
pytest Documentation
Release 3.1

holger krekel, trainer and consultant, http://merlinux.eu

Jun 22, 2017

Contents

1 Installation and Getting Started 3
1.1 Installation . 3
1.2 Our first test run . 3
1.3 Running multiple tests . 4
1.4 Asserting that a certain exception is raised . 4
1.5 Grouping multiple tests in a class . 4
1.6 Going functional: requesting a unique temporary directory . 5
1.7 Where to go next . 6

2 Usage and Invocations 7
2.1 Calling pytest through python -m pytest . 7
2.2 Possible exit codes . 7
2.3 Getting help on version, option names, environment variables . 7
2.4 Stopping after the first (or N) failures . 7
2.5 Specifying tests / selecting tests . 8
2.6 Modifying Python traceback printing . 8
2.7 Dropping to PDB (Python Debugger) on failures . 8
2.8 Setting a breakpoint / aka set_trace() . 9
2.9 Profiling test execution duration . 9
2.10 Creating JUnitXML format files . 9
2.11 Creating resultlog format files . 11
2.12 Sending test report to online pastebin service . 11
2.13 Disabling plugins . 12
2.14 Calling pytest from Python code . 12

3 Using pytest with an existing test suite 13
3.1 Running an existing test suite with pytest . 13

4 The writing and reporting of assertions in tests 15
4.1 Asserting with the assert statement . 15
4.2 Assertions about expected exceptions . 16
4.3 Assertions about expected warnings . 17
4.4 Making use of context-sensitive comparisons . 17
4.5 Defining your own assertion comparison . 18
4.6 Advanced assertion introspection . 19

5 Pytest API and builtin fixtures 21
5.1 Invoking pytest interactively . 21

i

5.2 Helpers for assertions about Exceptions/Warnings . 21
5.3 Comparing floating point numbers . 24
5.4 Raising a specific test outcome . 25
5.5 Fixtures and requests . 26
5.6 Builtin fixtures/function arguments . 27

6 pytest fixtures: explicit, modular, scalable 31
6.1 Fixtures as Function arguments . 31
6.2 Fixtures: a prime example of dependency injection . 32
6.3 Sharing a fixture across tests in a module (or class/session) . 33
6.4 Fixture finalization / executing teardown code . 34
6.5 Fixtures can introspect the requesting test context . 36
6.6 Parametrizing fixtures . 36
6.7 Modularity: using fixtures from a fixture function . 39
6.8 Automatic grouping of tests by fixture instances . 40
6.9 Using fixtures from classes, modules or projects . 41
6.10 Autouse fixtures (xUnit setup on steroids) . 42
6.11 Shifting (visibility of) fixture functions . 44
6.12 Overriding fixtures on various levels . 44

7 Monkeypatching/mocking modules and environments 49
7.1 Simple example: monkeypatching functions . 49
7.2 example: preventing “requests” from remote operations . 49
7.3 Method reference of the monkeypatch fixture . 50

8 Temporary directories and files 53
8.1 The ‘tmpdir’ fixture . 53
8.2 The ‘tmpdir_factory’ fixture . 54
8.3 The default base temporary directory . 54

9 Capturing of the stdout/stderr output 55
9.1 Default stdout/stderr/stdin capturing behaviour . 55
9.2 Setting capturing methods or disabling capturing . 55
9.3 Using print statements for debugging . 55
9.4 Accessing captured output from a test function . 56

10 Warnings Capture 59
10.1 Disabling warning capture . 60
10.2 Asserting warnings with the warns function . 60
10.3 Recording warnings . 61
10.4 Ensuring a function triggers a deprecation warning . 62

11 Doctest integration for modules and test files 65
11.1 The ‘doctest_namespace’ fixture . 66
11.2 Output format . 67

12 Marking test functions with attributes 69
12.1 API reference for mark related objects . 69

13 Skip and xfail: dealing with tests that cannot succeed 71
13.1 Skipping test functions . 71
13.2 XFail: mark test functions as expected to fail . 73
13.3 Skip/xfail with parametrize . 76
13.4 Conditions as strings instead of booleans . 76

ii

14 Parametrizing fixtures and test functions 79
14.1 @pytest.mark.parametrize: parametrizing test functions 79
14.2 Basic pytest_generate_tests example . 81
14.3 The metafunc object . 82

15 Cache: working with cross-testrun state 85
15.1 Usage . 85
15.2 Rerunning only failures or failures first . 85
15.3 The new config.cache object . 87
15.4 Inspecting Cache content . 88
15.5 Clearing Cache content . 89
15.6 config.cache API . 89

16 Support for unittest.TestCase / Integration of fixtures 91
16.1 Usage . 91
16.2 Mixing pytest fixtures into unittest.TestCase style tests . 91
16.3 autouse fixtures and accessing other fixtures . 93

17 Running tests written for nose 95
17.1 Usage . 95
17.2 Supported nose Idioms . 95
17.3 Unsupported idioms / known issues . 95

18 classic xunit-style setup 97
18.1 Module level setup/teardown . 97
18.2 Class level setup/teardown . 97
18.3 Method and function level setup/teardown . 98

19 Installing and Using plugins 99
19.1 Requiring/Loading plugins in a test module or conftest file . 99
19.2 Finding out which plugins are active . 100
19.3 Deactivating / unregistering a plugin by name . 100
19.4 Pytest default plugin reference . 100

20 Writing plugins 103
20.1 Plugin discovery order at tool startup . 103
20.2 conftest.py: local per-directory plugins . 104
20.3 Writing your own plugin . 104
20.4 Making your plugin installable by others . 105
20.5 Assertion Rewriting . 105
20.6 Requiring/Loading plugins in a test module or conftest file . 106
20.7 Accessing another plugin by name . 107
20.8 Testing plugins . 107

21 Writing hook functions 109
21.1 hook function validation and execution . 109
21.2 firstresult: stop at first non-None result . 109
21.3 hookwrapper: executing around other hooks . 109
21.4 Hook function ordering / call example . 110
21.5 Declaring new hooks . 111
21.6 Optionally using hooks from 3rd party plugins . 111

22 pytest hook reference 113
22.1 Initialization, command line and configuration hooks . 113
22.2 Generic “runtest” hooks . 114

iii

22.3 Collection hooks . 114
22.4 Reporting hooks . 115
22.5 Debugging/Interaction hooks . 116

23 Reference of objects involved in hooks 117

24 Usages and Examples 125
24.1 Demo of Python failure reports with pytest . 125
24.2 Basic patterns and examples . 136
24.3 Parametrizing tests . 148
24.4 Working with custom markers . 157
24.5 A session-fixture which can look at all collected tests . 167
24.6 Changing standard (Python) test discovery . 168
24.7 Working with non-python tests . 172

25 Good Integration Practices 175
25.1 Conventions for Python test discovery . 175
25.2 Choosing a test layout / import rules . 175
25.3 Tox . 177
25.4 Integrating with setuptools / python setup.py test / pytest-runner 178

26 Basic test configuration 181
26.1 Command line options and configuration file settings . 181
26.2 initialization: determining rootdir and inifile . 181
26.3 How to change command line options defaults . 182
26.4 Builtin configuration file options . 182

27 Setting up bash completion 185

28 Backwards Compatibility Policy 187

29 License 189

30 Contribution getting started 191
30.1 Feature requests and feedback . 191
30.2 Report bugs . 191
30.3 Fix bugs . 192
30.4 Implement features . 192
30.5 Write documentation . 192
30.6 Submitting Plugins to pytest-dev . 192
30.7 Preparing Pull Requests on GitHub . 193

31 Talks and Tutorials 195
31.1 Books . 195
31.2 Talks and blog postings . 195

32 Project examples 199
32.1 Some organisations using pytest . 200

33 Some Issues and Questions 201
33.1 On naming, nosetests, licensing and magic . 201
33.2 pytest fixtures, parametrized tests . 202
33.3 pytest interaction with other packages . 202

34 Contact channels 203

iv

pytest Documentation, Release 3.1

Download latest version as PDF

Contents 1

https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf

pytest Documentation, Release 3.1

2 Contents

CHAPTER 1

Installation and Getting Started

Pythons: Python 2.6,2.7,3.3,3.4,3.5, Jython, PyPy-2.3

Platforms: Unix/Posix and Windows

PyPI package name: pytest

dependencies: py, colorama (Windows), argparse (py26).

documentation as PDF: download latest

Installation

Installation:

pip install -U pytest

To check your installation has installed the correct version:

$ pytest --version
This is pytest version 3.x.y, imported from $PYTHON_PREFIX/lib/python3.5/site-
→˓packages/pytest.py

Our first test run

Let’s create a first test file with a simple test function:

content of test_sample.py
def func(x):

return x + 1

def test_answer():
assert func(3) == 5

That’s it. You can execute the test function now:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:

3

http://pypi.python.org/pypi/pytest
http://pypi.python.org/pypi/py
http://pypi.python.org/pypi/colorama
http://pypi.python.org/pypi/argparse
https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf

pytest Documentation, Release 3.1

collected 1 items

test_sample.py F

======= FAILURES ========
_______ test_answer ________

def test_answer():
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

test_sample.py:5: AssertionError
======= 1 failed in 0.12 seconds ========

We got a failure report because our little func(3) call did not return 5.

Note: You can simply use the assert statement for asserting test expectations. pytest’s Advanced assertion intro-
spection will intelligently report intermediate values of the assert expression freeing you from the need to learn the
many names of JUnit legacy methods.

Running multiple tests

pytest will run all files in the current directory and its subdirectories of the form test_*.py or *_test.py. More
generally, it follows standard test discovery rules.

Asserting that a certain exception is raised

If you want to assert that some code raises an exception you can use the raises helper:

content of test_sysexit.py
import pytest
def f():

raise SystemExit(1)

def test_mytest():
with pytest.raises(SystemExit):

f()

Running it with, this time in “quiet” reporting mode:

$ pytest -q test_sysexit.py
.
1 passed in 0.12 seconds

Grouping multiple tests in a class

Once you start to have more than a few tests it often makes sense to group tests logically, in classes and modules. Let’s
write a class containing two tests:

4 Chapter 1. Installation and Getting Started

http://docs.python.org/library/unittest.html#test-cases

pytest Documentation, Release 3.1

content of test_class.py
class TestClass(object):

def test_one(self):
x = "this"
assert 'h' in x

def test_two(self):
x = "hello"
assert hasattr(x, 'check')

The two tests are found because of the standard Conventions for Python test discovery. There is no need to subclass
anything. We can simply run the module by passing its filename:

$ pytest -q test_class.py
.F
======= FAILURES ========
_______ TestClass.test_two ________

self = <test_class.TestClass object at 0xdeadbeef>

def test_two(self):
x = "hello"

> assert hasattr(x, 'check')
E AssertionError: assert False
E + where False = hasattr('hello', 'check')

test_class.py:8: AssertionError
1 failed, 1 passed in 0.12 seconds

The first test passed, the second failed. Again we can easily see the intermediate values used in the assertion, helping
us to understand the reason for the failure.

Going functional: requesting a unique temporary directory

For functional tests one often needs to create some files and pass them to application objects. pytest provides Builtin
fixtures/function arguments which allow to request arbitrary resources, for example a unique temporary directory:

content of test_tmpdir.py
def test_needsfiles(tmpdir):

print (tmpdir)
assert 0

We list the name tmpdir in the test function signature and pytest will lookup and call a fixture factory to create
the resource before performing the test function call. Let’s just run it:

$ pytest -q test_tmpdir.py
F
======= FAILURES ========
_______ test_needsfiles ________

tmpdir = local('PYTEST_TMPDIR/test_needsfiles0')

def test_needsfiles(tmpdir):
print (tmpdir)

> assert 0

1.6. Going functional: requesting a unique temporary directory 5

pytest Documentation, Release 3.1

E assert 0

test_tmpdir.py:3: AssertionError
--------------------------- Captured stdout call ---------------------------
PYTEST_TMPDIR/test_needsfiles0
1 failed in 0.12 seconds

Before the test runs, a unique-per-test-invocation temporary directory was created. More info at Temporary directories
and files.

You can find out what kind of builtin pytest fixtures: explicit, modular, scalable exist by typing:

pytest --fixtures # shows builtin and custom fixtures

Where to go next

Here are a few suggestions where to go next:

• Calling pytest through python -m pytest for command line invocation examples

• good practices for virtualenv, test layout

• Using pytest with an existing test suite for working with pre-existing tests

• pytest fixtures: explicit, modular, scalable for providing a functional baseline to your tests

• Writing plugins managing and writing plugins

6 Chapter 1. Installation and Getting Started

CHAPTER 2

Usage and Invocations

Calling pytest through python -m pytest

New in version 2.0.

You can invoke testing through the Python interpreter from the command line:

python -m pytest [...]

This is almost equivalent to invoking the command line script pytest [...] directly, except that python will also
add the current directory to sys.path.

Possible exit codes

Running pytest can result in six different exit codes:

Exit code 0 All tests were collected and passed successfully

Exit code 1 Tests were collected and run but some of the tests failed

Exit code 2 Test execution was interrupted by the user

Exit code 3 Internal error happened while executing tests

Exit code 4 pytest command line usage error

Exit code 5 No tests were collected

Getting help on version, option names, environment variables

pytest --version # shows where pytest was imported from
pytest --fixtures # show available builtin function arguments
pytest -h | --help # show help on command line and config file options

Stopping after the first (or N) failures

To stop the testing process after the first (N) failures:

7

pytest Documentation, Release 3.1

pytest -x # stop after first failure
pytest --maxfail=2 # stop after two failures

Specifying tests / selecting tests

Several test run options:

pytest test_mod.py # run tests in module
pytest somepath # run all tests below somepath
pytest -k stringexpr # only run tests with names that match the

"string expression", e.g. "MyClass and not method"
will select TestMyClass.test_something
but not TestMyClass.test_method_simple

pytest test_mod.py::test_func # only run tests that match the "node ID",
e.g. "test_mod.py::test_func" will select
only test_func in test_mod.py

pytest test_mod.py::TestClass::test_method # run a single method in
a single class

Import ‘pkg’ and use its filesystem location to find and run tests:

pytest --pyargs pkg # run all tests found below directory of pkg

Modifying Python traceback printing

Examples for modifying traceback printing:

pytest --showlocals # show local variables in tracebacks
pytest -l # show local variables (shortcut)

pytest --tb=auto # (default) 'long' tracebacks for the first and last
entry, but 'short' style for the other entries

pytest --tb=long # exhaustive, informative traceback formatting
pytest --tb=short # shorter traceback format
pytest --tb=line # only one line per failure
pytest --tb=native # Python standard library formatting
pytest --tb=no # no traceback at all

The --full-trace causes very long traces to be printed on error (longer than --tb=long). It also ensures that
a stack trace is printed on KeyboardInterrupt (Ctrl+C). This is very useful if the tests are taking too long and you
interrupt them with Ctrl+C to find out where the tests are hanging. By default no output will be shown (because
KeyboardInterrupt is caught by pytest). By using this option you make sure a trace is shown.

Dropping to PDB (Python Debugger) on failures

Python comes with a builtin Python debugger called PDB. pytest allows one to drop into the PDB prompt via a
command line option:

pytest --pdb

8 Chapter 2. Usage and Invocations

http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html

pytest Documentation, Release 3.1

This will invoke the Python debugger on every failure. Often you might only want to do this for the first failing test to
understand a certain failure situation:

pytest -x --pdb # drop to PDB on first failure, then end test session
pytest --pdb --maxfail=3 # drop to PDB for first three failures

Note that on any failure the exception information is stored on sys.last_value, sys.last_type and
sys.last_traceback. In interactive use, this allows one to drop into postmortem debugging with any debug
tool. One can also manually access the exception information, for example:

>>> import sys
>>> sys.last_traceback.tb_lineno
42
>>> sys.last_value
AssertionError('assert result == "ok"',)

Setting a breakpoint / aka set_trace()

If you want to set a breakpoint and enter the pdb.set_trace() you can use a helper:

import pytest
def test_function():

...
pytest.set_trace() # invoke PDB debugger and tracing

Prior to pytest version 2.0.0 you could only enter PDB tracing if you disabled capturing on the command line via
pytest -s. In later versions, pytest automatically disables its output capture when you enter PDB tracing:

• Output capture in other tests is not affected.

• Any prior test output that has already been captured and will be processed as such.

• Any later output produced within the same test will not be captured and will instead get sent directly to
sys.stdout. Note that this holds true even for test output occurring after you exit the interactive PDB
tracing session and continue with the regular test run.

Since pytest version 2.4.0 you can also use the native Python import pdb;pdb.set_trace() call to enter PDB
tracing without having to use the pytest.set_trace() wrapper or explicitly disable pytest’s output capturing
via pytest -s.

Profiling test execution duration

To get a list of the slowest 10 test durations:

pytest --durations=10

Creating JUnitXML format files

To create result files which can be read by Jenkins or other Continuous integration servers, use this invocation:

pytest --junitxml=path

2.8. Setting a breakpoint / aka set_trace() 9

http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html
http://jenkins-ci.org/

pytest Documentation, Release 3.1

to create an XML file at path.

New in version 3.1.

To set the name of the root test suite xml item, you can configure the junit_suite_name option in your config
file:

[pytest]
junit_suite_name = my_suite

record_xml_property

New in version 2.8.

If you want to log additional information for a test, you can use the record_xml_property fixture:

def test_function(record_xml_property):
record_xml_property("example_key", 1)
assert 0

This will add an extra property example_key="1" to the generated testcase tag:

<testcase classname="test_function" file="test_function.py" line="0" name="test_
→˓function" time="0.0009">
<properties>
<property name="example_key" value="1" />

</properties>
</testcase>

Warning: record_xml_property is an experimental feature, and its interface might be replaced by some-
thing more powerful and general in future versions. The functionality per-se will be kept, however.

Currently it does not work when used with the pytest-xdist plugin.

Also please note that using this feature will break any schema verification. This might be a problem when used
with some CI servers.

LogXML: add_global_property

New in version 3.0.

If you want to add a properties node in the testsuite level, which may contains properties that are relevant to all testcases
you can use LogXML.add_global_properties

import pytest

@pytest.fixture(scope="session")
def log_global_env_facts(f):

if pytest.config.pluginmanager.hasplugin('junitxml'):
my_junit = getattr(pytest.config, '_xml', None)

my_junit.add_global_property('ARCH', 'PPC')
my_junit.add_global_property('STORAGE_TYPE', 'CEPH')

10 Chapter 2. Usage and Invocations

pytest Documentation, Release 3.1

@pytest.mark.usefixtures(log_global_env_facts)
def start_and_prepare_env():

pass

class TestMe(object):
def test_foo(self):

assert True

This will add a property node below the testsuite node to the generated xml:

<testsuite errors="0" failures="0" name="pytest" skips="0" tests="1" time="0.006">
<properties>
<property name="ARCH" value="PPC"/>
<property name="STORAGE_TYPE" value="CEPH"/>

</properties>
<testcase classname="test_me.TestMe" file="test_me.py" line="16" name="test_foo"

→˓time="0.000243663787842"/>
</testsuite>

Warning: This is an experimental feature, and its interface might be replaced by something more powerful and
general in future versions. The functionality per-se will be kept.

Creating resultlog format files

Deprecated since version 3.0: This option is rarely used and is scheduled for removal in 4.0.

To create plain-text machine-readable result files you can issue:

pytest --resultlog=path

and look at the content at the path location. Such files are used e.g. by the PyPy-test web page to show test results
over several revisions.

Sending test report to online pastebin service

Creating a URL for each test failure:

pytest --pastebin=failed

This will submit test run information to a remote Paste service and provide a URL for each failure. You may select
tests as usual or add for example -x if you only want to send one particular failure.

Creating a URL for a whole test session log:

pytest --pastebin=all

Currently only pasting to the http://bpaste.net service is implemented.

2.11. Creating resultlog format files 11

http://buildbot.pypy.org/summary
http://bpaste.net

pytest Documentation, Release 3.1

Disabling plugins

To disable loading specific plugins at invocation time, use the -p option together with the prefix no:.

Example: to disable loading the plugin doctest, which is responsible for executing doctest tests from text files,
invoke pytest like this:

pytest -p no:doctest

Calling pytest from Python code

New in version 2.0.

You can invoke pytest from Python code directly:

pytest.main()

this acts as if you would call “pytest” from the command line. It will not raise SystemExit but return the exitcode
instead. You can pass in options and arguments:

pytest.main(['-x', 'mytestdir'])

You can specify additional plugins to pytest.main:

content of myinvoke.py
import pytest
class MyPlugin(object):

def pytest_sessionfinish(self):
print("*** test run reporting finishing")

pytest.main(["-qq"], plugins=[MyPlugin()])

Running it will show that MyPlugin was added and its hook was invoked:

$ python myinvoke.py

*** test run reporting finishing

12 Chapter 2. Usage and Invocations

CHAPTER 3

Using pytest with an existing test suite

Pytest can be used with most existing test suites, but its behavior differs from other test runners such as nose or
Python’s default unittest framework.

Before using this section you will want to install pytest.

Running an existing test suite with pytest

Say you want to contribute to an existing repository somewhere. After pulling the code into your development space
using some flavor of version control and (optionally) setting up a virtualenv you will want to run:

cd <repository>
pip install -e . # Environment dependent alternatives include

'python setup.py develop' and 'conda develop'

in your project root. This will set up a symlink to your code in site-packages, allowing you to edit your code while
your tests run against it as if it were installed.

Setting up your project in development mode lets you avoid having to reinstall every time you want to run your tests,
and is less brittle than mucking about with sys.path to point your tests at local code.

Also consider using tox.

13

pytest Documentation, Release 3.1

14 Chapter 3. Using pytest with an existing test suite

CHAPTER 4

The writing and reporting of assertions in tests

Asserting with the assert statement

pytest allows you to use the standard python assert for verifying expectations and values in Python tests. For
example, you can write the following:

content of test_assert1.py
def f():

return 3

def test_function():
assert f() == 4

to assert that your function returns a certain value. If this assertion fails you will see the return value of the function
call:

$ pytest test_assert1.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_assert1.py F

======= FAILURES ========
_______ test_function ________

def test_function():
> assert f() == 4
E assert 3 == 4
E + where 3 = f()

test_assert1.py:5: AssertionError
======= 1 failed in 0.12 seconds ========

pytest has support for showing the values of the most common subexpressions including calls, attributes, compar-
isons, and binary and unary operators. (See Demo of Python failure reports with pytest). This allows you to use the
idiomatic python constructs without boilerplate code while not losing introspection information.

However, if you specify a message with the assertion like this:

15

pytest Documentation, Release 3.1

assert a % 2 == 0, "value was odd, should be even"

then no assertion introspection takes places at all and the message will be simply shown in the traceback.

See Advanced assertion introspection for more information on assertion introspection.

Assertions about expected exceptions

In order to write assertions about raised exceptions, you can use pytest.raises as a context manager like this:

import pytest

def test_zero_division():
with pytest.raises(ZeroDivisionError):

1 / 0

and if you need to have access to the actual exception info you may use:

def test_recursion_depth():
with pytest.raises(RuntimeError) as excinfo:

def f():
f()

f()
assert 'maximum recursion' in str(excinfo.value)

excinfo is a ExceptionInfo instance, which is a wrapper around the actual exception raised. The main attributes
of interest are .type, .value and .traceback.

Changed in version 3.0.

In the context manager form you may use the keyword argument message to specify a custom failure message:

>>> with raises(ZeroDivisionError, message="Expecting ZeroDivisionError"):
... pass
... Failed: Expecting ZeroDivisionError

If you want to write test code that works on Python 2.4 as well, you may also use two other ways to test for an expected
exception:

pytest.raises(ExpectedException, func, *args, **kwargs)
pytest.raises(ExpectedException, "func(*args, **kwargs)")

both of which execute the specified function with args and kwargs and asserts that the given ExpectedException
is raised. The reporter will provide you with helpful output in case of failures such as no exception or wrong exception.

Note that it is also possible to specify a “raises” argument to pytest.mark.xfail, which checks that the test is
failing in a more specific way than just having any exception raised:

@pytest.mark.xfail(raises=IndexError)
def test_f():

f()

Using pytest.raises is likely to be better for cases where you are testing exceptions your own code is deliber-
ately raising, whereas using @pytest.mark.xfail with a check function is probably better for something like
documenting unfixed bugs (where the test describes what “should” happen) or bugs in dependencies.

16 Chapter 4. The writing and reporting of assertions in tests

pytest Documentation, Release 3.1

If you want to test that a regular expression matches on the string representation of an exception (like the
TestCase.assertRaisesRegexp method from unittest) you can use the ExceptionInfo.match
method:

import pytest

def myfunc():
raise ValueError("Exception 123 raised")

def test_match():
with pytest.raises(ValueError) as excinfo:

myfunc()
excinfo.match(r'.* 123 .*')

The regexp parameter of the match method is matched with the re.search function. So in the above example
excinfo.match('123') would have worked as well.

Assertions about expected warnings

New in version 2.8.

You can check that code raises a particular warning using pytest.warns.

Making use of context-sensitive comparisons

New in version 2.0.

pytest has rich support for providing context-sensitive information when it encounters comparisons. For example:

content of test_assert2.py

def test_set_comparison():
set1 = set("1308")
set2 = set("8035")
assert set1 == set2

if you run this module:

$ pytest test_assert2.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_assert2.py F

======= FAILURES ========
_______ test_set_comparison ________

def test_set_comparison():
set1 = set("1308")
set2 = set("8035")

> assert set1 == set2
E AssertionError: assert {'0', '1', '3', '8'} == {'0', '3', '5', '8'}
E Extra items in the left set:

4.3. Assertions about expected warnings 17

pytest Documentation, Release 3.1

E '1'
E Extra items in the right set:
E '5'
E Use -v to get the full diff

test_assert2.py:5: AssertionError
======= 1 failed in 0.12 seconds ========

Special comparisons are done for a number of cases:

• comparing long strings: a context diff is shown

• comparing long sequences: first failing indices

• comparing dicts: different entries

See the reporting demo for many more examples.

Defining your own assertion comparison

It is possible to add your own detailed explanations by implementing the pytest_assertrepr_compare hook.

pytest_assertrepr_compare(config, op, left, right)
return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list of strings. The strings will be joined by newlines
but any newlines in a string will be escaped. Note that all but the first line will be indented slightly, the intention
is for the first line to be a summary.

As an example consider adding the following hook in a conftest.py which provides an alternative explanation for Foo
objects:

content of conftest.py
from test_foocompare import Foo
def pytest_assertrepr_compare(op, left, right):

if isinstance(left, Foo) and isinstance(right, Foo) and op == "==":
return ['Comparing Foo instances:',

' vals: %s != %s' % (left.val, right.val)]

now, given this test module:

content of test_foocompare.py
class Foo(object):

def __init__(self, val):
self.val = val

def __eq__(self, other):
return self.val == other.val

def test_compare():
f1 = Foo(1)
f2 = Foo(2)
assert f1 == f2

you can run the test module and get the custom output defined in the conftest file:

18 Chapter 4. The writing and reporting of assertions in tests

pytest Documentation, Release 3.1

$ pytest -q test_foocompare.py
F
======= FAILURES ========
_______ test_compare ________

def test_compare():
f1 = Foo(1)
f2 = Foo(2)

> assert f1 == f2
E assert Comparing Foo instances:
E vals: 1 != 2

test_foocompare.py:11: AssertionError
1 failed in 0.12 seconds

Advanced assertion introspection

New in version 2.1.

Reporting details about a failing assertion is achieved by rewriting assert statements before they are run. Rewritten
assert statements put introspection information into the assertion failure message. pytest only rewrites test modules
directly discovered by its test collection process, so asserts in supporting modules which are not themselves test
modules will not be rewritten.

Note: pytest rewrites test modules on import by using an import hook to write new pyc files. Most of the time
this works transparently. However, if you are messing with import yourself, the import hook may interfere.

If this is the case you have two options:

• Disable rewriting for a specific module by adding the string PYTEST_DONT_REWRITE to its docstring.

• Disable rewriting for all modules by using --assert=plain.

Additionally, rewriting will fail silently if it cannot write new .pyc files, i.e. in a read-only filesystem or a zipfile.

For further information, Benjamin Peterson wrote up Behind the scenes of pytest’s new assertion rewriting.

New in version 2.1: Add assert rewriting as an alternate introspection technique.

Changed in version 2.1: Introduce the --assert option. Deprecate --no-assert and --nomagic.

Changed in version 3.0: Removes the --no-assert and --nomagic options. Removes the
--assert=reinterp option.

4.6. Advanced assertion introspection 19

http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html

pytest Documentation, Release 3.1

20 Chapter 4. The writing and reporting of assertions in tests

CHAPTER 5

Pytest API and builtin fixtures

This is a list of pytest.* API functions and fixtures.

For information on plugin hooks and objects, see Writing plugins.

For information on the pytest.mark mechanism, see Marking test functions with attributes.

For the below objects, you can also interactively ask for help, e.g. by typing on the Python interactive prompt some-
thing like:

import pytest
help(pytest)

Invoking pytest interactively

main(args=None, plugins=None)
return exit code, after performing an in-process test run.

Parameters

• args – list of command line arguments.

• plugins – list of plugin objects to be auto-registered during initialization.

More examples at Calling pytest from Python code

Helpers for assertions about Exceptions/Warnings

raises(expected_exception, *args, **kwargs)
Assert that a code block/function call raises expected_exception and raise a failure exception otherwise.

This helper produces a ExceptionInfo() object (see below).

If using Python 2.5 or above, you may use this function as a context manager:

>>> with raises(ZeroDivisionError):
... 1/0

Changed in version 2.10.

In the context manager form you may use the keyword argument message to specify a custom failure message:

21

pytest Documentation, Release 3.1

>>> with raises(ZeroDivisionError, message="Expecting ZeroDivisionError"):
... pass
Traceback (most recent call last):
...

Failed: Expecting ZeroDivisionError

Note: When using pytest.raises as a context manager, it’s worthwhile to note that normal context
manager rules apply and that the exception raised must be the final line in the scope of the context manager.
Lines of code after that, within the scope of the context manager will not be executed. For example:

>>> value = 15
>>> with raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
... assert exc_info.type == ValueError # this will not execute

Instead, the following approach must be taken (note the difference in scope):

>>> with raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
...
>>> assert exc_info.type == ValueError

Or you can use the keyword argument match to assert that the exception matches a text or regex:

>>> with raises(ValueError, match='must be 0 or None'):
... raise ValueError("value must be 0 or None")

>>> with raises(ValueError, match=r'must be \d+$'):
... raise ValueError("value must be 42")

Or you can specify a callable by passing a to-be-called lambda:

>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ...>

or you can specify an arbitrary callable with arguments:

>>> def f(x): return 1/x
...
>>> raises(ZeroDivisionError, f, 0)
<ExceptionInfo ...>
>>> raises(ZeroDivisionError, f, x=0)
<ExceptionInfo ...>

A third possibility is to use a string to be executed:

>>> raises(ZeroDivisionError, "f(0)")
<ExceptionInfo ...>

class ExceptionInfo(tup=None, exprinfo=None)
wraps sys.exc_info() objects and offers help for navigating the traceback.

type = None
the exception class

22 Chapter 5. Pytest API and builtin fixtures

pytest Documentation, Release 3.1

value = None
the exception instance

tb = None
the exception raw traceback

typename = None
the exception type name

traceback = None
the exception traceback (_pytest._code.Traceback instance)

exconly(tryshort=False)
return the exception as a string

when ‘tryshort’ resolves to True, and the exception is a _pytest._code._AssertionError, only the actual
exception part of the exception representation is returned (so ‘AssertionError: ‘ is removed from the
beginning)

errisinstance(exc)
return True if the exception is an instance of exc

getrepr(showlocals=False, style=’long’, abspath=False, tbfilter=True, funcargs=False)
return str()able representation of this exception info. showlocals: show locals per traceback entry
style: long|short|no|native traceback style tbfilter: hide entries (where __tracebackhide__ is true)

in case of style==native, tbfilter and showlocals is ignored.

match(regexp)
Match the regular expression ‘regexp’ on the string representation of the exception. If it matches
then True is returned (so that it is possible to write ‘assert excinfo.match()’). If it doesn’t match an
AssertionError is raised.

Note: Similar to caught exception objects in Python, explicitly clearing local references to returned
ExceptionInfo objects can help the Python interpreter speed up its garbage collection.

Clearing those references breaks a reference cycle (ExceptionInfo –> caught exception –> frame stack
raising the exception –> current frame stack –> local variables –> ExceptionInfo) which makes Python
keep all objects referenced from that cycle (including all local variables in the current frame) alive until the
next cyclic garbage collection run. See the official Python try statement documentation for more detailed
information.

Examples at Assertions about expected exceptions.

deprecated_call(func=None, *args, **kwargs)
context manager that can be used to ensure a block of code triggers a DeprecationWarning or
PendingDeprecationWarning:

>>> import warnings
>>> def api_call_v2():
... warnings.warn('use v3 of this api', DeprecationWarning)
... return 200

>>> with deprecated_call():
... assert api_call_v2() == 200

deprecated_call can also be used by passing a function and *args and *kwargs, in which case it will
ensure calling func(*args,**kwargs) produces one of the warnings types above.

5.2. Helpers for assertions about Exceptions/Warnings 23

pytest Documentation, Release 3.1

Comparing floating point numbers

class approx(expected, rel=None, abs=None)
Assert that two numbers (or two sets of numbers) are equal to each other within some tolerance.

Due to the intricacies of floating-point arithmetic, numbers that we would intuitively expect to be equal are not
always so:

>>> 0.1 + 0.2 == 0.3
False

This problem is commonly encountered when writing tests, e.g. when making sure that floating-point values are
what you expect them to be. One way to deal with this problem is to assert that two floating-point numbers are
equal to within some appropriate tolerance:

>>> abs((0.1 + 0.2) - 0.3) < 1e-6
True

However, comparisons like this are tedious to write and difficult to understand. Furthermore, absolute compar-
isons like the one above are usually discouraged because there’s no tolerance that works well for all situations.
1e-6 is good for numbers around 1, but too small for very big numbers and too big for very small ones. It’s
better to express the tolerance as a fraction of the expected value, but relative comparisons like that are even
more difficult to write correctly and concisely.

