
python-service Documentation
Release 0.5.2

Florian Brucker

Apr 28, 2019

Contents

1 Easy Implementation of Background Services 1

2 Installation 3

3 Quickstart 5

4 Control Interface 7

5 Daemon Functionality 9

6 Logging 11

7 Preserving File Handles 13

8 Exiting the Service 15

9 API Reference 17

10 Development 21

11 Change Log 23

Python Module Index 25

i

ii

CHAPTER 1

Easy Implementation of Background Services

This package makes it easy to write Unix services, i.e. background processes (“daemons”) that are controlled by a
foreground application (e.g. a console script).

The package is built around the python-daemon module, which provides the means for creating well-behaved daemon
processes. The service package adds a control infrastructure for easily starting, stopping, querying and killing the
background process from a foreground application.

1

https://pypi.python.org/pypi/python-daemon

python-service Documentation, Release 0.5.2

2 Chapter 1. Easy Implementation of Background Services

CHAPTER 2

Installation

The service package is available from PyPI and can be installed via pip:

pip install service

Supported Python versions are 2.7 as well as 3.4 and later.

3

https://pypi.python.org/pypi/service
https://pip.pypa.io/

python-service Documentation, Release 0.5.2

4 Chapter 2. Installation

CHAPTER 3

Quickstart

import logging
from logging.handlers import SysLogHandler
import time

from service import find_syslog, Service

class MyService(Service):
def __init__(self, *args, **kwargs):

super(MyService, self).__init__(*args, **kwargs)
self.logger.addHandler(SysLogHandler(address=find_syslog(),

facility=SysLogHandler.LOG_DAEMON))
self.logger.setLevel(logging.INFO)

def run(self):
while not self.got_sigterm():

self.logger.info("I'm working...")
time.sleep(5)

if __name__ == '__main__':
import sys

if len(sys.argv) != 2:
sys.exit('Syntax: %s COMMAND' % sys.argv[0])

cmd = sys.argv[1].lower()
service = MyService('my_service', pid_dir='/tmp')

if cmd == 'start':
service.start()

elif cmd == 'stop':
service.stop()

elif cmd == 'status':
if service.is_running():

print "Service is running."

(continues on next page)

5

python-service Documentation, Release 0.5.2

(continued from previous page)

else:
print "Service is not running."

else:
sys.exit('Unknown command "%s".' % cmd)

6 Chapter 3. Quickstart

CHAPTER 4

Control Interface

The Service class has a dual interface: Some methods control the daemon and are intended to be called from the
controlling process while others implement the actual daemon functionality or utilities for it.

The control methods are:

• start() to start the daemon

• stop() to ask the daemon to stop

• kill() to kill the daemon

• is_running() to check whether the daemon is running

• get_pid() to get the daemon’s process ID

• send_signal() to send arbitrary signals to the daemon

Subclasses usually do not need to override any of these.

7

python-service Documentation, Release 0.5.2

8 Chapter 4. Control Interface

CHAPTER 5

Daemon Functionality

To provide the actual daemon functionality, subclasses override run(), which is executed in a separate daemon
process when start() is called. Once run() exits, the daemon process stops.

When stop() is called, the SIGTERM signal is sent to the daemon process, which can check for its reception using
got_sigterm() or wait for it using wait_for_sigterm().

Further signals to control the daemon can be specified using the signals constructor argument. These signals
can then be sent to the daemon process using send_signal(). The daemon process can use got_signal(),
wait_for_signal(), and clear_signal() to react to signals.

9

python-service Documentation, Release 0.5.2

10 Chapter 5. Daemon Functionality

CHAPTER 6

Logging

Instances of Service provide a built-in logger via their logger attribute. By default the logger only has a
logging.NullHandler attached, so all messages are discarded. Attach your own handler to output log mes-
sages to files or syslog (see the handlers provided by the logging and logging.handlers modules).

Any uncaught exceptions from run() are automatically logged via that logger. To avoid error messages during startup
being lost make sure to attach your logging handlers before calling start().

If you want use syslog for logging take a look at find_syslog(), which provides a portable way of locating syslog.

