
pydicom Documentation
Release 1.0a

Darcy Mason and pydicom contributors

January 27, 2017

Contents

1 Getting Started with pydicom 3
1.1 Introduction . 3
1.2 License . 3
1.3 Installing . 4
1.4 Using pydicom . 5
1.5 Support . 5
1.6 Next Steps . 5

2 Pydicom User Guide 7
2.1 Dataset . 7
2.2 DataElement . 9
2.3 Tag . 9
2.4 Sequence . 9

3 Transition to pydicom 1.x 11
3.1 Introduction . 11
3.2 For authors of packages requiring pydicom < 1.0 . 11
3.3 Error messages relating to the pydicom transition . 12

4 Working with Pixel Data 13
4.1 Introduction . 13
4.2 pixel_array . 13

5 Viewing Images 15
5.1 Introduction . 15
5.2 Using pydicom with matplotlib . 15
5.3 Using pydicom with Tkinter . 15
5.4 Using pydicom with Python Imaging Library (PIL) . 16
5.5 Using pydicom with wxPython . 16

6 Pydicom Reference Guide 17
6.1 File Reading/Parsing . 17
6.2 Dataset . 17

7 Indices and tables 19

i

ii

pydicom Documentation, Release 1.0a

Contents:

Contents 1

pydicom Documentation, Release 1.0a

2 Contents

CHAPTER 1

Getting Started with pydicom

Brief overview of pydicom and how to install.

1.1 Introduction

pydicom is a pure python package for working with DICOM files such as medical images, reports, and radiotherapy
objects.

pydicom makes it easy to read these complex files into natural pythonic structures for easy manipulation. Modified
datasets can be written again to DICOM format files.

Here is a simple example of using pydicom in an interactive session, to read a radiotherapy plan file, change the patient
setup from head-first-supine to head-first-prone, and save to a new file:

>>> import dicom
>>> plan = dicom.read_file("rtplan.dcm")
>>> plan.PatientName
'Last^First^mid^pre'
>>> plan.dir("setup") # get a list of tags with "setup" somewhere in the name
['PatientSetupSequence']
>>> plan.PatientSetupSequence[0]
(0018, 5100) Patient Position CS: 'HFS'
(300a, 0182) Patient Setup Number IS: '1'
(300a, 01b2) Setup Technique Description ST: ''
>>> plan.PatientSetupSequence[0].PatientPosition = "HFP"
>>> plan.save_as("rtplan2.dcm")

pydicom is not a DICOM server 1, and is not primarily about viewing images. It is designed to let you manipulate data
elements in DICOM files with python code.

pydicom is easy to install and use, and because it is a pure python package, it should run anywhere python runs.

One limitation of pydicom: compressed pixel data (e.g. JPEG) cannot be altered in an intelligent way as it can be for
uncompressed pixels. Files can always be read and saved, but compressed pixel data cannot easily be modified.

1.2 License

pydicom has a license based on the MIT license.

1 For DICOM network capabilities, see the pynetdicom project.

3

http://en.wikipedia.org/wiki/DICOM
http://code.google.com/p/pydicom/source/browse/source/dicom/license.txt
http://pynetdicom.googlecode.com

pydicom Documentation, Release 1.0a

1.3 Installing

As a pure python package, pydicom is easy to install and has no requirements other than python itself (the NumPy
library is recommended, but is only required if manipulating pixel data).

Note: in addition to the instructions below, pydicom can also be installed through the Python(x,y) distribution, which
can install python and a number of packages 2 (including pydicom) at once.

1.3.1 Prerequisites

• python 2.4 through 2.6 (or python 2.3 can be used for pydicom < 0.9.4)

• [NumPy (http://numpy.scipy.org/)] – optional, only needed if manipulating pixel data

Python installers can be found at the python web site (http://python.org/download/). On Windows, the Activepython
distributions are also quite good.

1.3.2 Installing on Windows

On Windows, pydicom can be installed using the executable installer from the Downloads tab.

Alternatively, pydicom can be installed with easy_install, pip, or from source, as described in the sections below.

1.3.3 Installing using easy_install or pip (all platforms)

if you have setuptools installed, just use easy_install at the command line (you may need sudo on linux):

easy_install pydicom

Depending on your python version, there may be some warning messages, but the install should still be ok.

pip is a newer install tool that works quite similarly to easy_install and can also be used.

