
Packaging Documentation
Release 16.9.dev0

Donald Stufft

Jul 13, 2017

Contents

1 Installation 3

2 API 5

3 Project 13

i

ii

Packaging Documentation, Release 16.9.dev0

Core utilities for Python packages

Contents 1

Packaging Documentation, Release 16.9.dev0

2 Contents

CHAPTER 1

Installation

You can install packaging with pip:

$ pip install packaging

3

Packaging Documentation, Release 16.9.dev0

4 Chapter 1. Installation

CHAPTER 2

API

Version Handling

A core requirement of dealing with packages is the ability to work with versions. PEP 440 defines the standard version
scheme for Python packages which has been implemented by this module.

Usage

>>> from packaging.version import Version, parse
>>> v1 = parse("1.0a5")
>>> v2 = Version("1.0")
>>> v1
<Version('1.0a5')>
>>> v2
<Version('1.0')>
>>> v1 < v2
True
>>> v1.is_prerelease
True
>>> v2.is_prerelease
False
>>> Version("french toast")
Traceback (most recent call last):

...
InvalidVersion: Invalid version: 'french toast'
>>> Version("1.0").is_postrelease
False
>>> Version("1.0.post0").is_postrelease
True

5

https://www.python.org/dev/peps/pep-0440/

Packaging Documentation, Release 16.9.dev0

Reference

packaging.version.parse(version)
This function takes a version string and will parse it as a Version if the version is a valid PEP 440 version,
otherwise it will parse it as a LegacyVersion.

class packaging.version.Version(version)
This class abstracts handling of a project’s versions. It implements the scheme defined in PEP 440. A Version
instance is comparison aware and can be compared and sorted using the standard Python interfaces.

Parameters version (str) – The string representation of a version which will be parsed and
normalized before use.

Raises InvalidVersion – If the version does not conform to PEP 440 in any way then this
exception will be raised.

public
A string representing the public version portion of this Version().

base_version
A string representing the base version of this Version instance. The base version is the public version
of the project without any pre or post release markers.

local
A string representing the local version portion of this Version() if it has one, or None otherwise.

is_prerelease
A boolean value indicating whether this Version instance represents a prerelease or a final release.

is_postrelease
A boolean value indicating whether this Version instance represents a post-release.

class packaging.version.LegacyVersion(version)
This class abstracts handling of a project’s versions if they are not compatible with the scheme defined in PEP
440. It implements a similar interface to that of Version.

This class implements the previous de facto sorting algorithm used by setuptools, however it will always sort as
less than a Version instance.

Parameters version (str) – The string representation of a version which will be used as is.

public
A string representing the public version portion of this LegacyVersion. This will always be the entire
version string.

base_version
A string representing the base version portion of this LegacyVersion instance. This will always be the
entire version string.

local
This will always be None since without PEP 440 we do not have the concept of a local version. It exists
primarily to allow a LegacyVersion to be used as a stand in for a Version.

is_prerelease
A boolean value indicating whether this LegacyVersion represents a prerelease or a final release.
Since without PEP 440 there is no concept of pre or final releases this will always be False and exists for
compatibility with Version.

is_postrelease
A boolean value indicating whether this LegacyVersion represents a post-release. Since without PEP
440 there is no concept of post-releases this will always be False and exists for compatibility with
Version.

6 Chapter 2. API

https://www.python.org/dev/peps/pep-0440/
https://docs.python.org/2/library/functions.html#str
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://docs.python.org/2/library/functions.html#str
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/

Packaging Documentation, Release 16.9.dev0

exception packaging.version.InvalidVersion
Raised when attempting to create a Version with a version string that does not conform to PEP 440.

packaging.version.VERSION_PATTERN
A string containing the regular expression used to match a valid version. The pattern is not anchored at either
end, and is intended for embedding in larger expressions (for example, matching a version number as part of
a file name). The regular expression should be compiled with the re.VERBOSE and re.IGNORECASE flags
set.

