
Piwheels 0.10 Documentation
Release 0.10

Ben Nuttall

Jan 12, 2018

Contents

1 Overview 1
1.1 Deployment . 1
1.2 Upgrades . 2

2 piw-master 3
2.1 Synopsis . 3
2.2 Description . 3
2.3 Development . 4
2.4 Tasks . 5
2.5 Queues . 7

3 piw-slave 9
3.1 Synopsis . 9
3.2 Description . 9
3.3 Protocols . 10
3.4 Security . 13

4 piw-monitor 15
4.1 Synopsis . 15
4.2 Description . 15
4.3 Usage . 15

5 piw-initdb 17
5.1 Synopsis . 17
5.2 Description . 17
5.3 Usage . 18

6 piw-import 19
6.1 Synopsis . 19
6.2 Description . 19
6.3 Protocols . 20
6.4 Usage . 22

7 piw-remove 23
7.1 Synopsis . 23
7.2 Description . 23
7.3 Protocols . 24
7.4 Usage . 25

8 Module Reference 27
8.1 piwheels.master . 27
8.2 piwheels.master.tasks . 28

i

8.3 piwheels.master.states . 29
8.4 piwheels.master.ranges . 31
8.5 piwheels.master.db . 31
8.6 piwheels.master.cloud_gazer . 33
8.7 piwheels.master.the_oracle . 33
8.8 piwheels.master.seraph . 35
8.9 piwheels.master.the_architect . 35
8.10 piwheels.master.slave_driver . 35
8.11 piwheels.master.mr_chase . 37
8.12 piwheels.master.file_juggler . 37
8.13 piwheels.master.big_brother . 39
8.14 piwheels.master.index_scribe . 39
8.15 piwheels.slave . 40
8.16 piwheels.slave.builder . 41
8.17 piwheels.initdb . 42
8.18 piwheels.importer . 43
8.19 piwheels.remove . 44

9 License 45

Python Module Index 47

ii

CHAPTER 1

Overview

The piwheels project is designed to automate building of wheels from packages on PyPI for a set of pre-configured
ABIs. As the name suggests, it was originally built for Raspberry Pis but there’s nothing particular in the codebase
that should limit it to that platform. The system relies on the following components:

Component Description
piw-master
(page 3)

Coordinates the various build slaves, using the database to store all relevant information, and
keeps the web site up to date.

piw-slave
(page 9)

Builds package on behalf of the piwheels master. Is intended to run on separate machines to
the master, partly for performance and partly for security.

piw-monitor
(page 15)

Provides a friendly curses-based UI for interacting with the piwheels master.

piw-initdb
(page 17)

A simple maintenance script for initializing or upgrading the database to the current version.

piw-import
(page 19)

A tool for importing wheels manually into the piwheels database and file-system.

database
server

Currently only PostgreSQL1 is supported (and frankly that’s all we’re ever likely to support).
This provides the master’s data store.

web server Anything that can serve from a static directory is fine here. We use Apache2 in production.

Note: At present the master is a monolithic application, but the internal architecture is such that it could, in
future, be split into three parts: one that deals exclusively with the database server, one that deals exclusively with
the file-system served by the web server, and one that talks to the piwheels slave and monitor processes.

1.1 Deployment

A typical deployment of the master service on a Raspbian server goes something like this (all chunks assume you
start as root):

1. Install the pre-requisite software:

1 https://postgresql.org/
2 https://httpd.apache.org/

1

https://postgresql.org/
https://httpd.apache.org/

Piwheels 0.10 Documentation, Release 0.10

apt install postgresql-9.6 apache2 python3-psycopg2 python3-geoip
apt install python3-sqlalchemy python3-urwid python3-zmq
pip install piwheels[monitor,master,log]

2. Set up the (unprivileged) piwheels user and the output directory:

groupadd piwheels
useradd -g piwheels -m piwheels
mkdir /var/www/piwheels
chown piwheels:piwheels /var/www/piwheels

3. Set up the database:

su - postgres
$ createuser piwheels
$ createdb -O postgres piwheels
$ piw-initdb

4. Set up the web server:

• Point the document root to the output path (/var/www/piwheels above, but it can be anywhere
your piwheels user has write access to; naturally you want to make sure your web-server’s user only
has read access to the location).

• Set up SSL for the web server (e.g. with Let’s Encrypt3; the dehydrated4 utility is handy for getting
and maintaining the SSL certificates).

5. Start the master running (it’ll take quite a while to populate the list of packages and versions from PyPI on
the initial run so get this going before you start bringing up build slaves):

su - piwheels
$ piw-master -v

6. Deploy some build slaves on separate machines:

wget https://raw.githubusercontent.com/bennuttall/piwheels/master/deploy_
→˓slave.sh
chmod +x deploy_slave.sh
./deploy_slave.sh

7. Start the build slave running (assuming your master’s IP address is 10.0.0.1):

su - piwheels
$ piw-slave -v -m 10.0.0.1

1.2 Upgrades

The master will check that build slaves have the same version number and will reject them if they do not. Further-
more, it will check the version number in the database’s configuration table matches its own and fail if it does not.
Re-run the piw-initdb script as the postgres super-user to upgrade the database between versions (downgrades
are not supported, so take a backup first!).

3 https://letsencrypt.org/
4 https://github.com/lukas2511/dehydrated

2 Chapter 1. Overview

https://letsencrypt.org/
https://github.com/lukas2511/dehydrated

CHAPTER 2

piw-master

The piw-master script is intended to be run on the database and file-server machine. It is recommended you do
not run piw-slave on the same machine as the piw-master script. The database specified in the configuration must
exist and have been configured with the piw-initdb script. It is recommended you run piw-master as an ordinary
unprivileged user, although obviously it will need write access to the output directory.

2.1 Synopsis

piw-master [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-d DSN]
[--pypi-xmlrpc URL] [--pypi-simple URL] [-o PATH]
[--index-queue ADDR] [--status-queue ADDR]
[--control-queue ADDR] [--builds-queue ADDR]
[--db-queue ADDR] [--fs-queue ADDR] [--slave-queue ADDR]
[--file-queue ADDR] [--import-queue ADDR]

2.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

3

Piwheels 0.10 Documentation, Release 0.10

-d DSN, --dsn DSN
The database to use; this database must be configured with piw-initdb and the user should not be a Post-
greSQL superuser (default: postgres:///piwheels)

--pypi-xmlrpc URL
The URL of the PyPI XML-RPC service (default: https://pypi.python.org/pypi)

--pypi-simple URL
The URL of the PyPI simple API (default: https://pypi.python.org/simple)

-o PATH, --output-path PATH
The path under which the website should be written; must be writable by the current user

--index-queue ADDR
The address of the IndexScribe queue (default: inproc://indexes)

--status-queue ADDR
The address of the queue used to report status to monitors (default: ipc:///tmp/piw-status)

--control-queue ADDR
The address of the queue a monitor can use to control the master (default: ipc:///tmp/piw-control)

--builds-queue ADDR
The address of the queue used to store pending builds (default: inproc://builds)

--db-queue ADDR
The address of the queue used to talk to the database server (default: inproc://db)

--fs-queue ADDR
The address of the queue used to talk to the file- system server (default: inproc://fs)

--slave-queue ADDR
The address of the queue used to talk to the build slaves (default: tcp://*:5555)

--file-queue ADDR
The address of the queue used to transfer files from slaves (default: tcp://*:5556)

--import-queue ADDR
The address of the queue used by piw-import (default: (ipc:///tmp/piw-import); this should always be an ipc
address

2.3 Development

Although the piwheels master appears to be a monolithic script, it’s actually composed of numerous (often ex-
tremely simple) tasks. Each task runs its own thread and all communication between tasks takes place over
ZeroMQ5 sockets. This is also how communication occurs between the master and the piw-slave (page 9), and the
piw-monitor (page 15).

The following diagram roughly illustrates all the tasks in the system (including those of the build slaves and the
monitor), along with details of the type of ZeroMQ socket used to communicate between them:

5 https://zeromq.org/

4 Chapter 2. piw-master

https://pypi.python.org/pypi
https://pypi.python.org/simple
tcp://*:5555
tcp://*:5556
https://zeromq.org/

Piwheels 0.10 Documentation, Release 0.10

db-server

file-server

master

monitor

slave1slave2import

PyPI

CloudGazer

REQ

main

DEALER REQ

main

DEALER REQ

Users

REQ

TheOracle

piwheels
database

REQ

TheOracle

REQ

TheOracle

REP

TheArchitect

ROUTER

Seraph

ROUTER

ROUTER REP

FileJuggler

www
filesystem

PULL REQ

IndexScribe

PULL

Lumberjack

REQ

httpd

PULL

main

PULL PUB

PUSH SUB

main

BigBrother

PUSH REQ REQ PUSH

ROUTER

SlaveDriver

PUSH REQ REQ REQ PUSH

ROUTER

MrChase

PUSH REQ REQ PUSH

main

DEALER REQ

It may be confusing that the file server and database server appear to be separate to the master in the diagram. This
is deliberate as the system’s architecture is such that certain tasks can be easily broken off into entirely separate
processes (potentially on separate machines), if required in future (either for performance or security reasons).

2.4 Tasks

The following sections document the tasks shown above (listed from the “front” at PyPI to the “back” at Users):

2.4.1 Cloud Gazer

Implemented in: piwheels.master.cloud_gazer.CloudGazer (page 33).

2.4. Tasks 5

Piwheels 0.10 Documentation, Release 0.10

This task is the “front” of the system. It follows PyPI’s event log for new package and version registrations, and
writes those entries to the database. It does this via The Oracle (page 6).

2.4.2 The Oracle

Implemented in: piwheels.master.the_oracle.TheOracle (page 33).

This task is the main interface to the database. It accepts requests from other tasks (“register this new package”,
“log this build”, “what files were built with this package”, etc.) and executes them against the database. Because
database requests are extremely variable in their execution time, there are actually several instances of the oracle
which sit behind Seraph (page 6).

2.4.3 Seraph

Implemented in: piwheels.master.seraph.Seraph (page 35).

Seraph is a simple load-balancer for the various instances of The Oracle (page 6). This is the task that actually
accepts database requests. It finds a free oracle and passes the request along, passing back the reply when it’s
finished.

2.4.4 The Architect

Implemented in: piwheels.master.the_architect.TheArchitect (page 35).

This task is the final database related task in the master script. Unlike The Oracle (page 6) it simply queries the
database for the packages that need building. Whenever Slave Driver (page 6) needs a task to hand to a build
slave, it asks the Architect for one matching the build slave’s ABI.

2.4.5 Slave Driver

Implemented in: piwheels.master.slave_driver.SlaveDriver (page 35).

This task is the main coordinator of the build slave’s activities. When a build slave first comes online it introduces
itself to this task (with information including the ABI it can build for), and asks for a package to build. As
described above, this task asks The Architect (page 6) for the next package matching the build slave’s ABI and
passes this back.

Eventually the build slave will communicate whether or not the build succeeded, along with information about the
build (log output, files generated, etc.). This task writes this information to the database via The Oracle (page 6).
If the build was successful, it informs the File Juggler (page 7) that it should expect a file transfer from the relevant
build slave.

Finally, when all files from the build have been transferred, the Slave Driver informs the Index Scribe (page 7) that
the package’s index will need (re)writing.

2.4.6 Mr. Chase

Implemented in: piwheels.master.mr_chase.MrChase (page 37).

This task talks to piw-import and handles importing builds manually into the system. It is essentially a cut-
down version of the Slave Driver (page 6) with a correspondingly simpler protocol.

This task writes information to the database via The Oracle (page 6). If the imported build was successful, it
informs the File Juggler (page 7) that it should expect a file transfer from the importer.

