
OpenERP Web Developers
Documentation

Release 7.0

OpenERP s.a.

August 29, 2016

Contents

1 Building an OpenERP Web module 3

2 Widget 11

3 Asynchronous Operations 15

4 RPC Calls 21

5 QWeb 25

6 Client actions 33

7 Guidelines and Recommendations 35

8 Testing in OpenERP Web 37

9 Search View 49

10 List View 57

11 Notes on the usage of the Form View as a sub-widget 65

12 API changes from OpenERP Web 6.1 to 7.0 67

13 Indices and tables 69

i

ii

OpenERP Web Developers Documentation, Release 7.0

Contents:

Contents 1

OpenERP Web Developers Documentation, Release 7.0

2 Contents

CHAPTER 1

Building an OpenERP Web module

There is no significant distinction between an OpenERP Web module and an OpenERP module, the web part is
mostly additional data and code inside a regular OpenERP module. This allows providing more seamless features by
integrating your module deeper into the web client.

1.1 A Basic Module

A very basic OpenERP module structure will be our starting point:

web_example
-- __init__.py
-- __openerp__.py

__openerp__.py
{

'name': "Web Example",
'description': "Basic example of a (future) web module",
'category': 'Hidden',
'depends': ['base'],

}

This is a sufficient minimal declaration of a valid OpenERP module.

1.2 Web Declaration

There is no such thing as a “web module” declaration. An OpenERP module is automatically recognized as “web-
enabled” if it contains a static directory at its root, so:

web_example
-- __init__.py
-- __openerp__.py
-- static

is the extent of it. You should also change the dependency to list web:

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,7 +1,7 @@
__openerp__.py
{

3

OpenERP Web Developers Documentation, Release 7.0

'name': "Web Example",
'description': "Basic example of a (future) web module",
'category': 'Hidden',

- 'depends': ['base'],
+ 'depends': ['web'],
}

Note: This does not matter in normal operation so you may not realize it’s wrong (the web module does the loading
of everything else, so it can only be loaded), but when e.g. testing the loading process is slightly different than normal,
and incorrect dependency may lead to broken code.

This makes the “web” discovery system consider the module as having a “web part”, and check if it has web controllers
to mount or javascript files to load. The content of the static/ folder is also automatically made available to
web browser at the URL $module-name/static/$file-path. This is sufficient to provide pictures (of cats,
usually) through your module. However there are still a few more steps to running javascript code.

1.3 Getting Things Done

The first one is to add javascript code. It’s customary to put it in static/src/js, to have room for e.g. other file
types, or third-party libraries.

// static/src/js/first_module.js
console.log("Debug statement: file loaded");

The client won’t load any file unless specified, thus the new file should be listed in the module’s manifest file, under a
new key js (a list of file names, or glob patterns):

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,7 +1,8 @@
__openerp__.py
{

'name': "Web Example",
'description': "Basic example of a (future) web module",
'category': 'Hidden',
'depends': ['web'],

+ 'js': ['static/src/js/first_module.js'],
}

At this point, if the module is installed and the client reloaded the message should appear in your browser’s develop-
ment console.

Note: Because the manifest file has been edited, you will have to restart the OpenERP server itself for it to be taken
in account.

You may also want to open your browser’s console before reloading, depending on the browser messages printed while
the console is closed may not work or may not appear after opening it.

Note: If the message does not appear, try cleaning your browser’s caches and ensure the file is correctly loaded from
the server logs or the “resources” tab of your browser’s developers tools.

4 Chapter 1. Building an OpenERP Web module

OpenERP Web Developers Documentation, Release 7.0

At this point the code runs, but it runs only once when the module is initialized, and it can’t get access to the various
APIs of the web client (such as making RPC requests to the server). This is done by providing a javascript module:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,2 +1,4 @@
// static/src/js/first_module.js

-console.log("Debug statement: file loaded");
+openerp.web_example = function (instance) {
+ console.log("Module loaded");
+};

If you reload the client, you’ll see a message in the console exactly as previously. The differences, though invisible at
this point, are:

• All javascript files specified in the manifest (only this one so far) have been fully loaded

• An instance of the web client and a namespace inside that instance (with the same name as the module) have
been created and are available for use

The latter point is what the instance parameter to the function provides: an instance of the OpenERP Web client,
with the contents of all the new module’s dependencies loaded in and initialized. These are the entry points to the web
client’s APIs.