Specifiers

A core requirement of dealing with dependency is the ability to specify what versions of a dependency are acceptable
for you. PEP 440 defines the standard specifier scheme which has been implemented by this module.

Usage

>>> from packaging.specifiers import SpecifierSet
>>> from packaging.version import Version
>>> spec1 = SpecifierSet("~=1.0")
>>> spec1
<SpecifierSet('~=1.0')>
>>> spec2 = SpecifierSet(">=1.0")
>>> spec2
<SpecifierSet('>=1.0')>
>>> # We can combine specifiers
>>> combined_spec = spec1 & spec2
>>> combined_spec
<SpecifierSet('>=1.0,~=1.0')>
>>> # We can also implicitly combine a string specifier
>>> combined_spec &= "!=1.1"
>>> combined_spec
<SpecifierSet('!=1.1,>=1.0,~=1.0')>
>>> # Create a few versions to check for contains.
>>> v1 = Version("1.0a5")
>>> v2 = Version("1.0")
>>> # We can check a version object to see if it falls within a specifier
>>> v1 in combined_spec
False
>>> v2 in combined_spec
True
>>> # We can even do the same with a string based version
>>> "1.4" in combined_spec
True
>>> # Finally we can filter a list of versions to get only those which are
>>> # contained within our specifier.
>>> list(combined_spec.filter([v1, v2, "1.4"]))
[<Version('1.0')>, '1.4']

Reference

class packaging.specifiers.SpecifierSet(specifiers, prereleases=None)
This class abstracts handling specifying the dependencies of a project. It can be passed a single speci-
fier (>=3.0), a comma-separated list of specifiers (>=3.0,!=3.1), or no specifier at all. Each individ-

2.2. Specifiers 7

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/

Packaging Documentation, Release 16.9.dev0

ual specifier be attempted to be parsed as a PEP 440 specifier (Specifier) or as a legacy, setuptools
style specifier (LegacySpecifier). You may combine SpecifierSet instances using the & operator
(SpecifierSet(">2") & SpecifierSet("<4")).

Both the membership tests and the combination support using raw strings in place of already instantiated objects.

Parameters

• specifiers (str) – The string representation of a specifier or a comma-separated list of
specifiers which will be parsed and normalized before use.

• prereleases (bool) – This tells the SpecifierSet if it should accept prerelease versions
if applicable or not. The default of None will autodetect it from the given specifiers.

Raises InvalidSpecifier – If the given specifiers are not parseable than this exception
will be raised.

prereleases
A boolean value indicating whether this SpecifierSet represents a specifier that includes a pre-release
versions. This can be set to either True or False to explicitly enable or disable prereleases or it can be
set to None (the default) to enable autodetection.

__contains__(version)
This is the more Pythonic version of contains(), but does not allow you to override the
prereleases argument. If you need that, use contains().

See contains().

contains(version, prereleases=None)
Determines if version, which can be either a version string, a Version, or a LegacyVersion object,
is contained within this set of specifiers.

This will either match or not match prereleases based on the prereleases parameter. When
prereleases is set to None (the default) it will use the Specifier().prereleases attribute
to determine if to allow them. Otherwise it will use the boolean value of the passed in value to determine
if to allow them or not.

__len__()
Returns the number of specifiers in this specifier set.

__iter__()
Returns an iterator over all the underlying Specifier (or LegacySpecifier) instances in this spec-
ifier set.

filter(iterable, prereleases=None)
Takes an iterable that can contain version strings, Version, and LegacyVersion instances and will
then filter it, returning an iterable that contains only items which match the rules of this specifier object.

This method is smarter than just filter(Specifier().contains, [...]) because it imple-
ments the rule from PEP 440 where a prerelease item SHOULD be accepted if no other versions match the
given specifier.