Finally, when all files from the build have been transferred, it informs the Index Scribe (page 7) that the package’s
index will need (re)writing.

6 Chapter 2. piw-master

Piwheels 0.10 Documentation, Release 0.10

2.4.7 File Juggler

Implemented in: piwheels.master.file_juggler.FileJuggler (page 38).

This task handles file transfers from the build slaves to the master. Files are transferred in multiple (relatively
small) chunks and are verified with the hash reported by the build slave (retrieved from the database via The
Oracle (page 6)).

2.4.8 Big Brother

Implemented in: piwheels.master.big_brother.BigBrother (page 39).

This task is a bit of a miscellaneous one. It sits around periodically generating statistics about the system as a
whole (number of files, number of packages, number of successful builds, number of builds in the last hour, free
disk space, etc.) and sends these off to the Index Scribe (page 7).

2.4.9 Index Scribe

Implemented in: piwheels.master.index_scribe.IndexScribe (page 39).

This task generates the web output for piwheels. It generates the home-page with statistics from Big Brother
(page 7), the overall package index, and individual package file lists with messages from Slave Driver (page 6).

2.5 Queues

It should be noted that the diagram omits several queues for the sake of brevity. For instance, there is a simple
PUSH/PULL control queue between the master’s “main” task and each sub-task which is used to relay control
messages like PAUSE, RESUME, and QUIT.

Most of the protocols used by the queues are (currently) undocumented with the exception of those between the
build slaves and the Slave Driver (page 6) and File Juggler (page 7) tasks (documented in the piw-slave (page 9)
chapter).

However, all protocols share a common basis: messages are lists of Python objects. The first element is always
string containing the action. Further elements are parameters specific to the action. Messages are encoded with
pickle6. This is an untrusted format but was the quickest to get started with (and the inter-process queues aren’t
exposed to the internet). A future version may switch to something slightly safer like JSON7 or better still CBOR8.

6 https://docs.python.org/3.4/library/pickle.html#module-pickle
7 https://www.json.org/
8 https://cbor.io/

2.5. Queues 7

https://docs.python.org/3.4/library/pickle.html#module-pickle
https://www.json.org/
https://cbor.io/

Piwheels 0.10 Documentation, Release 0.10

8 Chapter 2. piw-master

CHAPTER 3

piw-slave

The piw-slave script is intended to be run on a standalone machine to build packages on behalf of the piw-master
script. It is intended to be run as an unprivileged user with a clean home-directory. Any build dependencies
you wish to use must already be installed. The script will run until it is explicitly terminated, either by Ctrl+C,
SIGTERM, or by the remote piw-master script.

3.1 Synopsis

usage: piw-slave [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-m HOST]
[-t DURATION]

3.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

-m HOST, --master HOST
The IP address or hostname of the master server (default: localhost)

-t DURATION, --timeout DURATION
The time to wait before assuming a build has failed; (default: 3h)

9

Piwheels 0.10 Documentation, Release 0.10

3.3 Protocols

The following sections document the protocols used between the build slaves and the two sub-tasks that they talk
to in the piw-master (page 3). Each protocol operates over a separate queue. All protocols in the piwheels system
follow a similar structure:

1. Each message is a list of Python objects.

2. The first element in the list is a string indicating the type of message.

3. Additional elements depend on the type of the message.

4. A given message type always contains the same number of elements (there are no variable length messages).

3.3.1 Slave Driver

The queue that talks to Slave Driver (page 6) is a ZeroMQ REQ socket, hence the protocol follows a strict request-
reply sequence which is illustrated below:

10 Chapter 3. piw-slave

Piwheels 0.10 Documentation, Release 0.10

HELLO

HELLO

[timeout,
pyver,
abi,
...

IDLE

BUILD

[package,
version]

SLEEP BYE

BUILT

SEND

success

DONE

failure

SENT

failure/more

success

BYE

[id]

[status,
duration,
output,

...

3.3. Protocols 11

Piwheels 0.10 Documentation, Release 0.10

1. The new build slave sends ["HELLO", timeout, py_version_tag, abi_tag,
platform_tag] where:

• timeout is the slave’s configured timeout (the length of time after which it will assume a build has
failed and attempt to terminate it)

• py_version_tag is the python version the slave will build for (e.g. “27”, “35”, etc.)

• abi_tag is the ABI the slave will build for (e.g. “cp35m”)

• platform_tag is the platform of the slave (e.g. “linux_armv7l”)

2. The master replies with ["HELLO", slave_id] where slave_id is an integer identifier for the slave.
Strictly speaking, the build slave doesn’t need this identifier but it can be helpful for admins or developers
to see the same identifier in logs on the master and the slave which is the only reason it is communicated.

3. The build slave sends ["IDLE"] to indicate that it is ready to accept a build job.

4. The master can reply with ["SLEEP"] which indicates that no jobs are currently available for that slave
(e.g. the master is paused, or the build queue is empty, or there are no builds for the slave’s particular ABI
at this time). In this case the build slave should pause a while (the current implementation waits 10 seconds)
before retrying IDLE.

5. The master can also reply wih ["BYE"]which indicates the build slave should shutdown. In this case, after
cleaning up any resources the build slave should send back ["BYE"] and terminate (generally speaking,
whenever the slave terminates it should send ["BYE"] no matter where in the protocol it occurs; the master
will take this as a sign of termination).

6. The master can also reply with ["BUILD", package, version] where package is the name of a
package to build and version is the version to build. At this point, the build slave should attempt to locate
the package on PyPI and build a wheel from it.

7. Whatever the outcome of the build, the slave sends ["BUILT", status, duration, output,
files]:

• status is True if the build succeeded and False otherwise.

• duration is a float9 value indicating the length of time it took to build in seconds.

• output is a string containing the complete build log.

• files is a list of file state tuples containing the following fields in the specified order:

– filename is the filename of the wheel.

– filesize is the size in bytes of the wheel.

– filehash is the SHA256 hash of the wheel contents.

– package_tag is the package tag extracted from the filename.

– package_version_tag is the version tag extracted from the filename.

– py_version_tag is the python version tag extracted from the filename.

– abi_tag is the ABI tag extracted from the filename (sanitized).

– platform_tag is the platform tag extracted from the filename.

8. If the build succeeded, the master will send ["SEND", filename] where filename is one of the names
transmitted in the prior “BUILT” message.

9. At this point the slave should use the File Juggler (page 13) protocol documented below to transmit the con-
tents of the specified file to the master. When the file transfer is complete, the build slave sends ["SENT"]
to the master.

10. If the file transfer fails to verify, or if there are more files to send the master will repeat the “SEND” message.
Otherwise, if all transfers have completed and have been verified, the master replies with ["DONE"].

11. The build slave is now free to destroy all resources associated with the build, and returns to step 3 (“IDLE”).

9 https://docs.python.org/3.4/library/functions.html#float

12 Chapter 3. piw-slave

https://docs.python.org/3.4/library/functions.html#float

Piwheels 0.10 Documentation, Release 0.10

3.3.2 File Juggler

The queue that talks to File Juggler (page 7) is a ZeroMQ DEALER socket. This is because the protocol is semi-
asynchronous (for performance reasons). For the sake of illustration, a synchronous version of the protocol is
illustrated below:

HELLO

FETCH

[id]

CHUNK

[offset,data]

DONE

[offset,length]

1. The build slave initially sends ["HELLO", slave_id] where slave_id is the integer identifier of the
slave. The master knows what file it requested from this slave (with “SEND” to the Slave Driver), and
knows the file hash it is expecting from the “BUILT” message.

2. The master replies with ["FETCH", offset, length] where offset is a byte offset into the file, and
length is the number of bytes to send.

3. The build slave replies with ["CHUNK", data] where data is a byte-string containing the requested
bytes from the file.

4. The master now either replies with another “FETCH” message or, when it has all chunks successfully
received, replies with ["DONE"] indicating the build slave can now close the file (though it can’t delete it
yet; see the “DONE” message on the Slave Driver side for that).

“FETCH” messages may be repeated if the master drops packets (due to an overloaded queue). Furthermore,
because the protocol is semi-asynchronous multiple “FETCH” messages will be sent before the master waits for
any returning “CHUNK” messages.

3.4 Security

Care must be taken when running the build slave. Building all packages in PyPI effectively invites the denizens of
the Internet to run arbitrary code on your machine. For this reason, the following steps are recommended:

1. Never run the build slave on the master; ensure they are entirely separate machines.

2. Run the build slave as an unprivileged user which has access to nothing it doesn’t absolutely require (it
shouldn’t have any access to the master’s file-system, the master’s database, etc.)

3. Install the build slave’s code in a location the build slave’s unprivileged user does not have write access (i.e.
not in a virtualenv under the user’s home dir).

3.4. Security 13

Piwheels 0.10 Documentation, Release 0.10

4. Consider whether to make the unprivileged user’s home-directory read-only.

We have experimented with read-only home directories, but a significant portion of (usually scientifically oriented)
packages attempt to be “friendly” and either write data to the user’s home directory or modify the user’s profile
(~/.bashrc and so forth).

The quandry is whether it is better to fail with such packages (a read-only home-directory will most likely crash
such setup scripts, failing the build), or partially support them (leaving the home-directory writeable even though
the modifications on the build-slave won’t be recorded in the resulting wheel and thus won’t be replicated on user’s
machines). There is probably no universally good answer.

Currently, while the build slave cleans up the temporary directory used by pip during wheel building, it doesn’t
attempt to clean its own home directory (which setup scripts are free to write to). This is something that ought to
be addressed in future as it’s a potentially exploitable hole.

14 Chapter 3. piw-slave

CHAPTER 4

piw-monitor

The piw-monitor application is used to monitor (and optionally control) the piw-master script. Upon startup it will
request the status of all build slaves currently known to the master, and will then continually update its display as
the slaves progress through builds. The controls at the bottom of the display allow the administrator to pause or
resume the master script, kill build slaves that are having issues (e.g. excessive resource consumption from a huge
build) or terminate the master itself.

4.1 Synopsis

usage: piw-monitor [-h] [--version] [-c FILE] [--status-queue ADDR]
[--control-queue ADDR]

4.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

--status-queue ADDR
The address of the queue used to report status to monitors (default: ipc:///tmp/piw-status)

--control-queue ADDR
The address of the queue a monitor can use to control the master (default: ipc:///tmp/piw-control)

4.3 Usage

The monitor application can should be started on the same machine as the master after the piw-master script
has been started. After initialization it will request the current status of all build slaves from the master, displaying
this in a list in the middle of the screen.

15

Piwheels 0.10 Documentation, Release 0.10

The Tab key can be used to navigate between the list of build slaves and the controls at the bottom of the screen.
Mouse control is also supported, provided the terminal emulator supports it. Finally, hot-keys for all actions are
available. The actions are as follows:

4.3.1 Pause

Hotkey: p

Pauses operations on the master. This causes Cloud Gazer (page 5) to stop querying PyPI, Slave Driver (page 6) to
return “SLEEP” in response to any build slave requesting new packages, and so on. This is primarily a debugging
tool to permit the developer to peek at the system in a more or less frozen state before resuming things.

4.3.2 Resume

Hotkey: r

Resumes operations on the master when paused.

4.3.3 Kill Slave

Hotkey: k

The next time the selected build slave requests a new package (with “IDLE”) the master will return “BYE”
indicating the slave should terminate. Note that this cannot kill a slave in the middle of a build (that would require
a more complex asynchronous protocol in Slave Driver (page 6)), but is useful for shutting things down in an
orderly fashion.

4.3.4 Terminate Master

Hotkey: t

Tells the master to shut itself down. In a future version, the master should request all build slaves to terminate as
well, but currently this is unimplemented.

