Contents

1 Documentation 3
 1.1 Installation .. 3
 1.2 Example 1: NetLogo interaction through the pyNetLogo connector 4
 1.3 Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel . . 10
 1.4 core ... 19

2 Indices and tables 23

Python Module Index 25
Interface to use and access NetLogo (Wilensky 1999) from Python. One can interact with NetLogo in either headless (no GUI) or interactive GUI mode. The library provides functions to load models, execute commands, and get values from reporters. It is compatible with NetLogo 5.2, 5.3, and 6.0. It is largely similar to the ‘NetLogo’ Mathematica Link and RNetLogo.
1.1 Installation

pyNetLogo requires the NumPy, SciPy and pandas packages, which are included in most scientific Python distributions. The module has been tested using the Continuum Anaconda 2.7 and 3.6 64-bit distributions.

In addition, pyNetLogo depends on Jpype. Please follow the instructions provided there to install Jpype; the conda package manager usually provides the easiest option.

pyNetLogo can be installed using the pip package manager, with the following command from a terminal:

```
pip install pynetlogo
```

By default, pyNetLogo and Jpype will attempt to automatically identify the NetLogo version and installation directory on Mac or Windows, as well as the Java home directory. On Linux, or in case of issues (e.g. if NetLogo was installed in a different directory, or if the Java path is not found on a Mac), these parameters can be passed directly to the NetLogoLink class as described in the module documentation.

1.1.1 Known bugs and limitations

- On a Mac, only headless mode (without GUI) is supported.
- pyNetLogo can be used to control NetLogo from within Python. Calling Python from within NetLogo is not supported by this library. However, this can be achieved using the Python extension for NetLogo.
- See Jpype limitations for additional limitations.
- Mixing 32-bit and 64-bit versions of Java, Python, and NetLogo will crash Python.
1.2 Example 1: NetLogo interaction through the pyNetLogo connector

This notebook provides a simple example of interaction between a NetLogo model and the Python environment, using the Wolf Sheep Predation model included in the NetLogo example library (Wilensky, 1999). This model is slightly modified to add additional agent properties and illustrate the exchange of different data types. All files used in the example are available from the pyNetLogo repository at https://github.com/quael/pyNetLogo.

We start by instantiating a link to NetLogo, loading the model, and executing the `setup` command in NetLogo. This code assumes a Windows or Mac environment, under which the `NetLogoLink` class will by default attempt to use the most recent NetLogo installation found in the default program directory. The `netlogo_home` and `netlogo_version` parameters can be passed to the class to use a different installation, and are required under Linux.

```python
%matplotlib inline

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context('talk')
import pyNetLogo
netlogo = pyNetLogo.NetLogoLink(gui=True)
netlogo.load_model(r'Wolf Sheep Predation_v6.nlogo')
netlogo.command('setup')
```

We can use the `write_NetLogo_attriblist` method to pass properties to agents from a Pandas dataframe – for instance, initial values for given attributes. This improves performance by simultaneously setting multiple properties for multiple agents in a single function call.

As an example, we first load data from an Excel file into a dataframe. Each row corresponds to an agent, with columns for each attribute (including the `who` NetLogo identifier, which is required). In this case, we set coordinates for the agents using the `xcor` and `ycor` attributes.

```python
agent_xy = pd.read_excel('xy_DataFrame.xlsx')
agent_xy[['who','xcor','ycor']].head(5)
```

We can then pass the dataframe to NetLogo, specifying which attributes and which agent type we want to update:

```python
netlogo.write_NetLogo_attriblist(agent_xy[['who','xcor','ycor']], 'a-sheep')
```

We can check the data exchange by returning data from NetLogo to the Python workspace, using the report method. In the example below, this returns arrays for the `xcor` and `ycor` coordinates of the `sheep` agents, sorted by their `who` number. These are then plotted on a conventional scatter plot.