The prereleases parameter functions similarly to that of the same parameter in contains. If the
value is None (the default) then it will intelligently decide if to allow prereleases based on the specifier,
the Specifier().prereleases value, and the PEP 440 rules. Otherwise it will act as a boolean
which will enable or disable all prerelease versions from being included.

class packaging.specifiers.Specifier(specifier, prereleases=None)
This class abstracts the handling of a single PEP 440 compatible specifier. It is generally not required to instan-
tiate this manually, preferring instead to work with SpecifierSet.

Parameters

8 Chapter 2. API

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://www.python.org/dev/peps/pep-0440/

Packaging Documentation, Release 16.9.dev0

• specifier (str) – The string representation of a specifier which will be parsed and
normalized before use.

• prereleases (bool) – This tells the specifier if it should accept prerelease versions if
applicable or not. The default of None will autodetect it from the given specifiers.

Raises InvalidSpecifier – If the specifier does not conform to PEP 440 in any way then
this exception will be raised.

operator
The string value of the operator part of this specifier.

version
The string version of the version part of this specifier.

prereleases
See SpecifierSet.prereleases.

__contains__(version)
See SpecifierSet.__contains__().

contains(version, prereleases=None)
See SpecifierSet.contains().

filter(iterable, prereleases=None)
See SpecifierSet.filter().

class packaging.specifiers.LegacySpecifier(specifier, prereleases=None)
This class abstracts the handling of a single legacy, setuptools style specifier. It is generally not required to
instantiate this manually, preferring instead to work with SpecifierSet.

Parameters

• specifier (str) – The string representation of a specifier which will be parsed and
normalized before use.

• prereleases (bool) – This tells the specifier if it should accept prerelease versions if
applicable or not. The default of None will autodetect it from the given specifiers.

Raises InvalidSpecifier – If the specifier is not parseable then this will be raised.

operator
The string value of the operator part of this specifier.

version
The string version of the version part of this specifier.

prereleases
See SpecifierSet.prereleases.

__contains__(version)
See SpecifierSet.__contains__().

contains(version, prereleases=None)
See SpecifierSet.contains().

filter(iterable, prereleases=None)
See SpecifierSet.filter().

exception packaging.specifiers.InvalidSpecifier
Raised when attempting to create a Specifier with a specifier string that does not conform to PEP 440.

2.2. Specifiers 9

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://www.python.org/dev/peps/pep-0440/

Packaging Documentation, Release 16.9.dev0

Markers

One extra requirement of dealing with dependencies is the ability to specify if it is required depending on the operating
system or Python version in use. PEP 508 defines the scheme which has been implemented by this module.

Usage

>>> from packaging.markers import Marker, UndefinedEnvironmentName
>>> marker = Marker("python_version>'2'")
>>> marker
<Marker('python_version > "2"')>
>>> # We can evaluate a marker to see if the dependency is required
>>> marker.evaluate()
True
>>> # We can also override the environment
>>> env = {'python_version': '1.5.4'}
>>> marker.evaluate(environment=env)
False
>>> # Multiple markers can be ANDed
>>> and_marker = Marker("os_name=='a' and os_name=='b'")
>>> and_marker
<Marker('os_name == "a" and os_name == "b"')>
>>> # Multiple markers can be ORed
>>> or_marker = Marker("os_name=='a' or os_name=='b'")
>>> or_marker
<Marker('os_name == "a" or os_name == "b"')>
>>> # Markers can be also used with extras, to pull in dependencies if
>>> # a certain extra is being installed
>>> extra = Marker('extra == "bar"')
>>> # Evaluating an extra marker with no environment is an error
>>> try:
... extra.evaluate()
... except UndefinedEnvironmentName:
... pass
>>> extra_environment = {'extra': ''}
>>> extra.evaluate(environment=extra_environment)
False
>>> extra_environment['extra'] = 'bar'
>>> extra.evaluate(environment=extra_environment)
True

Reference

class packaging.markers.Marker(markers)
This class abstracts handling markers for dependencies of a project. It can be passed a single marker or multiple
markers that are ANDed or ORed together. Each marker will be parsed according to PEP 508.