4.3.5 Quit

Hotkey: q

Terminate the monitor. Note that this won’t affect the master.

16 Chapter 4. piw-monitor

CHAPTER 5

piw-initdb

The piw-initdb script is used to initialize or upgrade the piwheels master database. The target PostgreSQL database
must already exist, and the DSN should connect as a cluster superuser (e.g. the postgres user), in contrast to the
piw-master script which should not use the cluster superuser. The script will prompt before making any permanent
alterations, and all actions will be executed within a single transaction so that in the event of failure the database
will be left unchanged. Nonetheless, it is strongly recommended you take a backup of your database before using
this script for upgrades.

5.1 Synopsis

usage: piw-initdb [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-d DSN]
[-u NAME] [-y]

5.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

-d DSN, --dsn DSN
The database to create or upgrade; this DSN must connect as the cluster superuser (default: post-
gres:///piwheels)

17

Piwheels 0.10 Documentation, Release 0.10

-u NAME, --user NAME
The name of the ordinary piwheels database user (default: piwheels)

-y, --yes
Proceed without prompting before init/upgrades

5.3 Usage

This script is intended to be used after installation to initialize the piwheels master database. Note that it does not
create the database or the users for the database. It merely creates the tables, views, and other structures within an
already existing database. See the Overview (page 1) chapter for typical usage.

The script can also be used to upgrade an existing piwheels database to the latest version. The update scripts used
attempt to preserve all data, and all upgrades are performed in a single transaction so that, theoretically, if anything
goes wrong the database should be rolled back to its original state. However, it is still strongly recommended that
you back up your master database before proceeding with any upgrade.

18 Chapter 5. piw-initdb

CHAPTER 6

piw-import

The piw-import script is used to inject the specified file(s) manually into the piwheels database and file-system.
This script must be run on the same node as the piw-master script.

6.1 Synopsis

usage: piw-import [-h] [--version] [-c FILE] [-q] [-v] [-l FILE]
[--package PACKAGE] [--package-version VERSION] [--abi ABI]
[--duration DURATION] [--output FILE] [-y] [-d]
[--import-queue ADDR]
files [files ...]

6.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

--package PACKAGE
the name of the package to import; if omitted this will be derived from the file(s) specified

--package-version VERSION
the version of the package to import; if omitted this will be derived from the file(s) specified

19

Piwheels 0.10 Documentation, Release 0.10

--abi ABI
the ABI of the package to import; if omitted this will be derived from the file(s) specified

--duration DURATION
the time taken to build the package (default: 0s)

--output FILE
the filename containing the build output to insert into the database; if this is omitted an appropriate message
will be inserted instead

-y, --yes
run non-interactively; never prompt during operation

-d, --delete
remove the specified file(s) after a successful import; if the import fails, no files will be removed

--import-queue ADDR
the address of the queue used by piw-import (default: (ipc:///tmp/piw-import); this should always be an
ipc address

6.3 Protocols

The following section documents the protocol used between the importer and the tasks that it talks to in the piw-
master (page 3). Each protocol operates over a separate queue. All protocols in the piwheels system follow a
similar structure:

1. Each message is a list of Python objects.

2. The first element in the list is a string indicating the type of message.

3. Additional elements depend on the type of the message.

4. A given message type always contains the same number of elements (there are no variable length messages).

6.3.1 Mr Chase

The queue that talks to Mr. Chase (page 6) is a ZeroMQ REQ socket, hence the protocol follows a strict request-
reply sequence which is illustrated below (see piw-remove (page 23) for documentation of the REMOVE path):

20 Chapter 6. piw-import

Piwheels 0.10 Documentation, Release 0.10

IMPORT

ERRORSEND

[package,
version,
status,

...

REMOVE

DONE

[package,
version,
skip]

SENT

failure/more

success

1. The importer sends ["IMPORT", abi_tag, package, version, status, duration,
output, files]:

• abi_tag is either None, indicating that the master should use the “default” (minimum) build ABI
registered in the system, or is a string indicating the ABI that the build was attempted for.

• package is the name of the package that the build is for.

• version is the version of the package that the build is for.

• status is True if the build succeeded and False otherwise.

• duration is a float10 value indicating the length of time it took to build in seconds.

• output is a string containing the complete build log.

• files is a list of file state tuples containing the following fields in the specified order:

– filename is the filename of the wheel.

– filesize is the size in bytes of the wheel.

– filehash is the SHA256 hash of the wheel contents.

– package_tag is the package tag extracted from the filename.

– package_version_tag is the version tag extracted from the filename.

– py_version_tag is the python version tag extracted from the filename.

– abi_tag is the ABI tag extracted from the filename (sanitized).

– platform_tag is the platform tag extracted from the filename.

10 https://docs.python.org/3.4/library/functions.html#float

6.3. Protocols 21

https://docs.python.org/3.4/library/functions.html#float

Piwheels 0.10 Documentation, Release 0.10

2. If the import information is insufficient or incorrect, the master will send ["ERROR", args, ...]
where args and any further fields are the arguments of the exception that was raised.

3. If the import information is okay, the master will send ["SEND", filename] for each file mentioned
in the build.

4. At this point the importer should use the File Juggler (page 13) protocol to transmit the contents of the
specified file to the master. When the file transfer is complete, the importer sends ["SENT"] to the master.

5. If the file transfer fails to verify, or if there are more files to send the master will repeat the “SEND” message.
Otherwise, if all transfers have completed and have been verified, the master replies with ["DONE"].

6. The importer is now free to remove all files associated with the build, if requested to.

6.4 Usage

This utility is used to import wheels manually into the system. This is useful with packages which have no source
available on PyPI, or binary-only packages from third parties. If invoked with multiple files, all files will be
associated with a single “build” and the build will be for the package and version of the first file specified. No
checks are made for equality of package name or version (as several packages on PyPI would violate such a rule!).

The utility can be run in a batch mode with --yes (page 20) but still requires invoking once per build required
(you cannot register multiple builds in a single invocation).

The return code will be 0 if the build was registered and all files were uploaded successfully. Additionally the
--delete (page 20) option can be specified to remove the source files once all uploads are completed success-
fully. If anything fails, the return code will be non-zero and no files will be deleted.

The utility should only ever be run directly on the master node (opening the import queue to other machines is a
potential security risk).

22 Chapter 6. piw-import

CHAPTER 7

piw-remove

The piw-remove script is used to manually remove a version of a package from the system. All builds for the
specified version will be forgotten, all files generated by such builds will be deleted, and all logged downloads
will be deleted too.

By default, the version removed will not be marked to skip. Hence, after a short while the master is likely to
attempt to re-build it. What happens at this point depends on several factors:

• If the version is still available on PyPI, and the build dependencies on the chosen slave are sufficient, it will
(potentially) build successfully and re-appear on the system.

• If the version has been removed from PyPI (which is a reason to remove it from piwheels), the build will
fail. The failed build will be logged in the system and will not be attempted again.

7.1 Synopsis

usage: piw-remove [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-y] [-s]
[--import-queue ADDR]
package version

7.2 Description

package
the name of the package to remove

version
the version of the package to remove

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
specify a configuration file to load

23

Piwheels 0.10 Documentation, Release 0.10

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

-y, --yes
run non-interactively; never prompt during operation

-s, --skip
mark the version to prevent future build attempts

--import-queue ADDR
the address of the queue used by piw-remove (default: (ipc:///tmp/piw-import); this should always be an ipc
address

7.3 Protocols

The following section documents the protocol used between the importer and the tasks that it talks to in the piw-
master (page 3). Each protocol operates over a separate queue. All protocols in the piwheels system follow a
similar structure:

1. Each message is a list of Python objects.

2. The first element in the list is a string indicating the type of message.

3. Additional elements depend on the type of the message.

4. A given message type always contains the same number of elements (there are no variable length messages).

7.3.1 Mr Chase

The queue that talks to Mr. Chase (page 6) is a ZeroMQ REQ socket, hence the protocol follows a strict request-
reply sequence which is illustrated below (see piw-import (page 19) for documentation of the IMPORT path):

24 Chapter 7. piw-remove

Piwheels 0.10 Documentation, Release 0.10

IMPORT

ERRORSEND

[package,
version,
status,

...

REMOVE

DONE

[package,
version,
skip]

SENT

failure/more

success

1. The utility sends ["REMOVE", package, version, skip]:

• package is the name of the package to remove.

• version is the version of the package to remove.

• skip is True if the version should never be built again, and False otherwise.

2. If the removal fails (e.g. if the package or version does not exist), the master will send ["ERROR", args,
...].

3. If the removal is successful, the master replies with ["DONE"].

7.4 Usage

This utility is typically used in response to a request from a package maintainer to remove a specific build from
the system. Either because it has been withdrawn from PyPI itself, or because the presence of a piwheels build is
causing issues in and of itself (both circumstances have occurred).

The utility can be run in a batch mode with --yes (page 24) but still requires invoking once per deletion required
(you cannot remove multiple versions in a single invocation).

The return code will be 0 if the version was successfully removed. If anything fails, the return code will be
non-zero and no files should be deleted (but this cannot be guaranteed in all circumstances).

The utility should only ever be run directly on the master node (opening the import queue to other machines is a
potential security risk).

7.4. Usage 25

Piwheels 0.10 Documentation, Release 0.10

26 Chapter 7. piw-remove

CHAPTER 8

Module Reference

This chapter contains all the documentation auto-generated from the source code. It is probably not terribly useful
for reading through, but may be useful as a searchable reference.

8.1 piwheels.master

Defines the PiWheelsMaster (page 27) class. An instance of this is the entry-point for the piw-master
script.

class piwheels.master.PiWheelsMaster
This is the main class for the piw-master script. It spawns various worker threads, then spends its
time communicating with any attached monitor applications (see piw-monitor) and build slaves (see
piw-slave).

static configure_parser()
Construct the command line parser for piw-master with its many options (this method only exists
to simplify the main method).

do_hello()
Handler for the HELLO message; this indicates a new monitor has been attached and would like all
the build slave’s HELLO messages replayed to it.

do_kill(slave_id)
Handler for the KILL message; this terminates the specified build slave by its master id.

do_pause()
Handler for the PAUSE message; this requests all tasks pause their operations.

do_quit()
Handler for the QUIT message; this terminates the master.

do_resume()
Handler for the RESUME message; this requests all tasks resume their operations.

main_loop()
This is the main loop of the piw-master script. It receives messages from the internal status queue
and forwards them onto the external status queue (for any piw-monitor scripts that are attached).
It also retrieves any messages sent to the control queue and dispatches them to a handler.

27

Piwheels 0.10 Documentation, Release 0.10

piwheels.master.sig_term(signo, stack_frame)
Handler for the SIGTERM signal; raises SystemExit11 which will cause the PiWheelsMaster.
main_loop() (page 27) method to terminate.

8.2 piwheels.master.tasks

Implements the base classes (Task (page 28) and its derivative PauseableTask (page 28)) which form the
basis of all the tasks in the piwheels master.

exception piwheels.master.tasks.TaskQuit
Exception raised when the “QUIT” message is received by the internal control queue.

class piwheels.master.tasks.Task(config)
The Task (page 28) class is a Thread12 derivative which is the base for all tasks in the piwheels master.
The run() (page 28) method is overridden to perform a simple task loop which calls loop() (page 28)
once a cycle, and poll() (page 28) to react to any messages arriving into queues. Queues are associated
with handlers via the register() (page 28) method.

handle_control(queue)
Default handler for the internal control queue. In this base implementation it simply handles the
“QUIT” message by raising TaskQuit (which the run() (page 28) method will catch and use as a
signal to end).

loop()
This method is called once per loop of the task’s run() (page 28) method. If the task needs to do
some work periodically, this is the place to do it.

pause()
Requests that the task pause itself. This is an idempotent method; it’s always safe to call repeatedly
and even if the task isn’t pauseable it’ll simply be ignored.

poll(timeout=1000)
This method is called once per loop of the task’s run() (page 28) method. It polls all registered
queues and calls their associated handlers if the poll is successful.

quit()
Requests that the task terminate at its earliest convenience. To wait until the task has actually closed,
call join() afterwards.

register(queue, handler, flags=<Mock object>)
Register queue to be polled on each cycle of the task. Any messages with the relevant flags (defaults to
POLLIN) will trigger the specified handler method which is expected to take a single argument which
will be queue.

