
PyStan Documentation
Release 2.18.0.0

Allen B. Riddell

Aug 29, 2018

Contents

1 Documentation 3

2 Stan documentation 37

3 Important links 39

4 Similar projects 41

5 Indices and tables 43

Python Module Index 45

i

ii

PyStan Documentation, Release 2.18.0.0

PyStan provides an interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of
Hamiltonian Monte Carlo.

License: Open source, GPL3

Contents 1

http://mc-stan.org

PyStan Documentation, Release 2.18.0.0

2 Contents

CHAPTER 1

Documentation

1.1 What’s New

1.1.1 v2.18.0.0 (16. Aug 2018)

• Update Stan source to v2.18.0 (release notes)

• Fit method to_dataframe organizes draws into a Pandas DataFrame. Only works if Pandas is installed.
Thanks to Liam Brannigan and Ari Hartikainen.

• Improved effective sample size calculation. Thanks to Aki Vehtari.

• Implemented pystan.diagnostics. Thanks to @jjramsey.

• Several minor bug fixes.

1.1.2 v2.17.1.0 (16. Jan 2018)

• Update Stan source to v2.17.1 (release notes) (bugfix release)

• Remove deprecation warnings (Thanks to Alexander Rudiuk)

• Drop testing of Python 3.4.

1.1.3 v2.17.0.0 (6. Oct 2017)

• Update Stan source to v2.17.0 (release notes),

• Added pystan.stansummary function. Patch by @ahartikainen.

• Marked pystan.stan as deprecated. It will be removed in version 3.0. Please compile and use a Stan
program as two separate steps.

• Reminder: Consider using Python 3.5 or higher. In a future release, Python 3.4 wheels will no longer be built.

3

https://github.com/stan-dev/stan/releases/tag/v2.18.0
https://github.com/stan-dev/stan/releases/tag/v2.17.1
https://github.com/stan-dev/stan/releases/tag/v2.17.0

PyStan Documentation, Release 2.18.0.0

• Reminder: Stan v2.16.0 is the final release which will not require a C++11 compatible compiler. Future releases
will require a C++11 compatible compiler. (This does not affect most users.)

1.1.4 v2.16.0.0 (22. June 2017)

• Update Stan source to v2.16.0 (release notes),

• Ari Hartikainen (Aalto University) @ahartikainen joins the Stan development team.

• Added pystan.lookup (contributed by Marco Inacio, @randommm)

• NOTE: Stan v2.16.0 is the final release which will not require a C++11 compatible compiler. Future releases
will require a C+11 compatible compiler. The vast majority of users have a compatible compiler.

1.1.5 v2.15.0.1 (2. May 2017)

• Python 2.7 compatibility fix (#332). Thanks to @monga for the report.

1.1.6 v2.15.0.0 (21. Apr 2017)

• Update Stan source to v2.15.0 (release notes)

• Allow UTF-8 comments in Stan Program code. Thanks to @ahartikainen

• Expose constrain_pars method, thanks to Lars Mescheder.

1.1.7 V2.14.0.0 (1. Jan 2017)

• Update Stan source to v2.14.0 (release notes), includes important fix to the default sampling algorithm (NUTS).
All users are encouraged to upgrade.

• Several documentation and minor bug fixes (thanks @ahartikainen, @jrings, @nesanders)

• New OpenPGP signing key for use with PyPI. Key fingerprint is
C3542448245BEC68F43070E4CCB669D9761F0CAC.

1.1.8 V2.12.0.0 (15. Sept 2016)

• Update Stan source to v2.12.0 (release notes)

• #239 Fix bug in array indexing (thanks @stephen-hoover)

• #254 FIx off-by-one error in estimated sample size calculation

1.1.9 V2.11.0.0 (28. July 2016)

• Update Stan source to v2.11.0 (release notes)

4 Chapter 1. Documentation

https://github.com/stan-dev/stan/releases/tag/v2.16.0
https://github.com/stan-dev/stan/releases/tag/v2.15.0
https://github.com/stan-dev/stan/releases/tag/v2.14.0
https://github.com/stan-dev/stan/releases/tag/v2.12.0
https://github.com/stan-dev/stan/releases/tag/v2.11.0

PyStan Documentation, Release 2.18.0.0

1.1.10 V2.10.0.0 (18. July 2016)

• Update Stan source to v2.10.0 (release notes)

• Sampling in Fixed_param mode now works. Thanks to @luac for the fix and @axch for the original report.

• Detailed installation instructions from @chendaniely added to the documentation.

1.1.11 v2.9.0.0 (7. Jan 2016)

• Update Stan source to v2.9.0 (release notes)

• Bugs fixed in _chains.pyx and model.py (thanks to @stephen-hoover, Paul Kernfeld)

1.1.12 v2.8.0.2 (6. Nov 2015)

• Cython 0.22 or higher requirement included on PyPI

1.1.13 v2.8.0.1 (5. Nov 2015)

• Python 3.5 support added

• Cython 0.22 or higher now required

• Compiler optimization (-O2) turned on for model compilation. This should increase sampling speed.

• Significant bug fixes (pickling, pars keyword)

1.1.14 v2.8.0.0 (1. Oct 2015)

• Update Stan source to v2.8.0 (release notes)

1.1.15 v2.7.0.1 (22. August 2015)

• Minor Cython 0.23.1 compatibility fixes

• Bug preventing mean_pars from being recorded

1.1.16 v2.7.0.0 (21. July 2015)

• Update Stan source to v2.7.0 (release notes)

1.1.17 v2.6.3.0 (21. Mar 2015)

• Update Stan source to v2.6.3 (release notes).

1.1.18 v2.6.0.0 (9. Feb 2015)

• Update Stan source to v2.6.0 (release notes).

1.1. What’s New 5

https://github.com/stan-dev/stan/releases/tag/v2.10.0
https://github.com/stan-dev/stan/releases/tag/v2.9.0
https://github.com/stan-dev/stan/releases/tag/v2.8.0
https://github.com/stan-dev/stan/releases/tag/v2.7.0
https://github.com/stan-dev/stan/releases/tag/v2.6.3
https://github.com/stan-dev/stan/releases/tag/v2.6.0

PyStan Documentation, Release 2.18.0.0

1.1.19 v2.5.0.2 (30. Jan 2015)

• Fix bug in rdump (for >1 dimensional arrays)

1.1.20 v2.5.0.1 (14. Nov 2014)

• Support for pickling fit objects (experimental)

• Fix bug that occurs when printing fit summary

1.1.21 v2.5.0.0 (21. Oct 2014)

• Update Stan source to v2.5.0

• Fix several significant bugs in the extract method

1.1.22 v2.4.0.3 (9. Sept 2014)

• Performance improvements for the printed summary of a fit.

1.1.23 v2.4.0.2 (6. Sept 2014)

• Performance improvements for the extract method (5-10 times faster)

• Performance improvements for the printed summary of a fit. Printing a summary of a model with more than a
hundred parameters is not recommended. Consider using extract and calculating summary statistics for the
parameters of interest.

1.1.24 v2.4.0.1 (31. July 2014)

• Sets LBFGS as default optimizer.

• Adds preliminary support for Python binary wheels on OS X and Windows.

• Fixes bug in edge case in new summary code.

1.1.25 v2.4.0.0 (26. July 2014)

• Stan 2.4 (LBFGS optimizer added, Nesterov removed)

• Improve display of fit summaries

1.1.26 v2.3.0.0 (26. June 2014)

• Stan 2.3 (includes user-defined functions, among other improvements).

• Optimizing returns a vector (array) by default instead of a dictionary.

6 Chapter 1. Documentation

PyStan Documentation, Release 2.18.0.0

1.1.27 v2.2.0.1 (30. April 2014)

• Add support for reading Stan’s R dump files.

• Add support for specifying parameters of interest in stan.

• Add Windows installation instructions. Thanks to @patricksnape.

• Lighten source distribution.

1.1.28 v2.2.0.0 (16. February 2014)

• Updates Stan to v2.2.0.

1.1.29 v2.1.0.1 (27. January 2014)

• Implement model name obfuscation. Thanks to @karnold

• Improve documentation of StanFit objects

1.1.30 v2.1.0.0 (26. December 2013)

• Updates Stan code to v2.1.0.

1.1.31 v2.0.1.3 (18. December 2013)

• Sampling is parallel by default.

• grad_log_prob method of fit objects is available.

1.1.32 v2.0.1.2 (1. December 2013)

• Improves setuptools support.

• Allows sampling chains in parallel using multiprocessing. See the n_jobs parameter for stan() and the
sampling method.

• Allows users to specify initial values for chains.