The approx class performs floating-point comparisons using a syntax that’s as intuitive as possible:

>>> from pytest import approx
>>> 0.1 + 0.2 == approx(0.3)
True

The same syntax also works on sequences of numbers:

>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
True

By default, approx considers numbers within a relative tolerance of 1e-6 (i.e. one part in a million) of its
expected value to be equal. This treatment would lead to surprising results if the expected value was 0.0,
because nothing but 0.0 itself is relatively close to 0.0. To handle this case less surprisingly, approx also
considers numbers within an absolute tolerance of 1e-12 of its expected value to be equal. Infinite numbers are
another special case. They are only considered equal to themselves, regardless of the relative tolerance. Both
the relative and absolute tolerances can be changed by passing arguments to the approx constructor:

>>> 1.0001 == approx(1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True

If you specify abs but not rel, the comparison will not consider the relative tolerance at all. In other words,
two numbers that are within the default relative tolerance of 1e-6 will still be considered unequal if they exceed
the specified absolute tolerance. If you specify both abs and rel, the numbers will be considered equal if either
tolerance is met:

>>> 1 + 1e-8 == approx(1)
True
>>> 1 + 1e-8 == approx(1, abs=1e-12)

24 Chapter 5. Pytest API and builtin fixtures

https://docs.python.org/3/tutorial/floatingpoint.html

pytest Documentation, Release 3.1

False
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
True

If you’re thinking about using approx, then you might want to know how it compares to other good ways of
comparing floating-point numbers. All of these algorithms are based on relative and absolute tolerances and
should agree for the most part, but they do have meaningful differences:

•math.isclose(a,b,rel_tol=1e-9,abs_tol=0.0): True if the relative tolerance is met w.r.t.
either a or b or if the absolute tolerance is met. Because the relative tolerance is calculated w.r.t. both
a and b, this test is symmetric (i.e. neither a nor b is a “reference value”). You have to specify an
absolute tolerance if you want to compare to 0.0 because there is no tolerance by default. Only available
in python>=3.5. More information...

•numpy.isclose(a,b,rtol=1e-5,atol=1e-8): True if the difference between a and b is less
that the sum of the relative tolerance w.r.t. b and the absolute tolerance. Because the relative tolerance is
only calculated w.r.t. b, this test is asymmetric and you can think of b as the reference value. Support for
comparing sequences is provided by numpy.allclose. More information...

•unittest.TestCase.assertAlmostEqual(a,b): True if a and b are within an absolute toler-
ance of 1e-7. No relative tolerance is considered and the absolute tolerance cannot be changed, so this
function is not appropriate for very large or very small numbers. Also, it’s only available in subclasses of
unittest.TestCase and it’s ugly because it doesn’t follow PEP8. More information...

•a == pytest.approx(b,rel=1e-6,abs=1e-12): True if the relative tolerance is met w.r.t. b
or if the absolute tolerance is met. Because the relative tolerance is only calculated w.r.t. b, this test is
asymmetric and you can think of b as the reference value. In the special case that you explicitly specify
an absolute tolerance but not a relative tolerance, only the absolute tolerance is considered.

Raising a specific test outcome

You can use the following functions in your test, fixture or setup functions to force a certain test outcome. Note that
most often you can rather use declarative marks, see Skip and xfail: dealing with tests that cannot succeed.

fail(msg=’‘, pytrace=True)
explicitly fail an currently-executing test with the given Message.

Parameters pytrace – if false the msg represents the full failure information and no python trace-
back will be reported.

skip(msg=’‘)
skip an executing test with the given message. Note: it’s usually better to use the pytest.mark.skipif marker
to declare a test to be skipped under certain conditions like mismatching platforms or dependencies. See the
pytest_skipping plugin for details.

importorskip(modname, minversion=None)
return imported module if it has at least “minversion” as its __version__ attribute. If no minversion is specified
the a skip is only triggered if the module can not be imported.

xfail(reason=’‘)
xfail an executing test or setup functions with the given reason.

exit(msg)
exit testing process as if KeyboardInterrupt was triggered.

5.4. Raising a specific test outcome 25

https://docs.python.org/3/library/math.html#math.isclose
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual

pytest Documentation, Release 3.1

Fixtures and requests

To mark a fixture function:

fixture(scope=’function’, params=None, autouse=False, ids=None, name=None)
(return a) decorator to mark a fixture factory function.

This decorator can be used (with or without parameters) to define a fixture function. The name of the fixture
function can later be referenced to cause its invocation ahead of running tests: test modules or classes can use the
pytest.mark.usefixtures(fixturename) marker. Test functions can directly use fixture names as input arguments
in which case the fixture instance returned from the fixture function will be injected.

Parameters

• scope – the scope for which this fixture is shared, one of “function” (default), “class”,
“module” or “session”.

• params – an optional list of parameters which will cause multiple invocations of the fixture
function and all of the tests using it.

• autouse – if True, the fixture func is activated for all tests that can see it. If False (the
default) then an explicit reference is needed to activate the fixture.

• ids – list of string ids each corresponding to the params so that they are part of the test id.
If no ids are provided they will be generated automatically from the params.

• name – the name of the fixture. This defaults to the name of the decorated function.
If a fixture is used in the same module in which it is defined, the function name of the
fixture will be shadowed by the function arg that requests the fixture; one way to re-
solve this is to name the decorated function fixture_<fixturename> and then use
@pytest.fixture(name='<fixturename>').

Fixtures can optionally provide their values to test functions using a yield statement, instead of return. In
this case, the code block after the yield statement is executed as teardown code regardless of the test outcome.
A fixture function must yield exactly once.

Tutorial at pytest fixtures: explicit, modular, scalable.

The request object that can be used from fixture functions.

class FixtureRequest
A request for a fixture from a test or fixture function.

A request object gives access to the requesting test context and has an optional param attribute in case the
fixture is parametrized indirectly.

fixturename = None
fixture for which this request is being performed

scope = None
Scope string, one of “function”, “class”, “module”, “session”

node
underlying collection node (depends on current request scope)

config
the pytest config object associated with this request.

function
test function object if the request has a per-function scope.

cls
class (can be None) where the test function was collected.

26 Chapter 5. Pytest API and builtin fixtures

pytest Documentation, Release 3.1

instance
instance (can be None) on which test function was collected.

module
python module object where the test function was collected.

fspath
the file system path of the test module which collected this test.

keywords
keywords/markers dictionary for the underlying node.

session
pytest session object.

addfinalizer(finalizer)
add finalizer/teardown function to be called after the last test within the requesting test context finished
execution.

applymarker(marker)
Apply a marker to a single test function invocation. This method is useful if you don’t want to have a
keyword/marker on all function invocations.

Parameters marker – a _pytest.mark.MarkDecorator object created by a call to
pytest.mark.NAME(...).

raiseerror(msg)
raise a FixtureLookupError with the given message.

cached_setup(setup, teardown=None, scope=’module’, extrakey=None)
(deprecated) Return a testing resource managed by setup & teardown calls. scope and extrakey
determine when the teardown function will be called so that subsequent calls to setup would recreate
the resource. With pytest-2.3 you often do not need cached_setup() as you can directly declare a
scope on a fixture function and register a finalizer through request.addfinalizer().

Parameters

• teardown – function receiving a previously setup resource.

• setup – a no-argument function creating a resource.

• scope – a string value out of function, class, module or session indicating the
caching lifecycle of the resource.

• extrakey – added to internal caching key of (funcargname, scope).

getfixturevalue(argname)
Dynamically run a named fixture function.

Declaring fixtures via function argument is recommended where possible. But if you can only decide
whether to use another fixture at test setup time, you may use this function to retrieve it inside a fixture or
test function body.

getfuncargvalue(argname)
Deprecated, use getfixturevalue.

Builtin fixtures/function arguments

You can ask for available builtin or project-custom fixtures by typing:

5.6. Builtin fixtures/function arguments 27

pytest Documentation, Release 3.1

$ pytest -q --fixtures
cache

Return a cache object that can persist state between testing sessions.

cache.get(key, default)
cache.set(key, value)

Keys must be a ``/`` separated value, where the first part is usually the
name of your plugin or application to avoid clashes with other cache users.

Values can be any object handled by the json stdlib module.
capsys

Enable capturing of writes to sys.stdout/sys.stderr and make
captured output available via ``capsys.readouterr()`` method calls
which return a ``(out, err)`` tuple.

capfd
Enable capturing of writes to file descriptors 1 and 2 and make
captured output available via ``capfd.readouterr()`` method calls
which return a ``(out, err)`` tuple.

doctest_namespace
Inject names into the doctest namespace.

pytestconfig
the pytest config object with access to command line opts.

record_xml_property
Add extra xml properties to the tag for the calling test.
The fixture is callable with ``(name, value)``, with value being automatically
xml-encoded.

monkeypatch
The returned ``monkeypatch`` fixture provides these
helper methods to modify objects, dictionaries or os.environ::

monkeypatch.setattr(obj, name, value, raising=True)
monkeypatch.delattr(obj, name, raising=True)
monkeypatch.setitem(mapping, name, value)
monkeypatch.delitem(obj, name, raising=True)
monkeypatch.setenv(name, value, prepend=False)
monkeypatch.delenv(name, value, raising=True)
monkeypatch.syspath_prepend(path)
monkeypatch.chdir(path)

All modifications will be undone after the requesting
test function or fixture has finished. The ``raising``
parameter determines if a KeyError or AttributeError
will be raised if the set/deletion operation has no target.

recwarn
Return a WarningsRecorder instance that provides these methods:

* ``pop(category=None)``: return last warning matching the category.

* ``clear()``: clear list of warnings

See http://docs.python.org/library/warnings.html for information
on warning categories.

tmpdir_factory
Return a TempdirFactory instance for the test session.

tmpdir
Return a temporary directory path object
which is unique to each test function invocation,
created as a sub directory of the base temporary

28 Chapter 5. Pytest API and builtin fixtures

pytest Documentation, Release 3.1

directory. The returned object is a `py.path.local`_
path object.

no tests ran in 0.12 seconds

5.6. Builtin fixtures/function arguments 29

pytest Documentation, Release 3.1

30 Chapter 5. Pytest API and builtin fixtures

CHAPTER 6

pytest fixtures: explicit, modular, scalable

New in version 2.0/2.3/2.4.

The purpose of test fixtures is to provide a fixed baseline upon which tests can reliably and repeatedly execute. pytest
fixtures offer dramatic improvements over the classic xUnit style of setup/teardown functions:

• fixtures have explicit names and are activated by declaring their use from test functions, modules, classes or
whole projects.

• fixtures are implemented in a modular manner, as each fixture name triggers a fixture function which can itself
use other fixtures.

• fixture management scales from simple unit to complex functional testing, allowing to parametrize fixtures and
tests according to configuration and component options, or to re-use fixtures across class, module or whole test
session scopes.

In addition, pytest continues to support classic xunit-style setup. You can mix both styles, moving incrementally from
classic to new style, as you prefer. You can also start out from existing unittest.TestCase style or nose based projects.

Fixtures as Function arguments

Test functions can receive fixture objects by naming them as an input argument. For each argument name, a fix-
ture function with that name provides the fixture object. Fixture functions are registered by marking them with
@pytest.fixture. Let’s look at a simple self-contained test module containing a fixture and a test function
using it:

content of ./test_smtpsimple.py
import pytest

@pytest.fixture
def smtp():

import smtplib
return smtplib.SMTP("smtp.gmail.com")

def test_ehlo(smtp):
response, msg = smtp.ehlo()
assert response == 250
assert 0 # for demo purposes

Here, the test_ehlo needs the smtp fixture value. pytest will discover and call the @pytest.fixture marked
smtp fixture function. Running the test looks like this:

31

http://en.wikipedia.org/wiki/Test_fixture#Software

pytest Documentation, Release 3.1

$ pytest test_smtpsimple.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_smtpsimple.py F

======= FAILURES ========
_______ test_ehlo ________

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp):
response, msg = smtp.ehlo()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_smtpsimple.py:11: AssertionError
======= 1 failed in 0.12 seconds ========

In the failure traceback we see that the test function was called with a smtp argument, the smtplib.SMTP()
instance created by the fixture function. The test function fails on our deliberate assert 0. Here is the exact
protocol used by pytest to call the test function this way:

1. pytest finds the test_ehlo because of the test_ prefix. The test function needs a function argument named
smtp. A matching fixture function is discovered by looking for a fixture-marked function named smtp.

2. smtp() is called to create an instance.

3. test_ehlo(<SMTP instance>) is called and fails in the last line of the test function.

Note that if you misspell a function argument or want to use one that isn’t available, you’ll see an error with a list of
available function arguments.

Note: You can always issue:

pytest --fixtures test_simplefactory.py

to see available fixtures.

In versions prior to 2.3 there was no @pytest.fixture marker and you had to use a magic
pytest_funcarg__NAME prefix for the fixture factory. This remains and will remain supported but is not anymore
advertised as the primary means of declaring fixture functions.

Fixtures: a prime example of dependency injection

Fixtures allow test functions to easily receive and work against specific pre-initialized application objects without
having to care about import/setup/cleanup details. It’s a prime example of dependency injection where fixture functions
take the role of the injector and test functions are the consumers of fixture objects.

32 Chapter 6. pytest fixtures: explicit, modular, scalable

http://en.wikipedia.org/wiki/Dependency_injection

pytest Documentation, Release 3.1

Sharing a fixture across tests in a module (or class/session)

Fixtures requiring network access depend on connectivity and are usually time-expensive to create. Extending the
previous example, we can add a scope='module' parameter to the @pytest.fixture invocation to cause the
decorated smtp fixture function to only be invoked once per test module. Multiple test functions in a test module
will thus each receive the same smtp fixture instance. The next example puts the fixture function into a separate
conftest.py file so that tests from multiple test modules in the directory can access the fixture function:

content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp():

return smtplib.SMTP("smtp.gmail.com")

The name of the fixture again is smtp and you can access its result by listing the name smtp as an input parameter in
any test or fixture function (in or below the directory where conftest.py is located):

content of test_module.py

def test_ehlo(smtp):
response, msg = smtp.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg
assert 0 # for demo purposes

def test_noop(smtp):
response, msg = smtp.noop()
assert response == 250
assert 0 # for demo purposes

We deliberately insert failing assert 0 statements in order to inspect what is going on and can now run the tests:

$ pytest test_module.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_module.py FF

======= FAILURES ========
_______ test_ehlo ________

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp):
response, msg = smtp.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg

> assert 0 # for demo purposes
E assert 0

test_module.py:6: AssertionError
_______ test_noop ________

6.3. Sharing a fixture across tests in a module (or class/session) 33

pytest Documentation, Release 3.1

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp):
response, msg = smtp.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
======= 2 failed in 0.12 seconds ========

You see the two assert 0 failing and more importantly you can also see that the same (module-scoped) smtp
object was passed into the two test functions because pytest shows the incoming argument values in the traceback. As
a result, the two test functions using smtp run as quick as a single one because they reuse the same instance.

If you decide that you rather want to have a session-scoped smtp instance, you can simply declare it:

@pytest.fixture(scope="session")
def smtp(...):

the returned fixture value will be shared for
all tests needing it

Fixture finalization / executing teardown code

pytest supports execution of fixture specific finalization code when the fixture goes out of scope. By using a yield
statement instead of return, all the code after the yield statement serves as the teardown code:

content of conftest.py

import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp():

smtp = smtplib.SMTP("smtp.gmail.com")
yield smtp # provide the fixture value
print("teardown smtp")
smtp.close()

The print and smtp.close() statements will execute when the last test in the module has finished execution,
regardless of the exception status of the tests.

Let’s execute it:

$ pytest -s -q --tb=no
FFteardown smtp

2 failed in 0.12 seconds

We see that the smtp instance is finalized after the two tests finished execution. Note that if we decorated our fixture
function with scope='function' then fixture setup and cleanup would occur around each single test. In either
case the test module itself does not need to change or know about these details of fixture setup.

Note that we can also seamlessly use the yield syntax with with statements:

34 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

content of test_yield2.py

import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp():

with smtplib.SMTP("smtp.gmail.com") as smtp:
yield smtp # provide the fixture value

The smtp connection will be closed after the test finished execution because the smtp object automatically closes
when the with statement ends.

Note that if an exception happens during the setup code (before the yield keyword), the teardown code (after the
yield) will not be called.

Note: Prior to version 2.10, in order to use a yield statement to execute teardown code one had to mark a
fixture using the yield_fixture marker. From 2.10 onward, normal fixtures can use yield directly so the
yield_fixture decorator is no longer needed and considered deprecated.

An alternative option for executing teardown code is to make use of the addfinalizer method of the request-
context object to register finalization functions.

Here’s the smtp fixture changed to use addfinalizer for cleanup:

content of conftest.py
import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp(request):

smtp = smtplib.SMTP("smtp.gmail.com")
def fin():

print ("teardown smtp")
smtp.close()

request.addfinalizer(fin)
return smtp # provide the fixture value

Both yield and addfinalizer methods work similarly by calling their code after the test ends, but
addfinalizer has two key differences over yield:

1. It is possible to register multiple finalizer functions.

2. Finalizers will always be called regardless if the fixture setup code raises an exception. This is handy to properly
close all resources created by a fixture even if one of them fails to be created/acquired:

@pytest.fixture
def equipments(request):

r = []
for port in ('C1', 'C3', 'C28'):

equip = connect(port)
request.addfinalizer(equip.disconnect)
r.append(equip)

return r

In the example above, if "C28" fails with an exception, "C1" and "C3" will still be properly closed. Of
course, if an exception happens before the finalize function is registered then it will not be executed.

6.4. Fixture finalization / executing teardown code 35

pytest Documentation, Release 3.1

Fixtures can introspect the requesting test context

Fixture function can accept the request object to introspect the “requesting” test function, class or module context.
Further extending the previous smtp fixture example, let’s read an optional server URL from the test module which
uses our fixture:

content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp(request):

server = getattr(request.module, "smtpserver", "smtp.gmail.com")
smtp = smtplib.SMTP(server)
yield smtp
print ("finalizing %s (%s)" % (smtp, server))
smtp.close()

We use the request.module attribute to optionally obtain an smtpserver attribute from the test module. If we
just execute again, nothing much has changed:

$ pytest -s -q --tb=no
FFfinalizing <smtplib.SMTP object at 0xdeadbeef> (smtp.gmail.com)

2 failed in 0.12 seconds

Let’s quickly create another test module that actually sets the server URL in its module namespace:

content of test_anothersmtp.py

smtpserver = "mail.python.org" # will be read by smtp fixture

def test_showhelo(smtp):
assert 0, smtp.helo()

Running it:

$ pytest -qq --tb=short test_anothersmtp.py
F
======= FAILURES ========
_______ test_showhelo ________
test_anothersmtp.py:5: in test_showhelo

assert 0, smtp.helo()
E AssertionError: (250, b'mail.python.org')
E assert 0
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef> (mail.python.org)

voila! The smtp fixture function picked up our mail server name from the module namespace.

Parametrizing fixtures

Fixture functions can be parametrized in which case they will be called multiple times, each time executing the set
of dependent tests, i. e. the tests that depend on this fixture. Test functions do usually not need to be aware of their

36 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

re-running. Fixture parametrization helps to write exhaustive functional tests for components which themselves can
be configured in multiple ways.

Extending the previous example, we can flag the fixture to create two smtp fixture instances which will cause all tests
using the fixture to run twice. The fixture function gets access to each parameter through the special request object:

content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module",
params=["smtp.gmail.com", "mail.python.org"])

def smtp(request):
smtp = smtplib.SMTP(request.param)
yield smtp
print ("finalizing %s" % smtp)
smtp.close()

The main change is the declaration of params with @pytest.fixture, a list of values for each of which the
fixture function will execute and can access a value via request.param. No test function code needs to change.
So let’s just do another run:

$ pytest -q test_module.py
FFFF
======= FAILURES ========
_______ test_ehlo[smtp.gmail.com] ________

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp):
response, msg = smtp.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg

> assert 0 # for demo purposes
E assert 0

test_module.py:6: AssertionError
_______ test_noop[smtp.gmail.com] ________

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp):
response, msg = smtp.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
_______ test_ehlo[mail.python.org] ________

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp):
response, msg = smtp.ehlo()
assert response == 250

> assert b"smtp.gmail.com" in msg
E AssertionError: assert b'smtp.gmail.com' in b'mail.python.org\nSIZE
→˓51200000\nETRN\nSTARTTLS\nENHANCEDSTATUSCODES\n8BITMIME\nDSN\nSMTPUTF8'

6.6. Parametrizing fixtures 37

pytest Documentation, Release 3.1

test_module.py:5: AssertionError
-------------------------- Captured stdout setup ---------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
_______ test_noop[mail.python.org] ________

smtp = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp):
response, msg = smtp.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
4 failed in 0.12 seconds

We see that our two test functions each ran twice, against the different smtp instances. Note also, that with the
mail.python.org connection the second test fails in test_ehlo because a different server string is expected
than what arrived.

pytest will build a string that is the test ID for each fixture value in a parametrized fixture, e.g.
test_ehlo[smtp.gmail.com] and test_ehlo[mail.python.org] in the above examples. These IDs
can be used with -k to select specific cases to run, and they will also identify the specific case when one is failing.
Running pytest with --collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects,
pytest will make a string based on the argument name. It is possible to customise the string used in a test ID for a
certain fixture value by using the ids keyword argument:

content of test_ids.py
import pytest

@pytest.fixture(params=[0, 1], ids=["spam", "ham"])
def a(request):

return request.param

def test_a(a):
pass

def idfn(fixture_value):
if fixture_value == 0:

return "eggs"
else:

return None

@pytest.fixture(params=[0, 1], ids=idfn)
def b(request):

return request.param

def test_b(b):
pass

The above shows how ids can be either a list of strings to use or a function which will be called with the fixture value
and then has to return a string to use. In the latter case if the function return None then pytest’s auto-generated ID will
be used.

38 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

Running the above tests results in the following test IDs being used:

$ pytest --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 10 items
<Module 'test_anothersmtp.py'>

<Function 'test_showhelo[smtp.gmail.com]'>
<Function 'test_showhelo[mail.python.org]'>

<Module 'test_ids.py'>
<Function 'test_a[spam]'>
<Function 'test_a[ham]'>
<Function 'test_b[eggs]'>
<Function 'test_b[1]'>

<Module 'test_module.py'>
<Function 'test_ehlo[smtp.gmail.com]'>
<Function 'test_noop[smtp.gmail.com]'>
<Function 'test_ehlo[mail.python.org]'>
<Function 'test_noop[mail.python.org]'>

======= no tests ran in 0.12 seconds ========

Modularity: using fixtures from a fixture function

You can not only use fixtures in test functions but fixture functions can use other fixtures themselves. This contributes
to a modular design of your fixtures and allows re-use of framework-specific fixtures across many projects. As a
simple example, we can extend the previous example and instantiate an object app where we stick the already defined
smtp resource into it:

content of test_appsetup.py

import pytest

class App(object):
def __init__(self, smtp):

self.smtp = smtp

@pytest.fixture(scope="module")
def app(smtp):

return App(smtp)

def test_smtp_exists(app):
assert app.smtp

Here we declare an app fixture which receives the previously defined smtp fixture and instantiates an App object
with it. Let’s run it:

$ pytest -v test_appsetup.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 2 items

6.7. Modularity: using fixtures from a fixture function 39

pytest Documentation, Release 3.1

test_appsetup.py::test_smtp_exists[smtp.gmail.com] PASSED
test_appsetup.py::test_smtp_exists[mail.python.org] PASSED

======= 2 passed in 0.12 seconds ========

Due to the parametrization of smtp the test will run twice with two different App instances and respective smtp
servers. There is no need for the app fixture to be aware of the smtp parametrization as pytest will fully analyse the
fixture dependency graph.

Note, that the app fixture has a scope of module and uses a module-scoped smtp fixture. The example would still
work if smtp was cached on a session scope: it is fine for fixtures to use “broader” scoped fixtures but not the
other way round: A session-scoped fixture could not use a module-scoped one in a meaningful way.

Automatic grouping of tests by fixture instances

pytest minimizes the number of active fixtures during test runs. If you have a parametrized fixture, then all the tests
using it will first execute with one instance and then finalizers are called before the next fixture instance is created.
Among other things, this eases testing of applications which create and use global state.

The following example uses two parametrized fixture, one of which is scoped on a per-module basis, and all the
functions perform print calls to show the setup/teardown flow:

content of test_module.py
import pytest

@pytest.fixture(scope="module", params=["mod1", "mod2"])
def modarg(request):

param = request.param
print (" SETUP modarg %s" % param)
yield param
print (" TEARDOWN modarg %s" % param)

@pytest.fixture(scope="function", params=[1,2])
def otherarg(request):

param = request.param
print (" SETUP otherarg %s" % param)
yield param
print (" TEARDOWN otherarg %s" % param)

def test_0(otherarg):
print (" RUN test0 with otherarg %s" % otherarg)

def test_1(modarg):
print (" RUN test1 with modarg %s" % modarg)

def test_2(otherarg, modarg):
print (" RUN test2 with otherarg %s and modarg %s" % (otherarg, modarg))

Let’s run the tests in verbose mode and with looking at the print-output:

$ pytest -v -s test_module.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 8 items

40 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

test_module.py::test_0[1] SETUP otherarg 1
RUN test0 with otherarg 1

PASSED TEARDOWN otherarg 1

test_module.py::test_0[2] SETUP otherarg 2
RUN test0 with otherarg 2

PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod1] SETUP modarg mod1
RUN test1 with modarg mod1

PASSED
test_module.py::test_2[1-mod1] SETUP otherarg 1

RUN test2 with otherarg 1 and modarg mod1
PASSED TEARDOWN otherarg 1

test_module.py::test_2[2-mod1] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod1

PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod2] TEARDOWN modarg mod1
SETUP modarg mod2
RUN test1 with modarg mod2

PASSED
test_module.py::test_2[1-mod2] SETUP otherarg 1

RUN test2 with otherarg 1 and modarg mod2
PASSED TEARDOWN otherarg 1

test_module.py::test_2[2-mod2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod2

PASSED TEARDOWN otherarg 2
TEARDOWN modarg mod2

======= 8 passed in 0.12 seconds ========

You can see that the parametrized module-scoped modarg resource caused an ordering of test execution that lead
to the fewest possible “active” resources. The finalizer for the mod1 parametrized resource was executed before the
mod2 resource was setup.

In particular notice that test_0 is completely independent and finishes first. Then test_1 is executed with mod1, then
test_2 with mod1, then test_1 with mod2 and finally test_2 with mod2.

The otherarg parametrized resource (having function scope) was set up before and teared down after every test that
used it.

Using fixtures from classes, modules or projects

Sometimes test functions do not directly need access to a fixture object. For example, tests may require to operate
with an empty directory as the current working directory but otherwise do not care for the concrete directory. Here is
how you can use the standard tempfile and pytest fixtures to achieve it. We separate the creation of the fixture into a
conftest.py file:

content of conftest.py

import pytest
import tempfile

6.9. Using fixtures from classes, modules or projects 41

http://docs.python.org/library/tempfile.html

pytest Documentation, Release 3.1

import os

@pytest.fixture()
def cleandir():

newpath = tempfile.mkdtemp()
os.chdir(newpath)

and declare its use in a test module via a usefixtures marker:

content of test_setenv.py
import os
import pytest

@pytest.mark.usefixtures("cleandir")
class TestDirectoryInit(object):

def test_cwd_starts_empty(self):
assert os.listdir(os.getcwd()) == []
with open("myfile", "w") as f:

f.write("hello")

def test_cwd_again_starts_empty(self):
assert os.listdir(os.getcwd()) == []

Due to the usefixtures marker, the cleandir fixture will be required for the execution of each test method, just
as if you specified a “cleandir” function argument to each of them. Let’s run it to verify our fixture is activated and the
tests pass:

$ pytest -q
..
2 passed in 0.12 seconds

You can specify multiple fixtures like this:

@pytest.mark.usefixtures("cleandir", "anotherfixture")

and you may specify fixture usage at the test module level, using a generic feature of the mark mechanism:

pytestmark = pytest.mark.usefixtures("cleandir")

Note that the assigned variable must be called pytestmark, assigning e.g. foomark will not activate the fixtures.

Lastly you can put fixtures required by all tests in your project into an ini-file:

content of pytest.ini
[pytest]
usefixtures = cleandir

Autouse fixtures (xUnit setup on steroids)

Occasionally, you may want to have fixtures get invoked automatically without declaring a function argument ex-
plicitly or a usefixtures decorator. As a practical example, suppose we have a database fixture which has a be-
gin/rollback/commit architecture and we want to automatically surround each test method by a transaction and a
rollback. Here is a dummy self-contained implementation of this idea:

42 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

content of test_db_transact.py

import pytest

class DB(object):
def __init__(self):

self.intransaction = []
def begin(self, name):

self.intransaction.append(name)
def rollback(self):

self.intransaction.pop()

@pytest.fixture(scope="module")
def db():

return DB()

class TestClass(object):
@pytest.fixture(autouse=True)
def transact(self, request, db):

db.begin(request.function.__name__)
yield
db.rollback()

def test_method1(self, db):
assert db.intransaction == ["test_method1"]

def test_method2(self, db):
assert db.intransaction == ["test_method2"]

The class-level transact fixture is marked with autouse=true which implies that all test methods in the class will
use this fixture without a need to state it in the test function signature or with a class-level usefixtures decorator.

If we run it, we get two passing tests:

$ pytest -q
..
2 passed in 0.12 seconds

Here is how autouse fixtures work in other scopes:

• autouse fixtures obey the scope= keyword-argument: if an autouse fixture has scope='session' it will
only be run once, no matter where it is defined. scope='class' means it will be run once per class, etc.

• if an autouse fixture is defined in a test module, all its test functions automatically use it.

• if an autouse fixture is defined in a conftest.py file then all tests in all test modules below its directory will invoke
the fixture.

• lastly, and please use that with care: if you define an autouse fixture in a plugin, it will be invoked for all tests
in all projects where the plugin is installed. This can be useful if a fixture only anyway works in the presence
of certain settings e. g. in the ini-file. Such a global fixture should always quickly determine if it should do any
work and avoid otherwise expensive imports or computation.

Note that the above transact fixture may very well be a fixture that you want to make available in your project
without having it generally active. The canonical way to do that is to put the transact definition into a conftest.py file
without using autouse:

content of conftest.py
@pytest.fixture

6.10. Autouse fixtures (xUnit setup on steroids) 43

pytest Documentation, Release 3.1

def transact(self, request, db):
db.begin()
yield
db.rollback()

and then e.g. have a TestClass using it by declaring the need:

@pytest.mark.usefixtures("transact")
class TestClass(object):

def test_method1(self):
...

All test methods in this TestClass will use the transaction fixture while other test classes or functions in the module
will not use it unless they also add a transact reference.

Shifting (visibility of) fixture functions

If during implementing your tests you realize that you want to use a fixture function from multiple test files you can
move it to a conftest.py file or even separately installable plugins without changing test code. The discovery of fixtures
functions starts at test classes, then test modules, then conftest.py files and finally builtin and third party plugins.

Overriding fixtures on various levels

In relatively large test suite, you most likely need to override a global or root fixture with a locally defined
one, keeping the test code readable and maintainable.

Override a fixture on a folder (conftest) level

Given the tests file structure is:

tests/
__init__.py

conftest.py
content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

test_something.py
content of tests/test_something.py
def test_username(username):

assert username == 'username'

subfolder/
__init__.py

conftest.py
content of tests/subfolder/conftest.py
import pytest

44 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

@pytest.fixture
def username(username):

return 'overridden-' + username

test_something.py
content of tests/subfolder/test_something.py
def test_username(username):

assert username == 'overridden-username'

As you can see, a fixture with the same name can be overridden for certain test folder level. Note that the base or
super fixture can be accessed from the overriding fixture easily - used in the example above.

Override a fixture on a test module level

Given the tests file structure is:

tests/
__init__.py

conftest.py
content of tests/conftest.py
@pytest.fixture
def username():

return 'username'

test_something.py
content of tests/test_something.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-' + username

def test_username(username):
assert username == 'overridden-username'

test_something_else.py
content of tests/test_something_else.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-else-' + username

def test_username(username):
assert username == 'overridden-else-username'

In the example above, a fixture with the same name can be overridden for certain test module.

Override a fixture with direct test parametrization

Given the tests file structure is:

6.12. Overriding fixtures on various levels 45

pytest Documentation, Release 3.1

tests/
__init__.py

conftest.py
content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

@pytest.fixture
def other_username(username):

return 'other-' + username

test_something.py
content of tests/test_something.py
import pytest

@pytest.mark.parametrize('username', ['directly-overridden-username'])
def test_username(username):

assert username == 'directly-overridden-username'

@pytest.mark.parametrize('username', ['directly-overridden-username-other'])
def test_username_other(other_username):

assert other_username == 'other-directly-overridden-username-other'

In the example above, a fixture value is overridden by the test parameter value. Note that the value of the fixture can
be overridden this way even if the test doesn’t use it directly (doesn’t mention it in the function prototype).

Override a parametrized fixture with non-parametrized one and vice versa

Given the tests file structure is:

tests/
__init__.py

conftest.py
content of tests/conftest.py
import pytest

@pytest.fixture(params=['one', 'two', 'three'])
def parametrized_username(request):

return request.param

@pytest.fixture
def non_parametrized_username(request):

return 'username'

test_something.py
content of tests/test_something.py
import pytest

@pytest.fixture
def parametrized_username():

return 'overridden-username'

46 Chapter 6. pytest fixtures: explicit, modular, scalable

pytest Documentation, Release 3.1

@pytest.fixture(params=['one', 'two', 'three'])
def non_parametrized_username(request):

return request.param

def test_username(parametrized_username):
assert parametrized_username == 'overridden-username'

def test_parametrized_username(non_parametrized_username):
assert non_parametrized_username in ['one', 'two', 'three']

test_something_else.py
content of tests/test_something_else.py
def test_username(parametrized_username):

assert parametrized_username in ['one', 'two', 'three']

def test_username(non_parametrized_username):
assert non_parametrized_username == 'username'

In the example above, a parametrized fixture is overridden with a non-parametrized version, and a non-parametrized
fixture is overridden with a parametrized version for certain test module. The same applies for the test folder level
obviously.

6.12. Overriding fixtures on various levels 47

pytest Documentation, Release 3.1

48 Chapter 6. pytest fixtures: explicit, modular, scalable

CHAPTER 7

Monkeypatching/mocking modules and environments

Sometimes tests need to invoke functionality which depends on global settings or which invokes code which cannot be
easily tested such as network access. The monkeypatch fixture helps you to safely set/delete an attribute, dictionary
item or environment variable or to modify sys.path for importing. See the monkeypatch blog post for some
introduction material and a discussion of its motivation.

Simple example: monkeypatching functions

If you want to pretend that os.expanduser returns a certain directory, you can use the
monkeypatch.setattr() method to patch this function before calling into a function which uses it:

content of test_module.py
import os.path
def getssh(): # pseudo application code

return os.path.join(os.path.expanduser("~admin"), '.ssh')

def test_mytest(monkeypatch):
def mockreturn(path):

return '/abc'
monkeypatch.setattr(os.path, 'expanduser', mockreturn)
x = getssh()
assert x == '/abc/.ssh'

Here our test function monkeypatches os.path.expanduser and then calls into a function that calls it. After the
test function finishes the os.path.expanduser modification will be undone.

example: preventing “requests” from remote operations

If you want to prevent the “requests” library from performing http requests in all your tests, you can do:

content of conftest.py
import pytest
@pytest.fixture(autouse=True)
def no_requests(monkeypatch):

monkeypatch.delattr("requests.sessions.Session.request")

This autouse fixture will be executed for each test function and it will delete the method
request.session.Session.request so that any attempts within tests to create http requests will fail.