Parameters

• queue (zmq.Socket) – The queue to poll.

• handler – The function or method to call when a message with matching flags
arrives in queue.

• flags (int13) – The flags to match in the queue poller (defaults to POLLIN).

resume()
Requests that the task resume itself. This is an idempotent method; it’s safe to call repeatedly and even
if the task isn’t pauseable it’ll simply be ignored.

run()
This method is the main task loop. Override this to perform one-off startup processing within the
task’s background thread, and to perform any finalization required.

11 https://docs.python.org/3.4/library/exceptions.html#SystemExit
12 https://docs.python.org/3.4/library/threading.html#threading.Thread
13 https://docs.python.org/3.4/library/functions.html#int

28 Chapter 8. Module Reference

https://docs.python.org/3.4/library/exceptions.html#SystemExit
https://docs.python.org/3.4/library/threading.html#threading.Thread
https://docs.python.org/3.4/library/functions.html#int

Piwheels 0.10 Documentation, Release 0.10

class piwheels.master.tasks.PauseableTask(config)
Derivative of Task (page 28) that implements a rudimentary pausing mechanism. When the “PAUSE”
message is received on the internal control queue, the task will enter a loop which simply polls the control
queue waiting for “RESUME” or “QUIT”. No other work will be done (Task.loop() (page 28) and
Task.poll() (page 28) will not be called) until the task is resumed (or terminated).

8.3 piwheels.master.states

This module defines several classes which permit interested tasks to track the state of build slaves (SlaveState
(page 30)), file transfers (TransferState (page 30)), build attempts (BuildState (page 29)) and build
artifacts (FileState (page 29)).

class piwheels.master.states.FileState(filename, filesize, filehash, package_tag, pack-
age_version_tag, py_version_tag, abi_tag, plat-
form_tag, transferred=False)

Represents the state of an individual build artifact (a package file, or wheel) including its filename,
filesize, the SHA256 filehash, and various tags extracted from the build. Also tracks whether or
not the file has been transferred.

Parameters

• filename (str14) – The original filename of the build artifact.

• filesize (int15) – The size of the file in bytes.

• filehash (str16) – The SHA256 hash of the file contents.

• package_tag (str17) – The package tag extracted from the filename (first “-” sepa-
rated component).

• package_version_tag (str18) – The package version tag extracted from the file-
name (second “-” separated component).

• py_version_tag (str19) – The python version tag extracted from the filename
(third from last “-” separated component).

• abi_tag (str20) – The python ABI tag extracted from the filename (second from last
“-” separated component).

• platform_tag (str21) – The platform tag extracted from the filename (last “-” sep-
arated component).

• transferred (bool22) – True if the file has been transferred from the build slave
that generated it to the file server.

verified()
Called to set transferred to True after a file transfer has been successfully verified.

class piwheels.master.states.BuildState(slave_id, package, version, abi_tag, status, du-
ration, output, files, build_id=None)

Represents the state of a package build including the package, version, status, build duration,
and all the lines of output. The files (page 30) attribute is a mapping containing details of each
successfully built package file.

Parameters
14 https://docs.python.org/3.4/library/stdtypes.html#str
15 https://docs.python.org/3.4/library/functions.html#int
16 https://docs.python.org/3.4/library/stdtypes.html#str
17 https://docs.python.org/3.4/library/stdtypes.html#str
18 https://docs.python.org/3.4/library/stdtypes.html#str
19 https://docs.python.org/3.4/library/stdtypes.html#str
20 https://docs.python.org/3.4/library/stdtypes.html#str
21 https://docs.python.org/3.4/library/stdtypes.html#str
22 https://docs.python.org/3.4/library/functions.html#bool

8.3. piwheels.master.states 29

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool

Piwheels 0.10 Documentation, Release 0.10

• slave_id (int23) – The master’s identifier for the build slave.

• package (str24) – The name of the package to build.

• version (str25) – The version number of the package to build.

• abi_tag (str26) – The ABI for which the build was attempted (must not be
'none').

• status (bool27) – True if the build succeeded, False if it failed.

• duration (datetime.timedelta28) – The amount of time it took to complete
the build.

• output (str29) – The log output of the build.

• files (dict30) – A mapping of filenames to FileState (page 29) objects for each
artifact produced by the build.

• build_id (int31) – The integer identifier generated for the build by the database
(None until the build has been inserted into the database).

classmethod from_db(db, build_id)
Construct an instance by querying the database for the specified build_id.

Parameters

• db (Database (page 31)) – A Database (page 31) instance to query.

• build_id (int32) – The integer identifier of an attempted build.

logged(build_id)
Called to fill in the build’s ID in the backend database.

files
A mapping of filename to FileState (page 29) instances.

next_file
Returns the filename of the next file that needs transferring or None if all files have been transferred.

transfers_done
Returns True if all files have been transferred.

class piwheels.master.states.SlaveState(address, timeout, native_py_version, na-
tive_abi, native_platform)

Tracks the state of a build slave. The master updates this state which each request and reply sent to and
received from the slave, and this class in turn manages the associated BuildState (page 29) (accessible
from build) and TransferState (page 30) (accessible from transfer). The class also tracks the
time a request was last seen from the build slave, and includes a kill() method.

class piwheels.master.states.TransferState(slave_id, file_state)
Tracks the state of a file transfer. All file transfers are held in temporary locations until verify() indicates
the transfer was successful, at which point they are atomically renamed into their final location.

The state is intimately tied to the file transfer protocol and includes methods to write a recevied chunk(),
and to determine the next chunk to fetch(), as well as a property to determine when the transfer is done.

23 https://docs.python.org/3.4/library/functions.html#int
24 https://docs.python.org/3.4/library/stdtypes.html#str
25 https://docs.python.org/3.4/library/stdtypes.html#str
26 https://docs.python.org/3.4/library/stdtypes.html#str
27 https://docs.python.org/3.4/library/functions.html#bool
28 https://docs.python.org/3.4/library/datetime.html#datetime.timedelta
29 https://docs.python.org/3.4/library/stdtypes.html#str
30 https://docs.python.org/3.4/library/stdtypes.html#dict
31 https://docs.python.org/3.4/library/functions.html#int
32 https://docs.python.org/3.4/library/functions.html#int

30 Chapter 8. Module Reference

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/datetime.html#datetime.timedelta
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Piwheels 0.10 Documentation, Release 0.10

8.4 piwheels.master.ranges

A set of utility routines for efficiently tracking byte ranges within a stream. These are used to track which chunks
of a file have been received during file transfers from build slaves.

See FileJuggler (page 38) for the usage of these functions.

piwheels.master.ranges.consolidate(ranges)
Given a list of ranges in ascending order, this generator function returns the list with any overlapping ranges
consolidated into individual ranges. For example:

>>> list(consolidate([range(0, 5), range(4, 10)]))
[range(0, 10)]
>>> list(consolidate([range(0, 5), range(5, 10)]))
[range(0, 10)]
>>> list(consolidate([range(0, 5), range(6, 10)]))
[range(0, 5), range(6, 10)]

piwheels.master.ranges.exclude(ranges, ex)
Given a list of non-overlapping ranges in ascending order, and a range ex to exclude, this generator function
returns ranges with all values covered by ex removed from any contained ranges. For example:

>>> list(exclude([range(10)], range(2)))
[range(2, 10)]
>>> list(exclude([range(10)], range(2, 4)))
[range(0, 2), range(4, 10)]

piwheels.master.ranges.intersect(range1, range2)
Returns two ranges range1 and range2 (which must both have a step of 1), returns the range formed by the
intersection of the two ranges, or None if the ranges do not overlap. For example:

>>> intersect(range(10), range(5))
range(0, 5)
>>> intersect(range(10), range(10, 2))
>>> intersect(range(10), range(2, 5))
range(2, 5)

piwheels.master.ranges.split(ranges, i)
Given a list of non-overlapping ranges in ascending order, this generator function returns the list with the
range containing i split into two ranges, one ending at i and the other starting at i. If i is not contained in
any of the ranges, then ranges is returned unchanged. For example:

>>> list(split([range(10)], 5))
[range(0, 5), range(5, 10)]
>>> list(split([range(10)], 0))
[range(0, 10)]
>>> list(split([range(10)], 20))
[range(0, 10)]

8.5 piwheels.master.db

This module defines the low level database API, Database (page 31). This is a simple core SQLAlchemy affair
which runs trivial queries against the PostgreSQL database. All the serious logic is defined within views in the
database itself.

class piwheels.master.db.Database(dsn)
PiWheels database connection class

8.4. piwheels.master.ranges 31

Piwheels 0.10 Documentation, Release 0.10

add_new_package(package)
Insert a new package record into the database. Key violations are ignored as packages is effectively an
append-only table.

add_new_package_version(package, version)
Insert a new package version record into the database. Key violations are ignored as versions is
effectively an append-only table.

delete_build(package, version)
Remove all builds for the specified package and version, along with all files and download records

get_all_package_versions()
Returns the set of all known (package, version) tuples

get_all_packages()
Returns the set of all known package names

get_build(build_id)
Return all details about a given build.

get_build_abis()
Return the set of ABIs that the master should attempt to build

get_build_queue()
Returns a generator covering the entire builds_pending view; streaming results are activated for this
query as it’s more important to get the first result quickly than it is to retrieve the entire set.

get_files(build_id)
Return all details about the files generated by a given build.

get_package_files(package)
Returns all details required to build the index.html for the specified package.

get_pypi_serial()
Return the serial number of the last PyPI event

get_statistics()
Return various build related statistics from the database (see the definition of the statistics view
in the database creation script for more information.

get_version_files(package, version)
Returns the names of all files for version of package

log_build(build)
Log a build attempt in the database, including build output and wheel info if successful

log_download(download)
Log a download in the database, including data derived from JSON in pip’s user-agent.

log_file(build, file)
Log a pending file transfer in the database, including file-size, hash, and various tags

set_pypi_serial(serial)
Update the serial number of the last PyPI event

skip_package(package)
Mark a package to prevent future builds of all versions (and all future versions).

skip_package_version(package, version)
Mark a version of a package to prevent future build attempts.

test_package_version(package, version)
Check whether version of package already exists in the database. Returns a boolean.

32 Chapter 8. Module Reference

Piwheels 0.10 Documentation, Release 0.10

8.6 piwheels.master.cloud_gazer

Defines the CloudGazer (page 33) task; see class for more details.

class piwheels.master.cloud_gazer.CloudGazer(config)
This task scrapes PyPI for the list of available packages, and the versions of those packages. This informa-
tion is written into the backend database for TheArchitect (page 35) to use.

8.7 piwheels.master.the_oracle

Defines TheOracle (page 33) task and the DbClient (page 34) RPC class for talking to it.

class piwheels.master.the_oracle.TheOracle(config)
This task provides an RPC-like interface to the database; it handles requests such as registering a new
package, version, or build, and answering queries about the hashes of files. The primary clients of this class
are SlaveDriver (page 35), IndexScribe (page 39), and CloudGazer (page 33).