Parameters markers (str) – The string representation of a marker or markers.

Raises InvalidMarker – If the given markers are not parseable, then this exception will be
raised.

evaluate(environment=None)

Evaluate the marker given the context of the current Python process.

10 Chapter 2. API

https://www.python.org/dev/peps/pep-0508/
https://docs.python.org/2/library/functions.html#str

Packaging Documentation, Release 16.9.dev0

Parameters environment (dict) – A dictionary containing keys and values to override the
detected environment.

Raises UndefinedComparison: If the marker uses a PEP 440 comparison on strings which are not
valid PEP 440 versions.

Raises UndefinedEnvironmentName: If the marker accesses a value that isn’t present inside of the
environment dictionary.

exception packaging.markers.InvalidMarker
Raised when attempting to create a Marker with a string that does not conform to PEP 508.

exception packaging.markers.UndefinedComparison
Raised when attempting to evaluate a Marker with a PEP 440 comparison operator against values that are not
valid PEP 440 versions.

exception packaging.markers.UndefinedEnvironmentName
Raised when attempting to evaluate a Marker with a value that is missing from the evaluation environment.

Requirements

Parse a given requirements line for specifying dependencies of a Python project, using PEP 508 which defines the
scheme that has been implemented by this module.

Usage

>>> from packaging.requirements import Requirement
>>> simple_req = Requirement("name")
>>> simple_req
<Requirement('name')>
>>> simple_req.name
'name'
>>> simple_req.url is None
True
>>> simple_req.extras
set()
>>> simple_req.specifier
<SpecifierSet('')>
>>> simple_req.marker is None
True
>>> # Requirements can be specified with extras, specifiers and markers
>>> req = Requirement('name[foo]>=2,<3; python_version>"2.0"')
>>> req.name
'name'
>>> req.extras
{'foo'}
>>> req.specifier
<SpecifierSet('<3,>=2')>
>>> req.marker
<Marker('python_version > "2.0"')>
>>> # Requirements can also be specified with a URL, but may not specify
>>> # a version.
>>> url_req = Requirement('name @ https://github.com/pypa ;os_name=="a"')
>>> url_req.name
'name'
>>> url_req.url

2.4. Requirements 11

https://docs.python.org/2/library/stdtypes.html#dict
https://www.python.org/dev/peps/pep-0508/

Packaging Documentation, Release 16.9.dev0

'https://github.com/pypa'
>>> url_req.extras
set()
>>> url_req.marker
<Marker('os_name == "a"')>

Reference

class packaging.requirements.Requirement(requirement)
This class abstracts handling the details of a requirement for a project. Each requirement will be parsed accord-
ing to PEP 508.

Parameters requirement (str) – The string representation of a requirement.

Raises InvalidRequirement – If the given requirement is not parseable, then this excep-
tion will be raised.

name
The name of the requirement.

url
The URL, if any where to download the requirement from. Can be None.

extras
A set of extras that the requirement specifies.

specifier
A SpecifierSet of the version specified by the requirement.

marker
A Marker of the marker for the requirement. Can be None.

exception packaging.requirements.InvalidRequirement
Raised when attempting to create a Requirement with a string that does not conform to PEP 508.

Utilities

A set of small, helper utilities for dealing with Python packages.

Reference

packaging.utils.canonicalize_name(name)
This function takes a valid Python package name, and returns the normalized form of it.

Parameters name (str) – The name to normalize.

>>> from packaging.utils import canonicalize_name
>>> canonicalize_name("Django")
'django'
>>> canonicalize_name("oslo.concurrency")
'oslo-concurrency'
>>> canonicalize_name("requests")
'requests'

12 Chapter 2. API

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

CHAPTER 3

Project

Development

As an open source project, packaging welcomes contributions of all forms. The sections below will help you get
started.

File bugs and feature requests on our issue tracker on GitHub. If it is a bug check out what to put in your bug report.