To demonstrate, let’s build a simple client action: a stopwatch

First, the action declaration:

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,8 +1,9 @@
__openerp__.py
{

'name': "Web Example",
'description': "Basic example of a (future) web module",
'category': 'Hidden',
'depends': ['web'],

+ 'data': ['web_example.xml'],
'js': ['static/src/js/first_module.js'],

}

<!-- web_example/web_example.xml -->
<openerp>

<data>
<record model="ir.actions.client" id="action_client_example">

<field name="name">Example Client Action</field>
<field name="tag">example.action</field>

</record>
<menuitem action="action_client_example"

id="menu_client_example"/>
</data>

</openerp>

then set up the client action hook to register a function (for now):

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,4 +1,7 @@
// static/src/js/first_module.js
openerp.web_example = function (instance) {

- console.log("Module loaded");

1.3. Getting Things Done 5

http://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript

OpenERP Web Developers Documentation, Release 7.0

+ instance.web.client_actions.add('example.action', 'instance.web_example.Action');
+ instance.web_example.Action = function (parent, action) {
+ console.log("Executed the action", action);
+ };
};

Updating the module (in order to load the XML description) and re-starting the server should display a new menu
Example Client Action at the top-level. Opening said menu will make the message appear, as usual, in the browser’s
console.

1.4 Paint it black

The next step is to take control of the page itself, rather than just print little messages in the console. This we can do
by replacing our client action function by a Widget. Our widget will simply use its start() to add some content to
its DOM:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,7 +1,11 @@
// static/src/js/first_module.js
openerp.web_example = function (instance) {

- instance.web.client_actions.add('example.action', 'instance.web_example.Action');
- instance.web_example.Action = function (parent, action) {
- console.log("Executed the action", action);
- };
+ instance.web.client_actions.add('example.action', 'instance.web_example.Action');
+ instance.web_example.Action = instance.web.Widget.extend({
+ className: 'oe_web_example',
+ start: function () {
+ this.$el.text("Hello, world!");
+ return this._super();
+ }
+ });
};

after reloading the client (to update the javascript file), instead of printing to the console the menu item clears the
whole screen and displays the specified message in the page.

Since we’ve added a class on the widget’s DOM root we can now see how to add a stylesheet to a module: first create
the stylesheet file:

.openerp .oe_web_example {
color: white;
background-color: black;
height: 100%;
font-size: 400%;

}

then add a reference to the stylesheet in the module’s manifest (which will require restarting the OpenERP Server to
see the changes, as usual):

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,9 +1,10 @@
__openerp__.py
{

'name': "Web Example",

6 Chapter 1. Building an OpenERP Web module

OpenERP Web Developers Documentation, Release 7.0

'description': "Basic example of a (future) web module",
'category': 'Hidden',
'depends': ['web'],
'data': ['web_example.xml'],
'js': ['static/src/js/first_module.js'],

+ 'css': ['static/src/css/web_example.css'],
}

the text displayed by the menu item should now be huge, and white-on-black (instead of small and black-on-white).
From there on, the world’s your canvas.

Note: Prefixing CSS rules with both .openerp (to ensure the rule will apply only within the confines of the
OpenERP Web client) and a class at the root of your own hierarchy of widgets is strongly recommended to avoid
“leaking” styles in case the code is running embedded in an other web page, and does not have the whole screen to
itself.

So far we haven’t built much (any, really) DOM content. It could all be done in start() but that gets unwieldy and
hard to maintain fast. It is also very difficult to extend by third parties (trying to add or change things in your widgets)
unless broken up into multiple methods which each perform a little bit of the rendering.

The first way to handle this method is to delegate the content to plenty of sub-widgets, which can be individually
overridden. An other method 1 is to use a template to render a widget’s DOM.

OpenERP Web’s template language is QWeb. Although any templating engine can be used (e.g. mustache or _.tem-
plate) QWeb has important features which other template engines may not provide, and has special integration to
OpenERP Web widgets.