49

http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/

pytest Documentation, Release 3.1

Note: Be advised that it is not recommended to patch builtin functions such as open, compile, etc., because it might
break pytest’s internals. If that’s unavoidable, passing --tb=native, --assert=plain and --capture=no
might help although there’s no guarantee.

Method reference of the monkeypatch fixture

class MonkeyPatch
Object returned by the monkeypatch fixture keeping a record of setattr/item/env/syspath changes.

setattr(target, name, value=<notset>, raising=True)
Set attribute value on target, memorizing the old value. By default raise AttributeError if the attribute did
not exist.

For convenience you can specify a string as targetwhich will be interpreted as a dotted import path, with
the last part being the attribute name. Example: monkeypatch.setattr("os.getcwd",lambda
x: "/") would set the getcwd function of the os module.

The raising value determines if the setattr should fail if the attribute is not already present (defaults to
True which means it will raise).

delattr(target, name=<notset>, raising=True)
Delete attribute name from target, by default raise AttributeError it the attribute did not previously
exist.

If no name is specified and target is a string it will be interpreted as a dotted import path with the last
part being the attribute name.

If raising is set to False, no exception will be raised if the attribute is missing.

setitem(dic, name, value)
Set dictionary entry name to value.

delitem(dic, name, raising=True)
Delete name from dict. Raise KeyError if it doesn’t exist.

If raising is set to False, no exception will be raised if the key is missing.

setenv(name, value, prepend=None)
Set environment variable name to value. If prepend is a character, read the current environment
variable value and prepend the value adjoined with the prepend character.

delenv(name, raising=True)
Delete name from the environment. Raise KeyError it does not exist.

If raising is set to False, no exception will be raised if the environment variable is missing.

syspath_prepend(path)
Prepend path to sys.path list of import locations.

chdir(path)
Change the current working directory to the specified path. Path can be a string or a py.path.local object.

undo()
Undo previous changes. This call consumes the undo stack. Calling it a second time has no effect unless
you do more monkeypatching after the undo call.

There is generally no need to call undo(), since it is called automatically during tear-down.

50 Chapter 7. Monkeypatching/mocking modules and environments

pytest Documentation, Release 3.1

Note that the same monkeypatch fixture is used across a single test function invocation. If monkeypatch is
used both by the test function itself and one of the test fixtures, calling undo() will undo all of the changes
made in both functions.

monkeypatch.setattr/delattr/delitem/delenv() all by default raise an Exception if the target does
not exist. Pass raising=False if you want to skip this check.

7.3. Method reference of the monkeypatch fixture 51

pytest Documentation, Release 3.1

52 Chapter 7. Monkeypatching/mocking modules and environments

CHAPTER 8

Temporary directories and files

The ‘tmpdir’ fixture

You can use the tmpdir fixture which will provide a temporary directory unique to the test invocation, created in the
base temporary directory.

tmpdir is a py.path.local object which offers os.path methods and more. Here is an example test usage:

content of test_tmpdir.py
import os
def test_create_file(tmpdir):

p = tmpdir.mkdir("sub").join("hello.txt")
p.write("content")
assert p.read() == "content"
assert len(tmpdir.listdir()) == 1
assert 0

Running this would result in a passed test except for the last assert 0 line which we use to look at values:

$ pytest test_tmpdir.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_tmpdir.py F

======= FAILURES ========
_______ test_create_file ________

tmpdir = local('PYTEST_TMPDIR/test_create_file0')

def test_create_file(tmpdir):
p = tmpdir.mkdir("sub").join("hello.txt")
p.write("content")
assert p.read() == "content"
assert len(tmpdir.listdir()) == 1

> assert 0
E assert 0

test_tmpdir.py:7: AssertionError
======= 1 failed in 0.12 seconds ========

53

http://py.rtfd.org/en/latest/path.html

pytest Documentation, Release 3.1

The ‘tmpdir_factory’ fixture

New in version 2.8.

The tmpdir_factory is a session-scoped fixture which can be used to create arbitrary temporary directories from
any other fixture or test.

For example, suppose your test suite needs a large image on disk, which is generated procedurally. Instead of com-
puting the same image for each test that uses it into its own tmpdir, you can generate it once per-session to save
time:

contents of conftest.py
import pytest

@pytest.fixture(scope='session')
def image_file(tmpdir_factory):

img = compute_expensive_image()
fn = tmpdir_factory.mktemp('data').join('img.png')
img.save(str(fn))
return fn

contents of test_image.py
def test_histogram(image_file):

img = load_image(image_file)
compute and test histogram

tmpdir_factory instances have the following methods:

TempdirFactory.mktemp(basename, numbered=True)
Create a subdirectory of the base temporary directory and return it. If numbered, ensure the directory is unique
by adding a number prefix greater than any existing one.

TempdirFactory.getbasetemp()
return base temporary directory.

The default base temporary directory

Temporary directories are by default created as sub-directories of the system temporary directory. The base name
will be pytest-NUM where NUM will be incremented with each test run. Moreover, entries older than 3 temporary
directories will be removed.

You can override the default temporary directory setting like this:

pytest --basetemp=mydir

When distributing tests on the local machine, pytest takes care to configure a basetemp directory for the sub pro-
cesses such that all temporary data lands below a single per-test run basetemp directory.

54 Chapter 8. Temporary directories and files

CHAPTER 9

Capturing of the stdout/stderr output

Default stdout/stderr/stdin capturing behaviour

During test execution any output sent to stdout and stderr is captured. If a test or a setup method fails its
according captured output will usually be shown along with the failure traceback.

In addition, stdin is set to a “null” object which will fail on attempts to read from it because it is rarely desired to
wait for interactive input when running automated tests.

By default capturing is done by intercepting writes to low level file descriptors. This allows to capture output from
simple print statements as well as output from a subprocess started by a test.

Setting capturing methods or disabling capturing

There are two ways in which pytest can perform capturing:

• file descriptor (FD) level capturing (default): All writes going to the operating system file descriptors 1 and 2
will be captured.

• sys level capturing: Only writes to Python files sys.stdout and sys.stderr will be captured. No
capturing of writes to filedescriptors is performed.

You can influence output capturing mechanisms from the command line:

pytest -s # disable all capturing
pytest --capture=sys # replace sys.stdout/stderr with in-mem files
pytest --capture=fd # also point filedescriptors 1 and 2 to temp file

Using print statements for debugging

One primary benefit of the default capturing of stdout/stderr output is that you can use print statements for debugging:

content of test_module.py

def setup_function(function):
print ("setting up %s" % function)

def test_func1():
assert True

55

pytest Documentation, Release 3.1

def test_func2():
assert False

and running this module will show you precisely the output of the failing function and hide the other one:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_module.py .F

======= FAILURES ========
_______ test_func2 ________

def test_func2():
> assert False
E assert False

test_module.py:9: AssertionError
-------------------------- Captured stdout setup ---------------------------
setting up <function test_func2 at 0xdeadbeef>
======= 1 failed, 1 passed in 0.12 seconds ========

Accessing captured output from a test function

The capsys and capfd fixtures allow to access stdout/stderr output created during test execution. Here is an example
test function that performs some output related checks:

def test_myoutput(capsys): # or use "capfd" for fd-level
print ("hello")
sys.stderr.write("world\n")
out, err = capsys.readouterr()
assert out == "hello\n"
assert err == "world\n"
print ("next")
out, err = capsys.readouterr()
assert out == "next\n"

The readouterr() call snapshots the output so far - and capturing will be continued. After the test function finishes
the original streams will be restored. Using capsys this way frees your test from having to care about setting/resetting
output streams and also interacts well with pytest’s own per-test capturing.

If you want to capture on filedescriptor level you can use the capfd function argument which offers the exact same
interface but allows to also capture output from libraries or subprocesses that directly write to operating system level
output streams (FD1 and FD2).

New in version 3.0.

To temporarily disable capture within a test, both capsys and capfd have a disabled() method that can be used
as a context manager, disabling capture inside the with block:

def test_disabling_capturing(capsys):
print('this output is captured')

56 Chapter 9. Capturing of the stdout/stderr output

pytest Documentation, Release 3.1

with capsys.disabled():
print('output not captured, going directly to sys.stdout')

print('this output is also captured')

9.4. Accessing captured output from a test function 57

pytest Documentation, Release 3.1

58 Chapter 9. Capturing of the stdout/stderr output

CHAPTER 10

Warnings Capture

New in version 3.1.

Starting from version 3.1, pytest now automatically catches warnings during test execution and displays them at the
end of the session:

content of test_show_warnings.py
import warnings

def api_v1():
warnings.warn(UserWarning("api v1, should use functions from v2"))
return 1

def test_one():
assert api_v1() == 1

Running pytest now produces this output:

$ pytest test_show_warnings.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_show_warnings.py .

======= warnings summary ========
test_show_warnings.py::test_one

$REGENDOC_TMPDIR/test_show_warnings.py:4: UserWarning: api v1, should use functions
→˓from v2

warnings.warn(UserWarning("api v1, should use functions from v2"))

-- Docs: http://doc.pytest.org/en/latest/warnings.html
======= 1 passed, 1 warnings in 0.12 seconds ========

Pytest by default catches all warnings except for DeprecationWarning and PendingDeprecationWarning.

The -W flag can be passed to control which warnings will be displayed or even turn them into errors:

$ pytest -q test_show_warnings.py -W error::UserWarning
F
======= FAILURES ========
_______ test_one ________

59

pytest Documentation, Release 3.1

def test_one():
> assert api_v1() == 1

test_show_warnings.py:8:
_ _

def api_v1():
> warnings.warn(UserWarning("api v1, should use functions from v2"))
E UserWarning: api v1, should use functions from v2

test_show_warnings.py:4: UserWarning
1 failed in 0.12 seconds

The same option can be set in the pytest.ini file using the filterwarnings ini option. For example, the
configuration below will ignore all user warnings, but will transform all other warnings into errors.

[pytest]
filterwarnings =

error
ignore::UserWarning

When a warning matches more than one option in the list, the action for the last matching option is performed.

Both -W command-line option and filterwarnings ini option are based on Python’s own -W option and warn-
ings.simplefilter, so please refer to those sections in the Python documentation for other examples and advanced usage.

Note: DeprecationWarning and PendingDeprecationWarning are hidden by the standard library by
default so you have to explicitly configure them to be displayed in your pytest.ini:

[pytest]
filterwarnings =

once::DeprecationWarning
once::PendingDeprecationWarning

Credits go to Florian Schulze for the reference implementation in the pytest-warnings plugin.

Disabling warning capture

This feature is enabled by default but can be disabled entirely in your pytest.ini file with:

[pytest]
addopts = -p no:warnings

Or passing -p no:warnings in the command-line.

Asserting warnings with the warns function

New in version 2.8.

You can check that code raises a particular warning using pytest.warns, which works in a similar manner to
raises:

60 Chapter 10. Warnings Capture

https://docs.python.org/3/using/cmdline.html?highlight=#cmdoption-W
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://github.com/fschulze/pytest-warnings

pytest Documentation, Release 3.1

import warnings
import pytest

def test_warning():
with pytest.warns(UserWarning):

warnings.warn("my warning", UserWarning)

The test will fail if the warning in question is not raised.

You can also call pytest.warns on a function or code string:

pytest.warns(expected_warning, func, *args, **kwargs)
pytest.warns(expected_warning, "func(*args, **kwargs)")

The function also returns a list of all raised warnings (as warnings.WarningMessage objects), which you can
query for additional information:

with pytest.warns(RuntimeWarning) as record:
warnings.warn("another warning", RuntimeWarning)

check that only one warning was raised
assert len(record) == 1
check that the message matches
assert record[0].message.args[0] == "another warning"

Alternatively, you can examine raised warnings in detail using the recwarn fixture (see below).

Note: DeprecationWarning and PendingDeprecationWarning are treated differently; see Ensuring a
function triggers a deprecation warning.

Recording warnings

You can record raised warnings either using pytest.warns or with the recwarn fixture.

To record with pytest.warns without asserting anything about the warnings, pass None as the expected warning
type:

with pytest.warns(None) as record:
warnings.warn("user", UserWarning)
warnings.warn("runtime", RuntimeWarning)

assert len(record) == 2
assert str(record[0].message) == "user"
assert str(record[1].message) == "runtime"

The recwarn fixture will record warnings for the whole function:

import warnings

def test_hello(recwarn):
warnings.warn("hello", UserWarning)
assert len(recwarn) == 1
w = recwarn.pop(UserWarning)
assert issubclass(w.category, UserWarning)

10.3. Recording warnings 61

pytest Documentation, Release 3.1

assert str(w.message) == "hello"
assert w.filename
assert w.lineno

Both recwarn and pytest.warns return the same interface for recorded warnings: a WarningsRecorder instance.
To view the recorded warnings, you can iterate over this instance, call len on it to get the number of recorded
warnings, or index into it to get a particular recorded warning. It also provides these methods:

class WarningsRecorder
A context manager to record raised warnings.

Adapted from warnings.catch_warnings.

list
The list of recorded warnings.

pop(cls=<type ‘exceptions.Warning’>)
Pop the first recorded warning, raise exception if not exists.

clear()
Clear the list of recorded warnings.

Each recorded warning has the attributes message, category, filename, lineno, file, and line. The
category is the class of the warning. The message is the warning itself; calling str(message) will return the
actual message of the warning.

Note: RecordedWarning was changed from a plain class to a namedtuple in pytest 3.1

Note: DeprecationWarning and PendingDeprecationWarning are treated differently; see Ensuring a
function triggers a deprecation warning.

Ensuring a function triggers a deprecation warning

You can also call a global helper for checking that a certain function call triggers a DeprecationWarning or
PendingDeprecationWarning:

import pytest

def test_global():
pytest.deprecated_call(myfunction, 17)

By default, DeprecationWarning and PendingDeprecationWarning will not be caught when using
pytest.warns or recwarn because default Python warnings filters hide them. If you wish to record them in
your own code, use the command warnings.simplefilter('always'):

import warnings
import pytest

def test_deprecation(recwarn):
warnings.simplefilter('always')
warnings.warn("deprecated", DeprecationWarning)
assert len(recwarn) == 1
assert recwarn.pop(DeprecationWarning)

62 Chapter 10. Warnings Capture

pytest Documentation, Release 3.1

You can also use it as a contextmanager:

def test_global():
with pytest.deprecated_call():

myobject.deprecated_method()

10.4. Ensuring a function triggers a deprecation warning 63

pytest Documentation, Release 3.1

64 Chapter 10. Warnings Capture

CHAPTER 11

Doctest integration for modules and test files

By default all files matching the test*.txt pattern will be run through the python standard doctest module. You
can change the pattern by issuing:

pytest --doctest-glob='*.rst'

on the command line. Since version 2.9, --doctest-glob can be given multiple times in the command-line.

New in version 3.1: You can specify the encoding that will be used for those doctest files using the
doctest_encoding ini option:

content of pytest.ini
[pytest]
doctest_encoding = latin1

The default encoding is UTF-8.

You can also trigger running of doctests from docstrings in all python modules (including regular python test modules):

pytest --doctest-modules

You can make these changes permanent in your project by putting them into a pytest.ini file like this:

content of pytest.ini
[pytest]
addopts = --doctest-modules

If you then have a text file like this:

content of example.rst

hello this is a doctest
>>> x = 3
>>> x
3

and another like this:

content of mymodule.py
def something():

""" a doctest in a docstring
>>> something()
42

65

pytest Documentation, Release 3.1

"""
return 42

then you can just invoke pytest without command line options:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 1 items

mymodule.py .

======= 1 passed in 0.12 seconds ========

It is possible to use fixtures using the getfixture helper:

content of example.rst
>>> tmp = getfixture('tmpdir')
>>> ...
>>>

Also, Using fixtures from classes, modules or projects and Autouse fixtures (xUnit setup on steroids) fixtures are
supported when executing text doctest files.

The standard doctest module provides some setting flags to configure the strictness of doctest tests. In pytest You
can enable those flags those flags using the configuration file. To make pytest ignore trailing whitespaces and ignore
lengthy exception stack traces you can just write:

[pytest]
doctest_optionflags= NORMALIZE_WHITESPACE IGNORE_EXCEPTION_DETAIL

pytest also introduces new options to allow doctests to run in Python 2 and Python 3 unchanged:

• ALLOW_UNICODE: when enabled, the u prefix is stripped from unicode strings in expected doctest output.

• ALLOW_BYTES: when enabled, the b prefix is stripped from byte strings in expected doctest output.

As with any other option flag, these flags can be enabled in pytest.ini using the doctest_optionflags ini
option:

[pytest]
doctest_optionflags = ALLOW_UNICODE ALLOW_BYTES

Alternatively, it can be enabled by an inline comment in the doc test itself:

content of example.rst
>>> get_unicode_greeting() # doctest: +ALLOW_UNICODE
'Hello'

The ‘doctest_namespace’ fixture

New in version 3.0.

The doctest_namespace fixture can be used to inject items into the namespace in which your doctests run. It is
intended to be used within your own fixtures to provide the tests that use them with context.

66 Chapter 11. Doctest integration for modules and test files

pytest Documentation, Release 3.1

doctest_namespace is a standard dict object into which you place the objects you want to appear in the doctest
namespace:

content of conftest.py
import numpy
@pytest.fixture(autouse=True)
def add_np(doctest_namespace):

doctest_namespace['np'] = numpy

which can then be used in your doctests directly:

content of numpy.py
def arange():

"""
>>> a = np.arange(10)
>>> len(a)
10
"""
pass

Output format

New in version 3.0.

You can change the diff output format on failure for your doctests by using one of standard doctest modules
format in options (see doctest.REPORT_UDIFF, doctest.REPORT_CDIFF, doctest.REPORT_NDIFF,
doctest.REPORT_ONLY_FIRST_FAILURE):

pytest --doctest-modules --doctest-report none
pytest --doctest-modules --doctest-report udiff
pytest --doctest-modules --doctest-report cdiff
pytest --doctest-modules --doctest-report ndiff
pytest --doctest-modules --doctest-report only_first_failure

11.2. Output format 67

https://docs.python.org/2/library/doctest.html#doctest.REPORT_UDIFF
https://docs.python.org/2/library/doctest.html#doctest.REPORT_CDIFF
https://docs.python.org/2/library/doctest.html#doctest.REPORT_NDIFF
https://docs.python.org/2/library/doctest.html#doctest.REPORT_ONLY_FIRST_FAILURE

pytest Documentation, Release 3.1

68 Chapter 11. Doctest integration for modules and test files

CHAPTER 12

Marking test functions with attributes

By using the pytest.mark helper you can easily set metadata on your test functions. There are some builtin
markers, for example:

• skipif - skip a test function if a certain condition is met

• xfail - produce an “expected failure” outcome if a certain condition is met

• parametrize to perform multiple calls to the same test function.

It’s easy to create custom markers or to apply markers to whole test classes or modules. See Working with custom
markers for examples which also serve as documentation.

Note: Marks can only be applied to tests, having no effect on fixtures.

API reference for mark related objects

class MarkGenerator
Factory for MarkDecorator objects - exposed as a pytest.mark singleton instance. Example:

import pytest
@pytest.mark.slowtest
def test_function():

pass

will set a ‘slowtest’ MarkInfo object on the test_function object.

class MarkDecorator(mark)
A decorator for test functions and test classes. When applied it will create MarkInfo objects which may be
retrieved by hooks as item keywords. MarkDecorator instances are often created like this:

mark1 = pytest.mark.NAME # simple MarkDecorator
mark2 = pytest.mark.NAME(name1=value) # parametrized MarkDecorator

and can then be applied as decorators to test functions:

@mark2
def test_function():

pass

When a MarkDecorator instance is called it does the following:

69

pytest Documentation, Release 3.1

1. If called with a single class as its only positional argument and no additional keyword arguments, it
attaches itself to the class so it gets applied automatically to all test cases found in that class.

2. If called with a single function as its only positional argument and no additional keyword arguments,
it attaches a MarkInfo object to the function, containing all the arguments already stored internally in
the MarkDecorator.

3. When called in any other case, it performs a ‘fake construction’ call, i.e. it returns a new MarkDec-
orator instance with the original MarkDecorator’s content updated with the arguments passed to this
call.

Note: The rules above prevent MarkDecorator objects from storing only a single function or class reference as
their positional argument with no additional keyword or positional arguments.

name
alias for mark.name

args
alias for mark.args

kwargs
alias for mark.kwargs

class MarkInfo(mark)
Marking object created by MarkDecorator instances.

name
alias for combined.name

args
alias for combined.args

kwargs
alias for combined.kwargs

add_mark(mark)
add a MarkInfo with the given args and kwargs.

70 Chapter 12. Marking test functions with attributes

CHAPTER 13

Skip and xfail: dealing with tests that cannot succeed

You can mark test functions that cannot be run on certain platforms or that you expect to fail so pytest can deal with
them accordingly and present a summary of the test session, while keeping the test suite green.

A skip means that you expect your test to pass only if some conditions are met, otherwise pytest should skip running
the test altogether. Common examples are skipping windows-only tests on non-windows platforms, or skipping tests
that depend on an external resource which is not available at the moment (for example a database).

A xfail means that you expect a test to fail for some reason. A common example is a test for a feature not yet
implemented, or a bug not yet fixed.

pytest counts and lists skip and xfail tests separately. Detailed information about skipped/xfailed tests is not shown
by default to avoid cluttering the output. You can use the -r option to see details corresponding to the “short” letters
shown in the test progress:

pytest -rxs # show extra info on skips and xfails

(See How to change command line options defaults)

Skipping test functions

New in version 2.9.

The simplest way to skip a test function is to mark it with the skip decorator which may be passed an optional
reason:

@pytest.mark.skip(reason="no way of currently testing this")
def test_the_unknown():

...

Alternatively, it is also possible to skip imperatively during test execution or setup by calling the
pytest.skip(reason) function:

def test_function():
if not valid_config():

pytest.skip("unsupported configuration")

The imperative method is useful when it is not possible to evaluate the skip condition during import time.

71

pytest Documentation, Release 3.1

skipif

New in version 2.0.

If you wish to skip something conditionally then you can use skipif instead. Here is an example of marking a test
function to be skipped when run on a Python3.3 interpreter:

import sys
@pytest.mark.skipif(sys.version_info < (3,3),

reason="requires python3.3")
def test_function():

...

If the condition evaluates to True during collection, the test function will be skipped, with the specified reason
appearing in the summary when using -rs.

You can share skipif markers between modules. Consider this test module:

content of test_mymodule.py
import mymodule
minversion = pytest.mark.skipif(mymodule.__versioninfo__ < (1,1),

reason="at least mymodule-1.1 required")
@minversion
def test_function():

...

You can import the marker and reuse it in another test module:

test_myothermodule.py
from test_mymodule import minversion

@minversion
def test_anotherfunction():

...

For larger test suites it’s usually a good idea to have one file where you define the markers which you then consistently
apply throughout your test suite.

Alternatively, you can use condition strings instead of booleans, but they can’t be shared between modules easily so
they are supported mainly for backward compatibility reasons.

Skip all test functions of a class or module

You can use the skipif marker (as any other marker) on classes:

@pytest.mark.skipif(sys.platform == 'win32',
reason="does not run on windows")

class TestPosixCalls(object):

def test_function(self):
"will not be setup or run under 'win32' platform"

If the condition is True, this marker will produce a skip result for each of the test methods of that class.

If you want to skip all test functions of a module, you may use the pytestmark name on the global level:

test_module.py
pytestmark = pytest.mark.skipif(...)

72 Chapter 13. Skip and xfail: dealing with tests that cannot succeed

pytest Documentation, Release 3.1

If multiple skipif decorators are applied to a test function, it will be skipped if any of the skip conditions is true.

Skipping on a missing import dependency

You can use the following helper at module level or within a test or test setup function:

docutils = pytest.importorskip("docutils")

If docutils cannot be imported here, this will lead to a skip outcome of the test. You can also skip based on the
version number of a library:

docutils = pytest.importorskip("docutils", minversion="0.3")

The version will be read from the specified module’s __version__ attribute.

Summary

Here’s a quick guide on how to skip tests in a module in different situations:

1. Skip all tests in a module unconditionally:

pytestmark = pytest.mark.skip('all tests still WIP')

2. Skip all tests in a module based on some condition:

pytestmark = pytest.mark.skipif(sys.platform == 'win32', 'tests for linux
→˓only')

3. Skip all tests in a module if some import is missing:

pexpect = pytest.importorskip('pexpect')

XFail: mark test functions as expected to fail

You can use the xfail marker to indicate that you expect a test to fail:

@pytest.mark.xfail
def test_function():

...

This test will be run but no traceback will be reported when it fails. Instead terminal reporting will list it in the
“expected to fail” (XFAIL) or “unexpectedly passing” (XPASS) sections.

Alternatively, you can also mark a test as XFAIL from within a test or setup function imperatively:

def test_function():
if not valid_config():

pytest.xfail("failing configuration (but should work)")

This will unconditionally make test_function XFAIL. Note that no other code is executed after
pytest.xfail call, differently from the marker. That’s because it is implemented internally by raising a known
exception.

Here’s the signature of the xfail marker (not the function), using Python 3 keyword-only arguments syntax:

13.2. XFail: mark test functions as expected to fail 73

pytest Documentation, Release 3.1

def xfail(condition=None, *, reason=None, raises=None, run=True, strict=False):

strict parameter

New in version 2.9.

Both XFAIL and XPASS don’t fail the test suite, unless the strict keyword-only parameter is passed as True:

@pytest.mark.xfail(strict=True)
def test_function():

...

This will make XPASS (“unexpectedly passing”) results from this test to fail the test suite.

You can change the default value of the strict parameter using the xfail_strict ini option:

[pytest]
xfail_strict=true

reason parameter

As with skipif you can also mark your expectation of a failure on a particular platform:

@pytest.mark.xfail(sys.version_info >= (3,3),
reason="python3.3 api changes")

def test_function():
...

raises parameter

If you want to be more specific as to why the test is failing, you can specify a single exception, or a list of exceptions,
in the raises argument.

@pytest.mark.xfail(raises=RuntimeError)
def test_function():

...

Then the test will be reported as a regular failure if it fails with an exception not mentioned in raises.

run parameter

If a test should be marked as xfail and reported as such but should not be even executed, use the run parameter as
False:

@pytest.mark.xfail(run=False)
def test_function():

...

This is specially useful for xfailing tests that are crashing the interpreter and should be investigated later.

74 Chapter 13. Skip and xfail: dealing with tests that cannot succeed

pytest Documentation, Release 3.1

Ignoring xfail

By specifying on the commandline:

pytest --runxfail

you can force the running and reporting of an xfail marked test as if it weren’t marked at all. This also causes
pytest.xfail to produce no effect.

Examples

Here is a simple test file with the several usages:

import pytest
xfail = pytest.mark.xfail

@xfail
def test_hello():

assert 0

@xfail(run=False)
def test_hello2():

assert 0

@xfail("hasattr(os, 'sep')")
def test_hello3():

assert 0

@xfail(reason="bug 110")
def test_hello4():

assert 0

@xfail('pytest.__version__[0] != "17"')
def test_hello5():

assert 0

def test_hello6():
pytest.xfail("reason")

@xfail(raises=IndexError)
def test_hello7():

x = []
x[1] = 1

Running it with the report-on-xfail option gives this output:

example $ pytest -rx xfail_demo.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR/example, inifile:
collected 7 items

xfail_demo.py xxxxxxx
======= short test summary info ========
XFAIL xfail_demo.py::test_hello
XFAIL xfail_demo.py::test_hello2

reason: [NOTRUN]

13.2. XFail: mark test functions as expected to fail 75

pytest Documentation, Release 3.1

XFAIL xfail_demo.py::test_hello3
condition: hasattr(os, 'sep')

XFAIL xfail_demo.py::test_hello4
bug 110

XFAIL xfail_demo.py::test_hello5
condition: pytest.__version__[0] != "17"

XFAIL xfail_demo.py::test_hello6
reason: reason

XFAIL xfail_demo.py::test_hello7

======= 7 xfailed in 0.12 seconds ========

Skip/xfail with parametrize

It is possible to apply markers like skip and xfail to individual test instances when using parametrize:

import pytest

@pytest.mark.parametrize(("n", "expected"), [
(1, 2),

pytest.param(1, 0, marks=pytest.mark.xfail),
pytest.param(1, 3, marks=pytest.mark.xfail(reason="some bug")),
(2, 3),
(3, 4),
(4, 5),

pytest.param(10, 11, marks=pytest.mark.skipif(sys.version_info >= (3, 0), reason="py2k
→˓")),
])
def test_increment(n, expected):

assert n + 1 == expected

Conditions as strings instead of booleans

Prior to pytest-2.4 the only way to specify skipif/xfail conditions was to use strings:

import sys
@pytest.mark.skipif("sys.version_info >= (3,3)")
def test_function():

...

During test function setup the skipif condition is evaluated by calling eval('sys.version_info >=
(3,0)',namespace). The namespace contains all the module globals, and os and sys as a minimum.

Since pytest-2.4 condition booleans are considered preferable because markers can then be freely imported between
test modules. With strings you need to import not only the marker but all variables used by the marker, which violates
encapsulation.

The reason for specifying the condition as a string was that pytest can report a summary of skip conditions based
purely on the condition string. With conditions as booleans you are required to specify a reason string.

Note that string conditions will remain fully supported and you are free to use them if you have no need for cross-
importing markers.

76 Chapter 13. Skip and xfail: dealing with tests that cannot succeed

pytest Documentation, Release 3.1

The evaluation of a condition string in pytest.mark.skipif(conditionstring) or
pytest.mark.xfail(conditionstring) takes place in a namespace dictionary which is constructed
as follows:

• the namespace is initialized by putting the sys and os modules and the pytest config object into it.

• updated with the module globals of the test function for which the expression is applied.

The pytest config object allows you to skip based on a test configuration value which you might have added:

@pytest.mark.skipif("not config.getvalue('db')")
def test_function(...):

...

The equivalent with “boolean conditions” is:

@pytest.mark.skipif(not pytest.config.getvalue("db"),
reason="--db was not specified")

def test_function(...):
pass

Note: You cannot use pytest.config.getvalue() in code imported before pytest’s argument pars-
ing takes place. For example, conftest.py files are imported before command line parsing and thus
config.getvalue() will not execute correctly.

13.4. Conditions as strings instead of booleans 77

pytest Documentation, Release 3.1

78 Chapter 13. Skip and xfail: dealing with tests that cannot succeed

CHAPTER 14

Parametrizing fixtures and test functions

pytest enables test parametrization at several levels:

• pytest.fixture() allows one to parametrize fixture functions.

• @pytest.mark.parametrize allows one to define multiple sets of arguments and fixtures at the test function or
class.

• pytest_generate_tests allows one to define custom parametrization schemes or extensions.

@pytest.mark.parametrize: parametrizing test functions

New in version 2.2.

Changed in version 2.4: Several improvements.

The builtin pytest.mark.parametrize decorator enables parametrization of arguments for a test function. Here
is a typical example of a test function that implements checking that a certain input leads to an expected output:

content of test_expectation.py
import pytest
@pytest.mark.parametrize("test_input,expected", [

("3+5", 8),
("2+4", 6),
("6*9", 42),

])
def test_eval(test_input, expected):

assert eval(test_input) == expected

Here, the @parametrize decorator defines three different (test_input,expected) tuples so that the
test_eval function will run three times using them in turn:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 3 items

test_expectation.py ..F

======= FAILURES ========
_______ test_eval[6*9-42] ________

79

pytest Documentation, Release 3.1

test_input = '6*9', expected = 42

@pytest.mark.parametrize("test_input,expected", [
("3+5", 8),
("2+4", 6),
("6*9", 42),

])
def test_eval(test_input, expected):

> assert eval(test_input) == expected
E AssertionError: assert 54 == 42
E + where 54 = eval('6*9')

test_expectation.py:8: AssertionError
======= 1 failed, 2 passed in 0.12 seconds ========

As designed in this example, only one pair of input/output values fails the simple test function. And as usual with test
function arguments, you can see the input and output values in the traceback.

Note that you could also use the parametrize marker on a class or a module (see Marking test functions with attributes)
which would invoke several functions with the argument sets.

It is also possible to mark individual test instances within parametrize, for example with the builtin mark.xfail:

content of test_expectation.py
import pytest
@pytest.mark.parametrize("test_input,expected", [

("3+5", 8),
("2+4", 6),
pytest.param("6*9", 42,

marks=pytest.mark.xfail),
])
def test_eval(test_input, expected):

assert eval(test_input) == expected

Note: prior to version 3.1 the supported mechanism for marking values used the syntax:

import pytest
@pytest.mark.parametrize("test_input,expected", [

("3+5", 8),
("2+4", 6),
pytest.mark.xfail(("6*9", 42),),

])
def test_eval(test_input, expected):

assert eval(test_input) == expected

This was an initial hack to support the feature but soon was demonstrated to be incomplete, broken for passing func-
tions or applying multiple marks with the same name but different parameters. The old syntax will be removed in
pytest-4.0.

Let’s run this:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 3 items

80 Chapter 14. Parametrizing fixtures and test functions

pytest Documentation, Release 3.1

test_expectation.py ..x

======= 2 passed, 1 xfailed in 0.12 seconds ========

The one parameter set which caused a failure previously now shows up as an “xfailed (expected to fail)” test.

To get all combinations of multiple parametrized arguments you can stack parametrize decorators:

import pytest
@pytest.mark.parametrize("x", [0, 1])
@pytest.mark.parametrize("y", [2, 3])
def test_foo(x, y):

pass

This will run the test with the arguments set to x=0/y=2, x=0/y=3, x=1/y=2 and x=1/y=3.

Note: In versions prior to 2.4 one needed to specify the argument names as a tuple. This remains valid but the
simpler "name1,name2,..." comma-separated-string syntax is now advertised first because it’s easier to write
and produces less line noise.

Basic pytest_generate_tests example

Sometimes you may want to implement your own parametrization scheme or implement some dynamism for deter-
mining the parameters or scope of a fixture. For this, you can use the pytest_generate_tests hook which is
called when collecting a test function. Through the passed in metafunc object you can inspect the requesting test
context and, most importantly, you can call metafunc.parametrize() to cause parametrization.

For example, let’s say we want to run a test taking string inputs which we want to set via a new pytest command
line option. Let’s first write a simple test accepting a stringinput fixture function argument:

content of test_strings.py

def test_valid_string(stringinput):
assert stringinput.isalpha()

Now we add a conftest.py file containing the addition of a command line option and the parametrization of our
test function:

content of conftest.py

def pytest_addoption(parser):
parser.addoption("--stringinput", action="append", default=[],

help="list of stringinputs to pass to test functions")

def pytest_generate_tests(metafunc):
if 'stringinput' in metafunc.fixturenames:

metafunc.parametrize("stringinput",
metafunc.config.option.stringinput)

If we now pass two stringinput values, our test will run twice:

14.2. Basic pytest_generate_tests example 81

pytest Documentation, Release 3.1

$ pytest -q --stringinput="hello" --stringinput="world" test_strings.py
..
2 passed in 0.12 seconds

Let’s also run with a stringinput that will lead to a failing test:

$ pytest -q --stringinput="!" test_strings.py
F
======= FAILURES ========
_______ test_valid_string[!] ________

stringinput = '!'

def test_valid_string(stringinput):
> assert stringinput.isalpha()
E AssertionError: assert False
E + where False = <built-in method isalpha of str object at 0xdeadbeef>()
E + where <built-in method isalpha of str object at 0xdeadbeef> = '!'.
→˓isalpha

test_strings.py:3: AssertionError
1 failed in 0.12 seconds

As expected our test function fails.

