Contents

1 Installation 3
1.1 Option 1: Install PySB natively on your computer 3
1.1.1 Recommended additional software 4
1.2 Option 2: Docker container with PySB and Jupyter Notebook 5
1.2.1 Background 5
1.2.2 Install Docker and the PySB software stack 5
1.2.3 Important notes for Docker installations 5

2 Tutorial 7
2.1 Introduction 7
2.2 First steps 7
2.3 Creating a model 8
2.4 Using a model 8
2.5 Model creation in depth 8
2.5.1 Component 9
2.5.2 Monomer 9
2.5.3 Parameter 10
2.5.4 Rules 11
2.5.5 Observables 13
2.6 Initial conditions 14
2.7 Simulation and analysis 14
2.8 Visualization 17
2.9 Higher-order rules 18
2.10 Using provided macros 20
2.11 Compartments 24
2.12 Model calibration 24
2.13 Modules 24
2.14 Miscellaneous 24
2.14.1 Self-export 24

3 Frequently Asked Questions 25
3.1 General 25
3.2 Rule and Reaction Rate Laws 25
3.3 Simulation 26

4 PySB Modules Reference 27
4.1 PySB core (pysb.core) 27
4.2 ODE integrators (pysb.integrate) .. 38
4.3 Simulation tools (pysb.simulator) .. 41
4.4 Testing PySB Models (pysb.testing.modeltests) 51
4.5 BioNetGen integration (pysb.bng) ... 53
4.6 Kappa integration (pysb.kappa) ... 57
4.7 Macros (pysb.macros) ... 60
4.8 Pattern matching against PySB models (pysb.pattern) 80
4.9 Visualizing model structure .. 87
 4.9.1 Render a model’s reaction network (pysb.tools.render_reactions) 88
 4.9.2 Render a model’s species (pysb.tools.render_species) 89
4.10 Importing from other formats (pysb.importers) 89
4.11 Exporting to other formats (pysb.export) 91
 4.11.1 Command-line usage ... 92
 4.11.2 Interactive usage ... 92
 4.11.3 Implementation of specific exporters 92

5 Useful References ... 107
 5.1 Python Language .. 107
 5.2 NumPy and SciPy ... 107
 5.3 BioNetGen .. 108

6 Indices and tables .. 109

Python Module Index .. 111
PySB is a framework for building mathematical rule-based models of biochemical systems as Python programs. PySB abstracts the complex process of creating equations describing interactions among multiple proteins (or other biomolecules) into a simple and intuitive domain specific language embedded within Python. PySB accomplishes this by automatically generating sets of BNGL or Kappa rules and using the rules for simulation or analysis. PySB makes it straightforward to divide models into modules and to call libraries of reusable elements (macros) that encode standard biochemical actions. These features promote model transparency, reuse and accuracy. PySB interoperates with standard scientific Python libraries such as NumPy, SciPy and SymPy to enable model simulation and analysis.

Contents:
There are two different ways to install and use PySB:

1. **Install PySB natively on your computer (recommended).**

 OR

2. **Download a Docker container with PySB and Jupyter Notebook.** If you are familiar with Docker, PySB can be installed from the Docker Hub by typing `docker pull pysb/pysb`. Further details are below.

Note: Need Help? If you run into any problems with installation, please visit our chat room: https://gitter.im/pysb/pysb

1.1 Option 1: Install PySB natively on your computer

1. **Install Anaconda**

 Our recommended approach is to use Anaconda, which is a distribution of Python containing most of the numeric and scientific software needed to get started. If you are a Mac or Linux user, have used Python before and are comfortable using `pip` to install software, you may want to skip this step and use your existing Python installation.

 Anaconda has a simple graphical installer which can be downloaded from https://www.continuum.io/downloads - select your operating system and download the 64-bit version. Both Python 2.7 and 3.6 are supported. The default installer options are usually appropriate.

2. **Install PySB**

 The installation is very straightforward with `conda` - type the following in a terminal:

   ```bash
   conda install -c alubbock pysb
   ```
Note: You may wish to use the Anaconda prompt, which sets up the Anaconda paths automatically, rather than the standard command prompt or terminal on your operating system. Otherwise, you may have to use the full path to the conda command each time, and may end up using the system version of Python, rather than the Anaconda one.

Note: You can also install PySB using pip, but in that case you will need to manually install BioNetGen into the default path for your platform (/usr/local/share/BioNetGen on Mac and Linux, c:\Program Files\BioNetGen on Windows), or set the BNGPATH environment variable to the BioNetGen path on your machine.

3. Start Python and PySB

If you installed Python using Anaconda on Windows, search for and select IPython from your Start Menu (Windows). Otherwise, open a terminal and type python to get started (or ipython, if installed).

You will then be at the Python prompt. Type import pysb to try loading PySB. If no error messages appear and the next Python prompt appears, you have succeeded in installing PySB! You can now proceed to the Tutorial.

1.1.1 Recommended additional software

The following software is not required for the basic operation of PySB, but provides extra capabilities and features when installed.

- cython or weave
 Cython is a package for compiling Python code into C code on the fly. It is used by pysb.simulator.ScipyOdeSimulator to greatly improve the speed of ODE integration. PySB will detect and use Cython automatically, if available. To install with Anaconda, type conda install cython. With pip, type pip install cython.

 Weave performs the same job as Cython, and is slightly faster in some circumstances. It is only available on Python 2. To install with Anaconda, type conda install -c conda-forge weave. With pip, type pip install weave.

- matplotlib
 This Python package allows you to plot the results of your simulations. It is not a hard requirement of PySB but many of the example scripts use it. matplotlib is included with Anaconda. Otherwise, it can be installed with pip install matplotlib.

- pandas
 This Python package provides extra capabilities for examining large numerical datasets, with statistical summaries and database-like manipulation capabilities. It is not a hard requirement of PySB, but it is a useful addition, particularly with large sets of simulation results. pandas is included with Anaconda. Otherwise, it can be installed with pip install pandas.

- IPython
 An alternate interactive Python shell, much improved over the standard one. IPython is included with Anaconda. Otherwise, it can be installed with pip install ipython.

- Kappa 4.0
 Kappa is a rule-based modeling tool that can produce several useful model visualizations or perform an agent-based model simulation. PySB optionally interfaces with its KaSim simulator and KaSa static analyzer.

 To install Kappa for PySB use, put the KaSim executable (and optionally KaSa if you have it) in /usr/local/share/KaSim (Mac or Linux) or C:\Program Files\KaSim (Windows). If you would like
to put it somewhere else, set the KAPPAPATH environment variable to the full path to the folder containing the KaSim and KaSa executables. Note that if you have downloaded the official binary build of KaSim, it will be named something like KaSim_4.0_winxp.exe or KaSim_4.0_mac_OSX_10.10. Regardless of where you install it, you will need to rename the file to strip out the version and operating system information so that you have just KaSim.exe (Windows) or KaSim (Mac or Linux).

On Anaconda, Kappa can be installed with conda install -c alubbock kappa.

1.2 Option 2: Docker container with PySB and Jupyter Notebook

1.2.1 Background

Docker is a virtualization platform which encapsulates software within a container. It can be thought of like a virtual machine, only it contains just the application software (and supporting dependencies) and not a full operating system stack.

1.2.2 Install Docker and the PySB software stack

1. **Install Docker**

 To use PySB with Docker, first you’ll need to install Docker, which can be obtained from https://www.docker.com/community-edition#/download (Windows and Mac). Linux users should use their package manager (e.g. apt-get).

2. **Download the PySB software stack from the Docker Hub**

 On the command line, this requires a single command:

   ```bash
   docker pull pysb/pysb
   ```

 This only needs to be done once, or when software updates are required.

3. **Start the container**

 Start the Docker container with the following command (on Linux, the command may need to be prefixed with sudo):

   ```bash
   docker run -it --rm -p 8888:8888 pysb/pysb
   ```

 This starts the PySB Docker container with Jupyter notebook and connects it to port 8888.

4. **Open Jupyter Notebook in a web browser**

 Open a web browser of your choice and enter the address http://localhost:8888 in the address bar. You should see a web page with the Jupyter notebook logo. Several example and tutorial notebooks are included to get you started.

1.2.3 Important notes for Docker installations

To see graphics from matplotlib within the Jupyter Notebook, you’ll need to set the following option in your notebooks before calling any plot commands:

```python
%matplotlib inline
```
Any Jupyter notebooks created will be saved in the container itself, rather than on the host computer. Notebooks can be downloaded using the Jupyter interface, or a directory on the host computer can be shared with the container.

The PySB container builds on the Jupyter SciPy notebook, which contains further information on the options available for the container (such as sharing a directory with the host computer to preserve notebooks, setting a password and more). Documentation from the Jupyter project is available at https://hub.docker.com/r/jupyter/scipy-notebook/
2.1 Introduction

This tutorial will walk you through the creation and simulation of a PySB model.

2.2 First steps

Once you have installed PySB, run the following commands from a Python interpreter to check that the basic functionality is working. This will define a model that synthesizes a molecule “A” at the rate of 3 copies per second, simulates that model from t=0 to 60 seconds and displays the amount of A sampled at intervals of 10 seconds:

```python
>>> from pysb import *
>>> from pysb.integrate import Solver
>>> Model()
<Model '<interactive>' (monomers: 0, rules: 0, parameters: 0, compartments: 0) at ...>
>>> Monomer('A')
Monomer('A')
>>> Parameter('k', 3.0)
Parameter('k', 3.0)
>>> Rule('synthesize_A', None >> A(), k)
Rule('synthesize_A', None >> A(), k)
>>> t = [0, 10, 20, 30, 40, 50, 60]
>>> solver = Solver(model, t)
>>> solver.run()
>>> print(solver.y[:, 1])
[ 0. 30. 60. 90. 120. 150. 180.]
```
2.3 Creating a model

The example above notwithstanding, PySB model definition is not meant to be performed in an interactive environment. The proper way to create a model is to write the code in a .py file which can then be loaded interactively or in other scripts for analysis and simulation. Here are the Python statements necessary to define the model from First steps above. Save this code in a file named tutorial_a.py (you can find a copy of this file and all other named scripts from the tutorial in pysb/examples/):

```python
from pysb import *
Model()
Monomer('A')
Parameter('k', 3.0)
Rule('synthesize_A', None >> A(), k)
```

Note that we did not import pysb.integrate, define the t variable or create a Solver object. These are part of model usage, not definition, so they do not belong here.

You may also be wondering why there are no assignment statements to be found. This is because every PySB model component automatically assigns itself to a variable named identically to the component’s name (A, k and synthesize_A above), or model in the case of the Model object itself. This is not standard Python behavior but it makes models much more readable. The Component section below explains a bit more about this feature, and technical readers can find even more in the Self-export section.

2.4 Using a model

Now that we have created a model file, we will see how to load it and do something with it. Here is run_tutorial_a.py, the code corresponding to the rest of the example from First steps.

```python
from __future__ import print_function
from pysb.simulator import ScipyOdeSimulator
from tutorial_a import model
t = [0, 10, 20, 30, 40, 50, 60]
simulator = ScipyOdeSimulator(model, tspan=t)
simresult = simulator.run()
print(simresult.species[:, 1])
```

The one line that’s been added relative to the original listing is from tutorial_a import model. Since PySB models are just Python code, we use the standard python import mechanism to load them. The variable model which holds the Model object is explicitly chosen for import. All other model components defined in tutorial_a.py are accessible through model, so there is little need to import them separately.

2.5 Model creation in depth

Every model file must begin with these two lines:

```python
from pysb import *
Model()
```

The first line brings in all of the Python classes needed to define a model. The second line creates an instance of the Model class and implicitly assigns this object to the variable model. We won’t have to refer to model within the model file itself, rather this is the symbol we will later import from other code in order to make use of the model.
The rest of the model file will be component declarations. There are several types of components, some required and others optional. The required types are Monomer, Parameter and Rule – we have already encountered these in tutorial_a.py. The optional ones are Observable and Compartment. Each of these component types is represented by a Python class which inherits from the base class Component. The following sections will explain what each of these component types does in a model and how to create them.

2.5.1 Component

The base Component class is never explicitly used in a model, but it defines two pieces of basic functionality that are common to all component types. The first is a name attribute, which is specified as the first argument to the constructor for all subclasses of Component. The second is the “self-export” functionality, which automatically assigns every component to a local variable named for its name attribute. Self-export helps streamline model definition, making it feel much more like a domain-specific language like BNGL or Kappa. A justification for the technically-minded for this somewhat unusual behavior may be found in the Self-export section near the end of the tutorial.

2.5.2 Monomer

Monomers are the indivisible elements that will make up the molecules and complexes whose behavior you intend to model. Typically they will represent a specific protein or other biomolecule such as “EGFR” or “ATP”. Monomers have a name (like all components) as well as a list of sites. Sites are named locations on the monomer which can bind with a site on another monomer and/or take on a state. Binding merely represents aggregation, not necessarily a formal chemical bond. States can range from the biochemically specific (e.g. “phosphorylated/unphosphorylated” to the generic (e.g. “active/inactive”). The site list is technically optional (as seen in tutorial_a.py) but only the simplest toy models will be able to get by without them.

The Monomer constructor takes a name, followed by a list of site names, and finally a dict specifying the allowable states for the sites. Sites used only for binding may be omitted from the dict.

Here we will define a monomer representing the protein Raf, for use in a model of the MAPK signaling cascade. We choose to give our Raf monomer two sites: s represents the serine residue on which it is phosphorylated by Ras to activate its own kinase activity, and k represents the catalytic kinase domain with which it can subsequently phosphorylate MEK. Site s can take on two states: 'u' for unphosphorylated and 'p' for phosphorylated:

```python
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})
```

Now let’s provide a definition for MEK, the substrate of Raf. MEK has two serine residues at positions 218 and 222 in the amino acid sequence which are both phosphorylated by Raf. We can’t call them both s as site names must be unique within a monomer, so we’ve used the residue numbers in the sites’ names to distinguish them: s218 and s222. MEK has a kinase domain of its own for which we’ve again used k:

```python
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})
```

Adding these two monomer definitions to a new model file tutorial_b.py yields the following:

```python
from pysb import *

Model()
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})
```

We can import this model in an interactive Python session and explore its monomers:

```python
>>> from tutorial_b import model
>>> model.monomers
```

(continues on next page)
ComponentSet(
 Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']}),
 Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})
) >>
[m.name for m in model.monomers]
['Raf', 'MEK'] >>
model.monomers[0]
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']}) >>
model.monomers.keys()
['Raf', 'MEK'] >>
model.monomers['MEK']
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']}) >>
model.monomers['MEK'].sites
['s218', 's222', 'k']

The Model class has a container for each component type, for example monomers holds the monomers. These component objects are the very same ones you defined in your model script – they were implicitly added to the model's monomers container by the self-export system. This container is a ComponentSet, a special PySB class which acts like a list, a dict and a set rolled into one, although it can only hold Component objects and can only be appended to (never deleted from). Its dict personality allows you to iterate over the components or index an individual component by integer position, with the ordering of the values corresponding to the order in which the components were defined in the model. Its dict personality allows you to index an individual component with its string name and use the standard keys and items methods. The set personality allows set operations with ordering retained. For binary set operators, the left-hand operand's ordering takes precedence.

We can also access the fields of a Monomer object such as name and sites. See the PySB core (pysb.core) section of the module reference for documentation on the fields and methods of all the component classes.

2.5.3 Parameter

Parameters are constant numerical values that represent biological constants. A parameter can be used as a reaction rate constant, compartment volume or initial (boundary) condition for a molecular species. Other than name, the only other attribute of a parameter is its numerical value.

The Parameter constructor takes the name and value as its two arguments. The value is optional and defaults to 0.

Here we will define three parameters: a forward reaction rate for the binding of Raf and MEK and initial conditions for those two proteins:

```
Parameter('kf', 1e-5)
Parameter('Raf_0', 7e4)
Parameter('MEK_0', 3e6)
```

Add these parameter definitions to our tutorial_b model file to create tutorial_c.py:

```
from pysb import *

Model()
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})
Parameter('kf', 1e-5)
Parameter('Raf_0', 7e4)
Parameter('MEK_0', 3e6)
```

Then explore the parameters container:
Parameters as defined are unitless, so you’ll need to maintain unit consistency on your own. Best practice is to use number of molecules for species concentrations (i.e. initial conditions) and S.I. units for everything else: unimolecular rate constants in \(\text{s}^{-1} \), bimolecular rate constants in \(\text{molecules}^{-1} \times \text{s}^{-1} \), compartment volumes in \(L \), etc.

In the following sections we will see how parameters are used to build other model components.

2.5.4 Rules

Rules define chemical reactions between molecules and complexes. A rule consists of a name, a pattern describing which molecular species should act as the reactants, another pattern describing how reactants should be transformed into products, and parameters denoting the rate constants.

The **Rule constructor** takes a name, a RuleExpression containing the reactant and product patterns (more on that below) and one or two Parameter objects for the rate constants. It also takes several optional boolean flags as kwargs which alter the behavior of the rule in certain ways.

Rules, as described in this section, comprise the basic elements of procedural instructions that encode biochemical interactions. In its simplest form a rule is a chemical reaction that can be made general to a range of monomer states or very specific to only one kind of monomer in one kind of state. We follow the style for writing rules as described in BioNetGen but the style proposed by Kappa is quite similar with only some differences related to the implementation details (e.g. mass-action vs. stochastic simulations, compartments or no compartments, etc). We will write two rules to represent the interaction between the reactants and the products in a two-step manner.

The general pattern for a rule consists of the statement `Rule` and in parenthesis a series of statements separated by commas, namely the rule name (string), the rule interactions, and the rule parameters. The rule interactions make use of the following operators:

- `*+*` operator to represent complexation
- `*|*` operator to represent backward/forward reaction
- `*>>*` operator to represent forward-only reaction
- `*%*` operator to represent a binding interaction between two species

Note: PySB used to use the `<>` operator for reversible rules, but that operator was removed in Python 3. All new models should use the `|` operator instead. Support for the `<>` in PySB with Python 2 will be removed in a future version of PySB.

To illustrate the use of the operators and the rule syntax we write the complex formation reaction with labels illustrating the parts of the rule:

```
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'), *[kf, → kr])
```

(continues on next page)
The rule name can be any string and should be enclosed in single (') or double (") quotation marks. The species are instances of the monomers in a specific state. In this case we are requiring that C8 and Bid are both unbound, as we would not want any binding to occur with species that are previously bound. The complexation or addition operator tells the program that the two species are being added, that is, undergoing a transition, to form a new species as specified on the right side of the rule. The forward/backward operator states that the reaction is reversible. Finally the binding operator indicates that there is a bond formed between two or more species. This is indicated by the matching integer (in this case 1) in the bonding site of both species along with the binding operator. If a non-reversible rule is desired, then the forward-only operator can be replaced for the forward/backward operator.

In order to actually change the state of the Bid protein we must now edit the monomer so that have an actual state site as follows:

```python
Monomer('Bid', ['b', 'S'], {'S': ['u', 't']})
```

Having added the state site we can now further specify the state of the Bid protein when it undergoes rule-based interactions and explicitly indicate the changes of the protein state.

With this state site added, we can now go ahead and write the rules that will account for the binding step and the unbinding step as follows:

```python
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'), kf, kr)
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) % Bid(b=None, S='t'), kc)
```

As shown, the initial reactants, C8 and Bid initially in the unbound state and, for Bid, in the ‘u’ state, undergo a complexation reaction and further a dissociation reaction to return the original C8 protein and the Bid protein but now in the ‘t’ state, indicating its truncation. Make these additions to your mymodel.py file. After you are done, your file should look like this:

```python
# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S': ['u', 't']})
```
input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

now input the rules
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S=None) | C8(b=1) % Bid(b=1, S=None), kf, → kr)
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'), → kc)

Once you are done editing your file, start your *ipython* (or *python*) interpreter and type the commands at the prompts below. Once you load your model you should be able to probe and check that you have the correct monomers, parameters, and rules. Your output should be very similar to the one presented (output shown below the '>>>' python prompts):

```
>>> import mymodel as m

>>> m.model.monomers
{'C8': Monomer(name='C8', sites=['b'], site_states={}),
 'Bid': Monomer(name='Bid', sites=['b', 'S'], site_states={'S': ['u', 't']})

>>> m.model.parameters
{'kf': Parameter(name='kf', value=1.0e-07),
 'kr': Parameter(name='kr', value=1.0e-03),
 'kc': Parameter(name='kc', value=1.0)}

>>> m.model.rules
{'C8_Bid_bind': Rule(name='C8_Bid_bind', reactants=C8(b=None) + Bid(b=None, S='u'), products=C8(b=1) % Bid(b=1, S='u'), rate_forward=Parameter(name='kf', value=1.0e-07), rate_reverse=Parameter(name='kr', value=1.0e-03)),
 'tBid_from_C8Bid': Rule(name='tBid_from_C8Bid', reactants=C8(b=1) % Bid(b=1, S='u'), products=C8(b=None) + Bid(b=None, S='t'), rate_forward=Parameter(name='kc', value=1.0))

With this we are almost ready to run a simulation, all we need now is to specify the initial conditions of the system.

## 2.5.5 Observables

In our model we have two initial species (C8 and Bid) and one output species (tBid). As shown in the ODEs derived from the reactions above, there are four mathematical species needed to describe the evolution of the system (i.e. C8, Bid, tBid, and C8:Bid). Although this system is rather small, there are situations when we will have many more species than we care to monitor or characterize throughout the time evolution of the ODEs. In addition, it will often happen that the desirable species are combinations or sums of many other species. For this reason the rules-based engines we currently employ implemented the Observables call which automatically collects the necessary information and returns the desired species. In our case, we will monitor the amount of free C8, unbound Bid, and active tBid. To specify the observables enter the following lines in your mymodel.py file as follows:

```
Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))
```

As shown, the observable can be a species. As we will show later the observable can also contain wild-cards and given the “don’t care don’t write” approach to rule-writing it can be a very powerful approach to observe activated complexes.

2.5. Model creation in depth
2.6 Initial conditions

Having specified the *monomers*, the *parameters* and the *rules* we have the basics of what is needed to generate a set of ODEs and run a model. From a mathematical perspective a system of ODEs can only be solved if a bound is placed on the ODEs for integration. In our case, these bounds are the initial conditions of the system that indicate how much non-zero initial species are present at time $t=0s$ in the system. In our system, we only have two initial species, namely $C8$ and $Bid$ so we need to specify their initial concentrations. To do this we enter the following lines of code into the `mymodel.py` file:

```python
Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
```

A parameter object must be declared to specify the initial condition rather than just giving a value as shown above. Once the parameter object is declared (i.e. `C8_0` and `Bid_0`) it can be fed to the `Initial` definition. Now that we have specified the initial conditions we are basically ready to run simulations. We will add an `observables` call in the next section prior to running the simulation.

2.7 Simulation and analysis

By now your `mymodel.py` file should look something like this:

```python
import the pysb module and all its methods and functions
from pysb import *

instantiate a model
Model()

declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], { 'S': ['u', 't'] })

input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

now input the rules
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S=None) | C8(b=1) % Bid(b=1, S=None),
 →*[kf, kr])
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'),
 →kc)

initial conditions
Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)

Observables
Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))
```
You can use a few commands to check that your model is defined properly. Start your `ipython` (or `python`) interpreter and enter the commands as shown below. Notice the output should be similar to the one shown (output shown below the `>>>` prompts):

```python
>>> import mymodel as m
>>> m.model.monomers
{'C8': Monomer(name='C8', sites=['b'], site_states={}),
 'Bid': Monomer(name='Bid', sites=['b', 'S'], site_states={'S': ['u', 't']})}
>>> m.model.parameters
{'kf': Parameter(name='kf', value=1.0e-07),
 'kr': Parameter(name='kr', value=1.0e-03),
 'kc': Parameter(name='kc', value=1.0),
 'C8_0': Parameter(name='C8_0', value=1000),
 'Bid_0': Parameter(name='Bid_0', value=10000)}
>>> m.model.observables
{'obsC8': <pysb.core.Observable object at 0x104b2c4d0>,
 'obsBid': <pysb.core.Observable object at 0x104b2c5d0>,
 'obstBid': <pysb.core.Observable object at 0x104b2c6d0>}
>>> m.model.initial_conditions
[(C8(b=None), Parameter(name='C8_0', value=1000)), (Bid(b=None, S=u),]
>>> m.model.rules
{'C8_Bid_bind': Rule(name='C8_Bid_bind', reactants=C8(b=None) +
 Bid(b=None, S=None), products=C8(b=1) % Bid(b=1, S=None),
 rate_forward=Parameter(name='kf', value=1.0e-07),
 rate_reverse=Parameter(name='kr', value=1.0e-03))},
 'tBid_from_C8Bid': Rule(name='tBid_from_C8Bid', reactants=C8(b=1)
 % Bid(b=1, S=u), products=C8(b=None) + Bid(b=None, S=t),
 rate_
_forward=Parameter(name='kc', value=1.0))
```

With this we are now ready to run a simulation! The parameter values for the simulation were taken directly from typical values in the paper about extrinsic apoptosis signaling. To run the simulation we must use a numerical integrator. Common examples include LSODA, VODE, CVODE, Matlab’s ode15s, etc. We will use two `python` modules that are very useful for numerical manipulation. We have adapted the integrators in the SciPy module to function seamlessly with PySB for integration of ODE systems. We will also be using the *PyLab package for graphing and plotting from the command line.

We will begin our simulation by loading the model from the `ipython` (or `python`) interpreter as shown below:

```python
>>> import mymodel as m
>>> m.mymodel.monomers
>>> m.mymodel.rules
```

Both commands should return information about your model. (Hint: If you are using iPython, you can press tab twice after “m.mymodel” to tab complete and see all the possible options).

Now, we will import the *PyLab and PySB simulator module. Enter the commands as shown below:

```python
>>> from pysb.simulator import ScipyOdeSimulator
>>> import pylab as pl
```

We have now loaded the integration engine and the graph engine into the interpreter environment. You may get some feedback from the program as some functions can be compiled at runtime for speed, depending on your operating system. Next we need to tell the integrator the time domain over which we wish to integrate the equations. For our case

---

2 *PyLab: [http://www.scipy.org/PyLab](http://www.scipy.org/PyLab)"
we will use 20000s of simulation time. To do this we generate an array using the \textit{linspace} function from \textit{PyLab}. Enter the command below:

```python
>>> t = pl.linspace(0, 20000)
```

This command assigns an array in the range \([0..20000]\) to the variable \(t\). You can type the name of the variable at any time to see the content of the variable. Typing the variable \(t\) results in the following:

```plaintext
```

These are the points at which we will get data for each ODE from the integrator. With this, we can now run our simulation. Enter the following commands to run the simulation and get the results:

```python
>>> simres = ScipyOdeSimulator(m.model, tspan=t).run()
>>> yout = simres.all
```

To verify that the simulation run you can see the content of the \(yout\) object. For example, check for the content of the \textit{Bid} observable defined previously:

```plaintext
>>> yout['obsBid']
```

As you may recall we named some observables in the \textit{Observables} section above. The variable \(yout\) contains an array of all the ODE outputs from the integrators along with the named observables (i.e. \textit{obsBid}, \textit{obstBid}, and \textit{obsC8}) which can be called by their names. We can therefore plot this data to visualize our output. Using the commands imported from the \textit{PyLab} module we can create a graph interactively. Enter the commands as shown below:

```python
>>> pl.ion()
>>> pl.figure()
>>> pl.plot(t, yout['obsBid'], label="Bid")
>>> pl.plot(t, yout['obstBid'], label="tBid")
>>> pl.plot(t, yout['obsC8'], label="C8")
```
You should now have a figure in your screen showing the number of Bid molecules decreasing from the initial amount decreasing over time, the number of tBid molecules increasing over time, and the number of free C8 molecules decrease to about half. For help with the above commands and to see more commands related to PyLab check the documentation. Your figure should look something like the one below:

![Graph showing Bid, tBid, and C8 molecules over time](image)

Congratulations! You have created your first model and run a simulation!

## 2.8 Visualization

It is useful to visualize the species and reactions that make a model. We have provided two methods to visualize species and reactions. We recommend using the tools in Kappa and BioNetGen for other visualization tools such as contact maps and stories.

The simplest way to visualize a model is to generate the graph file using the programs available from the command line. The files are located in the .../pysb/tools directory. The files to visualize reactions and species are render_reactions.py and render_species.py. These python scripts will generate .dot graph files that can be visualized using several tool such as OmniGraffle in OS X or GraphViz in all major platforms. For this tutorial we will use the GraphViz renderer. For this example will visualize the mymodel.py file that was created earlier.
Issue the following command, replacing the comments inside square brackets ‘[]’ with the correct paths. We will first generate the .dot from the command line as follows:

```
[path-to-pysb]/pysb/tools/render_reactions.py [path-to-pysb-model-file]/mymodel.py > mymodel.dot
```

If your model can be properly visualized you should have gotten no errors and should now have a file called mymodel.dot. You can now use this file as an input for any visualization tool as described above. You can follow the same procedures with the `render_species.py` script to visualize the species generated by your models.

### 2.9 Higher-order rules

For this section we will show the power working in a programming environment by creating a simple function called “catalyze”. Catalysis happens quite often in models and it is one of the basic functions we have found useful in our model development. Rather than typing many lines such as:

```
Rule("association", Enz(b=None) + Sub(b=None, S="i") | Enz(b=1)%Sub(b=1,S="i"), kf, kr)
Rule("dissociation", Enz(b=1)%Sub(b=1,S="i") >> Enz(b=None) + Sub(b=None, S="a"), kc)
```

multiple times, we find it more powerful, transparent and easy to instantiate/edit a simple, one-line function call such as:

```
catalyze(Enz, Sub, "S", "i", "a", kf, kr, kc)
```

We find that the functional form captures what we mean to write: a chemical species (the substrate) undergoes catalytic activation (by the enzyme) with a given set of parameters. We will now describe how a function can be written in PySB to automate the scripting of simple concepts into a programmatic format. Examine the function below:

```python
def catalyze(enz, sub, site, state1, state2, kf, kr, kc):
 # (0) function call
 r1_name = '%s_assoc_%s' % (enz.name, sub.name) # (1) reaction name
 Rule(r1_name, Enz(b=None) + sub(b=None, S="i") | Enz(b=1)%Sub(b=1,S="i"), kf, kr)
 r2_name = '%s_diss_%s' % (enz.name, sub.name) # (2) name of association reaction for rule
 Rule(r2_name, Enz(b=1)%Sub(b=1,S="i") >> Enz(b=None) + Sub(b=None, S="a"), kc)
 E = enz(b=None) # (4) define enzyme state in function
 S = sub({'b': None, site: state1}) # (5) define substrate state in function
 ES = enz(b=1) % sub({'b': 1, site: state1}) # (6) define state of enzyme:substrate complex
 P = sub({'b': None, site: state2}) # (7) define state of product
 Rule(r1_name, E + S | ES, kf, kr) # (8) rule for enzyme + substrate association (bidirectional)
 Rule(r2_name, ES >> E + P, kc) # (9) rule for enzyme:substrate dissociation (unidirectional)
```

As shown it takes about ten lines to write the catalyze function (shorter variants are certainly possible with more advanced Python statements). The skeleton of every function in Python is

As shown, Monomers, Parameters, Species, and pretty much anything related to rules-based modeling are instantiated as objects in Python. One could write functions to interact with these objects and they could be instantiated and inherit methods from a class. The limits to programming biology with PySB are those enforced by the Python language itself. We can now go ahead and embed this into a model. Go back to your `mymodel.py` file and modify it to look something like this:
```python
import the pysb module and all its methods and functions
from pysb import *

def catalyze(enz, sub, site, state1, state2, kf, kr, kc):
 # reaction name
 r1_name = '$%s_assoc_%s$' % (enz.name, sub.name)
 # name of association
 # reaction for rule
 r2_name = '$%s_diss_%s$' % (enz.name, sub.name)
 # name of dissociation
 reaction for rule
 E = enz(b=None)
 # define enzyme state in function
 S = sub({'b': None, site: state1})
 # define substrate state in function
 ES = enz(b=1) % sub({'b': 1, site: state1})
 # define state of enzyme:substrate complex
 P = sub({'b': None, site: state2})
 # define state of product
 Rule(r1_name, E + S | ES, kf, kr)
 # rule for enzyme + substrate association (bidirectional)
 Rule(r2_name, ES >> E + P, kc)
 # rule for enzyme:substrate dissociation (unidirectional)

 # instantiate a model
 Model()

 # declare monomers
 Monomer('C8', ['b'])
 Monomer('Bid', ['b', 'S'], {'S': ['u', 't']})

 # input the parameter values
 Parameter('kf', 1.0e-07)
 Parameter('kr', 1.0e-03)
 Parameter('kc', 1.0)

 # OLD RULES
 # Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S=None) | C8(b=1) % Bid(b=1, S=None),
 # r1_name, E + S | ES, kf, kr)
 # Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'),
 # r2_name, ES >> E + P, kc)
 #
 # NEW RULES
 # Catalysis
 catalyze(C8, Bid, 'S', 'u', 't', kf, kr, kc)

 # initial conditions
 Parameter('C8_0', 1000)
 Parameter('Bid_0', 10000)
 Initial(C8(b=None), C8_0)
 Initial(Bid(b=None, S='u'), Bid_0)

 # Observables
 Observable('obsC8', C8(b=None))
 Observable('obsBid', Bid(b=None, S='u'))
 Observable('obstBid', Bid(b=None, S='t'))

With this you should be able to execute your code and generate figures as described in the previous sections.

2.9. Higher-order rules 19
2.10 Using provided macros

For further reference we invite the users to explore the macro file in the .../pysb/ directory. Based on our experience with modeling signal transduction pathways we have identified a set of commonly-used constructs that can serve as building blocks for more complex models. In addition to some meta-macros useful for instantiating user macros, we provide a set of macros such as equilibrate, bind, catalyze, catalyze_one_step, catalyze_one_step_reversible, synthesize, degrade, assemble_pore_sequential, and pore_transport. In addition to these basic macros we also provide the higher-level macros bind_table and catalyze_table which we have found useful in instantiating the interactions between families of models.

In what follows we expand our previous model example of Caspase-8 by adding a few more species. The initiator caspase, as was described earlier, catalytically cleaves Bid to create truncated Bid (tBid) in this model. This tBid then catalytically activates Bax and Bak which eventually go on to form pores at the mitochondria leading to mitochondrial outer-membrane permeabilization (MOMP) and eventual cell death. To introduce the concept of higher-level macros we will show how the bind_table macro can be used to show how a family of inhibitors, namely Bcl-2, Bcl-xL, and Mcl-1 inhibits a family of proteins, namely Bid, Bax, and Bak.

In your favorite editor, go ahead and create a file (I will refer to it as ::file::mymodel_fxns). Many rules that dictate the interactions among species depend on a single binding site. We will begin by creating our model and declaring a generic binding site. We will also declare some functions, using the PySB macros and tailor them to our needs by specifying the binding site to be passed to the function. The first thing we do is import PySB and then import PySB macros. Then we declare our generic site and redefine the pysb.macros for our model as follows:

```python
# import the pysb module and all its methods and functions
from pysb import *
from pysb.macros import *

# some functions to make life easy
site_name = 'b'
def catalyze_b(enz, sub, product, klist):
    """Alias for pysb.macros.catalyze with default binding site 'b'."
    return catalyze(enz, site_name, sub, site_name, product, klist)
def bind_table_b(table):
    """Alias for pysb.macros.bind_table with default binding sites 'bf'."
    return bind_table(table, site_name, site_name)
```

The first two lines just import the necessary modules from PySB. The catalyze_b function, tailored for the model, takes four inputs but feeds six inputs to the pysb.macros.catalyze function, hence making the model more clean. Similarly the bind_table_b function takes only one entry, a list of lists, and feeds the entries needed to the pysb.macros.bind_table macro. Note that these entries could be contained in a header file to be hidden from the user at model time.

With this technical work out of the way we can now actually start our model building. We will declare two sets of rates, the bid_rates that we will use for all the Bid interactions and the bcl2_rates which we will use for all the Bcl-2 interactions. These values could be specified individually as desired but it is common practice in models to use generic values for the reaction rate parameters of a model and determine these in detail through some sort of model calibration. We will use these values for now for illustrative purposes.

The next entries for the rates, the model declaration, and the Monomers follow:

```python
# Bid activation rates
bid_rates = [1e-7, 1e-3, 1] #

# Bcl2 Inhibition Rates
(continues on next page)```
bcl2_rates = [1.428571e-05, 1e-3] # 1.0e-6/v_mito

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S': ['u', 't', 'm']})
Monomer('Bax', ['b', 'S'], {'S': ['i', 'a', 'm']})
Monomer('Bak', ['b', 'S'], {'S': ['i', 'a']})
Monomer('BclxL', ['b', 'S'], {'S': ['c', 'm']})
Monomer('Bcl2', ['b'])
Monomer('Mcl1', ['b'])

As shown, the generic rates are declared followed by the declaration of the monomers. We have the C8 and Bid monomers as we did in the initial part of the tutorial, the MOMP effectors bid, Bax, Bak, and the MOMP inhibitors Bcl-xL, Bcl-2, and Mcl-1. The Bid, Bax, and BclxL monomers, in addition to the active and inactive terms also have a 'm' term indicating that they can be in a membrane, which in this case we indicate as a state. We will have a translocation to the membrane as part of the reactions.

We can now begin to write some chemical procedures. The first procedure is the catalytic activation of Bid by C8. This is followed by the catalytic activation of Bax and Bak.

```
Activate Bid
catalyze_b(C8, Bid(S='u'), Bid(S='t'), [KF, KR, KC])

Activate Bax/Bak
catalyze_b(Bid(S='m'), Bax(S='i'), Bax(S='m'), bid_rates)
catalyze_b(Bid(S='m'), Bak(S='i'), Bak(S='a'), bid_rates)
```

As shown, we simply state the species that acts as an enzyme as the first function argument, the species that acts as the reactant with the enzyme as the second argument (along with any state specifications) and finally the product species. The bid_rates argument is the list of rates that we declared earlier.

You may have noticed a problem with the previous statements. The Bid species undergoes a transformation from state S='u' to S='t' but the activation of Bax and Bak happens only when Bid is in state S='m' to imply that these events only happen at the membrane. In order to transport Bid from the 't' state to the 'm' state we need a transport function. We achieve this by using the equilibrate macro in PySB between these states. In addition we use this same macro for the transport of the Bax and BclxL species as shown below.

```
Bid, Bax, BclxL "transport" to the membrane
equilibrate(Bid(b=None, S='t'), Bid(b=None, S='m'), [1e-1, 1e-3])
equilibrate(Bax(b=None, S='m'), Bax(b=None, S='a'), [1e-1, 1e-3])
equilibrate(BclxL(b=None, S='c'), BclxL(b=None, S='m'), [1e-1, 1e-3])
```

According to published experimental data, the Bcl-2 family of inhibitors can inhibit the initiator Bid and the effector Bax and Bak. These family has complex interactions with all these proteins. Given that we have three inhibitors, and three molecules to be inhibited, this indicates nine interactions that need to be specified. This would involve writing nine reversible reactions in a rules language or at least eighteen reactions for each direction if we were writing the ODEs. Given that we are simply stating that these species bind to inhibit interactions, we can take advantage of two things. In the first case we have already seen that there is a bind macro specified in PySB. We can further functionalize this into a higher level macro, namely the bind_table macro, which takes a table of interactions as an argument and generates the rules based on these simple interactions. We specify the bind table for the inhibitors (top row) and the inhibited molecules (left column) as follows.

2.10. Using provided macros
As shown the inhibitors interact by giving the rates of interactions or the “None” Python keyword to indicate no interaction. The only thing left to run this simple model is to declare some initial conditions and some observables. We declare the following:

**# initial conditions**
Parameter('C8_0', 1e4)
Parameter('Bid_0', 1e4)
Parameter('Bax_0', .8e5)
Parameter('Bak_0', .2e5)
Parameter('BclxL_0', 1e3)
Parameter('Bcl2_0', 1e3)
Parameter('Mcl1_0', 1e3)

Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
Initial(Bax(b=None, S='i'), Bax_0)
Initial(Bak(b=None, S='i'), Bak_0)
Initial(BclxL(b=None, S='c'), BclxL_0)
Initial(Bcl2(b=None), Bcl2_0)
Initial(Mcl1(b=None), Mcl1_0)

**# Observables**
Observable('obstBid', Bid(b=None, S='m'))
Observable('obsBax', Bax(b=None, S='a'))
Observable('obsBak', Bax(b=None, S='a'))
Observable('obsBaxBclxL', Bax(b=1, S='a')%BclxL(b=1, S='m'))

By now you should have a file with all the components that looks something like this:

```python
import the pysb module and all its methods and functions
from pysb import *
from pysb.macros import *

some functions to make life easy
site_name = 'b'
def catalyze_b(enz, sub, product, klist):
 """Alias for pysb.macros.catalyze with default binding site 'b'."
 return catalyze(enz, site_name, sub, site_name, product, klist)
def bind_table_b(table):
 """Alias for pysb.macros.bind_table with default binding sites 'bf'."
 return bind_table(table, site_name, site_name)

Default forward, reverse, and catalytic rates
KF = 1e-6
KR = 1e-3
KC = 1

Bid activation rates
bid_rates = [1e-7, 1e-3, 1] #
```
# Bcl2 Inhibition Rates
bcl2_rates = [1.428571e-05, 1e-3]  # 1.0e-6/v_mito

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't', 'm']})
Monomer('Bax', ['b', 'S'], {'S':['i', 'a', 'm']})
Monomer('Bak', ['b', 'S'], {'S':['i', 'a']})
Monomer('BclxL', ['b', 'S'], {'S':['c', 'm']})
Monomer('Bcl2', ['b'])
Monomer('Mcl1', ['b'])

# Activate Bid
catalyze_b(C8, Bid(S='u'), Bid(S='t'), [KF, KR, KC])

# Activate Bax/Bak
catalyze_b(Bid(S='m'), Bax(S='i'), Bax(S='m'), bid_rates)
catalyze_b(Bid(S='m'), Bak(S='i'), Bak(S='a'), bid_rates)

# Bid, Bax, BclxL "transport" to the membrane
equilibrate(Bid(b=None, S='t'), Bid(b=None, S='m'), [1e-1, 1e-3])
equilibrate(Bax(b=None, S='m'), Bax(b=None, S='a'), [1e-1, 1e-3])
equilibrate(BclxL(b=None, S='c'), BclxL(b=None, S='m'), [1e-1, 1e-3])

bind_table_b([[Bcl2, BclxL(S='m')], Mcl1],
              [Bid(S='m'), bcl2_rates, bcl2_rates, bcl2_rates],
              [Bax(S='a'), bcl2_rates, bcl2_rates, None],
              [Bak(S='a'), None, bcl2_rates, bcl2_rates])

# initial conditions
Parameter('C8_0', 1e4)
Parameter('Bid_0', 1e4)
Parameter('Bax_0', .8e5)
Parameter('Bak_0', .2e5)
Parameter('BclxL_0', 1e3)
Parameter('Bcl2_0', 1e3)
Parameter('Mcl1_0', 1e3)

Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
Initial(Bax(b=None, S='i'), Bax_0)
Initial(Bak(b=None, S='i'), Bak_0)
Initial(BclxL(b=None, S='c'), BclxL_0)
Initial(Bcl2(b=None), Bcl2_0)
Initial(Mcl1(b=None), Mcl1_0)

# Observables
Observable('obstBid', Bid(b=None, S='m'))
Observable('obsBax', Bax(b=None, S='a'))
Observable('obsBak', Bax(b=None, S='a'))
Observable('obsBaxBclxL', Bax(b=1, S='a')%BclxL(b=1, S='m'))
With this you should be able to run the simulations and generate figures as described in the basic tutorial sections.

2.11 Compartments

We will continue building on your mymodel_fxns.py file and add one more species and a compartment. In extrinsic apoptosis, once \textit{tBid} is activated it translocates to the outer mitochondrial membrane where it interacts with the protein \textit{Bak} (residing in the membrane).

2.12 Model calibration

2.13 Modules

2.14 Miscellaneous

2.14.1 Self-export

For anyone who feels a little queasy about self-export, this section will try to explain the rationale behind it.

In order to make model definition feel like a domain-specific language specially designed for model construction, the mechanism for component definition needs to provide three things:

• It must provide an internal name so that components can be usefully distinguished when inspected interactively, or translated into various output file formats such as BNGL.

• The component object must be assigned to a local variable so that subsequent component declarations can reference it by name using normal Python syntax (including operator overloading).

• The object must also be inserted into the data structures of the model object itself.

Without self-export, every component definition would need to manage these points explicitly:

\begin{verbatim}
A = Monomer('A')
model.add_component(A)
B = Monomer('B')
model.add_component(B)
\end{verbatim}

This pattern introduces several opportunities for error, for example a \texttt{name} argument and the corresponding variable name may end up out of sync or the modeler may forget an \texttt{add_component} call. The redundancy also introduces visual noise which makes the code harder to read. Furthermore, self-export makes model modularization much simpler, as components may be defined within functions without forcing the function to explicitly return them or requiring extra code in the caller to deal with the returned components.

In addition to \texttt{Component} and its subclasses, the \texttt{Model} constructor also utilizes self-export, with two differences: The local variable is always named \texttt{model}, and the \texttt{name} argument is optional and defaults to the full hierarchical name of the module from which \texttt{Model()} is called, e.g. \texttt{pysb.examples.tutorial_a}.
Below are some of PySB’s frequently asked questions. If your question is not answered here, you can try our Gitter channel. For more general Python related questions, we recommend Stack Overflow.

### 3.1 General

- Do you support Python 3?

  **Yes.** The current release of PySB supports Python 3.6 and Python 2.7. Other Python 3.x releases are not explicitly tested.

  In PySB version 1.5 and earlier, the `<>` operator was used for reversible rules. `<>` is pending deprecation from PySB, and does not work at all in Python 3. All new models should use `|` as the reversible rule operator. Previous models should be upgraded if compatibility with future PySB versions is required.

### 3.2 Rule and Reaction Rate Laws

- Can I specify a non-mass action rate law?

  **Yes.** PySB has a special entity for this, called Expressions. Expressions can be used in place of Parameters for rule rates. Expressions can contain mathematical expressions and can utilize other Expressions, Parameters, and Observables. Here’s a contrived example for demonstration purposes:

```python
Parameter('A_multiplier', 2.0)
Observable('A_total', A())
Expression('kf_A', A_total * A_multiplier)
Rule('bindA', A(b=None) + A(b=None) >> A(b=1) % A(b=1), kf_A)
```

Like Parameters, note that Expressions are multiplied by reactant species concentrations within a rule to get the final rate.
Can I use a discontinuous rate law, like a Heaviside function?

**Yes.** For simple examples like the Heaviside function, one could simply write a rate Expression like the following:

```python
Observable('A_total', A())
Parameter('p1', 1.0)
Expression('e1', (A_total > 100) * p1))
```

The inequality in parentheses evaluates to 1 if True and 0 if False. Thus, the Expression will be equal to \( p1 \) when \( A_{total} > 100 \) and 0 otherwise.

For more complex piecewise expressions, sympy’s Piecewise can be used:

```python
Expression('kf_A', Piecewise((0, A_total < 400.0),
 (0.001, A_total < 500.0),
 (0.01, True)))
```

Piecewise takes a list of (value, condition) tuples. The Expression’s value will come from the first condition which evaluates to True. Thus, for the Expression to always have a value, the last condition should default to True.

### 3.3 Simulation

- How can I speed up my `ScipyOdeSimulator` simulation?

  **Check the weave library is installed.** *weave* is a Python library which converts your system of ordinary differential equations (ODEs) to C code, which is faster to execute than pure Python code. You can check if *weave* is installed by trying to import it at the Python prompt:

  ```python
 import weave
  ```

  If no `ImportError` appears, *weave* is available. Note that *weave* is only available for Python 2. We are working on an alternative for Python 3 using *Cython*.

  When running large numbers of simulations, consider using the `CupSodaSimulator` if you have an NVIDIA graphics card (GPU) available. It is a GPU-based simulator which can run lots of simulations in parallel. See the *Simulator module documentation* for details.
4.1 PySB core (pysb.core)

```python
class pysb.core.ANY
 Site must have a bond, but identity of binding partner is irrelevant.
 Use ANY in a MonomerPattern site_conditions dict to indicate that a site must have a bond without specifying
 what the binding partner should be.

 Equivalent to the “+” bond modifier in BNG.
```

```python
class pysb.core.Compartment(name, parent=None, dimension=3, size=None, _export=True)
 Model component representing a bounded reaction volume.