1.1.33 v2.0.1.1 (18. November 2013)

• Clean up random_seed handling (Stephan Hoyer).

• Add fit methods get_seed, get_inits, and get_stancode.

1.1.34 v2.0.1.0 (24. October 2013)

• Updated to Stan 2.0.1.

• Specifying sample_file now works as expected.

1.1. What’s New 7

PyStan Documentation, Release 2.18.0.0

1.1.35 v2.0.0.1 (23. October 2013)

• Stan array parameters are now handled correctly.

• Ancillary methods added to fit instances.

• Fixed bug that caused parameters in control dict to be ignored.

1.1.36 v2.0.0.0 (21. October 2013)

• Stan source updated to to 2.0.0.

• PyStan version now mirrors Stan version.

• Rudimentary plot and traceplot methods have been added to fit instances.

• Warmup and sampling progress now visible.

1.1.37 v.0.2.2 (28. September 2013)

• log_prob method available from StanFit instances.

• Estimated sample size and Rhat included in summary.

1.1.38 v.0.2.1 (17. September 2013)

• StanModel instances can now be pickled.

• Adds basic support for saving output to sample_file.

1.1.39 v.0.2.0 (25. August 2013)

• optimizing method working for scalar, vector, and matrix parameters

• stanfit objects now have summary and __str__ methods à la RStan

• stan source updated to commit cc82d51d492d26f754fd56efe22a99191c80217b (July 26, 2013)

• IPython-relevant bug fixes

1.1.40 v.0.1.1 (19. July 2013)

• Support for Python 2.7 and Python 3.3

• stan and stanc working with common arguments

1.2 Getting started

PyStan is the Python interface for Stan.

8 Chapter 1. Documentation

http://python.org
http://mc-stan.org/

PyStan Documentation, Release 2.18.0.0

1.2.1 Prerequisites

PyStan has the following dependencies:

• Python: 2.7, >=3.3

• Cython: >=0.22

• NumPy: >=1.7

PyStan also requires that a C++ compiler be available to Python during installation and at runtime. On Debian-based
systems this is accomplished by issuing the command apt-get install build-essential.

1.2.2 Installation

Note: Installing PyStan involves compiling Stan. This may take a considerable amount of time.

Unix-based systems including Mac OS X

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install pystan

Mac OS X users encountering installation problems may wish to consult the PyStan Wiki for possible solutions.

Windows

PyStan on Windows requires Python 2.7/3.x and a working C++ compiler. If you have already installed Python and
the MingW-w64 C++ compiler, running pip install pystan will install PyStan.

If you need to install a C++ compiler, you will find detailed installation instructions in PyStan on Windows.

1.2.3 Using PyStan

The module’s name is pystan so we load the module as follows:

import pystan

Example 1: Eight Schools

The “eight schools” example appears in Section 5.5 of Gelman et al. (2003), which studied coaching effects from
eight schools.

schools_code = """
data {

int<lower=0> J; // number of schools
vector[J] y; // estimated treatment effects
vector<lower=0>[J] sigma; // s.e. of effect estimates

}
parameters {

real mu;

(continues on next page)

1.2. Getting started 9

http://python.org
http://cython.org
http://numpy.org
https://pypi.python.org/pypi
https://github.com/stan-dev/pystan/wiki

PyStan Documentation, Release 2.18.0.0

(continued from previous page)

real<lower=0> tau;
vector[J] eta;

}
transformed parameters {

vector[J] theta;
theta = mu + tau * eta;

}
model {

eta ~ normal(0, 1);
y ~ normal(theta, sigma);

}
"""

schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}

sm = pystan.StanModel(model_code=schools_code)
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)

In this model, we let theta be transformed parameters of mu and eta instead of directly declaring theta as parame-
ters. By parameterizing this way, the sampler will run more efficiently.

In PyStan, we can also specify the Stan model using a file. For example, we can download the file 8schools.stan
into our working directory and use the following call to stan instead:

sm = pystan.StanModel(file='8schools.stan')
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)

Once a model is compiled, we can use the StanModel object multiple times. This saves us time compiling the C++
code for the model. For example, if we want to sample more iterations, we proceed as follows:

fit2 = sm.sampling(data=schools_dat, iter=10000, chains=4)

The object fit, returned from function stan stores samples from the posterior distribution. The fit object has a
number of methods, including plot and extract. We can also print the fit object and receive a summary of the
posterior samples as well as the log-posterior (which has the name lp__).

The method extract extracts samples into a dictionary of arrays for parameters of interest, or just an array.

la = fit.extract(permuted=True) # return a dictionary of arrays
mu = la['mu']

return an array of three dimensions: iterations, chains, parameters
a = fit.extract(permuted=False)

print(fit)

If matplotlib and scipy are installed, a visual summary may also be displayed using the plot() method.

fit.plot()

10 Chapter 1. Documentation

http://matplotlib.org/
http://http://www.scipy.org/

PyStan Documentation, Release 2.18.0.0

1.3 Detailed Installation Instructions

The following is addressed to an audience who is just getting started with Python and would benefit from additional
guidance on how to install PyStan.

Installing PyStan requires installing:

• Python

• Python dependencies

• PyStan

1.4 Prerequisite knowledge

It is highly recommended to know what bash is and the basics of navigating the terminal. You can review or learn it
from the Software Carpentry bash lesson here: http://swcarpentry.github.io/shell-novice/.

Lessons 1 - 3 are proabably the most important.

1.4.1 Installing Python

The easiest way to install Python is to use the Anaconda distribution of python. It can be downloaded here: http:
//continuum.io/downloads.

This is because PyStan (and many python tools) require packages (aka modules) that have C dependencies. These
types of dependencies are unable to be installed (at least easily) using pip, which is a common way to install python
packages. Anaconda ships with it’s own package manager (that also plays nicely with pip) called conda, and comes
with many of the data analytics packages and dependencies pre-installed.

Don’t worry about Anaconda ruining your current Python installation, it can be easily uninstalled (described below).

Anaconda is not a requirement

Anaconda is not an absolute requirement to get pystan to work. As long as you can get the necessary python
dependencies installed, pystan will work. If you want to install Anaconda, follow the Windows, Macs, and Linux
instructions below.

Linux

After downloading the installer execute the associated shell script. For example, if the file downloaded were named
Anaconda3-4.1.1-Linux-x86_64.sh you would enter bash Anaconda3-4.1.1-Linux-x86_64.sh
in the directory where you downloaded the file.

Macs

After downloading the installer, double click the .pkg file and follow the instructions on the screen. Use all of the
defaults for installation.

1.3. Detailed Installation Instructions 11

http://software-carpentry.org/
http://swcarpentry.github.io/shell-novice/
http://continuum.io/downloads
http://continuum.io/downloads

PyStan Documentation, Release 2.18.0.0

Windows

PyStan on Windows is partially supported. See PyStan on Windows.

The Anaconda installer should be able to be double-clicked and installed. Use all of the defaults for installation except
make sure to check Make Anaconda the default Python.

Uninstalling Anaconda

The default location for anaconda can be found in your home directory. Typically this means it in in the ~/anaconda
or ~/anaconda3 directory when you open a terminal.

1.4.2 Python dependencies

If you used the Anaconda installer, numpy and cython should already be installed, so additional dependencies should
not be needed. However, should you need to install additional dependencies, we can use conda to install them as
such:

• open a terminal

• type conda install numpy to install numpy or replace numpy with the package you need to install

1.4.3 Installing PyStan

Since we have the numpy and cython dependencies we need, we can install the latest version of PyStan using pip.
To do so:

• Open a terminal

• type pip install pystan

1.5 Installing PyStan with Support for Stiff ODE Solvers (CVODES)

Those using Stan functions which require the use of the SUNDIALS library (e.g., integrate_ode_bdf) should
use the following instructions to install PyStan.

First, make sure that you have installed the following packages:

• Cython

• Numpy

Now install a version of PyStan which compiles and uses the SUNDIALS library:

pip install https://github.com/stan-dev/pystan/archive/v2.18.0.0-cvodes.tar.gz

(Support for the SUNDIALS library is not included by default because it slows down compilation of every Stan
program by several seconds.)

Consult the “Stan Language Manual” (linked to in the ‘Stan Documentation‘_) for an example of a complete Stan
program with a system definition and solver call.