If you don’t specify a stringinput it will be skipped because metafunc.parametrize() will be called with an
empty parameter list:

$ pytest -q -rs test_strings.py
s
======= short test summary info ========
SKIP [1] test_strings.py:1: got empty parameter set ['stringinput'], function test_
→˓valid_string at $REGENDOC_TMPDIR/test_strings.py:1
1 skipped in 0.12 seconds

For further examples, you might want to look at more parametrization examples.

The metafunc object

class Metafunc(function, fixtureinfo, config, cls=None, module=None)
Metafunc objects are passed to the pytest_generate_tests hook. They help to inspect a test function
and to generate tests according to test configuration or values specified in the class or module where a test
function is defined.

config = None
access to the _pytest.config.Config object for the test session

module = None
the module object where the test function is defined in.

function = None
underlying python test function

fixturenames = None
set of fixture names required by the test function

82 Chapter 14. Parametrizing fixtures and test functions

pytest Documentation, Release 3.1

cls = None
class object where the test function is defined in or None.

parametrize(argnames, argvalues, indirect=False, ids=None, scope=None)
Add new invocations to the underlying test function using the list of argvalues for the given argnames.
Parametrization is performed during the collection phase. If you need to setup expensive resources see
about setting indirect to do it rather at test setup time.

Parameters

• argnames – a comma-separated string denoting one or more argument names, or a
list/tuple of argument strings.

• argvalues – The list of argvalues determines how often a test is invoked with different
argument values. If only one argname was specified argvalues is a list of values. If N
argnames were specified, argvalues must be a list of N-tuples, where each tuple-element
specifies a value for its respective argname.

• indirect – The list of argnames or boolean. A list of arguments’ names (subset of
argnames). If True the list contains all names from the argnames. Each argvalue cor-
responding to an argname in this list will be passed as request.param to its respective
argname fixture function so that it can perform more expensive setups during the setup
phase of a test rather than at collection time.

• ids – list of string ids, or a callable. If strings, each is corresponding to the argvalues so
that they are part of the test id. If None is given as id of specific test, the automatically
generated id for that argument will be used. If callable, it should take one argument (a
single argvalue) and return a string or return None. If None, the automatically generated id
for that argument will be used. If no ids are provided they will be generated automatically
from the argvalues.

• scope – if specified it denotes the scope of the parameters. The scope is used for group-
ing tests by parameter instances. It will also override any fixture-function defined scope,
allowing to set a dynamic scope using test context or configuration.

addcall(funcargs=None, id=<object object>, param=<object object>)
(deprecated, use parametrize) Add a new call to the underlying test function during the collection phase
of a test run. Note that request.addcall() is called during the test collection phase prior and independently
to actual test execution. You should only use addcall() if you need to specify multiple arguments of a test
function.

Parameters

• funcargs – argument keyword dictionary used when invoking the test function.

• id – used for reporting and identification purposes. If you don’t supply an id an automatic
unique id will be generated.

• param – a parameter which will be exposed to a later fixture function invocation through
the request.param attribute.

14.3. The metafunc object 83

pytest Documentation, Release 3.1

84 Chapter 14. Parametrizing fixtures and test functions

CHAPTER 15

Cache: working with cross-testrun state

New in version 2.8.

Warning: The functionality of this core plugin was previously distributed as a third party plugin named
pytest-cache. The core plugin is compatible regarding command line options and API usage except that
you can only store/receive data between test runs that is json-serializable.

Usage

The plugin provides two command line options to rerun failures from the last pytest invocation:

• --lf, --last-failed - to only re-run the failures.

• --ff, --failed-first - to run the failures first and then the rest of the tests.

For cleanup (usually not needed), a --cache-clear option allows to remove all cross-session cache contents ahead
of a test run.

Other plugins may access the config.cache object to set/get json encodable values between pytest invocations.

Note: This plugin is enabled by default, but can be disabled if needed: see Deactivating / unregistering a plugin by
name (the internal name for this plugin is cacheprovider).

Rerunning only failures or failures first

First, let’s create 50 test invocation of which only 2 fail:

content of test_50.py
import pytest

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
pytest.fail("bad luck")

If you run this for the first time you will see two failures:

85

pytest Documentation, Release 3.1

$ pytest -q
.................F.......F........................
======= FAILURES ========
_______ test_num[17] ________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______ test_num[25] ________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
2 failed, 48 passed in 0.12 seconds

If you then run it with --lf:

$ pytest --lf
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
run-last-failure: rerun last 2 failures
rootdir: $REGENDOC_TMPDIR, inifile:
collected 50 items

test_50.py FF

======= FAILURES ========
_______ test_num[17] ________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______ test_num[25] ________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")

86 Chapter 15. Cache: working with cross-testrun state

pytest Documentation, Release 3.1

E Failed: bad luck

test_50.py:6: Failed
======= 48 tests deselected ========
======= 2 failed, 48 deselected in 0.12 seconds ========

You have run only the two failing test from the last run, while 48 tests have not been run (“deselected”).

Now, if you run with the --ff option, all tests will be run but the first previous failures will be executed first (as can
be seen from the series of FF and dots):

$ pytest --ff
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
run-last-failure: rerun last 2 failures first
rootdir: $REGENDOC_TMPDIR, inifile:
collected 50 items

test_50.py FF..

======= FAILURES ========
_______ test_num[17] ________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______ test_num[25] ________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
======= 2 failed, 48 passed in 0.12 seconds ========

The new config.cache object

Plugins or conftest.py support code can get a cached value using the pytest config object. Here is a basic example
plugin which implements a pytest fixtures: explicit, modular, scalable which re-uses previously created state across
pytest invocations:

content of test_caching.py
import pytest
import time

15.3. The new config.cache object 87

pytest Documentation, Release 3.1

@pytest.fixture
def mydata(request):

val = request.config.cache.get("example/value", None)
if val is None:

time.sleep(9*0.6) # expensive computation :)
val = 42
request.config.cache.set("example/value", val)

return val

def test_function(mydata):
assert mydata == 23

If you run this command once, it will take a while because of the sleep:

$ pytest -q
F
======= FAILURES ========
_______ test_function ________

mydata = 42

def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:14: AssertionError
1 failed in 0.12 seconds

If you run it a second time the value will be retrieved from the cache and this will be quick:

$ pytest -q
F
======= FAILURES ========
_______ test_function ________

mydata = 42

def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:14: AssertionError
1 failed in 0.12 seconds

See the cache-api for more details.

Inspecting Cache content

You can always peek at the content of the cache using the --cache-show command line option:

$ py.test --cache-show
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
cachedir: $REGENDOC_TMPDIR/.cache
------------------------------- cache values -------------------------------

88 Chapter 15. Cache: working with cross-testrun state

pytest Documentation, Release 3.1

cache/lastfailed contains:
{'test_caching.py::test_function': True}

example/value contains:
42

======= no tests ran in 0.12 seconds ========

Clearing Cache content

You can instruct pytest to clear all cache files and values by adding the --cache-clear option like this:

pytest --cache-clear

This is recommended for invocations from Continuous Integration servers where isolation and correctness is more
important than speed.

config.cache API

The config.cache object allows other plugins, including conftest.py files, to safely and flexibly store and
retrieve values across test runs because the config object is available in many places.

Under the hood, the cache plugin uses the simple dumps/loads API of the json stdlib module

Cache.get(key, default)
return cached value for the given key. If no value was yet cached or the value cannot be read, the specified
default is returned.

Parameters

• key – must be a / separated value. Usually the first name is the name of your plugin or
your application.

• default – must be provided in case of a cache-miss or invalid cache values.

Cache.set(key, value)
save value for the given key.

Parameters

• key – must be a / separated value. Usually the first name is the name of your plugin or
your application.

• value – must be of any combination of basic python types, including nested types like e.
g. lists of dictionaries.

Cache.makedir(name)
return a directory path object with the given name. If the directory does not yet exist, it will be created. You can
use it to manage files likes e. g. store/retrieve database dumps across test sessions.

Parameters name – must be a string not containing a / separator. Make sure the name contains
your plugin or application identifiers to prevent clashes with other cache users.

15.5. Clearing Cache content 89

pytest Documentation, Release 3.1

90 Chapter 15. Cache: working with cross-testrun state

CHAPTER 16

Support for unittest.TestCase / Integration of fixtures

pytest has support for running Python unittest.py style tests. It’s meant for leveraging existing unittest-style
projects to use pytest features. Concretely, pytest will automatically collect unittest.TestCase subclasses
and their test methods in test files. It will invoke typical setup/teardown methods and generally try to make test
suites written to run on unittest, to also run using pytest. We assume here that you are familiar with writing
unittest.TestCase style tests and rather focus on integration aspects.

Note that this is meant as a provisional way of running your test code until you fully convert to pytest-style tests. To
fully take advantage of fixtures, parametrization and hooks you should convert (tools like unittest2pytest are helpful).
Also, not all 3rd party pluging are expected to work best with unittest.TestCase style tests.

Usage

After Installation type:

pytest

and you should be able to run your unittest-style tests if they are contained in test_* modules. If that works for
you then you can make use of most pytest features, for example --pdb debugging in failures, using plain assert-
statements, more informative tracebacks, stdout-capturing or distributing tests to multiple CPUs via the -nNUM option
if you installed the pytest-xdist plugin. Please refer to the general pytest documentation for many more
examples.

Note: Running tests from unittest.TestCase subclasses with --pdb will disable tearDown and cleanup
methods for the case that an Exception occurs. This allows proper post mortem debugging for all applications which
have significant logic in their tearDown machinery. However, supporting this feature has the following side effect:
If people overwrite unittest.TestCase __call__ or run, they need to to overwrite debug in the same way
(this is also true for standard unittest).

Mixing pytest fixtures into unittest.TestCase style tests

Running your unittest with pytest allows you to use its fixture mechanism with unittest.TestCase style tests.
Assuming you have at least skimmed the pytest fixture features, let’s jump-start into an example that integrates a pytest
db_class fixture, setting up a class-cached database object, and then reference it from a unittest-style test:

91

http://docs.python.org/library/unittest.html
https://pypi.python.org/pypi/unittest2pytest/

pytest Documentation, Release 3.1

content of conftest.py

we define a fixture function below and it will be "used" by
referencing its name from tests

import pytest

@pytest.fixture(scope="class")
def db_class(request):

class DummyDB(object):
pass

set a class attribute on the invoking test context
request.cls.db = DummyDB()

This defines a fixture function db_class which - if used - is called once for each test class and which sets the class-
level db attribute to a DummyDB instance. The fixture function achieves this by receiving a special request object
which gives access to the requesting test context such as the cls attribute, denoting the class from which the fixture is
used. This architecture de-couples fixture writing from actual test code and allows re-use of the fixture by a minimal
reference, the fixture name. So let’s write an actual unittest.TestCase class using our fixture definition:

content of test_unittest_db.py

import unittest
import pytest

@pytest.mark.usefixtures("db_class")
class MyTest(unittest.TestCase):

def test_method1(self):
assert hasattr(self, "db")
assert 0, self.db # fail for demo purposes

def test_method2(self):
assert 0, self.db # fail for demo purposes

The @pytest.mark.usefixtures("db_class") class-decorator makes sure that the pytest fixture function
db_class is called once per class. Due to the deliberately failing assert statements, we can take a look at the
self.db values in the traceback:

$ pytest test_unittest_db.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_unittest_db.py FF

======= FAILURES ========
_______ MyTest.test_method1 ________

self = <test_unittest_db.MyTest testMethod=test_method1>

def test_method1(self):
assert hasattr(self, "db")

> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

92 Chapter 16. Support for unittest.TestCase / Integration of fixtures

pytest Documentation, Release 3.1

test_unittest_db.py:9: AssertionError
_______ MyTest.test_method2 ________

self = <test_unittest_db.MyTest testMethod=test_method2>

def test_method2(self):
> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:12: AssertionError
======= 2 failed in 0.12 seconds ========

This default pytest traceback shows that the two test methods share the same self.db instance which was our
intention when writing the class-scoped fixture function above.

autouse fixtures and accessing other fixtures

Although it’s usually better to explicitly declare use of fixtures you need for a given test, you may sometimes want to
have fixtures that are automatically used in a given context. After all, the traditional style of unittest-setup mandates
the use of this implicit fixture writing and chances are, you are used to it or like it.

You can flag fixture functions with @pytest.fixture(autouse=True) and define the fixture function in the
context where you want it used. Let’s look at an initdir fixture which makes all test methods of a TestCase
class execute in a temporary directory with a pre-initialized samplefile.ini. Our initdir fixture itself uses
the pytest builtin tmpdir fixture to delegate the creation of a per-test temporary directory:

content of test_unittest_cleandir.py
import pytest
import unittest

class MyTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def initdir(self, tmpdir):

tmpdir.chdir() # change to pytest-provided temporary directory
tmpdir.join("samplefile.ini").write("# testdata")

def test_method(self):
with open("samplefile.ini") as f:

s = f.read()
assert "testdata" in s

Due to the autouse flag the initdir fixture function will be used for all methods of the class where it is de-
fined. This is a shortcut for using a @pytest.mark.usefixtures("initdir") marker on the class like in
the previous example.

Running this test module ...:

$ pytest -q test_unittest_cleandir.py
.
1 passed in 0.12 seconds

... gives us one passed test because the initdir fixture function was executed ahead of the test_method.

Note: While pytest supports receiving fixtures via test function arguments for non-unittest test methods,

16.3. autouse fixtures and accessing other fixtures 93

pytest Documentation, Release 3.1

unittest.TestCase methods cannot directly receive fixture function arguments as implementing that is likely to
inflict on the ability to run general unittest.TestCase test suites. Maybe optional support would be possible, though.
If unittest finally grows a plugin system that should help as well. In the meanwhile, the above usefixtures and
autouse examples should help to mix in pytest fixtures into unittest suites. And of course you can also start to
selectively leave away the unittest.TestCase subclassing, use plain asserts and get the unlimited pytest feature
set.

94 Chapter 16. Support for unittest.TestCase / Integration of fixtures

CHAPTER 17

Running tests written for nose

pytest has basic support for running tests written for nose.

Usage

After Installation type:

python setup.py develop # make sure tests can import our package
pytest # instead of 'nosetests'

and you should be able to run your nose style tests and make use of pytest’s capabilities.

Supported nose Idioms

• setup and teardown at module/class/method level

• SkipTest exceptions and markers

• setup/teardown decorators

• yield-based tests and their setup

• __test__ attribute on modules/classes/functions

• general usage of nose utilities

Unsupported idioms / known issues

• unittest-style setUp,tearDown,setUpClass,tearDownClass are recognized only on
unittest.TestCase classes but not on plain classes. nose supports these methods also
on plain classes but pytest deliberately does not. As nose and pytest already both support
setup_class,teardown_class,setup_method,teardown_method it doesn’t seem useful
to duplicate the unittest-API like nose does. If you however rather think pytest should support the unittest-
spelling on plain classes please post to this issue.

• nose imports test modules with the same import path (e.g. tests.test_mod) but different file system paths
(e.g. tests/test_mode.py and other/tests/test_mode.py) by extending sys.path/import seman-
tics. pytest does not do that but there is discussion in #268 for adding some support. Note that nose2 choose to
avoid this sys.path/import hackery.

95

https://nose.readthedocs.io/en/latest/
https://github.com/pytest-dev/pytest/issues/377/
https://github.com/pytest-dev/pytest/issues/268
https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading
https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading

pytest Documentation, Release 3.1

If you place a conftest.py file in the root directory of your project (as determined by pytest) pytest will run tests
“nose style” against the code below that directory by adding it to your sys.path instead of running against
your installed code.

You may find yourself wanting to do this if you ran python setup.py install to set up your project,
as opposed to python setup.py develop or any of the package manager equivalents. Installing with
develop in a virtual environment like Tox is recommended over this pattern.

• nose-style doctests are not collected and executed correctly, also doctest fixtures don’t work.

• no nose-configuration is recognized.

• yield-based methods don’t support setup properly because the setup method is always called in the same
class instance. There are no plans to fix this currently because yield-tests are deprecated in pytest 3.0, with
pytest.mark.parametrize being the recommended alternative.

96 Chapter 17. Running tests written for nose

CHAPTER 18

classic xunit-style setup

This section describes a classic and popular way how you can implement fixtures (setup and teardown test state) on a
per-module/class/function basis.

Note: While these setup/teardown methods are simple and familiar to those coming from a unittest or nose
background, you may also consider using pytest’s more powerful fixture mechanism which leverages the concept
of dependency injection, allowing for a more modular and more scalable approach for managing test state, especially
for larger projects and for functional testing. You can mix both fixture mechanisms in the same file but test methods
of unittest.TestCase subclasses cannot receive fixture arguments.

Module level setup/teardown

If you have multiple test functions and test classes in a single module you can optionally implement the following
fixture methods which will usually be called once for all the functions:

def setup_module(module):
""" setup any state specific to the execution of the given module."""

def teardown_module(module):
""" teardown any state that was previously setup with a setup_module
method.
"""

As of pytest-3.0, the module parameter is optional.

Class level setup/teardown

Similarly, the following methods are called at class level before and after all test methods of the class are called:

@classmethod
def setup_class(cls):

""" setup any state specific to the execution of the given class (which
usually contains tests).
"""

@classmethod
def teardown_class(cls):

97

pytest Documentation, Release 3.1

""" teardown any state that was previously setup with a call to
setup_class.
"""

Method and function level setup/teardown

Similarly, the following methods are called around each method invocation:

def setup_method(self, method):
""" setup any state tied to the execution of the given method in a
class. setup_method is invoked for every test method of a class.
"""

def teardown_method(self, method):
""" teardown any state that was previously setup with a setup_method
call.
"""

As of pytest-3.0, the method parameter is optional.

If you would rather define test functions directly at module level you can also use the following functions to implement
fixtures:

def setup_function(function):
""" setup any state tied to the execution of the given function.
Invoked for every test function in the module.
"""

def teardown_function(function):
""" teardown any state that was previously setup with a setup_function
call.
"""

As of pytest-3.0, the function parameter is optional.

Remarks:

• It is possible for setup/teardown pairs to be invoked multiple times per testing process.

• teardown functions are not called if the corresponding setup function existed and failed/was skipped.

98 Chapter 18. classic xunit-style setup

CHAPTER 19

Installing and Using plugins

This section talks about installing and using third party plugins. For writing your own plugins, please refer to Writing
plugins.

Installing a third party plugin can be easily done with pip:

pip install pytest-NAME
pip uninstall pytest-NAME

If a plugin is installed, pytest automatically finds and integrates it, there is no need to activate it.

Here is a little annotated list for some popular plugins:

• pytest-django: write tests for django apps, using pytest integration.

• pytest-twisted: write tests for twisted apps, starting a reactor and processing deferreds from test functions.

• pytest-catchlog: to capture and assert about messages from the logging module

• pytest-cov: coverage reporting, compatible with distributed testing

• pytest-xdist: to distribute tests to CPUs and remote hosts, to run in boxed mode which allows to survive seg-
mentation faults, to run in looponfailing mode, automatically re-running failing tests on file changes.

• pytest-instafail: to report failures while the test run is happening.

• pytest-bdd and pytest-konira to write tests using behaviour-driven testing.

• pytest-timeout: to timeout tests based on function marks or global definitions.

• pytest-pep8: a --pep8 option to enable PEP8 compliance checking.

• pytest-flakes: check source code with pyflakes.

• oejskit: a plugin to run javascript unittests in live browsers.

To see a complete list of all plugins with their latest testing status against different pytest and Python versions, please
visit plugincompat.

You may also discover more plugins through a pytest- pypi.python.org search.

Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest file like this:

pytest_plugins = "myapp.testsupport.myplugin",

99

http://pypi.python.org/pypi/pytest-django
https://www.djangoproject.com/
http://pypi.python.org/pypi/pytest-twisted
http://twistedmatrix.com
http://pypi.python.org/pypi/pytest-catchlog
http://pypi.python.org/pypi/pytest-cov
http://pypi.python.org/pypi/pytest-xdist
http://pypi.python.org/pypi/pytest-instafail
http://pypi.python.org/pypi/pytest-bdd
http://pypi.python.org/pypi/pytest-konira
http://pypi.python.org/pypi/pytest-timeout
http://pypi.python.org/pypi/pytest-pep8
https://pypi.python.org/pypi/pytest-flakes
http://pypi.python.org/pypi/oejskit
http://plugincompat.herokuapp.com/
http://pypi.python.org/pypi?%3Aaction=search&term=pytest-&submit=search

pytest Documentation, Release 3.1

When the test module or conftest plugin is loaded the specified plugins will be loaded as well.

pytest_plugins = “myapp.testsupport.myplugin”

which will import the specified module as a pytest plugin.

Finding out which plugins are active

If you want to find out which plugins are active in your environment you can type:

pytest --trace-config

and will get an extended test header which shows activated plugins and their names. It will also print local plugins aka
conftest.py files when they are loaded.

Deactivating / unregistering a plugin by name

You can prevent plugins from loading or unregister them:

pytest -p no:NAME

This means that any subsequent try to activate/load the named plugin will not work.

If you want to unconditionally disable a plugin for a project, you can add this option to your pytest.ini file:

[pytest]
addopts = -p no:NAME

Alternatively to disable it only in certain environments (for example in a CI server), you can set PYTEST_ADDOPTS
environment variable to -p no:name.

See Finding out which plugins are active for how to obtain the name of a plugin.

Pytest default plugin reference

You can find the source code for the following plugins in the pytest repository.

_pytest.assertion support for presenting detailed information in failing asser-
tions.

_pytest.cacheprovider merged implementation of the cache provider
_pytest.capture per-test stdout/stderr capturing mechanism.
_pytest.config command line options, ini-file and conftest.py processing.
_pytest.doctest discover and run doctests in modules and test files.
_pytest.helpconfig version info, help messages, tracing configuration.
_pytest.junitxml report test results in JUnit-XML format,
_pytest.mark generic mechanism for marking and selecting python func-

tions.
_pytest.monkeypatch monkeypatching and mocking functionality.
_pytest.nose run test suites written for nose.

Continued on next page

100 Chapter 19. Installing and Using plugins

https://github.com/pytest-dev/pytest

pytest Documentation, Release 3.1

Table 19.1 – continued from previous page
_pytest.pastebin submit failure or test session information to a pastebin ser-

vice.
_pytest.debugging interactive debugging with PDB, the Python Debugger.
_pytest.pytester (disabled by default) support for testing pytest and pytest

plugins.
_pytest.python Python test discovery, setup and run of test functions.
_pytest.recwarn recording warnings during test function execution.
_pytest.resultlog log machine-parseable test session result information in a

plain
_pytest.runner basic collect and runtest protocol implementations
_pytest.main core implementation of testing process: init, session,

runtest loop.
_pytest.skipping support for skip/xfail functions and markers.
_pytest.terminal terminal reporting of the full testing process.
_pytest.tmpdir support for providing temporary directories to test func-

tions.
_pytest.unittest discovery and running of std-library “unittest” style tests.

19.4. Pytest default plugin reference 101

pytest Documentation, Release 3.1

102 Chapter 19. Installing and Using plugins

CHAPTER 20

Writing plugins

It is easy to implement local conftest plugins for your own project or pip-installable plugins that can be used throughout
many projects, including third party projects. Please refer to Installing and Using plugins if you only want to use but
not write plugins.

A plugin contains one or multiple hook functions. Writing hooks explains the basics and details of how you can write a
hook function yourself. pytest implements all aspects of configuration, collection, running and reporting by calling
well specified hooks of the following plugins:

• Pytest default plugin reference: loaded from pytest’s internal _pytest directory.

• external plugins: modules discovered through setuptools entry points

• conftest.py plugins: modules auto-discovered in test directories

In principle, each hook call is a 1:N Python function call where N is the number of registered implementation functions
for a given specification. All specifications and implementations follow the pytest_ prefix naming convention,
making them easy to distinguish and find.

Plugin discovery order at tool startup

pytest loads plugin modules at tool startup in the following way:

• by loading all builtin plugins

• by loading all plugins registered through setuptools entry points.

• by pre-scanning the command line for the -p name option and loading the specified plugin before actual
command line parsing.

• by loading all conftest.py files as inferred by the command line invocation:

– if no test paths are specified use current dir as a test path

– if exists, load conftest.py and test*/conftest.py relative to the directory part of the first test
path.

Note that pytest does not find conftest.py files in deeper nested sub directories at tool startup. It is usually
a good idea to keep your conftest.py file in the top level test or project root directory.

• by recursively loading all plugins specified by the pytest_plugins variable in conftest.py files

103

pytest Documentation, Release 3.1

conftest.py: local per-directory plugins

Local conftest.py plugins contain directory-specific hook implementations. Hook Session and test running activi-
ties will invoke all hooks defined in conftest.py files closer to the root of the filesystem. Example of implementing
the pytest_runtest_setup hook so that is called for tests in the a sub directory but not for other directories:

a/conftest.py:
def pytest_runtest_setup(item):

called for running each test in 'a' directory
print ("setting up", item)

a/test_sub.py:
def test_sub():

pass

test_flat.py:
def test_flat():

pass

Here is how you might run it:

pytest test_flat.py # will not show "setting up"
pytest a/test_sub.py # will show "setting up"

Note: If you have conftest.py files which do not reside in a python package directory (i.e. one containing an
__init__.py) then “import conftest” can be ambiguous because there might be other conftest.py files as well
on your PYTHONPATH or sys.path. It is thus good practice for projects to either put conftest.py under a
package scope or to never import anything from a conftest.py file.

Writing your own plugin

If you want to write a plugin, there are many real-life examples you can copy from:

• a custom collection example plugin: A basic example for specifying tests in Yaml files

• around 20 Pytest default plugin reference which provide pytest’s own functionality

• many external plugins providing additional features

All of these plugins implement the documented well specified hooks to extend and add functionality.

Note: Make sure to check out the excellent cookiecutter-pytest-plugin project, which is a cookiecutter template for
authoring plugins.

The template provides an excellent starting point with a working plugin, tests running with tox, comprehensive
README and entry-pointy already pre-configured.

Also consider contributing your plugin to pytest-dev once it has some happy users other than yourself.

104 Chapter 20. Writing plugins

http://plugincompat.herokuapp.com
https://github.com/pytest-dev/cookiecutter-pytest-plugin
https://github.com/audreyr/cookiecutter

pytest Documentation, Release 3.1

Making your plugin installable by others

If you want to make your plugin externally available, you may define a so-called entry point for your distribution so
that pytest finds your plugin module. Entry points are a feature that is provided by setuptools. pytest looks up
the pytest11 entrypoint to discover its plugins and you can thus make your plugin available by defining it in your
setuptools-invocation:

sample ./setup.py file
from setuptools import setup

setup(
name="myproject",
packages = ['myproject']

the following makes a plugin available to pytest
entry_points = {

'pytest11': [
'name_of_plugin = myproject.pluginmodule',

]
},

custom PyPI classifier for pytest plugins
classifiers=[

"Framework :: Pytest",
],

)

If a package is installed this way, pytest will load myproject.pluginmodule as a plugin which can define
well specified hooks.

Note: Make sure to include Framework :: Pytest in your list of PyPI classifiers to make it easy for users to
find your plugin.

Assertion Rewriting

One of the main features of pytest is the use of plain assert statements and the detailed introspection of expressions
upon assertion failures. This is provided by “assertion rewriting” which modifies the parsed AST before it gets com-
piled to bytecode. This is done via a PEP 302 import hook which gets installed early on when pytest starts up and
will perform this re-writing when modules get imported. However since we do not want to test different bytecode then
you will run in production this hook only re-writes test modules themselves as well as any modules which are part of
plugins. Any other imported module will not be re-written and normal assertion behaviour will happen.

If you have assertion helpers in other modules where you would need assertion rewriting to be enabled you need to
ask pytest explicitly to re-write this module before it gets imported.

register_assert_rewrite(*names)
Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside the package will get their assert statements
rewritten. Thus you should make sure to call this before the module is actually imported, usually in your
__init__.py if you are a plugin using a package.

Raises TypeError – if the given module names are not strings.

20.4. Making your plugin installable by others 105

http://pypi.python.org/pypi/setuptools
https://python-packaging-user-guide.readthedocs.io/distributing/#classifiers
https://www.python.org/dev/peps/pep-0302

pytest Documentation, Release 3.1

This is especially important when you write a pytest plugin which is created using a package. The import hook only
treats conftest.py files and any modules which are listed in the pytest11 entrypoint as plugins. As an example
consider the following package:

pytest_foo/__init__.py
pytest_foo/plugin.py
pytest_foo/helper.py

With the following typical setup.py extract:

setup(
...
entry_points={'pytest11': ['foo = pytest_foo.plugin']},
...

)

In this case only pytest_foo/plugin.py will be re-written. If the helper module also contains assert state-
ments which need to be re-written it needs to be marked as such, before it gets imported. This is easiest by
marking it for re-writing inside the __init__.py module, which will always be imported first when a mod-
ule inside a package is imported. This way plugin.py can still import helper.py normally. The contents of
pytest_foo/__init__.py will then need to look like this:

import pytest

pytest.register_assert_rewrite('pytest_foo.helper')

Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest.py file like this:

pytest_plugins = ["name1", "name2"]

When the test module or conftest plugin is loaded the specified plugins will be loaded as well. Any module can be
blessed as a plugin, including internal application modules:

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins variables are processed recursively, so note that in the example above if
myapp.testsupport.myplugin also declares pytest_plugins, the contents of the variable will also
be loaded as plugins, and so on.

This mechanism makes it easy to share fixtures within applications or even external applications without the need to
create external plugins using the setuptools‘s entry point technique.

Plugins imported by pytest_plugins will also automatically be marked for assertion rewriting (see
pytest.register_assert_rewrite()). However for this to have any effect the module must not be
imported already; if it was already imported at the time the pytest_plugins statement is processed, a
warning will result and assertions inside the plugin will not be re-written. To fix this you can either call
pytest.register_assert_rewrite() yourself before the module is imported, or you can arrange the code
to delay the importing until after the plugin is registered.

106 Chapter 20. Writing plugins

pytest Documentation, Release 3.1

Accessing another plugin by name

If a plugin wants to collaborate with code from another plugin it can obtain a reference through the plugin manager
like this:

plugin = config.pluginmanager.getplugin("name_of_plugin")

If you want to look at the names of existing plugins, use the --trace-config option.

Testing plugins

pytest comes with some facilities that you can enable for testing your plugin. Given that you have an installed plu-
gin you can enable the testdir fixture via specifying a command line option to include the pytester plugin (-p
pytester) or by putting pytest_plugins = "pytester" into your test or conftest.py file. You then
will have a testdir fixture which you can use like this:

content of test_myplugin.py

pytest_plugins = "pytester" # to get testdir fixture

def test_myplugin(testdir):
testdir.makepyfile("""

def test_example():
pass

""")
result = testdir.runpytest("--verbose")
result.stdout.fnmatch_lines("""

test_example*
""")

Note that by default testdir.runpytest() will perform a pytest in-process. You can pass the command line
option --runpytest=subprocess to have it happen in a subprocess.

Also see the RunResult for more methods of the result object that you get from a call to runpytest.

20.7. Accessing another plugin by name 107

pytest Documentation, Release 3.1

108 Chapter 20. Writing plugins

CHAPTER 21

Writing hook functions

hook function validation and execution

pytest calls hook functions from registered plugins for any given hook specification. Let’s look at a typical hook
function for the pytest_collection_modifyitems(session,config,items) hook which pytest calls
after collection of all test items is completed.

When we implement a pytest_collection_modifyitems function in our plugin pytest will during registra-
tion verify that you use argument names which match the specification and bail out if not.

Let’s look at a possible implementation:

def pytest_collection_modifyitems(config, items):
called after collection is completed
you can modify the ``items`` list

Here, pytest will pass in config (the pytest config object) and items (the list of collected test items) but will
not pass in the session argument because we didn’t list it in the function signature. This dynamic “pruning” of
arguments allows pytest to be “future-compatible”: we can introduce new hook named parameters without breaking
the signatures of existing hook implementations. It is one of the reasons for the general long-lived compatibility of
pytest plugins.

Note that hook functions other than pytest_runtest_* are not allowed to raise exceptions. Doing so will break
the pytest run.

firstresult: stop at first non-None result

Most calls to pytest hooks result in a list of results which contains all non-None results of the called hook functions.

Some hook specifications use the firstresult=True option so that the hook call only executes until the first of
N registered functions returns a non-None result which is then taken as result of the overall hook call. The remaining
hook functions will not be called in this case.

hookwrapper: executing around other hooks

New in version 2.7.

109

pytest Documentation, Release 3.1

pytest plugins can implement hook wrappers which wrap the execution of other hook implementations. A hook
wrapper is a generator function which yields exactly once. When pytest invokes hooks it first executes hook wrappers
and passes the same arguments as to the regular hooks.

At the yield point of the hook wrapper pytest will execute the next hook implementations and return their result to the
yield point in the form of a CallOutcome instance which encapsulates a result or exception info. The yield point
itself will thus typically not raise exceptions (unless there are bugs).

Here is an example definition of a hook wrapper:

import pytest

@pytest.hookimpl(hookwrapper=True)
def pytest_pyfunc_call(pyfuncitem):

do whatever you want before the next hook executes

outcome = yield
outcome.excinfo may be None or a (cls, val, tb) tuple

res = outcome.get_result() # will raise if outcome was exception
postprocess result

Note that hook wrappers don’t return results themselves, they merely perform tracing or other side effects around the
actual hook implementations. If the result of the underlying hook is a mutable object, they may modify that result but
it’s probably better to avoid it.

Hook function ordering / call example

For any given hook specification there may be more than one implementation and we thus generally view hook
execution as a 1:N function call where N is the number of registered functions. There are ways to influence if a hook
implementation comes before or after others, i.e. the position in the N-sized list of functions:

Plugin 1
@pytest.hookimpl(tryfirst=True)
def pytest_collection_modifyitems(items):

will execute as early as possible

Plugin 2
@pytest.hookimpl(trylast=True)
def pytest_collection_modifyitems(items):

will execute as late as possible

Plugin 3
@pytest.hookimpl(hookwrapper=True)
def pytest_collection_modifyitems(items):

will execute even before the tryfirst one above!
outcome = yield
will execute after all non-hookwrappers executed

Here is the order of execution:

1. Plugin3’s pytest_collection_modifyitems called until the yield point because it is a hook wrapper.

2. Plugin1’s pytest_collection_modifyitems is called because it is marked with tryfirst=True.

3. Plugin2’s pytest_collection_modifyitems is called because it is marked with trylast=True (but even without
this mark it would come after Plugin1).