Adding a template file is similar to adding a style sheet:

<templates>
<div t-name="web_example.action" class="oe_web_example oe_web_example_stopped">

<h4 class="oe_web_example_timer">00:00:00</h4>
<p class="oe_web_example_start">

<button type="button">Start</button>
</p>
<p class="oe_web_example_stop">

<button type="button">Stop</button>
</p>

</div>
</templates>

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,10 +1,11 @@
__openerp__.py
{

'name': "Web Example",
'description': "Basic example of a (future) web module",
'category': 'Hidden',
'depends': ['web'],
'data': ['web_example.xml'],
'js': ['static/src/js/first_module.js'],
'css': ['static/src/css/web_example.css'],

+ 'qweb': ['static/src/xml/web_example.xml'],
}

1 they are not alternative solutions: they work very well together. Templates are used to build “just DOM”, sub-widgets are used to build DOM
subsections and delegate part of the behavior (e.g. events handling).

1.4. Paint it black 7

http://en.wikipedia.org/wiki/Web_template
http://mustache.github.com/
http://underscorejs.org/#template
http://underscorejs.org/#template

OpenERP Web Developers Documentation, Release 7.0

The template can then easily be hooked in the widget:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,11 +1,7 @@
// static/src/js/first_module.js
openerp.web_example = function (instance) {

instance.web.client_actions.add('example.action', 'instance.web_example.Action');
instance.web_example.Action = instance.web.Widget.extend({

+ template: 'web_example.action'
- className: 'oe_web_example',
- start: function () {
- this.$el.text("Hello, world!");
- return this._super();
- }

});
};

And finally the CSS can be altered to style the new (and more complex) template-generated DOM, rather than the
code-generated one:

--- web_example/static/src/css/web_example.css
+++ web_example/static/src/css/web_example.css
@@ -1,6 +1,13 @@
.openerp .oe_web_example {

color: white;
background-color: black;
height: 100%;

- font-size: 400%;
}

+.openerp .oe_web_example h4 {
+ margin: 0;
+ font-size: 200%;
+}
+.openerp .oe_web_example.oe_web_example_started .oe_web_example_start button,
+.openerp .oe_web_example.oe_web_example_stopped .oe_web_example_stop button {
+ display: none
+}

Note: The last section of the CSS change is an example of “state classes”: a CSS class (or set of classes) on the root
of the widget, which is toggled when the state of the widget changes and can perform drastic alterations in rendering
(usually showing/hiding various elements).

This pattern is both fairly simple (to read and understand) and efficient (because most of the hard work is pushed to
the browser’s CSS engine, which is usually highly optimized, and done in a single repaint after toggling the class).

The last step (until the next one) is to add some behavior and make our stopwatch watch. First hook some events on
the buttons to toggle the widget’s state:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,7 +1,19 @@
// static/src/js/first_module.js
openerp.web_example = function (instance) {

instance.web.client_actions.add('example.action', 'instance.web_example.Action');
instance.web_example.Action = instance.web.Widget.extend({

- template: 'web_example.action'
+ template: 'web_example.action',

8 Chapter 1. Building an OpenERP Web module

OpenERP Web Developers Documentation, Release 7.0

+ events: {
+ 'click .oe_web_example_start button': 'watch_start',
+ 'click .oe_web_example_stop button': 'watch_stop'
+ },
+ watch_start: function () {
+ this.$el.addClass('oe_web_example_started')
+ .removeClass('oe_web_example_stopped');
+ },
+ watch_stop: function () {
+ this.$el.removeClass('oe_web_example_started')
+ .addClass('oe_web_example_stopped');
+ },

});
};

This demonstrates the use of the “events hash” and event delegation to declaratively handle events on the widget’s
DOM. And already changes the button displayed in the UI. Then comes some actual logic:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,19 +1,52 @@
// static/src/js/first_module.js
openerp.web_example = function (instance) {

instance.web.client_actions.add('example.action', 'instance.web_example.Action');
instance.web_example.Action = instance.web.Widget.extend({

template: 'web_example.action',
events: {

'click .oe_web_example_start button': 'watch_start',
'click .oe_web_example_stop button': 'watch_stop'