Note that because database requests are notoriously variable in length the client RPC class (DbClient
(page 34)) doesn’t directly talk to TheOracle (page 33). Rather, multiple instances of TheOracle
(page 33) are spawned and Seraph (page 35) sits in front of these acting as a simple load-sharing router
for the RPC clients.

do_allpkgs()
Handler for “ALLPKGS” message, sent by DbClient (page 34) to request the set of all packages
define known to the database.

do_allvers()
Handler for “ALLVERS” message, sent by DbClient (page 34) to request the set of all (package,
version) tuples known to the database.

do_delbuild(package, version)
Handler for “DELBUILD” message, sent by DbClient (page 34) to remove all builds (and files and
downloads by cascade) for version of package.

do_getabis()
Handler for “GETABIS” message, sent by DbClient (page 34) to request the list of all ABIs to build
for.

do_getpypi()
Handler for “GETPYPI” message, sent by DbClient (page 34) to request the record of the last serial
number from the PyPI changelog.

do_getstats()
Handler for “GETSTATS” message, sent by DbClient (page 34) to request the latest database statis-
tics, returned as a list of (field, value) tuples.

do_logbuild(build)
Handler for “LOGBUILD” message, sent by DbClient (page 34) to register a new build result.

do_logdownload(download)
Handler for “LOGDOWNLOAD” message, sent by DbClient (page 34) to register a new download.

do_newpkg(package)
Handler for “NEWPKG” message, sent by DbClient (page 34) to register a new package.

do_newver(package, version)
Handler for “NEWVER” message, sent by DbClient (page 34) to register a new (package, version)
tuple.

do_pkgexists(package, version)
Handler for “PKGEXISTS” message, sent by DbClient (page 34) to request whether or not the
specified version of package exists.

8.6. piwheels.master.cloud_gazer 33

Piwheels 0.10 Documentation, Release 0.10

do_pkgfiles(package)
Handler for “PKGFILES” message, sent by DbClient (page 34) to request details of all wheels
assocated with package.

do_setpypi(serial)
Handler for “SETPYPI” message, sent by DbClient (page 34) to update the last seen serial number
from the PyPI changelog.

do_skippkg(package)
Handler for “SKIPPKG” message, sent by DbClient (page 34) to skip building all versions of a
package.

do_skipver(package, version)
Handler for “SKIPVER” message, sent by DbClient (page 34) to skip building a specific version of
a package.

do_verfiles(package, version)
Handler for “VERFILES” message, sent by DbClient (page 34) to request the filenames of all
wheels associated with version of package.

handle_db_request(queue)
Handle incoming requests from DbClient (page 34) instances.

class piwheels.master.the_oracle.DbClient(config)
RPC client class for talking to TheOracle (page 33).

add_new_package(package)
See db.Database.add_new_package() (page 31).

add_new_package_version(package, version)
See db.Database.add_new_package_version() (page 32).

delete_build(package, version)
See db.Database.delete_build() (page 32).

get_all_package_versions()
See db.Database.get_all_package_versions() (page 32).

get_all_packages()
See db.Database.get_all_packages() (page 32).

get_build_abis()
See db.Database.get_build_abis() (page 32).

get_package_files(package)
See db.Database.get_package_files() (page 32).

get_pypi_serial()
See db.Database.get_pypi_serial() (page 32).

get_statistics()
See db.Database.get_statistics() (page 32).

get_version_files(package, version)
See db.Database.get_version_files() (page 32).

log_build(build)
See db.Database.log_build() (page 32).

log_download(download)
See db.Database.log_download() (page 32).

set_pypi_serial(serial)
See db.Database.set_pypi_serial() (page 32).

skip_package(package)
See db.Database.skip_package() (page 32).

34 Chapter 8. Module Reference

Piwheels 0.10 Documentation, Release 0.10

skip_package_version(package, version)
See db.Database.skip_package_version() (page 32).

test_package_version(package, version)
See db.Database.test_package_version() (page 32).

8.8 piwheels.master.seraph

Defines the Seraph (page 35) task; see class for more details.

class piwheels.master.seraph.Seraph(config)
This task is a simple load-sharing router for TheOracle (page 33) tasks.

handle_back(queue)
Receive a response from an instance of TheOracle (page 33) on the back queue. Strip off the
worker’s address frame and add it back to the available queue then send the response back to the client
that made the original request.

handle_front(queue)
If any workers are currently available, receive DbClient (page 34) requests from the front queue
and send it on to the worker including the client’s address frame.

8.9 piwheels.master.the_architect

Defines TheArchitect (page 35) task; see class for more details.

class piwheels.master.the_architect.TheArchitect(config)
This task queries the backend database to determine which versions of packages have yet to be built (and
aren’t marked to be skipped). It places a tuple of (package, version) for each such build into the internal
“builds” queue for SlaveDriver (page 35) to read.

handle_builds(queue)
Handler for the task’s builds queue. Whenever a build slave asks SlaveDriver (page 35) for a new
task, SlaveDriver (page 35) passes the slave’s ABI to TheArchitect (page 35) via this queue.
We simply pop the first entry (if any) off the relevant queue and send it back.

loop()
The architect simply runs the build queue query repeatedly. On each loop iteration, an entry from the
result set is added to the relevant ABI queue. The queues are limited in length to prevent silly memory
usage on the initial run (which will involve millions of entries). This does mean that a single loop over
the query will potentially miss entries, but that’s fine as it’ll just be repeated again.

8.10 piwheels.master.slave_driver

Defines the SlaveDriver (page 35) task; see class for more details.

class piwheels.master.slave_driver.SlaveDriver(config)
This task handles interaction with the build slaves using the slave protocol. Interaction is driven by the
slaves (i.e. the master doesn’t push jobs, rather the slaves request a job and the master replies with the next
(package, version) tuple from the internal “builds” queue).

The task also incidentally interacts with several other queues: the internal “status” queue is sent details of
every reply sent to a build slave (the main_loop() (page 27) method passes this information on to any
listening monitors). Also, the internal “indexes” queue is informed of any packages that need web page
indexes re-building (as a result of a successful build).

active_builds()
Generator method which yields all (package, version) tuples currently being built by build slaves.

8.8. piwheels.master.seraph 35

Piwheels 0.10 Documentation, Release 0.10

do_built(slave)
Handler for the build slave’s “BUILT” message, which is sent after an attempted package build suc-
ceeds or fails. The handler logs the result in the database and, if files have been generated by the build,
informs the FileJuggler (page 38) task to expect a file transfer before sending “SEND” back to
the build slave with the required filename.

If no files were generated (e.g. in the case of a failed build, or a degenerate success), “DONE” is
returned indicating that the build slave is free to discard all resources generated during the build and
return to its idle state.

do_bye(slave)
Handler for the build slave’s final “BYE” message upon shutdown. This removes the associated state
from the internal slaves dict.

Parameters slave (SlaveState (page 30)) – The object representing the current status
of the build slave.

do_hello(slave)
Handler for the build slave’s initial “HELLO” message. This associates the specified slave state with
the slave’s address and returns “HELLO” with the master’s id for the slave (the id communicated back
simply for consistency of logging; administrators can correlate master log messages with slave log
messages when both have the same id number; we can’t use IP address for this as multiple slaves can
run on one machine).

Parameters slave (SlaveState (page 30)) – The object representing the current status
of the build slave.

do_idle(slave)
Handler for the build slave’s “IDLE” message (which is effectively the slave requesting work). If the
master wants to terminate the slave, it sends back “BYE”. If the build queue (for the slave’s ABI) is
empty or the task is currently paused, “SLEEP” is returned indicating the slave should wait a while
and then try again.

If a job can be retrieved from the (ABI specific) build queue, then a “BUILD” message is sent back
with the required package and version.

Parameters slave (SlaveState (page 30)) – The object representing the current status
of the build slave.

do_sent(slave)
Handler for the build slave’s “SENT” message indicating that it’s finished sending the requested file
to FileJuggler. The FsClient RPC mechanism is used to ask FileJuggler to verify the
transfer against the stored hash and, if this is successful, a message is sent to IndexScribe to
regenerate the package’s index.

If further files remain to be transferred, another “SEND” message is returned to the build slave. Oth-
erwise, “DONE” is sent to free all build resources.

If a transfer fails to verify, another “SEND” message with the same filename is returned to the build
slave.

handle_control(queue)
Handle incoming requests to the internal control queue.

Whilst the SlaveDriver (page 35) task is “pauseable”, it can’t simply stop responding to requests
from build slaves. Instead, its pause is implemented as an internal flag. While paused it simply tells
build slaves requesting a new job that none are currently available but otherwise continues servicing
requests.

It also understands a couple of extra control messages unique to it, specifically “KILL” to tell a build
slave to terminate, and “HELLO” to cause all “HELLO” messages from build slaves to be replayed
(for the benefit of a newly attached monitor process).

handle_slave(queue)
Handle requests from build slaves.

36 Chapter 8. Module Reference

Piwheels 0.10 Documentation, Release 0.10

See the piw-slave (page 9) chapter for an overview of the protocol for messages between build slaves
and SlaveDriver (page 35). This method retrieves the message from the build slave, finds the as-
sociated SlaveState (page 30) and updates it with the message, then calls the appropriate message
handler. The handler will be expected to return a reply (in the usual form of a list of strings) or None
if no reply should be sent (e.g. for a final “BYE” message).

kill_slave(slave_id)
Additional task control method to trigger a “KILL” message to the internal control queue. See
quit() (page 28) for more information.

list_slaves()
Additional task control method to trigger a “HELLO” message to the internal control queue. See
quit() (page 28) for more information.

8.11 piwheels.master.mr_chase

Defines the MrChase (page 37) task; see class for more details.

class piwheels.master.mr_chase.MrChase(config)
This task handles smuggling packages into the database manually. It is the task that the piw-import
script talks to in order to import packages.

Internally, the task is essentially an abbreviated SlaveDriver (in as much as it has to perform similar
database and file-system interactions) but without having to handle talking to lots of build slaves.

do_import(state)
Handler for the importer’s initial “IMPORT” message. This method checks the information in the state
passes some simple tests, then ensures that the requested package and version exist in the database
(creating them if necessary).

do_remove(state)
Handler for the importer’s “REMOVE” message, indicating a request to remove a specific version of
a package from the system.

do_sent(state)
Handler for the importer’s “SENT” message indicating that it’s finished sending the requested file to
FileJuggler. The file is verified (as in SlaveDriver) and, if this is successful, a mesasge is
sent to IndexScribe to regenerate the package’s index.

If further files remain to be transferred, another “SEND” message is returned to the build slave. Oth-
erwise, “DONE” is sent to free all build resources.

If a transfer fails to verify, another “SEND” message with the same filename is returned to the build
slave.

handle_import(queue)
Handle requests from piw-import instances.

See the piw-import (page 19) and piw-remove (page 23) chapters for an overview of the protocol for
messages between the importer and MrChase (page 37).

8.12 piwheels.master.file_juggler

Defines the FileJuggler (page 38) task and the FsClient (page 39) RPC class for interacting with it.

exception piwheels.master.file_juggler.TransferError
Base class for errors raised during a file transfer.

exception piwheels.master.file_juggler.TransferIgnoreChunk
Exception raised when a build slave sends CHUNK instead of HELLO as the first message (see
FileJuggler.new_transfer() (page 39)).

8.11. piwheels.master.mr_chase 37

Piwheels 0.10 Documentation, Release 0.10

exception piwheels.master.file_juggler.TransferDone
Exception raised when a transfer is complete. It may seem a little odd to use an exception for this, but it is
“exceptional” behaviour to terminate the file transfer.

class piwheels.master.file_juggler.FileJuggler(config)
This task handles file transfers from the build slaves. The specifics of the file transfer protocol are best
understood from the implementation of the FileState (page 29) class.

