5.3 Traversing WP tree:

Accessing subnodes:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

First check what is the maximum level of decomposition:

>>> print wp.maxlevel
3

and try accessing subnodes of the WP tree:

- 1st level:

  ```
 >>> print wp['a'].data
 [2.12132034 4.94974747 7.77817459 10.60660172]
 >>> print wp['a'].path
 a
  ```

- 2nd level:

  ```
 >>> print wp['aa'].data
 [5. 13.]
 >>> print wp['aa'].path
 aa
  ```

- 3rd level:

  ```
 >>> print wp['aaa'].data
 [12.72792206]
 >>> print wp['aaa'].path
 aaa
  ```

Ups, we have reached the maximum level of decomposition and got an `IndexError`:

```python
>>> print wp['aaaa'].data
Traceback (most recent call last):
 ...
IndexError: Path length is out of range.
``` 

Now try some invalid path:

```python
>>> print wp['ac']
Traceback (most recent call last):
 ...
ValueError: Subnode name must be in ['a', 'd'], not 'c'.
```

which just yielded a `ValueError`.

Accessing Node's attributes:

`WaveletPacket` object is a tree data structure, which evaluates to a set of `Node` objects. `WaveletPacket` is just a special subclass of the `Node` class (which in turn inherits from the `BaseNode`).
Tree nodes can be accessed using the \texttt{obj[x]} (\texttt{Node.__getitem__()}) operator. Each tree node has a set of attributes: \texttt{data}, \texttt{path}, \texttt{node_name}, \texttt{parent}, \texttt{level}, \texttt{maxlevel} and \texttt{mode}.

\begin{verbatim}
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

>>> print wp['ad'].data
[-2. -2.]

>>> print wp['ad'].path
ad

>>> print wp['ad'].node_name
d

>>> print wp['ad'].parent.path
a

>>> print wp['ad'].level
2

>>> print wp['ad'].maxlevel
3

>>> print wp['ad'].mode
sym
\end{verbatim}

\section*{Collecting nodes}

\begin{verbatim}
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

We can get all nodes on the particular level either in natural order:

\begin{verbatim}
>>> print [node.path for node in wp.get_level(3, 'natural')]
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']
\end{verbatim}

or sorted based on the band frequency (freq):

\begin{verbatim}
>>> print [node.path for node in wp.get_level(3, 'freq')]
['aaa', 'aad', 'add', 'ada', 'dda', 'ddd', 'dad', 'daa']
\end{verbatim}

Note that \texttt{WaveletPacket.get_level()} also performs automatic decomposition until it reaches the specified level.

\subsection*{3.5.4 Reconstructing data from Wavelet Packets:}

\begin{verbatim}
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

Now create a new \texttt{Wavelet Packet} and set it's nodes with some data.

\begin{verbatim}
>>> new_wp = pywt.WaveletPacket(data=None, wavelet='db1', mode='sym')

>>> new_wp['aa'] = wp['aa'].data
>>> new_wp['ad'] = [-2., -2.]
\end{verbatim}
\end{verbatim}
For convenience, Node.data gets automatically extracted from the Node object:

```python
g>>> new_wp['d'] = wp['d']
```

And reconstruct the data from the aa, ad and d packets.

```python
g>>> print new_wp.reconstruct(update=False)
[1. 2. 3. 4. 5. 6. 7. 8.]
```

If the update param in the reconstruct method is set to False, the node’s data will not be updated.

```python
g>>> print new_wp.data
None
```

Otherwise, the data attribute will be set to the reconstructed value.

```python
g>>> print new_wp.reconstruct(update=True)
[1. 2. 3. 4. 5. 6. 7. 8.]
>>> print new_wp.data
[1. 2. 3. 4. 5. 6. 7. 8.]
```

```python
g>>> print [n.path for n in new_wp.get_leaf_nodes(False)]
['aa', 'ad', 'd']
```

```python
g>>> print [n.path for n in new_wp.get_leaf_nodes(True)]
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']
```

### 3.5.5 Removing nodes from Wavelet Packet tree:

Let’s create a sample data:

```python
g>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')
```

First, start with a tree decomposition at level 2. Leaf nodes in the tree are:

```python
g>>> dummy = wp.get_level(2)
>>> for n in wp.get_leaf_nodes(False):
... print n.path, format_array(n.data)
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]
```

```python
g>>> node = wp['ad']
>>> print node
ad: [-2. -2.]
```