12 Chapter 1. Documentation

PyStan Documentation, Release 2.18.0.0

1.6 Optimization in Stan

PyStan provides an interface to Stan’s optimization methods. These methods obtain a point estimate by maximizing
the posterior function defined for a model. The following example estimates the mean from samples assumed to be
drawn from normal distribution with known standard deviation:

Specifying an improper prior for 𝜇 of 𝑝(𝜇) ∝ 1, the posterior obtains a maximum at the sample mean. The following
Python code illustrates how to use Stan’s optimizer methods via a call to optimizing:

import pystan
import numpy as np

ocode = """
data {

int<lower=1> N;
real y[N];

}
parameters {

real mu;
}
model {

y ~ normal(mu, 1);
}
"""
sm = pystan.StanModel(model_code=ocode)
y2 = np.random.normal(size=20)
np.mean(y2)

op = sm.optimizing(data=dict(y=y2, N=len(y2)))

op

1.7 Avoiding recompilation of Stan models

Compiling models takes time. It is in our interest to avoid recompiling models whenever possible. If the same model
is going to be used repeatedly, we would like to compile it just once. The following demonstrates how to reuse a model
in different scripts and between interactive Python sessions.

Within sessions you can avoid recompiling a model by reusing the StanModel instance:

from pystan import stan

bernoulli model
model_code = """

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(0.5, 0.5); // Jeffreys' prior
for (n in 1:N)

y[n] ~ bernoulli(theta);

(continues on next page)

1.6. Optimization in Stan 13

PyStan Documentation, Release 2.18.0.0

(continued from previous page)

}
"""

from pystan import StanModel

data = dict(N=10, y=[0, 1, 0, 1, 0, 1, 0, 1, 1, 1])
sm = StanModel(model_code=model_code)
fit = sm.sampling(data=data)
print(fit)

reuse model with new data
new_data = dict(N=6, y=[0, 0, 0, 0, 0, 1])
fit2 = sm.sampling(data=new_data)
print(fit2)

It is also possible to share models between sessions (or between different Python scripts). We do this by saving
compiled models (StanModel instances) in a file and then reloading it when we need it later. (In short, StanModel
instances are picklable.)

The following two code blocks illustrate how a model may be compiled in one session and reloaded in a subsequent
one using pickle (part of the Python standard library).

import pickle
from pystan import StanModel

using the same model as before
data = dict(N=10, y=[0, 1, 0, 1, 0, 1, 0, 1, 1, 1])
sm = StanModel(model_code=model_code)
fit = sm.sampling(data=data)
print(fit)

save it to the file 'model.pkl' for later use
with open('model.pkl', 'wb') as f:

pickle.dump(sm, f)

The following block of code might appear in a different script (in the same directory).

import pickle

sm = pickle.load(open('model.pkl', 'rb'))

new_data = dict(N=6, y=[0, 0, 0, 0, 0, 1])
fit2 = sm.sampling(data=new_data)
print(fit2)

1.7.1 Automatically reusing models

For those who miss using variables across sessions in R, it is not difficult to write a function that automatically saves
a copy of every model that gets compiled and opportunistically loads a copy of a model if one is available.

import pystan
import pickle
from hashlib import md5

(continues on next page)

14 Chapter 1. Documentation

http://docs.python.org/dev/library/pickle.html

PyStan Documentation, Release 2.18.0.0

(continued from previous page)

def StanModel_cache(model_code, model_name=None, **kwargs):
"""Use just as you would `stan`"""
code_hash = md5(model_code.encode('ascii')).hexdigest()
if model_name is None:

cache_fn = 'cached-model-{}.pkl'.format(code_hash)
else:

cache_fn = 'cached-{}-{}.pkl'.format(model_name, code_hash)
try:

sm = pickle.load(open(cache_fn, 'rb'))
except:

sm = pystan.StanModel(model_code=model_code)
with open(cache_fn, 'wb') as f:

pickle.dump(sm, f)
else:

print("Using cached StanModel")
return sm

with same model_code as before
data = dict(N=10, y=[0, 1, 0, 0, 0, 0, 0, 0, 0, 1])
sm = StanModel_cache(model_code=model_code)
fit = sm.sampling(data=data)
print(fit)

new_data = dict(N=6, y=[0, 0, 0, 0, 0, 1])
the cached copy of the model will be used
sm = StanModel_cache(model_code=model_code)
fit2 = sm.sampling(data=new_data)
print(fit2)

1.8 Differences between PyStan and RStan

While PyStan attempts to maintain API compatibility with RStan, there are certain unavoidable differences between
Python and R.

1.8.1 Methods and attributes

Methods are invoked in different ways: fit.summary() and fit.extract() (Python) vs. summary(fit)
and extract(fit) (R).

Attributes are accessed in a different manner as well: fit.sim (Python) vs. fit@sim (R).

1.8.2 Dictionaries instead of Lists

Where RStan uses lists, PyStan uses (ordered) dictionaries.

Python:

fit.extract()['theta']

R:

extract(fit)$theta

1.8. Differences between PyStan and RStan 15

PyStan Documentation, Release 2.18.0.0

1.8.3 Reusing models and saving objects

PyStan uses pickle to save objects for future use.

Python:

import pickle
import pystan

bernoulli model
model_code = """

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

for (n in 1:N)
y[n] ~ bernoulli(theta);

}
"""

data = dict(N=10, y=[0, 1, 0, 0, 0, 0, 0, 0, 0, 1])
model = pystan.StanModel(model_code=model_code)
fit = model.sampling(data=data)

with open('model.pkl', 'wb') as f:
pickle.dump(model, f, protocol=pickle.HIGHEST_PROTOCOL)

load it at some future point
with open('model.pkl', 'rb') as f:

model = pickle.load(f)

run with different data
fit = model.sampling(data=dict(N=5, y=[1, 1, 0, 1, 0]))

R:

library(rstan)

model = stan_model(model_code=model_code)
save(model, file='model.rdata')

See also Avoiding recompilation of Stan models.

If you are saving a large amount of data with pickle.dump, be sure to use the highest protocol version available.
Earlier versions are limited in the amount of data they can save in a single file.

1.9 API

stan([file, model_name, model_code, fit, . . .]) Fit a model using Stan.
stanc([file, charset, model_code, . . .]) Translate Stan model specification into C++ code.
StanModel([file, charset, model_name, . . .]) Model described in Stan’s modeling language compiled

from C++ code.

16 Chapter 1. Documentation

PyStan Documentation, Release 2.18.0.0

StanFit4model instances are also documented on this page.

pystan.stan(file=None, model_name=’anon_model’, model_code=None, fit=None, data=None,
pars=None, chains=4, iter=2000, warmup=None, thin=1, init=’random’, seed=None,
algorithm=None, control=None, sample_file=None, diagnostic_file=None, verbose=False,
boost_lib=None, eigen_lib=None, include_paths=None, n_jobs=-1, **kwargs)

Fit a model using Stan.

The pystan.stan function was deprecated in version 2.17 and will be removed in version 3.0. Compiling and
using a Stan Program (e.g., for drawing samples) should be done in separate steps.

Parameters

• file (string {'filename', file-like object}) – Model code must found
via one of the following parameters: file or model_code.

If file is a filename, the string passed as an argument is expected to be a filename containing
the Stan model specification.

If file is a file object, the object passed must have a ‘read’ method (file-like object) that is
called to fetch the Stan model specification.

• charset (string, optional) – If bytes or files are provided, this charset is used to
decode. ‘utf-8’ by default.

• model_code (string) – A string containing the Stan model specification. Alternatively,
the model may be provided with the parameter file.

• model_name (string, optional) – A string naming the model. If none is provided
‘anon_model’ is the default. However, if file is a filename, then the filename will be used to
provide a name. ‘anon_model’ by default.

• fit (StanFit instance) – An instance of StanFit derived from a previous fit, None
by default. If fit is not None, the compiled model associated with a previous fit is reused and
recompilation is avoided.

• data (dict) – A Python dictionary providing the data for the model. Variables for Stan
are stored in the dictionary as expected. Variable names are the keys and the values are their
associated values. Stan only accepts certain kinds of values; see Notes.

• pars (list of string, optional) – A list of strings indicating parameters of in-
terest. By default all parameters specified in the model will be stored.

• chains (int, optional) – Positive integer specifying number of chains. 4 by default.

• iter (int, 2000 by default) – Positive integer specifying how many iterations for
each chain including warmup.

• warmup (int, iter//2 by default) – Positive integer specifying number of
warmup (aka burin) iterations. As warmup also specifies the number of iterations used
for stepsize adaption, warmup samples should not be used for inference.

• thin (int, optional) – Positive integer specifying the period for saving samples. De-
fault is 1.