The `report` method directly passes a string to the NetLogo instance, so that the command syntax may need to be adjusted depending on the NetLogo version. The `netlogo_version` property of the link object can be used to check the current version. By default, the link object will use the most recent NetLogo version which was found.
```python
if netlogo.netlogo_version == '6':
    x = netlogo.report('map [s -> [xcor] of s] sort sheep')
    y = netlogo.report('map [s -> [ycor] of s] sort sheep')
elif netlogo.netlogo_version == '5':
    x = netlogo.report('map [[xcor] of ?1] sort sheep')
    y = netlogo.report('map [[ycor] of ?1] sort sheep')
fig, ax = plt.subplots(1)
ax.scatter(x, y, s=4)
ax.set_xlabel('xcor')
ax.set_ylabel('ycor')
ax.set_aspect('equal')
fig.set_size_inches(5,5)
plt.show()
```

We can then run the model for 100 ticks and update the Python coordinate arrays for the sheep agents, and return an additional array for each agent’s energy value. The latter is plotted on a histogram for each agent type.

```python
# We can use either of the following commands to run for 100 ticks:
netlogo.command('repeat 100 [go]
# netlogo.repeat_command('go', 100)
if netlogo.netlogo_version == '6':
    # Return sorted arrays so that the x, y and energy properties of each agent are in the same order.
```
The `repeat_report` method returns a Pandas dataframe containing reported values over a given number of ticks, for one or multiple reporters. By default, this assumes the model is run with the “go” NetLogo command; this can be set by passing an optional `go` argument.

The dataframe is indexed by ticks, with labeled columns for each reporter. In this case, we track the number of wolf and sheep agents over 200 ticks; the outcomes are first plotted as a function of time. The number of wolf agents is then plotted as a function of the number of sheep agents, to approximate a phase-space plot.
counts = netlogo.repeat_report(['count wolves', 'count sheep'], 200, go='go')

fig, ax = plt.subplots(1, 2)
counts.plot(x=counts.index, ax=ax[0])
ax[0].set_xlabel('Ticks')
ax[0].set_ylabel('Counts')
ax[1].plot(counts['count wolves'], counts['count sheep'])
ax[1].set_xlabel('Wolves')
ax[1].set_ylabel('Sheep')
fig.set_size_inches(12, 5)
plt.show()

The `repeat_report` method can also be used with reporters that return a NetLogo list. In this case, the list is converted to a numpy array. As an example, we track the energy of the wolf and sheep agents over 5 ticks, and plot the distribution of the wolves' energy at the final tick recorded in the dataframe.

To illustrate different data types, we also track the `[sheep_str]` of sheep reporter (which returns a string property across the sheep agents, converted to a numpy object array), `count sheep` (returning a single numerical variable), and `glob_str` (returning a single string variable).

fig, ax = plt.subplots(1)
sns.distplot(energy_df[['[energy] of wolves']].iloc[-1], kde=False, bins=20, ax=ax)
ax.set_xlabel('Energy')
ax.set_ylabel('Counts')
fig.set_size_inches(4, 4)
plt.show()
The `patch_report` method can be used to return a dataframe which (for this example) contains the `countdown` attribute of each NetLogo patch. This dataframe essentially replicates the NetLogo environment, with column labels corresponding to the xcor patch coordinates, and indices following the pycor coordinates.

```python
energy_df.head()
```

countdown_df = netlogo.patch_report('countdown')

```python
fig, ax = plt.subplots(1)

patches = sns.heatmap(countdown_df, xticklabels=5, yticklabels=5, cbar_kws={"label": "countdown"}, ax=ax)
ax.set_xlabel('pxcor')
ax.set_ylabel('pycor')
ax.set_aspect('equal')
fig.set_size_inches(8,4)

plt.show()
```
The dataframes can be manipulated with any of the existing Pandas functions, for instance by exporting to an Excel file. The `patch_set` method provides the inverse functionality to `patch_report`, and updates the NetLogo environment from a dataframe.

```python
countdown_df.to_excel('countdown.xlsx')
netlogo.patch_set('countdown', countdown_df.max()-countdown_df)
```

```python
countdown_update_df = netlogo.patch_report('countdown')
```

```python
fig, ax = plt.subplots(1)

patches = sns.heatmap(countdown_update_df, xticklabels=5, yticklabels=5, cbar_kws={
    'label': 'countdown'}, ax=ax)
ax.set_xlabel('pxcor')
ax.set_ylabel('pycor')
ax.set_aspect('equal')
fig.set_size_inches(8,4)
plt.show()
```
Finally, the `kill_workspace()` method shuts down the NetLogo instance.

```python
netlogo.kill_workspace()
```

1.3 Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel

This provides a more advanced example of interaction between NetLogo and a Python environment, using the SALib library (Herman & Usher, 2017; available through the pip package manager) to sample and analyze a suitable experimental design for a Sobol global sensitivity analysis. Furthermore, the ipyparallel package (also available on pip) is used to parallelize the simulations. The example is based on the Wolf Sheep Predation model included in NetLogo’s model library (Wilensky, 1999).