},
+ init: function () {
+ this._super.apply(this, arguments);
+ this._start = null;
+ this._watch = null;
+ },
+ update_counter: function () {
+ var h, m, s;
+ // Subtracting javascript dates returns the difference in milliseconds
+ var diff = new Date() - this._start;
+ s = diff / 1000;
+ m = Math.floor(s / 60);
+ s -= 60*m;
+ h = Math.floor(m / 60);
+ m -= 60*h;
+ this.$('.oe_web_example_timer').text(
+ _.str.sprintf("%02d:%02d:%02d", h, m, s));
+ },

watch_start: function () {
this.$el.addClass('oe_web_example_started')

.removeClass('oe_web_example_stopped');
+ this._start = new Date();
+ // Update the UI to the current time
+ this.update_counter();
+ // Update the counter at 30 FPS (33ms/frame)
+ this._watch = setInterval(
+ this.proxy('update_counter'),
+ 33);

},

1.4. Paint it black 9

OpenERP Web Developers Documentation, Release 7.0

watch_stop: function () {
+ clearInterval(this._watch);
+ this.update_counter();
+ this._start = this._watch = null;

this.$el.removeClass('oe_web_example_started')
.addClass('oe_web_example_stopped');

},
+ destroy: function () {
+ if (this._watch) {
+ clearInterval(this._watch);
+ }
+ this._super();
+ }

});
};

• An initializer (the init method) is introduced to set-up a few internal variables: _start will hold the start
of the timer (as a javascript Date object), and _watch will hold a ticker to update the interface regularly and
display the “current time”.

• update_counter is in charge of taking the time difference between “now” and _start, formatting as
HH:MM:SS and displaying the result on screen.

• watch_start is augmented to initialize _start with its value and set-up the update of the counter display
every 33ms.

• watch_stop disables the updater, does a final update of the counter display and resets everything.

• Finally, because javascript Interval and Timeout objects execute “outside” the widget, they will keep going even
after the widget has been destroyed (especially an issue with intervals as they repeat indefinitely). So _watch
must be cleared when the widget is destroyed (then the _super must be called as well in order to perform the
“normal” widget cleanup).

Starting and stopping the watch now works, and correctly tracks time since having started the watch, neatly formatted.

10 Chapter 1. Building an OpenERP Web module

CHAPTER 2

Widget

class openerp.web.Widget()

This is the base class for all visual components. It corresponds to an MVC view. It provides a number of services to
handle a section of a page:

• Rendering with QWeb

• Parenting-child relations

• Life-cycle management (including facilitating children destruction when a parent object is removed)

• DOM insertion, via jQuery-powered insertion methods. Insertion targets can be anything the corresponding
jQuery method accepts (generally selectors, DOM nodes and jQuery objects):

appendTo() Renders the widget and inserts it as the last child of the target, uses .appendTo()

prependTo() Renders the widget and inserts it as the first child of the target, uses .prependTo()

insertAfter() Renders the widget and inserts it as the preceding sibling of the target, uses .insertAfter()

insertBefore() Renders the widget and inserts it as the following sibling of the target, uses .insertBefore()

• Backbone-compatible shortcuts

2.1 DOM Root

A Widget() is responsible for a section of the page materialized by the DOM root of the widget. The DOM root is
available via the el and $el attributes, which are respectively the raw DOM Element and the jQuery wrapper around
the DOM element.

There are two main ways to define and generate this DOM root:

openerp.web.Widget.template
Should be set to the name of a QWeb template (a String()). If set, the template will be rendered after the
widget has been initialized but before it has been started. The root element generated by the template will be set
as the DOM root of the widget.

openerp.web.Widget.tagName
Used if the widget has no template defined. Defaults to div, will be used as the tag name to create the DOM
element to set as the widget’s DOM root. It is possible to further customize this generated DOM root with the
following attributes:

openerp.web.Widget.id
Used to generate an id attribute on the generated DOM root.

11

http://api.jquery.com/appendTo/
http://api.jquery.com/prependTo/
http://api.jquery.com/insertAfter/
http://api.jquery.com/insertBefore/

OpenERP Web Developers Documentation, Release 7.0

openerp.web.Widget.className
Used to generate a class attribute on the generated DOM root.

openerp.web.Widget.attributes
Mapping (object literal) of attribute names to attribute values. Each of these k:v pairs will be set as a DOM
attribute on the generated DOM root.