• init ({0, '0', 'random', function returning dict, list of
dict}, optional) – Specifies how initial parameter values are chosen: - 0 or ‘0’
initializes all to be zero on the unconstrained support. - ‘random’ generates random initial
values. An optional parameter

init_r controls the range of randomly generated initial values for parameters in terms
of their unconstrained support;

1.9. API 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyStan Documentation, Release 2.18.0.0

– list of size equal to the number of chains (chains), where the list contains a dict with
initial parameter values;

– function returning a dict with initial parameter values. The function may take an
optional argument chain_id.

• seed (int or np.random.RandomState, optional) – The seed, a positive in-
teger for random number generation. Only one seed is needed when multiple chains
are used, as the other chain’s seeds are generated from the first chain’s to prevent de-
pendency among random number streams. By default, seed is random.randint(0,
MAX_UINT).

• algorithm ({"NUTS", "HMC", "Fixed_param"}, optional) – One of the al-
gorithms that are implemented in Stan such as the No-U-Turn sampler (NUTS, Hoffman and
Gelman 2011) and static HMC.

• sample_file (string, optional) – File name specifying where samples for all
parameters and other saved quantities will be written. If not provided, no samples will be
written. If the folder given is not writable, a temporary directory will be used. When there
are multiple chains, an underscore and chain number are appended to the file name. By
default do not write samples to file.

• diagnostic_file (string, optional) – File name specifying where diagnostic
information should be written. By default no diagnostic information is recorded.

• boost_lib (string, optional) – The path to a version of the Boost C++ library to
use instead of the one supplied with PyStan.

• eigen_lib (string, optional) – The path to a version of the Eigen C++ library to
use instead of the one in the supplied with PyStan.

• include_paths (list of strings, optional) – Paths for #include files de-
fined in Stan code.

• verbose (boolean, optional) – Indicates whether intermediate output should be
piped to the console. This output may be useful for debugging. False by default.

• control (dict, optional) – A dictionary of parameters to control the sampler’s be-
havior. Default values are used if control is not specified. The following are adaptation
parameters for sampling algorithms.

These are parameters used in Stan with similar names:

– adapt_engaged : bool

– adapt_gamma : float, positive, default 0.05

– adapt_delta : float, between 0 and 1, default 0.8

– adapt_kappa : float, between default 0.75

– adapt_t0 : float, positive, default 10

– adapt_init_buffer : int, positive, defaults to 75

– adapt_term_buffer : int, positive, defaults to 50

– adapt_window : int, positive, defaults to 25

In addition, the algorithm HMC (called ‘static HMC’ in Stan) and NUTS share the following
parameters:

– stepsize: float, positive

18 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PyStan Documentation, Release 2.18.0.0

– stepsize_jitter: float, between 0 and 1

– metric : str, {“unit_e”, “diag_e”, “dense_e”}

In addition, depending on which algorithm is used, different parameters can be set as in Stan
for sampling. For the algorithm HMC we can set

– int_time: float, positive

For algorithm NUTS, we can set

– max_treedepth : int, positive

• n_jobs (int, optional) – Sample in parallel. If -1 all CPUs are used. If 1, no parallel
computing code is used at all, which is useful for debugging.

Returns fit

Return type StanFit instance

Other Parameters

• chain_id (int, optional) – chain_id can be a vector to specify the chain_id for all chains
or an integer. For the former case, they should be unique. For the latter, the sequence of
integers starting from the given chain_id are used for all chains.

• init_r (float, optional) – init_r is only valid if init == “random”. In this case, the intial values
are simulated from [-init_r, init_r] rather than using the default interval (see the manual of
(Cmd)Stan).

• test_grad (bool, optional) – If test_grad is True, Stan will not do any sampling. Instead,
the gradient calculation is tested and printed out and the fitted StanFit4Model object is in
test gradient mode. By default, it is False.

• append_samples‘ (bool, optional)

• refresh‘ (int, optional) – Argument refresh can be used to control how to indicate the
progress during sampling (i.e. show the progress every code{refresh} iterations). By de-
fault, refresh is max(iter/10, 1).

• obfuscate_model_name (boolean, optional) – obfuscate_model_name is only valid if fit is
None. True by default. If False the model name in the generated C++ code will not be made
unique by the insertion of randomly generated characters. Generally it is recommended that
this parameter be left as True.

Examples

>>> from pystan import stan
>>> import numpy as np
>>> model_code = '''
... parameters {
... real y[2];
... }
... model {
... y[1] ~ normal(0, 1);
... y[2] ~ double_exponential(0, 2);
... }'''
>>> fit1 = stan(model_code=model_code, iter=10)
>>> print(fit1)
>>> excode = '''

(continues on next page)

1.9. API 19

https://docs.python.org/3/library/functions.html#int

PyStan Documentation, Release 2.18.0.0

(continued from previous page)

... transformed data {

... real y[20];

... y[1] = 0.5796; y[2] = 0.2276; y[3] = -0.2959;

... y[4] = -0.3742; y[5] = 0.3885; y[6] = -2.1585;

... y[7] = 0.7111; y[8] = 1.4424; y[9] = 2.5430;

... y[10] = 0.3746; y[11] = 0.4773; y[12] = 0.1803;

... y[13] = 0.5215; y[14] = -1.6044; y[15] = -0.6703;

... y[16] = 0.9459; y[17] = -0.382; y[18] = 0.7619;

... y[19] = 0.1006; y[20] = -1.7461;

... }

... parameters {

... real mu;

... real<lower=0, upper=10> sigma;

... vector[2] z[3];

... real<lower=0> alpha;

... }

... model {

... y ~ normal(mu, sigma);

... for (i in 1:3)

... z[i] ~ normal(0, 1);

... alpha ~ exponential(2);

... }'''
>>>
>>> def initfun1():
... return dict(mu=1, sigma=4, z=np.random.normal(size=(3, 2)), alpha=1)
>>> exfit0 = stan(model_code=excode, init=initfun1)
>>> def initfun2(chain_id=1):
... return dict(mu=1, sigma=4, z=np.random.normal(size=(3, 2)), alpha=1 +
→˓chain_id)
>>> exfit1 = stan(model_code=excode, init=initfun2)

pystan.stanc(file=None, charset=’utf-8’, model_code=None, model_name=’anon_model’, in-
clude_paths=None, verbose=False, obfuscate_model_name=True)

Translate Stan model specification into C++ code.

Parameters

• file ({string, file}, optional) – If filename, the string passed as an argument
is expected to be a filename containing the Stan model specification.

If file, the object passed must have a ‘read’ method (file-like object) that is called to fetch
the Stan model specification.

• charset (string, 'utf-8' by default) – If bytes or files are provided, this
charset is used to decode.

• model_code (string, optional) – A string containing the Stan model specifica-
tion. Alternatively, the model may be provided with the parameter file.

• model_name (string, 'anon_model' by default) – A string naming the
model. If none is provided ‘anon_model’ is the default. However, if file is a filename,
then the filename will be used to provide a name.

• include_paths (list of strings, optional) – Paths for #include files de-
fined in Stan code.

• verbose (boolean, False by default) – Indicates whether intermediate output
should be piped to the console. This output may be useful for debugging.

20 Chapter 1. Documentation

PyStan Documentation, Release 2.18.0.0

• obfuscate_model_name (boolean, True by default) – If False the model
name in the generated C++ code will not be made unique by the insertion of randomly
generated characters. Generally it is recommended that this parameter be left as True.

Returns stanc_ret – A dictionary with the following keys: model_name, model_code, cpp_code,
and status. Status indicates the success of the translation from Stan code into C++ code (success
= 0, error = -1).

Return type dict

Notes

C++ reserved words and Stan reserved words may not be used for variable names; see the Stan User’s Guide for
a complete list.

The #include method follows a C/C++ syntax #include foo/my_gp_funs.stan. The method needs to be at
the start of the row, no whitespace is allowed. After the included file no whitespace or comments are al-
lowed. pystan.experimental‘(PyStan 2.18) has a ‘fix_include-function to clean the #include statements from the
model_code. Example: from pystan.experimental import fix_include model_code = fix_include(model_code)

See also:

StanModel() Class representing a compiled Stan model

stan() Fit a model using Stan

References

The Stan Development Team (2013) Stan Modeling Language User’s Guide and Reference Manual. <http:
//mc-stan.org/>.