 Parameters

 parent [Compartment, optional] Compartment which contains this one. If not specified, this
 will be the outermost compartment and its parent will be set to None.

 dimension [integer, optional] The number of spatial dimensions in the compartment, either 2
 (i.e. a membrane) or 3 (a volume).

 size [Parameter, optional] A parameter object whose value defines the volume or area of the
 compartment. If not specified, the size will be fixed at 1.0.
```

Notes

The compartments of a model must form a tree via their parent attributes with a three-dimensional (volume)
compartment at the root. A volume compartment may have any number of two-dimensional (membrane) compartments as its children, but never another volume compartment. A membrane compartment may have a single volume compartment as its child, but nothing else.
Examples

Compartment('cytosol', dimension=3, size=cyto_vol, parent=ec_membrane)

Attributes

Identical to Parameters (see above).

exception pysb.core.CompartmentAlreadySpecifiedError

class pysb.core.ComplexPattern (monomer_patterns, compartment, match_once=False)

A bound set of MonomerPatterns, i.e. a pattern to match a complex.

In BNG terms, a list of patterns combined with the ‘.’ operator.

Parameters

monomer_patterns [list of MonomerPatterns] MonomerPatterns that make up the complex.

compartment [Compartment or None] Location restriction. None means don’t care.

match_once [bool, optional] If True, the pattern will only count once against a species in which
the pattern can match the monomer graph in multiple distinct ways. If False (default),
the pattern will count as many times as it matches the monomer graph, leading to a faster
effective reaction rate.

Attributes

Identical to Parameters (see above).

copy ()

Implement our own brand of shallow copy.

The new object will have references to the original compartment, and copies of the monomer_patterns.

is_concrete ()

Return a bool indicating whether the pattern is ‘concrete’.

‘Concrete’ means the pattern satisfies ANY of the following: 1. All monomer patterns are concrete 2. The
compartment is specified AND all monomer patterns are site-concrete

is_equivalent_to (other)

Test a concrete ComplexPattern for equality with another.

Use of this method on non-concrete ComplexPatterns was previously allowed, but is now deprecated.

matches (other)

Compare another ComplexPattern against this one

Parameters

other: ComplexPattern A ComplexPattern to match against self

Returns

bool True if other matches self; False otherwise.

class pysb.core.Component (name, _export=True)

The base class for all the named things contained within a model.

Parameters

name [string] Name of the component. Must be unique within the containing model.

Attributes

name [string] Name of the component.
model [weakref(Model)] Containing model.

rename (new_name)
Change component’s name.

This is typically only needed when deriving one model from another and it would be desirable to change a component’s name in the derived model.

exception pysb.core.ComponentDuplicateNameError
A component was added with the same name as an existing one.

class pysb.core.ComponentSet (iterable=None)
An add-and-read-only container for storing model Components.

It behaves mostly like an ordered set, but components can also be retrieved by name or index by using the [] operator (like a combination of a dict and a list). Components cannot be removed or replaced, but they can be renamed. Iteration returns the component objects.

Parameters

iterable [iterable of Components, optional] Initial contents of the set.

filter (filter_predicate)
Filter a ComponentSet using a predicate or set of predicates

Parameters

filter_predicate: callable or pysb.pattern.FilterPredicate A predicate (condition) to test each Component in the ComponentSet against. This can either be an anonymous “lambda” function or a subclass of pysb.pattern.FilterPredicate. For lambda functions, the argument is a single Component and return value is a boolean indicating a match or not.

Returns

ComponentSet A ComponentSet containing Components matching all of the supplied filters

Examples

```python
>>> from pysb.examples.earm_1_0 import model
>>> from pysb.pattern import Name, Pattern, Module, Function

>>> m = model.monomers

Find parameters exactly equal to 10000:

>>> model.parameters.filter(lambda c: c.value == 1e4)
ComponentSet([Parameter('pC3_0', 10000.0), Parameter('pC6_0', 10000.0),])

Find rules with a forward rate < 1e-8, using a custom function:

>>> model.rules.filter(lambda c: c.rate_forward.value < 1e-8)
ComponentSet([Rule('bind_pC3_Apop', Apop(b=None) + pC3(b=None) | Apop(b=1) % pC3(b=1), kf25, kr25),])
```
We can also use some built-in predicates for more complex matching scenarios, including combining multiple predicates.

Find rules with a name beginning with “inhibit” that contain cSmac:

```python
>>> model.rules.filter(Name('^inhibit') & Pattern(m.cSmac()))
ComponentSet([Rule('inhibit_cSmac_by_XIAP', cSmac(b=None) + XIAP(b=None) |
 cSmac(b=1) % XIAP(b=1), kf28, kr28),
])
```

Find rules with any form of Bax (i.e., Bax, aBax, mBax):

```python
>>> model.rules.filter(Pattern(m.Bax) | Pattern(m.aBax) |
 Pattern(m.MBax))
ComponentSet([Rule('bind_Bax_tBid', tBid(b=None) + Bax(b=None) |
 tBid(b=1) % Bax(b=1), kf12, kr12),
 Rule('produce_aBax_via_tBid', tBid(b=1) % Bax(b=1) >>
 tBid(b=None) + aBax(b=None), kc12),
 Rule('transloc_MBax_aBax', aBax(b=None) |
 MBax(b=None), kf13, kr13),
 Rule('inhibit_MBax_by_Bcl2', MBax(b=None) + Bcl2(b=None) |
 MBax(b=1) % Bcl2(b=1), kf14, kr14),
 Rule('dimerize_MBax_to_Bax2', MBax(b=None) + MBax(b=None) |
 Bax2(b=None), kf15, kr15),
])
```

Count the number of parameters that don’t start with kf (note the ~ negation operator):

```python
>>> len(model.parameters.filter(~Name('^kf'))) # count
60
```

Get components not defined in this module (file). In this case, everything is defined in one file, but for multi-file models this becomes more useful:

```python
>>> model.components.filter(~Module('^pysb.examples.earm_1_0$'))
ComponentSet([])
```

Count the number of rules defined in the ‘catalyze’ function:

```python
>>> len(model.rules.filter(Function('^catalyze$'))) # count
24
```

get(k[, d]) → D[k] if k in D, else d. d defaults to None.

index(value) → integer – return first index of value.
Raises ValueError if the value is not present.

items() → list of D’s (key, value) pairs, as 2-tuples

iteritems() → an iterator over the (key, value) items of D

iterkeys() → an iterator over the keys of D

itervalues() → an iterator over the values of D

keys() → list of D’s keys
rename(c, new_name)
Change the name of component c to new_name.

values() \rightarrow list of D's values

exception pysb.core.ConstantExpressionError
Expected a constant Expression but got something else.

exception pysb.core.DanglingBondError

exception pysb.core.DuplicateMonomerError

exception pysb.core.DuplicateSiteError

class pysb.core.Expression(name, expr, _export=True)
Model component representing a symbolic expression of other variables.

Parameters


Attributes


expand_expr(expand_observables=False)
Return expr rewritten in terms of terminal symbols only.

is_constant_expression()
Return True if all terminal symbols are Parameters or numbers.

exception pysb.core.ExpressionError
Expected an Expression but got something else.

pysb.core.Initial(*args)
Declare an initial condition (see Model.initial).

exception pysb.core.InvalidComplexPatternException
Expression can not be cast as a ComplexPattern.

exception pysb.core.InvalidComponentNameError(name)
Inappropriate component name.

exception pysb.core.InvalidInitialConditionError
Invalid initial condition pattern.

exception pysb.core.InvalidReactionPatternException
Expression can not be cast as a ReactionPattern.

exception pysb.core.InvalidReversibleSynthesisDegradationRule
Synthesis or degradation rule defined as reversible.

pysb.core.MatchOnce(pattern)
Make a ComplexPattern match-once.

class pysb.core.Model(name=None, base=None, _export=True)
A rule-based model containing monomers, rules, compartments and parameters.

Parameters

   name [string, optional] Name of the model. If not specified, will be set to the name of the file from which the constructor was called (with the .py extension stripped).

   base [Model, optional] If specified, the model will begin as a copy of base. This can be used to achieve a simple sort of model extension and enhancement.
Attributes

- **name** [string] Name of the model. See Parameter section above.
- **base** [Model or None] See Parameter section above.
- **monomers, compartments, parameters, rules, observables** [ComponentSet] The Component objects which make up the model.
- **initial_conditions** [list of tuple of (ComplexPattern, Parameter)] Specifies which species are present in the model’s starting state (t=0) and how much there is of each one. The ComplexPattern defines the species identity, and it must be concrete (see ComplexPattern.is_concrete). The Parameter defines the amount or concentration of the species.
- **species** [list of ComplexPattern] List of all complexes which can be produced by the model, starting from the initial conditions and successively applying the rules. Each ComplexPattern is concrete.
- **reactions** [list of dict] Structures describing each possible unidirectional reaction that can be produced by the model. Each structure stores the name of the rule that generated the reaction (‘rule’), the mathematical expression for the rate of the reaction (‘rate’), tuples of species indexes for the reactants and products (‘reactants’, ‘products’), and a bool indicating whether the reaction is the reverse component of a bidirectional reaction (‘reverse’).
- **reactions_bidirectional** [list of dict] Similar to reactions but with only one entry for each bidirectional reaction. The fields are identical except ‘reverse’ is replaced by ‘reversible’, a bool indicating whether the reaction is reversible. The ‘rate’ is the forward rate minus the reverse rate.
- **annotations** [list of Annotation] Structured annotations of model components. See the Annotation class for details.

Methods

- **add_annotation** (*annotation*)
  Add an annotation to the model.
- **add_component** (*other*)
  Add a component to the model.
- **all_component_sets**()
  Return a list of all ComponentSet objects.
- **all_components**()
  Return a ComponentSet containing all components in the model.
- **enable_synth_deg**()
  Add components needed to support synthesis and degradation rules.
- **expressions_constant**()
  Return a ComponentSet of constant expressions.
- **expressions_dynamic**()
  Return a ComponentSet of non-constant expressions.
- **get_annotations**(*subject*)
  Return all annotations for the given subject.
- **get_species_index**(*complex_pattern*)
  Return the index of a species.

Parameters

- **complex_pattern** [ComplexPattern] A concrete pattern specifying the species to find.
has_synth_deg()
   Return true if model uses synthesis or degradation reactions.

initial(pattern, value)
   Add an initial condition.
   An initial condition is made up of a species and its amount or concentration.

   Parameters
   
   pattern [ComplexPattern] A concrete pattern defining the species to initialize.
   value [Parameter] Amount of the species the model will start with.

modules
   Return the set of Python modules where Components are defined

   Returns
   
   list List of module names where model Components are defined

Examples

>>> from pysbexamples.earm_1_0 import model
>>> 'pysbexamples.earm_1_0' in model.modules
True

odes
   Return sympy Expressions for the time derivative of each species.

parameters_compartments()
   Return a ComponentSet of compartment size parameters.

parameters_expressions()
   Return a ComponentSet of the parameters used in expressions.

parameters_initial_conditions()
   Return a ComponentSet of initial condition parameters.

parameters_rules()
   Return a ComponentSet of the parameters used in rules.

parameters_unused()
   Return a ComponentSet of unused parameters.

reload()
   Reload a model after its source files have been edited.
   This method does not yet reload the model contents in-place, rather it returns a new model object. Thus
   the correct usage is model = model.reload().
   
   If the model script imports any modules, these will not be reloaded. Use python's reload() function to
   reload them.

reset_equations()
   Clear out fields generated by bng.generate_equations or the like.

stoichiometry_matrix
   Return the stoichiometry matrix for the reaction network.

update_initial_condition_pattern(before_pattern, after_pattern)
   Update the pattern associated with an initial condition.
Leaves the Parameter object associated with the initial condition unchanged while modifying the pattern associated with that condition. For example this is useful for changing the state of a site on a monomer or complex associated with an initial condition without having to create an independent initial condition, and parameter, associated with that alternative state.

**Parameters**

- **before_pattern** [ComplexPattern] The concrete pattern specifying the (already existing) initial condition. If the model does not contain an initial condition for the pattern, a ValueError is raised.

- **after_pattern** [ComplexPattern] The concrete pattern specifying the new pattern to use to replace before_pattern.

**exception** `pysb.core.ModelExistsWarning`

A second model was declared in a module that already contains one.

class pysb.core.Monomer (`name`, `sites=None`, `site_states=None`, `_export=True)`

Model component representing a protein or other molecule.

**Parameters**

- **sites** [list of strings, optional] Names of the sites.

- **site_states** [dict of string => string, optional] Allowable states for sites. Keys are sites and values are lists of states. Sites which only take part in bond formation and never take on a state may be omitted.

**Notes**

A Monomer instance may be “called” like a function to produce a MonomerPattern, as syntactic sugar to approximate rule-based modeling language syntax. It is typically called with keyword arguments where the arg names are sites and values are site conditions such as bond numbers or states (see the Notes section of the MonomerPattern documentation for details). To help in situations where kwargs are unwieldy (for example if a site name is computed dynamically or stored in a variable) a dict following the same layout as the kwargs may be passed as the first and only positional argument instead.

Site names and state values must start with a letter, or one or more underscores followed by a letter. Any remaining characters must be alphanumeric or underscores.

**Attributes**

Identical to Parameters (see above).

class pysb.core.MonomerPattern (`monomer`, `site_conditions`, `compartment`)

A pattern which matches instances of a given monomer.

**Parameters**

- **monomer** [Monomer] The monomer to match.

- **site_conditions** [dict] The desired state of the monomer’s sites. Keys are site names and values are described below in Notes.

- **compartment** [Compartment or None] The desired compartment where the monomer should exist. None means “don’t-care”.

**Notes**

The acceptable values in the `site_conditions` dict are as follows:
• None: no bond
• str: state
• int: a bond (to a site with the same number in a ComplexPattern)
• list of int: multi-bond (not valid in Kappa)
• ANY: “any” bond (bound to something, but don’t care what)
• WILD: “wildcard” bond (bound or not bound)
• tuple of (str, int): state with specified bond
• tuple of (str, WILD): state with wildcard bond
• tuple of (str, ANY): state with any bond

If a site is not listed in site_conditions then the pattern will match any state for that site, i.e. “don’t write, don’t care”.

Attributes

Identical to Parameters (see above).

is_concrete()
Return a bool indicating whether the pattern is ‘concrete’.

‘Concrete’ means the pattern satisfies ALL of the following:
1. All sites have specified conditions
2. If the model uses compartments, the compartment is specified.

is_site_concrete()
Return a bool indicating whether the pattern is ‘site-concrete’.

‘Site-concrete’ means all sites have specified conditions.

class pysb.core.Observable (name, reaction_pattern, match='molecules', _export=True)
Model component representing a linear combination of species.

Observables are useful in correlating model simulation results with experimental measurements. For example, an observable for “A()” will report on the total number of copies of Monomer A, regardless of what it’s bound to or the state of its sites. “A(y='P')” would report on all instances of A with site ‘y’ in state ‘P’.

Parameters

reaction_pattern [ReactionPattern] The list of ComplexPatterns to match.

match ['species' or 'molecules'] Whether to match entire species ('species') or individual fragments ('molecules'). Default is 'molecules'.

Notes

ReactionPattern is used here as a container for a list of ComplexPatterns, solely so users could utilize the ComplexPattern ‘+’ operator overload as syntactic sugar. There are no actual “reaction” semantics in this context.

Attributes

reaction_pattern [ReactionPattern] See Parameters.

match ['species' or 'molecules'] See Parameters.

species [list of integers] List of species indexes for species matching the pattern.
coefficients [list of integers] List of coefficients by which each species amount is to be multiplied to correct for multiple pattern matches within a species.

expand_obs()
Expand observables in terms of species and coefficients

class pysb.core.OdeView(model)
Compatibility shim for the Model.odes property.

class pysb.core.Parameter(name, value=0.0, _export=True)
Model component representing a named constant floating point number.

Parameters

value [number, optional] The numerical value of the parameter. Defaults to 0.0 if not specified. The provided value is converted to a float before being stored, so any value that cannot be coerced to a float will trigger an exception.

Attributes

Identical to Parameters (see above).

class pysb.core.ReactionPattern(complex_patterns)
A pattern for the entire product or reactant side of a rule.

Essentially a thin wrapper around a list of ComplexPatterns. In BNG terms, a list of complex patterns combined with the ‘+’ operator.

Parameters

complex_patterns [list of ComplexPatterns] ComplexPatterns that make up the reaction pattern.

Attributes

Identical to Parameters (see above).

matches(other)
Match the ‘other’ ReactionPattern against this one

See pysb.pattern.match_reaction_pattern() for details

exception pysb.core.RedundantSiteConditionsError
Both conditions dict and kwargs both passed to create pattern.

class pysb.core.Rule(name, rule_expression, rate_forward, rate_reverse=None, delete_molecules=False, move_connected=False, _export=True)
Model component representing a reaction rule.

Parameters

rule_expression [RuleExpression] RuleExpression containing the essence of the rule (reactants, products, reversibility).

rate_forward [Parameter] Forward reaction rate constant.

rate_reverse [Parameter, optional] Reverse reaction rate constant (only required for reversible rules).

delete_molecules [bool, optional] If True, deleting a Monomer from a species is allowed to fragment the species into multiple pieces (if the deleted Monomer was the sole link between those pieces). If False (default) then fragmentation is disallowed and the rule will not match a reactant species if applying the rule would fragment a species.
move_connected [bool, optional] If True, a rule that transports a Monomer between compartments will co-transport anything connected to that Monomer by a path in the same compartment. If False (default), connected Monomers will remain where they were.

Attributes

Identical to Parameters (see above), plus the component elements of
‘rule_expression’: reactant_pattern, product_pattern and is_reversible.

is_deg()
Return a bool indicating whether this is a degradation rule.

is_synth()
Return a bool indicating whether this is a synthesis rule.

class pysb.core.RuleExpression (reactant_pattern, product_pattern, is_reversible)
A container for the reactant and product patterns of a rule expression.
Contains one ReactionPattern for each of reactants and products, and a bool indicating reversibility. This is a temporary object used to implement syntactic sugar through operator overloading. The Rule constructor takes an instance of this class as its first argument, but simply extracts its fields and discards the object itself.

Parameters

reactant_pattern, product_pattern [ReactionPattern] The reactants and products of the rule.

is_reversible [bool] If True, the reaction is reversible. If False, it’s irreversible.

Attributes

Identical to Parameters (see above).

class pysb.core.SelfExporter
Make model components appear in the calling module’s namespace.

This class is for pysb internal use only. Do not construct any instances.

static cleanup()
Delete previously exported symbols.

static export (obj)
Export an object by name and add it to the default model.

static rename (obj, new_name)
Rename a previously exported symbol

exception pysb.core.SymbolExistsWarning
A component declaration or rename overwrote an existing symbol.

exception pysb.core.UnknownSiteError

class pysb.core.WILD
Site may be bound or unbound.

Use WILD as part of a (state, WILD) tuple in a MonomerPattern site_conditions dict to indicate that a site must have the given state, irrespective of the presence or absence of a bond. (Specifying only the state implies there must not be a bond). A bare WILD in a site_conditions dict is also permissible, but as this has the same meaning as the much simpler option of leaving the given site out of the dict entirely, this usage is deprecated.

Equivalent to the “?” bond modifier in BNG.

pysb.core.as_complex_pattern (v)
Internal helper to ’upgrade’ a MonomerPattern to a ComplexPattern.
**as_reaction_pattern(v)**
Internal helper to ‘upgrade’ a Complex- or MonomerPattern or None to a complete ReactionPattern.

**build_rule_expression**(reactant, product, is_reversible)
Internal helper for operators which return a RuleExpression.

**extract_site_conditions**(conditions=None, **kwargs)
Parse MonomerPattern/ComplexPattern site conditions.

**validate_const_expr**(obj, description)
Raises an exception if the argument is not a constant expression.

**validate_expr**(obj, description)
Raises an exception if the argument is not an expression.

## 4.2 ODE integrators (**pysb.integrate**)

**class pysb.integrate.Solver**(model, tspan, use_analytic_jacobian=False, integrator='vode', cleanup=True, verbose=False, **integrator_options)

An interface for numeric integration of models.

**Parameters**


**model**

**tspan** [vector-like] Time values over which to integrate. The first and last values define the time range, and the returned trajectories will be sampled at every value.

**tspan**

**use_analytic_jacobian** [boolean, optional] Whether to provide the solver a Jacobian matrix derived analytically from the model ODEs. Defaults to False. If False, the integrator may approximate the Jacobian by finite-differences calculations when necessary (depending on the integrator and settings).

**use_analytic_jacobian**

**integrator** [string, optional (default: ‘vode’)] Name of the integrator to use, taken from the list of integrators known to scipy.integrate.ode.

**integrator**

**cleanup** [bool, optional] If True (default), delete the temporary files after the simulation is finished. If False, leave them in place. Useful for debugging.

**cleanup**

**verbose** [bool, optional (default: False)] Verbose output.

**verbose**

**integrator_options** Additional parameters for the integrator.

**Notes**

The expensive step of generating the code for the right-hand side of the model’s ODEs is performed during initialization. If you need to integrate the same model repeatedly with different parameters then you should build a single Solver object and then call its run method as needed.

**Attributes**

model [pysb.Model] Model passed to the constructor.

**model**

**tspan** [vector-like] Time values passed to the constructor.

**tspan**

y [numpy.ndarray] Species trajectories. Dimensionality is \( (\text{len}(\text{tspan}), \text{len}(\text{model.species})) \).

**y**

**yobs** [numpy.ndarray with record-style data-type] Observable trajectories. Length is \( \text{len}(\text{tspan}) \) and record names follow model.observables names.

**yobs**
yobs_view [numpy.ndarray] An array view (sharing the same data buffer) on yobs. Dimensionality is (len(tspan), len(model.observables)).

yexpr [numpy.ndarray with record-style data-type] Expression trajectories. Length is len(tspan) and record names follow model.expressions_dynamic() names.

yexpr_view [numpy.ndarray] An array view (sharing the same data buffer) on yexpr. Dimensionality is (len(tspan), len(model.expressions_dynamic())).

integrator [scipy.integrate.ode] Integrator object.

run (param_values=None, y0=None)
Perform an integration.

Returns nothing; access the Solver object’s y, yobs, or yobs_view attributes to retrieve the results.

Parameters

param_values [vector-like or dictionary, optional] Values to use for every parameter in the model. Ordering is determined by the order of model.parameters. If passed as a dictionary, keys must be parameter names. If not specified, parameter values will be taken directly from model.parameters.

y0 [vector-like, optional] Values to use for the initial condition of all species. Ordering is determined by the order of model.species. If not specified, initial conditions will be taken from model.initial_conditions (with initial condition parameter values taken from param_values if specified).

pysb.integrate.odesolve (model, tspan, param_values=None, y0=None, integrator='vode', cleanup=True, verbose=False, **integrator_options)
Integrate a model’s ODEs over a given timespan.

This is a simple function-based interface to integrating (a.k.a. solving or simulating) a model. If you need to integrate a model repeatedly with different parameter values or initial conditions (as in parameter estimation), using the Solver class directly will provide much better performance.

Parameters


tspan [vector-like] Time values over which to integrate. The first and last values define the time range, and the returned trajectories will be sampled at every value.

param_values [vector-like, optional] Values to use for every parameter in the model. Ordering is determined by the order of model.parameters. If not specified, parameter values will be taken directly from model.parameters.

y0 [vector-like, optional] Values to use for the initial condition of all species. Ordering is determined by the order of model.species. If not specified, initial conditions will be taken from model.initial_conditions (with initial condition parameter values taken from param_values if specified).

integrator [string, optional] Name of the integrator to use, taken from the list of integrators known to scipy.integrate.ode.

cleanup [bool, optional] Remove temporary files after completion if True. Set to False for debugging purposes.

verbose [bool, optional] Increase verbosity of simulator output.

integrator_options : Additional parameters for the integrator.

Returns
yfull [record array] The trajectories calculated by the integration. The first dimension is time and its length is identical to that of tspan. The second dimension is species/observables and its length is the sum of the lengths of model.species and model.observables. The dtype of the array specifies field names: '__s0', '__s1', etc. for the species and observable names for the observables. See Notes below for further explanation and caveats.

Notes

This function was the first implementation of integration support and accordingly it has a few warts:

- It performs expensive code generation every time it is called.
- The returned array, with its record-style data-type, allows convenient selection of individual columns by their field names, but does not permit slice ranges or indexing by integers for columns. If you only need access to your model's observables this is usually not a problem, but sometimes it's more convenient to have a "regular" array. See Examples below for code to do this.

The actual integration code has since been moved to the Solver class and split up such that the code generation is only performed on initialization. The model may then be integrated repeatedly with different parameter values or initial conditions with much better performance. Additionally, Solver makes the species trajectories available as a simple array and only uses the record array for the observables where it makes sense.

This function now simply serves as a wrapper for creating a Solver object, calling its run method, and building the record array to return.

Examples

Simulate a model and display the results for an observable:

```python
>>> from pysb.examples.robertson import model
>>> from numpy import linspace
>>> numpy.set_printoptions(precision=4)
>>> yfull = odesolve(model, linspace(0, 40, 10))
>>> print(yfull['A_total'])
[1. 0.899 0.8506 0.8179 0.793 0.7728 0.7557 0.7408 0.7277 0.7158]
```

Obtain a view on a returned record array which uses an atomic data-type and integer indexing (note that the view’s data buffer is shared with the original array so there is no extra memory cost):

```python
>>> yfull.shape == (10,)
True
>>> print(yfull.dtype)
([('__s0', '<f8'), ('__s1', '<f8'), ('__s2', '<f8'), ('A_total', '<f8'), ('B_total', '<f8'), ('C_total', '<f8')]
>>> print(yfull[0:4, 1:3])
Traceback (most recent call last):
 ... IndexError: too many indices...
>>> yarray = yfull.view(float).reshape(len(yfull), -1)
>>> yarray.shape == (10, 6)
True
>>> print(yarray.dtype)
float64
>>> print(yarray[0:4, 1:3])
```

(continues on next page)
4.3 Simulation tools (pysb.simulator)

class pysb.simulator.BngSimulator (model, tspan=None, cleanup=True, verbose=False)

Simulate a model using BioNetGen

run (tspan=None, initials=None, param_values=None, n_runs=1, method='ssa', output_dir=None, output_file_basename=None, cleanup=True, population_maps=None, **additional_args)

Simulate a model using BioNetGen

Parameters

- **tspan**: vector-like time span of simulation
- **initials**: vector-like, optional initial conditions of model
- **param_values**: [vector-like or dictionary, optional] Values to use for every parameter in the model. Ordering is determined by the order of model.parameters. If not specified, parameter values will be taken directly from model.parameters.
- **n_runs**: int number of simulations to run
- **method**: [str] Type of simulation to run. Must be one of:
  - ‘ssa’ - Stochastic Simulation Algorithm (direct method with propensity sorting)
  - ‘nf’ - Stochastic network free simulation with NFsim. Performs Hybrid Particle/Population simulation if population_maps argument is supplied
  - ‘pla’ - Partitioned-leaping algorithm (variant of tau-leaping algorithm)
  - ‘ode’ - ODE simulation (Sundials CVODE algorithm)
- **output_dir**: [string, optional] Location for temporary files generated by BNG. If None (the default), uses a temporary directory provided by the system. A temporary directory with a random name is created within the supplied location.
- **output_file_basename**: [string, optional] This argument is used as a prefix for the temporary BNG output directory, rather than the individual files.
- **cleanup**: [bool, optional] If True (default), delete the temporary files after the simulation is finished. If False, leave them in place. Useful for debugging.
- **population_maps**: [list of PopulationMap] List of PopulationMap objects for hybrid particle/population modeling. Only used when method='nf'.
- **additional_args**: kwargs, optional Additional arguments to pass to BioNetGen

Examples

Simulate a model using network free simulation (NFsim):
```python
>>> from pysb.examples import robertson
>>> from pysb.simulator.bng import BngSimulator

model = robertson.model
sim = BngSimulator(model, tspan=np.linspace(0, 1))
x = sim.run(n_runs=1, method='nf')
```

```python
class pysb.simulator.CupSodaSimulator(model, tspan=None, initials=None, param_values=None, verbose=False, **kwargs)
```

An interface for running cupSODA, a CUDA implementation of LSODA.

cupSODA is a graphics processing unit (GPU)-based implementation of the LSODA simulation algorithm (see references). It requires an NVIDIA GPU card with support for the CUDA framework version 7 or above. Further details of cupSODA and software can be found on github: https://github.com/aresio/cupSODA

The simplest way to install cupSODA is to use a pre-compiled version, which can be downloaded from here: https://github.com/aresio/cupSODA/releases

Parameters

- **model** [pysb.Model] Model to integrate.
- **tspan** [vector-like, optional] Time values at which the integrations are sampled. The first and last values define the time range.
- **initials** [list-like, optional] Initial species concentrations for all simulations. Dimensions are N_SIMS x number of species.
- **param_values** [list-like, optional] Parameters for all simulations. Dimensions are N_SIMS x number of parameters.
- **verbose** [bool or int, optional] Verbosity level, see `pysb.simulator.base.Simulator` for further details.

**kwargs: dict, optional** Extra keyword arguments, including:

- **gpu**: Index of GPU to run on (default: 0)
- **vol**: System volume; required if model encoded in extrinsic (number) units (default: None)
- **obs_species_only**: Only output species contained in observables (default: True)
- **cleanup**: Delete all temporary files after the simulation is finished. Includes both BioNetGen and cupSODA files. Useful for debugging (default: True)
- **prefix**: Prefix for the temporary directory containing cupSODA input and output files (default: model name)
- **base_dir**: Directory in which temporary directory with cupSODA input and output files are placed (default: system directory determined by `tempfile.mkdtemp`)
- **integrator**: Name of the integrator to use; see `default_integrator_options` (default: ‘cupsoda’)
- **integrator_options**: A dictionary of keyword arguments to supply to the integrator; see `default_integrator_options`.

Notes

1. If `vol` is defined, species amounts and rate constants are assumed to be in number units and are automatically converted to concentration units before generating the cupSODA input files. The species concentra-
tions returned by cupSODA are converted back to number units during loading.

2. If obs_species_only is True, only the species contained within observables are output by cupSODA. All other concentrations are set to ‘nan’.

References


Attributes

- model [pysb.Model] Model passed to the constructor.
- tspan [numpy.ndarray] Time values passed to the constructor.
- initials [numpy.ndarray] Initial species concentrations for all simulations. Dimensions are number of simulations x number of species.
- param_values [numpy.ndarray] Parameters for all simulations. Dimensions are number of simulations x number of parameters.
- verbose: bool or int Verbosity setting. See the base class pysb.simulator.base.Simulator for further details.
- gpu [int] Index of GPU being run on
- vol [float or None] System volume
- n_blocks: int Number of GPU blocks used by the simulator.
- outdir [str] Directory where cupSODA output files are placed. Input files are also placed here.
- opts: dict Dictionary of options for the integrator in use.
- integrator [str] Name of the integrator in use.
- default_integrator_options [dict] Nested dictionary of default options for all supported integrators.

run (tspan=None, initials=None, param_values=None)

Perform a set of integrations.

Returns a SimulationResult object.

Parameters

- tspan [list-like, optional] Time values at which the integrations are sampled. The first and last values define the time range.
- initials [list-like, optional] Initial species concentrations for all simulations. Dimensions are number of simulation x number of species.
- param_values [list-like, optional] Parameters for all simulations. Dimensions are number of simulations x number of parameters.

Returns

A :class:`SimulationResult` object
Notes

1. An exception is thrown if `tspan` is not defined in either `__init__` or `run`.
2. If neither `initials` nor `param_values` are defined in either `__init__` or `run` a single simulation is run with the initial concentrations and parameter values defined in the model.