None of these is used in case a template is specified on the widget.

The DOM root can also be defined programmatically by overridding

openerp.web.Widget.renderElement()
Renders the widget’s DOM root and sets it. The default implementation will render a set template or generate
an element as described above, and will call setElement() on the result.

Any override to renderElement() which does not call its _super must call setElement() with what-
ever it generated or the widget’s behavior is undefined.r

Note: The default renderElement() can be called repeatedly, it will replace the previous DOM root (using
replaceWith). However, this requires that the widget correctly sets and unsets its events (and children
widgets). Generally, renderElement() should not be called repeatedly unless the widget advertizes this
feature.

2.1.1 Accessing DOM content

Because a widget is only responsible for the content below its DOM root, there is a shortcut for selecting sub-sections
of a widget’s DOM:

openerp.web.Widget.$(selector)
Applies the CSS selector specified as parameter to the widget’s DOM root.

this.$(selector);

is functionally identical to:

this.$el.find(selector);

Arguments

• selector (String) – CSS selector

Returns jQuery object

Note: this helper method is compatible with Backbone.View.$

2.1.2 Resetting the DOM root

openerp.web.Widget.setElement(element)
Re-sets the widget’s DOM root to the provided element, also handles re-setting the various aliases of the DOM
root as well as unsetting and re-setting delegated events.

Arguments

• element (Element) – a DOM element or jQuery object to set as the widget’s DOM root

12 Chapter 2. Widget

OpenERP Web Developers Documentation, Release 7.0

Note: should be mostly compatible with Backbone’s setElement

2.2 DOM events handling

A widget will generally need to respond to user action within its section of the page. This entails binding events to
DOM elements.

To this end, Widget() provides an shortcut:

openerp.web.Widget.events
Events are a mapping of event selector (an event name and a CSS selector separated by a space) to a
callback. The callback can be either a method name in the widget or a function. In either case, the this will
be set to the widget:

events: {
'click p.oe_some_class a': 'some_method',
'change input': function (e) {

e.stopPropagation();
}

},

The selector is used for jQuery’s event delegation, the callback will only be triggered for descendants of the
DOM root matching the selector 0. If the selector is left out (only an event name is specified), the event will be
set directly on the widget’s DOM root.

openerp.web.Widget.delegateEvents()
This method is in charge of binding events to the DOM. It is automatically called after setting the widget’s
DOM root.

It can be overridden to set up more complex events than the events map allows, but the parent should always
be called (or events won’t be handled correctly).

openerp.web.Widget.undelegateEvents()
This method is in charge of unbinding events from the DOM root when the widget is destroyed or the DOM
root is reset, in order to avoid leaving “phantom” events.

It should be overridden to un-set any event set in an override of delegateEvents().

Note: this behavior should be compatible with Backbone’s delegateEvents, apart from not accepting any argument.

2.3 Subclassing Widget

Widget() is subclassed in the standard manner (via the extend() method), and provides a number of abstract
properties and concrete methods (which you may or may not want to override). Creating a subclass looks like this:

var MyWidget = openerp.base.Widget.extend({
// QWeb template to use when rendering the object
template: "MyQWebTemplate",

init: function(parent) {

0 not all DOM events are compatible with events delegation

2.2. DOM events handling 13

http://backbonejs.org/#View-setElement
http://api.jquery.com/delegate/
http://backbonejs.org/#View-delegateEvents

OpenERP Web Developers Documentation, Release 7.0

this._super(parent);
// insert code to execute before rendering, for object
// initialization

},
start: function() {

this._super();
// post-rendering initialization code, at this point
// ``this.$element`` has been initialized
this.$element.find(".my_button").click(/* an example of event binding * /);

// if ``start`` is asynchronous, return a promise object so callers
// know when the object is done initializing
return this.rpc(/* ... */)

}
});

The new class can then be used in the following manner:

// Create the instance
var my_widget = new MyWidget(this);
// Render and insert into DOM
my_widget.appendTo(".some-div");

After these two lines have executed (and any promise returned by appendTo has been resolved if needed), the widget
is ready to be used.

Note: the insertion methods will start the widget themselves, and will return the result of start().