Getting started

Working on packaging requires the installation of a small number of development dependencies. These are listed in
dev-requirements.txt and they can be installed in a virtualenv using pip. Once you’ve installed the dependen-
cies, install packaging in editable mode. For example:

$ # Create a virtualenv and activate it
$ pip install --requirement dev-requirements.txt
$ pip install --editable .

You are now ready to run the tests and build the documentation.

Running tests

packaging unit tests are found in the tests/ directory and are designed to be run using pytest. pytest will discover
the tests automatically, so all you have to do is:

$ py.test
...
62746 passed in 220.43 seconds

This runs the tests with the default Python interpreter.

You can also verify that the tests pass on other supported Python interpreters. For this we use tox, which will automat-
ically create a virtualenv for each supported Python version and run the tests. For example:

13

https://github.com/pypa/packaging
http://www.contribution-guide.org/#what-to-put-in-your-bug-report
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pytest
https://pypi.python.org/pypi/pytest
https://pypi.python.org/pypi/tox
https://pypi.python.org/pypi/virtualenv

Packaging Documentation, Release 16.9.dev0

$ tox
...
ERROR: py26: InterpreterNotFound: python2.6
py27: commands succeeded

ERROR: pypy: InterpreterNotFound: pypy
ERROR: py32: InterpreterNotFound: python3.2
py33: commands succeeded
docs: commands succeeded
pep8: commands succeeded

You may not have all the required Python versions installed, in which case you will see one or more
InterpreterNotFound errors.

Building documentation

packaging documentation is stored in the docs/ directory. It is written in reStructured Text and rendered using
Sphinx.

Use tox to build the documentation. For example:

$ tox -e docs
...
docs: commands succeeded
congratulations :)

The HTML documentation index can now be found at docs/_build/html/index.html.

Submitting patches

• Always make a new branch for your work.

• Patches should be small to facilitate easier review. Studies have shown that review quality falls off as patch size
grows. Sometimes this will result in many small PRs to land a single large feature.

• Larger changes should be discussed in a ticket before submission.

• New features and significant bug fixes should be documented in the Changelog.

• You must have legal permission to distribute any code you contribute and it must be available under both the
BSD and Apache Software License Version 2.0 licenses.

If you believe you’ve identified a security issue in packaging, please follow the directions on the security page.

Code

When in doubt, refer to PEP 8 for Python code. You can check if your code meets our automated requirements
by running flake8 against it. If you’ve installed the development requirements this will automatically use our
configuration. You can also run the tox job with tox -e pep8.

Write comments as complete sentences.

Every code file must start with the boilerplate licensing notice:

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

14 Chapter 3. Project

http://sphinx-doc.org/rest.html
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/tox
http://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/
https://www.python.org/dev/peps/pep-0008
http://nedbatchelder.com/blog/201401/comments_should_be_sentences.html

Packaging Documentation, Release 16.9.dev0

Additionally, every Python code file must contain

from __future__ import absolute_import, division, print_function

Tests

All code changes must be accompanied by unit tests with 100% code coverage (as measured by the combined metrics
across our build matrix).

Documentation

All features should be documented with prose in the docs section.

When referring to a hypothetical individual (such as “a person receiving an encrypted message”) use gender neutral
pronouns (they/them/their).

Docstrings are typically only used when writing abstract classes, but should be written like this if required:

def some_function(some_arg):
"""
Does some things.

:param some_arg: Some argument.
"""

So, specifically:

• Always use three double quotes.

• Put the three double quotes on their own line.

• No blank line at the end.

• Use Sphinx parameter/attribute documentation syntax.

Reviewing and merging patches

Everyone is encouraged to review open pull requests. We only ask that you try and think carefully, ask questions and
are excellent to one another. Code review is our opportunity to share knowledge, design ideas and make friends.

When reviewing a patch try to keep each of these concepts in mind:

Architecture

• Is the proposed change being made in the correct place?

Intent

• What is the change being proposed?

• Do we want this feature or is the bug they’re fixing really a bug?