To remove a node from the WP tree, use Python’s del obj[x] (Node.__delitem__):

```python
g>>> del wp['ad']
```

The leaf nodes that left in the tree are:

```python
g>>> for n in wp.get_leaf_nodes():
... print n.path, format_array(n.data)
aa [5. 13.]
da [-1. -1.]
dd [0. 0.]
```
And the reconstruction is:

```python
>>> print wp.reconstruct()
[2. 3. 2. 3. 6. 7. 6. 7.]
```

Now restore the deleted node value.

```python
>>> wp['ad'].data = node.data
```

Printing leaf nodes and tree reconstruction confirms the original state of the tree:

```python
>>> for n in wp.get_leaf_nodes(False):
... print n.path, format_array(n.data)
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]

>>> print wp.reconstruct()
[1. 2. 3. 4. 5. 6. 7. 8.]
```

### 3.5.6 Lazy evaluation:

**Note:** This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes as presented in this example.

```python
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')
```

1. At first the wp's attribute `a` is None

```python
>>> print wp.a
None
```

   **Remember that you should not rely on the attribute access.**

2. At first attempt to access the node it is computed via decomposition of it's parent node (the wp object itself).

```python
>>> print wp['a']
a: [2.12132034 4.94974747 7.77817459 10.60660172]
```

3. Now the `wp.a` is set to the newly created node:

```python
>>> print wp.a
a: [2.12132034 4.94974747 7.77817459 10.60660172]
```

   And so is `wp.d`:

```python
>>> print wp.d
d: [-0.70710678 -0.70710678 -0.70710678 -0.70710678]
```
3.6 2D Wavelet Packets

3.6.1 Import pywt

```python
>>> import pywt
>>> import numpy
```

3.6.2 Create 2D Wavelet Packet structure

Start with preparing test data:

```python
>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8] * 8, 'd')
>>> print x
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]
```

Now create a 2D Wavelet Packet object:

```python
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='sym')
```

The input data and decomposition coefficients are stored in the WaveletPacket2D.data attribute:

```python
>>> print wp.data
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]
```

Nodes are identified by paths. For the root node the path is "" and the decomposition level is 0.

```python
>>> print repr(wp.path)
',
>>> print wp.level
0
```

The WaveletPacket2D.maxlevel, if not given in the constructor, is automatically computed based on the data size:

```python
>>> print wp.maxlevel
3
```

3.6.3 Traversing WP tree:

Wavelet Packet nodes are arranged in a tree. Each node in a WP tree is uniquely identified and addressed by a path string.
In the 1D WaveletPacket case nodes were accessed using ‘a’ (approximation) and ‘d’ (details) path names (each node has two 1D children).

Because now we deal with a bit more complex structure (each node has four children), we have four basic path names based on the dwt 2D output convention to address the WP2D structure:

- **a** - LL, low-low coefficients
- **h** - LH, low-high coefficients
- **v** - HL, high-low coefficients
- **d** - HH, high-high coefficients

In other words, subnode naming corresponds to the `dwt2()` function output naming convention (as wavelet packet transform is based on the `dwt2` transform):

```
\[
\begin{array}{c|c|c|c}
| cA & cH & cV & cD | \\
\hline
| a & h & v & d | \\
| LL & LH & HL & HH |
\end{array}
\]
```

(fig.1: DWT 2D output and interpretation)

Knowing what the nodes names are, we can now access them using the indexing operator `obj[x]` (WaveletPacket2D.__getitem__()):

```
>>> print wp['a'].data
[[3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]]
```

```
>>> print wp['h'].data
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
```

```
>>> print wp['v'].data
[[-1. -1. -1. -1.]
 [-1. -1. -1. -1.]
 [-1. -1. -1. -1.]
 [-1. -1. -1. -1.]]
```

```
>>> print wp['d'].data
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
```

Similarly, a subnode of a subnode can be accessed by:

```
>>> print wp['aa'].data
[[10. 26.]
 [10. 26.]]
```

Indexing base `WaveletPacket2D` (as well as 1D `WaveletPacket`) using compound path is just the same as indexing WP subnode:
>>> node = wp['a']
>>> print node['a'].data
[[ 10.  26.]
 [ 10.  26.]]
>>> print wp['a']['a'].data is wp['aa'].data
True

Following down the decomposition path:

>>> print wp['aaa'].data
[[ 36.]]
>>> print wp['aaaa'].data
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Ups, we have reached the maximum level of decomposition for the 'aaaa' path, which btw. was:

>>> print wp.maxlevel
3

Now try some invalid path:

>>> print wp['f']
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'h', 'v', 'd'], not 'f'.