```python
class pysb.simulator.ScipyOdeSimulator(model, tspan=None, initials=None, param_values=None, verbose=False, **kwargs)
```

Simulate a model using SciPy ODE integration

Uses `scipy.integrate.odeint()` for the `lsoda` integrator, `scipy.integrate.ode()` for all other integrators.

**Warning:** The interface for this class is considered experimental and may change without warning as PySB is updated.

Parameters

- `tspan` [vector-like, optional] Time values over which to simulate. The first and last values define the time range. Returned trajectories are sampled at every value unless the simulation is interrupted for some reason, e.g., due to satisfaction of a logical stopping criterion (see 'tout' below).
- `initials` [vector-like or dict, optional] Values to use for the initial condition of all species. Ordering is determined by the order of model.species. If not specified, initial conditions will be taken from model.initial_conditions (with initial condition parameter values taken from `param_values` if specified).
- `param_values` [vector-like or dict, optional] Values to use for every parameter in the model. Ordering is determined by the order of model.parameters. If passed as a dictionary, keys must be parameter names. If not specified, parameter values will be taken directly from model.parameters.
- `verbose` [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the logging levels and constants from Python's logging module for interpretation of integer values. False is equal to the PySB default level (currently WARNING), True is equal to DEBUG.
- `**kwargs` [dict] Extra keyword arguments, including:
  - `integrator`: Choice of integrator, including `vode` (default), `zvode`, `lsoda`, `dopri5` and `dop853`. See `scipy.integrate.ode()` for further information.
  - `integrator_options`: A dictionary of keyword arguments to supply to the integrator. See `scipy.integrate.ode()`.
  - `compiler`: Choice of compiler for ODE system: `cython`, `weave` (Python 2 only), `theano` or `python`. Leave unspecified or equal to `None` for auto-select (tries weave, then cython, then python). Cython, weave and theano all compile the equation system into C code. Python is the slowest but most compatible.
  - `cleanup`: Boolean, `cleanup` argument used for `pysb.bng.generate_equations()` call
Notes

If \texttt{tspan} is not defined, it may be defined in the call to the \texttt{run} method.

Examples

Simulate a model and display the results for an observable:

```python
>>> from pysb.examples.robertson import model
>>> import numpy as np
>>> np.set_printoptions(precision=4)
>>> sim = ScipyOdeSimulator(model, tspan=np.linspace(0, 40, 10))
>>> simulation_result = sim.run()
>>> print(simulation_result.observables['A_total'])
[1.0 0.899 0.8506 0.8179 0.793 0.7728 0.7557 0.7408 0.7277 0.7158]
```

For further information on retrieving trajectories (species, observables, expressions over time) from the \texttt{simulation_result} object returned by \texttt{run()}, see the examples under the \texttt{SimulationResult} class.

\textbf{run (tspan=\texttt{None}, initials=\texttt{None}, param_values=\texttt{None})}

Run a simulation and returns the result (trajectories)

\textbf{Parameters}

\textbf{tspan} \hfill \textbf{initials} \hfill \textbf{param_values}

\textbf{param_values} See parameter definitions in \texttt{ScipyOdeSimulator}.

\textbf{Returns}


d: \textbf{SimulationResult} object

\textbf{class pysb.simulator.StochKitSimulator (model, tspan=\texttt{None}, initials=\texttt{None}, param_values=\texttt{None}, verbose=False, **kwargs)}

Interface to the StochKit 2 stochastic simulation toolkit

StochKit can be installed from GitHub: [https://github.com/stochss/stochkit](https://github.com/stochss/stochkit)

This class is inspired by the gillespy [https://github.com/JohnAbel/gillespy](https://github.com/JohnAbel/gillespy) library, but has been optimised for use with PySB.

\textbf{Warning}: The interface for this class is considered experimental and may change without warning as PySB is updated.

\textbf{Parameters}

tspan  [vector-like, optional] Time values over which to simulate. The first and last values define the time range. Returned trajectories are sampled at every value unless the simulation is interrupted for some reason, e.g., due to satisfaction of a logical stopping criterion (see ‘tout’ below).

initials  [vector-like or dict, optional] Values to use for the initial condition of all species. Ordering is determined by the order of model.species. If not specified, initial conditions will be taken from model.initial_conditions (with initial condition parameter values taken from param_values if specified).

param_values  [vector-like or dict, optional] Values to use for every parameter in the model. Ordering is determined by the order of model.parameters. If passed as a dictionary, keys must be parameter names. If not specified, parameter values will be taken directly from model.parameters.

verbose  [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the logging levels and constants from Python’s logging module for interpretation of integer values. False is equal to the PySB default level (currently WARNING), True is equal to DEBUG.

**kwargs  [dict] Extra keyword arguments, including:
  • cleanup: Boolean, delete directory after completion if True

Examples

Simulate a model and display the results for an observable:

```python
>>> from pysb.examples.robertson import model
>>> import numpy as np
>>> np.set_printoptions(precision=4)
>>> sim = StochKitSimulator(model, tspan=np.linspace(0, 10, 5))
```

Here we supply a “seed” to the random number generator for deterministic results, but for most purposes it is recommended to leave this blank.

```python
>>> simulation_result = sim.run(n_runs=2, seed=123456)
```

A_total trajectory for first run

```python
>>> print(simulation_result.observables[0]['A_total'])
[1. 0. 0. 0. 0.]
```

A_total trajectory for second run

```python
>>> print(simulation_result.observables[1]['A_total'])
[1. 1. 1. 0. 0.]
```

For further information on retrieving trajectories (species, observables, expressions over time) from the simulation_result object returned by `run()`, see the examples under the SimulationResult class.
Note: In early versions of the Simulator class, `tspan`, `initials` and `param_values` supplied to this method persisted to future `run()` calls. This is no longer the case.

Parameters

- **tspan**
- **initials**
- **param_values** See parameter definitions in `StochKitSimulator`.
- **n_runs** [int] The number of simulation runs per parameter set. The total number of simulations is therefore `n_runs * max(len(initials), len(param_values))`
- **algorithm** [str] Choice of ‘ssa’ (Gillespie’s stochastic simulation algorithm) or ‘tau_leaping’ (Tau leaping algorithm)
- **output_dir** [str or None] Directory for StochKit output, or None for a system-specific temporary directory
- **num_processors** [int] Number of CPU cores for StochKit to use (default: 1)
- **seed** [int or None] A random number seed for StochKit. Set to any integer value for deterministic behavior.
- **method** [str or None] StochKit “method” argument, default None. Only used by StochKit 2.1 (not yet released at time of writing).
- **stats** [bool] Ask StochKit to generate simulation summary statistics if True
- **epsilon** [float or None] Tolerance parameter for tau-leaping algorithm
- **threshold** [int or None] Threshold parameter for tau-leaping algorithm

Returns

A :class:`SimulationResult` object

class pysb.simulator.SimulationResult (simulator, tout, trajectories=None, observables_and_expressions=None, squeeze=True, simulations_per_param_set=1, model=None, initials=None, param_values=None)

Results of a simulation with properties and methods to access them.

Warning: Please note that the interface for this class is considered experimental and may change without warning as PySB is updated.

Parameters

- **simulator** [Simulator] The simulator object that generated the trajectories
- **tout**: list-like Time points returned by the simulator (may be different from `tspan` if simulation is interrupted for some reason).
- **trajectories** [list or `numpy.ndarray`] A set of species trajectories from a simulation. Should either be a list of 2D `numpy` arrays or a single 3D `numpy` array.
- **squeeze** [bool, optional (default: True)] Return trajectories as a 2D array, rather than a 3D array, if only a single simulation was performed.
**simulations_per_param_set** [int] Number of trajectories per parameter set. Typically always 1 for deterministic simulators (e.g. ODE), but with stochastic simulators multiple trajectories per parameter/initial condition set are often desired.

**model**: pysb.Model

**initials**: numpy.ndarray

**param_values**: numpy.ndarray model, initials, param_values are an alternative constructor mechanism used when loading SimulationResults from files (see SimulationResult.load()). Setting just the simulator argument instead of these arguments is recommended.

**Notes**

In the attribute descriptions, a “trajectory set” is a 2D numpy array, species on first axis and time on second axis, with each element containing the concentration or count of the species at the specified time.

A list of trajectory sets contains a trajectory set for each simulation.

**Examples**

The following examples use a simple model with three observables and one expression, with a single simulation.

```python
>>> from pysb.examples.expression_observables import model
>>> from pysb.simulator import ScipyOdeSimulator
>>> import numpy as np

>>> np.set_printoptions(precision=4)

>>> sim = ScipyOdeSimulator(model, tspan=np.linspace(0, 40, 10),
 integrator_options={'atol': 1e-20})

>>> simulation_result = sim.run()

simulation_result is a SimulationResult object. An observable can be accessed like so:

```python
>>> print(simulation_result.observables['Bax_c0'])
[1.0000e+00  1.1744e-02  1.3791e-04  1.6196e-06  1.9020e-08
  2.2337e-10  2.6232e-12  3.0806e-14  3.6178e-16  4.2492e-18]
```

It is also possible to retrieve the value of all observables at a particular time point, e.g. the final concentrations:

```python
>>> print(simulation_result.observables[-1])
(4.2492e-18,  1.6996e-16,  1.0000e+00)
```

Expressions are read in the same way as observables:

```python
>>> print(simulation_result.expressions['NBD_signal'])
[0.  4.7847  4.9956  4.9999  5.   5.   5.   5.   5.   5.  ]
```

The species trajectories can be accessed as a numpy ndarray:

```python
>>> print(simulation_result.species)
[[1.0000e+00  0.0000e+00  0.0000e+00]
 [1.1744e-02  5.2194e-02  9.3606e-01]
 [1.3791e-04  1.2259e-03  9.9864e-01]
 [1.6196e-06  2.1595e-05  9.9998e-01]
 [1.9020e-08  3.3814e-07  1.0000e+00]
 [2.2337e-10  4.9637e-09  1.0000e+00]]
```

(continues on next page)
Species, observables and expressions can be combined into a single numpy ndarray and accessed similarly. Here, the initial concentrations of all these entities are examined:

```python
>>> print(simulation_result.all[0])
(1., 0., 0., 1., 0., 0., 0.)
```

The `all` array can be accessed as a pandas DataFrame object, which allows for more convenient indexing and access to pandas advanced functionality, such as indexing and slicing. Here, the concentrations of the observable `Bax_c0` and the expression `NBD_signal` are read at time points between 5 and 15 seconds:

```python
>>> df = simulation_result.dataframe
>>> print(df.loc[5:15, ['Bax_c0', 'NBD_signal']])
  time  Bax_c0    NBD_signal
     8.888889  0.000138  4.995633
     13.333333 0.000002  4.999927
```

all
Aggregate species, observables, and expressions trajectories into a numpy.ndarray with record-style data-type for return to the user.

dataframe
A conversion of the trajectory sets (species, observables and expressions for all simulations) into a single pandas.DataFrame.

expressions
List of trajectory sets. The first dimension contains expressions.

classmethod load(*filename*, *dataset_name=None, group_name=None*)
Load a SimulationResult from a file (HDF5 format)

For a description of the file format see `save()`

Parameters

- **filename**: str
 Filename from which to load data

- **dataset_name**: str or None
 Dataset name. Can be left as None when the group specified only contains one dataset, which will then be selected. If None and more than one dataset is in the group, a ValueError is raised.

- **group_name**: str or None
 Group name. This is typically the name of the model. Can be left as None when the file only contains one group, which will then be selected. If None and more than group is in the file a ValueError is raised.

Returns

- **SimulationResult**
 Set of trajectories and associated metadata loaded from the file

- **nsims**
 The number of simulations in this SimulationResult

- **observable** (*pattern*)
 Calculate a pattern’s trajectories without adding to model
This method calculates an observable “on demand” using any supplied MonomerPattern or ComplexPattern against the simulation result, without re-running the simulation.

Note that the monomers within the supplied pattern are reconciled with the SimulationResult’s internal copy of the model by name. This method only works on simulations which calculate species trajectories (i.e. it will not work on network-free simulations).

Raises a ValueError if the pattern does not match at least one species.

Parameters

- **pattern**: pysb.MonomerPattern or pysb.ComplexPattern An observable pattern to match

Returns

- **pandas.Series** Series containing the simulation trajectories for the specified observable

Examples

```python
>>> from pysb import ANY
>>> from pysb.examples import earm_1_0
>>> from pysb.simulator import ScipyOdeSimulator
>>> simres = ScipyOdeSimulator(earm_1_0.model, tspan=range(5)).run()
>>> m = earm_1_0.model.monomers

Observable of bound Bid:

```python
time
0 0.000000e+00
1 1.190933e-12
2 2.768582e-11
3 1.609716e-10
4 5.320530e-10
dtype: float64
```

Observable of AMito bound to mCytoC:

```python
time
0 0.000000e+00
1 1.477319e-77
2 1.669917e-71
3 5.076939e-69
4 1.157400e-66
dtype: float64
```

observables

List of trajectory sets. The first dimension contains observables.

save

Save a SimulationResult to a file (HDF5 format)

HDF5 is a hierarchical, binary storage format well suited to storing matrix-like data. Our implementation requires the h5py package.

Each SimulationResult is treated as an HDF5 dataset, stored within a group which is specific to a model. In this way, it is possible to save multiple SimulationResults for a specific model.
A group is first created in the HDF file root (see group_name argument). Within that group, a dataset “_model” has a pickled version of the PySB model. SimulationResult are stored as groups within the model group.

The file hierarchy under group_name/dataset_name/ then consists of the following HDF5 gzip compressed HDF5 datasets: trajectories, param_values, initials, tout, observables (optional) and expressions (optional); and the following attributes: simulator_class (pickled Class), simulator_kwargs (pickled dict), squeeze (bool), simulations_per_param_set (int), pysb_version (str), timestamp (ISO 8601 format).

Custom attributes can be stored in the SimulationResult’s custom_attrs dictionary. Keys should be strings, values can be any picklable object. When saved to HDF5, these custom attributes will be prefixed with usrattr_.

Parameters

```
filename: str Filename to which the data will be saved

dataset_name: str or None Dataset name. If None, it will default to ‘result’. If the dataset_name already exists within the group, a ValueError is raised.

group_name: str or None Group name. If None, will default to the name of the model.

append: bool If False, raise IOError if the specified file already exists. If True, append to existing file (or create if it doesn’t exist).

include_obs_exprs: bool Whether to save observables and expressions in the file or not. If they are not included, they can be recreated from the model and species trajectories when loaded back into PySB, but you may wish to include them for use with external software, or if you have complex expressions which take a long time to compute.
```

```
species
List of trajectory sets. The first dimension contains species.

class pysb.simulator.PopulationMap(complex_pattern, lumping_rate, counter_species=None)
Population map for BioNetGen hybrid particle/population simulation
For use with the BngSimulator.
```

References

Hogg et al. 2014: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003544

4.4 Testing PySB Models (pysb.testing.modeltests)

```
class pysb.testing.modeltests.AllObservablesInRules(*args, **kwargs)
class pysb.testing.modeltests.ModelAssertion(*args, **kwargs)
Base class for model assertions
exception pysb.testing.modeltests.ModelAssertionFailure(assertion, model, message=None)
class pysb.testing.modeltests.ReactionAssertion(*args, **kwargs)
class pysb.testing.modeltests.ReactionNetworkAssertion(*args, **kwargs)
Base class for reaction network assertions
Checks the reaction network has been generated
```

4.4. Testing PySB Models (pysb.testing.modeltests) 51
class pysb.testing.modeltests.RuleAssertion(*args, **kwargs)
class pysb.testing.modeltests.SpeciesAssertion(*args, **kwargs)
    Class for checking species within a reaction network
class pysb.testing.modeltests.SpeciesDoesNotExist(*args, **kwargs)
class pysb.testing.modeltests.SpeciesExists(*args, **kwargs)
    Checks a species pattern exists in the list of species
class pysb.testing.modeltests.SpeciesIsProduct(*args, **kwargs)
    Checks a species pattern appears on the product side of a reaction
class pysb.testing.modeltests.SpeciesIsReactant(*args, **kwargs)
    Checks a species pattern appears on the reactant side of a reaction
class pysb.testing.modeltests.SpeciesNeverProduct(*args, **kwargs)
class pysb.testing.modeltests.SpeciesNeverReactant(*args, **kwargs)
    Checks a species appears as a product but never as a reactant
class pysb.testing.modeltests.SpeciesOnlyProduct(*args, **kwargs)
    Checks a species appears as a reactant but never as a product
class pysb.testing.modeltests.SpeciesOnlyReactant(*args, **kwargs)
    Checks a species appears as a product but never as a reactant
class pysb.testing.modeltests.TestSuite(model=None)
    A suite of tests for checking properties of a model

There are two modes of operation: building a test suite using add() and executing all the tests at once with check_all(), or executing tests immediately with check().

Examples

Create a test suite for the EARM 1.0 model:

```python
class speciesExists, speciesDoesNotExist:
 from pysb.bng import generate_equations
 from pysb.examples.earm_1_0 import model
 ts = TestSuite(model)
```

Create variables for model components (not needed for models defined interactively):

```python
AMito, mCytoC, mSmac, cSmac, L, CPARP = [model.monomers[m] for m in 'AMito', 'mCytoC', 'mSmac', 'cSmac', 'L', 'CPARP']
```

Add some assertions:

Check that AMito(b=1) % mSmac(b=1) exists in the species graph (note this doesn’t guarantee the species will actually be producted/consumed/change in concentration; that depends on the rate constants):

```python
ts.add(SpeciesExists(AMito(b=1) % mSmac(b=1)))
```

This is the opposite check, that the complex above doesn’t exist, which should of course fail:

```python
ts.add(SpeciesDoesNotExist(AMito(b=1) % mSmac(b=1)))
```

We can also specify that species matching a pattern should never exist in a model. For example, we shouldn’t ever be producing unbound ligand in the EARM 1.0 model:
We could also have used `SpeciesOnlyReactant`. The difference is the latter checks for an appearance as a reactant, whereas `SpeciesNeverProduct` would pass whether the species appeared as a reactant or not.

```python
>>> ts.add(SpeciesNeverProduct(L(b=None)))
```

CPARP is an output in this model, so it should appear as a product but never as a reactant:

```python
>>> ts.add(SpeciesOnlyProduct(CPARP()))
```

When we’re ready, we can generate the reactions and check the assertions:

```python
>>> generate_equations(model)
>>> ts.check_all()
```

```text
SpeciesExists(AMito() % mSmac())...OK...
SpeciesDoesNotExist(AMito() % mSmac())...FAIL...
 [AMito(b=1) % mSmac(b=1)]...
SpeciesExists(AMito(b=1) % mCytoC(b=1))...OK...
SpeciesNeverProduct(L(b=None))...OK...
SpeciesOnlyProduct(CPARP())...OK...
```

We can also execute any test immediately without adding it to the test suite (note that some tests require a reaction network to be generated):

```python
>>> ts.check(SpeciesExists(L(b=None)))
True
```

**check** *(assertion)*

Checks an assertion immediately without adding it to the test suite

- **Parameters**
  - **assertion**: `ModelAssertion` An instance of the ModelAssertion subclass

- **Returns**
  - True if assertion succeeded or raises a ModelAssertionFailure exception if not

**check_all** *(stop_on_exception=False)*

Runs all assertions in the test suite

### 4.5 BioNetGen integration (pysb.bng)

**class** `pysb.bng.BngBaseInterface` *(model=None, verbose=False, cleanup=False, output_prefix=None, output_dir=None, model_additional_species=None, model_population_maps=None)*

Abstract base class for interfacing with BNG

**action** *(action, **kwargs)*

Generates code to execute a BNG action command

- **Parameters**
  - **action**: `string` The name of the BNG action function
kwargs: kwargs, optional  Arguments and values to supply to BNG

base_filename
   Returns the base filename (without extension) for BNG output files

bng_filename
   Returns the BNG command list (.bngl) filename (does not check whether the file exists)

net_filename
   Returns the BNG network filename (does not check whether the file exists)

read_netfile()
   Reads a BNG network file as a string. Note that you must execute network generation separately before attempting this, or the file will not be found. :return: Contents of the BNG network file as a string

read_simulation_results()
   Read the results of a BNG simulation as a numpy array

   Returns

   numpy.ndarray  Simulation results in a 2D matrix (time on Y axis, species/observables/expressions on X axis depending on simulation type)

static read_simulation_results_multi(base_filenames)
   Read the results of multiple BNG simulations

   Parameters

   base_filenames: list of str  A list of filename stems to read simulation results in from, including the full path but not including any file extension.

   Returns

   list of numpy.ndarray  List of simulation results, each in a 2D matrix (time on Y axis, species/observables/expressions on X axis depending on simulation type)

class pysb.bng.BngConsole(model=None, verbose=False, cleanup=True, output_dir=None, output_prefix=None, timeout=30, suppress_warnings=False, model_additional_species=None)
   Interact with BioNetGen through BNG Console

action(action, **kwargs)
   Generates a BNG action command and executes it through the console, returning any console output

   Parameters

   action [string]  The name of the BNG action function

   kwargs [kwargs, optional]  Arguments and values to supply to BNG

generate_network(overwrite=False)
   Generates a network in BNG and returns the network file contents as a string

   Parameters

   overwrite: bool, optional  Overwrite existing network file, if any

load_bngl(bngl_file)
   Load a BNGL file in the BNG console

   Parameters

   bngl_file [string]  The filename of a .bngl file
class pysb.bng.BngFileInterface(model=None, verbose=False, output_dir=None, output_prefix=None, cleanup=True, model_additional_species=None, model_population_maps=None)

action(action, **kwargs)
Generates a BNG action command and adds it to the command queue

Parameters

action [string] The name of the BNG action function

kwargs [kwargs, optional] Arguments and values to supply to BNG

execute(reload_netfile=False, skip_file_actions=True)
Executes all BNG commands in the command queue.

Parameters

reload_netfile: bool or str If true, attempts to reload an existing .net file from a previous execute() iteration. If a string, the filename specified in the string is supplied to BNG’s readFile (which can be any file type BNG supports, such as .net or .bngl). This is useful for running multiple actions in a row, where results need to be read into PySB before a new series of actions is executed.

skip_file_actions: bool Only used if the previous argument is not False. Set this argument to True to ignore any actions block in the loaded file.

set_concentration(cplx_pat, value)
Generates a BNG action command and adds it to the command queue

Parameters

cplx_pat: pysb.ComplexPattern or string Species ComplexPattern, or a BNG format string representation

value: float-like Initial concentration

set_parameter(name, value)
Generates a BNG action command and adds it to the command queue

Parameters

name: string The name of the parameter to set

value: float-like Value of parameter

exception pysb.bng.BngInterfaceError
BNG reported an error

exception pysb.bng.NoInitialConditionsError
Model initial_conditions is empty.

exception pysb.bng.NoRulesError
Model rules is empty.

pysb.bng.generate_equations(model, cleanup=True, verbose=False, **kwargs)
Generate math expressions for reaction rates and species in a model.

This fills in the following pieces of the model:

• species
• reactions
• reactions_bidirectional

4.5. BioNetGen integration (pysb.bng)
• observables (just *coefficients* and *species* fields for each element)

**Parameters**

- **model** [Model] Model to pass to `generate_network`.
- **cleanup** [bool, optional] If True (default), delete the temporary files after the simulation is finished. If False, leave them in place (in `output_dir`). Useful for debugging.
- **verbose** [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the logging levels and constants from Python’s logging module for interpretation of integer values. False is equal to the PySB default level (currently WARNING), True is equal to DEBUG.