3.1. Development 15

http://sphinx-doc.org/domains.html#info-field-lists
https://speakerdeck.com/ohrite/better-code-review

Packaging Documentation, Release 16.9.dev0

Implementation

• Does the change do what the author claims?

• Are there sufficient tests?

• Has it been documented?

• Will this change introduce new bugs?

Grammar and style

These are small things that are not caught by the automated style checkers.

• Does a variable need a better name?

• Should this be a keyword argument?

Security

We take the security of packaging seriously. If you believe you’ve identified a security issue in it, please report it
to donald@stufft.io. Message may be encrypted with PGP using key fingerprint 7C6B 7C5D 5E2B 6356
A926 F04F 6E3C BCE9 3372 DCFA (this public key is available from most commonly-used key servers).

Once you’ve submitted an issue via email, you should receive an acknowledgment within 48 hours, and depending on
the action to be taken, you may receive further follow-up emails.

Changelog

16.9 - master

Note: This version is not yet released and is under active development.

• Drop support for python 2.6 and 3.2

• Define minimal pyparsing version to 2.0.2 (#91).

16.8 - 2016-10-29

• Fix markers that utilize in so that they render correctly.

• Fix an erroneous test on Python RC releases.

16.7 - 2016-04-23

• Add support for the deprecated python_implementation marker which was an undocumented setuptools
marker in addition to the newer markers.

16 Chapter 3. Project

https://github.com/pypa/packaging/issues/91

Packaging Documentation, Release 16.9.dev0

16.6 - 2016-03-29

• Add support for the deprecated, PEP 345 environment markers in addition to the newer markers.

16.5 - 2016-02-26

• Fix a regression in parsing requirements with whitespaces between the comma separators.

16.4 - 2016-02-22

• Fix a regression in parsing requirements like foo (==4).

16.3 - 2016-02-21

• Fix a bug where packaging.requirements:Requirement was overly strict when matching legacy
requirements.

16.2 - 2016-02-09

• Add a function that implements the name canonicalization from PEP 503.

16.1 - 2016-02-07

• Implement requirement specifiers from PEP 508.

16.0 - 2016-01-19

• Relicense so that packaging is available under either the Apache License, Version 2.0 or a 2 Clause BSD license.

• Support installation of packaging when only distutils is available.

• Fix == comparison when there is a prefix and a local version in play. (#41).

• Implement environment markers from PEP 508.

15.3 - 2015-08-01

• Normalize post-release spellings for rev/r prefixes. #35

15.2 - 2015-05-13

• Fix an error where the arbitary specifier (===) was not correctly allowing pre-releases when it was being used.

• Expose the specifier and version parts through properties on the Specifier classes.

• Allow iterating over the SpecifierSet to get access to all of the Specifier instances.

• Allow testing if a version is contained within a specifier via the in operator.

3.3. Changelog 17

https://github.com/pypa/packaging/issues/41
https://github.com/pypa/packaging/issues/35

Packaging Documentation, Release 16.9.dev0

15.1 - 2015-04-13

• Fix a logic error that was causing inconsistent answers about whether or not a pre-release was contained within
a SpecifierSet or not.

15.0 - 2015-01-02

• Add Version().is_postrelease and LegacyVersion().is_postrelease to make it easy to
determine if a release is a post release.

• Add Version().base_version and LegacyVersion().base_version to make it easy to get the
public version without any pre or post release markers.

• Support the update to PEP 440 which removed the implied !=V.* when using either >V or <V and which
instead special cased the handling of pre-releases, post-releases, and local versions when using >V or <V.

14.5 - 2014-12-17

• Normalize release candidates as rc instead of c.

• Expose the VERSION_PATTERN constant, a regular expression matching a valid version.

14.4 - 2014-12-15

• Ensure that versions are normalized before comparison when used in a specifier with a less than (<) or greater
than (>) operator.

14.3 - 2014-11-19

• BACKWARDS INCOMPATIBLE Refactor specifier support so that it can sanely handle legacy specifiers as
well as PEP 440 specifiers.

