
pymangal Documentation
Release 0.1

Timothée Poisot

April 27, 2014

Contents

1 User guide 3
1.1 pymangal 101 . 3
1.2 Filtering of resources . 5
1.3 How to upload data . 6

2 Developer guide 9
2.1 The mangal class . 9
2.2 Checks of user-supplied arguments . 10

3 Indices and tables 13

Python Module Index 15

i

ii

pymangal Documentation, Release 0.1

pymangal is a library to interact with APIs returning ecological interaction networks datasets in the format specified
by the mangal data specification. More informations on mangal can be found here.

The pymangal module provides way to browse, search, and get data, as well as to upload or patch them.

Data in the mangal database are released under the Creative Commons 0 waiver. Anyone is free to access and use
them. Note that the usual rules of good conduct among academics apply, and you are expected to credit data collectors
by citing either the dataset, or the original publication. These informations are available in the dataset object.

Contents 1

pymangal Documentation, Release 0.1

2 Contents

CHAPTER 1

User guide

These pages will cover the use of various aspect of the pymangal module.

1.1 pymangal 101

This document provides an overview of what the pymangal module can do, and more importantly, how to do it.

1.1.1 Overview of the module

Installation

At the moment, the simplest way to install pymangal is to download the latest version from the GitHub repository,
using e.g.:

wget https://github.com/mangal-wg/pymangal/archive/master.zip
unzip master.zip
cp pymangal-master/pymangal .
rm -r pymangal-master

Then from within the pymangal folder,

make requirements
make test
make install

Alternatively, make all will download the requirements, run the tests, and install the module. Note that by default,
the makefile calls python2 and pip2. If your versions of ptyhon 2 and pip are called, e.g., python27 and pip,
you need to pass them as variable names when calling make:

make all pip=pip python=python27

Creating a mangal object

Almost all of the actions you will do using pymangal will be done by calling various methods of the mangal class.
The usual first step of any script is to import the module.

>>> import pymangal as pm
>>> api = pm.mangal()

3

pymangal Documentation, Release 0.1

Calling dir(api) will give you an overview of the methods and attributes.

APIs conforming to the mangal specification can expose either all resources, or a subset of them. To see which are
available,

>>> api.resources

For each value in the previously returned list, there is an element of

>>> api.schemes

This dictionary contains the json scheme for all resources exposed by the API. This will both give you information
about the data format, and be used internally to ensure that the data you upload or patch in the remote database are
correctly formatted.

1.1.2 Getting a list of resources

mangal objects have a List() method that will give a list of entries for a type of resource. For example, one can
list datasets with:

>>> api.List(’dataset’)

The returned object is a dict with keys meta and objects. meta is important because it allows paging through
the resources, as we will see below. The actual content you want to work with is within objects; objects is an
array of dict.

Paging and offset

To preserve bandwidth (yours and ours), pymangal will only return the first 10 records. The meta dictionary will
give you the total_count (total number of objects) available. If you want to retrieve all of these objects in a single
request, you can use the page=’all’ argument to the List() method.

>>> api.List(’taxa’, page=’all’)

If you want more that 10 records, you can pass the number of records to page:

>>> api.List(’network’, page=20)

An additional important attribute of meta is the offset. It will tell you how many objects were discarded before
returning your results. For example, the following code

>>> t_1_to_4 = api.List(’taxa’, page=4, offset=0)
>>> t_5_to_8 = api.List(’taxa’, page=4, offset=4)

is (roughly, you still would have to recompose the object) equivalent to

>>> t_1_to_8 = api.List(’taxa’, page=8)

Filtering

There is a special page on filtering. When filtering, it is recommended to use page=’all’, as it will ensure that all
matched results are returned.

4 Chapter 1. User guide

pymangal Documentation, Release 0.1

1.1.3 Getting a particular resource

Getting a particular resource required that you know its type, and its unique identifier. For example, getting the taxa
with id equal to 8 si

>>> taxa_8 = api.Get(’taxa’, 8)

The object is returned as is, i.e. as a python Dict. If there is no object with the given id, or no matching type, then
the call to Get will fail.

1.1.4 Creating and modifying resources

There is a page dedicated to contributing_. Users with data that they want to add to the mangal database are invited
to read this page, which gives informations about (1) how to register online and (2) how to prepare data for upload.

1.2 Filtering of resources

This document covers the different ways to filter resources using the List method.

1.2.1 General filtering syntax

Filtering follows the general syntax:

field__relation=target

field is the name of one of the fields in the resource model (see
mg.schemes[resource][’properties’].keys()). relation is one of the ten possible values
given below. Finally, target is the value to match. It is possible to join several filters, by joining them with &.

Note that if the target contains spaces, they will be automatically changed to %20, so you won’t have to worry
about that.