All files used in the example are available from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo.

```python
# Ensuring compliance of code with both python2 and python3

from __future__ import division, print_function
try:
    from itertools import izip as zip
except ImportError:  # will be 3.x series
    pass

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context('talk')
```
import pyNetLogo

#Import the sampling and analysis modules for a Sobol variance-based
#sensitivity analysis
from SALib.sample import saltelli
from SALib.analyze import sobol

SALib relies on a problem definition dictionary which contains the number of input parameters to sample, their names
(which should here correspond to a NetLogo global variable), and the sampling bounds. Documentation for SALib
can be found at https://salib.readthedocs.io/en/latest/.

```python
problem = {
    'num_vars': 6,
    'names': ['random-seed',
              'grass-regrowth-time',
              'sheep-gain-from-food',
              'wolf-gain-from-food',
              'sheep-reproduce',
              'wolf-reproduce'],
    'bounds': [[1, 100000],
                [20., 40.],
                [2., 8.],
                [16., 32.],
                [2., 8.],
                [2., 8.]]
}
```

The SALib sampler will automatically generate an appropriate number of samples for Sobol analysis, using a revised
Saltelli sampling sequence. To calculate first-order, second-order and total sensitivity indices, this gives a sample size
of $n(2p+2)$, where p is the number of input parameters, and n is a baseline sample size which should be large enough
to stabilize the estimation of the indices. For this example, we use $n = 1000$, for a total of 14000 experiments.

```python
n = 1000
param_values = saltelli.sample(problem, n, calc_second_order=True)
```

The sampler generates an input array of shape $(n(2p+2), p)$ with rows for each experiment and columns for each input
parameter.

```python
param_values.shape
```

(14000, 6)

1.3.1 Running the experiments in parallel using ipyparallel

ipyparallel is a standalone package (available through the pip package manager) which can be used to interactively run
parallel tasks from IPython on a single PC, but also on multiple computers. On machines with multiple cores, this can
significantly improve performance: for instance, the multiple simulations required for a sensitivity analysis are easy

ipyparallel first requires starting a controller and multiple engines, which can be done from a terminal or command
prompt with the following:

```bash
ipcluster start -n 4
```

The optional `-n` argument specifies the number of processes to start (4 in this case).

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel
Next, we can connect the interactive notebook to the started cluster by instantiating a client, and checking that client.ids returns a list of 4 available engines.

```python
import ipyparallel
client = ipyparallel.Client()
client.ids
```

```
[0, 1, 2, 3]
```

We then set up the engines so that they can run the simulations, using a “direct view” that accesses all engines. We first need to change the working directories to ensure the engines can find the NetLogo model. We can then also pass the SALib problem definition dictionary to the engines.

Note: there are various solutions to both problems. For example, we could make the NetLogo file a keyword argument and pass the absolute path to it.

```python
direct_view = client[:]
import os
#Push the current working directory to a "cwd" variable on the engines that can be accessed later
direct_view.push(dict(cwd=os.getcwd()))
<AsyncResult: _push>
#Push the "problem" variable from the notebook to a corresponding variable on the engines
direct_view.push(dict(problem=problem))
<AsyncResult: _push>
```

The %%px command can be added to a notebook cell to run it in parallel on each of the engines. Here the code first involves some imports and a change of the working directory. We then start a link to NetLogo, and load the example model on each of the engines.

```python
%%px
import os
os.chdir(cwd)
import pyNetLogo
import pandas as pd
netlogo = pyNetLogo.NetLogoLink(gui=False)
netlogo.load_model(r'Wolf Sheep Predation_v6.nlogo')
```

We can then use the ipyparallel map functionality to run the sampled experiments, now using a “load balanced” view to automatically handle the scheduling and distribution of the simulations across the engines. This is for instance useful when simulations may take different amounts of time.

We first set up a simulation function that takes a single experiment (i.e. a vector of input parameters) as an argument, and returns the outcomes of interest in a pandas Series.
We then create a load balanced view and run the simulation with the `map_sync` method. This method takes a function and a Python sequence as arguments, applies the function to each element of the sequence, and returns results once all computations are finished.

In this case, we pass the simulation function and the array of experiments (`param_values`), so that the function will be executed for each row of the array.