Examples

>>> stanmodelcode = '''
... data {
... int<lower=0> N;
... real y[N];
... }
...
... parameters {
... real mu;
... }
...
... model {
... mu ~ normal(0, 10);
... y ~ normal(mu, 1);
... }
... '''
>>> r = stanc(model_code=stanmodelcode, model_name = "normal1")
>>> sorted(r.keys())
['cppcode', 'model_code', 'model_cppname', 'model_name', 'status']
>>> r['model_name']
'normal1'

1.9. API 21

https://docs.python.org/3/library/stdtypes.html#dict
http://mc-stan.org/
http://mc-stan.org/

PyStan Documentation, Release 2.18.0.0

class pystan.StanModel(file=None, charset=’utf-8’, model_name=’anon_model’,
model_code=None, stanc_ret=None, include_paths=None, boost_lib=None,
eigen_lib=None, verbose=False, obfuscate_model_name=True, ex-
tra_compile_args=None)

Model described in Stan’s modeling language compiled from C++ code.

Instances of StanModel are typically created indirectly by the functions stan and stanc.

Parameters

• file (string {'filename', 'file'}) – If filename, the string passed as an argu-
ment is expected to be a filename containing the Stan model specification.

If file, the object passed must have a ‘read’ method (file-like object) that is called to fetch
the Stan model specification.

• charset (string, 'utf-8' by default) – If bytes or files are provided, this
charset is used to decode.

• model_name (string, 'anon_model' by default) – A string naming the
model. If none is provided ‘anon_model’ is the default. However, if file is a filename,
then the filename will be used to provide a name.

• model_code (string) – A string containing the Stan model specification. Alternatively,
the model may be provided with the parameter file.

• stanc_ret (dict) – A dict returned from a previous call to stanc which can be used to
specify the model instead of using the parameter file or model_code.

• include_paths (list of strings) – Paths for #include files defined in Stan pro-
gram code.

• boost_lib (string) – The path to a version of the Boost C++ library to use instead of
the one supplied with PyStan.

• eigen_lib (string) – The path to a version of the Eigen C++ library to use instead of
the one in the supplied with PyStan.

• verbose (boolean, False by default) – Indicates whether intermediate output
should be piped to the console. This output may be useful for debugging.

• kwargs (keyword arguments) – Additional arguments passed to stanc.

model_name
string

model_code
string – Stan code for the model.

model_cpp
string – C++ code for the model.

module
builtins.module – Python module created by compiling the C++ code for the model.

show()
Print the Stan model specification.

sampling()
Draw samples from the model.

optimizing()
Obtain a point estimate by maximizing the log-posterior.

22 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict

PyStan Documentation, Release 2.18.0.0

get_cppcode()
Return the C++ code for the module.

get_cxxflags()
Return the ‘CXXFLAGS’ used for compiling the model.

get_include_paths()
Return include_paths used for compiled model.

See also:

stanc Compile a Stan model specification

stan Fit a model using Stan

Notes

More details of Stan, including the full user’s guide and reference manual can be found at <URL: http://mc-stan.
org/>.

There are three ways to specify the model’s code for stan_model.

1. parameter model_code, containing a string to whose value is the Stan model specification,

2. parameter file, indicating a file (or a connection) from which to read the Stan model specification, or

3. parameter stanc_ret, indicating the re-use of a model generated in a previous call to stanc.

References

The Stan Development Team (2013) Stan Modeling Language User’s Guide and Reference Manual. <URL:
http://mc-stan.org/>.

Examples

>>> model_code = 'parameters {real y;} model {y ~ normal(0,1);}'
>>> model_code; m = StanModel(model_code=model_code)
...
'parameters ...
>>> m.model_name
'anon_model'

optimizing(data=None, seed=None, init=’random’, sample_file=None, algorithm=None, ver-
bose=False, as_vector=True, **kwargs)

Obtain a point estimate by maximizing the joint posterior.

Parameters

• data (dict) – A Python dictionary providing the data for the model. Variables for Stan
are stored in the dictionary as expected. Variable names are the keys and the values are
their associated values. Stan only accepts certain kinds of values; see Notes.

• seed (int or np.random.RandomState, optional) – The seed, a positive
integer for random number generation. Only one seed is needed when multiple chains
are used, as the other chain’s seeds are generated from the first chain’s to prevent de-
pendency among random number streams. By default, seed is random.randint(0,
MAX_UINT).

1.9. API 23

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PyStan Documentation, Release 2.18.0.0

• init ({0, '0', 'random', function returning dict, list of
dict}, optional) – Specifies how initial parameter values are chosen: - 0 or ‘0’
initializes all to be zero on the unconstrained support. - ‘random’ generates random initial
values. An optional parameter

init_r controls the range of randomly generated initial values for parameters in terms
of their unconstrained support;

– list of size equal to the number of chains (chains), where the list contains a dict with
initial parameter values;

– function returning a dict with initial parameter values. The function may take an op-
tional argument chain_id.

• sample_file (string, optional) – File name specifying where samples for all
parameters and other saved quantities will be written. If not provided, no samples will be
written. If the folder given is not writable, a temporary directory will be used. When there
are multiple chains, an underscore and chain number are appended to the file name. By
default do not write samples to file.

• algorithm ({"LBFGS", "BFGS", "Newton"}, optional) – Name of opti-
mization algorithm to be used. Default is LBFGS.

• verbose (boolean, optional) – Indicates whether intermediate output should be
piped to the console. This output may be useful for debugging. False by default.

• as_vector (boolean, optional) – Indicates an OrderedDict will be returned
rather than a nested dictionary with keys ‘par’ and ‘value’.

Returns optim – Depending on as_vector, returns either an OrderedDict having parame-
ters as keys and point estimates as values or an OrderedDict with components ‘par’ and
‘value’. optim['par'] is a dictionary of point estimates, indexed by the parameter name.
optim['value'] stores the value of the log-posterior (up to an additive constant, the
lp__ in Stan) corresponding to the point identified by ‘optim‘[‘par’].

Return type OrderedDict

Other Parameters

• iter (int, optional) – The maximum number of iterations.

• save_iterations (bool, optional)

• refresh (int, optional)

• init_alpha (float, optional) – For BFGS and LBFGS, default is 0.001

• tol_obj (float, optional) – For BFGS and LBFGS, default is 1e-12.

• tol_grad (float, optional) – For BFGS and LBFGS, default is 1e-8.

• tol_param (float, optional) – For BFGS and LBFGS, default is 1e-8.

• tol_rel_grad (float, optional) – For BFGS and LBFGS, default is 1e7.

• history_size (int, optional) – For LBFGS, default is 5.

• Refer to the manuals for both CmdStan and Stan for more details.

24 Chapter 1. Documentation

PyStan Documentation, Release 2.18.0.0

Examples

>>> from pystan import StanModel
>>> m = StanModel(model_code='parameters {real y;} model {y ~ normal(0,1);}')
>>> f = m.optimizing()

sampling(data=None, pars=None, chains=4, iter=2000, warmup=None, thin=1, seed=None,
init=’random’, sample_file=None, diagnostic_file=None, verbose=False, algorithm=None,
control=None, n_jobs=-1, **kwargs)

Draw samples from the model.

Parameters

• data (dict) – A Python dictionary providing the data for the model. Variables for Stan
are stored in the dictionary as expected. Variable names are the keys and the values are
their associated values. Stan only accepts certain kinds of values; see Notes.

• pars (list of string, optional) – A list of strings indicating parameters of
interest. By default all parameters specified in the model will be stored.

• chains (int, optional) – Positive integer specifying number of chains. 4 by de-
fault.

• iter (int, 2000 by default) – Positive integer specifying how many iterations
for each chain including warmup.

• warmup (int, iter//2 by default) – Positive integer specifying number of
warmup (aka burn-in) iterations. As warmup also specifies the number of iterations used
for step-size adaption, warmup samples should not be used for inference. warmup=0
forced if algorithm=”Fixed_param”.

• thin (int, 1 by default) – Positive integer specifying the period for saving sam-
ples.

• seed (int or np.random.RandomState, optional) – The seed, a positive
integer for random number generation. Only one seed is needed when multiple chains
are used, as the other chain’s seeds are generated from the first chain’s to prevent de-
pendency among random number streams. By default, seed is random.randint(0,
MAX_UINT).

• algorithm ({"NUTS", "HMC", "Fixed_param"}, optional) – One of al-
gorithms that are implemented in Stan such as the No-U-Turn sampler (NUTS, Hoffman
and Gelman 2011), static HMC, or Fixed_param. Default is NUTS.

• init ({0, '0', 'random', function returning dict, list of
dict}, optional) – Specifies how initial parameter values are chosen: 0 or ‘0’
initializes all to be zero on the unconstrained support; ‘random’ generates random initial
values; list of size equal to the number of chains (chains), where the list contains a dict
with initial parameter values; function returning a dict with initial parameter values. The
function may take an optional argument chain_id.