110 Chapter 21. Writing hook functions

pytest Documentation, Release 3.1

4. Plugin3’s pytest_collection_modifyitems then executing the code after the yield point. The yield receives a
CallOutcome instance which encapsulates the result from calling the non-wrappers. Wrappers shall not
modify the result.

It’s possible to use tryfirst and trylast also in conjunction with hookwrapper=True in which case it will
influence the ordering of hookwrappers among each other.

Declaring new hooks

Plugins and conftest.py files may declare new hooks that can then be implemented by other plugins in order to
alter behaviour or interact with the new plugin:

pytest_addhooks(pluginmanager)
called at plugin registration time to allow adding new hooks via a call to pluginman-
ager.add_hookspecs(module_or_class, prefix).

Hooks are usually declared as do-nothing functions that contain only documentation describing when the hook will be
called and what return values are expected.

For an example, see newhooks.py from xdist.

Optionally using hooks from 3rd party plugins

Using new hooks from plugins as explained above might be a little tricky because of the standard validation mecha-
nism: if you depend on a plugin that is not installed, validation will fail and the error message will not make much
sense to your users.

One approach is to defer the hook implementation to a new plugin instead of declaring the hook functions directly in
your plugin module, for example:

contents of myplugin.py

class DeferPlugin(object):
"""Simple plugin to defer pytest-xdist hook functions."""

def pytest_testnodedown(self, node, error):
"""standard xdist hook function.
"""

def pytest_configure(config):
if config.pluginmanager.hasplugin('xdist'):

config.pluginmanager.register(DeferPlugin())

This has the added benefit of allowing you to conditionally install hooks depending on which plugins are installed.

21.5. Declaring new hooks 111

https://github.com/pytest-dev/pytest-xdist/blob/974bd566c599dc6a9ea291838c6f226197208b46/xdist/newhooks.py
https://github.com/pytest-dev/pytest-xdist

pytest Documentation, Release 3.1

112 Chapter 21. Writing hook functions

CHAPTER 22

pytest hook reference

Initialization, command line and configuration hooks

pytest_load_initial_conftests(early_config, parser, args)
implements the loading of initial conftest files ahead of command line option parsing.

pytest_cmdline_preparse(config, args)
(deprecated) modify command line arguments before option parsing.

pytest_cmdline_parse(pluginmanager, args)
return initialized config object, parsing the specified args.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_addoption(parser)
register argparse-style options and ini-style config values, called once at the beginning of a test run.

Note: This function should be implemented only in plugins or conftest.py files situated at the tests root
directory due to how pytest discovers plugins during startup.

Parameters parser – To add command line options, call parser.addoption(...). To add
ini-file values call parser.addini(...).

Options can later be accessed through the config object, respectively:

•config.getoption(name) to retrieve the value of a command line option.

•config.getini(name) to retrieve a value read from an ini-style file.

The config object is passed around on many internal objects via the .config attribute or can be retrieved as
the pytestconfig fixture or accessed via (deprecated) pytest.config.

pytest_cmdline_main(config)
called for performing the main command line action. The default implementation will invoke the configure
hooks and runtest_mainloop.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_configure(config)
called after command line options have been parsed and all plugins and initial conftest files been loaded. This
hook is called for every plugin.

113

pytest Documentation, Release 3.1

pytest_unconfigure(config)
called before test process is exited.

Generic “runtest” hooks

All runtest related hooks receive a pytest.Item object.

pytest_runtest_protocol(item, nextitem)
implements the runtest_setup/call/teardown protocol for the given test item, including capturing exceptions and
calling reporting hooks.

Parameters

• item – test item for which the runtest protocol is performed.

• nextitem – the scheduled-to-be-next test item (or None if this is the end my friend). This
argument is passed on to pytest_runtest_teardown().

Return boolean True if no further hook implementations should be invoked.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_runtest_setup(item)
called before pytest_runtest_call(item).

pytest_runtest_call(item)
called to execute the test item.

pytest_runtest_teardown(item, nextitem)
called after pytest_runtest_call.

Parameters nextitem – the scheduled-to-be-next test item (None if no further test item is sched-
uled). This argument can be used to perform exact teardowns, i.e. calling just enough finalizers
so that nextitem only needs to call setup-functions.

pytest_runtest_makereport(item, call)
return a _pytest.runner.TestReport object for the given pytest.Item and
_pytest.runner.CallInfo.

Stops at first non-None result, see firstresult: stop at first non-None result

For deeper understanding you may look at the default implementation of these hooks in _pytest.runner and
maybe also in _pytest.pdb which interacts with _pytest.capture and its input/output capturing in order to
immediately drop into interactive debugging when a test failure occurs.

The _pytest.terminal reported specifically uses the reporting hook to print information about a test run.

Collection hooks

pytest calls the following hooks for collecting files and directories:

pytest_ignore_collect(path, config)
return True to prevent considering this path for collection. This hook is consulted for all files and directories
prior to calling more specific hooks.

Stops at first non-None result, see firstresult: stop at first non-None result

114 Chapter 22. pytest hook reference

pytest Documentation, Release 3.1

pytest_collect_directory(path, parent)
called before traversing a directory for collection files.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_collect_file(path, parent)
return collection Node or None for the given path. Any new node needs to have the specified parent as a
parent.

For influencing the collection of objects in Python modules you can use the following hook:

pytest_pycollect_makeitem(collector, name, obj)
return custom item/collector for a python object in a module, or None.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_generate_tests(metafunc)
generate (multiple) parametrized calls to a test function.

pytest_make_parametrize_id(config, val, argname)
Return a user-friendly string representation of the given val that will be used by @pytest.mark.parametrize
calls. Return None if the hook doesn’t know about val. The parameter name is available as argname, if
required.

Stops at first non-None result, see firstresult: stop at first non-None result

After collection is complete, you can modify the order of items, delete or otherwise amend the test items:

pytest_collection_modifyitems(session, config, items)
called after collection has been performed, may filter or re-order the items in-place.

Reporting hooks

Session related reporting hooks:

pytest_collectstart(collector)
collector starts collecting.

pytest_itemcollected(item)
we just collected a test item.

pytest_collectreport(report)
collector finished collecting.

pytest_deselected(items)
called for test items deselected by keyword.

pytest_report_header(config, startdir)
return a string to be displayed as header info for terminal reporting.

Note: This function should be implemented only in plugins or conftest.py files situated at the tests root
directory due to how pytest discovers plugins during startup.

pytest_report_teststatus(report)
return result-category, shortletter and verbose word for reporting.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_terminal_summary(terminalreporter, exitstatus)
add additional section in terminal summary reporting.

22.4. Reporting hooks 115

pytest Documentation, Release 3.1

pytest_fixture_setup(fixturedef, request)
performs fixture setup execution.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_fixture_post_finalizer(fixturedef)
called after fixture teardown, but before the cache is cleared so the fixture result cache
fixturedef.cached_result can still be accessed.

And here is the central hook for reporting about test execution:

pytest_runtest_logreport(report)
process a test setup/call/teardown report relating to the respective phase of executing a test.

You can also use this hook to customize assertion representation for some types:

pytest_assertrepr_compare(config, op, left, right)
return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list of strings. The strings will be joined by newlines
but any newlines in a string will be escaped. Note that all but the first line will be indented slightly, the intention
is for the first line to be a summary.

Debugging/Interaction hooks

There are few hooks which can be used for special reporting or interaction with exceptions:

pytest_internalerror(excrepr, excinfo)
called for internal errors.

pytest_keyboard_interrupt(excinfo)
called for keyboard interrupt.

pytest_exception_interact(node, call, report)
called when an exception was raised which can potentially be interactively handled.

This hook is only called if an exception was raised that is not an internal exception like skip.Exception.

pytest_enter_pdb(config)
called upon pdb.set_trace(), can be used by plugins to take special action just before the python debugger enters
in interactive mode.

Parameters config (_pytest.config.Config) – pytest config object

116 Chapter 22. pytest hook reference

CHAPTER 23

Reference of objects involved in hooks

class Config
access to configuration values, pluginmanager and plugin hooks.

option = None
access to command line option as attributes. (deprecated), use getoption() instead

pluginmanager = None
a pluginmanager instance

add_cleanup(func)
Add a function to be called when the config object gets out of use (usually coninciding with
pytest_unconfigure).

warn(code, message, fslocation=None, nodeid=None)
generate a warning for this test session.

classmethod fromdictargs(option_dict, args)
constructor useable for subprocesses.

addinivalue_line(name, line)
add a line to an ini-file option. The option must have been declared but might not yet be set in which case
the line becomes the the first line in its value.

getini(name)
return configuration value from an ini file. If the specified name hasn’t been registered through a prior
parser.addini call (usually from a plugin), a ValueError is raised.

getoption(name, default=<NOTSET>, skip=False)
return command line option value.

Parameters

• name – name of the option. You may also specify the literal --OPT option instead of the
“dest” option name.

• default – default value if no option of that name exists.

• skip – if True raise pytest.skip if option does not exists or has a None value.

getvalue(name, path=None)
(deprecated, use getoption())

getvalueorskip(name, path=None)
(deprecated, use getoption(skip=True))

class Parser
Parser for command line arguments and ini-file values.

117

pytest Documentation, Release 3.1

Variables extra_info – dict of generic param -> value to display in case there’s an error pro-
cessing the command line arguments.

getgroup(name, description=’‘, after=None)
get (or create) a named option Group.

Name name of the option group.

Description long description for –help output.

After name of other group, used for ordering –help output.

The returned group object has an addoption method with the same signature as parser.addoption
but will be shown in the respective group in the output of pytest. --help.

addoption(*opts, **attrs)
register a command line option.

Opts option names, can be short or long options.

Attrs same attributes which the add_option() function of the argparse library accepts.

After command line parsing options are available on the pytest config object via
config.option.NAME where NAME is usually set by passing a dest attribute, for example
addoption("--long",dest="NAME",...).

parse_known_args(args, namespace=None)
parses and returns a namespace object with known arguments at this point.

parse_known_and_unknown_args(args, namespace=None)
parses and returns a namespace object with known arguments, and the remaining arguments unknown at
this point.

addini(name, help, type=None, default=None)
register an ini-file option.

Name name of the ini-variable

Type type of the variable, can be pathlist, args, linelist or bool.

Default default value if no ini-file option exists but is queried.

The value of ini-variables can be retrieved via a call to config.getini(name).

class Node
base class for Collector and Item the test collection tree. Collector subclasses have children, Items are terminal
nodes.

name = None
a unique name within the scope of the parent node

parent = None
the parent collector node.

config = None
the pytest config object

session = None
the session this node is part of

fspath = None
filesystem path where this node was collected from (can be None)

keywords = None
keywords/markers collected from all scopes

118 Chapter 23. Reference of objects involved in hooks

http://docs.python.org/2/library/argparse.html

pytest Documentation, Release 3.1

extra_keyword_matches = None
allow adding of extra keywords to use for matching

ihook
fspath sensitive hook proxy used to call pytest hooks

warn(code, message)
generate a warning with the given code and message for this item.

nodeid
a ::-separated string denoting its collection tree address.

listchain()
return list of all parent collectors up to self, starting from root of collection tree.

add_marker(marker)
dynamically add a marker object to the node.

marker can be a string or pytest.mark.* instance.

get_marker(name)
get a marker object from this node or None if the node doesn’t have a marker with that name.

listextrakeywords()
Return a set of all extra keywords in self and any parents.

addfinalizer(fin)
register a function to be called when this node is finalized.

This method can only be called when this node is active in a setup chain, for example during self.setup().

getparent(cls)
get the next parent node (including ourself) which is an instance of the given class

class Collector
Bases: _pytest.main.Node

Collector instances create children through collect() and thus iteratively build a tree.

exception CollectError
Bases: exceptions.Exception

an error during collection, contains a custom message.

Collector.collect()
returns a list of children (items and collectors) for this collection node.

Collector.repr_failure(excinfo)
represent a collection failure.

class Item
Bases: _pytest.main.Node

a basic test invocation item. Note that for a single function there might be multiple test invocation items.

class Module
Bases: _pytest.main.File, _pytest.python.PyCollector

Collector for test classes and functions.

class Class
Bases: _pytest.python.PyCollector

Collector for test methods.

119

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

pytest Documentation, Release 3.1

class Function
Bases: _pytest.python.FunctionMixin, _pytest.main.Item,
_pytest.compat.FuncargnamesCompatAttr

a Function Item is responsible for setting up and executing a Python test function.

originalname = None
original function name, without any decorations (for example parametrization adds a "[...]" suffix to
function names).

New in version 3.0.

function
underlying python ‘function’ object

runtest()
execute the underlying test function.

class FixtureDef
A container for a factory definition.

class CallInfo
Result/Exception info a function invocation.

when = None
context of invocation: one of “setup”, “call”, “teardown”, “memocollect”

excinfo = None
None or ExceptionInfo object.

class TestReport
Basic test report object (also used for setup and teardown calls if they fail).

nodeid = None
normalized collection node id

location = None
a (filesystempath, lineno, domaininfo) tuple indicating the actual location of a test item - it might be
different from the collected one e.g. if a method is inherited from a different module.

keywords = None
a name -> value dictionary containing all keywords and markers associated with a test invocation.

outcome = None
test outcome, always one of “passed”, “failed”, “skipped”.

longrepr = None
None or a failure representation.

when = None
one of ‘setup’, ‘call’, ‘teardown’ to indicate runtest phase.

sections = None
list of pairs (str,str) of extra information which needs to marshallable. Used by pytest to add captured
text from stdout and stderr, but may be used by other plugins to add arbitrary information to reports.

duration = None
time it took to run just the test

capstderr
Return captured text from stderr, if capturing is enabled

New in version 3.0.

120 Chapter 23. Reference of objects involved in hooks

pytest Documentation, Release 3.1

capstdout
Return captured text from stdout, if capturing is enabled

New in version 3.0.

longreprtext
Read-only property that returns the full string representation of longrepr.

New in version 3.0.

class _CallOutcome
Outcome of a function call, either an exception or a proper result. Calling the get_result method will return
the result or reraise the exception raised when the function was called.

get_plugin_manager()
Obtain a new instance of the _pytest.config.PytestPluginManager, with default plugins already
loaded.

This function can be used by integration with other tools, like hooking into pytest to run tests into an IDE.

class PytestPluginManager
Bases: _pytest.vendored_packages.pluggy.PluginManager

Overwrites pluggy.PluginManager to add pytest-specific functionality:

•loading plugins from the command line, PYTEST_PLUGIN env variable and pytest_plugins global
variables found in plugins being loaded;

•conftest.py loading during start-up;

addhooks(module_or_class)
Deprecated since version 2.8.

Use pluggy.PluginManager.add_hookspecs instead.

parse_hookimpl_opts(plugin, name)

parse_hookspec_opts(module_or_class, name)

register(plugin, name=None)

getplugin(name)

hasplugin(name)
Return True if the plugin with the given name is registered.

pytest_configure(config)

consider_preparse(args)

consider_pluginarg(arg)

consider_conftest(conftestmodule)

consider_env()

consider_module(mod)

import_plugin(modname)

class PluginManager
Core Pluginmanager class which manages registration of plugin objects and 1:N hook calling.

You can register new hooks by calling add_hookspec(module_or_class). You can register plugin
objects (which contain hooks) by calling register(plugin). The Pluginmanager is initialized with a
prefix that is searched for in the names of the dict of registered plugin objects. An optional excludefunc allows
to blacklist names which are not considered as hooks despite a matching prefix.

121

pytest Documentation, Release 3.1

For debugging purposes you can call enable_tracing() which will subsequently send debug information
to the trace helper.

register(plugin, name=None)
Register a plugin and return its canonical name or None if the name is blocked from registering. Raise a
ValueError if the plugin is already registered.

unregister(plugin=None, name=None)
unregister a plugin object and all its contained hook implementations from internal data structures.

set_blocked(name)
block registrations of the given name, unregister if already registered.

is_blocked(name)
return True if the name blogs registering plugins of that name.

add_hookspecs(module_or_class)
add new hook specifications defined in the given module_or_class. Functions are recognized if they have
been decorated accordingly.

get_plugins()
return the set of registered plugins.

is_registered(plugin)
Return True if the plugin is already registered.

get_canonical_name(plugin)
Return canonical name for a plugin object. Note that a plugin may be registered under a different name
which was specified by the caller of register(plugin, name). To obtain the name of an registered plugin use
get_name(plugin) instead.

get_plugin(name)
Return a plugin or None for the given name.

has_plugin(name)
Return True if a plugin with the given name is registered.

get_name(plugin)
Return name for registered plugin or None if not registered.

check_pending()
Verify that all hooks which have not been verified against a hook specification are optional, otherwise raise
PluginValidationError

load_setuptools_entrypoints(entrypoint_name)
Load modules from querying the specified setuptools entrypoint name. Return the number of loaded
plugins.

list_plugin_distinfo()
return list of distinfo/plugin tuples for all setuptools registered plugins.

list_name_plugin()
return list of name/plugin pairs.

get_hookcallers(plugin)
get all hook callers for the specified plugin.

add_hookcall_monitoring(before, after)
add before/after tracing functions for all hooks and return an undo function which, when called, will
remove the added tracers.

before(hook_name,hook_impls,kwargs) will be called ahead of all hook calls and receive a
hookcaller instance, a list of HookImpl instances and the keyword arguments for the hook call.

122 Chapter 23. Reference of objects involved in hooks

pytest Documentation, Release 3.1

after(outcome,hook_name,hook_impls,kwargs) receives the same arguments as before
but also a _CallOutcome object which represents the result of the overall hook call.

enable_tracing()
enable tracing of hook calls and return an undo function.

subset_hook_caller(name, remove_plugins)
Return a new _HookCaller instance for the named method which manages calls to all registered plugins
except the ones from remove_plugins.

class Testdir
Temporary test directory with tools to test/run pytest itself.

This is based on the tmpdir fixture but provides a number of methods which aid with testing pytest itself.
Unless chdir() is used all methods will use tmpdir as current working directory.

Attributes:

Tmpdir The py.path.local instance of the temporary directory.

Plugins A list of plugins to use with parseconfig() and runpytest(). Initially this is an
empty list but plugins can be added to the list. The type of items to add to the list depend on the
method which uses them so refer to them for details.

makeconftest(source)
Write a contest.py file with ‘source’ as contents.

makepyfile(*args, **kwargs)
Shortcut for .makefile() with a .py extension.

runpytest(*args, **kwargs)
Run pytest inline or in a subprocess, depending on the command line option “–runpytest” and return a
RunResult.

runpytest_inprocess(*args, **kwargs)
Return result of running pytest in-process, providing a similar interface to what self.runpytest() provides.

runpytest_subprocess(*args, **kwargs)
Run pytest as a subprocess with given arguments.

Any plugins added to the plugins list will added using the -p command line option. Addtionally
--basetemp is used put any temporary files and directories in a numbered directory prefixed with
“runpytest-” so they do not conflict with the normal numberd pytest location for temporary files and direc-
tories.

Returns a RunResult.

class RunResult
The result of running a command.

Attributes:

Ret The return value.

Outlines List of lines captured from stdout.

Errlines List of lines captures from stderr.

Stdout LineMatcher of stdout, use stdout.str() to reconstruct stdout or the commonly used
stdout.fnmatch_lines() method.

Stderrr LineMatcher of stderr.

Duration Duration in seconds.

123

pytest Documentation, Release 3.1

assert_outcomes(passed=0, skipped=0, failed=0)
assert that the specified outcomes appear with the respective numbers (0 means it didn’t occur) in the text
output from a test run.

parseoutcomes()
Return a dictionary of outcomestring->num from parsing the terminal output that the test process produced.

class LineMatcher
Flexible matching of text.

This is a convenience class to test large texts like the output of commands.

The constructor takes a list of lines without their trailing newlines, i.e. text.splitlines().

fnmatch_lines(lines2)
Search the text for matching lines.

The argument is a list of lines which have to match and can use glob wildcards. If they do not match an
pytest.fail() is called. The matches and non-matches are also printed on stdout.

fnmatch_lines_random(lines2)
Check lines exist in the output.

The argument is a list of lines which have to occur in the output, in any order. Each line can contain glob
whildcards.

get_lines_after(fnline)
Return all lines following the given line in the text.

The given line can contain glob wildcards.

str()
Return the entire original text.

124 Chapter 23. Reference of objects involved in hooks

CHAPTER 24

Usages and Examples

Here is a (growing) list of examples. Contact us if you need more examples or have questions. Also take a look at
the comprehensive documentation which contains many example snippets as well. Also, pytest on stackoverflow.com
often comes with example answers.

For basic examples, see

• Installation and Getting Started for basic introductory examples

• Asserting with the assert statement for basic assertion examples

• pytest fixtures: explicit, modular, scalable for basic fixture/setup examples

• Parametrizing fixtures and test functions for basic test function parametrization

• Support for unittest.TestCase / Integration of fixtures for basic unittest integration

• Running tests written for nose for basic nosetests integration

The following examples aim at various use cases you might encounter.

Demo of Python failure reports with pytest

Here is a nice run of several tens of failures and how pytest presents things (unfortunately not showing the nice
colors here in the HTML that you get on the terminal - we are working on that):

assertion $ pytest failure_demo.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR/assertion, inifile:
collected 42 items

failure_demo.py FF

======= FAILURES ========
_______ test_generative[0] ________

param1 = 3, param2 = 6

def test_generative(param1, param2):
> assert param1 * 2 < param2
E assert (3 * 2) < 6

failure_demo.py:16: AssertionError

125

http://stackoverflow.com/search?q=pytest

pytest Documentation, Release 3.1

_______ TestFailing.test_simple ________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_simple(self):
def f():

return 42
def g():

return 43

> assert f() == g()
E assert 42 == 43
E + where 42 = <function TestFailing.test_simple.<locals>.f at 0xdeadbeef>()
E + and 43 = <function TestFailing.test_simple.<locals>.g at 0xdeadbeef>()

failure_demo.py:29: AssertionError
_______ TestFailing.test_simple_multiline ________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_simple_multiline(self):
otherfunc_multi(

42,
> 6*9)

failure_demo.py:34:
_ _

a = 42, b = 54

def otherfunc_multi(a,b):
> assert (a ==

b)
E assert 42 == 54

failure_demo.py:12: AssertionError
_______ TestFailing.test_not ________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_not(self):
def f():

return 42
> assert not f()
E assert not 42
E + where 42 = <function TestFailing.test_not.<locals>.f at 0xdeadbeef>()

failure_demo.py:39: AssertionError
_______ TestSpecialisedExplanations.test_eq_text ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_text(self):
> assert 'spam' == 'eggs'
E AssertionError: assert 'spam' == 'eggs'
E - spam
E + eggs

126 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

failure_demo.py:43: AssertionError
_______ TestSpecialisedExplanations.test_eq_similar_text ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_similar_text(self):
> assert 'foo 1 bar' == 'foo 2 bar'
E AssertionError: assert 'foo 1 bar' == 'foo 2 bar'
E - foo 1 bar
E ? ^
E + foo 2 bar
E ? ^

failure_demo.py:46: AssertionError
_______ TestSpecialisedExplanations.test_eq_multiline_text ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_multiline_text(self):
> assert 'foo\nspam\nbar' == 'foo\neggs\nbar'
E AssertionError: assert 'foo\nspam\nbar' == 'foo\neggs\nbar'
E foo
E - spam
E + eggs
E bar

failure_demo.py:49: AssertionError
_______ TestSpecialisedExplanations.test_eq_long_text ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_long_text(self):
a = '1'*100 + 'a' + '2'*100
b = '1'*100 + 'b' + '2'*100

> assert a == b
E AssertionError: assert '111111111111...2222222222222' == '1111111111111...
→˓2222222222222'
E Skipping 90 identical leading characters in diff, use -v to show
E Skipping 91 identical trailing characters in diff, use -v to show
E - 1111111111a222222222
E ? ^
E + 1111111111b222222222
E ? ^

failure_demo.py:54: AssertionError
_______ TestSpecialisedExplanations.test_eq_long_text_multiline ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_long_text_multiline(self):
a = '1\n'*100 + 'a' + '2\n'*100
b = '1\n'*100 + 'b' + '2\n'*100

> assert a == b
E AssertionError: assert '1\n1\n1\n1\n...n2\n2\n2\n2\n' == '1\n1\n1\n1\n1...
→˓n2\n2\n2\n2\n'
E Skipping 190 identical leading characters in diff, use -v to show
E Skipping 191 identical trailing characters in diff, use -v to show
E 1

24.1. Demo of Python failure reports with pytest 127

pytest Documentation, Release 3.1

E 1
E 1
E 1
E 1...
E
E ...Full output truncated (7 lines hidden), use '-vv' to show

failure_demo.py:59: AssertionError
_______ TestSpecialisedExplanations.test_eq_list ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_list(self):
> assert [0, 1, 2] == [0, 1, 3]
E assert [0, 1, 2] == [0, 1, 3]
E At index 2 diff: 2 != 3
E Use -v to get the full diff

failure_demo.py:62: AssertionError
_______ TestSpecialisedExplanations.test_eq_list_long ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_list_long(self):
a = [0]*100 + [1] + [3]*100
b = [0]*100 + [2] + [3]*100

> assert a == b
E assert [0, 0, 0, 0, 0, 0, ...] == [0, 0, 0, 0, 0, 0, ...]
E At index 100 diff: 1 != 2
E Use -v to get the full diff

failure_demo.py:67: AssertionError
_______ TestSpecialisedExplanations.test_eq_dict ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_dict(self):
> assert {'a': 0, 'b': 1, 'c': 0} == {'a': 0, 'b': 2, 'd': 0}
E AssertionError: assert {'a': 0, 'b': 1, 'c': 0} == {'a': 0, 'b': 2, 'd': 0}
E Omitting 1 identical items, use -vv to show
E Differing items:
E {'b': 1} != {'b': 2}
E Left contains more items:
E {'c': 0}
E Right contains more items:
E {'d': 0}...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:70: AssertionError
_______ TestSpecialisedExplanations.test_eq_set ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_set(self):
> assert set([0, 10, 11, 12]) == set([0, 20, 21])
E AssertionError: assert {0, 10, 11, 12} == {0, 20, 21}
E Extra items in the left set:

128 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

E 10
E 11
E 12
E Extra items in the right set:
E 20
E 21...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:73: AssertionError
_______ TestSpecialisedExplanations.test_eq_longer_list ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_longer_list(self):
> assert [1,2] == [1,2,3]
E assert [1, 2] == [1, 2, 3]
E Right contains more items, first extra item: 3
E Use -v to get the full diff

failure_demo.py:76: AssertionError
_______ TestSpecialisedExplanations.test_in_list ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_in_list(self):
> assert 1 in [0, 2, 3, 4, 5]
E assert 1 in [0, 2, 3, 4, 5]

failure_demo.py:79: AssertionError
_______ TestSpecialisedExplanations.test_not_in_text_multiline ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_multiline(self):
text = 'some multiline\ntext\nwhich\nincludes foo\nand a\ntail'

> assert 'foo' not in text
E AssertionError: assert 'foo' not in 'some multiline\ntext\nw...ncludes
→˓foo\nand a\ntail'
E 'foo' is contained here:
E some multiline
E text
E which
E includes foo
E ? +++
E and a...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:83: AssertionError
_______ TestSpecialisedExplanations.test_not_in_text_single ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single(self):
text = 'single foo line'

> assert 'foo' not in text
E AssertionError: assert 'foo' not in 'single foo line'

24.1. Demo of Python failure reports with pytest 129

pytest Documentation, Release 3.1

E 'foo' is contained here:
E single foo line
E ? +++

failure_demo.py:87: AssertionError
_______ TestSpecialisedExplanations.test_not_in_text_single_long ________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single_long(self):
text = 'head ' * 50 + 'foo ' + 'tail ' * 20

> assert 'foo' not in text
E AssertionError: assert 'foo' not in 'head head head head hea...ail tail tail
→˓tail tail '
E 'foo' is contained here:
E head head foo tail tail tail tail tail tail tail tail tail tail tail tail
→˓tail tail tail tail tail tail tail tail
E ? +++

failure_demo.py:91: AssertionError
______ TestSpecialisedExplanations.test_not_in_text_single_long_term _______

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single_long_term(self):
text = 'head ' * 50 + 'f'*70 + 'tail ' * 20

> assert 'f'*70 not in text
E AssertionError: assert 'fffffffffff...ffffffffffff' not in 'head head he...l
→˓tail tail '
E 'ffffffffffffffffff...fffffffffffffffffff' is contained here:
E head head
→˓fftail tail
→˓tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail
→˓tail tail
E ?
→˓++

failure_demo.py:95: AssertionError
_______ test_attribute ________

def test_attribute():
class Foo(object):

b = 1
i = Foo()

> assert i.b == 2
E assert 1 == 2
E + where 1 = <failure_demo.test_attribute.<locals>.Foo object at 0xdeadbeef>.
→˓b

failure_demo.py:102: AssertionError
_______ test_attribute_instance ________

def test_attribute_instance():
class Foo(object):

b = 1
> assert Foo().b == 2
E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_instance.<locals>.Foo object at
→˓0xdeadbeef>.b

130 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

E + where <failure_demo.test_attribute_instance.<locals>.Foo object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_instance.<locals>.Foo'>()

failure_demo.py:108: AssertionError
_______ test_attribute_failure ________

def test_attribute_failure():
class Foo(object):

def _get_b(self):
raise Exception('Failed to get attrib')

b = property(_get_b)
i = Foo()

> assert i.b == 2

failure_demo.py:117:
_ _

self = <failure_demo.test_attribute_failure.<locals>.Foo object at 0xdeadbeef>

def _get_b(self):
> raise Exception('Failed to get attrib')
E Exception: Failed to get attrib

failure_demo.py:114: Exception
_______ test_attribute_multiple ________

def test_attribute_multiple():
class Foo(object):

b = 1
class Bar(object):

b = 2
> assert Foo().b == Bar().b
E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_multiple.<locals>.Foo object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Foo object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Foo'>()
E + and 2 = <failure_demo.test_attribute_multiple.<locals>.Bar object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Bar object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Bar'>()

failure_demo.py:125: AssertionError
_______ TestRaises.test_raises ________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raises(self):
s = 'qwe'

> raises(TypeError, "int(s)")

failure_demo.py:134:
_ _

> int(s)
E ValueError: invalid literal for int() with base 10: 'qwe'

<0-codegen $PYTHON_PREFIX/lib/python3.5/site-packages/_pytest/python.py:1219>:1:
→˓ValueError

24.1. Demo of Python failure reports with pytest 131

pytest Documentation, Release 3.1

_______ TestRaises.test_raises_doesnt ________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raises_doesnt(self):
> raises(IOError, "int('3')")
E Failed: DID NOT RAISE <class 'OSError'>

failure_demo.py:137: Failed
_______ TestRaises.test_raise ________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raise(self):
> raise ValueError("demo error")
E ValueError: demo error

failure_demo.py:140: ValueError
_______ TestRaises.test_tupleerror ________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_tupleerror(self):
> a,b = [1]
E ValueError: not enough values to unpack (expected 2, got 1)

failure_demo.py:143: ValueError
______ TestRaises.test_reinterpret_fails_with_print_for_the_fun_of_it ______

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_reinterpret_fails_with_print_for_the_fun_of_it(self):
l = [1,2,3]
print ("l is %r" % l)

> a,b = l.pop()
E TypeError: 'int' object is not iterable

failure_demo.py:148: TypeError
--------------------------- Captured stdout call ---------------------------
l is [1, 2, 3]
_______ TestRaises.test_some_error ________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_some_error(self):
> if namenotexi:
E NameError: name 'namenotexi' is not defined

failure_demo.py:151: NameError
_______ test_dynamic_compile_shows_nicely ________

def test_dynamic_compile_shows_nicely():
src = 'def foo():\n assert 1 == 0\n'
name = 'abc-123'
module = py.std.imp.new_module(name)
code = _pytest._code.compile(src, name, 'exec')
py.builtin.exec_(code, module.__dict__)
py.std.sys.modules[name] = module

132 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

> module.foo()

failure_demo.py:166:
_ _

def foo():
> assert 1 == 0
E AssertionError

<2-codegen 'abc-123' $REGENDOC_TMPDIR/assertion/failure_demo.py:163>:2: AssertionError
_______ TestMoreErrors.test_complex_error ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_complex_error(self):
def f():

return 44
def g():

return 43
> somefunc(f(), g())

failure_demo.py:176:
_ _
failure_demo.py:9: in somefunc

otherfunc(x,y)
_ _

a = 44, b = 43

def otherfunc(a,b):
> assert a==b
E assert 44 == 43

failure_demo.py:6: AssertionError
_______ TestMoreErrors.test_z1_unpack_error ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_z1_unpack_error(self):
l = []

> a,b = l
E ValueError: not enough values to unpack (expected 2, got 0)

failure_demo.py:180: ValueError
_______ TestMoreErrors.test_z2_type_error ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_z2_type_error(self):
l = 3

> a,b = l
E TypeError: 'int' object is not iterable

failure_demo.py:184: TypeError
_______ TestMoreErrors.test_startswith ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

24.1. Demo of Python failure reports with pytest 133

pytest Documentation, Release 3.1

def test_startswith(self):
s = "123"
g = "456"

> assert s.startswith(g)
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>(
→˓'456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.
→˓startswith

failure_demo.py:189: AssertionError
_______ TestMoreErrors.test_startswith_nested ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_startswith_nested(self):
def f():

return "123"
def g():

return "456"
> assert f().startswith(g())
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>(
→˓'456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.
→˓startswith
E + where '123' = <function TestMoreErrors.test_startswith_nested.<locals>
→˓.f at 0xdeadbeef>()
E + and '456' = <function TestMoreErrors.test_startswith_nested.<locals>.
→˓g at 0xdeadbeef>()

failure_demo.py:196: AssertionError
_______ TestMoreErrors.test_global_func ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_global_func(self):
> assert isinstance(globf(42), float)
E assert False
E + where False = isinstance(43, float)
E + where 43 = globf(42)

failure_demo.py:199: AssertionError
_______ TestMoreErrors.test_instance ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_instance(self):
self.x = 6*7

> assert self.x != 42
E assert 42 != 42
E + where 42 = <failure_demo.TestMoreErrors object at 0xdeadbeef>.x

failure_demo.py:203: AssertionError
_______ TestMoreErrors.test_compare ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

134 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

def test_compare(self):
> assert globf(10) < 5
E assert 11 < 5
E + where 11 = globf(10)

failure_demo.py:206: AssertionError
_______ TestMoreErrors.test_try_finally ________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_try_finally(self):
x = 1
try:

> assert x == 0
E assert 1 == 0

failure_demo.py:211: AssertionError
_______ TestCustomAssertMsg.test_single_line ________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_single_line(self):
class A(object):

a = 1
b = 2

> assert A.a == b, "A.a appears not to be b"
E AssertionError: A.a appears not to be b
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_single_line.
→˓<locals>.A'>.a

failure_demo.py:222: AssertionError
_______ TestCustomAssertMsg.test_multiline ________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_multiline(self):
class A(object):

a = 1
b = 2

> assert A.a == b, "A.a appears not to be b\n" \
"or does not appear to be b\none of those"

E AssertionError: A.a appears not to be b
E or does not appear to be b
E one of those
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_multiline.<locals>
→˓.A'>.a

failure_demo.py:228: AssertionError
_______ TestCustomAssertMsg.test_custom_repr ________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_custom_repr(self):
class JSON(object):

a = 1
def __repr__(self):

24.1. Demo of Python failure reports with pytest 135

pytest Documentation, Release 3.1

return "This is JSON\n{\n 'foo': 'bar'\n}"
a = JSON()
b = 2

> assert a.a == b, a
E AssertionError: This is JSON
E {
E 'foo': 'bar'
E }
E assert 1 == 2
E + where 1 = This is JSON\n{\n 'foo': 'bar'\n}.a

failure_demo.py:238: AssertionError
======= 42 failed in 0.12 seconds ========

Basic patterns and examples

Pass different values to a test function, depending on command line options

Suppose we want to write a test that depends on a command line option. Here is a basic pattern to achieve this:

content of test_sample.py
def test_answer(cmdopt):

if cmdopt == "type1":
print ("first")

elif cmdopt == "type2":
print ("second")

assert 0 # to see what was printed

For this to work we need to add a command line option and provide the cmdopt through a fixture function:

content of conftest.py
import pytest

def pytest_addoption(parser):
parser.addoption("--cmdopt", action="store", default="type1",

help="my option: type1 or type2")

@pytest.fixture
def cmdopt(request):

return request.config.getoption("--cmdopt")

Let’s run this without supplying our new option:

$ pytest -q test_sample.py
F
======= FAILURES ========
_______ test_answer ________

cmdopt = 'type1'

def test_answer(cmdopt):
if cmdopt == "type1":

print ("first")
elif cmdopt == "type2":

print ("second")

136 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
first
1 failed in 0.12 seconds

And now with supplying a command line option:

$ pytest -q --cmdopt=type2
F
======= FAILURES ========
_______ test_answer ________

cmdopt = 'type2'

def test_answer(cmdopt):
if cmdopt == "type1":

print ("first")
elif cmdopt == "type2":

print ("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
second
1 failed in 0.12 seconds

You can see that the command line option arrived in our test. This completes the basic pattern. However, one often
rather wants to process command line options outside of the test and rather pass in different or more complex objects.