However, to detail how a file transfer begins: when a build slave has successfully completed a build it
informs the master via the SlaveDriver (page 35) task. That task replies with a “SEND” instruction to
the slave (including a filename). The slave then initiates the transfer with a “HELLO” message to this task.
Once transfers are complete the slave sends a “SENT” message to the SlaveDriver (page 35) task which
verifies the transfer and either retries it (when verification fails) or sends back “DONE” indicating the slave
can wipe the source file.

current_transfer(transfer, msg, *args)
Called for messages associated with an existing file transfer.

Usually this is “CHUNK” indicating another chunk of data. Rarely, it can be “HELLO” if the master
has fallen silent and dropped tons of packets.

Parameters

• transfer (TransferState (page 30)) – The object representing the state of the
transfer.

• msg (str33) – The message sent during the transfer.

• *args – All additional arguments; for “CHUNK” the first must be the file offset and
the second the data to write to that offset.

do_expect(slave_id, file_state)
Message sent by FsClient (page 39) to inform file juggler that a build slave is about to start a file
transfer. The message includes the full FileState (page 29). The state is stored in the pending
map.

Parameters

• slave_id (int34) – The identity of the build slave about to begin the transfer.

• file_state (FileState (page 29)) – The details of the file to be transferred
including the expected hash.

do_remove(package, filename)
Message sent by FsClient (page 39) to request that filename in package should be removed.

do_statvfs()
Message sent by FsClient (page 39) to request that file juggler return stats on the output file-system.

do_verify(slave_id, package)
Message sent by FsClient (page 39) to request that juggler verify a file transfer against the expected
hash and, if it matches, rename the file into its final location.

Parameters

• slave_id (int35) – The identity of the build slave that sent the file.

• package (str36) – The name of the package that the file is to be committed to, if
valid.

handle_file(queue)
Handle incoming file-transfer messages from build slaves.

33 https://docs.python.org/3.4/library/stdtypes.html#str
34 https://docs.python.org/3.4/library/functions.html#int
35 https://docs.python.org/3.4/library/functions.html#int
36 https://docs.python.org/3.4/library/stdtypes.html#str

38 Chapter 8. Module Reference

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Piwheels 0.10 Documentation, Release 0.10

The file transfer protocol is in some ways very simple (see the chart in the piw-slave (page 9) chap-
ter for an overview of the message sequence) and in some ways rather complex (read the ZeroMQ
guide chapter on file transfers for more detail on why multiple messages must be allowed in flight
simultaneously).

The “normal” state for a file transfer is to be requesting and receiving chunks. Anything else, including
redundant re-sends, and transfer completion is handled as an exceptional case.

handle_fs_request(queue)
Handle incoming messages from FsClient (page 39) instances.

new_transfer(msg, *args)
Called for messages initiating a new file transfer.

The first message must be HELLO along with the id of the slave starting the transfer. The metadata for
the transfer will be looked up in the pending list (which is written to by do_expect() (page 38)).

Parameters

• msg (str37) – The message sent to start the transfer (must be “HELLO”)

• *args – All additional arguments (expected to be an integer slave id).

class piwheels.master.file_juggler.FsClient(config)
RPC client class for talking to FileJuggler (page 38).

expect(slave_id, file_state)
See FileJuggler.do_expect() (page 38).

remove(package, filename)
See FileJuggler.do_remove() (page 38).

statvfs()
See FileJuggler.do_statvfs() (page 38).

verify(slave_id, package)
See FileJuggler.do_verify() (page 38).

8.13 piwheels.master.big_brother

Defines the BigBrother (page 39) task; see class for more details.

class piwheels.master.big_brother.BigBrother(config)
This task periodically queries the database and output file-system for various statistics like the number of
packages known to the system, the number built, the number of packages built in the last hour, the remaining
file-system space, etc. These statistics are written to the internal “status” queue which main_loop()
(page 27) uses to pass statistics to any listening monitors.

handle_index(queue)
Handler for the index_queue. Whenever a slot becomes available, and an updated status_info1 package
is available, send a message to update the home page.

handle_status(queue)
Handler for the internal status queue. Whenever a slot becomes available, and an updated status_info2
package is available, send a message with the latest status (ultimately this winds up going to any
attached monitors via the external status queue).

8.14 piwheels.master.index_scribe

Defines the IndexScribe (page 39) task; see class for more details.

37 https://docs.python.org/3.4/library/stdtypes.html#str

8.13. piwheels.master.big_brother 39

https://docs.python.org/3.4/library/stdtypes.html#str

Piwheels 0.10 Documentation, Release 0.10

class piwheels.master.index_scribe.IndexScribe(config)
This task is responsible for writing web-page index.html files. It reads the names of packages off
the internal “indexes” queue and rebuilds the index.html for that package and, optionally, the overall
index.html if the package is one that wasn’t previously present.

Note: It is important to note that package names are never pushed into the internal “indexes” queue until
all file-transfers associated with the build are complete. Furthermore, while the entire index for a package
is re-built, hashes are never re-calculated from the disk files (they are always read from the database).

handle_index(queue)
Handle incoming requests to (re)build index files. These will be in the form of “HOME”, a request
to write the homepage with some associated statistics, or “PKG”, a request to write the index for the
specified package.

Note: In all handlers below, care is taken to ensure clients never see a partially written file and that
temporary files are cleaned up in the event of any exceptions.

setup_output_path()
Called on task startup to copy all static resources into the output path (and to make sure the output
path exists as a directory).

write_homepage(status_info)
Re-writes the site homepage using the provided statistics in the homepage template (which is effec-
tively a simple Python format string).

Parameters status_info (tuple38) – A namedtuple containing statistics obtained by
BigBrother.

write_package_index(package, files)
(Re)writes the index of the specified package. The file meta-data (including the hash) is retrieved from
the database, never from the file-system.

Parameters

• package (str39) – The name of the package to write the index for

• files (list40) – A list of (filename, filehash) tuples.

write_root_index()
(Re)writes the index of all packages. This is implicitly called when a request to write a package index
is received for a package not present in the task’s cache.

8.15 piwheels.slave

Defines the PiWheelsSlave (page 40) class. An instance of this is the entry-point for the piw-slave script.

class piwheels.slave.PiWheelsSlave
This is the main class for the piw-slave script. It connects (over zmq sockets) to a master (see
piw-master) then loops around the slave protocol (see the piw-slave (page 9) chapter). It retrieves source
packages directly from PyPI41, attempts to build a wheel in a sandbox directory and, if successful, transmits
the results to the master.

do_build(package, version)
Alternatively, in response to “IDLE”, the master may send “BUILD” package version. We should

38 https://docs.python.org/3.4/library/stdtypes.html#tuple
39 https://docs.python.org/3.4/library/stdtypes.html#str
40 https://docs.python.org/3.4/library/stdtypes.html#list
41 https://pypi.python.org/

40 Chapter 8. Module Reference

https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://pypi.python.org/

Piwheels 0.10 Documentation, Release 0.10

then attempt to build the specified wheel and send back a “BUILT” message with a full report of the
outcome.

do_bye()
The master may respond with “BYE” at any time indicating we should immediately terminate (first
cleaning up any extant build). We return None to tell the main loop to quit.

do_done()
After all files have been sent (and successfully verified), the master will reply with “DONE” indicating
we can remove all associated build artifacts. We respond with “IDLE”.

do_hello(new_id, pypi_url)
In response to our initial “HELLO” (detailing our various PEP 42542 tags), the master is expected to
send “HELLO” back with an integer identifier and the URL of the PyPI repository to download from.
We use the identifier in all future log messages for the ease of the administrator.

We reply with “IDLE” to indicate we’re ready to accept a build job.

do_send(filename)
If a build succeeds and generates files (detailed in a “BUILT” message), the master will reply with
“SEND” filename indicating we should transfer the specified file (this is done on a separate socket
with a different protocol; see builder.PiWheelsPackage.transfer() (page 41) for more
details). Once the transfers concludes, reply to the master with “SENT”.

do_sleep()
If, in response to an “IDLE” message we receive “SLEEP” this indicates the master has nothing for us
to do currently. Sleep for a little while then try “IDLE” again.

handle_reply(reply, *args)
Dispatch a message from the master to an appropriate handler method.

piwheels.slave.duration(s)
Convert s, a string representing a duration, into a datetime.timedelta43.

8.16 piwheels.slave.builder

Defines the classes which use pip to build wheels.

class piwheels.slave.builder.PiWheelsPackage(path)
Records the state of a build artifact, i.e. a wheel package. The filename is deconstructed into the fields
specified by PEP 42544.

Parameters path (pathlib.Path45) – The path to the wheel on the local filesystem.

open(mode=’rb’)
Open the wheel in binary mode and return the open file object.

transfer(queue, slave_id)
Transfer the wheel via the specified queue. This is the client side implementation of the
file_juggler.FileJuggler (page 38) protocol.

abi_tag
Return the ABI part of the wheel’s filename (the penultimate “-” separated element).

build_tag
Return the optional build part of the wheel’s filename (the third “-” separated element when 6 elements
exist in total).

filehash
Return an SHA256 digest of the wheel’s contents.

42 https://www.python.org/dev/peps/pep-0425
43 https://docs.python.org/3.4/library/datetime.html#datetime.timedelta
44 https://www.python.org/dev/peps/pep-0425
45 https://docs.python.org/3.4/library/pathlib.html#pathlib.Path

8.16. piwheels.slave.builder 41

https://www.python.org/dev/peps/pep-0425
https://docs.python.org/3.4/library/datetime.html#datetime.timedelta
https://www.python.org/dev/peps/pep-0425
https://docs.python.org/3.4/library/pathlib.html#pathlib.Path

Piwheels 0.10 Documentation, Release 0.10

filename
Return the filename of the wheel as a simple string (with no path components).

filesize
Return the size of the wheel in bytes.

metadata
Return the contents of the metadata.json file inside the wheel.

package_tag
Return the package part of the wheel’s filename (the first “-” separated element).

package_version_tag
Return the version part of the wheel’s filename (the second “-” separated element).

platform_tag
Return the platform part of the wheel’s filename (the last “-” separated element).

py_version_tag
Return the python version part of the wheel’s filename (third from last “-” separated element).

class piwheels.slave.builder.PiWheelsBuilder(package, version)
Class responsible for building wheels for a given version of a package.

Parameters

• package (str46) – The name of the package to attempt to build wheels for.

• version (str47) – The version of the package to attempt to build.

build(timeout=None, pypi_index=’https://pypi.python.org/simple’)
Attempt to build the package within the specified timeout.

Parameters

• timeout (float48) – The number of seconds to wait for pip to finish before raising
subprocess.TimeoutExpired49.

• pypi_index (str50) – The URL of the PEP 50351 compliant repository from
which to fetch packages for building.

clean()
Remove the temporary build directory and all its contents.

as_message
Return the state as a list suitable for use in several protocol messages (specifically those used by
piw-slave and piw-import).

8.17 piwheels.initdb

Contains the functions that make up the piw-initdb script.

piwheels.initdb.main(args=None)
This is the main function for the piw-initdb script. It creates the piwheels database required by the
master or, if it already exists, upgrades it to the current version of the application.

piwheels.initdb.detect_users(conn, test_user)
Test that the user for conn is a cluster superuser (so we can drop and create anything we want in the
database), and that test_user (which will be granted limited rights to various objects for the purposes of
the piw-master script) exists and is not a cluster superuser.