The DataFrame constructor is then used to immediately build a DataFrame from the results (which are returned as a list of Series). The `to_csv` method provides a simple way of saving the results to disk; pandas supports several more advanced storage options, such as serialization with msgpack, or hierarchical HDF5 storage.

1.3.2 Using SALib for sensitivity analysis

We can then proceed with the analysis, first using a histogram to visualize output distributions for each outcome:
Bivariate scatter plots can be useful to visualize relationships between each input parameter and the outputs. Taking the outcome for the average sheep count as an example, we obtain the following, using the scipy library to calculate the Pearson correlation coefficient (r) for each parameter, and the seaborn library to plot a linear trend fit.

```python
import scipy

nrow=2
ncol=3

fig, ax = plt.subplots(nrow, ncol, sharey=True)

y = results['Avg. sheep']

for i, a in enumerate(ax.flatten()):
    x = param_values[:,i]
    sns.regplot(x, y, ax=a, ci=None, color='k', scatter_kws={'alpha':0.2, 's':4, 'color':gray'}
    pearson = scipy.stats.pearsonr(x, y)
    a.annotate("r: {:.3f}".format(pearson[0]), xy=(0.15, 0.85), xycoords='axes fraction', fontsize=13)
    if divmod(i,ncol)[1]>0:
        a.get_yaxis().set_visible(False)
        a.set_xlabel(problem['names'][i])
        a.set_ylim([0,1.1*np.max(y)])

fig.set_size_inches(9,9,forward=True)
fig.subplots_adjust(wspace=0.2, hspace=0.3)
plt.show()
```
This indicates a positive relationship between the “sheep-gain-from-food” parameter and the mean sheep count, and negative relationships for the “wolf-gain-from-food” and “wolf-reproduce” parameters.

We can then use SALib to calculate first-order (S1), second-order (S2) and total (ST) Sobol indices, to estimate each input’s contribution to output variance as well as input interactions (again using the mean sheep count). By default, 95% confidence intervals are estimated for each index.

\[
Si = \text{sobol.analyze}(\text{problem}, \text{results}[\text{'Avg. sheep']}.\text{values}, \text{calc}_\text{second}_\text{order}=True, \text{print}_\text{to}_\text{console}=False)
\]

As a simple example, we first select and visualize the total and first-order indices for each input, converting the dictionary returned by SALib to a DataFrame. The default pandas plotting method is then used to plot these indices along with their estimated confidence intervals (shown as error bars).

\[
Si_\text{filter} = \{k:Si[k] \text{ for } k \text{ in ['ST','ST_conf','S1','S1_conf']}\}
Si_\text{df} = pd.\text{DataFrame}(Si_\text{filter}, \text{index}=\text{problem['names']})
\]
The “sheep-gain-from-food” parameter has the highest ST index, indicating that it contributes over 50% of output variance when accounting for interactions with other parameters. However, it can be noted that confidence bounds are still quite broad with this sample size, particularly for the S1 index (which indicates each input’s individual contribution to variance).

We can use a more sophisticated visualization to include the second-order interactions between inputs estimated from the S2 values.
import itertools
from math import pi

def normalize(x, xmin, xmax):
 return (x-xmin)/(xmax-xmin)

def plot_circles(ax, locs, names, max_s, stats, smax, smin, fc, ec, lw, zorder):
 s = np.asarray([stats[name] for name in names])
 s = 0.01 + max_s * np.sqrt(normalize(s, smin, smax))

 fill = True
 for loc, name, si in zip(locs, names, s):
 if fc=='w':
 fill=False
 else:
 ec='none'

 x = np.cos(loc)
 y = np.sin(loc)

 circle = plt.Circle((x,y), radius=si, ec=ec, fc=fc, transform=ax.transData._b, zorder=zorder, lw=lw, fill=True)
 ax.add_artist(circle)

def filter(sobol_indices, names, locs, criterion, threshold):
 if criterion in ['ST', 'S1', 'S2']:
 data = sobol_indices[criterion]
 data = np.abs(data)
 data = data.flatten() # flatten in case of S2
 # TODO:: remove nans
 filtered = [(name, locs[i]) for i, name in enumerate(names) if data[i]>threshold]
 filtered_names, filtered_locs = zip(*filtered)
 elif criterion in ['ST_conf', 'S1_conf', 'S2_conf']:
 raise NotImplementedError
 else:
 raise ValueError('unknown value for criterion')

 return filtered_names, filtered_locs

def plot_sobol_indices(sobol_indices, criterion='ST', threshold=0.01):
 '''plot sobol indices on a radial plot