If for some reason you do not want to call these methods, you will have to first call render() on the widget, then
insert it into your DOM and start it.

If the widget is not needed anymore (because it’s transient), simply terminate it:

my_widget.destroy();

will unbind all DOM events, remove the widget’s content from the DOM and destroy all widget data.

14 Chapter 2. Widget

CHAPTER 3

Asynchronous Operations

As a language (and runtime), javascript is fundamentally single-threaded. This means any blocking request or compu-
tation will blocks the whole page (and, in older browsers, the software itself even preventing users from switching to
an other tab): a javascript environment can be seen as an event-based runloop where application developers have no
control over the runloop itself.

As a result, performing long-running synchronous network requests or other types of complex and expensive accesses
is frowned upon and asynchronous APIs are used instead.

Asynchronous code rarely comes naturally, especially for developers used to synchronous server-side code (in Python,
Java or C#) where the code will just block until the deed is gone. This is increased further when asynchronous
programming is not a first-class concept and is instead implemented on top of callbacks-based programming, which is
the case in javascript.

The goal of this guide is to provide some tools to deal with asynchronous systems, and warn against systematic issues
or dangers.

3.1 Deferreds

Deferreds are a form of promises. OpenERP Web currently uses jQuery’s deferred.

The core idea of deferreds is that potentially asynchronous methods will return a Deferred() object instead of an
arbitrary value or (most commonly) nothing.

This object can then be used to track the end of the asynchronous operation by adding callbacks onto it, either success
callbacks or error callbacks.

A great advantage of deferreds over simply passing callback functions directly to asynchronous methods is the ability
to compose them.

3.1.1 Using deferreds

Deferreds’s most important method is Deferred.then(). It is used to attach new callbacks to the deferred object.

• the first parameter attaches a success callback, called when the deferred object is successfully resolved and
provided with the resolved value(s) for the asynchronous operation.

• the second parameter attaches a failure callback, called when the deferred object is rejected and provided with
rejection values (often some sort of error message).

Callbacks attached to deferreds are never “lost”: if a callback is attached to an already resolved or rejected deferred,
the callback will be called (or ignored) immediately. A deferred is also only ever resolved or rejected once, and is

15

http://en.wikipedia.org/wiki/Promise_(programming)
http://api.jquery.com/category/deferred-object/

OpenERP Web Developers Documentation, Release 7.0

either resolved or rejected: a given deferred can not call a single success callback twice, or call both a success and a
failure callbacks.

then() should be the method you’ll use most often when interacting with deferred objects (and thus asynchronous
APIs).

3.1.2 Building deferreds

After using asynchronous APIs may come the time to build them: for mocks, to compose deferreds from multiple
source in a complex manner, in order to let the current operations repaint the screen or give other events the time to
unfold, ...

This is easy using jQuery’s deferred objects.

Note: this section is an implementation detail of jQuery Deferred objects, the creation of promises is not part of any
standard (even tentative) that I know of. If you are using deferred objects which are not jQuery’s, their API may (and
often will) be completely different.

Deferreds are created by invoking their constructor 1 without any argument. This creates a Deferred() instance
object with the following methods:

Deferred.resolve()

As its name indicates, this method moves the deferred to the “Resolved” state. It can be provided as many
arguments as necessary, these arguments will be provided to any pending success callback.

Deferred.reject()

Similar to resolve(), but moves the deferred to the “Rejected” state and calls pending failure handlers.

Deferred.promise()

Creates a readonly view of the deferred object. It is generally a good idea to return a promise view of the
deferred to prevent callers from resolving or rejecting the deferred in your stead.

reject() and resolve() are used to inform callers that the asynchronous operation has failed (or succeeded).
These methods should simply be called when the asynchronous operation has ended, to notify anybody interested in
its result(s).

3.1.3 Composing deferreds

What we’ve seen so far is pretty nice, but mostly doable by passing functions to other functions (well adding functions
post-facto would probably be a chore... still, doable).

Deferreds truly shine when code needs to compose asynchronous operations in some way or other, as they can be used
as a basis for such composition.

There are two main forms of compositions over deferred: multiplexing and piping/cascading.

Deferred multiplexing

The most common reason for multiplexing deferred is simply performing 2+ asynchronous operations and wanting to
wait until all of them are done before moving on (and executing more stuff).