Accessing Node2D's attributes:

WaveletPacket2D is a tree data structure, which evaluates to a set of Node2D objects. WaveletPacket2D is just a special subclass of the Node2D class (which in turn inherits from a BaseNode, just like with Node and WaveletPacket for the 1D case.).

>>> print wp['av'].data
[[-4. -4.]
 [-4. -4.]]

>>> print wp['av'].path
av

>>> print wp['av'].node_name
v

>>> print wp['av'].parent.path
a

>>> print wp['av'].parent.data
[[ 3.  7. 11. 15.]
 [ 3.  7. 11. 15.]
 [ 3.  7. 11. 15.]
 [ 3.  7. 11. 15.]]

>>> print wp['av'].level
2

>>> print wp['av'].maxlevel
3
Collecting nodes

We can get all nodes on the particular level using the `WaveletPacket2D.get_level()` method:

- 0 level - the root `wp` node:

  ```python
 >>> len(wp.get_level(0))
 1
 >>> print [node.path for node in wp.get_level(0)]
 ['',]
  ```

- 1st level of decomposition:

  ```python
 >>> len(wp.get_level(1))
 4
 >>> print [node.path for node in wp.get_level(1)]
 ['a', 'h', 'v', 'd']
  ```

- 2nd level of decomposition:

  ```python
 >>> len(wp.get_level(2))
 16
 >>> paths = [node.path for node in wp.get_level(2)]
 >>> for i, path in enumerate(paths):
 ... print path,
 ... if (i+1) % 4 == 0: print
 aa ah av ad
 ha hh hv hd
 va vh vv vd
 da dh dv dd
  ```

- 3rd level of decomposition:

  ```python
 >>> len(wp.get_level(3))
 64
 >>> paths = [node.path for node in wp.get_level(3)]
 >>> for i, path in enumerate(paths):
 ... print path,
 ... if (i+1) % 8 == 0: print
 aaa aah aav aad aha ahh ahv ahd
 ava avh avv avd ada adh adv add
 haa hah hav had hha hhh hhv hhd
 hva hvh hvv hvd hda hdh hdv hdd
 vaa vah vav vad vha vhh vvbb vhd
 vva vvh vvv vvvd vda vdh vdd vdd
 daa dah dav dad dha dhb dhv dhd
 dva dvh dvv dvd dda ddh ddd ddd
  ```

Note that `WaveletPacket2D.get_level()` performs automatic decomposition until it reaches the given level.

3.6.4 Reconstructing data from Wavelet Packets:

Let's create a new empty 2D Wavelet Packet structure and set its nodes values with known data from the previous examples:
New wavelet packet `new_wp`:

```python
>>> new_wp = pywt.WaveletPacket2D(data=None, wavelet='db1', mode='sym')
```

Extracting data from branches:

```python
>>> new_wp['vh'] = wp['vh'].data # [(0.0, 0.0), (0.0, 0.0)]
>>> new_wp['vv'] = wp['vh'].data # [(0.0, 0.0), (0.0, 0.0)]
>>> new_wp['vd'] = [(0.0, 0.0), (0.0, 0.0)]
>>> new_wp['a'] = [[3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
 [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
 [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
 [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0]]
>>> new_wp['d'] = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]
```

For convenience, `Node2D.data` gets automatically extracted from the base `Node2D` object:

```python
>>> new_wp['h'] = wp['h'] # all zeros
```

Note: just remember to not assign to the node.data parameter directly (todo).

And reconstruct the data from the a, d, vh, vv, vd and h packets (Note that va node was not set and the WP tree is “not complete” - the va branch will be treated as zero-array):

```python
>>> print new_wp.reconstruct(update=False)
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]
```

Now set the va node with the known values and do the reconstruction again:

```python
>>> new_wp['va'] = wp['va'].data # [[-2.0, -2.0], [-2.0, -2.0]]
>>> print new_wp.reconstruct(update=False)
[[1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
 [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]]
```

which is just the same as the base sample data x.

Of course we can go the other way and remove nodes from the tree. If we delete the va node, again, we get the “not complete” tree from one of the previous examples:

```python
>>> del new_wp['va']
>>> print new_wp.reconstruct(update=False)
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]
```

Just restore the node before next examples.