```python
pysb.bng.generate_network(model, cleanup=True, append_stdout=False, verbose=False, **kwargs)
```

Return the output from BNG’s `generate_network` function given a model.

The output is a BNGL model definition with additional sections ‘reactions’ and ‘groups’, and the ‘species’ section expanded to contain all possible species. BNG refers to this as a ‘net’ file.

**Parameters**

- **model** [Model] Model to pass to `generate_network`.
- **cleanup** [bool, optional] If True (default), delete the temporary files after the simulation is finished. If False, leave them in place (in `output_dir`). Useful for debugging.
- **verbose** [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the logging levels and constants from Python’s logging module for interpretation of integer values. False is equal to the PySB default level (currently WARNING), True is equal to DEBUG.

```python
pysb.bng.load_equations(model, netfile)
```

Load model equations from a specified netfile

Useful for large models where BioNetGen network generation takes a long time - the .net file can be saved and reloaded using this function at a later date.

**Parameters**

- **model**: `pysb.Model` PySB model file
- **netfile**: str BNG netfile

```python
pysb.bng.run_ssa(model, t_end=10, n_steps=100, param_values=None, output_dir=None, output_file_basename=None, cleanup=True, verbose=False, **additional_args)
```

Simulate a model with BNG’s SSA simulator and return the trajectories.

**Parameters**

- **model** [Model] Model to simulate.
- **t_end** [number, optional] Final time point of the simulation.
- **n_steps** [int, optional] Number of steps in the simulation.
- **param_values** [vector-like or dictionary, optional] Values to use for every parameter in the model. Ordering is determined by the order of `model.parameters`. If not specified, parameter values will be taken directly from `model.parameters`. 

Chapter 4. PySB Modules Reference
**output_dir** [string, optional] Location for temporary files generated by BNG. If None (the default), uses a temporary directory provided by the system. A temporary directory with a random name is created within the supplied location.

**output_file_basename** [string, optional] This argument is used as a prefix for the temporary BNG output directory, rather than the individual files.

**cleanup** [bool, optional] If True (default), delete the temporary files after the simulation is finished. If False, leave them in place. Useful for debugging.

**verbose** [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the logging levels and constants from Python’s logging module for interpretation of integer values. False is equal to the PySB default level (currently WARNING), True is equal to DEBUG.

**additional_args**: **kwargs, optional Additional arguments to pass to BioNetGen

```
pysb.bng.set_bng_path(dir)
```

Deprecated. Use `pysb.pathfinder.set_path()` instead.

### 4.6 Kappa integration (**pysb.kappa**)  

Wrapper functions for running the Kappa programs KaSim and KaSa.

The path to the directory containing the KaSim and KaSa executables can be specified in one of three ways:

- set the KAPPAPATH environment variable to the KaSim directory
- move Kappa to `/usr/local/share/KaSim` (macOS, Linux) or `c:\Program Files\KaSim` (Windows)
- set the path using the `pysb.pathfinder.set_path()` function at runtime

**exception** `pysb.kappa.KasaInterfaceError`

**exception** `pysb.kappa.KasimInterfaceError`

**class** `pysb.kappa.SimulationResult`

- **flux_map**
  
  Alias for field number 1

- **timecourse**
  
  Alias for field number 0

**class** `pysb.kappa.StaticAnalysisResult`

- **contact_map**
  
  Alias for field number 0

- **influence_map**
  
  Alias for field number 1

`pysb.kappa.contact_map(model, **kwargs)`

Generates the contact map via KaSa.

**Parameters**

- **model** [pysb.core.Model] The model for generating the influence map.
- **kwargs** [other keyword arguments] Any other keyword arguments are passed to the function `run_static_analysis()`.

4.6. Kappa integration (**pysb.kappa**)
Returns

networkx MultiGraph object containing the contact map. For details on viewing the contact map graphically see :func:`run_static_analysis` (notes section).

```python
pysb.kappa.influence_map(model, **kwargs)
```

Generates the influence map via KaSa.

Parameters

- **model** [pysb.core.Model] The model for generating the influence map.
- **kwargs** [other keyword arguments] Any other keyword arguments are passed to the function :func:`run_static_analysis`.

Returns

networkx MultiGraph object containing the influence map. For details on viewing the influence map graphically see :func:`run_static_analysis` (notes section).

```python
pysb.kappa.run_simulation(model, time=10000, points=200, cleanup=True, output_prefix=None, output_dir=None, flux_map=False, perturbation=None, seed=None, verbose=False)
```

Runs the given model using KaSim and returns the parsed results.

Parameters

- **model** [pysb.core.Model] The model to simulate/analyze using KaSim.
- **time** [number] The amount of time (in arbitrary units) to run a simulation. Identical to the `-u` argument when using KaSim at the command line. Default value is 10000. If set to 0, no simulation will be run.
- **points** [integer] The number of data points to collect for plotting. Note that this is not identical to the `-p` argument of KaSim when called from the command line, which denotes plot period (time interval between points in plot). Default value is 200. Note that the number of points actually returned by the simulator will be points + 1 (including the 0 point).
- **cleanup** [boolean] Specifies whether output files produced by KaSim should be deleted after execution is completed. Default value is True.
- **output_prefix**: str Prefix of the temporary directory name. Default is ‘tmpKappa_<model name>_’.
- **output_dir**: string The directory in which to create the temporary directory for the .ka and other output files. Defaults to the system temporary file directory (e.g. /tmp). If the specified directory does not exist, an Exception is thrown.
- **flux_map**: boolean Specifies whether or not to produce the flux map (generated over the full duration of the simulation). Default value is False.
- **perturbation**: string or None Optional perturbation language syntax to be appended to the Kappa file. See KaSim manual for more details. Default value is None (no perturbation).
- **seed**: integer A seed integer for KaSim random number generator. Set to None to allow KaSim to use a random seed (default) or supply a seed for deterministic behaviour (e.g. for testing)
- **verbose**: boolean Whether to pass the output of KaSim through to stdout/stderr.
If flux_map is False, returns the kasim simulation data as a Numpy ndarray.

Data is accessed using the syntax:: results[index_name]

The index ‘time’ gives the time coordinates of the simulation. Data for the observables can be accessed by indexing the array with the names of the observables. Each entry in the ndarray has length points + 1, due to the inclusion of both the zero point and the final timepoint.

If flux_map is True, returns an instance of SimulationResult, a namedtuple with two members, ‘timecourse’ and ‘flux_map’. The ‘timecourse’ field contains the simulation ndarray, and the ‘flux_map’ field is an instance of a networkx MultiGraph containing the flux map. For details on viewing the flux map graphically see :func:`run_static_analysis` (notes section).

```python
pysb.kappa.run_static_analysis(model, influence_map=False, contact_map=False, cleanup=True, output_prefix=None, output_dir=None, verbose=False)
```

Run static analysis (KaSa) on to get the contact and influence maps.

If neither influence_map nor contact_map are set to True, then a ValueError is raised.

**Parameters**

- **model** [pysb.core.Model] The model to simulate/analyze using KaSa.
- **influence_map** [boolean] Whether to compute the influence map.
- **contact_map** [boolean] Whether to compute the contact map.
- **cleanup** [boolean] Specifies whether output files produced by KaSa should be deleted after execution is completed. Default value is True.
- **output_prefix** [str] Prefix of the temporary directory name. Default is ‘tmpKappa_<model name>’.
- **output_dir** [string] The directory in which to create the temporary directory for the .ka and other output files. Defaults to the system temporary file directory (e.g. /tmp). If the specified directory does not exist, an Exception is thrown.
- **verbose** [boolean] Whether to pass the output of KaSa through to stdout/stderr.

**Returns**

StaticAnalysisResult, a namedtuple with two fields, ‘contact_map’ and ‘influence_map’, each containing the respective result as an instance of a networkx MultiGraph. If the either the contact_map or influence_map argument to the function is False, the corresponding entry in the StaticAnalysisResult returned by the function will be None.

**Notes**

To view a networkx file graphically, use `draw_network`:
import networkx as nx
nx.draw_networkx(g, with_labels=True)

You can use graphviz_layout to use graphviz for layout (requires pydot library):

import networkx as nx
pos = nx.drawing.nx_pydot.graphviz_layout(g, prog='dot')
nx.draw_networkx(g, pos, with_labels=True)

For further information, see the networkx documentation on visualization: https://networkx.github.io/documentation/latest/reference/drawing.html

pysb.kappa.set_kappa_path(path)
Set the path to the KaSim and KaSa executables.

Parameters
path: string Directory containing KaSim and KaSa executables.

4.7 Macros (pysb.macros)

A collection of generally useful modeling macros.

These macros are written to be as generic and reusable as possible, serving as a collection of best practices and implementation ideas. They conform to the following general guidelines:

• All components created by the macro are implicitly added to the current model and explicitly returned in a ComponentSet.

• Parameters may be passed as Parameter or Expression objects, or as plain numbers for which Parameter objects will be automatically created using an appropriate naming convention.

• Arguments which accept a MonomerPattern should also accept Monomers, which are to be interpreted as MonomerPatterns on that Monomer with an empty condition list. This is typically implemented by having the macro apply the “call” (parentheses) operator to the argument with an empty argument list and using the resulting value instead of the original argument when creating Rules, e.g. arg = arg(). Calling a Monomer will return a MonomerPattern, and calling a MonomerPattern will return a copy of itself, so calling either is guaranteed to return a MonomerPattern.

The _macro_rule helper function contains much of the logic needed to follow these guidelines. Every macro in this module either uses _macro_rule directly or calls another macro which does.

Another useful function is _verify_sites which will raise an exception if a Monomer or MonomerPattern does not possess every one of a given list of sites. This can be used to trigger such errors up front rather than letting an exception occur at the point where the macro tries to use the invalid site in a pattern, which can be harder for the caller to debug.

pysb.macros.equilibrate(s1, s2, klist)
Generate the unimolecular reversible equilibrium reaction S1 <-> S2.

Parameters
s1, s2 [Monomer or MonomerPattern] S1 and S2 in the above reaction.

klist [list of 2 Parameters or list of 2 numbers] Forward (S1 -> S2) and reverse rate constants (in that order). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based
on the names and states of S1 and S2 and these parameters will be included at the end of the
returned component list.

Returns

components [ComponentSet] The generated components. Contains one reversible Rule and
optionally two Parameters if klist was given as plain numbers.

Examples

Simple two-state equilibrium between A and B:

```python
Model()
Monomer('A')
Monomer('B')
equilibrate(A(), B(), [1, 1])
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
compartments: 0) at ...>
>>> Monomer('A')
Monomer('A')
>>> Monomer('B')
Monomer('B')
>>> equilibrate(A(), B(), [1, 1])
ComponentSet([Rule('equilibrate_A_to_B', A() | B(), equilibrate_A_to_B_kf, equilibrate_A_to_B_kr), Parameter('equilibrate_A_to_B_kf', 1.0), Parameter('equilibrate_A_to_B_kr', 1.0),])
```

pysb.macros.bind(s1, site1, s2, site2, klist)
Generate the reversible binding reaction S1 + S2 | S1:S2.

Parameters

s1, s2 [Monomer or MonomerPattern] Monomers participating in the binding reaction.

site1, site2 [string] The names of the sites on s1 and s2 used for binding.

klist [list of 2 Parameters or list of 2 numbers] Forward and reverse rate constants (in that order).
If Parameters are passed, they will be used directly in the generated Rules. If numbers are
passed, Parameters will be created with automatically generated names based on the names
and states of S1 and S2 and these parameters will be included at the end of the returned
component list.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding
Rule and optionally two Parameters if klist was given as numbers.

Examples

Binding between A and B:
Model()
Monomer('A', ['x'])
Monomer('B', ['y'])
bind(A, 'x', B, 'y', [1e-4, 1e-1])

Execution:

```
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, ...
→compartments: 0) at ...
>>> Monomer('A', ['x'])
Monomer('A', ['x'])
>>> Monomer('B', ['y'])
Monomer('B', ['y'])
>>> bind(A, 'x', B, 'y', [1e-4, 1e-1])
ComponentSet(
 Rule('bind_A_B', A(x=None) + B(y=None) | A(x=1) % B(y=1), bind_A_B_kf, bind_A_B_→kr),
 Parameter('bind_A_B_kf', 0.0001),
 Parameter('bind_A_B_kr', 0.1),
)
```

pysb.macros.bind_table(bindtable, row_site, col_site, kf=None)

Generate a table of reversible binding reactions.

Given two lists of species R and C, calls the `bind` macro on each pairwise combination (R[i], C[j]). The species lists and the parameter values are passed as a list of lists (i.e. a table) with elements of R passed as the “row headers”, elements of C as the “column headers”, and forward/reverse rate pairs (in that order) as tuples in the “cells”. For example with two elements in each of R and C, the table would appear as follows (note that the first row has one fewer element than the subsequent rows):

```
[[C1, C2],
 [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
 [R2, (3e-4, 3e-1), (4e-4, 4e-1)]
```

Each parameter tuple may contain Parameters or numbers. If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of the relevant species and these parameters will be included at the end of the returned component list. To omit any individual reaction, pass None in place of the corresponding parameter tuple.

Alternately, single kd values (dissociation constant, kr/kf) may be specified instead of (kf, kr) tuples. If kds are used, a single shared kf Parameter or number must be passed as an extra kf argument. kr values for each binding reaction will be calculated as kd*kf. It is important to remember that the forward rate constant is a single parameter shared across the entire bind table, as this may have implications for parameter fitting.

Parameters

- **bindtable** [list of lists] Table of reactants and rates, as described above.
- **row_site, col_site** [string] The names of the sites on the elements of R and C, respectively, used for binding.
- **kf** [Parameter or number, optional] If the “cells” in bindtable are given as single kd values, this is the shared kf used to calculate the kr values.

Returns

- **components** [ComponentSet] The generated components. Contains the bidirectional binding Rules and optionally the Parameters for any parameters given as numbers.
Examples

Binding table for two species types (R and C), each with two members:

```python
Model()
Monomer('R1', ['x'])
Monomer('R2', ['x'])
Monomer('C1', ['y'])
Monomer('C2', ['y'])
bind_table([[C1, C2],
 [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
 [R2, (3e-4, 3e-1), None]],
 'x', 'y')
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, compartments: 0) at ...>
>>> Monomer('R1', ['x'])
>>> Monomer('R1', ['x'])
>>> Monomer('R2', ['x'])
>>> Monomer('R2', ['x'])
>>> Monomer('C1', ['y'])
>>> Monomer('C1', ['y'])
>>> Monomer('C2', ['y'])
>>> Monomer('C2', ['y'])
>>> bind_table([[C1, C2],
 [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
 [R2, (3e-4, 3e-1), None]],
 'x', 'y')
```

```
ComponentSet([Rule('bind_R1_C1', R1(x=None) + C1(y=None) | R1(x=1) % C1(y=1),
 bind_R1_C1_kf, bind_R1_C1_kr),
 Parameter('bind_R1_C1_kf', 0.0001),
 Parameter('bind_R1_C1_kr', 0.1),
 Rule('bind_R1_C2', R1(x=None) + C2(y=None) | R1(x=1) % C2(y=1),
 bind_R1_C2_kf, bind_R1_C2_kr),
 Parameter('bind_R1_C2_kf', 0.0002),
 Parameter('bind_R1_C2_kr', 0.2),
 Rule('bind_R2_C1', R2(x=None) + C1(y=None) | R2(x=1) % C1(y=1),
 bind_R2_C1_kf, bind_R2_C1_kr),
 Parameter('bind_R2_C1_kf', 0.0003),
 Parameter('bind_R2_C1_kr', 0.3),
 Rule('bind_R2_C2', R2(x=None) + C2(y=None) | R2(x=1) % C2(y=1),
 bind_R2_C2_kf, bind_R2_C2_kr),
 Parameter('bind_R2_C2_kf', 0.0002),
 Parameter('bind_R2_C2_kr', 0.2)])
```

pysb.macros.catalyze(enzyme, e_site, substrate, s_site, product, klist)

Generate the two-step catalytic reaction $E + S | E:S >> E + P$.

Parameters

- **enzyme**, **substrate**, **product** [Monomer or MonomerPattern] E, S and P in the above reaction.
- **e_site**, **s_site** [string] The names of the sites on enzyme and substrate (respectively) where they bind each other to form the E:S complex.
- **klist** [list of 3 Parameters or list of 3 numbers] Forward, reverse and catalytic rate constants (in that order). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based
on the names and states of enzyme, substrate and product and these parameters will be included at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains two Rules (bidirectional complex formation and unidirectional product dissociation), and optionally three Parameters if klist was given as plain numbers.

Notes

When passing a MonomerPattern for enzyme or substrate, do not include e_site or s_site in the respective patterns. The macro will handle this.

Examples

Using distinct Monomers for substrate and product:

```python
Model()
Monomer('E', ['b'])
Monomer('S', ['b'])
Monomer('P')
catalyze(E(), 'b', S(), 'b', P(), (1e-4, 1e-1, 1))
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, compartments: 0) at ...>

>>> Monomer('E', ['b'])

>>> Monomer('S', ['b'])

>>> Monomer('P')

>>> catalyze(E(), 'b', S(), 'b', P(), (1e-4, 1e-1, 1))

ComponentSet([Rule('bind_E_S_to_ES', E(b=None) + S(b=None) | E(b=1) % S(b=1), bind_E_S_to_ES_kf, bind_E_S_to_ES_kr), Parameter('bind_E_S_to_ES_kf', 0.0001), Parameter('bind_E_S_to_ES_kr', 0.1), Rule('catalyze_ES_to_E_P', E(b=1) % S(b=1) >> E(b=None) + P(), catalyze_ES_to_E_P_kc), Parameter('catalyze_ES_to_E_P_kc', 1.0),])
```

Using a single Monomer for substrate and product with a state change:

```python
Monomer('Kinase', ['b'])
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
catalyze(Kinase(), 'b', Substrate(y='U'), 'b', Substrate(y='P'), (1e-4, 1e-1, 1))
```

Execution:
pysb.macros.catalyze_state(enzyme, e_site, substrate, s_site, mod_site, state1, state2, klist)

Generate the two-step catalytic reaction $E + S \rightarrow E:S \rightarrow E + P$. A wrapper around catalyze() with a signature specifying the state change of the substrate resulting from catalysis.

Parameters

- **enzyme** [Monomer or MonomerPattern] $E$ in the above reaction.
- **substrate** [Monomer or MonomerPattern] $S$ and $P$ in the above reaction. The product species is assumed to be identical to the substrate species in all respects except the state of the modification site. The state of the modification site should not be specified in the MonomerPattern for the substrate.
- **e_site, s_site** [string] The names of the sites on enzyme and substrate (respectively) where they bind each other to form the $E:S$ complex.
- **mod_site** [string] The name of the site on the substrate that is modified by catalysis.
- **state1, state2** [strings] The states of the modification site (mod_site) on the substrate before (state1) and after (state2) catalysis.
- **klist** [list of 3 Parameters or list of 3 numbers] Forward, reverse and catalytic rate constants (in that order). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of enzyme, substrate and product and these parameters will be included at the end of the returned component list.

Returns

- **components** [ComponentSet] The generated components. Contains two Rules (bidirectional complex formation and unidirectional product dissociation), and optionally three Parameters if klist was given as plain numbers.
Notes

When passing a MonomerPattern for enzyme or substrate, do not include e_site or s_site in the respective patterns. In addition, do not include the state of the modification site on the substrate. The macro will handle this.

Examples

Using a single Monomer for substrate and product with a state change:

```python
Monomer('Kinase', ['b'])
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
catalyze_state(Kinase, 'b', Substrate, 'b', 'y', 'U', 'P',
 (1e-4, 1e-1, 1))
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
 →compartments: 0) at ...>
>>> Monomer('Kinase', ['b'])
Monomer('Kinase', ['b'])
>>> Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
>>> catalyze_state(Kinase, 'b', Substrate, 'b', 'y', 'U', 'P', (1e-4, 1e-1, 1))
ComponentSet([Rule('bind_Kinase_SubstrateU_to_KinaseSubstrateU',
 Kinase(b=None) + Substrate(b=None, y='U') | Kinase(b=1) % Substrate(b=1, y='U →'),
 bind_Kinase_SubstrateU_to_KinaseSubstrateU_kf,
 bind_Kinase_SubstrateU_to_KinaseSubstrateU_kr),
 Parameter('bind_Kinase_SubstrateU_to_KinaseSubstrateU_kf', 0.0001),
 Parameter('bind_Kinase_SubstrateU_to_KinaseSubstrateU_kr', 0.1),
 Rule('catalyze_KinaseSubstrateU_to_Kinase_SubstrateP',
 Kinase(b=1) % Substrate(b=1, y='U') >> Kinase(b=None) + Substrate(b=None, y=
 →'P'),
 catalyze_KinaseSubstrateU_to_KinaseSubstrateP_kc),
 Parameter('catalyze_KinaseSubstrateU_to_KinaseSubstrateP_kc', 1.0),
])
```

```python
def catalyze_complex(enzyme, e_site, substrate, s_site, product, klist, m1=None, m2=None):
 """Generate the two-step catalytic reaction E + S | E:S >> E + P, while allowing complexes to serve as enzyme, substrate and/or product.
 E:S1 + S:S2 | E:S1:S:S2 >> E:S1 + P:S2"

 # Parameters
 enzyme, substrate, product [Monomer, MonomerPattern, or ComplexPattern]
 Monomers or complexes participating in the binding reaction.
 e_site, s_site [string]
 The names of the sites on ‘enzyme’ and ‘substrate’ (respectively) where
 they bind each other to form the E:S complex.
```

66 Chapter 4. PySB Modules Reference
klist [list of 3 Parameters or list of 3 numbers]
Forward, reverse and catalytic rate constants (in that order). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of enzyme, substrate and product and these parameters will be included at the end of the returned component list.
m1, m2 [Monomer or MonomerPattern]
If enzyme or substrate binding site is present in multiple monomers within a complex, the specific monomer desired for binding must be specified.

Returns

components [ComponentSet]
The generated components. Contains the bidirectional binding Rule and optionally three Parameters if klist was given as numbers.

pysb.macros.catalyze_one_step(enzyme, substrate, product, kf)
Generate the one-step catalytic reaction E + S >> E + P.

Parameters

enzyme, substrate, product [Monomer or MonomerPattern] E, S and P in the above reaction.
kf [a Parameter or a number] Forward rate constant for the reaction. If a Parameter is passed, it will be used directly in the generated Rules. If a number is passed, a Parameter will be created with an automatically generated name based on the names and states of the enzyme, substrate and product and this parameter will be included at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains the unidirectional reaction Rule and optionally the forward rate Parameter if klist was given as a number.

Notes

In this macro, there is no direct binding between enzyme and substrate, so binding sites do not have to be specified. This represents an approximation for the case when the enzyme is operating in its linear range. However, if catalysis is nevertheless contingent on the enzyme or substrate being unbound on some site, then that information must be encoded in the MonomerPattern for the enzyme or substrate. See the examples, below.

Examples

Convert S to P by E:

```python
Model()
Monomer('E', ['b'])
Monomer('S', ['b'])
Monomer('P')
catalyze_one_step(E, S, P, 1e-4)
```
If the ability of the enzyme \( E \) to catalyze this reaction is dependent on the site ‘b’ of \( E \) being unbound, then this macro must be called as

\[
catalyze\_one\_step(E(b=None), S, P, 1e-4)
\]

and similarly if the substrate or product must be unbound.

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, , →compartments: 0) at ...>
```

```python
>>> Monomer('E', ['b'])
Monomer('E', ['b'])
>>> Monomer('S', ['b'])
Monomer('S', ['b'])
>>> Monomer('P')
Monomer('P')
>>> catalyze_one_step(E, S, P, 1e-4)
ComponentSet(
 Rule('one_step_E_S_to_E_P', E() + S() >> E() + P(), one_step_E_S_to_E_P_kf),
 Parameter('one_step_E_S_to_E_P_kf', 0.0001),
)
```

```
 pysb.macros.catalyze_one_step_reversible(enzyme, substrate, product, klist)

Create fwd and reverse rules for catalysis of the form:

\[
E + S \rightarrow E + P \\
P \rightarrow S
\]

Parameters

- **enzyme, substrate, product** [Monomer or MonomerPattern] \(E, S \) and \(P \) in the above reactions.
- **klist** [list of 2 Parameters or list of 2 numbers] A list containing the rate constant for catalysis and the rate constant for the conversion of product back to substrate (in that order). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of \(S_1 \) and \(S_2 \) and these parameters will be included at the end of the returned component list.

Returns

- **components** [ComponentSet] The generated components. Contains two rules (the single-step catalysis rule and the product reversion rule) and optionally the two generated Parameter objects if klist was given as numbers.

Notes

Calls the macro catalyze_one_step to generate the catalysis rule.

Examples

One-step, pseudo-first order conversion of \(S \) to \(P \) by \(E \):
```python
Model()
Monomer('E', ['b'])
Monomer('S', ['b'])
Monomer('P')
catalyze_one_step_reversible(E, S, P, [1e-1, 1e-4])
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, compartments: 0) at ...>
```

```python
>>> Monomer('E', ['b'])
```

```python
>>> Monomer('S', ['b'])
```

```python
>>> Monomer('P')
```

```python
catalyze_one_step_reversible(E, S, P, [1e-1, 1e-4])
```

pysb.macros.synthesize (*species, ksynth*)

Generate a reaction which synthesizes a species.

Note that *species* must be “concrete”, i.e. the state of all sites in all of its monomers must be specified. No site may be left unmentioned.

Parameters

- **species** [Monomer, MonomerPattern or ComplexPattern] The species to synthesize. If a Monomer, sites are considered as unbound and in their default state. If a pattern, must be concrete.

- **ksynth** [Parameters or number] Synthesis rate. If a Parameter is passed, it will be used directly in the generated Rule. If a number is passed, a Parameter will be created with an automatically generated name based on the names and site states of the components of *species* and this parameter will be included at the end of the returned component list.

Returns

- **components** [ComponentSet] The generated components. Contains the unidirectional synthesis Rule and optionally a Parameter if ksynth was given as a number.

Examples

Synthesize A with site x unbound and site y in state ‘e’:

```python
Model()
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
synthesize(A(x=None, y='e'), 1e-4)
```

Execution:

```python
4.7. Macros (pysb.macros) 69
```
pysb Documentation, Release 1.7.0+0.gcf18b9d.dirty

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
    compartments: 0) at ...>
>>> Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
>>> synthesize(A(x=None, y='e'), 1e-4)
ComponentSet([ Rule('synthesize_Ae', None >> A(x=None, y='e'), synthesize_Ae_k),
    Parameter('synthesize_Ae_k', 0.0001), ])
```

pysb.macros.degrade(species, kdeg)

Generate a reaction which degrades a species.