 Parameters

 sobol_indices : dict
 the return from SALib
 criterion : {'ST', 'S1', 'S2', 'ST_conf', 'S1_conf', 'S2_conf'}, optional
 threshold : float
 only visualize variables with criterion larger than cutoff
 ...
max_linewidth_s2 = 15
max_s_radius = 0.3

prepare data
use the absolute values of all the indices
sobol_indices = {key:np.abs(stats) for key, stats in sobol_indices.items()}

dataframe with ST and S1
sobol_stats = {key:sobol_indices[key] for key in ['ST', 'S1']}
sobol_stats = pd.DataFrame(sobol_stats, index=problem['names'])
smax = sobol_stats.max().max()
smin = sobol_stats.min().min()

dataframe with s2
s2 = pd.DataFrame(sobol_indices['S2'], index=problem['names'], columns=problem['names'])
s2[s2<0.0]=0. #Set negative values to 0 (artifact from small sample sizes)
s2max = s2.max().max()
s2min = s2.min().min()

names = problem['names']
n = len(names)
ticklocs = np.linspace(0, 2*pi, n+1)
locs = ticklocs[0:-1]

filtered_names, filtered_locs = filter(sobol_indices, names, locs, criterion, threshold)

setup figure
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
ax.grid(False)
ax.spines['polar'].set_visible(False)
ax.set_xticks(ticklocs)
ax.set_xticklabels(names)
ax.set_yticklabels([])
ax.set_ylim(ymax=1.4)
legend(ax)

plot ST
plot_circles(ax, filtered_locs, filtered_names, max_s_radius, sobol_stats['ST'], smax, smin, 'w', 'k', 1, 9)

plot S1
plot_circles(ax, filtered_locs, filtered_names, max_s_radius, sobol_stats['S1'], smax, smin, 'k', 'k', 1, 10)

plot S2
for name1, name2 in itertools.combinations(zip(filtered_names, filtered_locs), 2):
 name1, loc1 = name1
 name2, loc2 = name2
 weight = s2.ix[name1, name2]
 lw = 0.5+max_linewidth_s2*normalize(weight, s2min, s2max)
 ax.plot([loc1, loc2], [1,1], c='darkgray', lw=lw, zorder=1)

return fig
from matplotlib.legend_handler import HandlerPatch
class HandlerCircle(HandlerPatch):
 def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans):
 center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent
 p = plt.Circle(xy=center, radius=orig_handle.radius)
 self.update_prop(p, orig_handle, legend)
 p.set_transform(trans)
 return [p]

def legend(ax):
some_identifiers = [plt.Circle((0,0), radius=5, color='k', fill=False, lw=1),
 plt.Circle((0,0), radius=5, color='k', fill=True),
 plt.Line2D([0,0.5], [0,0.5], lw=8, color='darkgray')]
ax.legend(some_identifiers, ['ST', 'S1', 'S2'],
 loc=(1,0.75), borderaxespad=0.1, mode='expand',
 handler_map={plt.Circle: HandlerCircle()})

sns.set_style('whitegrid')
fig = plot_sobol_indices(Si, criterion='ST', threshold=0.005)
fig.set_size_inches(7,7)
plt.show()

In this case, the “sheep-gain-from-food” variable has strong interactions with the “wolf-gain-from-food” and “wolf-reproduce” inputs in particular. The size of the ST and S1 circles correspond to the normalized variable importances.

1.4 core

To do: check Mac support and handling of custom directories

exception pyNetLogo.core.NetLogoException
 Basic project exception
class pyNetLogo.core.NetLogoLink(gui=False, thd=False, netlogo_home=None, netlogo_version=None, jvm_home=None)
 Create a link with NetLogo. Underneath, the NetLogo JVM is started through Jpype.
 If netlogo_home, netlogo_version, or jvm_home are not provided, the link will try to identify the correct parameters automatically on Mac or Windows. netlogo_home and netlogo_version are required on Linux.

Parameters
 • gui (bool, optional) – If true, displays the NetLogo GUI (not supported on Mac)
• **thd**(bool, optional) – If true, use NetLogo 3D

• **netlogo_home**(str, optional) – Path to the NetLogo installation directory (required on Linux)

• **netlogo_version**({'6', '5'}, optional) – Used to choose command syntax for link methods (required on Linux)

• **jvm_home**(str, optional) – Java home directory for Jpype

command(netlogo_command)

Execute the supplied command in NetLogo

Parameters

netlogo_command**(str)** – Valid NetLogo command

Raises

NetLogoException – If a LogoException or CompilerException is raised by NetLogo

kill_workspace()

Close NetLogo and shut down the JVM.

load_model(path)

Load a NetLogo model.