Examples

Let’s start by loading the module:

>>> import pymangal as pm
>>> api = pm.mangal()

Getting all taxa whose name contains “alba”:

>>> api.List(’taxa’, filters=’name__contains=alba’, page=’all’)

Getting the dataset containing network “101”:

>>> api.List(’dataset’, filters=’networks__in=101’, page=’all’)

Getting all networks with “benthic” in their name, between latitudes “-5” and “5”:

>>> api.list(’network’, filters=’name__contains=bentic&latitude__range=-5,5’, page=’all’)

1.2. Filtering of resources 5

pymangal Documentation, Release 0.1

1.2.2 Type of relationships

relation description
startswith All fields starting by the target
endswith All fields ending by the target
exact Exact matching
contains Fields that contain the target
range Fields with values in the range
gt Field with values greater than the target
lt Field with values smaller than the target
gte Field with values greater (or equal to) than the target
lte Field with values smaller (or equal to) than the target
in Field with the target among their values

1.2.3 Filtering through multiple resources

It is possible to combine several resources when filtering. For example, if one want to retrieve populations belonging
to the taxa Alces americanus, the syntax is

taxa__name__exact=Alces%20americanus

Examples

List of populations whose taxa is of the genus “Alces”:

>>> api.List(’population’, filters=’taxa__name__startswith=Alces’, page=’all’)

List of interactions involving “Canis lupus” as a predator

>>> api.List(’interaction’, filters=’link_type__exact=predation&taxa_from__name__exact=Canis%20lupus’, page=’all’)

1.3 How to upload data

This page will walk you through the upload of a simple food web with three species. The goal is to cover the basic
mechanisms. Posting data requires to be authenticated. Users can register at < http://mangal.uqar.ca/dashboard/>.
Authentication is done with the username and API key.

To upload data, a good knowledge of the data specification is important. JSON schemes are imported when connecting
to the database the first time

>>> import pymangal as pm
>>> api = pm.mangal(usr=’myUserName’, key=’myApiKey’)
>>> api.schemes.keys()

Sending data into the database is done though the Post method of the mangal class. The Post method requires
two arguments: resource and data. resource is the type of object you are sending in the database, and data
is the object as a python dict.:

>>> my_taxa = {’name’: ’Carcharodon carcharias’, ’vernacular’: ’Great white shark’, ’eol’: 213726, ’status’: ’confirmed’}
>>> great_white = api.Post(’taxa’, my_taxa)

6 Chapter 1. User guide

http://mangal.uqar.ca/dashboard/

pymangal Documentation, Release 0.1

The mangal API is configured so that, when data are received or modified, it will return the database record created.
It means that you can assign the result of calling Post to an object, for easy re-use. For example, we can now create
a population belonging to this taxa:

>>> my_population = {’taxa’: great_white[’id’], ’name’: ’Amity island sharks’}
>>> amity_island = api.Post(’population’, my_population)

Note: In the rmangal package, it is possible to pass whole objects rather than just id to the function to patch and
post. This is not the case with pymangal.

1.3.1 Example: a linear food chain

In this exercice, we’ll upload a linear food chain made of a top predator (Canis lupus), a consumer (Alces americanus),
and a primary producer (Abies balsamea).

The first step is to create objects containing the taxa:

>>> wolf = {’name’: ’Canis lupus’, ’vernacular’: ’Gray wolf’, ’status’: ’confirmed’}
>>> moose = {’name’: ’Alces americanus’, ’vernacular’: ’American moose’, ’status’: ’confirmed’}
>>> fir = {’name’: ’Abies balsamea’, ’vernacular’: ’Balsam fir’, ’status’: ’confirmed’}

Now, we will take each of these objects, and send them into the database:

>>> wolf = api.Post(’taxa’, wolf)
>>> moose = api.Post(’taxa’, moose)
>>> fir = api.Post(’taxa’, fir)

The next step is to create interactions between these taxa:

>>> w_m = api.Post(’interaction’, {’taxa_from’: wolf[’id’], ’taxa_to’: moose[’id’], ’link_type’: ’predation’, ’obs_type’: ’litterature’})
>>> m_b = api.Post(’interaction’, {’taxa_from’: moose[’id’], ’taxa_to’: fir[’id’], ’link_type’: ’herbivory’, ’obs_type’: ’litterature’})

That being done, we will now create a network with the different interactions:

>>> net = api.Post(’network’, {’name’: ’Isle Royale National Park’, ’interactions’: map(lambda x: x[’id’], [w_m, m_b])})

The last step is to put this network into a dataset:

>>> ds = api.Post(’dataset’, {’name’: ’Test dataset’, ’networks’: [net[’id’]]})

And with these steps, we have (i) created taxa, (ii) established interactions between them, (iii) put these interactions in
a network, and (iv) created a dataset.