The jQuery multiplexing function for promises is when().

1 or simply calling Deferred() as a function, the result is the same

16 Chapter 3. Asynchronous Operations

http://en.wikipedia.org/wiki/Mock_object

OpenERP Web Developers Documentation, Release 7.0

Note: the multiplexing behavior of jQuery’s when() is an (incompatible, mostly) extension of the behavior defined
in CommonJS Promises/B.

This function can take any number of promises 2 and will return a promise.

This returned promise will be resolved when all multiplexed promises are resolved, and will be rejected as soon as
one of the multiplexed promises is rejected (it behaves like Python’s all(), but with promise objects instead of
boolean-ish).

The resolved values of the various promises multiplexed via when() are mapped to the arguments of when()‘s
success callback, if they are needed. The resolved values of a promise are at the same index in the callback’s arguments
as the promise in the when() call so you will have:

$.when(p0, p1, p2, p3).then(
function (results0, results1, results2, results3) {

// code
});

Warning: in a normal mapping, each parameter to the callback would be an array: each promise is conceptually
resolved with an array of 0..n values and these values are passed to when()‘s callback. But jQuery treats deferreds
resolving a single value specially, and “unwraps” that value.
For instance, in the code block above if the index of each promise is the number of values it resolves (0 to 3),
results0 is an empty array, results2 is an array of 2 elements (a pair) but results1 is the actual value
resolved by p1, not an array.

Deferred chaining

A second useful composition is starting an asynchronous operation as the result of an other asynchronous operation,
and wanting the result of both: with the tools described so far, handling e.g. OpenERP’s search/read sequence with
this would require something along the lines of:

var result = $.Deferred();
Model.search(condition).then(function (ids) {

Model.read(ids, fields).then(function (records) {
result.resolve(records);

});
});
return result.promise();

While it doesn’t look too bad for trivial code, this quickly gets unwieldy.

But then() also allows handling this kind of chains: it returns a new promise object, not the one it was called with,
and the return values of the callbacks is actually important to it: whichever callback is called,

• If the callback is not set (not provided or left to null), the resolution or rejection value(s) is simply forwarded to
then()‘s promise (it’s essentially a noop)

• If the callback is set and does not return an observable object (a deferred or a promise), the value it returns
(undefined if it does not return anything) will replace the value it was given, e.g.

2 or not-promises, the CommonJS Promises/B role of when() is to be able to treat values and promises uniformly: when() will pass promises
through directly, but non-promise values and objects will be transformed into a resolved promise (resolving themselves with the value itself).

jQuery’s when() keeps this behavior making deferreds easy to build from “static” values, or allowing defensive code where expected promises
are wrapped in when() just in case.

3.1. Deferreds 17

http://wiki.commonjs.org/wiki/Promises/B
http://wiki.commonjs.org/wiki/Promises/B

OpenERP Web Developers Documentation, Release 7.0

promise.then(function () {
console.log('called');

});

will resolve with the sole value undefined.

• If the callback is set and returns an observable object, that object will be the actual resolution (and result) of the
pipe. This means a resolved promise from the failure callback will resolve the pipe, and a failure promise from
the success callback will reject the pipe.

This provides an easy way to chain operation successes, and the previous piece of code can now be rewritten:

return Model.search(condition).then(function (ids) {
return Model.read(ids, fields);

});

the result of the whole expression will encode failure if either search or read fails (with the right rejection
values), and will be resolved with read‘s resolution values if the chain executes correctly.

then() is also useful to adapt third-party promise-based APIs, in order to filter their resolution value counts for
instance (to take advantage of when() ‘s special treatment of single-value promises).

3.1.4 jQuery.Deferred API

when(deferreds. . .)

Arguments

• deferreds – deferred objects to multiplex

Returns a multiplexed deferred

Return type Deferred()

class Deferred()

Deferred.then(doneCallback[, failCallback])
Attaches new callbacks to the resolution or rejection of the deferred object. Callbacks are executed in the
order they are attached to the deferred.

To provide only a failure callback, pass null as the doneCallback, to provide only a success callback
the second argument can just be ignored (and not passed at all).

Returns a new deferred which resolves to the result of the corresponding callback, if a callback returns a
deferred itself that new deferred will be used as the resolution of the chain.