Dynamically adding command line options

Through addopts you can statically add command line options for your project. You can also dynamically modify
the command line arguments before they get processed:

content of conftest.py
import sys
def pytest_cmdline_preparse(args):

if 'xdist' in sys.modules: # pytest-xdist plugin
import multiprocessing
num = max(multiprocessing.cpu_count() / 2, 1)
args[:] = ["-n", str(num)] + args

If you have the xdist plugin installed you will now always perform test runs using a number of subprocesses close to
your CPU. Running in an empty directory with the above conftest.py:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 0 items

======= no tests ran in 0.12 seconds ========

24.2. Basic patterns and examples 137

https://pypi.python.org/pypi/pytest-xdist

pytest Documentation, Release 3.1

Control skipping of tests according to command line option

Here is a conftest.py file adding a --runslow command line option to control skipping of slow marked tests:

content of conftest.py

import pytest
def pytest_addoption(parser):

parser.addoption("--runslow", action="store_true",
help="run slow tests")

We can now write a test module like this:

content of test_module.py
import pytest

slow = pytest.mark.skipif(
not pytest.config.getoption("--runslow"),
reason="need --runslow option to run"

)

def test_func_fast():
pass

@slow
def test_func_slow():

pass

and when running it will see a skipped “slow” test:

$ pytest -rs # "-rs" means report details on the little 's'
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_module.py .s
======= short test summary info ========
SKIP [1] test_module.py:13: need --runslow option to run

======= 1 passed, 1 skipped in 0.12 seconds ========

Or run it including the slow marked test:

$ pytest --runslow
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_module.py ..

======= 2 passed in 0.12 seconds ========

138 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

Writing well integrated assertion helpers

If you have a test helper function called from a test you can use the pytest.fail marker to fail a test with a certain
message. The test support function will not show up in the traceback if you set the __tracebackhide__ option
somewhere in the helper function. Example:

content of test_checkconfig.py
import pytest
def checkconfig(x):

__tracebackhide__ = True
if not hasattr(x, "config"):

pytest.fail("not configured: %s" %(x,))

def test_something():
checkconfig(42)

The __tracebackhide__ setting influences pytest showing of tracebacks: the checkconfig function will
not be shown unless the --full-trace command line option is specified. Let’s run our little function:

$ pytest -q test_checkconfig.py
F
======= FAILURES ========
_______ test_something ________

def test_something():
> checkconfig(42)
E Failed: not configured: 42

test_checkconfig.py:8: Failed
1 failed in 0.12 seconds

If you only want to hide certain exceptions, you can set __tracebackhide__ to a callable which gets the
ExceptionInfo object. You can for example use this to make sure unexpected exception types aren’t hidden:

import operator
import pytest

class ConfigException(Exception):
pass

def checkconfig(x):
__tracebackhide__ = operator.methodcaller('errisinstance', ConfigException)
if not hasattr(x, "config"):

raise ConfigException("not configured: %s" %(x,))

def test_something():
checkconfig(42)

This will avoid hiding the exception traceback on unrelated exceptions (i.e. bugs in assertion helpers).

Detect if running from within a pytest run

Usually it is a bad idea to make application code behave differently if called from a test. But if you absolutely must
find out if your application code is running from a test you can do something like this:

content of conftest.py

24.2. Basic patterns and examples 139

pytest Documentation, Release 3.1

def pytest_configure(config):
import sys
sys._called_from_test = True

def pytest_unconfigure(config):
import sys
del sys._called_from_test

and then check for the sys._called_from_test flag:

if hasattr(sys, '_called_from_test'):
called from within a test run

else:
called "normally"

accordingly in your application. It’s also a good idea to use your own application module rather than sys for handling
flag.

Adding info to test report header

It’s easy to present extra information in a pytest run:

content of conftest.py

def pytest_report_header(config):
return "project deps: mylib-1.1"

which will add the string to the test header accordingly:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
project deps: mylib-1.1
rootdir: $REGENDOC_TMPDIR, inifile:
collected 0 items

======= no tests ran in 0.12 seconds ========

It is also possible to return a list of strings which will be considered as several lines of information. You may consider
config.getoption('verbose') in order to display more information if applicable:

content of conftest.py

def pytest_report_header(config):
if config.getoption('verbose') > 0:

return ["info1: did you know that ...", "did you?"]

which will add info only when run with “–v”:

$ pytest -v
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
info1: did you know that ...
did you?

140 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 0 items

======= no tests ran in 0.12 seconds ========

and nothing when run plainly:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 0 items

======= no tests ran in 0.12 seconds ========

profiling test duration

If you have a slow running large test suite you might want to find out which tests are the slowest. Let’s make an
artificial test suite:

content of test_some_are_slow.py
import time

def test_funcfast():
pass

def test_funcslow1():
time.sleep(0.1)

def test_funcslow2():
time.sleep(0.2)

Now we can profile which test functions execute the slowest:

$ pytest --durations=3
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 3 items

test_some_are_slow.py ...

======= slowest 3 test durations ========
0.20s call test_some_are_slow.py::test_funcslow2
0.10s call test_some_are_slow.py::test_funcslow1
0.00s setup test_some_are_slow.py::test_funcfast
======= 3 passed in 0.12 seconds ========

incremental testing - test steps

Sometimes you may have a testing situation which consists of a series of test steps. If one step fails it makes no sense
to execute further steps as they are all expected to fail anyway and their tracebacks add no insight. Here is a simple
conftest.py file which introduces an incremental marker which is to be used on classes:

24.2. Basic patterns and examples 141

pytest Documentation, Release 3.1

content of conftest.py

import pytest

def pytest_runtest_makereport(item, call):
if "incremental" in item.keywords:

if call.excinfo is not None:
parent = item.parent
parent._previousfailed = item

def pytest_runtest_setup(item):
if "incremental" in item.keywords:

previousfailed = getattr(item.parent, "_previousfailed", None)
if previousfailed is not None:

pytest.xfail("previous test failed (%s)" %previousfailed.name)

These two hook implementations work together to abort incremental-marked tests in a class. Here is a test module
example:

content of test_step.py

import pytest

@pytest.mark.incremental
class TestUserHandling(object):

def test_login(self):
pass

def test_modification(self):
assert 0

def test_deletion(self):
pass

def test_normal():
pass

If we run this:

$ pytest -rx
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items

test_step.py .Fx.
======= short test summary info ========
XFAIL test_step.py::TestUserHandling::()::test_deletion

reason: previous test failed (test_modification)

======= FAILURES ========
_______ TestUserHandling.test_modification ________

self = <test_step.TestUserHandling object at 0xdeadbeef>

def test_modification(self):
> assert 0
E assert 0

test_step.py:9: AssertionError

142 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

======= 1 failed, 2 passed, 1 xfailed in 0.12 seconds ========

We’ll see that test_deletion was not executed because test_modification failed. It is reported as an
“expected failure”.

Package/Directory-level fixtures (setups)

If you have nested test directories, you can have per-directory fixture scopes by placing fixture functions in a
conftest.py file in that directory You can use all types of fixtures including autouse fixtures which are the equiv-
alent of xUnit’s setup/teardown concept. It’s however recommended to have explicit fixture references in your tests or
test classes rather than relying on implicitly executing setup/teardown functions, especially if they are far away from
the actual tests.

Here is an example for making a db fixture available in a directory:

content of a/conftest.py
import pytest

class DB(object):
pass

@pytest.fixture(scope="session")
def db():

return DB()

and then a test module in that directory:

content of a/test_db.py
def test_a1(db):

assert 0, db # to show value

another test module:

content of a/test_db2.py
def test_a2(db):

assert 0, db # to show value

and then a module in a sister directory which will not see the db fixture:

content of b/test_error.py
def test_root(db): # no db here, will error out

pass

We can run this:

$ pytest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 7 items

test_step.py .Fx.
a/test_db.py F
a/test_db2.py F
b/test_error.py E

24.2. Basic patterns and examples 143

pytest Documentation, Release 3.1

======= ERRORS ========
_______ ERROR at setup of test_root ________
file $REGENDOC_TMPDIR/b/test_error.py, line 1

def test_root(db): # no db here, will error out
E fixture 'db' not found
> available fixtures: cache, capfd, capsys, doctest_namespace, monkeypatch,
→˓pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory
> use 'pytest --fixtures [testpath]' for help on them.

$REGENDOC_TMPDIR/b/test_error.py:1
======= FAILURES ========
_______ TestUserHandling.test_modification ________

self = <test_step.TestUserHandling object at 0xdeadbeef>

def test_modification(self):
> assert 0
E assert 0

test_step.py:9: AssertionError
_______ test_a1 ________

db = <conftest.DB object at 0xdeadbeef>

def test_a1(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db.py:2: AssertionError
_______ test_a2 ________

db = <conftest.DB object at 0xdeadbeef>

def test_a2(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db2.py:2: AssertionError
======= 3 failed, 2 passed, 1 xfailed, 1 error in 0.12 seconds ========

The two test modules in the a directory see the same db fixture instance while the one test in the sister-directory b
doesn’t see it. We could of course also define a db fixture in that sister directory’s conftest.py file. Note that
each fixture is only instantiated if there is a test actually needing it (unless you use “autouse” fixture which are always
executed ahead of the first test executing).

post-process test reports / failures

If you want to postprocess test reports and need access to the executing environment you can implement a hook that
gets called when the test “report” object is about to be created. Here we write out all failing test calls and also access
a fixture (if it was used by the test) in case you want to query/look at it during your post processing. In our case we
just write some information out to a failures file:

content of conftest.py

144 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

import pytest
import os.path

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):

execute all other hooks to obtain the report object
outcome = yield
rep = outcome.get_result()

we only look at actual failing test calls, not setup/teardown
if rep.when == "call" and rep.failed:

mode = "a" if os.path.exists("failures") else "w"
with open("failures", mode) as f:

let's also access a fixture for the fun of it
if "tmpdir" in item.fixturenames:

extra = " (%s)" % item.funcargs["tmpdir"]
else:

extra = ""

f.write(rep.nodeid + extra + "\n")

if you then have failing tests:

content of test_module.py
def test_fail1(tmpdir):

assert 0
def test_fail2():

assert 0

and run them:

$ pytest test_module.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_module.py FF

======= FAILURES ========
_______ test_fail1 ________

tmpdir = local('PYTEST_TMPDIR/test_fail10')

def test_fail1(tmpdir):
> assert 0
E assert 0

test_module.py:2: AssertionError
_______ test_fail2 ________

def test_fail2():
> assert 0
E assert 0

test_module.py:4: AssertionError
======= 2 failed in 0.12 seconds ========

24.2. Basic patterns and examples 145

pytest Documentation, Release 3.1

you will have a “failures” file which contains the failing test ids:

$ cat failures
test_module.py::test_fail1 (PYTEST_TMPDIR/test_fail10)
test_module.py::test_fail2

Making test result information available in fixtures

If you want to make test result reports available in fixture finalizers here is a little example implemented via a local
plugin:

content of conftest.py

import pytest

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):

execute all other hooks to obtain the report object
outcome = yield
rep = outcome.get_result()

set a report attribute for each phase of a call, which can
be "setup", "call", "teardown"

setattr(item, "rep_" + rep.when, rep)

@pytest.fixture
def something(request):

yield
request.node is an "item" because we use the default
"function" scope
if request.node.rep_setup.failed:

print ("setting up a test failed!", request.node.nodeid)
elif request.node.rep_setup.passed:

if request.node.rep_call.failed:
print ("executing test failed", request.node.nodeid)

if you then have failing tests:

content of test_module.py

import pytest

@pytest.fixture
def other():

assert 0

def test_setup_fails(something, other):
pass

def test_call_fails(something):
assert 0

def test_fail2():
assert 0

146 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

and run it:

$ pytest -s test_module.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 3 items

test_module.py Esetting up a test failed! test_module.py::test_setup_fails
Fexecuting test failed test_module.py::test_call_fails
F

======= ERRORS ========
_______ ERROR at setup of test_setup_fails ________

@pytest.fixture
def other():

> assert 0
E assert 0

test_module.py:6: AssertionError
======= FAILURES ========
_______ test_call_fails ________

something = None

def test_call_fails(something):
> assert 0
E assert 0

test_module.py:12: AssertionError
_______ test_fail2 ________

def test_fail2():
> assert 0
E assert 0

test_module.py:15: AssertionError
======= 2 failed, 1 error in 0.12 seconds ========

You’ll see that the fixture finalizers could use the precise reporting information.

Freezing pytest

If you freeze your application using a tool like PyInstaller in order to distribute it to your end-users, it is a good idea
to also package your test runner and run your tests using the frozen application. This way packaging errors such as
dependencies not being included into the executable can be detected early while also allowing you to send test files to
users so they can run them in their machines, which can be useful to obtain more information about a hard to reproduce
bug.

Fortunately recent PyInstaller releases already have a custom hook for pytest, but if you are using another tool
to freeze executables such as cx_freeze or py2exe, you can use pytest.freeze_includes() to obtain the
full list of internal pytest modules. How to configure the tools to find the internal modules varies from tool to tool,
however.

Instead of freezing the pytest runner as a separate executable, you can make your frozen program work as the pytest
runner by some clever argument handling during program startup. This allows you to have a single executable, which

24.2. Basic patterns and examples 147

https://pyinstaller.readthedocs.io

pytest Documentation, Release 3.1

is usually more convenient.

contents of app_main.py
import sys

if len(sys.argv) > 1 and sys.argv[1] == '--pytest':
import pytest
sys.exit(pytest.main(sys.argv[2:]))

else:
normal application execution: at this point argv can be parsed
by your argument-parsing library of choice as usual
...

This allows you to execute tests using the frozen application with standard pytest command-line options:

./app_main --pytest --verbose --tb=long --junitxml=results.xml test-suite/

Parametrizing tests

pytest allows to easily parametrize test functions. For basic docs, see Parametrizing fixtures and test functions.

In the following we provide some examples using the builtin mechanisms.

Generating parameters combinations, depending on command line

Let’s say we want to execute a test with different computation parameters and the parameter range shall be determined
by a command line argument. Let’s first write a simple (do-nothing) computation test:

content of test_compute.py

def test_compute(param1):
assert param1 < 4

Now we add a test configuration like this:

content of conftest.py

def pytest_addoption(parser):
parser.addoption("--all", action="store_true",

help="run all combinations")

def pytest_generate_tests(metafunc):
if 'param1' in metafunc.fixturenames:

if metafunc.config.option.all:
end = 5

else:
end = 2

metafunc.parametrize("param1", range(end))

This means that we only run 2 tests if we do not pass --all:

$ pytest -q test_compute.py
..
2 passed in 0.12 seconds

148 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

We run only two computations, so we see two dots. let’s run the full monty:

$ pytest -q --all
....F
======= FAILURES ========
_______ test_compute[4] ________

param1 = 4

def test_compute(param1):
> assert param1 < 4
E assert 4 < 4

test_compute.py:3: AssertionError
1 failed, 4 passed in 0.12 seconds

As expected when running the full range of param1 values we’ll get an error on the last one.

Different options for test IDs

pytest will build a string that is the test ID for each set of values in a parametrized test. These IDs can be used with
-k to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with
--collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects,
pytest will make a string based on the argument name:

content of test_time.py

import pytest

from datetime import datetime, timedelta

testdata = [
(datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
(datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),

]

@pytest.mark.parametrize("a,b,expected", testdata)
def test_timedistance_v0(a, b, expected):

diff = a - b
assert diff == expected

@pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
def test_timedistance_v1(a, b, expected):

diff = a - b
assert diff == expected

def idfn(val):
if isinstance(val, (datetime,)):

note this wouldn't show any hours/minutes/seconds
return val.strftime('%Y%m%d')

24.3. Parametrizing tests 149

pytest Documentation, Release 3.1

@pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
def test_timedistance_v2(a, b, expected):

diff = a - b
assert diff == expected

@pytest.mark.parametrize("a,b,expected", [
pytest.param(datetime(2001, 12, 12), datetime(2001, 12, 11),

timedelta(1), id='forward'),
pytest.param(datetime(2001, 12, 11), datetime(2001, 12, 12),

timedelta(-1), id='backward'),
])
def test_timedistance_v3(a, b, expected):

diff = a - b
assert diff == expected

In test_timedistance_v0, we let pytest generate the test IDs.

In test_timedistance_v1, we specified ids as a list of strings which were used as the test IDs. These are
succinct, but can be a pain to maintain.

In test_timedistance_v2, we specified ids as a function that can generate a string representation to make part
of the test ID. So our datetime values use the label generated by idfn, but because we didn’t generate a label for
timedelta objects, they are still using the default pytest representation:

$ pytest test_time.py --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 8 items
<Module 'test_time.py'>

<Function 'test_timedistance_v0[a0-b0-expected0]'>
<Function 'test_timedistance_v0[a1-b1-expected1]'>
<Function 'test_timedistance_v1[forward]'>
<Function 'test_timedistance_v1[backward]'>
<Function 'test_timedistance_v2[20011212-20011211-expected0]'>
<Function 'test_timedistance_v2[20011211-20011212-expected1]'>
<Function 'test_timedistance_v3[forward]'>
<Function 'test_timedistance_v3[backward]'>

======= no tests ran in 0.12 seconds ========

In test_timedistance_v3, we used pytest.param to specify the test IDs together with the actual data,
instead of listing them separately.

A quick port of “testscenarios”

Here is a quick port to run tests configured with test scenarios, an add-on from Robert Collins for the
standard unittest framework. We only have to work a bit to construct the correct arguments for pytest’s
Metafunc.parametrize():

content of test_scenarios.py

def pytest_generate_tests(metafunc):
idlist = []
argvalues = []
for scenario in metafunc.cls.scenarios:

idlist.append(scenario[0])

150 Chapter 24. Usages and Examples

http://pypi.python.org/pypi/testscenarios/

pytest Documentation, Release 3.1

items = scenario[1].items()
argnames = [x[0] for x in items]
argvalues.append(([x[1] for x in items]))

metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")

scenario1 = ('basic', {'attribute': 'value'})
scenario2 = ('advanced', {'attribute': 'value2'})

class TestSampleWithScenarios(object):
scenarios = [scenario1, scenario2]

def test_demo1(self, attribute):
assert isinstance(attribute, str)

def test_demo2(self, attribute):
assert isinstance(attribute, str)

this is a fully self-contained example which you can run with:

$ pytest test_scenarios.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items

test_scenarios.py

======= 4 passed in 0.12 seconds ========

If you just collect tests you’ll also nicely see ‘advanced’ and ‘basic’ as variants for the test function:

$ pytest --collect-only test_scenarios.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items
<Module 'test_scenarios.py'>

<Class 'TestSampleWithScenarios'>
<Instance '()'>

<Function 'test_demo1[basic]'>
<Function 'test_demo2[basic]'>
<Function 'test_demo1[advanced]'>
<Function 'test_demo2[advanced]'>

======= no tests ran in 0.12 seconds ========

Note that we told metafunc.parametrize() that your scenario values should be considered class-scoped. With
pytest-2.3 this leads to a resource-based ordering.

Deferring the setup of parametrized resources

The parametrization of test functions happens at collection time. It is a good idea to setup expensive resources like
DB connections or subprocess only when the actual test is run. Here is a simple example how you can achieve that,
first the actual test requiring a db object:

24.3. Parametrizing tests 151

pytest Documentation, Release 3.1

content of test_backends.py

import pytest
def test_db_initialized(db):

a dummy test
if db.__class__.__name__ == "DB2":

pytest.fail("deliberately failing for demo purposes")

We can now add a test configuration that generates two invocations of the test_db_initialized function and
also implements a factory that creates a database object for the actual test invocations:

content of conftest.py
import pytest

def pytest_generate_tests(metafunc):
if 'db' in metafunc.fixturenames:

metafunc.parametrize("db", ['d1', 'd2'], indirect=True)

class DB1(object):
"one database object"

class DB2(object):
"alternative database object"

@pytest.fixture
def db(request):

if request.param == "d1":
return DB1()

elif request.param == "d2":
return DB2()

else:
raise ValueError("invalid internal test config")

Let’s first see how it looks like at collection time:

$ pytest test_backends.py --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items
<Module 'test_backends.py'>

<Function 'test_db_initialized[d1]'>
<Function 'test_db_initialized[d2]'>

======= no tests ran in 0.12 seconds ========

And then when we run the test:

$ pytest -q test_backends.py
.F
======= FAILURES ========
_______ test_db_initialized[d2] ________

db = <conftest.DB2 object at 0xdeadbeef>

def test_db_initialized(db):
a dummy test
if db.__class__.__name__ == "DB2":

> pytest.fail("deliberately failing for demo purposes")

152 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

E Failed: deliberately failing for demo purposes

test_backends.py:6: Failed
1 failed, 1 passed in 0.12 seconds

The first invocation with db == "DB1" passed while the second with db == "DB2" failed. Our db fixture func-
tion has instantiated each of the DB values during the setup phase while the pytest_generate_tests generated
two according calls to the test_db_initialized during the collection phase.

Apply indirect on particular arguments

Very often parametrization uses more than one argument name. There is opportunity to apply indirect parameter
on particular arguments. It can be done by passing list or tuple of arguments’ names to indirect. In the example
below there is a function test_indirect which uses two fixtures: x and y. Here we give to indirect the list, which
contains the name of the fixture x. The indirect parameter will be applied to this argument only, and the value a will
be passed to respective fixture function:

content of test_indirect_list.py

import pytest
@pytest.fixture(scope='function')
def x(request):

return request.param * 3

@pytest.fixture(scope='function')
def y(request):

return request.param * 2

@pytest.mark.parametrize('x, y', [('a', 'b')], indirect=['x'])
def test_indirect(x,y):

assert x == 'aaa'
assert y == 'b'

The result of this test will be successful:

$ pytest test_indirect_list.py --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items
<Module 'test_indirect_list.py'>

<Function 'test_indirect[a-b]'>

======= no tests ran in 0.12 seconds ========

Parametrizing test methods through per-class configuration

Here is an example pytest_generate_function function implementing a parametrization scheme similar to
Michael Foord’s unittest parametrizer but in a lot less code:

content of ./test_parametrize.py
import pytest

def pytest_generate_tests(metafunc):

24.3. Parametrizing tests 153

https://github.com/testing-cabal/unittest-ext/blob/master/params.py

pytest Documentation, Release 3.1

called once per each test function
funcarglist = metafunc.cls.params[metafunc.function.__name__]
argnames = sorted(funcarglist[0])
metafunc.parametrize(argnames, [[funcargs[name] for name in argnames]

for funcargs in funcarglist])

class TestClass(object):
a map specifying multiple argument sets for a test method
params = {

'test_equals': [dict(a=1, b=2), dict(a=3, b=3),],
'test_zerodivision': [dict(a=1, b=0),],

}

def test_equals(self, a, b):
assert a == b

def test_zerodivision(self, a, b):
pytest.raises(ZeroDivisionError, "a/b")

Our test generator looks up a class-level definition which specifies which argument sets to use for each test function.
Let’s run it:

$ pytest -q
F..
======= FAILURES ========
_______ TestClass.test_equals[1-2] ________

self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2

def test_equals(self, a, b):
> assert a == b
E assert 1 == 2

test_parametrize.py:18: AssertionError
1 failed, 2 passed in 0.12 seconds

Indirect parametrization with multiple fixtures

Here is a stripped down real-life example of using parametrized testing for testing serialization of objects between
different python interpreters. We define a test_basic_objects function which is to be run with different sets of
arguments for its three arguments:

• python1: first python interpreter, run to pickle-dump an object to a file

• python2: second interpreter, run to pickle-load an object from a file

• obj: object to be dumped/loaded

"""
module containing a parametrized tests testing cross-python
serialization via the pickle module.
"""
import py
import pytest
import _pytest._code

pythonlist = ['python2.6', 'python2.7', 'python3.4', 'python3.5']

154 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

@pytest.fixture(params=pythonlist)
def python1(request, tmpdir):

picklefile = tmpdir.join("data.pickle")
return Python(request.param, picklefile)

@pytest.fixture(params=pythonlist)
def python2(request, python1):

return Python(request.param, python1.picklefile)

class Python(object):
def __init__(self, version, picklefile):

self.pythonpath = py.path.local.sysfind(version)
if not self.pythonpath:

pytest.skip("%r not found" %(version,))
self.picklefile = picklefile

def dumps(self, obj):
dumpfile = self.picklefile.dirpath("dump.py")
dumpfile.write(_pytest._code.Source("""

import pickle
f = open(%r, 'wb')
s = pickle.dump(%r, f, protocol=2)
f.close()

""" % (str(self.picklefile), obj)))
py.process.cmdexec("%s %s" %(self.pythonpath, dumpfile))

def load_and_is_true(self, expression):
loadfile = self.picklefile.dirpath("load.py")
loadfile.write(_pytest._code.Source("""

import pickle
f = open(%r, 'rb')
obj = pickle.load(f)
f.close()
res = eval(%r)
if not res:

raise SystemExit(1)
""" % (str(self.picklefile), expression)))
print (loadfile)
py.process.cmdexec("%s %s" %(self.pythonpath, loadfile))

@pytest.mark.parametrize("obj", [42, {}, {1:3},])
def test_basic_objects(python1, python2, obj):

python1.dumps(obj)
python2.load_and_is_true("obj == %s" % obj)

Running it results in some skips if we don’t have all the python interpreters installed and otherwise runs all combina-
tions (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize):

. $ pytest -rs -q multipython.py
sssssssssssssss.........sss.........sss.........
======= short test summary info ========
SKIP [21] $REGENDOC_TMPDIR/CWD/multipython.py:23: 'python2.6' not found
27 passed, 21 skipped in 0.12 seconds

24.3. Parametrizing tests 155

pytest Documentation, Release 3.1

Indirect parametrization of optional implementations/imports

If you want to compare the outcomes of several implementations of a given API, you can write test functions that
receive the already imported implementations and get skipped in case the implementation is not importable/available.
Let’s say we have a “base” implementation and the other (possibly optimized ones) need to provide similar results:

content of conftest.py

import pytest

@pytest.fixture(scope="session")
def basemod(request):

return pytest.importorskip("base")

@pytest.fixture(scope="session", params=["opt1", "opt2"])
def optmod(request):

return pytest.importorskip(request.param)

And then a base implementation of a simple function:

content of base.py
def func1():

return 1

And an optimized version:

content of opt1.py
def func1():

return 1.0001

And finally a little test module:

content of test_module.py

def test_func1(basemod, optmod):
assert round(basemod.func1(), 3) == round(optmod.func1(), 3)

If you run this with reporting for skips enabled:

$ pytest -rs test_module.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items

test_module.py .s
======= short test summary info ========
SKIP [1] $REGENDOC_TMPDIR/conftest.py:10: could not import 'opt2'

======= 1 passed, 1 skipped in 0.12 seconds ========

You’ll see that we don’t have a opt2 module and thus the second test run of our test_func1 was skipped. A few
notes:

• the fixture functions in the conftest.py file are “session-scoped” because we don’t need to import more
than once

• if you have multiple test functions and a skipped import, you will see the [1] count increasing in the report

156 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

• you can put @pytest.mark.parametrize style parametrization on the test functions to parametrize input/output
values as well.

Working with custom markers

Here are some example using the Marking test functions with attributes mechanism.

Marking test functions and selecting them for a run

You can “mark” a test function with custom metadata like this:

content of test_server.py

import pytest
@pytest.mark.webtest
def test_send_http():

pass # perform some webtest test for your app
def test_something_quick():

pass
def test_another():

pass
class TestClass(object):

def test_method(self):
pass

New in version 2.2.

You can then restrict a test run to only run tests marked with webtest:

$ pytest -v -m webtest
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 4 items

test_server.py::test_send_http PASSED

======= 3 tests deselected ========
======= 1 passed, 3 deselected in 0.12 seconds ========

Or the inverse, running all tests except the webtest ones:

$ pytest -v -m "not webtest"
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 4 items

test_server.py::test_something_quick PASSED
test_server.py::test_another PASSED
test_server.py::TestClass::test_method PASSED

24.4. Working with custom markers 157

pytest Documentation, Release 3.1

======= 1 tests deselected ========
======= 3 passed, 1 deselected in 0.12 seconds ========

Selecting tests based on their node ID

You can provide one or more node IDs as positional arguments to select only specified tests. This makes it easy to
select tests based on their module, class, method, or function name:

$ pytest -v test_server.py::TestClass::test_method
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 5 items

test_server.py::TestClass::test_method PASSED

======= 1 passed in 0.12 seconds ========

You can also select on the class:

$ pytest -v test_server.py::TestClass
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 4 items

test_server.py::TestClass::test_method PASSED

======= 1 passed in 0.12 seconds ========

Or select multiple nodes:

$ pytest -v test_server.py::TestClass test_server.py::test_send_http
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 8 items

test_server.py::TestClass::test_method PASSED
test_server.py::test_send_http PASSED

======= 2 passed in 0.12 seconds ========

Note: Node IDs are of the form module.py::class::method or module.py::function. Node IDs
control which tests are collected, so module.py::class will select all test methods on the class. Nodes are also
created for each parameter of a parametrized fixture or test, so selecting a parametrized test must include the parameter
value, e.g. module.py::function[param].

158 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

Node IDs for failing tests are displayed in the test summary info when running pytest with the -rf option. You can
also construct Node IDs from the output of pytest --collectonly.

Using -k expr to select tests based on their name

You can use the -k command line option to specify an expression which implements a substring match on the test
names instead of the exact match on markers that -m provides. This makes it easy to select tests based on their names:

$ pytest -v -k http # running with the above defined example module
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 4 items

test_server.py::test_send_http PASSED

======= 3 tests deselected ========
======= 1 passed, 3 deselected in 0.12 seconds ========

And you can also run all tests except the ones that match the keyword:

$ pytest -k "not send_http" -v
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 4 items

test_server.py::test_something_quick PASSED
test_server.py::test_another PASSED
test_server.py::TestClass::test_method PASSED

======= 1 tests deselected ========
======= 3 passed, 1 deselected in 0.12 seconds ========

Or to select “http” and “quick” tests:

$ pytest -k "http or quick" -v
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR, inifile:
collecting ... collected 4 items

test_server.py::test_send_http PASSED
test_server.py::test_something_quick PASSED

======= 2 tests deselected ========
======= 2 passed, 2 deselected in 0.12 seconds ========

Note: If you are using expressions such as “X and Y” then both X and Y need to be simple non-keyword names. For

24.4. Working with custom markers 159

pytest Documentation, Release 3.1

example, “pass” or “from” will result in SyntaxErrors because “-k” evaluates the expression.

However, if the “-k” argument is a simple string, no such restrictions apply. Also “-k ‘not STRING”’ has no restric-
tions. You can also specify numbers like “-k 1.3” to match tests which are parametrized with the float “1.3”.

Registering markers

New in version 2.2.

Registering markers for your test suite is simple:

content of pytest.ini
[pytest]
markers =

webtest: mark a test as a webtest.

You can ask which markers exist for your test suite - the list includes our just defined webtest markers:

$ pytest --markers
@pytest.mark.webtest: mark a test as a webtest.

@pytest.mark.skip(reason=None): skip the given test function with an optional reason.
→˓Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eval(condition)
→˓results in a True value. Evaluation happens within the module global context.
→˓Example: skipif('sys.platform == "win32"') skips the test if we are on the win32
→˓platform. see http://pytest.org/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, strict=False): mark
→˓the test function as an expected failure if eval(condition) has a True value.
→˓Optionally specify a reason for better reporting and run=False if you don't even
→˓want to execute the test function. If only specific exception(s) are expected, you
→˓can list them in raises, and if the test fails in other ways, it will be reported
→˓as a true failure. See http://pytest.org/latest/skipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times
→˓passing in different arguments in turn. argvalues generally needs to be a list of
→˓values if argnames specifies only one name or a list of tuples of values if
→˓argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead
→˓to two calls of the decorated test function, one with arg1=1 and another with
→˓arg1=2.see http://pytest.org/latest/parametrize.html for more info and examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all
→˓of the specified fixtures. see http://pytest.org/latest/fixture.html#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin
→˓machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin
→˓machinery will try to call it last/as late as possible.

For an example on how to add and work with markers from a plugin, see Custom marker and command line option to
control test runs.

Note: It is recommended to explicitly register markers so that:

160 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

• there is one place in your test suite defining your markers

• asking for existing markers via pytest --markers gives good output

• typos in function markers are treated as an error if you use the --strict option. Future versions of pytest
are probably going to start treating non-registered markers as errors at some point.

Marking whole classes or modules

You may use pytest.mark decorators with classes to apply markers to all of its test methods:

content of test_mark_classlevel.py
import pytest
@pytest.mark.webtest
class TestClass(object):

def test_startup(self):
pass

def test_startup_and_more(self):
pass

This is equivalent to directly applying the decorator to the two test functions.