• sample_file (string, optional) – File name specifying where samples for all
parameters and other saved quantities will be written. If not provided, no samples will be
written. If the folder given is not writable, a temporary directory will be used. When there
are multiple chains, an underscore and chain number are appended to the file name. By
default do not write samples to file.

• verbose (boolean, False by default) – Indicates whether intermediate out-
put should be piped to the console. This output may be useful for debugging.

1.9. API 25

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyStan Documentation, Release 2.18.0.0

• control (dict, optional) – A dictionary of parameters to control the sampler’s
behavior. Default values are used if control is not specified. The following are adaptation
parameters for sampling algorithms.

These are parameters used in Stan with similar names:

– adapt_engaged : bool, default True

– adapt_gamma : float, positive, default 0.05

– adapt_delta : float, between 0 and 1, default 0.8

– adapt_kappa : float, between default 0.75

– adapt_t0 : float, positive, default 10

In addition, the algorithm HMC (called ‘static HMC’ in Stan) and NUTS share the follow-
ing parameters:

– stepsize: float, positive

– stepsize_jitter: float, between 0 and 1

– metric : str, {“unit_e”, “diag_e”, “dense_e”}

In addition, depending on which algorithm is used, different parameters can be set as in
Stan for sampling. For the algorithm HMC we can set

– int_time: float, positive

For algorithm NUTS, we can set

– max_treedepth : int, positive

• n_jobs (int, optional) – Sample in parallel. If -1 all CPUs are used. If 1, no
parallel computing code is used at all, which is useful for debugging.

Returns fit – Instance containing the fitted results.

Return type StanFit4Model

Other Parameters

• chain_id (int or iterable of int, optional) – chain_id can be a vector to specify the chain_id
for all chains or an integer. For the former case, they should be unique. For the latter, the
sequence of integers starting from the given chain_id are used for all chains.

• init_r (float, optional) – init_r is only valid if init == “random”. In this case, the intial
values are simulated from [-init_r, init_r] rather than using the default interval (see the
manual of Stan).

• test_grad (bool, optional) – If test_grad is True, Stan will not do any sampling. Instead,
the gradient calculation is tested and printed out and the fitted StanFit4Model object is in
test gradient mode. By default, it is False.

• append_samples‘ (bool, optional)

• refresh‘ (int, optional) – Argument refresh can be used to control how to indicate the
progress during sampling (i.e. show the progress every code{refresh} iterations). By
default, refresh is max(iter/10, 1).

• check_hmc_diagnostics (bool, optional) – After sampling run pys-
tan.diagnostics.check_hmc_diagnostics function. Default is True.

26 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PyStan Documentation, Release 2.18.0.0

Examples

>>> from pystan import StanModel
>>> m = StanModel(model_code='parameters {real y;} model {y ~ normal(0,1);}')
>>> m.sampling(iter=100)

vb(data=None, pars=None, iter=10000, seed=None, init=’random’, sample_file=None, diagnos-
tic_file=None, verbose=False, algorithm=None, **kwargs)
Call Stan’s variational Bayes methods.

Parameters

• data (dict) – A Python dictionary providing the data for the model. Variables for Stan
are stored in the dictionary as expected. Variable names are the keys and the values are
their associated values. Stan only accepts certain kinds of values; see Notes.

• pars (list of string, optional) – A list of strings indicating parameters of
interest. By default all parameters specified in the model will be stored.

• seed (int or np.random.RandomState, optional) – The seed, a positive
integer for random number generation. Only one seed is needed when multiple chains
are used, as the other chain’s seeds are generated from the first chain’s to prevent de-
pendency among random number streams. By default, seed is random.randint(0,
MAX_UINT).

• sample_file (string, optional) – File name specifying where samples for all
parameters and other saved quantities will be written. If not provided, samples will be
written to a temporary file and read back in. If the folder given is not writable, a temporary
directory will be used. When there are multiple chains, an underscore and chain number
are appended to the file name. By default do not write samples to file.

• diagnostic_file (string, optional) – File name specifying where diagnos-
tics for the variational fit will be written.

• iter (-) – Positive integer specifying how many iterations for each chain including
warmup.

• algorithm ({'meanfield', 'fullrank'}) – algorithm}{One of “meanfield”
and “fullrank” indicating which variational inference algorithm is used. meanfield: mean-
field approximation; fullrank: full-rank covariance. The default is ‘meanfield’.

• verbose (boolean, False by default) – Indicates whether intermediate out-
put should be piped to the console. This output may be useful for debugging.

• optional parameters, refer to the manuals for both CmdStan
(Other) –

• Stan. (and) –

• iter –

• grad_samples the number of samples for Monte Carlo
enumerate of (-) – gradients, defaults to 1.

• elbo_samples the number of samples for Monte Carlo estimate
of ELBO (-) – (objective function), defaults to 100. (ELBO stands for “the evidence
lower bound”.)

• eta positive stepsize weighting parameters for variational
(-) – inference but is ignored if adaptation is engaged, which is the case by default.

1.9. API 27

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PyStan Documentation, Release 2.18.0.0

• adapt_engaged flag indicating whether to automatically
adapt the (-) – stepsize and defaults to True.

• `tol_rel_obj`convergence tolerance on the relative norm of
the (-) – objective, defaults to 0.01.

• eval_elbo, evaluate ELBO every Nth iteration, defaults to
100 (-) –

• output_samples number of posterior samples to draw and
save, (-) – defaults to 1000.

• adapt_iter number of iterations to adapt the stepsize if (-) –
adapt_engaged is True and ignored otherwise.

Returns results – Dictionary containing information related to results.

Return type dict

Examples

>>> from pystan import StanModel
>>> m = StanModel(model_code='parameters {real y;} model {y ~ normal(0,1);}')
>>> results = m.vb()
>>> # results saved on disk in format inspired by CSV
>>> print(results['args']['sample_file'])

1.9.1 StanFit4model

Each StanFit instance is model-specific, so the name of the class will be something like: StanFit4anon_model.
The StanFit4model instances expose a number of methods.

class pystan.StanFit4model

plot(pars=None)
Visualize samples from posterior distributions

Parameters

pars [sequence of str] names of parameters

This is currently an alias for the traceplot method.

extract(pars=None, permuted=True, inc_warmup=False, dtypes=None)
Extract samples in different forms for different parameters.

Parameters

pars [sequence of str] names of parameters (including other quantities)

permuted [bool] If True, returned samples are permuted. All chains are merged and warmup samples are
discarded.

inc_warmup [bool] If True, warmup samples are kept; otherwise they are discarded. If permuted is True,
inc_warmup is ignored.

dtypes [dict] datatype of parameter(s). If nothing is passed, np.float will be used for all parameters.

28 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict

PyStan Documentation, Release 2.18.0.0

Returns

samples : dict or array If permuted is True, return dictionary with samples for each parameter (or other
quantity) named in pars.

If permuted is False and pars is None, an array is returned. The first dimension of the array is for the iter-
ations; the second for the number of chains; the third for the parameters. Vectors and arrays are expanded
to one parameter (a scalar) per cell, with names indicating the third dimension. Parameters are listed in the
same order as model_pars and flatnames.

If permuted is False and pars is not None, return dictionary with samples for each parameter (or other
quantity) named in pars. The first dimension of the sample array is for the iterations; the second for the
number of chains; the rest for the parameters. Parameters are listed in the same order as pars.

stansummary(pars=None, probs=(0.025, 0.25, 0.5, 0.75, 0.975), digits_summary=2)
Summary statistic table. Parameters ———- pars : str or sequence of str, optional

Parameter names. By default use all parameters

probs [sequence of float, optional] Quantiles. By default, (0.025, 0.25, 0.5, 0.75, 0.975)

digits_summary [int, optional] Number of significant digits. By default, 2

summary [string] Table includes mean, se_mean, sd, probs_0, . . . , probs_n, n_eff and Rhat.

>>> model_code = 'parameters {real y;} model {y ~ normal(0,1);}'
>>> m = StanModel(model_code=model_code, model_name="example_model")
>>> fit = m.sampling()
>>> print(fit.stansummary())
Inference for Stan model: example_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
y 0.01 0.03 1.0 -2.01 -0.68 0.02 0.72 1.97 1330 1.0
lp__ -0.5 0.02 0.68 -2.44 -0.66 -0.24 -0.05-5.5e-4 1555 1.0
Samples were drawn using NUTS at Thu Aug 17 00:52:25 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

summary(pars=None, probs=None)
Summarize samples (compute mean, SD, quantiles) in all chains. REF: stanfit-class.R summary method
Parameters ———- fit : StanFit4Model object pars : str or sequence of str, optional

Parameter names. By default use all parameters

probs [sequence of float, optional] Quantiles. By default, (0.025, 0.25, 0.5, 0.75, 0.975)

summaries [OrderedDict of array] Array indexed by ‘summary’ has dimensions (num_params,
num_statistics). Parameters are unraveled in row-major order. Statistics include: mean, se_mean,
sd, probs_0, . . . , probs_n, n_eff, and Rhat. Array indexed by ‘c_summary’ breaks down the statistics
by chain and has dimensions (num_params, num_statistics_c_summary, num_chains). Statistics for
c_summary are the same as for summary with the exception that se_mean, n_eff, and Rhat are absent.
Row names and column names are also included in the OrderedDict.

log_prob(upar, adjust_transform=True, gradient=False)
Expose the log_prob of the model to stan_fit so user can call this function.