1.3.4 Installing from source (all platforms)

• download the source code from the Downloads tab or checkout the mercurial repository source

• at a command line, change to the directory with the setup.py file

• with admin privileges, run python setup.py install

– with some linux variants, for example, use sudo python setup.py install

– with other linux variants you may have to su before running the command.

• for python < 2.6, you may get a syntax error message when the python files are “built” – this is due to some
python 2.6 specific code in one unit test file. The installation seems to still be ok.

1.3.5 Installing on Mac

The instructions above for easy_install or installing from source will work on Mac OS. There is also a MacPorts portfile
(py25-pydicom) available at http://trac.macports.org/browser/trunk/dports/python/py25-pydicom. This is maintained
by other users and may not immediately be up to the latest release.

2 If using python(x,y), other packages you might be interested in include IPython (an indispensable interactive shell with auto-completion,
history etc), Numpy (optionally used by pydicom for pixel data), and ITK/VTK or PIL (image processing and visualization).

4 Chapter 1. Getting Started with pydicom

http://www.pythonxy.com/
http://numpy.scipy.org/
http://python.org/download/
http://activestate.com/activepython
http://code.google.com/p/pydicom/downloads/list
http://pypi.python.org/pypi/setuptools
http://http://pip.openplans.org/
http://code.google.com/p/pydicom/downloads/list
http://code.google.com/p/pydicom/source/checkout
http://trac.macports.org/browser/trunk/dports/python/py25-pydicom

pydicom Documentation, Release 1.0a

1.4 Using pydicom

Once installed, the package can be imported at a python command line or used in your own python program with
import dicom (note the package name is dicom, not pydicom when used in code. See the examples directory
for both kinds of uses. Also see the User Guide for more details of how to use the package.

1.5 Support

Please join the pydicom discussion group to ask questions, give feedback, post example code for others – in other
words for any discussion about the pydicom code. New versions, major bug fixes, etc. will also be announced through
the group.

1.6 Next Steps

To start learning how to use pydicom, see the Pydicom User Guide.

1.4. Using pydicom 5

http://code.google.com/p/pydicom/source/browse/#hg/source/dicom/examples
http://groups.google.com/group/pydicom

pydicom Documentation, Release 1.0a

6 Chapter 1. Getting Started with pydicom

CHAPTER 2

Pydicom User Guide

pydicom object model, description of classes, examples

2.1 Dataset

Dataset is the base object in pydicom’s object model. The relationship between Dataset and other objects is:

Dataset (derived from python’s dict)

—> contains DataElement instances

–> the value of the data element can be one of:

• a regular value like a number, string, etc.

• a list of regular values (e.g. a 3-D coordinate)

• a Sequence instance –> a Sequence is a list of Datasets (and so we come full circle)

Dataset is the main object you will work with directly. Dataset is derived from python’s dict, so it inherits (and
overrides some of) the methods of dict. In other words it is a collection of key:value pairs, where the key value
is the DICOM (group,element) tag (as a Tag object, described below), and the value is a DataElement instance (also
described below).

A dataset could be created directly, but you will usually get one by reading an existing DICOM file:

>>> import dicom
>>> ds = dicom.read_file("rtplan.dcm") # (rtplan.dcm is in the testfiles directory)

You can display the entire dataset by simply printing its string (str or repr) value:

>>> ds
(0008, 0012) Instance Creation Date DA: '20030903'
(0008, 0013) Instance Creation Time TM: '150031'
(0008, 0016) SOP Class UID UI: RT Plan Storage
(0008, 0018) SOP Instance UID UI: 1.2.777.777.77.7.7777.7777.20030903150023
(0008, 0020) Study Date DA: '20030716'
(0008, 0030) Study Time TM: '153557'
(0008, 0050) Accession Number SH: ''
(0008, 0060) Modality CS: 'RTPLAN'

Note: you can also view DICOM files in a collapsible tree using the example program dicomtree.py.

You can access specific data elements by name or by DICOM tag number:

7

http://code.google.com/p/pydicom/source/browse/source/dicom/examples/dicomtree.py

pydicom Documentation, Release 1.0a

>>> ds.PatientsName
'Last^First^mid^pre'
>>> ds[0x10,0x10].value
'Last^First^mid^pre'

In the latter case (using the tag number directly) a DataElement instance is returned, so the .value must be used to
get the value.