Note that species is not required to be "concrete".

Parameters

- **species** [Monomer, MonomerPattern or ComplexPattern] The species to synthesize. If a Monomer, sites are considered as unbound and in their default state. If a pattern, must be concrete.

- **kdeg** [Parameters or number] Degradation rate. If a Parameter is passed, it will be used directly in the generated Rule. If a number is passed, a Parameter will be created with an automatically generated name based on the names and site states of the components of species and this parameter will be included at the end of the returned component list.

Returns

- **components** [ComponentSet] The generated components. Contains the unidirectional degradation Rule and optionally a Parameter if ksynth was given as a number.

Examples

Degrade all B, even bound species:

Model()
Monomer('B', ['x'])
degrade(B(), 1e-6)

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
    compartments: 0) at ...>
>>> Monomer('B', ['x'])
Monomer('B', ['x'])
>>> degrade(B(), 1e-6)
ComponentSet([ Rule('degrade_B', B() >> None, degrade_B_k),
    Parameter('degrade_B_k', 1e-06), ])
```

pysb.macros.synthesize_degrade_table(table)

Generate a table of synthesis and degradation reactions.

Given a list of species, calls the `synthesize` and `degrade` macros on each one. The species and the parameter values are passed as a list of lists (i.e. a table) with each inner list consisting of the species, forward and reverse
rates (in that order).

Each species’ associated pair of rates may be either Parameters or numbers. If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of the relevant species and these parameters will be included in the returned component list. To omit any individual reaction, pass None in place of the corresponding parameter.

Note that any species with a non-None synthesis rate must be “concrete”.

Parameters

- **table** [list of lists] Table of species and rates, as described above.

Returns

- **components** [ComponentSet] The generated components. Contains the unidirectional synthesis and degradation Rules and optionally the Parameters for any rates given as numbers.

Examples

Specify synthesis and degradation reactions for A and B in a table:

```python
Model()
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
Monomer('B', ['x'])
synthesize_degrade_table([[A(x=None, y='e'), 1e-4, 1e-6],
                           [B(), None, 1e-7]])
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, ...
  → compartments: 0) at ...>
>>> Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
>>> Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
>>> Monomer('B', ['x'])
>>> Monomer('B', ['x'])

```

```python
>>> synthesize_degrade_table([[A(x=None, y='e'), 1e-4, 1e-6],
                             [B(), None, 1e-7]])
ComponentSet([Rule('synthesize_Ae', None >> A(x=None, y='e'), synthesize_Ae_k),
               Parameter('synthesize_Ae_k', 0.0001),
               Rule('degrade_Ae', A(x=None, y='e') >> None, degrade_Ae_k),
               Parameter('degrade_Ae_k', 1e-06),
               Rule('degrade_B', B() >> None, degrade_B_k),
               Parameter('degrade_B_k', 1e-07)])[71]
```

pysb.macros.assemble_pore_sequential(subunit, site1, site2, max_size, ktable)

Generate rules to assemble a circular homomeric pore sequentially.

The pore species are created by sequential addition of `subunit` monomers, i.e. larger oligomeric species never fuse together. The pore structure is defined by the `pore_species` macro.

Parameters

- **subunit** [Monomer or MonomerPattern] The subunit of which the pore is composed.
- **site1, site2** [string] The names of the sites where one copy of `subunit` binds to the next.
- **max_size** [integer] The maximum number of subunits in the pore.
ktable [list of lists of Parameters or numbers] Table of forward and reverse rate constants for the assembly steps. The outer list must be of length \(\text{max_size} - 1 \), and the inner lists must all be of length 2. In the outer list, the first element corresponds to the first assembly step in which two monomeric subunits bind to form a 2-subunit complex, and the last element corresponds to the final step in which the \(\text{max_size}'th \) subunit is added. Each inner list contains the forward and reverse rate constants (in that order) for the corresponding assembly reaction, and each of these pairs must comprise solely Parameter objects or solely numbers (never one of each). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on `subunit, site1, site2` and the pore sizes and these parameters will be included at the end of the returned component list.

Examples

Assemble a three-membered pore by sequential addition of monomers, with the same forward/reverse rates for monomer-monomer and monomer-dimer interactions:

```python
Model()
Monomer('Unit', ['p1', 'p2'])
assemble_pore_sequential(Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]] * 2)
```

Execution:

```python
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, compartments: 0) at ...>
>>> Monomer('Unit', ['p1', 'p2'])
>>> assemble_pore_sequential(Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]] * 2)
ComponentSet(
    Rule('assemble_pore_sequential_Unit_2',
        Unit(p1=None, p2=None) + Unit(p1=None, p2=None) |
        Unit(p1=None, p2=1) % Unit(p1=1, p2=None),
        assemble_pore_sequential_Unit_2_kf,
        assemble_pore_sequential_Unit_2_kr),
    Parameter('assemble_pore_sequential_Unit_2_kf', 0.0001),
    Parameter('assemble_pore_sequential_Unit_2_kr', 0.1),
    Rule('assemble_pore_sequential_Unit_3',
        Unit(p1=None, p2=None) + Unit(p1=None, p2=1) % Unit(p1=1, p2=2) |
        Unit(p1=None, p2=None) % Unit(p1=1, p2=2) % Unit(p1=2, p2=3),
        assemble_pore_sequential_Unit_3_kf,
        assemble_pore_sequential_Unit_3_kr),
    Parameter('assemble_pore_sequential_Unit_3_kf', 0.0001),
    Parameter('assemble_pore_sequential_Unit_3_kr', 0.1),
])
```

pysb.macros.pore_transport (subunit, sp_site1, sp_site2, sc_site, min_size, max_size, csource, c_site, cdest, ktable)

Generate rules to transport cargo through a circular homomeric pore.

The pore structure is defined by the `pore_species` macro – subunit monomers bind to each other from `sp_site1` to `sp_site2` to form a closed ring. The transport reaction is modeled as a catalytic process of the form `pore + csource | pore:csource >> pore + cdest`

Parameters

- **subunit** [Monomer or MonomerPattern] Subunit of which the pore is composed.
sp_site1, sp_site2 [string] Names of the sites where one copy of subunit binds to the next.

sc_site [string] Name of the site on subunit where it binds to the cargo csource.

min_size, max_size [integer] Minimum and maximum number of subunits in the pore at which transport will occur.

csource [Monomer or MonomerPattern] Cargo “source”, i.e. the entity to be transported.

c_site [string] Name of the site on csource where it binds to subunit.

cdest [Monomer or MonomerPattern] Cargo “destination”, i.e. the resulting state after the transport event.

ktable [list of lists of Parameters or numbers] Table of forward, reverse and catalytic rate constants for the transport reactions. The outer list must be of length max_size - min_size + 1, and the inner lists must all be of length 3. In the outer list, the first element corresponds to the transport through the pore of size min_size and the last element to that of size max_size. Each inner list contains the forward, reverse and catalytic rate constants (in that order) for the corresponding transport reaction, and each of these pairs must comprise solely Parameter objects or solely numbers (never some of each). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the subunit, the pore size and the cargo, and these parameters will be included at the end of the returned component list.

Examples

Specify that a three-membered pore is capable of transporting cargo from the mitochondria to the cytoplasm:

```python
Model()
Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Cargo', ['c_site', 'loc'], {'loc': ['mito', 'cyto']})
pore_transport(Unit, 'p1', 'p2', 'sc_site', 3, 3, Cargo(loc='mito'), 'c_site', Cargo(loc='cyto'),
[[1e-4, 1e-1, 1]])
```

Generates two rules—one (reversible) binding rule and one transport rule—and the three associated parameters.

Execution:

```bash
>>> Model()
...<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, ...
...
...
>>> Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Unit', ['p1', 'p2', 'sc_site'])
>>> Monomer('Cargo', ['c_site', 'loc'], {'loc': ['mito', 'cyto']})
Monomer('Cargo', ['c_site', 'loc'], {'loc': ['mito', 'cyto']})
>>> pore_transport(Unit, 'p1', 'p2', 'sc_site', 3, 3, ...
...
...
ComponentSet(
...Rule('pore_transport_complex_Unit_3_Cargomito',
...MatchOnce(Unit(p1=3, p2=1, sc_site=None) %
...Unit(p1=1, p2=2, sc_site=None) %
...Unit(p1=2, p2=3, sc_site=None)) +
...Cargo(c_site=None, loc='mito') |
...MatchOnce(Unit(p1=3, p2=1, sc_site=4) %
...Unit(p1=1, p2=2, sc_site=None) %
...
...([[1e-4, 1e-1, 1]])
```

(continues on next page)
pore_bind

Generate rules to bind a monomer to a circular homomeric pore.

The pore structure is defined by the pore_species macro – subunit monomers bind to each other from sp_site1 to sp_site2 to form a closed ring. The binding reaction takes the form pore + cargo | pore:cargo.

Parameters

- subunit [Monomer or MonomerPattern] Subunit of which the pore is composed.
- sp_site1, sp_site2 [string] Names of the sites where one copy of subunit binds to the next.
- sc_site [string] Name of the site on subunit where it binds to cargo cargo.
- size [integer] Number of subunits in the pore at which binding will occur.
- cargo [Monomer or MonomerPattern] Cargo that binds to the pore complex.
- c_site [string] Name of the site on cargo where it binds to subunit.
- klist [list of Parameters or numbers] List containing forward and reverse rate constants for the binding reaction (in that order). Rate constants should either be both Parameter objects or both numbers. If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the subunit, the pore size and the cargo, and these parameters will be included at the end of the returned component list.

Examples

Specify that a cargo molecule can bind reversibly to a 3-membered pore:

```python
Model()
Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Cargo', ['c_site'])
pore_bind(Unit, 'p1', 'p2', 'sc_site', 3, Cargo(), 'c_site', [1e-4, 1e-1, 1])
```
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, ...compartments: 0) at ...>
>>> Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Unit', ['p1', 'p2', 'sc_site'])
>>> Monomer('Cargo', ['c_site'])
Monomer('Cargo', ['c_site'])
>>> pore_bind(Unit, 'p1', 'p2', 'sc_site', 3, ...
Cargo(), 'c_site', [1e-4, 1e-1, 1])
ComponentSet([Rule('pore_bind_Unit_3_Cargo',
 MatchOnce(Unit(p1=3, p2=1, sc_site=None) %
 Unit(p1=1, p2=2, sc_site=None) %
 Unit(p1=2, p2=3, sc_site=None)) +
 Cargo(c_site=None) |
 MatchOnce(Unit(p1=3, p2=1, sc_site=4) %
 Unit(p1=1, p2=2, sc_site=None) %
 Unit(p1=2, p2=3, sc_site=None) %
 Cargo(c_site=4)),
 pore_bind_Unit_3_Cargo_kf, pore_bind_Unit_3_Cargo_kr),
 Parameter('pore_bind_Unit_3_Cargo_kf', 0.0001),
 Parameter('pore_bind_Unit_3_Cargo_kr', 0.1),
])

pysb.macros.assemble_chain_sequential_base(base, basesite, subunit, site1, site2, max_size, ktable, comp=1)

Generate rules to assemble a homomeric chain sequentially onto a base complex (only the subunit creates repeating chain, not the base).

The chain species are created by sequential addition of subunit monomers. The chain structure is defined by the pore_species_base macro.

Parameters

- **base** [Monomer or MonomerPattern] The base complex to which the chain is attached.
- **basesite** [string] The name of the site on the complex to which chain attaches.
- **subunit** [Monomer or MonomerPattern] The subunit of which the chain is composed.
- **site1, site2** [string] The names of the sites where one copy of subunit binds to the next; the first will also be the site where the first subunit binds the base.
- **max_size** [integer] The maximum number of subunits in the chain.
- **ktable** [list of lists of Parameters or numbers] Table of forward and reverse rate constants for the assembly steps. The outer list must be of length max_size + 1, and the inner lists must all be of length 2. In the outer list, the first element corresponds to the first assembly step in which the complex binds the first subunit. The next corresponds to a bound subunit binding to form a 2-subunit complex, and the last element corresponds to the final step in which the max_size'th subunit is added. Each inner list contains the forward and reverse rate constants (in that order) for the corresponding assembly reaction, and each of these pairs must comprise solely Parameter objects or solely numbers (never one of each). If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on 'subunit, site1, site2 and the chain sizes and these parameters will be included at the end of the returned component list.
- **comp** [optional; a ComplexPattern to which the base molecule is attached.]
Examples

Assemble a three-membered chain by sequential addition of monomers to a base, which is in turn attached to a complex, with the same forward/reverse rates for monomer-monomer and monomer-dimer interactions:

```
Model()
Monomer('Base', ['b1', 'b2'])
Monomer('Unit', ['p1', 'p2'])
Monomer('Complex1', ['s1'])
Monomer('Complex2', ['s1', 's2'])
assemble_chain_sequential(Base(b2=ANY), 'b1', Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]], -> 2, Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY))
```

Execution:

```
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, compartments: 0) at ...>
>>> Monomer('Base', ['b1', 'b2'])
Monomer('Base', ['b1', 'b2'])
>>> Monomer('Unit', ['p1', 'p2'])
Monomer('Unit', ['p1', 'p2'])
>>> Monomer('Complex1', ['s1'])
Monomer('Complex1', ['s1'])
>>> Monomer('Complex2', ['s1', 's2'])
Monomer('Complex2', ['s1', 's2'])
>>> assemble_chain_sequential_base(Base(b2=ANY), 'b1', Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]] * 2, Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY))
ComponentSet([Rule('assemble_chain_sequential_base_Unit_2', Unit(p1=None, p2=None) + Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1, p2=None) | Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1, p2=2) % Unit(p1=2, p2=None), assemble_chain_sequential_base_Unit_2_kf, assemble_chain_sequential_base_Unit_2_kr), Parameter('assemble_chain_sequential_base_Unit_2_kf', 0.0001), Parameter('assemble_chain_sequential_base_Unit_2_kr', 0.1), Rule('assemble_chain_sequential_base_Unit_3', Unit(p1=None, p2=None) + Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1, p2=2) % Unit(p1=2, p2=None) | MatchOnce(Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1, p2=2) % Unit(p1=2, p2=3) % Unit(p1=3, p2=None), assemble_chain_sequential_base_Unit_3_kf, assemble_chain_sequential_base_Unit_3_kr), Parameter('assemble_chain_sequential_base_Unit_3_kf', 0.0001), Parameter('assemble_chain_sequential_base_Unit_3_kr', 0.1))])
```

```
pysb.macros.bind_complex(s1, site1, s2, site2, klist, m1=None, m2=None)
```

Generate the reversible binding reaction \(S_1 + S_2 \rightleftharpoons S_1:S_2\), with optional complexes attached to either \(S_1\) (\(C_1:S_1 + S_2 \rightleftharpoons C_1:S_1:S_2\)), \(S_2\) (\(S_1 + C_2:S_2 \rightleftharpoons C_2:S_2:S_1\)), or both (\(C_1:S_1 + C_2:S_2 \rightleftharpoons C_1:S_1:S_2:C_2\)).

Parameters

- **s1, s2** [Monomer, MonomerPattern, or ComplexPattern] Monomers or complexes participating in the binding reaction.
- **site1, site2** [string] The names of the sites on s1 and s2 used for binding.
- **klist** [list of 2 Parameters or list of 2 numbers] Forward and reverse rate constants (in that order).
If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of S1 and S2 and these parameters will be included at the end of the returned component list.

m1, m2 [Monomer or MonomerPattern] If s1 or s2 binding site is present in multiple monomers within a complex, the specific monomer desired for binding must be specified.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding Rule and optionally two Parameters if klist was given as numbers.

Examples

Binding between A:B and C:D:

```python
>>> Model()
<Model '_interactive_' ...>
>>> Monomer('A', ['a', 'b'])
Monomer('A', ['a', 'b'])
>>> Monomer('B', ['c', 'd'])
Monomer('B', ['c', 'd'])
>>> Monomer('C', ['e', 'f'])
Monomer('C', ['e', 'f'])
>>> Monomer('D', ['g', 'h'])
Monomer('D', ['g', 'h'])
>>> bind_complex(A(a=1) % B(c=1), 'b', C(e=2) % D(g=3), 'h', [1e-4, 1e-1])
ComponentSet([Rule('bind_AB_DC', A(a=1) % B(c=1) + D(g=3, h=None) % C(e=3) | A(a=50) % B(c=1) % D(g=3, h=50) % C(e=3), bind_AB_DC_kf, bind_AB_DC_kr),
Parameter('bind_AB_DC_kf', 0.0001),
Parameter('bind_AB_DC_kr', 0.1)])
```

Execution:

```python
>>> Model()
<Model '_interactive_' ...>
>>> Monomer('A', ['a', 'b'])
Monomer('A', ['a', 'b'])
>>> Monomer('B', ['c', 'd'])
Monomer('B', ['c', 'd'])
>>> Monomer('C', ['e', 'f'])
Monomer('C', ['e', 'f'])
>>> Monomer('D', ['g', 'h'])
Monomer('D', ['g', 'h'])
>>> bind(A, 'a', B, 'c', [1e4, 1e-1])
ComponentSet([Rule('bind_A_B', A(None) + B(None) | A(a=1) % B(c=1),
    bind_A_B_kf, bind_A_B_kr),
Parameter('bind_A_B_kf', 10000.0),
Parameter('bind_A_B_kr', 0.1)])
```

(continues on next page)
pysb.macros.bind_table_complex (bindtable, row_site, col_site, m1=None, m2=None, kf=None)

Generate a table of reversible binding reactions when either the row or column species (or both) have a complex bound to them.

Given two lists of species R and C (which can be complexes or monomers), calls the bind_complex macro on each pairwise combination (R[i], C[j]). The species lists and the parameter values are passed as a list of lists (i.e. a table) with elements of R passed as the “row headers”, elements of C as the “column headers”, and forward / reverse rate pairs (in that order) as tuples in the “cells”. For example with two elements in each of R and C, the table would appear as follows (note that the first row has one fewer element than the subsequent rows):

```
[[ C1, C2],
 [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
 [R2, (3e-4, 3e-1), (4e-4, 4e-1)]
```

Each parameter tuple may contain Parameters or numbers. If Parameters are passed, they will be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names based on the names and states of the relevant species and these parameters will be included at the end of the returned component list. To omit any individual reaction, pass None in place of the corresponding parameter tuple.

Alternately, single kd values (dissociation constant, kr/kf) may be specified instead of (kf, kr) tuples. If kds are used, a single shared kf Parameter or number must be passed as an extra kf argument. kr values for each binding reaction will be calculated as kd*kf. It is important to remember that the forward rate constant is a single parameter shared across the entire bind table, as this may have implications for parameter fitting.

Parameters

bindtable [list of lists] Table of reactants and rates, as described above.

row_site, col_site [string] The names of the sites on the elements of R and C, respectively, used for binding.

m1 [Monomer or MonomerPattern, optional] Monomer in row complex for binding. Must be specified if there are multiple monomers that have the row_site within a complex.

m2 [Monomer or MonomerPattern, optional] Monomer in column complex for binding. Must be specified if there are multiple monomers that have the col_site within a complex.

kf [Parameter or number, optional] If the “cells” in bindtable are given as single kd values, this is the shared kf used to calculate the kr values.
Returns

components [ComponentSet] The generated components. Contains the bidirectional binding Rules and optionally the Parameters for any parameters given as numbers.

Examples

Binding table for two species types (R and C, which can be complexes or monomers):

```
Model()
Monomer('R1', ['x', 'c1'])
Monomer('R2', ['x', 'c1'])
Monomer('C1', ['y', 'c2'])
Monomer('C2', ['y', 'c2'])
bind(C1(y=None), 'c2', C1(y=None), 'c2', (1e-3, 1e-2))
bind(R1(x=None), 'c1', R2(x=None), 'c1', (1e-3, 1e-2))
bind_table_complex([[ C1(c2=1, y=None) % C1(c2=1), C2],
                    [R1() % R2(), (1e-4, 1e-1), (2e-4, 2e-1)],
                    [R2, (3e-4, 3e-1), None],
                    'x', 'y', m1=R1(), m2=C1(y=None, c2=1))
```

Execution:

```
>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0, ...
→compartments: 0) at ...>
>>> Monomer('R1', ['x', 'c1'])
Monomer('R1', ['x', 'c1'])
>>> Monomer('R2', ['x', 'c1'])
Monomer('R2', ['x', 'c1'])
```

(continues on next page)
4.8 Pattern matching against PySB models (pysb.pattern)

class pysb.pattern.FilterPredicate
 Base class for building predicates
 For use with pysb.core.ComponentSet.filter().

class pysb.pattern.Function(regex)
 Predicate to filter a ComponentSet by function where components are defined

class pysb.pattern.Module(regex)
 Predicate to filter a ComponentSet by module where components are defined

class pysb.pattern.Name(regex)
 Predicate to filter a ComponentSet by regular expression name search
 Note that this uses re.search which matches anywhere in the component name. Use ^ to explicitly anchor the
 match to the beginning.

class pysb.pattern.Pattern(pattern)
 Predicate to filter a ComponentSet by matching a ComplexPattern
 See pysb.core.ComponentSet.filter() for examples.

class pysb.pattern.ReactionPatternMatcher(model, species_pattern_matcher=None)
 Match a pattern against a model’s reactions list
 Methods are provided to match against reaction reactants, products or both. Searches can be Monomers,
 MonomerPatterns, ComplexPatterns or ReactionPatterns.

Examples

Create a PatternMatcher for the EARM 1.0 model

```python
>>> from pysb.examples.earm_1_0 import model
>>> from pysb.bng import generate_equations
>>> from pysb.pattern import ReactionPatternMatcher
>>> generate_equations(model)
>>> rpm = ReactionPatternMatcher(model)
```

Assign some monomers to variables (only needed when importing a model instead of defining one interactively)

```python
>>> AMito, mCytoC, mSmac, cSmac = [model.monomers[m] for m in
\ ('AMito', 'mCytoC', 'mSmac', 'cSmac')]
```
Search using a Monomer

```python
>>> rpm.match_products(mSmac)
[Rxn (reversible):
  Reactants: {'__s15': mSmac(b=None), '__s45': AMito(b=None)}
  Products: {'__s47': AMito(b=1) % mSmac(b=1)}
  Rate: __s15*__s45*kf21 - __s47*kr21
  Rules: [Rule('bind_mSmac_AMito', AMito(b=0) + mSmac(b=0) | AMito(b=1) % mSmac(b=1), kf21, kr21)]
]
```

Search using a MonomerPattern

```python
>>> rpm.match_reactants(AMito(b=ANY))
[Rxn (one-way):
  Reactants: {'__s46': AMito(b=1) % mCytoC(b=1)}
  Products: {'__s45': AMito(b=None), '__s48': ACytoC(b=None)}
  Rate: __s46*kc20
  Rules: [Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >> AMito(b=None) + ACytoC(b=None), kc20)]
]
```

Search using a ComplexPattern