Parameters

1.9. API 29

PyStan Documentation, Release 2.18.0.0

upar : The real parameters on the unconstrained space.

adjust_transform [bool] Whether we add the term due to the transform from constrained space to uncon-
strained space implicitly done in Stan.

Note

In Stan, the parameters need be defined with their supports. For example, for a variance parameter, we
must define it on the positive real line. But inside Stan’s sampler, all parameters defined on the constrained
space are transformed to unconstrained space, so the log density function need be adjusted (i.e., adding the
log of the absolute value of the Jacobian determinant). With the transformation, Stan’s samplers work on
the unconstrained space and once a new iteration is drawn, Stan transforms the parameters back to their
supports. All the transformation are done inside Stan without interference from the users. However, when
using the log density function for a model exposed to Python, we need to be careful. For example, if we are
interested in finding the mode of parameters on the constrained space, we then do not need the adjustment.
For this reason, there is an argument named adjust_transform for functions log_prob and grad_log_prob.

grad_log_prob(upars, adjust_transform=True)
Expose the grad_log_prob of the model to stan_fit so user can call this function.

Parameters

upar [array] The real parameters on the unconstrained space.

adjust_transform [bool] Whether we add the term due to the transform from constrained space to uncon-
strained space implicitly done in Stan.

get_adaptation_info()
Obtain adaptation information for sampler, which now only NUTS2 has.

The results are returned as a list, each element of which is a character string for a chain.

get_logposterior(inc_warmup=True)
Get the log-posterior (up to an additive constant) for all chains.

Each element of the returned array is the log-posterior for a chain. Optional parameter inc_warmup indi-
cates whether to include the warmup period.

get_sampler_params(inc_warmup=True)
Obtain the parameters used for the sampler such as stepsize and treedepth. The results are returned as a list,
each element of which is an OrderedDict a chain. The dictionary has number of elements corresponding
to the number of parameters used in the sampler. Optional parameter inc_warmup indicates whether to
include the warmup period.

get_posterior_mean()
Get the posterior mean for all parameters

Returns

means [array of shape (num_parameters, num_chains)] Order of parameters is given by self.model_pars
or self.flatnames if parameters of interest include non-scalar parameters. An additional column for
mean lp__ is also included.

constrain_pars(np.ndarray[double, ndim=1, mode="c"] upar not None)
Transform parameters from unconstrained space to defined support

unconstrain_pars(par)
Transform parameters from defined support to unconstrained space

get_seed()

get_inits()

get_stancode()

30 Chapter 1. Documentation

PyStan Documentation, Release 2.18.0.0

to_dataframe(pars=None, permuted=True, dtypes=None, inc_warmup=False, diagnostics=True)
Extract samples as a pandas datafriame for different parameters.

pars [{str, sequence of str}] parameter (or quantile) name(s). If permuted is False, pars is ignored.

permuted [bool, default False] If True, returned samples are permuted. All chains are merged and
warmup samples are discarded.

dtypes [dict] datatype of parameter(s). If nothing is passed, np.float will be used for all parameters.

inc_warmup [bool] If True, warmup samples are kept; otherwise they are discarded. If permuted is True,
inc_warmup is ignored.

diagnostics [bool] If True, include MCMC diagnostics in dataframe. If permuted is True, diagnostics is
ignored.

df : pandas dataframe

Unlike default in extract (permuted=True) .to_dataframe method returns non-permuted samples
(permuted=False) with diagnostics params included.

1.10 Conversion utilities for Stan’s R Dump format

stan_rdump(data, filename) Dump a dictionary with model data into a file using the
R dump format that Stan supports.

read_rdump(filename) Read data formatted using the R dump format

pystan.misc.stan_rdump(data, filename)
Dump a dictionary with model data into a file using the R dump format that Stan supports.

Parameters

• data (dict) –

• filename (str) –

pystan.misc.read_rdump(filename)
Read data formatted using the R dump format

Parameters filename (str) –

Returns data

Return type OrderedDict

1.11 Logging

PyStan uses logging-module from the Python Standard library to output messages for the user. By default, mes-
sages are sent to sys.stdout. For more information and usage see logging-module <https://docs.python.org/3.7/library/
logging.handlers.html> and logging-cookbook <https://docs.python.org/3/howto/logging-cookbook.html>

• https://docs.python.org/3.7/library/logging.handlers.html

• https://docs.python.org/3/howto/logging-cookbook.html

1.11. Logging 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3.7/library/logging.handlers.html
https://docs.python.org/3.7/library/logging.handlers.html
https://docs.python.org/3/howto/logging-cookbook.html
https://docs.python.org/3.7/library/logging.handlers.html
https://docs.python.org/3/howto/logging-cookbook.html

PyStan Documentation, Release 2.18.0.0

1.11.1 Advanced users

To add other logger handlers or to redirect all messages from PyStan, the user needs to setup output handlers manually.
If the setup is done before importing PyStan, PyStan won’t add automatically logging.StreamHandler to logging
handlers. Otherwise, PyStan adds logging.StreamHandler and other handlers coexist with the default handler.

Adding FileHandler

To redirect all messages only to a file.

import logging
logger = logging.getLogger("pystan")

add root logger (logger Level always Warning)
not needed if PyStan already imported
logger.addHandler(logging.NullHandler())

logger_path = "pystan.log"
fh = logging.FileHandler(logger_path, encoding="utf-8")
fh.setLevel(logging.INFO)
optional step
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)

import pystan

To use both (default, file) logging options import pystan before the setup. In this case PyStan adds root handler, which
means that user can skip the root handler step.

import pystan

import logging
logger = logging.getLogger("pystan")
...

1.12 Threading Support with Pystan 2.18+

Notice! This is an experimental feature and is not tested or supported officially with PyStan 2. Official multithreading
support will land with PyStan 3.

By default, stan-math is not thread safe. Stan 2.18+ has ability to switch on threading support with compile time
arguments.

See https://github.com/stan-dev/math/wiki/Threading-Support

Due to use of multiprocessing to parallelize chains, user needs to be aware of the cpu usage. This means that each
chain will use STAN_NUM_THREADS cpu cores and this can have an affect on performance.

1.12.1 Windows

These instructions are invalid on Windows with MingW-W64 compiler and should not be used. Usage will crash the
current Python session, which means that no sampling can be done.

see https://github.com/Alexpux/MINGW-packages/issues/2519 and https://sourceforge.net/p/mingw-w64/bugs/445/

32 Chapter 1. Documentation

https://github.com/stan-dev/math/wiki/Threading-Support
https://github.com/Alexpux/MINGW-packages/issues/2519
https://sourceforge.net/p/mingw-w64/bugs/445/

PyStan Documentation, Release 2.18.0.0

1.12.2 Example

import pystan
import os
import sys

set environmental variable STAN_NUM_THREADS
Use 4 cores per chain
os.environ['STAN_NUM_THREADS'] = "4"

Example model
see http://discourse.mc-stan.org/t/cant-make-cmdstan-2-18-in-windows/5088/18
stan_code = """
functions {

vector bl_glm(vector mu_sigma, vector beta,
real[] x, int[] y) {

vector[2] mu = mu_sigma[1:2];
vector[2] sigma = mu_sigma[3:4];
real lp = normal_lpdf(beta | mu, sigma);
real ll = bernoulli_logit_lpmf(y | beta[1] + beta[2] * to_vector(x));
return [lp + ll]';

}
}
data {

int<lower = 0> K;
int<lower = 0> N;
vector[N] x;
int<lower = 0, upper = 1> y[N];

}
transformed data {

int<lower = 0> J = N / K;
real x_r[K, J];
int<lower = 0, upper = 1> x_i[K, J];
{
int pos = 1;
for (k in 1:K) {

int end = pos + J - 1;
x_r[k] = to_array_1d(x[pos:end]);
x_i[k] = y[pos:end];
pos += J;