• BACKWARDS INCOMPATIBLE Move the specifier support out of packaging.version into
packaging.specifiers.

14.2 - 2014-09-10

• Add prerelease support to Specifier.

• Remove the ability to do item in Specifier() and replace it with Specifier().contains(item)
in order to allow flags that signal if a prerelease should be accepted or not.

• Add a method Specifier().filter() which will take an iterable and returns an iterable with items that
do not match the specifier filtered out.

14.1 - 2014-09-08

• Allow LegacyVersion and Version to be sorted together.

• Add packaging.version.parse() to enable easily parsing a version string as either a Version or a
LegacyVersion depending on it’s PEP 440 validity.

18 Chapter 3. Project

Packaging Documentation, Release 16.9.dev0

14.0 - 2014-09-05

• Initial release.

3.3. Changelog 19

Packaging Documentation, Release 16.9.dev0

20 Chapter 3. Project

Index

Symbols
__contains__() (packaging.specifiers.LegacySpecifier

method), 9
__contains__() (packaging.specifiers.Specifier method), 9
__contains__() (packaging.specifiers.SpecifierSet

method), 8
__iter__() (packaging.specifiers.SpecifierSet method), 8
__len__() (packaging.specifiers.SpecifierSet method), 8

B
base_version (packaging.version.LegacyVersion at-

tribute), 6
base_version (packaging.version.Version attribute), 6

C
canonicalize_name() (in module packaging.utils), 12
contains() (packaging.specifiers.LegacySpecifier

method), 9
contains() (packaging.specifiers.Specifier method), 9
contains() (packaging.specifiers.SpecifierSet method), 8

E
evaluate() (packaging.markers.Marker method), 10
extras (packaging.requirements.Requirement attribute),

12

F
filter() (packaging.specifiers.LegacySpecifier method), 9
filter() (packaging.specifiers.Specifier method), 9
filter() (packaging.specifiers.SpecifierSet method), 8

I
InvalidMarker, 11
InvalidRequirement, 12
InvalidSpecifier, 9
InvalidVersion, 6
is_postrelease (packaging.version.LegacyVersion at-

tribute), 6
is_postrelease (packaging.version.Version attribute), 6

is_prerelease (packaging.version.LegacyVersion at-
tribute), 6

is_prerelease (packaging.version.Version attribute), 6

L
LegacySpecifier (class in packaging.specifiers), 9
LegacyVersion (class in packaging.version), 6
local (packaging.version.LegacyVersion attribute), 6
local (packaging.version.Version attribute), 6

M
Marker (class in packaging.markers), 10
marker (packaging.requirements.Requirement attribute),

12

N
name (packaging.requirements.Requirement attribute), 12

O
operator (packaging.specifiers.LegacySpecifier attribute),

9
operator (packaging.specifiers.Specifier attribute), 9

P
parse() (in module packaging.version), 6
prereleases (packaging.specifiers.LegacySpecifier at-

tribute), 9
prereleases (packaging.specifiers.Specifier attribute), 9
prereleases (packaging.specifiers.SpecifierSet attribute), 8
public (packaging.version.LegacyVersion attribute), 6
public (packaging.version.Version attribute), 6
Python Enhancement Proposals

PEP 8, 14

R
Requirement (class in packaging.requirements), 12

S
Specifier (class in packaging.specifiers), 8

21

Packaging Documentation, Release 16.9.dev0

specifier (packaging.requirements.Requirement at-
tribute), 12

SpecifierSet (class in packaging.specifiers), 7

U
UndefinedComparison, 11
UndefinedEnvironmentName, 11
url (packaging.requirements.Requirement attribute), 12

V
Version (class in packaging.version), 6
version (packaging.specifiers.LegacySpecifier attribute),

9
version (packaging.specifiers.Specifier attribute), 9
VERSION_PATTERN (in module packaging.version), 7

22 Index

	Installation
	API
	Project