To remain backward-compatible with Python 2.4 you can also set a pytestmark attribute on a TestClass like this:

import pytest

class TestClass(object):
pytestmark = pytest.mark.webtest

or if you need to use multiple markers you can use a list:

import pytest

class TestClass(object):
pytestmark = [pytest.mark.webtest, pytest.mark.slowtest]

You can also set a module level marker:

import pytest
pytestmark = pytest.mark.webtest

in which case it will be applied to all functions and methods defined in the module.

Marking individual tests when using parametrize

When using parametrize, applying a mark will make it apply to each individual test. However it is also possible to
apply a marker to an individual test instance:

import pytest

@pytest.mark.foo
@pytest.mark.parametrize(("n", "expected"), [

(1, 2),
pytest.mark.bar((1, 3)),
(2, 3),

])

24.4. Working with custom markers 161

pytest Documentation, Release 3.1

def test_increment(n, expected):
assert n + 1 == expected

In this example the mark “foo” will apply to each of the three tests, whereas the “bar” mark is only applied to the
second test. Skip and xfail marks can also be applied in this way, see Skip/xfail with parametrize.

Note: If the data you are parametrizing happen to be single callables, you need to be careful when marking these
items. pytest.mark.xfail(my_func) won’t work because it’s also the signature of a function being decorated. To resolve
this ambiguity, you need to pass a reason argument: pytest.mark.xfail(func_bar, reason=”Issue#7”).

Custom marker and command line option to control test runs

Plugins can provide custom markers and implement specific behaviour based on it. This is a self-contained example
which adds a command line option and a parametrized test function marker to run tests specifies via named environ-
ments:

content of conftest.py

import pytest
def pytest_addoption(parser):

parser.addoption("-E", action="store", metavar="NAME",
help="only run tests matching the environment NAME.")

def pytest_configure(config):
register an additional marker
config.addinivalue_line("markers",

"env(name): mark test to run only on named environment")

def pytest_runtest_setup(item):
envmarker = item.get_marker("env")
if envmarker is not None:

envname = envmarker.args[0]
if envname != item.config.getoption("-E"):

pytest.skip("test requires env %r" % envname)

A test file using this local plugin:

content of test_someenv.py

import pytest
@pytest.mark.env("stage1")
def test_basic_db_operation():

pass

and an example invocations specifying a different environment than what the test needs:

$ pytest -E stage2
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_someenv.py s

162 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

======= 1 skipped in 0.12 seconds ========

and here is one that specifies exactly the environment needed:

$ pytest -E stage1
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 1 items

test_someenv.py .

======= 1 passed in 0.12 seconds ========

The --markers option always gives you a list of available markers:

$ pytest --markers
@pytest.mark.env(name): mark test to run only on named environment

@pytest.mark.skip(reason=None): skip the given test function with an optional reason.
→˓Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eval(condition)
→˓results in a True value. Evaluation happens within the module global context.
→˓Example: skipif('sys.platform == "win32"') skips the test if we are on the win32
→˓platform. see http://pytest.org/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, strict=False): mark
→˓the test function as an expected failure if eval(condition) has a True value.
→˓Optionally specify a reason for better reporting and run=False if you don't even
→˓want to execute the test function. If only specific exception(s) are expected, you
→˓can list them in raises, and if the test fails in other ways, it will be reported
→˓as a true failure. See http://pytest.org/latest/skipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times
→˓passing in different arguments in turn. argvalues generally needs to be a list of
→˓values if argnames specifies only one name or a list of tuples of values if
→˓argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead
→˓to two calls of the decorated test function, one with arg1=1 and another with
→˓arg1=2.see http://pytest.org/latest/parametrize.html for more info and examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all
→˓of the specified fixtures. see http://pytest.org/latest/fixture.html#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin
→˓machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin
→˓machinery will try to call it last/as late as possible.

Reading markers which were set from multiple places

If you are heavily using markers in your test suite you may encounter the case where a marker is applied several times
to a test function. From plugin code you can read over all such settings. Example:

24.4. Working with custom markers 163

pytest Documentation, Release 3.1

content of test_mark_three_times.py
import pytest
pytestmark = pytest.mark.glob("module", x=1)

@pytest.mark.glob("class", x=2)
class TestClass(object):

@pytest.mark.glob("function", x=3)
def test_something(self):

pass

Here we have the marker “glob” applied three times to the same test function. From a conftest file we can read it like
this:

content of conftest.py
import sys

def pytest_runtest_setup(item):
g = item.get_marker("glob")
if g is not None:

for info in g:
print ("glob args=%s kwargs=%s" %(info.args, info.kwargs))
sys.stdout.flush()

Let’s run this without capturing output and see what we get:

$ pytest -q -s
glob args=('function',) kwargs={'x': 3}
glob args=('class',) kwargs={'x': 2}
glob args=('module',) kwargs={'x': 1}
.
1 passed in 0.12 seconds

marking platform specific tests with pytest

Consider you have a test suite which marks tests for particular platforms, namely pytest.mark.darwin,
pytest.mark.win32 etc. and you also have tests that run on all platforms and have no specific marker. If you
now want to have a way to only run the tests for your particular platform, you could use the following plugin:

content of conftest.py
#
import sys
import pytest

ALL = set("darwin linux win32".split())

def pytest_runtest_setup(item):
if isinstance(item, item.Function):

plat = sys.platform
if not item.get_marker(plat):

if ALL.intersection(item.keywords):
pytest.skip("cannot run on platform %s" %(plat))

then tests will be skipped if they were specified for a different platform. Let’s do a little test file to show how this looks
like:

164 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

content of test_plat.py

import pytest

@pytest.mark.darwin
def test_if_apple_is_evil():

pass

@pytest.mark.linux
def test_if_linux_works():

pass

@pytest.mark.win32
def test_if_win32_crashes():

pass

def test_runs_everywhere():
pass

then you will see two tests skipped and two executed tests as expected:

$ pytest -rs # this option reports skip reasons
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items

test_plat.py s.s.
======= short test summary info ========
SKIP [2] $REGENDOC_TMPDIR/conftest.py:12: cannot run on platform linux

======= 2 passed, 2 skipped in 0.12 seconds ========

Note that if you specify a platform via the marker-command line option like this:

$ pytest -m linux
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items

test_plat.py .

======= 3 tests deselected ========
======= 1 passed, 3 deselected in 0.12 seconds ========

then the unmarked-tests will not be run. It is thus a way to restrict the run to the specific tests.

Automatically adding markers based on test names

If you a test suite where test function names indicate a certain type of test, you can implement a hook that automatically
defines markers so that you can use the -m option with it. Let’s look at this test module:

content of test_module.py

def test_interface_simple():

24.4. Working with custom markers 165

pytest Documentation, Release 3.1

assert 0

def test_interface_complex():
assert 0

def test_event_simple():
assert 0

def test_something_else():
assert 0

We want to dynamically define two markers and can do it in a conftest.py plugin:

content of conftest.py

import pytest
def pytest_collection_modifyitems(items):

for item in items:
if "interface" in item.nodeid:

item.add_marker(pytest.mark.interface)
elif "event" in item.nodeid:

item.add_marker(pytest.mark.event)

We can now use the -m option to select one set:

$ pytest -m interface --tb=short
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items

test_module.py FF

======= FAILURES ========
_______ test_interface_simple ________
test_module.py:3: in test_interface_simple

assert 0
E assert 0
_______ test_interface_complex ________
test_module.py:6: in test_interface_complex

assert 0
E assert 0
======= 2 tests deselected ========
======= 2 failed, 2 deselected in 0.12 seconds ========

or to select both “event” and “interface” tests:

$ pytest -m "interface or event" --tb=short
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 4 items

test_module.py FFF

======= FAILURES ========
_______ test_interface_simple ________
test_module.py:3: in test_interface_simple

166 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

assert 0
E assert 0
_______ test_interface_complex ________
test_module.py:6: in test_interface_complex

assert 0
E assert 0
_______ test_event_simple ________
test_module.py:9: in test_event_simple

assert 0
E assert 0
======= 1 tests deselected ========
======= 3 failed, 1 deselected in 0.12 seconds ========

A session-fixture which can look at all collected tests

A session-scoped fixture effectively has access to all collected test items. Here is an example of a fixture function
which walks all collected tests and looks if their test class defines a callme method and calls it:

content of conftest.py

import pytest

@pytest.fixture(scope="session", autouse=True)
def callattr_ahead_of_alltests(request):

print ("callattr_ahead_of_alltests called")
seen = set([None])
session = request.node
for item in session.items:

cls = item.getparent(pytest.Class)
if cls not in seen:

if hasattr(cls.obj, "callme"):
cls.obj.callme()

seen.add(cls)

test classes may now define a callme method which will be called ahead of running any tests:

content of test_module.py

class TestHello(object):
@classmethod
def callme(cls):

print ("callme called!")

def test_method1(self):
print ("test_method1 called")

def test_method2(self):
print ("test_method1 called")

class TestOther(object):
@classmethod
def callme(cls):

print ("callme other called")
def test_other(self):

print ("test other")

24.5. A session-fixture which can look at all collected tests 167

pytest Documentation, Release 3.1

works with unittest as well ...
import unittest

class SomeTest(unittest.TestCase):
@classmethod
def callme(self):

print ("SomeTest callme called")

def test_unit1(self):
print ("test_unit1 method called")

If you run this without output capturing:

$ pytest -q -s test_module.py
callattr_ahead_of_alltests called
callme called!
callme other called
SomeTest callme called
test_method1 called
.test_method1 called
.test other
.test_unit1 method called
.
4 passed in 0.12 seconds

Changing standard (Python) test discovery

Ignore paths during test collection

You can easily ignore certain test directories and modules during collection by passing the --ignore=path option
on the cli. pytest allows multiple --ignore options. Example:

tests/
|-- example
| |-- test_example_01.py
| |-- test_example_02.py
| '-- test_example_03.py
|-- foobar
| |-- test_foobar_01.py
| |-- test_foobar_02.py
| '-- test_foobar_03.py
'-- hello

'-- world
|-- test_world_01.py
|-- test_world_02.py
'-- test_world_03.py

Now if you invoke pytest with --ignore=tests/foobar/test_foobar_03.py
--ignore=tests/hello/, you will see that pytest only collects test-modules, which do not match the
patterns specified:

========= test session starts ==========
platform darwin -- Python 2.7.10, pytest-2.8.2, py-1.4.30, pluggy-0.3.1
rootdir: $REGENDOC_TMPDIR, inifile:

168 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

collected 5 items

tests/example/test_example_01.py .
tests/example/test_example_02.py .
tests/example/test_example_03.py .
tests/foobar/test_foobar_01.py .
tests/foobar/test_foobar_02.py .

======= 5 passed in 0.02 seconds =======

Keeping duplicate paths specified from command line

Default behavior of pytest is to ignore duplicate paths specified from the command line. Example:

py.test path_a path_a

...
collected 1 item
...

Just collect tests once.

To collect duplicate tests, use the --keep-duplicates option on the cli. Example:

py.test --keep-duplicates path_a path_a

...
collected 2 items
...

As the collector just works on directories, if you specify twice a single test file, pytest will still collect it twice, no
matter if the --keep-duplicates is not specified. Example:

py.test test_a.py test_a.py

...
collected 2 items
...

Changing directory recursion

You can set the norecursedirs option in an ini-file, for example your pytest.ini in the project root directory:

content of pytest.ini
[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not recurse into typical subversion or sphinx-build directories or into any tmp prefixed
directory.

Changing naming conventions

You can configure different naming conventions by setting the python_files, python_classes and
python_functions configuration options. Example:

24.6. Changing standard (Python) test discovery 169

pytest Documentation, Release 3.1

content of pytest.ini
can also be defined in tox.ini or setup.cfg file, although the section
name in setup.cfg files should be "tool:pytest"
[pytest]
python_files=check_*.py
python_classes=Check
python_functions=*_check

This would make pytest look for tests in files that match the check_* .py glob-pattern, Check prefixes in
classes, and functions and methods that match *_check. For example, if we have:

content of check_myapp.py
class CheckMyApp(object):

def simple_check(self):
pass

def complex_check(self):
pass

then the test collection looks like this:

$ pytest --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 2 items
<Module 'check_myapp.py'>

<Class 'CheckMyApp'>
<Instance '()'>

<Function 'simple_check'>
<Function 'complex_check'>

======= no tests ran in 0.12 seconds ========

Note: the python_functions and python_classes options has no effect for unittest.TestCase test
discovery because pytest delegates detection of test case methods to unittest code.

Interpreting cmdline arguments as Python packages

You can use the --pyargs option to make pytest try interpreting arguments as python package names, deriving
their file system path and then running the test. For example if you have unittest2 installed you can type:

pytest --pyargs unittest2.test.test_skipping -q

which would run the respective test module. Like with other options, through an ini-file and the addopts option you
can make this change more permanently:

content of pytest.ini
[pytest]
addopts = --pyargs

Now a simple invocation of pytest NAME will check if NAME exists as an importable package/module and other-
wise treat it as a filesystem path.

170 Chapter 24. Usages and Examples

pytest Documentation, Release 3.1

Finding out what is collected

You can always peek at the collection tree without running tests like this:

. $ pytest --collect-only pythoncollection.py
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 3 items
<Module 'CWD/pythoncollection.py'>

<Function 'test_function'>
<Class 'TestClass'>
<Instance '()'>

<Function 'test_method'>
<Function 'test_anothermethod'>

======= no tests ran in 0.12 seconds ========

customizing test collection to find all .py files

You can easily instruct pytest to discover tests from every python file:

content of pytest.ini
[pytest]
python_files = *.py

However, many projects will have a setup.py which they don’t want to be imported. Moreover, there may files only
importable by a specific python version. For such cases you can dynamically define files to be ignored by listing them
in a conftest.py file:

content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:

collect_ignore.append("pkg/module_py2.py")

And then if you have a module file like this:

content of pkg/module_py2.py
def test_only_on_python2():

try:
assert 0

except Exception, e:
pass

and a setup.py dummy file like this:

content of setup.py
0/0 # will raise exception if imported

then a pytest run on Python2 will find the one test and will leave out the setup.py file:

#$ pytest --collect-only
====== test session starts ======
platform linux2 -- Python 2.7.10, pytest-2.9.1, py-1.4.31, pluggy-0.3.1

24.6. Changing standard (Python) test discovery 171

pytest Documentation, Release 3.1

rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 1 items
<Module 'pkg/module_py2.py'>

<Function 'test_only_on_python2'>

====== no tests ran in 0.04 seconds ======

If you run with a Python3 interpreter both the one test and the setup.py file will be left out:

$ pytest --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 0 items

======= no tests ran in 0.12 seconds ========

Working with non-python tests

A basic example for specifying tests in Yaml files

Here is an example conftest.py (extracted from Ali Afshnars special purpose pytest-yamlwsgi plugin). This
conftest.py will collect test*.yml files and will execute the yaml-formatted content as custom tests:

content of conftest.py

import pytest

def pytest_collect_file(parent, path):
if path.ext == ".yml" and path.basename.startswith("test"):

return YamlFile(path, parent)

class YamlFile(pytest.File):
def collect(self):

import yaml # we need a yaml parser, e.g. PyYAML
raw = yaml.safe_load(self.fspath.open())
for name, spec in sorted(raw.items()):

yield YamlItem(name, self, spec)

class YamlItem(pytest.Item):
def __init__(self, name, parent, spec):

super(YamlItem, self).__init__(name, parent)
self.spec = spec

def runtest(self):
for name, value in sorted(self.spec.items()):

some custom test execution (dumb example follows)
if name != value:

raise YamlException(self, name, value)

def repr_failure(self, excinfo):
""" called when self.runtest() raises an exception. """
if isinstance(excinfo.value, YamlException):

return "\n".join([
"usecase execution failed",

172 Chapter 24. Usages and Examples

http://bitbucket.org/aafshar/pytest-yamlwsgi/src/tip/pytest_yamlwsgi.py

pytest Documentation, Release 3.1

" spec failed: %r: %r" % excinfo.value.args[1:3],
" no further details known at this point."

])

def reportinfo(self):
return self.fspath, 0, "usecase: %s" % self.name

class YamlException(Exception):
""" custom exception for error reporting. """

You can create a simple example file:

test_simple.yml
ok:

sub1: sub1

hello:
world: world
some: other

and if you installed PyYAML or a compatible YAML-parser you can now execute the test specification:

nonpython $ pytest test_simple.yml
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR/nonpython, inifile:
collected 2 items

test_simple.yml F.

======= FAILURES ========
_______ usecase: hello ________
usecase execution failed

spec failed: 'some': 'other'
no further details known at this point.

======= 1 failed, 1 passed in 0.12 seconds ========

You get one dot for the passing sub1: sub1 check and one failure. Obviously in the above conftest.py you’ll
want to implement a more interesting interpretation of the yaml-values. You can easily write your own domain specific
testing language this way.

Note: repr_failure(excinfo) is called for representing test failures. If you create custom collection nodes
you can return an error representation string of your choice. It will be reported as a (red) string.

reportinfo() is used for representing the test location and is also consulted when reporting in verbose mode:

nonpython $ pytest -v
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python3.5
cachedir: .cache
rootdir: $REGENDOC_TMPDIR/nonpython, inifile:
collecting ... collected 2 items

test_simple.yml::hello FAILED
test_simple.yml::ok PASSED

24.7. Working with non-python tests 173

http://pypi.python.org/pypi/PyYAML/

pytest Documentation, Release 3.1

======= FAILURES ========
_______ usecase: hello ________
usecase execution failed

spec failed: 'some': 'other'
no further details known at this point.

======= 1 failed, 1 passed in 0.12 seconds ========

While developing your custom test collection and execution it’s also interesting to just look at the collection tree:

nonpython $ pytest --collect-only
======= test session starts ========
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR/nonpython, inifile:
collected 2 items
<YamlFile 'test_simple.yml'>

<YamlItem 'hello'>
<YamlItem 'ok'>

======= no tests ran in 0.12 seconds ========

174 Chapter 24. Usages and Examples

CHAPTER 25

Good Integration Practices

Conventions for Python test discovery

pytest implements the following standard test discovery:

• If no arguments are specified then collection starts from testpaths (if configured) or the current directory.
Alternatively, command line arguments can be used in any combination of directories, file names or node ids.

• Recurse into directories, unless they match norecursedirs.

• In those directories, search for test_*.py or *_test.py files, imported by their test package name.

• From those files, collect test items:

– test_ prefixed test functions or methods outside of class

– test_ prefixed test functions or methods inside Test prefixed test classes (without an __init__
method)

For examples of how to customize your test discovery Changing standard (Python) test discovery.

Within Python modules, pytest also discovers tests using the standard unittest.TestCase subclassing technique.

Choosing a test layout / import rules

pytest supports two common test layouts:

Tests outside application code

Putting tests into an extra directory outside your actual application code might be useful if you have many functional
tests or for other reasons want to keep tests separate from actual application code (often a good idea):

setup.py
mypkg/

__init__.py
app.py
view.py

tests/
test_app.py
test_view.py
...

175

pytest Documentation, Release 3.1

This way your tests can run easily against an installed version of mypkg.

Note that using this scheme your test files must have unique names, because pytest will import them as top-level
modules since there are no packages to derive a full package name from. In other words, the test files in the example
above will be imported as test_app and test_view top-level modules by adding tests/ to sys.path.

If you need to have test modules with the same name, you might add __init__.py files to your tests folder and
subfolders, changing them to packages:

setup.py
mypkg/

...
tests/

__init__.py
foo/

__init__.py
test_view.py

bar/
__init__.py
test_view.py

Now pytest will load the modules as tests.foo.test_view and tests.bar.test_view, allowing you to
have modules with the same name. But now this introduces a subtle problem: in order to load the test modules from the
tests directory, pytest prepends the root of the repository to sys.path, which adds the side-effect that now mypkg
is also importable. This is problematic if you are using a tool like tox to test your package in a virtual environment,
because you want to test the installed version of your package, not the local code from the repository.

In this situation, it is strongly suggested to use a src layout where application root package resides in a sub-directory
of your root:

setup.py
src/

mypkg/
__init__.py
app.py
view.py

tests/
__init__.py
foo/

__init__.py
test_view.py

bar/
__init__.py
test_view.py

This layout prevents a lot of common pitfalls and has many benefits, which are better explained in this excellent blog
post by Ionel Cristian Măries, .

Tests as part of application code

Inlining test directories into your application package is useful if you have direct relation between tests and application
modules and want to distribute them along with your application:

setup.py
mypkg/

__init__.py
app.py

176 Chapter 25. Good Integration Practices

http://testrun.org/tox
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure

pytest Documentation, Release 3.1

view.py
test/

__init__.py
test_app.py
test_view.py
...

In this scheme, it is easy to your run tests using the --pyargs option:

pytest --pyargs mypkg

pytest will discover where mypkg is installed and collect tests from there.

Note that this layout also works in conjunction with the src layout mentioned in the previous section.

Note: You can use Python3 namespace packages (PEP420) for your application but pytest will still perform test
package name discovery based on the presence of __init__.py files. If you use one of the two recommended file
system layouts above but leave away the __init__.py files from your directories it should just work on Python3.3
and above. From “inlined tests”, however, you will need to use absolute imports for getting at your application code.

Note: If pytest finds a “a/b/test_module.py” test file while recursing into the filesystem it determines the import
name as follows:

• determine basedir: this is the first “upward” (towards the root) directory not containing an __init__.py.
If e.g. both a and b contain an __init__.py file then the parent directory of a will become the basedir.

• perform sys.path.insert(0,basedir) to make the test module importable under the fully qualified
import name.

• import a.b.test_module where the path is determined by converting path separators / into ”.” charac-
ters. This means you must follow the convention of having directory and file names map directly to the import
names.

The reason for this somewhat evolved importing technique is that in larger projects multiple test modules might import
from each other and thus deriving a canonical import name helps to avoid surprises such as a test module getting
imported twice.

Tox

For development, we recommend to use virtualenv environments and pip for installing your application and any de-
pendencies as well as the pytest package itself. This ensures your code and dependencies are isolated from the
system Python installation.

You can then install your package in “editable” mode:

pip install -e .

which lets you change your source code (both tests and application) and rerun tests at will. This is similar to running
python setup.py develop or conda develop in that it installs your package using a symlink to your development code.

Once you are done with your work and want to make sure that your actual package passes all tests you may want to
look into tox, the virtualenv test automation tool and its pytest support. Tox helps you to setup virtualenv environments

25.3. Tox 177

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/pip
http://testrun.org/tox
https://tox.readthedocs.io/en/latest/example/pytest.html

pytest Documentation, Release 3.1

with pre-defined dependencies and then executing a pre-configured test command with options. It will run tests against
the installed package and not against your source code checkout, helping to detect packaging glitches.

Integrating with setuptools / python setup.py test /
pytest-runner

You can integrate test runs into your setuptools based project with the pytest-runner plugin.

Add this to setup.py file:

from setuptools import setup

setup(
#...,
setup_requires=['pytest-runner', ...],
tests_require=['pytest', ...],
#...,

)

And create an alias into setup.cfg file:

[aliases]
test=pytest

If you now type:

python setup.py test

this will execute your tests using pytest-runner. As this is a standalone version of pytest no prior installation
whatsoever is required for calling the test command. You can also pass additional arguments to pytest such as your
test directory or other options using --addopts.

You can also specify other pytest-ini options in your setup.cfg file by putting them into a [tool:pytest]
section:

[tool:pytest]
addopts = --verbose
python_files = testing/*/*.py

Note: Prior to 3.0, the supported section name was [pytest]. Due to how this may collide with some distutils
commands, the recommended section name for setup.cfg files is now [tool:pytest].

Note that for pytest.ini and tox.ini files the section name is [pytest].

Manual Integration

If for some reason you don’t want/can’t use pytest-runner, you can write your own setuptools Test command for
invoking pytest.

import sys

from setuptools.command.test import test as TestCommand

178 Chapter 25. Good Integration Practices

https://pypi.python.org/pypi/pytest-runner

pytest Documentation, Release 3.1

class PyTest(TestCommand):
user_options = [('pytest-args=', 'a', "Arguments to pass to pytest")]

def initialize_options(self):
TestCommand.initialize_options(self)
self.pytest_args = []

def run_tests(self):
import shlex
#import here, cause outside the eggs aren't loaded
import pytest
errno = pytest.main(shlex.split(self.pytest_args))
sys.exit(errno)

setup(
#...,
tests_require=['pytest'],
cmdclass = {'test': PyTest},
)

Now if you run:

python setup.py test

this will download pytest if needed and then run your tests as you would expect it to. You can pass a single string
of arguments using the --pytest-args or -a command-line option. For example:

python setup.py test -a "--durations=5"

is equivalent to running pytest --durations=5.

25.4. Integrating with setuptools / python setup.py test / pytest-runner 179

pytest Documentation, Release 3.1

180 Chapter 25. Good Integration Practices

CHAPTER 26

Basic test configuration

Command line options and configuration file settings

You can get help on command line options and values in INI-style configurations files by using the general help option:

pytest -h # prints options _and_ config file settings

This will display command line and configuration file settings which were registered by installed plugins.

initialization: determining rootdir and inifile

New in version 2.7.

pytest determines a “rootdir” for each test run which depends on the command line arguments (specified test files,
paths) and on the existence of inifiles. The determined rootdir and ini-file are printed as part of the pytest header. The
rootdir is used for constructing “nodeids” during collection and may also be used by plugins to store project/testrun-
specific information.

Here is the algorithm which finds the rootdir from args:

• determine the common ancestor directory for the specified args that are recognised as paths that exist in the
file system. If no such paths are found, the common ancestor directory is set to the current working directory.

• look for pytest.ini, tox.ini and setup.cfg files in the ancestor directory and upwards. If one is
matched, it becomes the ini-file and its directory becomes the rootdir.

• if no ini-file was found, look for setup.py upwards from the common ancestor directory to determine the
rootdir.

• if no setup.py was found, look for pytest.ini, tox.ini and setup.cfg in each of the specified
args and upwards. If one is matched, it becomes the ini-file and its directory becomes the rootdir.

• if no ini-file was found, use the already determined common ancestor as root directory. This allows the use of
pytest in structures that are not part of a package and don’t have any particular ini-file configuration.

If no args are given, pytest collects test below the current working directory and also starts determining the rootdir
from there.

warning custom pytest plugin commandline arguments may include a path, as in pytest
--log-output ../../test.log args. Then args is mandatory, otherwise pytest uses
the folder of test.log for rootdir determination (see also issue 1435). A dot . for referencing to the
current working directory is also possible.

181

https://github.com/pytest-dev/pytest/issues/1435

pytest Documentation, Release 3.1

Note that an existing pytest.ini file will always be considered a match, whereas tox.ini and setup.cfg will
only match if they contain a [pytest] or [tool:pytest] section, respectively. Options from multiple ini-files
candidates are never merged - the first one wins (pytest.ini always wins, even if it does not contain a [pytest]
section).

The config object will subsequently carry these attributes:

• config.rootdir: the determined root directory, guaranteed to exist.

• config.inifile: the determined ini-file, may be None.

The rootdir is used a reference directory for constructing test addresses (“nodeids”) and can be used also by plugins
for storing per-testrun information.

Example:

pytest path/to/testdir path/other/

will determine the common ancestor as path and then check for ini-files as follows:

first look for pytest.ini files
path/pytest.ini
path/setup.cfg # must also contain [tool:pytest] section to match
path/tox.ini # must also contain [pytest] section to match
pytest.ini
... # all the way down to the root

now look for setup.py
path/setup.py
setup.py
... # all the way down to the root

How to change command line options defaults

It can be tedious to type the same series of command line options every time you use pytest. For example, if you
always want to see detailed info on skipped and xfailed tests, as well as have terser “dot” progress output, you can
write it into a configuration file:

content of pytest.ini
(or tox.ini or setup.cfg)
[pytest]
addopts = -rsxX -q

Alternatively, you can set a PYTEST_ADDOPTS environment variable to add command line options while the envi-
ronment is in use:

export PYTEST_ADDOPTS="-rsxX -q"

From now on, running pytest will add the specified options.

Builtin configuration file options

minversion
Specifies a minimal pytest version required for running tests.

182 Chapter 26. Basic test configuration

pytest Documentation, Release 3.1

minversion = 2.1 # will fail if we run with pytest-2.0

addopts
Add the specified OPTS to the set of command line arguments as if they had been specified by the user. Example:
if you have this ini file content:

[pytest]
addopts = --maxfail=2 -rf # exit after 2 failures, report fail info

issuing pytest test_hello.py actually means:

pytest --maxfail=2 -rf test_hello.py

Default is to add no options.

norecursedirs
Set the directory basename patterns to avoid when recursing for test discovery. The individual (fnmatch-style)
patterns are applied to the basename of a directory to decide if to recurse into it. Pattern matching characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

Default patterns are '.*','build','dist','CVS','_darcs','{arch}','*.egg','venv'.
Setting a norecursedirs replaces the default. Here is an example of how to avoid certain directories:

content of pytest.ini
[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not look into typical subversion or sphinx-build directories or into any tmp prefixed
directory.

testpaths
New in version 2.8.

Sets list of directories that should be searched for tests when no specific directories, files or test ids are given in
the command line when executing pytest from the rootdir directory. Useful when all project tests are in a known
location to speed up test collection and to avoid picking up undesired tests by accident.

content of pytest.ini
[pytest]
testpaths = testing doc

This tells pytest to only look for tests in testing and doc directories when executing from the root directory.

python_files
One or more Glob-style file patterns determining which python files are considered as test modules.

python_classes
One or more name prefixes or glob-style patterns determining which classes are considered for test collection.
Here is an example of how to collect tests from classes that end in Suite:

content of pytest.ini
[pytest]
python_classes = *Suite

Note that unittest.TestCase derived classes are always collected regardless of this option, as
unittest‘s own collection framework is used to collect those tests.

26.4. Builtin configuration file options 183

pytest Documentation, Release 3.1

python_functions
One or more name prefixes or glob-patterns determining which test functions and methods are considered tests.
Here is an example of how to collect test functions and methods that end in _test:

content of pytest.ini
[pytest]
python_functions = *_test

Note that this has no effect on methods that live on a unittest .TestCase derived class, as unittest‘s
own collection framework is used to collect those tests.

See Changing naming conventions for more detailed examples.

doctest_optionflags
One or more doctest flag names from the standard doctest module. See how pytest handles doctests.

confcutdir
Sets a directory where search upwards for conftest.py files stops. By default, pytest will stop searching for
conftest.py files upwards from pytest.ini/tox.ini/setup.cfg of the project if any, or up to the
file-system root.

filterwarnings
New in version 3.1.

Sets a list of filters and actions that should be taken for matched warnings. By default all warnings emitted
during the test session will be displayed in a summary at the end of the test session.

content of pytest.ini
[pytest]
filterwarnings =

error
ignore::DeprecationWarning

This tells pytest to ignore deprecation warnings and turn all other warnings into errors. For more information
please refer to Warnings Capture.

184 Chapter 26. Basic test configuration

CHAPTER 27

Setting up bash completion

When using bash as your shell, pytest can use argcomplete (https://argcomplete.readthedocs.io/) for auto-
completion. For this argcomplete needs to be installed and enabled.

Install argcomplete using:

sudo pip install 'argcomplete>=0.5.7'

For global activation of all argcomplete enabled python applications run:

sudo activate-global-python-argcomplete

For permanent (but not global) pytest activation, use:

register-python-argcomplete pytest >> ~/.bashrc

For one-time activation of argcomplete for pytest only, use:

eval "$(register-python-argcomplete pytest)"

185

https://argcomplete.readthedocs.io/

pytest Documentation, Release 3.1

186 Chapter 27. Setting up bash completion

CHAPTER 28

Backwards Compatibility Policy

Keeping backwards compatibility has a very high priority in the pytest project. Although we have deprecated func-
tionality over the years, most of it is still supported. All deprecations in pytest were done because simpler or more
efficient ways of accomplishing the same tasks have emerged, making the old way of doing things unnecessary.

With the pytest 3.0 release we introduced a clear communication scheme for when we will actually remove the old
busted joint and politely ask you to use the new hotness instead, while giving you enough time to adjust your tests or
raise concerns if there are valid reasons to keep deprecated functionality around.

To communicate changes we are already issuing deprecation warnings, but they are not displayed by default. In pytest
3.0 we changed the default setting so that pytest deprecation warnings are displayed if not explicitly silenced (with
--disable-pytest-warnings).

We will only remove deprecated functionality in major releases (e.g. if we deprecate something in 3.0 we will remove
it in 4.0), and keep it around for at least two minor releases (e.g. if we deprecate something in 3.9 and 4.0 is the next
release, we will not remove it in 4.0 but in 5.0).

187

pytest Documentation, Release 3.1

188 Chapter 28. Backwards Compatibility Policy

CHAPTER 29

License

Distributed under the terms of the MIT license, pytest is free and open source software.

The MIT License (MIT)

Copyright (c) 2004-2017 Holger Krekel and others

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

189

https://github.com/pytest-dev/pytest/blob/master/LICENSE

pytest Documentation, Release 3.1

190 Chapter 29. License

CHAPTER 30

Contribution getting started

Contributions are highly welcomed and appreciated. Every little help counts, so do not hesitate!

Contribution links

• Contribution getting started

– Feature requests and feedback

– Report bugs

– Fix bugs

– Implement features

– Write documentation

– Submitting Plugins to pytest-dev

– Preparing Pull Requests on GitHub

Feature requests and feedback

Do you like pytest? Share some love on Twitter or in your blog posts!

We’d also like to hear about your propositions and suggestions. Feel free to submit them as issues and:

• Explain in detail how they should work.

• Keep the scope as narrow as possible. This will make it easier to implement.

Report bugs

Report bugs for pytest in the issue tracker.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting, specifically Python interpreter
version, installed libraries and pytest version.

191

https://github.com/pytest-dev/pytest/issues
https://github.com/pytest-dev/pytest/issues

pytest Documentation, Release 3.1

• Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should pass (xfail), that is a very useful commit to make
as well, even if you can’t find how to fix the bug yet.

Fix bugs

Look through the GitHub issues for bugs. Here is a filter you can use: https://github.com/pytest-dev/pytest/labels/bug

Talk to developers to find out how you can fix specific bugs.

Don’t forget to check the issue trackers of your favourite plugins, too!

Implement features

Look through the GitHub issues for enhancements. Here is a filter you can use: https://github.com/pytest-dev/pytest/
labels/enhancement

Talk to developers to find out how you can implement specific features.

Write documentation

Pytest could always use more documentation. What exactly is needed?

• More complementary documentation. Have you perhaps found something unclear?

• Documentation translations. We currently have only English.

• Docstrings. There can never be too many of them.

• Blog posts, articles and such – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface, without using a local copy. This can be
convenient for small fixes.

Note: Build the documentation locally with the following command:

$ tox -e docs

The built documentation should be available in the doc/en/_build/.

Where ‘en’ refers to the documentation language.