}
}

}
parameters {

vector[2] beta[K];
vector[2] mu;
vector<lower=0>[2] sigma;

}
model {

mu ~ normal(0, 2);
sigma ~ normal(0, 2);
target += sum(map_rect(bl_glm, append_row(mu, sigma),

beta, x_r, x_i));
}
"""

stan_data = dict(

(continues on next page)

1.12. Threading Support with Pystan 2.18+ 33

PyStan Documentation, Release 2.18.0.0

(continued from previous page)

K = 4,
N = 12,
x = [1.204, -0.573, -1.35, -1.157,

-1.29, 0.515, 1.496, 0.918,
0.517, 1.092, -0.485, -2.157],

y = [1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1]
)

extra_compile_args = ['-pthread', '-DSTAN_THREADS']

stan_model = pystan.StanModel(
model_code=stan_code,
extra_compile_args=extra_compile_args

)

use the default 4 chains == 4 parallel process
used cores = min(cpu_cores, 4*STAN_NUM_THREADS)
fit = stan_model.sampling(data=stan_data, n_jobs=4)

print(fit)

1.13 PyStan on Windows

PyStan is partially supported under Windows with the following caveats:

• Python 2.7: Doesn’t support parallel sampling. When drawing samples n_jobs=1 must be used)

• Python 3.5 or higher: Parallel sampling is supported

• MSVC compiler is not supported.

PyStan requires a working C++ compiler. Configuring such a compiler is typically the most challenging step in getting
PyStan running.

PyStan is tested against the MingW-w64 compiler which works on both Python versions (2.7, 3.x) and supports x86
and x64.

Due to problems with MSVC template deduction, functions with Eigen library are failing. Until this and other bugs
are fixed no support is provided for Windows + MSVC. Currently, no fix is known for this problem, other than to
change the compiler to GCC or clang-cl.

1.13.1 Installing Python

There several ways of installing PyStan on Windows. The following instructions assume you have installed Python
as packaged in the Anaconda Python distribution <https://www.anaconda.com/download/#windows> or Miniconda
distribution <https://conda.io/miniconda.html>. The Anaconda distribution is well-maintained and includes packages
such as Numpy which PyStan requires. The following instructions assume that you are using Windows 7. (Windows
10 disregards user choice and user privacy.)

1.13.2 Open Command prompt

All the following commands are written to a command line. You can open the command line with

• open “Anaconda prompt”

34 Chapter 1. Documentation

https://www.eff.org/deeplinks/2016/08/windows-10-microsoft-blatantly-disregards-user-choice-and-privacy-deep-dive
https://www.eff.org/deeplinks/2016/08/windows-10-microsoft-blatantly-disregards-user-choice-and-privacy-deep-dive

PyStan Documentation, Release 2.18.0.0

• open “Command prompt” cmd.exe (if conda is found on your PATH).

Test conda package manager by:

``conda info``

To update conda package manager to the latest version:

``conda update conda``

1.13.3 Create a conda virtual environment (optional)

It is a good practice to keep specific projects on their on conda virtual environments to prevent unnecessary package
collisions. Create a new conda environment with:

``conda create -n stan_env python=3.7``

where stan_env is the name of the environment.

After this activate environment with:

``conda activate stan_env``

or if your conda doesn’t include conda activate use:

``activate stan_env``

To close the environment type:

``deactivate``

1.13.4 Installing C++ compiler

There are several ways to install MingW-w64 compiler toolchain, but in these instructions install compiler with conda
package manager which comes with the Anaconda package.

To install MingW-w64 compiler type:

``conda install libpython m2w64-toolchain -c msys2``

This will install

• libpython package which is needed to import MingW-w64.

<https://anaconda.org/anaconda/libpython> - MingW-w64 toolchain. <https://anaconda.org/msys2/
m2w64-toolchain>

libpython setups automatically distutils.cfg file, but if that is failed use the following instructions to setup
it manually

In PYTHONPATH\Lib\distutils create distutils.cfg with text editor (e.g. notepad, notepad++) and add the following
lines:

[build]
compiler=mingw32

To find the correct distutils path, run python:

1.13. PyStan on Windows 35

https://anaconda.org/anaconda/libpython
https://anaconda.org/msys2/m2w64-toolchain
https://anaconda.org/msys2/m2w64-toolchain

PyStan Documentation, Release 2.18.0.0

>>> import distutils
>>> print(distutils.__file__)

1.13.5 Install dependencies

It is recommended that on Windows the dependencies are installed with conda and conda-forge channel. Required
dependencies are numpy and cython.:

``conda install numpy cython -c conda-forge``

Optional dependencies are matplotlib, scipy and pandas.:

``conda install matplotlib scipy pandas -c conda-forge``

1.13.6 Installing PyStan

You can install PyStan with either pip (recommended) or conda

with pip:

pip install pystan

And with conda

conda install pystan -c conda-forge

You can verify that everything was installed successfully by opening up the Python terminal (run python from a
command prompt) and drawing samples from a very simple model:

>>> import pystan
>>> model_code = 'parameters {real y;} model {y ~ normal(0,1);}'
>>> model = pystan.StanModel(model_code=model_code)
>>> y = model.sampling().extract()['y']
>>> y.mean() # with luck the result will be near 0

1.13.7 Steps

With pip

conda install numpy cython matplotlib scipy pandas -c conda-forge pip install
pystan

With conda

conda install numpy cython matplotlib scipy pandas pystan -c conda-forge

36 Chapter 1. Documentation

CHAPTER 2

Stan documentation

• Stan: http://mc-stan.org/

• Stan User’s Guide and Reference Manual, available at http://mc-stan.org

• BUGS Examples

37

http://mc-stan.org/
http://mc-stan.org
https://github.com/stan-dev/example-models/wiki/BUGS-Examples

PyStan Documentation, Release 2.18.0.0

38 Chapter 2. Stan documentation

CHAPTER 3

Important links

• Source code repo: https://github.com/stan-dev/pystan

• HTML documentation: http://pystan.readthedocs.org

• Issue tracker: https://github.com/stan-dev/pystan/issues

39

https://github.com/stan-dev/pystan
http://pystan.readthedocs.org
https://github.com/stan-dev/pystan/issues

PyStan Documentation, Release 2.18.0.0

40 Chapter 3. Important links

CHAPTER 4

Similar projects

• PyMC: http://pymc-devs.github.io/pymc/

• emcee: http://dan.iel.fm/emcee/current/

41

http://pymc-devs.github.io/pymc/
http://dan.iel.fm/emcee/current/

PyStan Documentation, Release 2.18.0.0

42 Chapter 4. Similar projects

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

43

PyStan Documentation, Release 2.18.0.0

44 Chapter 5. Indices and tables

Python Module Index

p
pystan, 17

45

PyStan Documentation, Release 2.18.0.0

46 Python Module Index

Index

C
constrain_pars() (pystan.StanFit4model method), 30

E
extract() (pystan.StanFit4model method), 28

G
get_adaptation_info() (pystan.StanFit4model method), 30
get_cppcode() (pystan.StanModel method), 22
get_cxxflags() (pystan.StanModel method), 23
get_include_paths() (pystan.StanModel method), 23
get_inits() (pystan.StanFit4model method), 30
get_logposterior() (pystan.StanFit4model method), 30
get_posterior_mean() (pystan.StanFit4model method), 30
get_sampler_params() (pystan.StanFit4model method),

30
get_seed() (pystan.StanFit4model method), 30
get_stancode() (pystan.StanFit4model method), 30
grad_log_prob() (pystan.StanFit4model method), 30

L
log_prob() (pystan.StanFit4model method), 29

M
model_code (pystan.StanModel attribute), 22
model_cpp (pystan.StanModel attribute), 22
model_name (pystan.StanModel attribute), 22
module (pystan.StanModel attribute), 22

O
optimizing() (pystan.StanModel method), 22, 23

P
plot() (pystan.StanFit4model method), 28
pystan (module), 17

R
read_rdump() (in module pystan.misc), 31

S
sampling() (pystan.StanModel method), 22, 25
show() (pystan.StanModel method), 22
stan() (in module pystan), 17
stan_rdump() (in module pystan.misc), 31
stanc() (in module pystan), 20
StanFit4model (class in pystan), 28
StanModel (class in pystan), 21
stansummary() (pystan.StanFit4model method), 29
summary() (pystan.StanFit4model method), 29

T
to_dataframe() (pystan.StanFit4model method), 30

U
unconstrain_pars() (pystan.StanFit4model method), 30

V
vb() (pystan.StanModel method), 27

47

	Documentation
	Stan documentation
	Important links
	Similar projects
	Indices and tables
	Python Module Index