1.3.2 Other notes

Conflicting names

The mangal API will check for the uniqueness of some properties before writing the data. For example, no two taxa
can have the same name, of taxonomic identifiers. If this happens, the server will throw a 500 error, and the error
message will tell you which field is not unique. You can then use the filtering_ abilities to retrieve the pre-existing
record.

1.3. How to upload data 7

pymangal Documentation, Release 0.1

Automatic validation

So as to avoid sending “bad” data on the database, pymangal conducts an automated validation of user-supplied data
before doing anything. In case the data are not properly formatted, a ValidationError will be thrown, along with
an explanation of (i) which field(s) failed to validate and (ii) what acceptable values were.

Resource IDs and URIs

The pymangal module will, internaly, take care of replacing objects identifiers by their proper URIs. If you want to
make a reference to the taxa whose id is 1, the Post method will automatically convert 1 to api/v1/taxa/1/,
i.e. the format needed to upload.

8 Chapter 1. User guide

CHAPTER 2

Developer guide

These page give the complete reference of the pymangal module. They are mostly intended for people wanting to
know how the sausage is made (with heavy chucks of JSON).

2.1 The mangal class

The mangal class is where most of the action happens. Almost all user actions consist in calling various methods of
this class.

2.1.1 Documentation

class pymangal.mangal(url=’http://mangal.uqar.ca’, suffix=’/api/v1/’, usr=None, key=None)
Creates an object of class mangal

This is the main class used by pymangal. When called, it will return an object with all methods and attributes
required to interact with the database.

Parameters

• url – The URL of the site with the API (default: http://mangal.uqar.ca)

• suffix – The suffix of the API (default: /api/v1/)

• usr – Your username on the server (default: None)

• key – Your API key on the server (default: None)

Returns An object of class mangal

Get(resource=’dataset’, key=‘1’)
Get an object identified by its key (id)

Parameters

• resource – The type of object to get

• key – The unique identifier of the object

Returns A dict representation of the resource

List(resource=’dataset’, filters=None, page=10, offset=0)
Lists all objects of a given resource type, according to a filter

Parameters

9

pymangal Documentation, Release 0.1

• resource – The type of resource (default: dataset)

• filters – A string giving the filtering criteria (default: None)

• page – Either an integer giving the number of results to return, or ’all’ (default: 10)

• offset – Number of initial results to discard (default: 0)

Returns A dict with keys meta and objects

Note: The objects key of the returned dictionary is a list of dict, each being a record in the
database. The meta key contains the next and previous urls, and the total_count number of
objects for the request.

Post(resource=’taxa’, data=None)
Post a resource to the database

Parameters

• resource – The type of object to post

• data – The dict representation of the object

The data may or may not contain an owner key. If so, it must be the URI of the owner object. If no
owner key is present, the value used will be self.owner.

This method converts the fields values to URIs automatically

If the request is successful, this method will return the newly created object. If not, it will print the reply
from the server and fail.

2.2 Checks of user-supplied arguments

Several methods share arguments, so it made sense to have a set of functions designed to validate the in the same place.
These functions are all in pymangal.checks, and are used internally only by the different methods.

2.2.1 Documentation

pymangal.checks.check_resource_arg(api, resource)
Checks that the resource argument is correct

Parameters

• api – A mangal instance

• resource – A user-supplied argument (tentatively, a string)

Returns Nothing, but fails if resource is not valid

So as to be valid, a resource argument must

•be of type str

•be included in api.resources, which is collected from the API root

pymangal.checks.check_upload_res(api, resource, data)
Checks that the data to be uploaded are in the proper format

Parameters

• api – A mangal instance

10 Chapter 2. Developer guide

pymangal Documentation, Release 0.1

• resource – A resource argument

• data – The data to be uploaded. This is supposed to be a dict.

Returns Nothing, but fails if something is wrong.

The first checks are basic:

•the user must provide authentication

•the data must be given as a dict

The next check concers data validity, i.e. they must conform to the data schema in json, as obtained from the
API root when calling __init__.

pymangal.checks.check_filters(filters)
Checks that the filters are valid

Parameters filters – A string of filters

Returns Nothing, but can modify filters in place, and raises ‘‘ValueError‘‘s if the filters are
badly formatted.

This functions conducts minimal parsing, to make sure that the relationship exists, and that the filter is generally
well formed.

The filters string is modified in place if it contains space.

2.2. Checks of user-supplied arguments 11

pymangal Documentation, Release 0.1

12 Chapter 2. Developer guide

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13

pymangal Documentation, Release 0.1

14 Chapter 3. Indices and tables

Python Module Index

p
pymangal, 9
pymangal.checks, 10

15

	User guide
	pymangal 101
	Filtering of resources
	How to upload data

	Developer guide
	The mangal class
	Checks of user-supplied arguments

	Indices and tables
	Python Module Index