3.6. 2D Wavelet Packets 45
If the `update` param in the `WaveletPacket2D.reconstruct()` method is set to `False`, the node’s `Node2D.data` attribute will not be updated.

```python
>>> print new_wp.data
None
```

Otherwise, the `WaveletPacket2D.data` attribute will be set to the reconstructed value.

```python
>>> print new_wp.reconstruct(update=True)
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]
```

Since we have an interesting WP structure built, it is a good occasion to present the `WaveletPacket2D.get_leaf_nodes()` method, which collects non-zero leaf nodes from the WP tree:

```python
>>> print [n.path for n in new_wp.get_leaf_nodes()]
['a', 'h', 'va', 'vh', 'vv', 'vd', 'd']
```

Passing the `decompose=True` parameter to the method will force the WP object to do a full decomposition up to the maximum level of decomposition:

```python
>>> paths = [n.path for n in new_wp.get_leaf_nodes(decompose=True)]
>>> len(paths)
64
>>> for i, path in enumerate(paths):
... print path,
... if (i+1) % 8 == 0: print
... aah aah aah aah aah aah aah aah
... aav aav aav aav aav aav aav aav
... ada ada ada ada ada ada ada ada
... adv adv adv adv adv adv adv adv
... aha aha aha aha aha aha aha aha
... ahv ahv ahv ahv ahv ahv ahv ahv
... ahv ahv ahv ahv ahv ahv ahv ahv
... ahv ahv ahv ahv ahv ahv ahv ahv
... adh adh adh adh adh adh adh adh
... adh adh adh adh adh adh adh adh
... adh adh adh adh adh adh adh adh
... adh adh adh adh adh adh adh adh
... ahv ahv ahv ahv ahv ahv ahv ahv
... ahv ahv ahv ahv ahv ahv ahv ahv
... ahv ahv ahv ahv ahv ahv ahv ahv
... ahv ahv ahv ahv ahv ahv ahv ahv
... adh adh adh adh adh adh adh adh
... adh adh adh adh adh adh adh adh
... adh adh adh adh adh adh adh adh
... adh adh adh adh adh adh adh adh
```

### 3.6.5 Lazy evaluation:

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes as presented in this example.
>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8)
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='sym')

1. At first the wp’s attribute \textit{a} is \texttt{None}

   >>> \texttt{print wp.a}
   \texttt{None}

   \textbf{Remember that you should not rely on the attribute access.}

2. During the first attempt to access the node it is computed via decomposition of its parent node (the wp object itself).

   >>> \texttt{print wp[‘a’]}
   \texttt{a: [[ 3.  7. 11. 15.]
   [ 3.  7. 11. 15.]
   [ 3.  7. 11. 15.]
   [ 3.  7. 11. 15.]]}

3. Now the \textit{a} is set to the newly created node:

   >>> \texttt{print wp.a}
   \texttt{a: [[ 3.  7. 11. 15.]
   [ 3.  7. 11. 15.]
   [ 3.  7. 11. 15.]
   [ 3.  7. 11. 15.]]}

   And so is \textit{wp.d}:

   >>> \texttt{print wp.d}
   \texttt{d: [[ 0.  0.  0.  0.]
   [ 0.  0.  0.  0.]
   [ 0.  0.  0.  0.]
   [ 0.  0.  0.  0.]]}

\section*{3.7 Gotchas}

PyWavelets utilizes NumPy under the hood. That’s why handling the data containing None values can be surprising. None values are converted to ‘not a number’ (numpy.Nan) values:

>>> \texttt{import numpy, pywt}
>>> \texttt{x = [None, None]}
>>> \texttt{mode = ‘sym’}
>>> \texttt{wavelet = ‘db1’}
>>> \texttt{cA, cD = pywt.dwt(x, wavelet, mode)}
>>> \texttt{numpy.all(numpy.isnan(cA))}
\texttt{True}
>>> \texttt{numpy.all(numpy.isnan(cD))}
\texttt{True}
>>> \texttt{rec = pywt.idwt(cA, cD, wavelet, mode)}
>>> \texttt{numpy.all(numpy.isnan(rec))}
\texttt{True}
4.1 Building on Windows

4.1.1 Prepare build environment

To start developing PyWavelets code on Windows you will have to prepare build environment first. This will include installing a couple components like Python, MinGW C compiler, Cython, Numpy and Sphinx.