You can also set values by name or tag number:

>>> ds.PatientID = "12345"
>>> ds.SeriesNumber = 5
>>> ds[0x10,0x10].value = 'Test'

The use of names is possible because pydicom intercepts requests for member variables, and checks if they are in the
DICOM dictionary. It translates the name to a (group,element) number and returns the corresponding value for that
key if it exists. The names are the descriptive text from the dictionary with spaces and apostrophes, etc. removed.

DICOM Sequences are turned into python list s. For these, the name is from the dictionary name with “sequence”
removed, and the normal English plural added. So “Beam Sequence” becomes “Beams”, “Referenced Film Box
Sequence” becomes “ReferencedFilmBoxes”. Items in the sequence are referenced by number, beginning at index 0
as per python convention.

>>> ds.Beams[0].BeamName
'Field 1'
>>> # Same thing with tag numbers:
>>> ds[0x300a,0xb0][0][0x300a,0xc2].value
'Field 1'
>>> # yet another way, using another variable
>>> beam1=ds[0x300a,0xb0][0]
>>> beam1.BeamName, beam1[0x300a,0xc2].value
('Field 1', 'Field 1')

Since you may not always remember the exact name, Dataset provides a handy dir() method, useful during interactive
sessions at the python prompt:

>>> ds.dir("pat")
['PatientSetups', 'PatientsBirthDate', 'PatientsID', 'PatientsName', 'PatientsSex']

dir will return any DICOM tag names in the dataset that have the specified string anywhere in the name (case
insensitive). Calling dir with no string will list all tag names available in the dataset. You can also see all the names
that pydicom knows about by viewing the _dicom_dict.py file. You could modify that file to add tags that pydicom
doesn’t already know about.

Under the hood, Dataset stores a DataElement object for each item, but when accessed by name (e.g.
ds.PatientsName) only the value of that DataElement is returned. If you need the whole DataElement (see the
DataElement class discussion), you can use Dataset’s data_element() method or access the item using the tag number:

>>> data_element = ds.data_element("PatientsName") # or data_element = ds[0x10,0x10]
>>> data_element.VR, data_element.value
('PN', 'Last^First^mid^pre')

To check for the existence of a particular tag before using it, use the in keyword:

>>> "PatientsName" in ds
True

To remove a data element from the dataset, use del:

8 Chapter 2. Pydicom User Guide

pydicom Documentation, Release 1.0a

>>> del ds[0x10,0x1000]
>>> # OR
>>> tag = ds.data_element("OtherPatientIDs").tag
>>> del ds[tag]

To work with pixel data, the raw bytes are available through the usual tag:

>>> pixel_bytes = ds.PixelData

but to work with them in a more intelligent way, use pixel_array (requires the NumPy library):

>>> pix = ds.pixel_array

For more details, see Working with Pixel Data.

2.2 DataElement

The DataElement class is not usually used directly in user code, but is used extensively by Dataset. DataElement is a
simple object which stores the following things:

• tag – a DICOM tag (as a Tag object)

• VR – DICOM value representation – various number and string formats, etc

• VM – value multiplicity. This is 1 for most DICOM tags, but can be multiple, e.g. for coordinates. You do not
have to specify this, the DataElement class keeps track of it based on value.

• value – the actual value. A regular value like a number or string (or list of them), or a Sequence.

2.3 Tag

The Tag class is derived from python’s long, so in effect, it is just a number with some extra behaviour:

• Tag enforces that the DICOM tag fits in the expected 4-byte (group,element)

• a Tag instance can be created from a long or from a tuple containing the (group,element) separately:

>>> from dicom.tag import Tag
>>> t1=Tag(0x00100010) # all of these are equivalent
>>> t2=Tag(0x10,0x10)
>>> t3=Tag((0x10, 0x10))
>>> t1
(0010, 0010)
>>> t1==t2, t1==t3
(True, True)

• Tag has properties group and element (or elem) to return the group and element portions

• the is_private property checks whether the tag represents a private tag (i.e. if group number is odd).

2.4 Sequence

Sequence is derived from python’s list. The only added functionality is to make string representations prettier.
Otherwise all the usual methods of list like item selection, append, etc. are available.