11

https://docs.python.org/2.7/library/logging.handlers.html#logging.NullHandler
https://docs.python.org/2.7/library/logging.html#module-logging
https://docs.python.org/2.7/library/logging.handlers.html#module-logging.handlers

python-service Documentation, Release 0.5.2

12 Chapter 6. Logging

CHAPTER 7

Preserving File Handles

By default, all open file handles are released by the daemon process. If you need to preserve some of them add them
to the files_preserve list attribute. Note that file handles used by any built-in Python logging handlers attached
to logger are automatically preserved.

13

python-service Documentation, Release 0.5.2

14 Chapter 7. Preserving File Handles

CHAPTER 8

Exiting the Service

From the outside, a service can be stopped gracefully by calling stop() or, as a last resort, by calling kill().

From the inside, i.e. from within run(), the easiest way is to just return from the method. From version 0.5 on
you can also call sys.exit and it will be handled correctly (in earlier versions that would prevent a correct clean
up). Note that you should never use os._exit, since that skips all clean up.

15

python-service Documentation, Release 0.5.2

16 Chapter 8. Exiting the Service

CHAPTER 9

API Reference

service.find_syslog()
Find Syslog.

Returns Syslog’s location on the current system in a form that can be passed on to logging.handlers.
SysLogHandler:

handler = SysLogHandler(address=find_syslog(),
facility=SysLogHandler.LOG_DAEMON)

class service.Service
A background service.

This class provides the basic framework for running and controlling a background daemon. This includes
methods for starting the daemon (including things like proper setup of a detached deamon process), checking
whether the daemon is running, asking the daemon to terminate and for killing the daemon should that become
necessary.

logger
A logging.Logger instance.

files_preserve
A list of file handles that should be preserved by the daemon process. File handles of built-in Python
logging handlers attached to logger are automatically preserved.

__init__(name, pid_dir=’/var/run’, signals=None)
Constructor.

name is a string that identifies the daemon. The name is used for the name of the daemon process, the PID
file and for the messages to syslog.

pid_dir is the directory in which the PID file is stored.

signals list of operating signals, that should be available for use with send_signal(),
got_signal(), wait_for_signal(), and check_signal(). Note that SIGTERM is always
supported, and that SIGTTIN, SIGTTOU, and SIGTSTP are never supported.

17

https://docs.python.org/2.7/library/logging.handlers.html#logging.handlers.SysLogHandler
https://docs.python.org/2.7/library/logging.handlers.html#logging.handlers.SysLogHandler
https://docs.python.org/2.7/library/logging.html#logging.Logger

python-service Documentation, Release 0.5.2

clear_signal(s)
Clears the state of a signal.

The signal must have been enabled using the signals parameter of Service.__init__(). Other-
wise, a ValueError is raised.

get_pid()
Get PID of daemon process or None if daemon is not running.

got_signal(s)
Check if a signal was received.

The signal must have been enabled using the signals parameter of Service.__init__(). Other-
wise, a ValueError is raised.

Returns True if the daemon process has received the signal (for example because stop() was called in
case of SIGTERM, or because send_signal() was used) and False otherwise.

Note: This function always returns False for enabled signals when it is not called from the daemon
process.

got_sigterm()
Check if SIGTERM signal was received.

Returns True if the daemon process has received the SIGTERM signal (for example because stop()
was called).

Note: This function always returns False when it is not called from the daemon process.

is_running()
Check if the daemon is running.

kill(block=False)
Kill the daemon process.

Sends the SIGKILL signal to the daemon process, killing it. You probably want to try stop() first.

If block is true then the call blocks until the daemon process has exited. block can either be True (in
which case it blocks indefinitely) or a timeout in seconds.

Returns True if the daemon process has (already) exited and False otherwise.

The PID file is always removed, whether the process has already exited or not. Note that this means that
subsequent calls to is_running() and get_pid() will behave as if the process has exited. If you
need to be sure that the process has already exited, set block to True.

New in version 0.5.1: The block parameter

run()
Main daemon method.