46 https://docs.python.org/3.4/library/stdtypes.html#str
47 https://docs.python.org/3.4/library/stdtypes.html#str
48 https://docs.python.org/3.4/library/functions.html#float
49 https://docs.python.org/3.4/library/subprocess.html#subprocess.TimeoutExpired
50 https://docs.python.org/3.4/library/stdtypes.html#str
51 https://www.python.org/dev/peps/pep-0503

42 Chapter 8. Module Reference

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/subprocess.html#subprocess.TimeoutExpired
https://docs.python.org/3.4/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-0503

Piwheels 0.10 Documentation, Release 0.10

piwheels.initdb.detect_version(conn)
Detect the version of the database. This is typically done by reading the contents of the configuration
table, but before that was added we can guess a couple of versions based on what tables exist (or don’t). Re-
turns None if the database appears uninitialized, and raises RuntimeError52 is the version is so ancient
we can’t do anything with it.

piwheels.initdb.get_connection(dsn)
Return an SQLAlchemy connection to the specified dsn or raise RuntimeError53 if the database doesn’t
exist (the administrator is expected to create the database before running this script).

piwheels.initdb.get_script(version)
Generate the script to get the database from version (the result of detect_version() (page 42))
to the current version of the software. If version is None, this is simply the contents of the sql/
create_piwheels.sql script. Otherwise, it is a concatenation of various update scripts.

piwheels.initdb.parse_statements(script)
This is an extremely crude statement splitter for PostgreSQL’s dialect of SQL. It understands
--comments, "quoted identifiers", 'string literals' and $delim$ extended
strings $delim$, but not E'\escaped strings' or /* C-style comments */. If you
start using such things in the update scripts, you’ll need to extend this function to accommodate them.

It returns a generator which yields individiual statements from script, delimited by semi-colon terminators.

8.18 piwheels.importer

Contains the functions that implement the piw-import script.

piwheels.importer.main(args=None)
This is the main function for the piw-import script. It uses some bits of the piw-slave script to
deconstruct the filenames passed to it in order to build all the requried information that MrChase (page 37)
needs.

piwheels.importer.print_builder(config, builder)
Dumps a human-readable description of the builder to the log / console.

Parameters

• config – The configuration generated from the command line argument parser.

• builder (PiWheelsBuilder (page 42)) – The builder to print the description of.

piwheels.importer.abi(config, builder, default=None)
Calculate the ABI from the given config and the first file contained by the builder state. If the configuration
contains no ABI override, and the ABI of the first file is ‘none’, return default.

piwheels.importer.do_import(config, builder)
Handles constructing and sending the initial “IMPORT” message to master.mr_chase.MrChase. If
“SEND” is then received, uses do_send() (page 43) to handle transmitting files.

Parameters

• config – The configuration obtained from parsing the command line.

• builder (PiWheelsBuilder (page 42)) – The object representing the state of the
build.

piwheels.importer.do_send(builder, filename)
Handles sending files when requested by do_import() (page 43).

52 https://docs.python.org/3.4/library/exceptions.html#RuntimeError
53 https://docs.python.org/3.4/library/exceptions.html#RuntimeError

8.18. piwheels.importer 43

https://docs.python.org/3.4/library/exceptions.html#RuntimeError
https://docs.python.org/3.4/library/exceptions.html#RuntimeError

Piwheels 0.10 Documentation, Release 0.10

8.19 piwheels.remove

Contains the functions that implement the piw-remove script.

piwheels.remove.main(args=None)
This is the main function for the piw-remove script. It uses MrChase (page 37) to remove built packages
from the system.

piwheels.remove.do_remove(config)
Handles constructing and sending the “REMOVE” message to master.mr_chase.MrChase.

Parameters config – The configuration obtained from parsing the command line.

44 Chapter 8. Module Reference

CHAPTER 9

License

Copyright © 2017 Ben Nuttall54 and Dave Jones55.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

54 https://github.com/bennuttall
55 dave@waveform.org.uk

45

https://github.com/bennuttall
mailto:dave@waveform.org.uk

Piwheels 0.10 Documentation, Release 0.10

46 Chapter 9. License

Python Module Index

p
piwheels.importer, 43
piwheels.initdb, 42
piwheels.master, 27
piwheels.master.big_brother, 39
piwheels.master.cloud_gazer, 33
piwheels.master.db, 31
piwheels.master.file_juggler, 37
piwheels.master.index_scribe, 39
piwheels.master.mr_chase, 37
piwheels.master.ranges, 31
piwheels.master.seraph, 35
piwheels.master.slave_driver, 35
piwheels.master.states, 29
piwheels.master.tasks, 28
piwheels.master.the_architect, 35
piwheels.master.the_oracle, 33
piwheels.remove, 44
piwheels.slave, 40
piwheels.slave.builder, 41

47

Piwheels 0.10 Documentation, Release 0.10

48 Python Module Index

Index

Symbols
–abi ABI

piw-import command line option, 19
–builds-queue ADDR

piw-master command line option, 4
–control-queue ADDR

piw-master command line option, 4
piw-monitor command line option, 15

–db-queue ADDR
piw-master command line option, 4

–duration DURATION
piw-import command line option, 20

–file-queue ADDR
piw-master command line option, 4

–fs-queue ADDR
piw-master command line option, 4

–import-queue ADDR
piw-import command line option, 20
piw-master command line option, 4
piw-remove command line option, 24

–index-queue ADDR
piw-master command line option, 4

–output FILE
piw-import command line option, 20

–package PACKAGE
piw-import command line option, 19

–package-version VERSION
piw-import command line option, 19

–pypi-simple URL
piw-master command line option, 4

–pypi-xmlrpc URL
piw-master command line option, 4

–slave-queue ADDR
piw-master command line option, 4

–status-queue ADDR
piw-master command line option, 4
piw-monitor command line option, 15

–version
piw-import command line option, 19
piw-initdb command line option, 17
piw-master command line option, 3
piw-monitor command line option, 15
piw-remove command line option, 23

piw-slave command line option, 9
-c FILE, –configuration FILE

piw-import command line option, 19
piw-initdb command line option, 17
piw-master command line option, 3
piw-monitor command line option, 15
piw-remove command line option, 23
piw-slave command line option, 9

-d DSN, –dsn DSN
piw-initdb command line option, 17
piw-master command line option, 3

-d, –delete
piw-import command line option, 20

-h, –help
piw-import command line option, 19
piw-initdb command line option, 17
piw-master command line option, 3
piw-monitor command line option, 15
piw-remove command line option, 23
piw-slave command line option, 9

-l FILE, –log-file FILE
piw-import command line option, 19
piw-initdb command line option, 17
piw-master command line option, 3
piw-remove command line option, 24
piw-slave command line option, 9

-m HOST, –master HOST
piw-slave command line option, 9

-o PATH, –output-path PATH
piw-master command line option, 4

-q, –quiet
piw-import command line option, 19
piw-initdb command line option, 17
piw-master command line option, 3
piw-remove command line option, 23
piw-slave command line option, 9

-s, –skip
piw-remove command line option, 24

-t DURATION, –timeout DURATION
piw-slave command line option, 9

-u NAME, –user NAME
piw-initdb command line option, 17

-v, –verbose
piw-import command line option, 19

49

Piwheels 0.10 Documentation, Release 0.10

piw-initdb command line option, 17
piw-master command line option, 3
piw-remove command line option, 24
piw-slave command line option, 9

-y, –yes
piw-import command line option, 20
piw-initdb command line option, 18
piw-remove command line option, 24

A
abi() (in module piwheels.importer), 43
abi_tag (piwheels.slave.builder.PiWheelsPackage at-

tribute), 41
active_builds() (piwheels.master.slave_driver.SlaveDriver

method), 35
add_new_package() (piwheels.master.db.Database

method), 31
add_new_package() (pi-

wheels.master.the_oracle.DbClient method),
34

add_new_package_version() (pi-
wheels.master.db.Database method), 32

add_new_package_version() (pi-
wheels.master.the_oracle.DbClient method),
34

as_message (piwheels.slave.builder.PiWheelsBuilder
attribute), 42

B
BigBrother (class in piwheels.master.big_brother), 39
build() (piwheels.slave.builder.PiWheelsBuilder

method), 42
build_tag (piwheels.slave.builder.PiWheelsPackage at-

tribute), 41
BuildState (class in piwheels.master.states), 29

C
clean() (piwheels.slave.builder.PiWheelsBuilder

method), 42
CloudGazer (class in piwheels.master.cloud_gazer), 33
configure_parser() (piwheels.master.PiWheelsMaster

static method), 27
consolidate() (in module piwheels.master.ranges), 31
current_transfer() (pi-

wheels.master.file_juggler.FileJuggler
method), 38

D
Database (class in piwheels.master.db), 31
DbClient (class in piwheels.master.the_oracle), 34
delete_build() (piwheels.master.db.Database method),

32
delete_build() (piwheels.master.the_oracle.DbClient

method), 34
detect_users() (in module piwheels.initdb), 42
detect_version() (in module piwheels.initdb), 42
do_allpkgs() (piwheels.master.the_oracle.TheOracle

method), 33

do_allvers() (piwheels.master.the_oracle.TheOracle
method), 33

do_build() (piwheels.slave.PiWheelsSlave method), 40
do_built() (piwheels.master.slave_driver.SlaveDriver

method), 35
do_bye() (piwheels.master.slave_driver.SlaveDriver

method), 36
do_bye() (piwheels.slave.PiWheelsSlave method), 41
do_delbuild() (piwheels.master.the_oracle.TheOracle

method), 33
do_done() (piwheels.slave.PiWheelsSlave method), 41
do_expect() (piwheels.master.file_juggler.FileJuggler

method), 38
do_getabis() (piwheels.master.the_oracle.TheOracle

method), 33
do_getpypi() (piwheels.master.the_oracle.TheOracle

method), 33
do_getstats() (piwheels.master.the_oracle.TheOracle

method), 33
do_hello() (piwheels.master.PiWheelsMaster method),

27
do_hello() (piwheels.master.slave_driver.SlaveDriver

method), 36
do_hello() (piwheels.slave.PiWheelsSlave method), 41
do_idle() (piwheels.master.slave_driver.SlaveDriver

method), 36
do_import() (in module piwheels.importer), 43
do_import() (piwheels.master.mr_chase.MrChase

method), 37
do_kill() (piwheels.master.PiWheelsMaster method),

27
do_logbuild() (piwheels.master.the_oracle.TheOracle

method), 33
do_logdownload() (pi-

wheels.master.the_oracle.TheOracle
method), 33

do_newpkg() (piwheels.master.the_oracle.TheOracle
method), 33

do_newver() (piwheels.master.the_oracle.TheOracle
method), 33

do_pause() (piwheels.master.PiWheelsMaster method),
27

do_pkgexists() (piwheels.master.the_oracle.TheOracle
method), 33

do_pkgfiles() (piwheels.master.the_oracle.TheOracle
method), 33

do_quit() (piwheels.master.PiWheelsMaster method),
27

do_remove() (in module piwheels.remove), 44
do_remove() (piwheels.master.file_juggler.FileJuggler

method), 38
do_remove() (piwheels.master.mr_chase.MrChase

method), 37
do_resume() (piwheels.master.PiWheelsMaster

method), 27
do_send() (in module piwheels.importer), 43
do_send() (piwheels.slave.PiWheelsSlave method), 41
do_sent() (piwheels.master.mr_chase.MrChase