Submitting Plugins to pytest-dev

Pytest development of the core, some plugins and support code happens in repositories living under the pytest-dev
organisations:

• pytest-dev on GitHub

• pytest-dev on Bitbucket

192 Chapter 30. Contribution getting started

https://github.com/pytest-dev/pytest/labels/bug
https://github.com/pytest-dev/pytest/labels/enhancement
https://github.com/pytest-dev/pytest/labels/enhancement
https://github.com/pytest-dev
https://bitbucket.org/pytest-dev

pytest Documentation, Release 3.1

All pytest-dev Contributors team members have write access to all contained repositories. Pytest core and plugins are
generally developed using pull requests to respective repositories.

The objectives of the pytest-dev organisation are:

• Having a central location for popular pytest plugins

• Sharing some of the maintenance responsibility (in case a maintainer no longer wishes to maintain a plugin)

You can submit your plugin by subscribing to the pytest-dev mail list and writing a mail pointing to your existing
pytest plugin repository which must have the following:

• PyPI presence with a setup.py that contains a license, pytest- prefixed name, version number, authors,
short and long description.

• a tox.ini for running tests using tox.

• a README.txt describing how to use the plugin and on which platforms it runs.

• a LICENSE.txt file or equivalent containing the licensing information, with matching info in setup.py.

• an issue tracker for bug reports and enhancement requests.

• a changelog

If no contributor strongly objects and two agree, the repository can then be transferred to the pytest-dev organisa-
tion.

Here’s a rundown of how a repository transfer usually proceeds (using a repository named joedoe/pytest-xyz
as example):

• joedoe transfers repository ownership to pytest-dev administrator calvin.

• calvin creates pytest-xyz-admin and pytest-xyz-developers teams, inviting joedoe to both
as maintainer.

• calvin transfers repository to pytest-dev and configures team access:

– pytest-xyz-admin admin access;

– pytest-xyz-developers write access;

The pytest-dev/Contributors team has write access to all projects, and every project administrator is in it.
We recommend that each plugin has at least three people who have the right to release to PyPI.

Repository owners can rest assured that no pytest-dev administrator will ever make releases of your repository
or take ownership in any way, except in rare cases where someone becomes unresponsive after months of contact
attempts. As stated, the objective is to share maintenance and avoid “plugin-abandon”.

Preparing Pull Requests on GitHub

Note: What is a “pull request”? It informs project’s core developers about the changes you want to review and merge.
Pull requests are stored on GitHub servers. Once you send a pull request, we can discuss its potential modifications
and even add more commits to it later on.

There’s an excellent tutorial on how Pull Requests work in the GitHub Help Center, but here is a simple overview:

1. Fork the pytest GitHub repository. It’s fine to use pytest as your fork repository name because it will live
under your user.

2. Clone your fork locally using git and create a branch:

30.7. Preparing Pull Requests on GitHub 193

https://mail.python.org/mailman/listinfo/pytest-dev
http://tox.testrun.org
http://keepachangelog.com/
https://github.com/pytest-dev/pytest/pulls
https://help.github.com/articles/using-pull-requests/
https://github.com/pytest-dev/pytest
https://git-scm.com/

pytest Documentation, Release 3.1

$ git clone git@github.com:YOUR_GITHUB_USERNAME/pytest.git
$ cd pytest
now, to fix a bug create your own branch off "master":

$ git checkout -b your-bugfix-branch-name master

or to instead add a feature create your own branch off "features":

$ git checkout -b your-feature-branch-name features

Given we have “major.minor.micro” version numbers, bugfixes will usually be released in micro releases
whereas features will be released in minor releases and incompatible changes in major releases.

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Install tox

Tox is used to run all the tests and will automatically setup virtualenvs to run the tests in. (will implicitly use
http://www.virtualenv.org/en/latest/):

$ pip install tox

4. Run all the tests

You need to have Python 2.7 and 3.6 available in your system. Now running tests is as simple as issuing this
command:

$ tox -e linting,py27,py36

This command will run tests via the “tox” tool against Python 2.7 and 3.6 and also perform “lint” coding-style
checks.

5. You can now edit your local working copy.

You can now make the changes you want and run the tests again as necessary.

To run tests on Python 2.7 and pass options to pytest (e.g. enter pdb on failure) to pytest you can do:

$ tox -e py27 -- --pdb

Or to only run tests in a particular test module on Python 3.6:

$ tox -e py36 -- testing/test_config.py

6. Commit and push once your tests pass and you are happy with your change(s):

$ git commit -a -m "<commit message>"
$ git push -u

Make sure you add a message to CHANGELOG.rst and add yourself to AUTHORS. If you are unsure about
either of these steps, submit your pull request and we’ll help you fix it up.

7. Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/pytest
compare: your-branch-name

base-fork: pytest-dev/pytest
base: master # if it's a bugfix
base: features # if it's a feature

194 Chapter 30. Contribution getting started

https://git.wiki.kernel.org/index.php/QuickStart
http://www.virtualenv.org/en/latest/

CHAPTER 31

Talks and Tutorials

Books

• Python Testing with pytest, by Brian Okken (2017).

Talks and blog postings

• Pythonic testing, Igor Starikov (Russian, PyNsk, November 2016).

• pytest - Rapid Simple Testing, Florian Bruhin, Swiss Python Summit 2016.

• Improve your testing with Pytest and Mock, Gabe Hollombe, PyCon SG 2015.

• Introduction to pytest, Andreas Pelme, EuroPython 2014.

• Advanced Uses of py.test Fixtures, Floris Bruynooghe, EuroPython 2014.

• Why i use py.test and maybe you should too, Andy Todd, Pycon AU 2013

• 3-part blog series about pytest from @pydanny alias Daniel Greenfeld (January 2014)

• pytest: helps you write better Django apps, Andreas Pelme, DjangoCon Europe 2014.

• pytest fixtures: explicit, modular, scalable

• Testing Django Applications with pytest, Andreas Pelme, EuroPython 2013.

• Testes pythonics com py.test, Vinicius Belchior Assef Neto, Plone Conf 2013, Brazil.

• Introduction to py.test fixtures, FOSDEM 2013, Floris Bruynooghe.

• pytest feature and release highlights, Holger Krekel (GERMAN, October 2013)

• pytest introduction from Brian Okken (January 2013)

• pycon australia 2012 pytest talk from Brianna Laugher (video, slides, code)

• pycon 2012 US talk video from Holger Krekel

• monkey patching done right (blog post, consult monkeypatch plugin for up-to-date API)

Test parametrization:

• generating parametrized tests with fixtures.

• test generators and cached setup

• parametrizing tests, generalized (blog post)

195

https://pragprog.com/book/bopytest/python-testing-with-pytest
https://www.youtube.com/watch?v=_92nfdd5nK8
https://www.youtube.com/watch?v=rCBHkQ_LVIs
https://www.youtube.com/watch?v=RcN26hznmk4
https://www.youtube.com/watch?v=LdVJj65ikRY
https://www.youtube.com/watch?v=IBC_dxr-4ps
https://www.youtube.com/watch?v=P-AhpukDIik
http://pydanny.com/pytest-no-boilerplate-testing.html
https://www.youtube.com/watch?v=aaArYVh6XSM
https://www.youtube.com/watch?v=aUf8Fkb7TaY
https://www.youtube.com/watch?v=QUKoq2K7bis
https://www.youtube.com/watch?v=bJhRW4eZMco
http://pyvideo.org/video/2429/pytest-feature-and-new-release-highlights
http://pythontesting.net/framework/pytest-introduction/
http://www.youtube.com/watch?v=DTNejE9EraI
http://www.slideshare.net/pfctdayelise/funcargs-other-fun-with-pytest
https://gist.github.com/3386951
http://www.youtube.com/watch?v=9LVqBQcFmyw
http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/
http://bruynooghe.blogspot.com/2010/06/pytest-test-generators-and-cached-setup.html
http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/

pytest Documentation, Release 3.1

• putting test-hooks into local or global plugins (blog post)

Assertion introspection:

• (07/2011) Behind the scenes of pytest’s new assertion rewriting

Distributed testing:

• simultaneously test your code on all platforms (blog entry)

Plugin specific examples:

• skipping slow tests by default in pytest (blog entry)

• many examples in the docs for plugins

196 Chapter 31. Talks and Tutorials

http://tetamap.wordpress.com/2009/05/14/putting-test-hooks-into-local-and-global-plugins/
http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html
http://tetamap.wordpress.com/2009/03/23/new-simultanously-test-your-code-on-all-platforms/
http://bruynooghe.blogspot.com/2009/12/skipping-slow-test-by-default-in-pytest.html

pytest Documentation, Release 3.1

31.2. Talks and blog postings 197

pytest Documentation, Release 3.1

198 Chapter 31. Talks and Tutorials

CHAPTER 32

Project examples

Here are some examples of projects using pytest (please send notes via Contact channels):

• PyPy, Python with a JIT compiler, running over 21000 tests

• the MoinMoin Wiki Engine

• sentry, realtime app-maintenance and exception tracking

• Astropy and affiliated packages

• tox, virtualenv/Hudson integration tool

• PIDA framework for integrated development

• PyPM ActiveState’s package manager

• Fom a fluid object mapper for FluidDB

• applib cross-platform utilities

• six Python 2 and 3 compatibility utilities

• pediapress MediaWiki articles

• mwlib mediawiki parser and utility library

• The Translate Toolkit for localization and conversion

• execnet rapid multi-Python deployment

• pylib cross-platform path, IO, dynamic code library

• Pacha configuration management in five minutes

• bbfreeze create standalone executables from Python scripts

• pdb++ a fancier version of PDB

• py-s3fuse Amazon S3 FUSE based filesystem

• waskr WSGI Stats Middleware

• guachi global persistent configs for Python modules

• Circuits lightweight Event Driven Framework

• pygtk-helpers easy interaction with PyGTK

• QuantumCore statusmessage and repoze openid plugin

• pydataportability libraries for managing the open web

199

http://pypy.org
http://buildbot.pypy.org/summary?branch=%3Ctrunk%3E
http://moinmo.in
https://getsentry.com/welcome/
http://www.astropy.org/
http://www.astropy.org/affiliated/index.html
http://testrun.org/tox
http://pida.co.uk
http://code.activestate.com/pypm/
http://packages.python.org/Fom/
https://github.com/ActiveState/applib
http://pypi.python.org/pypi/six/
http://code.pediapress.com/wiki/wiki
http://pypi.python.org/pypi/mwlib
http://translate.sourceforge.net/wiki/toolkit/index
http://codespeak.net/execnet
http://py.rtfd.org
http://pacha.cafepais.com/
http://pypi.python.org/pypi/bbfreeze
http://bitbucket.org/antocuni/pdb
http://code.google.com/p/py-s3fuse/
http://code.google.com/p/waskr/
http://code.google.com/p/guachi/
http://pypi.python.org/pypi/circuits
http://bitbucket.org/aafshar/pygtkhelpers-main/
http://quantumcore.org/
http://pydataportability.net/

pytest Documentation, Release 3.1

• XIST extensible HTML/XML generator

• tiddlyweb optionally headless, extensible RESTful datastore

• fancycompleter for colorful tab-completion

• Paludis tools for Gentoo Paludis package manager

• Gerald schema comparison tool

• abjad Python API for Formalized Score control

• bu a microscopic build system

• katcp Telescope communication protocol over Twisted

• kss plugin timer

• pyudev a pure Python binding to the Linux library libudev

• pytest-localserver a plugin for pytest that provides an httpserver and smtpserver

• pytest-monkeyplus a plugin that extends monkeypatch

These projects help integrate pytest into other Python frameworks:

• pytest-django for Django

• zope.pytest for Zope and Grok

• pytest_gae for Google App Engine

• There is some work underway for Kotti, a CMS built in Pyramid/Pylons

Some organisations using pytest

• Square Kilometre Array, Cape Town

• Some Mozilla QA people use pytest to distribute their Selenium tests

• Tandberg

• Shootq

• Stups department of Heinrich Heine University Duesseldorf

• cellzome

• Open End, Gothenborg

• Laboratory of Bioinformatics, Warsaw

• merlinux, Germany

• ESSS, Brazil

• many more ... (please be so kind to send a note via Contact channels)

200 Chapter 32. Project examples

http://www.livinglogic.de/Python/xist/
http://pypi.python.org/pypi/tiddlyweb
http://bitbucket.org/antocuni/fancycompleter/src
http://paludis.exherbo.org/
http://halfcooked.com/code/gerald/
http://code.google.com/p/abjad/
http://packages.python.org/bu/
https://bitbucket.org/hodgestar/katcp
http://pypi.python.org/pypi/kss.plugin.timer
https://pyudev.readthedocs.io/en/latest/tests/plugins.html
https://bitbucket.org/basti/pytest-localserver/
http://pypi.python.org/pypi/pytest-monkeyplus/
http://pypi.python.org/pypi/pytest-django/
http://packages.python.org/zope.pytest/
http://pypi.python.org/pypi/pytest_gae/0.2.1
https://github.com/Kotti/Kotti/blob/master/kotti/testing.py
http://ska.ac.za/
http://www.theautomatedtester.co.uk/blog/2011/pytest_and_xdist_plugin.html
http://www.tandberg.com/
http://web.shootq.com/
http://www.stups.uni-duesseldorf.de/projects.php
http://www.cellzome.com/
http://www.openend.se
http://genesilico.pl/
http://merlinux.eu
http://www.esss.com.br

CHAPTER 33

Some Issues and Questions

Note: This FAQ is here only mostly for historic reasons. Checkout pytest Q&A at Stackoverflow for many questions
and answers related to pytest and/or use Contact channels to get help.

On naming, nosetests, licensing and magic

How does pytest relate to nose and unittest?

pytest and nose share basic philosophy when it comes to running and writing Python tests. In fact, you can run
many tests written for nose with pytest. nose was originally created as a clone of pytest when pytest was in
the 0.8 release cycle. Note that starting with pytest-2.0 support for running unittest test suites is majorly improved.

how does pytest relate to twisted’s trial?

Since some time pytest has builtin support for supporting tests written using trial. It does not itself start a reactor,
however, and does not handle Deferreds returned from a test in pytest style. If you are using trial’s unittest.TestCase
chances are that you can just run your tests even if you return Deferreds. In addition, there also is a dedicated pytest-
twisted plugin which allows you to return deferreds from pytest-style tests, allowing the use of pytest fixtures: explicit,
modular, scalable and other features.

how does pytest work with Django?

In 2012, some work is going into the pytest-django plugin. It substitutes the usage of Django’s manage.py test
and allows the use of all pytest features most of which are not available from Django directly.

What’s this “magic” with pytest? (historic notes)

Around 2007 (version 0.8) some people thought that pytest was using too much “magic”. It had been part of
the pylib which contains a lot of unrelated python library code. Around 2010 there was a major cleanup refactoring,
which removed unused or deprecated code and resulted in the new pytest PyPI package which strictly contains only
test-related code. This release also brought a complete pluginification such that the core is around 300 lines of code
and everything else is implemented in plugins. Thus pytest today is a small, universally runnable and customizable
testing framework for Python. Note, however, that pytest uses metaprogramming techniques and reading its source
is thus likely not something for Python beginners.

201

http://stackoverflow.com/search?q=pytest
https://nose.readthedocs.io/en/latest/
https://nose.readthedocs.io/en/latest/
http://pypi.python.org/pypi/pytest-twisted
http://pypi.python.org/pypi/pytest-twisted
http://pypi.python.org/pypi/pytest-django
https://py.readthedocs.io/en/latest/

pytest Documentation, Release 3.1

A second “magic” issue was the assert statement debugging feature. Nowadays, pytest explicitly rewrites assert
statements in test modules in order to provide more useful assert feedback. This completely avoids previous issues of
confusing assertion-reporting. It also means, that you can use Python’s -O optimization without losing assertions in
test modules.

You can also turn off all assertion interaction using the --assert=plain option.

Why can I use both pytest and py.test commands?

pytest used to be part of the py package, which provided several developer utilities, all starting with py.<TAB>, thus
providing nice TAB-completion. If you install pip install pycmd you get these tools from a separate package.
Once pytest became a separate package, the py.test name was retained due to avoid a naming conflict with
another tool. This conflict was eventually resolved, and the pytest command was therefore introduced. In future
versions of pytest, we may deprecate and later remove the py.test command to avoid perpetuating the confusion.

pytest fixtures, parametrized tests

Is using pytest fixtures versus xUnit setup a style question?

For simple applications and for people experienced with nose or unittest-style test setup using xUnit style setup proba-
bly feels natural. For larger test suites, parametrized testing or setup of complex test resources using fixtures may feel
more natural. Moreover, fixtures are ideal for writing advanced test support code (like e.g. the monkeypatch, the tmpdir
or capture fixtures) because the support code can register setup/teardown functions in a managed class/module/function
scope.

Can I yield multiple values from a fixture function?

There are two conceptual reasons why yielding from a factory function is not possible:

• If multiple factories yielded values there would be no natural place to determine the combination policy - in
real-world examples some combinations often should not run.

• Calling factories for obtaining test function arguments is part of setting up and running a test. At that point it is
not possible to add new test calls to the test collection anymore.

However, with pytest-2.3 you can use the Fixtures as Function arguments decorator and specify params so that all
tests depending on the factory-created resource will run multiple times with different parameters.

You can also use the pytest_generate_tests hook to implement the parametrization scheme of your choice.
See also Parametrizing tests for more examples.

pytest interaction with other packages

Issues with pytest, multiprocess and setuptools?

On Windows the multiprocess package will instantiate sub processes by pickling and thus implicitly re-import a lot
of local modules. Unfortunately, setuptools-0.6.11 does not if __name__=='__main__' protect its generated
command line script. This leads to infinite recursion when running a test that instantiates Processes.

As of mid-2013, there shouldn’t be a problem anymore when you use the standard setuptools (note that distribute has
been merged back into setuptools which is now shipped directly with virtualenv).

202 Chapter 33. Some Issues and Questions

https://nose.readthedocs.io/en/latest/
http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/

CHAPTER 34

Contact channels

• pytest issue tracker to report bugs or suggest features (for version 2.0 and above).

• pytest on stackoverflow.com to post questions with the tag pytest. New Questions will usually be seen by
pytest users or developers and answered quickly.

• Testing In Python: a mailing list for Python testing tools and discussion.

• pytest-dev at python.org (mailing list) pytest specific announcements and discussions.

• pytest-commit at python.org (mailing list): for commits and new issues

• contribution guide for help on submitting pull requests to bitbucket (including using git via gitifyhg).

• #pylib on irc.freenode.net IRC channel for random questions.

• private mail to Holger.Krekel at gmail com if you want to communicate sensitive issues

• merlinux.eu offers pytest and tox-related professional teaching and consulting.

203

https://github.com/pytest-dev/pytest/issues
http://stackoverflow.com/search?q=pytest
http://lists.idyll.org/listinfo/testing-in-python
http://mail.python.org/mailman/listinfo/pytest-dev
http://mail.python.org/mailman/listinfo/pytest-commit
http://merlinux.eu

pytest Documentation, Release 3.1

204 Chapter 34. Contact channels

Index

Symbols
_CallOutcome (class in

_pytest.vendored_packages.pluggy), 121

A
add_cleanup() (Config method), 117
add_hookcall_monitoring() (PluginManager method),

122
add_hookspecs() (PluginManager method), 122
add_mark() (MarkInfo method), 70
add_marker() (Node method), 119
addcall() (Metafunc method), 83
addfinalizer() (FixtureRequest method), 27
addfinalizer() (Node method), 119
addhooks() (PytestPluginManager method), 121
addini() (Parser method), 118
addinivalue_line() (Config method), 117
addoption() (Parser method), 118
addopts

configuration value, 183
applymarker() (FixtureRequest method), 27
approx (class in pytest), 24
args (MarkDecorator attribute), 70
args (MarkInfo attribute), 70
assert_outcomes() (RunResult method), 123

C
cached_setup() (FixtureRequest method), 27
CallInfo (class in _pytest.runner), 120
capstderr (TestReport attribute), 120
capstdout (TestReport attribute), 120
chdir() (MonkeyPatch method), 50
check_pending() (PluginManager method), 122
Class (class in _pytest.python), 119
clear() (WarningsRecorder method), 62
cls (FixtureRequest attribute), 26
cls (Metafunc attribute), 82
collect() (Collector method), 119
Collector (class in _pytest.main), 119
Collector.CollectError, 119

confcutdir
configuration value, 184

Config (class in _pytest.config), 117
config (FixtureRequest attribute), 26
config (Metafunc attribute), 82
config (Node attribute), 118
configuration value

addopts, 183
confcutdir, 184
doctest_optionflags, 184
filterwarnings, 184
minversion, 182
norecursedirs, 183
python_classes, 183
python_files, 183
python_functions, 184
testpaths, 183

consider_conftest() (PytestPluginManager method), 121
consider_env() (PytestPluginManager method), 121
consider_module() (PytestPluginManager method), 121
consider_pluginarg() (PytestPluginManager method), 121
consider_preparse() (PytestPluginManager method), 121

D
delattr() (MonkeyPatch method), 50
delenv() (MonkeyPatch method), 50
delitem() (MonkeyPatch method), 50
deprecated_call() (in module pytest), 23
doctest_optionflags

configuration value, 184
duration (TestReport attribute), 120

E
enable_tracing() (PluginManager method), 123
errisinstance() (ExceptionInfo method), 23
ExceptionInfo (class in _pytest._code), 22
excinfo (CallInfo attribute), 120
exconly() (ExceptionInfo method), 23
exit() (in module _pytest.runner), 25
extra_keyword_matches (Node attribute), 118

205

pytest Documentation, Release 3.1

F
fail() (in module _pytest.runner), 25
filterwarnings

configuration value, 184
fixture() (in module _pytest.fixtures), 26
FixtureDef (class in _pytest.fixtures), 120
fixturename (FixtureRequest attribute), 26
fixturenames (Metafunc attribute), 82
FixtureRequest (class in _pytest.fixtures), 26
fnmatch_lines() (LineMatcher method), 124
fnmatch_lines_random() (LineMatcher method), 124
fromdictargs() (_pytest.config.Config class method), 117
fspath (FixtureRequest attribute), 27
fspath (Node attribute), 118
Function (class in _pytest.python), 119
function (FixtureRequest attribute), 26
function (Function attribute), 120
function (Metafunc attribute), 82

G
get() (Cache method), 89
get_canonical_name() (PluginManager method), 122
get_hookcallers() (PluginManager method), 122
get_lines_after() (LineMatcher method), 124
get_marker() (Node method), 119
get_name() (PluginManager method), 122
get_plugin() (PluginManager method), 122
get_plugin_manager() (in module _pytest.config), 121
get_plugins() (PluginManager method), 122
getbasetemp() (TempdirFactory method), 54
getfixturevalue() (FixtureRequest method), 27
getfuncargvalue() (FixtureRequest method), 27
getgroup() (Parser method), 118
getini() (Config method), 117
getoption() (Config method), 117
getparent() (Node method), 119
getplugin() (PytestPluginManager method), 121
getrepr() (ExceptionInfo method), 23
getvalue() (Config method), 117
getvalueorskip() (Config method), 117

H
has_plugin() (PluginManager method), 122
hasplugin() (PytestPluginManager method), 121

I
ihook (Node attribute), 119
import_plugin() (PytestPluginManager method), 121
importorskip() (in module _pytest.runner), 25
instance (FixtureRequest attribute), 26
is_blocked() (PluginManager method), 122
is_registered() (PluginManager method), 122
Item (class in _pytest.main), 119

K
keywords (FixtureRequest attribute), 27
keywords (Node attribute), 118
keywords (TestReport attribute), 120
kwargs (MarkDecorator attribute), 70
kwargs (MarkInfo attribute), 70

L
LineMatcher (class in _pytest.pytester), 124
list (WarningsRecorder attribute), 62
list_name_plugin() (PluginManager method), 122
list_plugin_distinfo() (PluginManager method), 122
listchain() (Node method), 119
listextrakeywords() (Node method), 119
load_setuptools_entrypoints() (PluginManager method),

122
location (TestReport attribute), 120
longrepr (TestReport attribute), 120
longreprtext (TestReport attribute), 121

M
main() (in module pytest), 21
makeconftest() (Testdir method), 123
makedir() (Cache method), 89
makepyfile() (Testdir method), 123
MarkDecorator (class in _pytest.mark), 69
MarkGenerator (class in _pytest.mark), 69
MarkInfo (class in _pytest.mark), 70
match() (ExceptionInfo method), 23
Metafunc (class in _pytest.python), 82
minversion

configuration value, 182
mktemp() (TempdirFactory method), 54
Module (class in _pytest.python), 119
module (FixtureRequest attribute), 27
module (Metafunc attribute), 82
MonkeyPatch (class in _pytest.monkeypatch), 50

N
name (MarkDecorator attribute), 70
name (MarkInfo attribute), 70
name (Node attribute), 118
Node (class in _pytest.main), 118
node (FixtureRequest attribute), 26
nodeid (Node attribute), 119
nodeid (TestReport attribute), 120
norecursedirs

configuration value, 183

O
option (Config attribute), 117
originalname (Function attribute), 120
outcome (TestReport attribute), 120

206 Index

pytest Documentation, Release 3.1

P
parametrize() (Metafunc method), 83
parent (Node attribute), 118
parse_hookimpl_opts() (PytestPluginManager method),

121
parse_hookspec_opts() (PytestPluginManager method),

121
parse_known_and_unknown_args() (Parser method), 118
parse_known_args() (Parser method), 118
parseoutcomes() (RunResult method), 124
Parser (class in _pytest.config), 117
PluginManager (class in

_pytest.vendored_packages.pluggy), 121
pluginmanager (Config attribute), 117
pop() (WarningsRecorder method), 62
pytest_addhooks() (in module _pytest.hookspec), 111
pytest_addoption() (in module _pytest.hookspec), 113
pytest_assertrepr_compare() (in module

_pytest.hookspec), 116
pytest_cmdline_main() (in module _pytest.hookspec),

113
pytest_cmdline_parse() (in module _pytest.hookspec),

113
pytest_cmdline_preparse() (in module _pytest.hookspec),

113
pytest_collect_directory() (in module _pytest.hookspec),

114
pytest_collect_file() (in module _pytest.hookspec), 115
pytest_collection_modifyitems() (in module

_pytest.hookspec), 115
pytest_collectreport() (in module _pytest.hookspec), 115
pytest_collectstart() (in module _pytest.hookspec), 115
pytest_configure() (in module _pytest.hookspec), 113
pytest_configure() (PytestPluginManager method), 121
pytest_deselected() (in module _pytest.hookspec), 115
pytest_enter_pdb() (in module _pytest.hookspec), 116
pytest_exception_interact() (in module

_pytest.hookspec), 116
pytest_fixture_post_finalizer() (in module

_pytest.hookspec), 116
pytest_fixture_setup() (in module _pytest.hookspec), 115
pytest_generate_tests() (in module _pytest.hookspec),

115
pytest_ignore_collect() (in module _pytest.hookspec),

114
pytest_internalerror() (in module _pytest.hookspec), 116
pytest_itemcollected() (in module _pytest.hookspec), 115
pytest_keyboard_interrupt() (in module

_pytest.hookspec), 116
pytest_load_initial_conftests() (in module

_pytest.hookspec), 113
pytest_make_parametrize_id() (in module

_pytest.hookspec), 115

pytest_pycollect_makeitem() (in module
_pytest.hookspec), 115

pytest_report_header() (in module _pytest.hookspec), 115
pytest_report_teststatus() (in module _pytest.hookspec),

115
pytest_runtest_call() (in module _pytest.hookspec), 114
pytest_runtest_logreport() (in module _pytest.hookspec),

116
pytest_runtest_makereport() (in module

_pytest.hookspec), 114
pytest_runtest_protocol() (in module _pytest.hookspec),

114
pytest_runtest_setup() (in module _pytest.hookspec), 114
pytest_runtest_teardown() (in module _pytest.hookspec),

114
pytest_terminal_summary() (in module

_pytest.hookspec), 115
pytest_unconfigure() (in module _pytest.hookspec), 113
PytestPluginManager (class in _pytest.config), 121
Python Enhancement Proposals

PEP 302, 105
python_classes

configuration value, 183
python_files

configuration value, 183
python_functions

configuration value, 184

R
raiseerror() (FixtureRequest method), 27
raises() (in module pytest), 21
register() (PluginManager method), 122
register() (PytestPluginManager method), 121
register_assert_rewrite() (in module pytest), 105
repr_failure() (Collector method), 119
runpytest() (Testdir method), 123
runpytest_inprocess() (Testdir method), 123
runpytest_subprocess() (Testdir method), 123
RunResult (class in _pytest.pytester), 123
runtest() (Function method), 120

S
scope (FixtureRequest attribute), 26
sections (TestReport attribute), 120
session (FixtureRequest attribute), 27
session (Node attribute), 118
set() (Cache method), 89
set_blocked() (PluginManager method), 122
setattr() (MonkeyPatch method), 50
setenv() (MonkeyPatch method), 50
setitem() (MonkeyPatch method), 50
skip() (in module _pytest.runner), 25
str() (LineMatcher method), 124
subset_hook_caller() (PluginManager method), 123

Index 207

pytest Documentation, Release 3.1

syspath_prepend() (MonkeyPatch method), 50

T
tb (ExceptionInfo attribute), 23
Testdir (class in _pytest.pytester), 123
testpaths

configuration value, 183
TestReport (class in _pytest.runner), 120
traceback (ExceptionInfo attribute), 23
type (ExceptionInfo attribute), 22
typename (ExceptionInfo attribute), 23

U
undo() (MonkeyPatch method), 50
unregister() (PluginManager method), 122

V
value (ExceptionInfo attribute), 23

W
warn() (Config method), 117
warn() (Node method), 119
WarningsRecorder (class in _pytest.recwarn), 62
when (CallInfo attribute), 120
when (TestReport attribute), 120

X
xfail() (in module _pytest.skipping), 25

208 Index

	Installation and Getting Started
	Installation
	Our first test run
	Running multiple tests
	Asserting that a certain exception is raised
	Grouping multiple tests in a class
	Going functional: requesting a unique temporary directory
	Where to go next

	Usage and Invocations
	Calling pytest through python -m pytest
	Possible exit codes
	Getting help on version, option names, environment variables
	Stopping after the first (or N) failures
	Specifying tests / selecting tests
	Modifying Python traceback printing
	Dropping to PDB (Python Debugger) on failures
	Setting a breakpoint / aka set_trace()
	Profiling test execution duration
	Creating JUnitXML format files
	Creating resultlog format files
	Sending test report to online pastebin service
	Disabling plugins
	Calling pytest from Python code

	Using pytest with an existing test suite
	Running an existing test suite with pytest

	The writing and reporting of assertions in tests
	Asserting with the assert statement
	Assertions about expected exceptions
	Assertions about expected warnings
	Making use of context-sensitive comparisons
	Defining your own assertion comparison
	Advanced assertion introspection

	Pytest API and builtin fixtures
	Invoking pytest interactively
	Helpers for assertions about Exceptions/Warnings
	Comparing floating point numbers
	Raising a specific test outcome
	Fixtures and requests
	Builtin fixtures/function arguments

	pytest fixtures: explicit, modular, scalable
	Fixtures as Function arguments
	Fixtures: a prime example of dependency injection
	Sharing a fixture across tests in a module (or class/session)
	Fixture finalization / executing teardown code
	Fixtures can introspect the requesting test context
	Parametrizing fixtures
	Modularity: using fixtures from a fixture function
	Automatic grouping of tests by fixture instances
	Using fixtures from classes, modules or projects
	Autouse fixtures (xUnit setup on steroids)
	Shifting (visibility of) fixture functions
	Overriding fixtures on various levels

	Monkeypatching/mocking modules and environments
	Simple example: monkeypatching functions
	example: preventing ``requests'' from remote operations
	Method reference of the monkeypatch fixture

	Temporary directories and files
	The `tmpdir' fixture
	The `tmpdir_factory' fixture
	The default base temporary directory

	Capturing of the stdout/stderr output
	Default stdout/stderr/stdin capturing behaviour
	Setting capturing methods or disabling capturing
	Using print statements for debugging
	Accessing captured output from a test function

	Warnings Capture
	Disabling warning capture
	Asserting warnings with the warns function
	Recording warnings
	Ensuring a function triggers a deprecation warning

	Doctest integration for modules and test files
	The `doctest_namespace' fixture
	Output format

	Marking test functions with attributes
	API reference for mark related objects

	Skip and xfail: dealing with tests that cannot succeed
	Skipping test functions
	XFail: mark test functions as expected to fail
	Skip/xfail with parametrize
	Conditions as strings instead of booleans

	Parametrizing fixtures and test functions
	@pytest.mark.parametrize: parametrizing test functions
	Basic pytest_generate_tests example
	The metafunc object

	Cache: working with cross-testrun state
	Usage
	Rerunning only failures or failures first
	The new config.cache object
	Inspecting Cache content
	Clearing Cache content
	config.cache API

	Support for unittest.TestCase / Integration of fixtures
	Usage
	Mixing pytest fixtures into unittest.TestCase style tests
	autouse fixtures and accessing other fixtures

	Running tests written for nose
	Usage
	Supported nose Idioms
	Unsupported idioms / known issues

	classic xunit-style setup
	Module level setup/teardown
	Class level setup/teardown
	Method and function level setup/teardown

	Installing and Using plugins
	Requiring/Loading plugins in a test module or conftest file
	Finding out which plugins are active
	Deactivating / unregistering a plugin by name
	Pytest default plugin reference

	Writing plugins
	Plugin discovery order at tool startup
	conftest.py: local per-directory plugins
	Writing your own plugin
	Making your plugin installable by others
	Assertion Rewriting
	Requiring/Loading plugins in a test module or conftest file
	Accessing another plugin by name
	Testing plugins

	Writing hook functions
	hook function validation and execution
	firstresult: stop at first non-None result
	hookwrapper: executing around other hooks
	Hook function ordering / call example
	Declaring new hooks
	Optionally using hooks from 3rd party plugins

	pytest hook reference
	Initialization, command line and configuration hooks
	Generic ``runtest'' hooks
	Collection hooks
	Reporting hooks
	Debugging/Interaction hooks

	Reference of objects involved in hooks
	Usages and Examples
	Demo of Python failure reports with pytest
	Basic patterns and examples
	Parametrizing tests
	Working with custom markers
	A session-fixture which can look at all collected tests
	Changing standard (Python) test discovery
	Working with non-python tests

	Good Integration Practices
	Conventions for Python test discovery
	Choosing a test layout / import rules
	Tox
	Integrating with setuptools / python setup.py test / pytest-runner

	Basic test configuration
	Command line options and configuration file settings
	initialization: determining rootdir and inifile
	How to change command line options defaults
	Builtin configuration file options

	Setting up bash completion
	Backwards Compatibility Policy
	License
	Contribution getting started
	Feature requests and feedback
	Report bugs
	Fix bugs
	Implement features
	Write documentation
	Submitting Plugins to pytest-dev
	Preparing Pull Requests on GitHub

	Talks and Tutorials
	Books
	Talks and blog postings

	Project examples
	Some organisations using pytest

	Some Issues and Questions
	On naming, nosetests, licensing and magic
	pytest fixtures, parametrized tests
	pytest interaction with other packages

	Contact channels