2.2. DataElement 9

http://numpy.org

pydicom Documentation, Release 1.0a

10 Chapter 2. Pydicom User Guide

CHAPTER 3

Transition to pydicom 1.x

Important information on differences in pydicom post 1.0 vs pre-1.0

3.1 Introduction

As is often the case for major software version number changes, pydicom 1.0 breaks with the previous release of
pydicom (0.9.9) in several ways. These require changes to user code to target the pydicom >= 1.0 package, or to check
and deal with the differences between the versions.

Backwards-compatible changes post 1.0

• the library is no longer dicom but is pydicom, to match the package name

• short-form names such as Beams are no longer allowed; use the full keyword e.g. BeamSequence

• some less-used modules within pydicom have been renamed, e.g. dicom.UID is now pydicom.uid

Why was the package name changed? Yes, this will cause some confusion for a while, and I apologize for this, but it
will fade over time. There are several reasons for this change:

• it is standard python practice for the package and the installed library to have the same name

• first time users expect to be able to type import pydicom rather than import dicom, which has caused
confusion

• it makes sense for search engines - with the correct name it is much easier to find relevant questions and example
code online

The decision wasn’t taken lightly, but with a great deal of discussion on the github issues list. Having made the leap,
the rest of this guide should help smooth the way...

3.2 For authors of packages requiring pydicom < 1.0

If you have authored code targeting the “old” dicom library, you have three options (at least):

update the code base to target pydicom >1.0 # update your dependencies to point to package dicom
rather than pydicom # update dependencies to explictly target pydicom < 1, e.g. pydicom=0.9.9

The first option can be relatively simple for most projects. If you only use basic pydicom features, e.g. to read and
write files, simply changing import dicom to import pydicom everywhere may be all that is needed.

11

pydicom Documentation, Release 1.0a

The second and third options will get the same library installed. The second is preferred, as this will point to a
repository explicit to the old dicom code. This makes it clear that your code has not been updated for pydicom 1, and
allows people to install pydicom and dicom completely independently.

3.3 Error messages relating to the pydicom transition

This section is here in the hopes of people getting redirected to this page on searches. If that’s you, then welcome!
Hopefully the information here can get things going quickly for you.

For those with pydicom < 1.0 installed, on trying to import pydicom, they will get an ImportError message:

>>> import pydicom
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named pydicom
>>>

Your choice then is to update to pydicom >=1.0 (see Installing pydicom section), or to instead use import dicom
and follow old-style pydicom syntax.

Conversely, if pydicom >= 1.0 is installed, the error message for import dicom will look like:

>>> import dicom
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named dicom
>>>

In this case you likely have installed pydicom >= 1.0, and so dicom library does not exist. You can simply import
pydicom instead, and continue with the new pydicom, or, if you really need the old pydicom, then you should:

pip install dicom

and you should be good to go.

12 Chapter 3. Transition to pydicom 1.x

CHAPTER 4

Working with Pixel Data

How to work with pixel data in pydicom.

4.1 Introduction

pydicom tends to be “lazy” in interpreting DICOM data. For example, by default it doesn’t do anything with pixel
data except read in the raw bytes:

>>> import dicom
>>> ds=dicom.read_file("MR_small.dcm")
>>> ds.PixelData
'\x89\x03\xfb\x03\xcb\x04\xeb\x04\xf9\x02\x94\x01\x7f ...
...

PixelData contains the raw bytes exactly as found in the file. If the image is JPEG compressed, these bytes will
be the compressed pixel data, not the expanded, uncompressed image. Whether the image is e.g. 16-bit or 8-bit,
multiple frames or not, PixelData contains the same raw bytes. But there is a function that can shape the pixels
more sensibly if you need to work with them...

4.2 pixel_array

A property of Dataset called pixel_array provides more useful pixel data for uncompressed images. The NumPy
numerical package must be installed on your system to use this property, because pixel_array returns a NumPy
array:

>>> import dicom
>>> ds=dicom.read_file("MR_small.dcm")
>>> ds.pixel_array
array([[905, 1019, 1227, ..., 302, 304, 328],

[628, 770, 907, ..., 298, 331, 355],
[498, 566, 706, ..., 280, 285, 320],
...,
[334, 400, 431, ..., 1094, 1068, 1083],
[339, 377, 413, ..., 1318, 1346, 1336],
[378, 374, 422, ..., 1369, 1129, 862]], dtype=int16)

>>> ds.pixel_array.shape
(64, 64)

NumPy can be used to modify the pixels, but if the changes are to be saved, they must be written back to the
PixelData attribute:

13

http://numpy.org/

pydicom Documentation, Release 1.0a

>>> for n,val in enumerate(ds.pixel_array.flat): # example: zero anything < 300
... if val < 300:
... ds.pixel_array.flat[n]=0
>>> ds.PixelData = ds.pixel_array.tostring()
>>> ds.save_as("newfilename.dcm")

Some changes may require other DICOM tags to be modified. For example, if the pixel data is reduced (e.g. a 512x512
image is collapsed to 256x256) then ds.Rows and ds.Columns should be set appropriately. You must explicitly
set these yourself; pydicom does not do so automatically.

pixel_array can also be used to pass image data to graphics libraries for viewing. See Viewing Images for details.

14 Chapter 4. Working with Pixel Data

CHAPTER 5

Viewing Images

How to use other packages with pydicom to view DICOM images

5.1 Introduction

pydicom is mainly concerned with getting at the DICOM data elements in files, but it is often desirable to view pixel
data as an image. There are several options:

• Use any of the many DICOM viewer programs available

• use pydicom with matplotlib

• use pydicom with Tkinter (comes standard with python)

• use pydicom with the Python Imaging Library (PIL)

• use pydicom with wxPython

5.2 Using pydicom with matplotlib

matplotlib is available at http://matplotlib.sourceforge.net/. It can take 2-d image information from
Dataset.pixel_array and display it. Here is an example:

>>> import dicom
>>> import pylab
>>> ds=dicom.read_file("CT_small.dcm")
>>> pylab.imshow(ds.pixel_array, cmap=pylab.cm.bone)
<matplotlib.image.AxesImage object at 0x0162A530>
>>> pylab.show()
>>>

Thanks to Roy Keyes for pointing out how to do this.

5.3 Using pydicom with Tkinter

The program pydicom_Tkinter.py in the contrib folder demonstrates how to show an image using the Tkinter
graphics system, which comes standard with most python installs. It creates a Tkinter PhotoImage in a Label widget
or a user-supplied widget.

15

http://www.dclunie.com/medical-image-faq/html/part8.html#DICOMFileConvertorsAndViewers
http://matplotlib.sourceforge.net/
http://www.pythonware.com/products/pil/
http://www.wxpython.org/
http://matplotlib.sourceforge.net/
http://code.google.com/p/pydicom/source/browse/source/dicom/contrib/pydicom_Tkinter.py

pydicom Documentation, Release 1.0a

5.4 Using pydicom with Python Imaging Library (PIL)

The module pydicom_PIL.py in the contrib folder uses PIL’s Image.show() method after creating an Image
instance from the pixel data and some basic information about it (bit depth, LUTs, etc)

5.5 Using pydicom with wxPython

The module imViewer-Simple.py in the contrib folder uses wxPython (also PIL, but it notes that it may not be
strictly necessary) to display an image from a pydicom dataset.

16 Chapter 5. Viewing Images

http://code.google.com/p/pydicom/source/browse/source/dicom/contrib/pydicom_PIL.py
http://code.google.com/p/pydicom/source/browse/source/dicom/contrib/imViewer_Simple.py

CHAPTER 6

Pydicom Reference Guide

Common pydicom functions called by user code

6.1 File Reading/Parsing

The main function to read and parse DICOM files using pydicom is read_file. It is coded in the module di-
com.filereader, but is also imported when the dicom package is imported:

>>> import dicom
>>> dataset = dicom.read_file(...)

If you need fine control over the reading, you can either call read_partial or use open_dicom. All are docu-
mented below:

6.2 Dataset

17

pydicom Documentation, Release 1.0a

18 Chapter 6. Pydicom Reference Guide

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

	Getting Started with pydicom
	Introduction
	License
	Installing
	Using pydicom
	Support
	Next Steps

	Pydicom User Guide
	Dataset
	DataElement
	Tag
	Sequence

	Transition to pydicom 1.x
	Introduction
	For authors of packages requiring pydicom < 1.0
	Error messages relating to the pydicom transition

	Working with Pixel Data
	Introduction
	pixel_array

	Viewing Images
	Introduction
	Using pydicom with matplotlib
	Using pydicom with Tkinter
	Using pydicom with Python Imaging Library (PIL)
	Using pydicom with wxPython

	Pydicom Reference Guide
	File Reading/Parsing
	Dataset

	Indices and tables