4.1.2 Install Python

Go to the Python download site http://python.org/download/ and get the recent 2.x Python for Windows version (Python 2.6 recommended). Install it.

4.1.3 Install MinGW C compiler

Take a look at http://www.mingw.org/wiki/Getting_Started and http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite. Follow the instructions there to set up the compiler.

You can also take a look at Cython’s “Installing MinGW on Windows” page at http://docs.cython.org/src/tutorial/appendix.html.

4.1.4 Configure Distutils

Distutils is a standard Python build system. By default it relies on Microsoft Visual C compiler, but it is recommended to use MinGW GCC compiler instead (PyWavelets is developed and tested using GCC).

In order to change the settings and use MinGW as the default compiler, edit or create a Distutils configuration file c:\Python26\Lib\distutils\distutils.cfg and place the following entry in it:

```
[build]
compiler = mingw32
```

4.1.5 Install Cython

Instructions on installing recent Cython version are on http://docs.cython.org/src/quickstart/install.html.
4.1.6 Install Numpy


4.1.7 Install Sphinx

Sphinx is a documentation tool that convert reStructuredText files into nice looking html documentation. It is only required to rebuild PyWavelets documentation, not the package itself.

Get Sphinx from the Python Package Index (http://pypi.python.org/pypi/Sphinx), or install it with:

easy_install -U Sphinx

4.1.8 Ready to go

At this point you should be ready to go. Open command line and go to PyWavelets source code directory.

To build the project issue:

python setup.py build

To install:

python setup.py install

To build docs:

cd doc

doc2html.bat

To run some tests:

cd tests

python test_regression.py

python test_doc.py

python test_perfect_reconstruction.py

4.2 Building on Linux

4.2.1 Prepare build environment

There is a good chance that you already have a working build environment. Just skip steps that you don’t need to execute.

Note that the examples below use aptitude package manager, which might be specific to only some Linux distributions like Ubuntu. Use your favourite package manager to install these packages on your OS.

4.2.2 Install basic build tools

aptitude install build-essential gcc
4.2.3 Setup Python environment

aptitude install python python-dev python-setuptools

4.2.4 Setup Python virtualenv (optional)

If you wish to create a completely separate Python environment for the development purposes, you can use virtualenv (http://pypi.python.org/pypi/virtualenv).

Just install it from the OS package repository:

aptitude install python-virtualenv

or get it from PyPI:

easy_install -U virtualenv

Now in the directory where you want to store the build environment execute:

virtualenv --no-site-packages <name_of_the_venv>

To activate the newly created environment type:

source ./<name_of_the_venv>/bin/activate

4.2.5 Setup build dependencies

If you have created a virtual Python environment in the previous step remember to activate it before executing the following commands.

Use pip (http://pypi.python.org/pypi/pip) or easy_install to install Python packages:

pip install Cython numpy

or:

easy_install -U Cython

easy_install numpy

Note: In case you want to use the OS package manager to install numpy, don’t specify the --no-site-packages virtualenv option. Otherwise the global package won’t be visible to the Python interpreter in the development environment.

4.2.6 Install Sphinx

Sphinx is a documentation tool that convert reStructuredText files into nice looking html documentation. It is only required to rebuild PyWavelets documentation, not the package itself.

Get Sphinx from the Python Package Index (http://pypi.python.org/pypi/Sphinx), or install it with:

easy_install -U Sphinx
4.2.7 Build PyWavelets

Activate your Python virtual env, go to the pywt source directory and type the following to build and install the package:

```
python setup.py build
python setup.py install
```

Go to the `tests` directory and run some tests to verify the installation:

```
cd tests
python test_regression.py
python test_doc.py
python test_perfect_reconstruction.py
```

4.3 Something not working?

If these instructions are not clear or you need help setting up your development environment, ask at the PyWavelets discussion group - http://groups.google.com/group/pywavelets or pywavelets@googlegroups.com.
RESOURCES

5.1 Discussion group

PyWavelets discussions group (pywavelets@googlegroups.com)

5.2 Wiki

wavelets.scipy.org

5.3 Code repository

svn co http://wavelets.scipy.org/svn/multiresolution/pywt/trunk pywt

5.4 Wavelet Properties Browser

wavelets.pybytes.com
INDICES AND TABLES

- genindex
- modindex
- search
p
pywt.??
pywt.thresholding.??