```python
>>> rpm.match_reactions(AMito(b=3) % mCytoC(b=3))
[Rxn (reversible):
  Reactants: {'__s14': mCytoC(b=None), '__s45': AMito(b=None)}
  Products: {'__s46': AMito(b=1) % mCytoC(b=1)}
  Rate: __s14*__s45*kf20 - __s46*kr20
  Rules: [Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) | AMito(b=1) % mCytoC(b=1), kf20, kr20)]
]
```

4.8. Pattern matching against PySB models (`pysb.pattern`)
class pysb.pattern.RulePatternMatcher(model)
Match a pattern against a model's species list

Methods are provided to match against rule reactants, products or both. Searches can be Monomers, Monomer-Patterns, ComplexPatterns or ReactionPatterns.

Examples

Create a PatternMatcher for the EARM 1.0 model

```python
>>> from pysb.examples.earm_1_0 import model
>>> from pysb.pattern import RulePatternMatcher
>>> rpm = RulePatternMatcher(model)
```

Assign some monomers to variables (only needed when importing a model instead of defining one interactively)

```python
>>> AMito, mCytoC, mSmac, cSmac = [model.monomers[m] for m in ('AMito', 'mCytoC', 'mSmac', 'cSmac')]
```

```python
Search using a Monomer
>>> rpm.match_reactants(AMito)
[Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) | AMito(b=1) % mCytoC(b=1), kf20, kr20),
 Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >> AMito(b=None) + ACytoC(b=None), kc20),
 Rule('bind_mSmac_AMito', AMito(b=None) + mSmac(b=None) | AMito(b=1) % mSmac(b=1), kf21, kr21),
 Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >> AMito(b=None) + ASmac(b=None), kc21)]
```

```python
>>> rpm.match_products(mSmac)
[Rule('bind_mSmac_AMito', AMito(b=None) + mSmac(b=None) | AMito(b=1) % mSmac(b=1), kf21, kr21)]
```

Search using a MonomerPattern

```python
>>> rpm.match_reactants(AMito(b=1))
[Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >> AMito(b=None) + ACytoC(b=None), kc20),
 Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >> AMito(b=None) + ASmac(b=None), kc21)]
```

```python
>>> rpm.match_rules(cSmac(b=1))
[Rule('inhibit_cSmac_by_XIAP', cSmac(b=None) + XIAP(b=None) | cSmac(b=1) % XIAP(b=1), kf28, kr28)]
```

Search using a ComplexPattern

```python
>>> rpm.match_reactants(AMito() % mSmac())
[Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >> AMito(b=None) + ASmac(b=None), kc21)]
```

```python
>>> rpm.match_rules(AMito(b=1) % mCytoC(b=1))
[Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) | AMito(b=1) % mCytoC(b=1), kf20, kr20),
 Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >> AMito(b=None) + ACytoC(b=None), kc20),
 Rule('bind_mSmac_AMito', AMito(b=None) + mSmac(b=None) | AMito(b=1) % mSmac(b=1), kf21, kr21),
 Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >> AMito(b=None) + ASmac(b=None), kc21)]
```

(continues on next page)
AMito(b=1) % mCytoC(b=1), kf20, kr20),
Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >>
AMito(b=None) + ACytoC(b=None), kc20)]

Search using a ReactionPattern

```python
>>> rpm.match_reactants(mCytoC() + mSmac())
[]

>>> rpm.match_reactants(AMito() + mCytoC())
[Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) |
  AMito(b=1) % mCytoC(b=1), kf20, kr20)]
```

```python
class pysb.pattern.SpeciesPatternMatcher(model, species=None)
    Match a pattern against a model’s species list

Examples

Create a PatternMatcher for the EARM 1.0 model

```python
>>> from pysb.examples.earm_1_0 import model
>>> from pysb.bng import generate_equations
>>> from pysb.pattern import SpeciesPatternMatcher
>>> from pysb import ANY, WILD, Model, Monomer, as_complex_pattern

>>> generate_equations(model)

>>> spm = SpeciesPatternMatcher(model)

Assign two monomers to variables (only needed when importing a model instead of defining one interactively)

```python
>>> Bax4 = model.monomers['Bax4']
>>> Bcl2 = model.monomers['Bcl2']

Search using a Monomer

```python
>>> spm.match(Bax4)
[{'Bax4(b=1)': 1, 'Bcl2(b=1)': 1}]

>>> spm.match(Bcl2)
[{'Bax2(b=1)': 1, 'Bcl2(b=1)': 1},
'Bax4(b=1)': 1, 'Bcl2(b=1)': 1},
'Bcl2(b=None)': 1, 'Bcl2(b=1)': 1}]
```

Search using a MonomerPattern (ANY and WILD keywords can be used)

```python
>>> spm.match(Bax4(b=WILD))
[{'Bax4(b=None)': 1, 'Bcl2(b=1)': 1},
'Bax4(b=1)': 1, 'Bcl2(b=1)': 1},
'Bax2(b=1)': 1, 'Bcl2(b=1)': 1}, 'Bcl2(b=1)': 1, 'Bcl2(b=None)': 1, 'MBax(b=1)': 1}

>>> spm.match(Bcl2(b=ANY))
[{'Bax2(b=1)': 1, 'Bcl2(b=1)': 1}, 'Bax4(b=1)': 1, 'Bcl2(b=1)': 1}, 'Bcl2(b=1)': 1, 'Bcl2(b=None)': 1, 'MBax(b=1)': 1}
```

Search using a ComplexPattern

```python
>>> spm.match(Bax4(b=1) % Bcl2(b=1))
[{'Bax4(b=1)': 1, 'Bcl2(b=1)': 1}]

>>> spm.match(Bax4() % Bcl2())
[{'Bax4(b=None)': 1, 'Bcl2(b=None)': 1}]
```
Contrived example to test a site with both a bond and state defined

```python
>>> model = Model(_export=False)
>>> A = Monomer('A', ['a'], {'a': ['u', 'p']}, _export=False)
>>> model.add_component(A)
>>> species = [
 A(a='u'),
 A(a=1),
 A(a=('u', 1)),
 A(a=('p', 1))
]
>>> model.species = [as_complex_pattern(sp) for sp in species]
>>> spm2 = SpeciesPatternMatcher(model)
>>> spm2.match(A())
[A(a='u'), A(a=1) % A(a=1), A(a=('u', 1)) % A(a=('u', 1)),
 A(a=('p', 1)) % A(a=('p', 1))]
>>> spm2.match(A(a='u'))
[A(a='u')] # (continues on next page)
>>> spm2.match(A(a=('u', ANY)))
[A(a=('u', 1)) % A(a=('u', 1))]
>>> spm2.match(A(a=('u', WILD)))
[A(a='u'), A(a=('u', 1)) % A(a=('u', 1))]

add_species (species, check_duplicate=True)
Add a species to the search list without adding to the model

Parameters

species [ComplexPattern] A concrete ComplexPattern (molecular species) to add to the
search list

check_duplicate [bool, optional] If True, check the species list to make sure the new species
is not already in the list

match (pattern, index=False, exact=False, counts=False)
Match a pattern against the list of species

Parameters

pattern: pysb.Monomer or pysb.MonomerPattern or pysb.ComplexPattern

index: bool If True, return species numerical index, rather than species itself

exact: bool Treat Match as exact equivalence, not a pattern match (i.e. must be concrete if
a MonomerPattern or ComplexPattern)

counts: bool If True, return match counts for the search pattern within each species.

Returns

list of pysb.ComplexPattern or list of int A list of species matching the pattern is returned,
unless index=True, in which case a list of the numerical indices of matching species is
returned instead

Examples

```python
>>> from pysb.examples import earm_1_0
>>> from pysb.bng import generate_equations
>>> model = earm_1_0.model
>>> generate_equations(model)
```
>>> spm = SpeciesPatternMatcher(model)
>>> L = model.monomers['L']
>>> spm.match(L())
[L(b=None), L(b=1) % pR(b=1)]

rule_firing_species *(rules_to_consider=None, include_reverse=True)*

Return the species which match the reactants of a set of rules

Parameters

rules_to_consider: list of pysb.Rule or None A list of rules to use. If None, use all rules in the model.

include_reverse: bool, optional For reversible rules, include species triggering the rule in reverse

Returns

collections.OrderedDict Dictionary of PySB rules whose reactants contain at least one of the species in the model. Keys are PySB rules, values are a list of lists. Each outer list corresponding to each ComplexPattern in the ReactantPattern (or ReactantPattern and ProductPattern, if rule is reversible). Each inner list contains the list of species matching the corresponding ComplexPattern.

Examples

```python
>>> from pysb.examples import robertson
>>> from pysb.bng import generate_equations
>>> model = robertson.model
>>> generate_equations(model)
>>> spm = SpeciesPatternMatcher(model)

Get a list of species which fire each rule:

```python
>>> spm.rule_firing_species()
OrderedDict(
 [(Rule('A_to_B', A() >> B(), k1), [[A()]]),
 (Rule('BB_to_BC', B() + B() >> B() + C(), k2), [[B()], [B()]]),
 (Rule('BC_to_AC', B() + C() >> A() + C(), k3), [[B()], [C()]]))
```

**species_fired_by_reactant_pattern** *(reaction_pattern)*

Get list of species matching a reactant pattern

**Parameters**

reaction_pattern: pysb.ReactionPattern

**Returns**

list of lists of pysb.ComplexPattern  List of lists of species matching each ComplexPattern in the ReactantPattern.

**Examples**
Get a list of species which fire each rule:

```python
>>> rxn_pat = model.rules['bax_dim'].reactant_pattern
>>> print(rxn_pat)
BAX(t1=None, t2=None) + BAX(t1=None, t2=None)
```

```python
>>> spm.species_fired_by_reactant_pattern(rxn_pat)
[[BAX(t1=None, t2=None, inh=None),
 BAX(t1=None, t2=None, inh=1) % MCL1(b=1)],
 [BAX(t1=None, t2=None, inh=None),
 BAX(t1=None, t2=None, inh=1) % MCL1(b=1)]]
```

**pysb.pattern.check_dangling_bonds** *(pattern)*

Check for dangling bonds in a PySB ComplexPattern/ReactionPattern

Raises a DanglingBondError if a dangling bond is found

**pysb.pattern.get_bonds_in_pattern** *(pat)*

Return the set of integer bond numbers used in a pattern

To return as a list (with duplicates), use *get_half_bonds_in_pattern()*

**Parameters**

- **pat** *(ComplexPattern, MonomerPattern, or None)* A pattern from which bond numberings are extracted

**Returns**

- **set** Bond numbers used in the supplied pattern

**Examples**

```python
>>> A = Monomer('A', ['b1', 'b2'], _export=False)
>>> get_bonds_in_pattern(A(b1=None, b2=None)) == set()
True
>>> get_bonds_in_pattern(A(b1=1) % A(b2=1)) == {1}
True
>>> get_bonds_in_pattern(A(b1=1) % A(b1=2, b2=1) % A(b1=2)) == {1, 2}
True
```

**pysb.pattern.get_half_bonds_in_pattern** *(pat)*

Return the list of integer bond numbers used in a pattern

To return as a set, use *get_bonds_in_pattern()*.

**Parameters**

- **pat** *(ComplexPattern, MonomerPattern, or None)* A pattern from which bond numberings are extracted

**Returns**

- **list** Bond numbers used in the supplied pattern
Examples

```python
>>> A = Monomer('A', ['b1', 'b2'], _export=False)
>>> get_half_bonds_in_pattern(A(b1=None, b2=None))
[]
>>> get_half_bonds_in_pattern(A(b1=1) % A(b2=1))
[1, 1]
```

```python
pysb.pattern.match_complex_pattern(pattern, candidate, exact=False, count=False)
```

Compare two ComplexPatterns against each other

**Parameters**

- `pattern`: pysb.ComplexPattern
- `candidate`: pysb.Complex.Pattern
- `exact`: bool Set to True for exact matches (i.e. species equivalence, or exact graph isomorphism). Set to False to compare as a pattern (i.e. subgraph isomorphism).
- `count`: bool Provide match counts for pattern in candidate

**Returns**

True if pattern matches candidate, False otherwise

```python
pysb.pattern.match_reaction_pattern(pattern, candidate)
```

Compare two ReactionPatterns against each other

This function tests that every ComplexPattern in pattern has a matching ComplexPattern in candidate. If there’s a one-to-one mapping of ComplexPattern matches, this is straightforward. Otherwise, we need to check for a maximum matching - a graph theory term referring to the maximum number of edges possible in a bipartite graph (representing ComplexPattern compatibility between pattern and candidate) without overlapping nodes. If every ComplexPattern in pattern has a match, then return True, otherwise return False. This algorithm is polynomial time (although the ComplexPattern isomorphism comparisons using match_complex_pattern are not).

**Parameters**

- `pattern`: pysb.ReactionPattern
- `candidate`: pysb.ReactionPattern

**Returns**

True if pattern matches candidate, False otherwise.

```python
pysb.pattern.monomers_from_pattern(pattern)
```

Return the set of monomers used in a pattern

### 4.9 Visualizing model structure

PySB currently includes a handful of tools for visualizing the structure of models. These can be supplemented with existing tools for visualizing the structure of rule-based models (e.g., contact maps and influence maps for Kappa models).
4.9.1 Render a model’s reaction network (**pysb.tools.render_reactions**)  

**Usage**

Usage: `python -m pysb.tools.render_reactions mymodel.py > mymodel.dot`

Renders the reactions produced by a model into the “dot” graph format which can be visualized with Graphviz.

To create a PDF from the .dot file, use the “dot” command from Graphviz:

```
dot mymodel.dot -T pdf -O
```

This will create mymodel.dot.pdf. You can also change the “dot” command to one of the other Graphviz drawing tools for a different type of layout. Note that you can pipe the output of render_reactions straight into Graphviz without creating an intermediate .dot file, which is especially helpful if you are making continuous changes to the model and need to visualize your changes repeatedly:

```
python -m pysb.tools.render_reactions mymodel.py | dot -T pdf -o mymodel.pdf
```

Note that some PDF viewers will auto-reload a changed PDF, so you may not even need to manually reopen it every time you rerun the tool.

**Output for Robertson example model**

The Robertson example model (in **pysb.examples.robertson**) contains the following three reactions:

- A \( \rightarrow \) B
- B + B \( \rightarrow \) B + C
- C + B \( \rightarrow \) C + A

The reaction network diagram for this system as generated by this module and rendered using `dot` is shown below:

[Diagram of reaction network]

Circular nodes (\( r0 \), \( r1 \) and \( r2 \)) indicate reactions; square nodes (A(), B() and C()) indicate species. Incoming arrows from a species node to a reaction node indicate that the species is a reactant; outgoing arrows from a reaction node to a species node indicate that the species is a product. A hollow diamond-tipped arrow from a species to a reaction indicates that the species is involved as both a reactant and a product, i.e., it serves as a “modifier” (enzyme or catalyst).

**pysb.tools.render_reactions.run**(model)

Render the reactions produced by a model into the “dot” graph format.

**Parameters**

- **model** [pysb.core.Model] The model to render.

**Returns**
4.9.2 Render a model’s species (**pysb.tools.render_species**)  

Usage: python -m pysb.tools.render_species mymodel.py > mymodel.dot  

Renders the species from a model into the “dot” graph format which can be visualized with Graphviz.

To create a PDF from the .dot file, use the Graphviz tools in the following command pipeline:

```
ccomps -x mymodel.dot | dot | gvpack -m0 | neato -n2 -T pdf -o mymodel.pdf
```

You can also change the “dot” command to “circo” or “sfdp” for a different type of layout. Note that you can pipe the output of render_species straight into a Graphviz command pipeline without creating an intermediate .dot file, which is especially helpful if you are making continuous changes to the model and need to visualize your changes repeatedly:

```
python -m pysb.tools.render_species mymodel.py | ccomps -x | dot |
gvpack -m0 | neato -n2 -T pdf -o mymodel.pdf
```

Note that some PDF viewers will auto-reload a changed PDF, so you may not even need to manually reopen it every time you rerun the tool.

**pysb.tools.render_species**.run(model)  
Render the species from a model into the “dot” graph format.

**Parameters**

- model [pysb.core.Model] The model to render.

**Returns**

- string The dot format output.

### 4.10 Importing from other formats (**pysb.importers**)  

**pysb.importers.bngl.model_from_bngl** (filename, force=False, cleanup=True)  
Convert a BioNetGen .bngl model file into a PySB Model.

**Parameters**

- force [bool, optional] The default, False, will raise an Exception if there are any errors importing the model to PySB, e.g. due to unsupported features. Setting to True will attempt to ignore any import errors, which may lead to a model that only poorly represents the original. Use at own risk!  
- cleanup [bool] Delete temporary directory on completion if True. Set to False for debugging purposes.

**Notes**

The following features are not supported in PySB and will cause an error if present in a .bngl file:

- Fixed species (with a $ prefix, like $Null)
- BNG excluded or included reaction patterns (deprecated in BNG)
• BNG local functions
• Molecules with identically named sites, such as $M(1,1)$
• BNG’s custom rate law functions, such as $MM$ and $Sat$ (deprecated in BNG)

```python
pysb.importers.sbml.model_from_sbml(filename, force=False, cleanup=True, **kwargs)
```
Create a PySB Model object from an Systems Biology Markup Language (SBML) file, using BioNetGen’s `sbml-Translator`, which can attempt to extrapolate higher-level (rule-based) structure from an SBML source file (argument atomize=True). The model is first converted into BioNetGen language by `sbmlTranslator`, then PySB’s `BnglBuilder` class converts the BioNetGen language model into a PySB Model.

**Parameters**

- **filename**: A Systems Biology Markup Language .sbml file
- **force** [bool, optional] The default, False, will raise an Exception if there are any errors importing the model to PySB, e.g. due to unsupported features. Setting to True will attempt to ignore any import errors, which may lead to a model that only poorly represents the original. Use at own risk!
- **cleanup** [bool] Delete temporary directory on completion if True. Set to False for debugging purposes.

**kwargs**: Keyword arguments to pass on to `sbml_translator()`

**Notes**

Read the `sbmlTranslator` documentation for further information on `sbmlTranslator`’s limitations.

```python
pysb.importers.sbml.model_from_biomodels(accession_no, force=False, cleanup=True, mirror='ebi', **kwargs)
```
Create a PySB Model based on a BioModels SBML model

Downloads file from BioModels (https://www.ebi.ac.uk/biomodels-main/) and runs it through `model_from_sbml()`. See that function for further details on additional arguments and implementation details. Utilizes BioNetGen’s `SBMLTranslator`.

**Parameters**

- **accession_no** [str] A BioModels accession number - the string ‘BIOMD’ followed by 10 digits, e.g. ‘BIOMD0000000001’. For brevity, just the last digits will be accepted as a string, e.g. ‘1’ is equivalent the accession number in the previous sentence.
- **force** [bool, optional] The default, False, will raise an Exception if there are any errors importing the model to PySB, e.g. due to unsupported features. Setting to True will attempt to ignore any import errors, which may lead to a model that only poorly represents the original. Use at own risk!
- **cleanup** [bool] Delete temporary directory on completion if True. Set to False for debugging purposes.
- **mirror** [str] Which BioModels mirror to use, either ‘ebi’ or ‘caltech’

**kwargs**: Keyword arguments to pass on to `sbml_translator()`

**Notes**

Read the `sbmlTranslator` documentation for further information on `sbmlTranslator`’s limitations.
Examples

```python
>>> from pysb.importers.sbml import model_from_biomodels
>>> model = model_from_biomodels('1')
>>> print(model)
<Model 'pysb' (monomers: 12, rules: 17, parameters: 37, expressions: 0, ...}
```

```python
pysb.importers.sbml.sbml_translator(input_file, output_file=None, convention_file=None, naming_conventions=None, user_structures=None, molecule_id=False, atomize=False, pathway_commons=False, verbose=False)
```

Run the BioNetGen sbmlTranslator binary to convert SBML to BNGL.

This function runs the external program sbmlTranslator, included with BioNetGen, which converts SBML files to BioNetGen language (BNGL).

Generally, PySB users don’t need to run this function directly; an SBML model can be imported to PySB in a single step with `model_from_sbml()`.

However, users may wish to note the parameters for this function, which alter the way the SBML file is processed. These parameters can be supplied as **kwargs to `model_from_sbml()`.

For more detailed descriptions of the arguments, see the sbmlTranslator documentation.

**Parameters**

- `input_file` [string] SBML input filename
- `output_file` [string, optional] BNGL output filename
- `convention_file` [string, optional] Conventions filename
- `naming_conventions` [string, optional] Naming conventions filename
- `user_structures` [string, optional] User structures filename
- `molecule_id` [bool, optional] Use SBML molecule IDs (True) or names (False). IDs are less descriptive but more BNGL friendly. Use only if the generated BNGL has syntactic errors
- `atomize` [bool, optional] Atomize the model, i.e. attempt to infer molecular structure and build rules from the model (True) or just perform a flat import (False)
- `pathway_commons` [bool, optional] Use pathway commons to infer molecule binding. This setting requires an internet connection and will query the pathway commons web service.
- `verbose` [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the logging levels and constants from Python’s logging module for interpretation of integer values. False leaves the logging verbosity unchanged, True is equal to DEBUG.

**Returns**

- `string` BNGL output filename

### 4.11 Exporting to other formats (pysb.export)

Tools for exporting PySB models to a variety of other formats.

Exporting can be performed at the command-line or programmatically/interactively from within Python.
4.11.1 Command-line usage

At the command-line, run as follows:

```python
python -m pysb.export model.py <format>
```

where `model.py` is a file containing a PySB model definition (i.e., contains an instance of `pysb.core.Model` instantiated as a global variable). `[format]` should be the name of one of the supported formats:

- `bngl`
- `bng_net`
- `kappa`
- `potterswheel`
- `sbml`
- `python`
- `pysb_flat`
- `mathematica`
- `matlab`

In all cases, the exported model code will be printed to standard out, allowing it to be inspected or redirected to another file.

4.11.2 Interactive usage

Export functionality is implemented by this module’s top-level function `export`. For example, to export the “Robertson” example model as SBML, first import the model:

```python
from pysb.examples.robertson import model
```

Then import the `export` function from this module:

```python
from pysb.export import export
```

Call the `export` function, passing the model instance and a string indicating the desired format, which should be one of the ones indicated in the list in the “Command-line usage” section above:

```python
sbml_output = export(model, 'sbml')
```

The output (a string) can be inspected or written to a file, e.g. as follows:

```python
with open('robertson.sbml', 'w') as f:
 f.write(sbml_output)
```

4.11.3 Implementation of specific exporters

Information on the implementation of specific exporters can be found in the documentation for the exporter classes in the package `pysb.export`.
Export SBML (pysb.export.sbml)

Module containing a class for exporting a PySB model to SBML using libSBML.

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.sbml.SbmlExporter(*args, **kwargs)

A class for returning the SBML for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

convert (level=(3, 2))

Convert the PySB model to a libSBML document

Requires the libsbml python package

Parameters

level: (int, int)  The SBML level and version to use. The default is SBML level 3, version 2.  
Conversion to other levels/versions may not be possible or may lose fidelity.

Returns

libsbml.SBMLDocument  A libSBML document converted form the PySB model

export (level=(3, 2))

Export the SBML for the PySB model associated with the exporter

Requires libsbml package.

Parameters

level: (int, int)  The SBML level and version to use. The default is SBML level 3, version 2.  
Conversion to other levels/versions may not be possible or may lose fidelity.

Returns

string  String containing the SBML output.

Export ODEs to MATLAB (pysb.export.matlab)

A class for converting a PySB model to a set of ordinary differential equations for integration in MATLAB.

Note that for use in MATLAB, the name of the .m file must match the name of the exported MATLAB class (e.g., robertson.m for the example below).

For information on how to use the model exporters, see the documentation for pysb.export.

Output for the Robertson example model

Information on the form and usage of the generated MATLAB class is contained in the documentation for the MATLAB model, as shown in the following example for pysb.examples.robertson:

```python
classdef robertson
 % A simple three-species chemical kinetics system known as "Robertson's
 % example", as presented in:
 %
 % H. H. Robertson, The solution of a set of reaction rate equations, in Numerical
 %
 % A class implementing the ordinary differential equations
```

(continues on next page)
% for the robertson model.
% Save as robertson.m.
% Generated by pysb.export.matlab.MatlabExporter.

Properties
----------
observables : struct
   A struct containing the names of the observables from the
   PySB model as field names. Each field in the struct
   maps the observable name to a matrix with two rows:
   the first row specifies the indices of the species
   associated with the observable, and the second row
   specifies the coefficients associated with the species.
   For any given timecourse of model species resulting from
   integration, the timecourse for an observable can be
   retrieved using the get_observable method, described
   below.

parameters : struct
   A struct containing the names of the parameters from the
   PySB model as field names. The nominal values are set by
   the constructor and their values can be overridden
   explicitly once an instance has been created.

Methods
-------
robertson.odes(tspan, y0)
   The right-hand side function for the ODEs of the model,
   for use with MATLAB ODE solvers (see Examples).

robertson.get_initial_values()
   Returns a vector of initial values for all species,
   specified in the order that they occur in the original
   PySB model (i.e., in the order found in model.species).
   Non-zero initial conditions are specified using the
   named parameters included as properties of the instance.
   Hence initial conditions other than the defaults can be
   used by assigning a value to the named parameter and then
   calling this method. The vector returned by the method
   is used for integration by passing it to the MATLAB
   solver as the y0 argument.

robertson.get_observables(y)
   Given a matrix of timecourses for all model species
   (i.e., resulting from an integration of the model),
   get the trajectories corresponding to the observables.
   Timecourses are returned as a struct which can be
   indexed by observable name.