This method is called once the daemon is initialized and running. Subclasses should override this method
and provide the implementation of the daemon’s functionality. The default implementation does nothing
and immediately returns.

Once this method returns the daemon process automatically exits. Typical implementations therefore
contain some kind of loop.

18 Chapter 9. API Reference

python-service Documentation, Release 0.5.2

The daemon may also be terminated by sending it the SIGTERM signal, in which case run() should
terminate after performing any necessary clean up routines. You can use got_sigterm() and
wait_for_sigterm() to check whether SIGTERM has been received.

send_signal(s)
Send a signal to the daemon process.

The signal must have been enabled using the signals parameter of Service.__init__(). Other-
wise, a ValueError is raised.

start(block=False)
Start the daemon process.

The daemon process is started in the background and the calling process returns.

Once the daemon process is initialized it calls the run() method.

If block is true then the call blocks until the daemon process has started. block can either be True (in
which case it blocks indefinitely) or a timeout in seconds.

The return value is True if the daemon process has been started and False otherwise.

New in version 0.3: The block parameter

stop(block=False)
Tell the daemon process to stop.

Sends the SIGTERM signal to the daemon process, requesting it to terminate.

If block is true then the call blocks until the daemon process has exited. This may take some time since
the daemon process will complete its on-going backup activities before shutting down. block can either
be True (in which case it blocks indefinitely) or a timeout in seconds.

The return value is True if the daemon process has been stopped and False otherwise.

New in version 0.3: The block parameter

wait_for_signal(s, timeout=None)
Wait until a signal has been received.

The signal must have been enabled using the signals parameter of Service.__init__(). Other-
wise, a ValueError is raised.

This function blocks until the daemon process has received the signal (for example because stop() was
called in case of SIGTERM, or because send_signal() was used).

If timeout is given and not None it specifies a timeout for the block.

The return value is True if the signal was received and False otherwise (the latter occurs if a timeout
was given and the signal was not received).

Warning: This function blocks indefinitely (or until the given timeout) for enabled signals when it is
not called from the daemon process.

wait_for_sigterm(timeout=None)
Wait until a SIGTERM signal has been received.

This function blocks until the daemon process has received the SIGTERM signal (for example because
stop() was called).

If timeout is given and not None it specifies a timeout for the block.

19

python-service Documentation, Release 0.5.2

The return value is True if SIGTERM was received and False otherwise (the latter only occurs if a
timeout was given and the signal was not received).

Warning: This function blocks indefinitely (or until the given timeout) when it is not called from the
daemon process.

20 Chapter 9. API Reference

CHAPTER 10

Development

The code for this package can be found on GitHub. It is available under the MIT license.

21

https://github.com/torfsen/service
http://opensource.org/licenses/MIT

python-service Documentation, Release 0.5.2

22 Chapter 10. Development

CHAPTER 11

Change Log

See the file CHANGELOG.md.

23

https://github.com/torfsen/service/blob/master/CHANGELOG.md

python-service Documentation, Release 0.5.2

24 Chapter 11. Change Log

Python Module Index

s
service, 17

25

python-service Documentation, Release 0.5.2

26 Python Module Index

Index

Symbols
__init__() (service.Service method), 17

C
clear_signal() (service.Service method), 17

F
files_preserve (service.Service attribute), 17
find_syslog() (in module service), 17

G
get_pid() (service.Service method), 18
got_signal() (service.Service method), 18
got_sigterm() (service.Service method), 18

I
is_running() (service.Service method), 18

K
kill() (service.Service method), 18

L
logger (service.Service attribute), 17

R
run() (service.Service method), 18

S
send_signal() (service.Service method), 19
Service (class in service), 17
service (module), 17
start() (service.Service method), 19
stop() (service.Service method), 19

W
wait_for_signal() (service.Service method), 19
wait_for_sigterm() (service.Service method), 19

27

	Easy Implementation of Background Services
	Installation
	Quickstart
	Control Interface
	Daemon Functionality
	Logging
	Preserving File Handles
	Exiting the Service
	API Reference
	Development
	Change Log
	Python Module Index