Parameters

path**(str)** – Path to the NetLogo model

Raises

* IOError* – In case the model is not found

NetLogoException – In case of a NetLogo exception

patch_report(attribute)

Return patch attributes from NetLogo

Returns a pandas DataFrame with same dimensions as the NetLogo world, with column labels and row indices following pxcor and pycor patch coordinates. Values of the dataframe correspond to patch attributes.

Parameters

attribute**(str)** – Valid NetLogo patch attribute

Returns

Dataframe containing patch attributes

Return type

pandas DataFrame

Raises

NetLogoException – If a LogoException or CompilerException is raised by NetLogo

patch_set(attribute, data)

Set patch attributes in NetLogo

Inverse of the *patch_report* method. Sets a patch attribute using values from a pandas DataFrame of same dimensions as the NetLogo world.

Parameters

• **attribute**(str) – Valid NetLogo patch attribute

• **data**(Pandas DataFrame) – DataFrame with same dimensions as NetLogo world

Raises

NetLogoException – If a LogoException or CompilerException is raised by NetLogo

repeat_command(netlogo_command, reps)

Execute the supplied command in NetLogo a given number of times

Parameters
• **netlogo_command** *(str)* – Valid NetLogo command

• **reps** *(int)* – Number of repetitions for which to repeat commands

Raises *NetLogoException* – If a LogoException or CompilerException is raised by NetLogo

repeat_report *(netlogo_reporter, reps, go=u’go’)*

Return values from a NetLogo reporter over a number of ticks.

Can be used with multiple reporters by passing a list of strings. The values of the returned DataFrame are formatted following the data type returned by the reporters (numerical or string data, with single or multiple values). If the reporter returns multiple values, the results are converted to a numpy array.

Parameters

• **netlogo_reporter** *(str or list of str)* – Valid NetLogo reporter(s)

• **reps** *(int)* – Number of NetLogo ticks for which to return values

• **go** *(str, optional)* – NetLogo command for running the model (‘go’ by default)

Returns DataFrame of reported values indexed by ticks, with columns for each reporter

Return type pandas DataFrame

Raises *NetLogoException* – If reporters are not in a valid format, or if a LogoException or CompilerException is raised by NetLogo

report *(netlogo_reporter)*

Return values from a NetLogo reporter

Any reporter (command which returns a value) that can be called in the NetLogo Command Center can be called with this method.

Parameters netlogo_reporter *(str)* – Valid NetLogo reporter

Raises *NetLogoException* – If a LogoException or CompilerException is raised by NetLogo

write_NetLogo_attriblist *(agent_data, agent_name)*

Update attributes of a set of NetLogo agents from a DataFrame

Assumes a set of NetLogo agents of the same type. Attribute values can be numerical or strings.

Parameters

• **agent_data** *(pandas DataFrame)* – DataFrame indexed with a row for each agent, and columns for each attribute to update. Requires a ‘who’ column for the NetLogo agent ID

• **agent_name** *(str)* – Name of the NetLogo agent type to update (singular, e.g. a-sheep)

Raises *NetLogoException* – If a LogoException or CompilerException is raised by NetLogo
CHAPTER 2

Indices and tables

• genindex
• modindex
• search
p
pyNetLogo.core, 19
Index

C
command() (pyNetLogo.core.NetLogoLink method), 20

K
kill_workspace() (pyNetLogo.core.NetLogoLink method), 20

L
load_model() (pyNetLogo.core.NetLogoLink method), 20

N
NetLogoException, 19
NetLogoLink (class in pyNetLogo.core), 19

P
patch_report() (pyNetLogo.core.NetLogoLink method), 20
patch_set() (pyNetLogo.core.NetLogoLink method), 20
pyNetLogo.core (module), 19

R
repeat_command() (pyNetLogo.core.NetLogoLink method), 20
repeat_report() (pyNetLogo.core.NetLogoLink method), 21
report() (pyNetLogo.core.NetLogoLink method), 21

W
write_NetLogo_attriblist() (pyNetLogo.core.NetLogoLink method), 21