Examples
--------
Example integration using default initial and parameter
values:
  >> m = robertson();
% >> tspan = [0 100];% >> [t y] = ode15s(@(m.odes, tspan, m.get_initial_values());% Retrieving the observables:% >> y_obs = m.get_observables(y)% propertiesobservablesparametersendmethodsfunction self = robertson()% Assign default parameter valuesself.parameters = struct( ...'k1', 0.040000000000000001, ...'k2', 30000000, ...'k3', 10000, ...'A_0', 1, ...'B_0', 0, ...'C_0', 0);% Define species indices (first row) and coefficients% (second row) of named observablesself.observables = struct( ...'A_total', [1; 1], ...'B_total', [2; 1], ...'C_total', [3; 1]);endfunction initial_values = get_initial_values(self)% Return the vector of initial conditions for all% species based on the values of the parameters% as currently defined in the instance.initial_values = zeros(1,3);initial_values(1) = self.parameters.A_0; % A()initial_values(2) = self.parameters.B_0; % B()initial_values(3) = self.parameters.C_0; % C()endfunction y = odes(self, tspan, y0)% Right hand side function for the ODEs% Shorthand for the struct of model parametersp = self.parameters;% A();y(1,1) = -p.k1*y0(1) + p.k3*y0(2)*y0(3);% B();y(2,1) = p.k1*y0(1) - p.k2*power(y0(2), 2) - p.k3*y0(2)*y0(3);% C();y(3,1) = p.k2*power(y0(2), 2);endfunction y_obs = get_observables(self, y)(continues on next page)
% Retrieve the trajectories for the model observables
% from a matrix of the trajectories of all model
% species.

% Initialize the struct of observable timecourses
% that we will return
y_obs = struct();

% Iterate over the observables;
observable_names = fieldnames(self.observables);
for i = 1:numel(observable_names)
    obs_matrix = self.observables.(observable_names{i});
    if isempty(obs_matrix)
        y_obs.(observable_names{i}) = zeros(size(y, 1), 1);
        continue
    end
    species = obs_matrix(1, :);
    coefficients = obs_matrix(2, :);
    y_obs.(observable_names{i}) = ...
        y(:, species) * coefficients';
end
end
end

class pysb.export.matlab.MatlabExporter(model, docstring=None)
A class for returning the ODEs for a given PySB model for use in MATLAB.
Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export()
Generate a MATLAB class definition containing the ODEs for the PySB model associated with the exporter.

Returns

string  String containing the MATLAB code for an implementation of the model’s ODEs.

Export ODEs to Mathematica (pysb.export.mathematica)
Module containing a class for converting a PySB model to a set of ordinary differential equations for integration or analysis in Mathematica.
For information on how to use the model exporters, see the documentation for pysb.export.

Output for the Robertson example model

The Mathematica code produced will follow the form as given below for pysb.examples.robertson:

/*
A simple three-species chemical kinetics system known as "Robertson's example", as presented in:

*/

(continues on next page)
Mathematica model definition file for model robertson.  
Generated by pysb.export.mathematica.MathematicaExporter. 

Run with (for example):

```mathematica
(tmax = 10
 soln = NDSolve[Join[odes, initconds], slist, {t, 0, tmax}]
 Plot[s0[t] /. soln, {t, 0, tmax}, PlotRange -> All]
*)
```

(* Parameters *)
```
k1 = 0.040000000000000001; k2 = 30000000;
 k3 = 10000; A0 = 1;
 B0 = 0;
 C0 = 0;
```

(* List of Species *)
```
 (* s0[t] = A() *)
 (* s1[t] = B() *)
 (* s2[t] = C() *)
```

(* ODEs *)
```
 odes = {
 s0'[t] == -k1*s0[t] + k3*s1[t]*s2[t],
 s1'[t] == k1*s0[t] - k2*s1[t]^2 - k3*s1[t]*s2[t],
 s2'[t] == k2*s1[t]^2
 }
```

(* Initial Conditions *)
```
 initconds = {
 s0[0] == A0,
 s1[0] == B0,
 s2[0] == C0
 }
```

(* List of Variables (e.g., as an argument to NDSolve) *)
```
 solvelist = {
 s0[t],
 s1[t],
 s2[t]
 }
```

(* Run the simulation -- example *)
```
(tmax = 100
 soln = NDSolve[Join[odes, initconds], solvelist, {t, 0, tmax}]
)
```

(* Observables *)
```
 Atotal = (s0[t] * 1) /. soln
 Btotal = (s1[t] * 1) /. soln
 Ctotal = (s2[t] * 1) /. soln
```

The output consists of a block of commands that define the ODEs, parameters, species and other variables for the model, along with a set of descriptive comments. The sections are as follows:

- The header comments identify the model and show an example of how to integrate the ODEs in Mathematica.
• The parameters block defines the numerical values of the named parameters.
• The list of species gives the mapping between the indexed species \(s_0, s_1, s_2\) and their representation in PySB \((A(), B(), C())\).
• The ODEs block defines the set of ordinary differential equations and assigns the set of equations to the variable \(odes\).
• The initial conditions block defines the initial values for each species and assigns the set of conditions to the variable \(initconds\).
• The “list of variables” block enumerates all of the species in the model \((s_0[t], s_1[t], s_2[t])\) and assigns them to the variable \(solvelist\); this list can be passed to the Mathematica command \(NDSolve\) to indicate the variables to be solved for.
• This is followed by an example of how to call \(NDSolve\) to integrate the equations.
• Finally, the observables block enumerates the observables in the model, expressing each one as a linear combination of the appropriate species in the model. The interpolating functions returned by \(NDSolve\) are substituted in from the solution variable \(soln\), allowing the observables to be plotted.

Note that Mathematica does not permit underscores in variable names, so any underscores used in PySB variables will be removed (e.g., \(A_{\text{total}}\) will be converted to \(Atotal\)).

class pysb.export.mathematica.MathematicaExporter(model, docstring=None)
A class for returning the ODEs for a given PySB model for use in Mathematica.

    Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

    export()
    Generate the corresponding Mathematica ODEs for the PySB model associated with the exporter.

    Returns

    string  String containing the Mathematica code for the model’s ODEs.

Export ODEs to PottersWheel (pysb.export.potterswheel)

Module containing a class for converting a PySB model to an equivalent set of ordinary differential equations for integration or analysis in PottersWheel.

For information on how to use the model exporters, see the documentation for pysb.export.

Output for the Robertson example model

The PottersWheel code produced will follow the form as given below for pysb.examples.robertson:

```plaintext
% A simple three-species chemical kinetics system known as "Robertson's example", as presented in:
% PottersWheel model definition file
% save as robertson.m
function m = robertson()

m = pwGetEmptyModel();
```

(continues on next page)
% meta information
m.ID = 'robertson';
m.name = 'robertson';
m.description = '';
m.authors = {''};
m.dates = {''};
m.type = 'PW-1-5';

% dynamic variables
m = pwAddX(m, 's0', 1.000000e+00);
m = pwAddX(m, 's1', 0.000000e+00);
m = pwAddX(m, 's2', 0.000000e+00);

% dynamic parameters
m = pwAddK(m, 'k1', 4.000000e-02);
m = pwAddK(m, 'k2', 3.000000e+07);
m = pwAddK(m, 'k3', 1.000000e+04);
m = pwAddK(m, 'A_0', 1.000000e+00);
m = pwAddK(m, 'B_0', 0.000000e+00);
m = pwAddK(m, 'C_0', 0.000000e+00);

% ODEs
m = pwAddODE(m, 's0', '-k1*s0 + k3*s1*s2');
m = pwAddODE(m, 's1', 'k1*s0 - k2*power(s1, 2) - k3*s1*s2');
m = pwAddODE(m, 's2', 'k2*power(s1, 2)');

% observables
m = pwAddY(m, 'A_total', '1.000000 * s0');
m = pwAddY(m, 'B_total', '1.000000 * s1');
m = pwAddY(m, 'C_total', '1.000000 * s2');

% end of PottersWheel model robertson

class pysb.export.potterswheel.PottersWheelExporter(model, docstring=None)
   A class for returning the PottersWheel equivalent for a given PySB model.

   Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

   export()
      Generate the PottersWheel code for the ODEs of the PySB model associated with the exporter.

      Returns
         string  String containing the PottersWheel code for the ODEs.

Export BNGL (pysb.export.bngl)

Module containing a class for exporting a PySB model to BNGL.
Serves as a wrapper around pysb.generator.bng.BngGenerator.
For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.bngl.BnglExporter(model, docstring=None)
   A class for returning the BNGL for a given PySB model.

   Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.
export()

Generate the corresponding BNGL for the PySB model associated with the exporter. A wrapper around `pysb.generator.bng.BngGenerator`.

Returns

string The BNGL output for the model.

Export BNGL NET file (`pysb.export.bng_net`)

Module containing a class for getting the BNGL NET file for a given PySB model.

Serves as a wrapper around `pysb.bng.generate_network()`, which generates the BNGL for the model and then invokes BNG to generate the NET file.

For information on how to use the model exporters, see the documentation for `pysb.export`.

class pysb.export.bng_net.BngNetExporter(model, docstring=None)

A class for generating the BNG NET file for a given PySB model.

Inherits from `pysb.export.Export`, which implements basic functionality for all exporters.

export()

Generate the BNGL NET file for the PySB model associated with the exporter. A wrapper around `pysb.bng.generate_network()`.

Returns

string The NET file output for the model, generated by BNG.

Export Kappa (`pysb.export.kappa`)

Module containing a class for returning the Kappa equivalent for a given PySB model.

Serves as a wrapper around `pysb.generator.kappa.KappaGenerator`.

For information on how to use the model exporters, see the documentation for `pysb.export`.

class pysb.export.kappa.KappaExporter(model, docstring=None)

A class for returning the Kappa for a given PySB model.

Inherits from `pysb.export.Exporter`, which implements basic functionality for all exporters.

eexport(dialect='kasim')

Generate the corresponding Kappa for the PySB model associated with the exporter. A wrapper around `pysb.generator.kappa.KappaGenerator`.

Parameters

dialect [(optional) string, either ‘kasim’ (default) or ‘complx’] The Kappa file syntax for the Kasim simulator is slightly different from that of the complx analyzer. This argument specifies which type of Kappa to produce (‘kasim’ is the default).

Returns

string The Kappa output.
Export standalone Python (pysb.export.python)

A module containing a class that produces Python code for simulating a PySB model without requiring PySB itself (note that NumPy and SciPy are still required). This offers a way of distributing a model to those who do not have PySB.

For information on how to use the model exporters, see the documentation for pysb.export.

Structure of the standalone Python code

The standalone Python code defines a class, Model, with a method simulate that can be used to simulate the model.

As shown in the code for the Robertson model below, the Model class defines the fields parameters, observables, and initial_conditions as lists of collections.namedtuple objects that allow access to the features of the model.

The simulate method has the following signature:

```python
def simulate(self, tspan, param_values=None, view=False):
```

with arguments as follows:

- tspan specifies the array of timepoints
- param_values is an optional vector of parameter values that can be used to override the nominal values defined in the PySB model
- view is an optional boolean argument that specifies if the simulation output arrays are returned as copies (views) of the original. If True, returns copies of the arrays, allowing changes to be made to values in the arrays without affecting the originals.

simulate returns a tuple of two arrays. The first array is a matrix with timecourses for each species in the model as the columns. The second array is a numpy record array for the model’s observables, which can be indexed by name.

Output for the Robertson example model

Example code generated for the Robertson model, pysb.examples.robertson:

```python
"""A simple three-species chemical kinetics system known as "Robertson's example", as presented in:

"""

exported from PySB model 'robertson'

import numpy
import weave
import scipy.integrate
import collections
import itertools
import distutils.errors

_use_inline = False
```
try:
    weave.inline('int i;', force=1)
    _use_inline = True
except distutils.errors.CompileError:
    pass

Parameter = collections.namedtuple('Parameter', 'name value')
Observable = collections.namedtuple('Observable', 'name species coefficients')
Initial = collections.namedtuple('Initial', 'param_index species_index')

class Model(object):
    
def __init__(self):
        self.y = None
        self.yobs = None
        self.integrator = scipy.integrate.ode(self.ode_rhs)
        self.integrator.set_integrator('vode', method='bdf',
                                       with_jacobian=True)

        self.y0 = numpy.empty(3)
        self.ydot = numpy.empty(3)
        self.sim_param_values = numpy.empty(6)
        self.parameters = [None] * 6
        self.observables = [None] * 3
        self.initial_conditions = [None] * 3

        self.parameters[0] = Parameter('k1', 0.040000000000000001)
        self.parameters[1] = Parameter('k2', 30000000)
        self.parameters[2] = Parameter('k3', 10000)
        self.parameters[3] = Parameter('A_0', 1)
        self.parameters[4] = Parameter('B_0', 0)
        self.parameters[5] = Parameter('C_0', 0)

        self.observables[0] = Observable('A_total', [0], [1])
        self.observables[1] = Observable('B_total', [1], [1])
        self.observables[2] = Observable('C_total', [2], [1])

        self.initial_conditions[0] = Initial(3, 0)
        self.initial_conditions[1] = Initial(4, 1)
        self.initial_conditions[2] = Initial(5, 2)

    if _use_inline:
        def ode_rhs(self, t, y, p):
            ydot = self.ydot
            weave.inline('ydot[0] = -p[0]*y[0] + p[2]*y[1]*y[2];
                          ydot[1] = p[0]*y[0] - p[1]*pow(y[1], 2) - p[2]*y[1]*y[2];
                          ydot[2] = p[1]*pow(y[1], 2);
                          
                          return ydot

    else:
        def ode_rhs(self, t, y, p):
            ydot = self.ydot

(continues on next page)
Using the standalone Python model

An example usage pattern for the standalone Robertson model, once generated:

```python
def simulate(self, tspan, param_values=None, view=False):
 if param_values is not None:
 # accept vector of parameter values as an argument
 if len(param_values) != len(self.parameters):
 raise Exception("param_values must have length \%d" %
 len(self.parameters))
 self.sim_param_values[:] = param_values
 else:
 # create parameter vector from the values in the model
 self.sim_param_values[:] = [p.value for p in self.parameters]
 self.y0.fill(0)
 for ic in self.initial_conditions:
 self.y0[ic.species_index] = self.sim_param_values[ic.param_index]
 if self.y is None or len(tspan) != len(self.y):
 self.y = numpy.empty((len(tspan), len(self.y0)))
 if len(self.observables):
 self.yobs = numpy.ndarray(len(tspan),
 zip((obs.name for obs in self.observables),
 itertools.repeat(float)))
 else:
 self.yobs = numpy.ndarray((len(tspan), 0))
 self.yobs_view = self.yobs.view(float).reshape(len(self.yobs), -1)

 # perform the actual integration
 self.integrator.set_initial_value(self.y0, tspan[0])
 self.integrator.set_f_params(self.sim_param_values)
 self.y[0] = self.y0
 t = 1
 while self.integrator.successful() and self.integrator.t < tspan[-1]:
 self.y[t] = self.integrator.integrate(tspan[t])
 t += 1
 for i, obs in enumerate(self.observables):
 self.yobs_view[:, i] =
 (self.y[:, obs.species] * obs.coeficients).sum(1)
 if view:
 y_out = self.y.view()
 yobs_out = self.yobs_view()
 for a in y_out, yobs_out:
 a.flags.writeable = False
 else:
 y_out = self.y.copy()
 yobs_out = self.yobs.copy()
 return (y_out, yobs_out)
```

Using the standalone Python model

An example usage pattern for the standalone Robertson model, once generated:
```
Import the standalone model file
import robertson_standalone
import numpy
from matplotlib import pyplot as plt

Instantiate the model object (the constructor takes no arguments)
model = robertson_standalone.Model()

Simulate the model
tspan = numpy.linspace(0, 100)
(species_output, observables_output) = model.simulate(tspan)

Plot the results
plt.figure()
plt.plot(tspan, observables_output['A_total'])
plt.show()
```

class **pysb.export.python.PythonExporter** *(model, docstring=None)*

A class for returning the standalone Python code for a given PySB model.

Inherits from **pysb.export.Exporter**, which implements basic functionality for all exporters.

**export()**

Export Python code for simulation of a model without PySB.

**Returns**

**string**  String containing the standalone Python code.

**Export a “flat” PySB model** *(pysb.export.pysb_flat)*

A module containing a class that exports a PySB model to a single Python source file that, when imported, will recreate
the same model. This is intended for saving a dynamically generated model so that it can be reused without re-running
the dynamic generation process. Note that any macro calls and other program structure in the original model are
“flattened” in the process.

For information on how to use the model exporters, see the documentation for **pysb.export**.

**Structure of the Python code**

The standalone Python code calls **Model()**, then defines Monomers, Parameters, Expressions (constant), Compart-
ments, Observables, Expressions (dynamic), Rules and initial conditions in that order. This can be considered a sort
of “repr()” for a full model.

If the output is saved as **foo.py** then one may load the model with the following line:

```
from foo import model
```

class **pysb.export.pysb_flat.PysbFlatExporter** *(model, docstring=None)*

A class for generating PySB “flat” model source code from a model.

Inherits from **pysb.export.Exporter**, which implements basic functionality for all exporters.

**export()**

Export PySB source code from a model.

**Returns**
string String containing the Python code.

**Export to StochKit (pysb.export.stochkit)**

Module containing a class to return the StochKit XML equivalent of a model

Contains code based on the gillespy <https://github.com/JohnAbel/gillespy> library with permission from author Brian Drawert.

For information on how to use the model exporters, see the documentation for pysb.export.

```python
class pysb.export.stochkit.StochKitExporter(model, docstring=None)
 A class for returning the Kappa for a given PySB model.

 Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

 export (initials=None, param_values=None)
 Generate the corresponding StochKit2 XML for a PySB model

 Parameters

 initials [list of numbers] List of initial species concentrations overrides (must be same length as model.species). If None, the concentrations from the model are used.

 param_values [list] List of parameter value overrides (must be same length as model.parameters). If None, the parameter values from the model are used.

 Returns

 string The model in StochKit2 XML format
```

**Exceptions**

- **pysb.export.CompartmentsNotSupported**
  Compartments are not supported by this exporter

- **pysb.export.ExportError**

```python
class pysb.export.Exporter(model, docstring=None)
 Base class for all PySB model exporters.

 Export functionality is implemented by subclasses of this class. The pattern for model export is the same for all exporter subclasses: a model is passed to the exporter constructor and the export method on the instance is called.

 Parameters

 model [pysb.core.Model] The model to export.

 docstring [string (optional)] The header comment to include at the top of the exported file.
```

**Examples**

Exporting the “Robertson” example model to SBML using the SbmlExporter subclass:

```python
>>> from pysb.examples.robertson import model
>>> from pysb.export.sbml import SbmlExporter
>>> e = SbmlExporter(model)
>>> sbml_output = e.export()
```

```python
docstring = None
 Header comment to include at the top of the exported file.
```

---

4.11. Exporting to other formats (pysb.export)
The export method, which must be implemented by any subclass.

All implementations of this method are expected to return a single string containing the representation of
the model in the desired format.

model = None
The model to export.

exception pysb.export.ExpressionsNotSupported
Expressions are not supported by this exporter

pysb.export.export (model, format, docstring=None)
Top-level function for exporting a model to a given format.

Parameters
model [pysb.core.Model] The model to export.
format [string] A string indicating the desired export format.

pysb.export.pad (text, depth=0)
Dedent multi-line string and pad with spaces.
A collection of links for learning more about Python and other tools used by PySB.

## 5.1 Python Language

For those unfamiliar with Python or programming there are several resources available online. We have found the ones below useful to learn Python in a practical and straightforward manner.

### Quick Python Overview:
- Instant Python

### Python tutorials for beginners, experienced users, or if you want a refresher:
- Official Python tutorial
- Python for non-programmers
- Dive into Python
- Thinking in Python

## 5.2 NumPy and SciPy

**NumPy:**
- NumPy for Matlab
- Also the Mathesaurus
- Matlab commands in Numerical Python cheatsheet

**SciPy:**
- Scientific Python
5.3 BioNetGen

- BioNetGen tutorial
- Compartmental BNGL
CHAPTER 6

Indices and tables

- genindex
- modindex
- search
p
  pysb.bng, 53
  pysb.core, 27
  pysb.export, 91
  pysb.export.bng, 53
  pysb.export.bng_net, 100
  pysb.export.bngl, 99
  pysb.export.kappa, 100
  pysb.export.mathematica, 96
  pysb.export.matlab, 93
  pysb.export.potterswheel, 98
  pysb.export.pysb_flat, 104
  pysb.export.python, 101
  pysb.export.sbml, 93
  pysb.export.stochkit, 105
  pysb.importers.bngl, 89
  pysb.importers.sbml, 90
  pysb.integrate, 38
  pysb.kappa, 57
  pysb.macros, 60
  pysb.pattern, 80
  pysb.simulator, 41
  pysb.testing.modeltests, 51
  pysb.tools.render_reactions, 88
  pysb.tools.render_species, 89
A

action() (pysb.bng.BngBaseInterface method), 53
action() (pysb.bng.BngConsole method), 54
action() (pysb.bng.BngFileInterface method), 55
add_annotation() (pysb.core.Model method), 32
add_component() (pysb.core.Model method), 32
add_species() (pysb.pattern.SpeciesPatternMatcher method), 84
all (pysb.simulator.SimulationResult attribute), 49
all_component_sets() (pysb.core.Model method), 32
all_components() (pysb.core.Model method), 32
AllObservablesInRules (class in pysb.testing.modeltests), 51
ANY (class in pysb.core), 27
as_complex_pattern() (in module pysb.core), 37
as_reaction_pattern() (in module pysb.core), 37
assemble_chain_sequential_base() (in module pysb.macros), 75
assemble_pore_sequential() (in module pysb.macros), 71
catalyze() (in module pysb.macros), 63
catalyze_complex() (in module pysb.macros), 66
catalyze_one_step() (in module pysb.macros), 67
catalyze_one_step_reversible() (in module pysb.macros), 68
catalyze_state() (in module pysb.macros), 65
check() (pysb.testing.modeltests.TestSuite method), 53
check_all() (pysb.testing.modeltests.TestSuite method), 53
check_dangling_bonds() (in module pysb.pattern), 86
cleanup() (pysb.core.SelfExporter static method), 37
Compartment (class in pysb.core), 27
CompartmentAlreadySpecifiedError, 28
CompartmentsNotSupported, 105
ComplexPattern (class in pysb.core), 28
Component (class in pysb.core), 28
ComponentDuplicateNameError, 29
ComponentSet (class in pysb.core), 29
ConstantExpressionError, 31
contact_map (pysb.kappa.StaticAnalysisResult attribute), 57
contact_map() (in module pysb.kappa), 57
convert() (pysb.export.sbml.SbmlExporter method), 93
copy() (pysb.core.ComplexPattern method), 28
CupSodaSimulator (class in pysb.simulator), 42

B

base_filename (pysb.bng.BngBaseInterface attribute), 54
bind() (in module pysb.macros), 61
bind_complex() (in module pysb.macros), 76
bind_table() (in module pysb.macros), 62
bind_table_complex() (in module pysb.macros), 78
bng_filename (pysb.bng.BngBaseInterface attribute), 54
BngBaseInterface (class in pysb.bng), 53
BngConsole (class in pysb.bng), 54
BngFileInterface (class in pysb.bng), 54
BngInterfaceError, 55
BnglExporter (class in pysb.export.bngl), 99
BngNetExporter (class in pysb.export.bng_net), 100
BngSimulator (class in pysb.simulator), 41
build_rule_expression() (in module pysb.core), 38
D

DanglingBondError, 31
dataframe (pysb.simulator.SimulationResult attribute), 49
degrade() (in module pysb.macros), 70
docstring (pysb.export.Exporter attribute), 105
DuplicateMonomerError, 31
DuplicateSiteError, 31
E

enable_synth_deg() (pysb.core.Model method), 32
equilibrate() (in module pysb.macros), 60
execute() (pysb.bng.BngFileInterface method), 55
expand_expr() (pysb.core.Expression method), 31
expand_obs() (pysb.core.Observable method), 36
export() (in module pysb.export), 106

Index
set_parameter() (pysb.bng.BngFileInterface method), 55
SimulationResult (class in pysb.kappa), 57
SimulationResult (class in pysb.simulator), 47
Solver (class in pysb.integrate), 38
species (pysb.simulator.SimulationResult attribute), 51
species_fired_by.reactant_pattern()
   (pysb.pattern.SpeciesPatternMatcher method), 85
SpeciesAssertion (class in pysb.testing.modeltests), 52
SpeciesDoesNotExist (class in pysb.testing.modeltests), 52
SpeciesExists (class in pysb.testing.modeltests), 52
SpeciesIsProduct (class in pysb.testing.modeltests), 52
SpeciesIsReactant (class in pysb.testing.modeltests), 52
SpeciesNeverProduct (class in pysb.testing.modeltests), 52
SpeciesNeverReactant (class in pysb.testing.modeltests), 52
SpeciesOnlyProduct (class in pysb.testing.modeltests), 52
SpeciesOnlyReactant (class in pysb.testing.modeltests), 52
SpeciesPatternMatcher (class in pysb.pattern), 83
StaticAnalysisResult (class in pysb.kappa), 57
StochKitExporter (class in pysb.export.stochkit), 105
StochKitSimulator (class in pysb.simulator), 45
stoichiometry_matrix (pysb.core.Model attribute), 33
SymbolExistsWarning, 37
synthesize() (in module pysb.macros), 69
synthesize.degrade_table() (in module pysb.macros), 70

T
TestSuite (class in pysb.testing.modeltests), 52
timecourse (pysb.kappa.SimulationResult attribute), 57

U
UnknownSiteError, 37
update_initial_condition_pattern() (pysb.core.Model method), 33

V
validate_const_expr() (in module pysb.core), 38
validate_expr() (in module pysb.core), 38
values() (pysb.core.ComponentSet method), 31

W
WILD (class in pysb.core), 37