50 Index

Piwheels 0.10 Documentation, Release 0.10

method), 37
do_sent() (piwheels.master.slave_driver.SlaveDriver

method), 36
do_setpypi() (piwheels.master.the_oracle.TheOracle

method), 34
do_skippkg() (piwheels.master.the_oracle.TheOracle

method), 34
do_skipver() (piwheels.master.the_oracle.TheOracle

method), 34
do_sleep() (piwheels.slave.PiWheelsSlave method), 41
do_statvfs() (piwheels.master.file_juggler.FileJuggler

method), 38
do_verfiles() (piwheels.master.the_oracle.TheOracle

method), 34
do_verify() (piwheels.master.file_juggler.FileJuggler

method), 38
duration() (in module piwheels.slave), 41

E
exclude() (in module piwheels.master.ranges), 31
expect() (piwheels.master.file_juggler.FsClient

method), 39

F
filehash (piwheels.slave.builder.PiWheelsPackage at-

tribute), 41
FileJuggler (class in piwheels.master.file_juggler), 38
filename (piwheels.slave.builder.PiWheelsPackage at-

tribute), 41
files (piwheels.master.states.BuildState attribute), 30
filesize (piwheels.slave.builder.PiWheelsPackage at-

tribute), 42
FileState (class in piwheels.master.states), 29
from_db() (piwheels.master.states.BuildState class

method), 30
FsClient (class in piwheels.master.file_juggler), 39

G
get_all_package_versions() (pi-

wheels.master.db.Database method), 32
get_all_package_versions() (pi-

wheels.master.the_oracle.DbClient method),
34

get_all_packages() (piwheels.master.db.Database
method), 32

get_all_packages() (pi-
wheels.master.the_oracle.DbClient method),
34

get_build() (piwheels.master.db.Database method), 32
get_build_abis() (piwheels.master.db.Database

method), 32
get_build_abis() (piwheels.master.the_oracle.DbClient

method), 34
get_build_queue() (piwheels.master.db.Database

method), 32
get_connection() (in module piwheels.initdb), 43
get_files() (piwheels.master.db.Database method), 32

get_package_files() (piwheels.master.db.Database
method), 32

get_package_files() (pi-
wheels.master.the_oracle.DbClient method),
34

get_pypi_serial() (piwheels.master.db.Database
method), 32

get_pypi_serial() (piwheels.master.the_oracle.DbClient
method), 34

get_script() (in module piwheels.initdb), 43
get_statistics() (piwheels.master.db.Database method),

32
get_statistics() (piwheels.master.the_oracle.DbClient

method), 34
get_version_files() (piwheels.master.db.Database

method), 32
get_version_files() (pi-

wheels.master.the_oracle.DbClient method),
34

H
handle_back() (piwheels.master.seraph.Seraph

method), 35
handle_builds() (piwheels.master.the_architect.TheArchitect

method), 35
handle_control() (piwheels.master.slave_driver.SlaveDriver

method), 36
handle_control() (piwheels.master.tasks.Task method),

28
handle_db_request() (pi-

wheels.master.the_oracle.TheOracle
method), 34

handle_file() (piwheels.master.file_juggler.FileJuggler
method), 38

handle_front() (piwheels.master.seraph.Seraph
method), 35

handle_fs_request() (pi-
wheels.master.file_juggler.FileJuggler
method), 39

handle_import() (piwheels.master.mr_chase.MrChase
method), 37

handle_index() (piwheels.master.big_brother.BigBrother
method), 39

handle_index() (piwheels.master.index_scribe.IndexScribe
method), 40

handle_reply() (piwheels.slave.PiWheelsSlave
method), 41

handle_slave() (piwheels.master.slave_driver.SlaveDriver
method), 36

handle_status() (piwheels.master.big_brother.BigBrother
method), 39

I
IndexScribe (class in piwheels.master.index_scribe), 39
intersect() (in module piwheels.master.ranges), 31

K
kill_slave() (piwheels.master.slave_driver.SlaveDriver

Index 51

Piwheels 0.10 Documentation, Release 0.10

method), 37

L
list_slaves() (piwheels.master.slave_driver.SlaveDriver

method), 37
log_build() (piwheels.master.db.Database method), 32
log_build() (piwheels.master.the_oracle.DbClient

method), 34
log_download() (piwheels.master.db.Database

method), 32
log_download() (piwheels.master.the_oracle.DbClient

method), 34
log_file() (piwheels.master.db.Database method), 32
logged() (piwheels.master.states.BuildState method),

30
loop() (piwheels.master.tasks.Task method), 28
loop() (piwheels.master.the_architect.TheArchitect

method), 35

M
main() (in module piwheels.importer), 43
main() (in module piwheels.initdb), 42
main() (in module piwheels.remove), 44
main_loop() (piwheels.master.PiWheelsMaster

method), 27
metadata (piwheels.slave.builder.PiWheelsPackage at-

tribute), 42
MrChase (class in piwheels.master.mr_chase), 37

N
new_transfer() (piwheels.master.file_juggler.FileJuggler

method), 39
next_file (piwheels.master.states.BuildState attribute),

30

O
open() (piwheels.slave.builder.PiWheelsPackage

method), 41

P
package

piw-remove command line option, 23
package_tag (piwheels.slave.builder.PiWheelsPackage

attribute), 42
package_version_tag (pi-

wheels.slave.builder.PiWheelsPackage
attribute), 42

parse_statements() (in module piwheels.initdb), 43
pause() (piwheels.master.tasks.Task method), 28
PauseableTask (class in piwheels.master.tasks), 28
piw-import command line option

–abi ABI, 19
–duration DURATION, 20
–import-queue ADDR, 20
–output FILE, 20
–package PACKAGE, 19
–package-version VERSION, 19
–version, 19

-c FILE, –configuration FILE, 19
-d, –delete, 20
-h, –help, 19
-l FILE, –log-file FILE, 19
-q, –quiet, 19
-v, –verbose, 19
-y, –yes, 20

piw-initdb command line option
–version, 17
-c FILE, –configuration FILE, 17
-d DSN, –dsn DSN, 17
-h, –help, 17
-l FILE, –log-file FILE, 17
-q, –quiet, 17
-u NAME, –user NAME, 17
-v, –verbose, 17
-y, –yes, 18

piw-master command line option
–builds-queue ADDR, 4
–control-queue ADDR, 4
–db-queue ADDR, 4
–file-queue ADDR, 4
–fs-queue ADDR, 4
–import-queue ADDR, 4
–index-queue ADDR, 4
–pypi-simple URL, 4
–pypi-xmlrpc URL, 4
–slave-queue ADDR, 4
–status-queue ADDR, 4
–version, 3
-c FILE, –configuration FILE, 3
-d DSN, –dsn DSN, 3
-h, –help, 3
-l FILE, –log-file FILE, 3
-o PATH, –output-path PATH, 4
-q, –quiet, 3
-v, –verbose, 3

piw-monitor command line option
–control-queue ADDR, 15
–status-queue ADDR, 15
–version, 15
-c FILE, –configuration FILE, 15
-h, –help, 15

piw-remove command line option
–import-queue ADDR, 24
–version, 23
-c FILE, –configuration FILE, 23
-h, –help, 23
-l FILE, –log-file FILE, 24
-q, –quiet, 23
-s, –skip, 24
-v, –verbose, 24
-y, –yes, 24
package, 23
version, 23

piw-slave command line option
–version, 9
-c FILE, –configuration FILE, 9

52 Index

Piwheels 0.10 Documentation, Release 0.10

-h, –help, 9
-l FILE, –log-file FILE, 9
-m HOST, –master HOST, 9
-q, –quiet, 9
-t DURATION, –timeout DURATION, 9
-v, –verbose, 9

piwheels.importer (module), 43
piwheels.initdb (module), 42
piwheels.master (module), 27
piwheels.master.big_brother (module), 39
piwheels.master.cloud_gazer (module), 33
piwheels.master.db (module), 31
piwheels.master.file_juggler (module), 37
piwheels.master.index_scribe (module), 39
piwheels.master.mr_chase (module), 37
piwheels.master.ranges (module), 31
piwheels.master.seraph (module), 35
piwheels.master.slave_driver (module), 35
piwheels.master.states (module), 29
piwheels.master.tasks (module), 28
piwheels.master.the_architect (module), 35
piwheels.master.the_oracle (module), 33
piwheels.remove (module), 44
piwheels.slave (module), 40
piwheels.slave.builder (module), 41
PiWheelsBuilder (class in piwheels.slave.builder), 42
PiWheelsMaster (class in piwheels.master), 27
PiWheelsPackage (class in piwheels.slave.builder), 41
PiWheelsSlave (class in piwheels.slave), 40
platform_tag (piwheels.slave.builder.PiWheelsPackage

attribute), 42
poll() (piwheels.master.tasks.Task method), 28
print_builder() (in module piwheels.importer), 43
py_version_tag (piwheels.slave.builder.PiWheelsPackage

attribute), 42
Python Enhancement Proposals

PEP 425, 41
PEP 503, 42

Q
quit() (piwheels.master.tasks.Task method), 28

R
register() (piwheels.master.tasks.Task method), 28
remove() (piwheels.master.file_juggler.FsClient

method), 39
resume() (piwheels.master.tasks.Task method), 28
run() (piwheels.master.tasks.Task method), 28

S
Seraph (class in piwheels.master.seraph), 35
set_pypi_serial() (piwheels.master.db.Database

method), 32
set_pypi_serial() (piwheels.master.the_oracle.DbClient

method), 34
setup_output_path() (pi-

wheels.master.index_scribe.IndexScribe
method), 40

sig_term() (in module piwheels.master), 27
skip_package() (piwheels.master.db.Database method),

32
skip_package() (piwheels.master.the_oracle.DbClient

method), 34
skip_package_version() (piwheels.master.db.Database

method), 32
skip_package_version() (pi-

wheels.master.the_oracle.DbClient method),
34

SlaveDriver (class in piwheels.master.slave_driver), 35
SlaveState (class in piwheels.master.states), 30
split() (in module piwheels.master.ranges), 31
statvfs() (piwheels.master.file_juggler.FsClient

method), 39

T
Task (class in piwheels.master.tasks), 28
TaskQuit, 28
test_package_version() (piwheels.master.db.Database

method), 32
test_package_version() (pi-

wheels.master.the_oracle.DbClient method),
35

TheArchitect (class in piwheels.master.the_architect),
35

TheOracle (class in piwheels.master.the_oracle), 33
transfer() (piwheels.slave.builder.PiWheelsPackage

method), 41
TransferDone, 37
TransferError, 37
TransferIgnoreChunk, 37
transfers_done (piwheels.master.states.BuildState at-

tribute), 30
TransferState (class in piwheels.master.states), 30

V
verified() (piwheels.master.states.FileState method), 29
verify() (piwheels.master.file_juggler.FsClient

method), 39
version

piw-remove command line option, 23

W
write_homepage() (pi-

wheels.master.index_scribe.IndexScribe
method), 40

write_package_index() (pi-
wheels.master.index_scribe.IndexScribe
method), 40

write_root_index() (pi-
wheels.master.index_scribe.IndexScribe
method), 40

Index 53

	Overview
	Deployment
	Upgrades

	piw-master
	Synopsis
	Description
	Development
	Tasks
	Queues

	piw-slave
	Synopsis
	Description
	Protocols
	Security

	piw-monitor
	Synopsis
	Description
	Usage

	piw-initdb
	Synopsis
	Description
	Usage

	piw-import
	Synopsis
	Description
	Protocols
	Usage

	piw-remove
	Synopsis
	Description
	Protocols
	Usage

	Module Reference
	piwheels.master
	piwheels.master.tasks
	piwheels.master.states
	piwheels.master.ranges
	piwheels.master.db
	piwheels.master.cloud_gazer
	piwheels.master.the_oracle
	piwheels.master.seraph
	piwheels.master.the_architect
	piwheels.master.slave_driver
	piwheels.master.mr_chase
	piwheels.master.file_juggler
	piwheels.master.big_brother
	piwheels.master.index_scribe
	piwheels.slave
	piwheels.slave.builder
	piwheels.initdb
	piwheels.importer
	piwheels.remove

	License
	Python Module Index