Arguments

• doneCallback (Function) – function called when the deferred is resolved

• failCallback (Function) – function called when the deferred is rejected

Returns the deferred object on which it was called

Return type Deferred()

Deferred.done(doneCallback)
Attaches a new success callback to the deferred, shortcut for deferred.then(doneCallback).

This is a jQuery extension to CommonJS Promises/A providing little value over calling then() directly,
it should be avoided.

18 Chapter 3. Asynchronous Operations

http://wiki.commonjs.org/wiki/Promises/A

OpenERP Web Developers Documentation, Release 7.0

Arguments

• doneCallback (Function) – function called when the deferred is resolved

Returns the deferred object on which it was called

Return type Deferred()

Deferred.fail(failCallback)
Attaches a new failure callback to the deferred, shortcut for deferred.then(null,
failCallback).

A second jQuery extension to Promises/A. Although it provides more value than done(), it still is not
much and should be avoided as well.

Arguments

• failCallback (Function) – function called when the deferred is rejected

Returns the deferred object on which it was called

Return type Deferred()

Deferred.promise()
Returns a read-only view of the deferred object, with all mutators (resolve and reject) methods removed.

Deferred.resolve(value. . .)
Called to resolve a deferred, any value provided will be passed onto the success handlers of the deferred
object.

Resolving a deferred which has already been resolved or rejected has no effect.

Deferred.reject(value. . .)
Called to reject (fail) a deferred, any value provided will be passed onto the failure handler of the deferred
object.

Rejecting a deferred which has already been resolved or rejected has no effect.

3.1. Deferreds 19

OpenERP Web Developers Documentation, Release 7.0

20 Chapter 3. Asynchronous Operations

CHAPTER 4

RPC Calls

Building static displays is all nice and good and allows for neat effects (and sometimes you’re given data to display
from third parties so you don’t have to make any effort), but a point generally comes where you’ll want to talk to the
world and make some network requests.

OpenERP Web provides two primary APIs to handle this, a low-level JSON-RPC based API communicating with the
Python section of OpenERP Web (and of your addon, if you have a Python part) and a high-level API above that
allowing your code to talk directly to the OpenERP server, using familiar-looking calls.

All networking APIs are asynchronous. As a result, all of them will return Deferred() objects (whether they
resolve those with values or not). Understanding how those work before before moving on is probably necessary.

4.1 High-level API: calling into OpenERP models

Access to OpenERP object methods (made available through XML-RPC from the server) is done via the
openerp.web.Model() class. This class maps onto the OpenERP server objects via two primary methods,
call() and query().

call() is a direct mapping to the corresponding method of the OpenERP server object. Its usage is similar to that
of the OpenERP Model API, with three differences:

• The interface is asynchronous, so instead of returning results directly RPC method calls will return
Deferred() instances, which will themselves resolve to the result of the matching RPC call.

• Because ECMAScript 3/Javascript 1.5 doesnt feature any equivalent to __getattr__ or method_missing,
there needs to be an explicit method to dispatch RPC methods.

• No notion of pooler, the model proxy is instantiated where needed, not fetched from an other (somewhat global)
object

var Users = new Model('res.users');

Users.call('change_password', ['oldpassword', 'newpassword'],
{context: some_context}).then(function (result) {

// do something with change_password result
});

query() is a shortcut for a builder-style interface to searches (search + read in OpenERP RPC terms). It returns
a Query() object which is immutable but allows building new Query() instances from the first one, adding new
properties or modifiying the parent object’s:

21

OpenERP Web Developers Documentation, Release 7.0

Users.query(['name', 'login', 'user_email', 'signature'])
.filter([['active', '=', true], ['company_id', '=', main_company]])
.limit(15)
.all().then(function (users) {

// do work with users records
});

The query is only actually performed when calling one of the query serialization methods, all() and first().
These methods will perform a new RPC call every time they are called.

For that reason, it’s actually possible to keep “intermediate” queries around and use them differently/add new specifi-
cations on them.

class openerp.web.Model(name)

openerp.web.Model.name
name of the OpenERP model this object is bound to

openerp.web.Model.call(method[, args][, kwargs])
Calls the method method of the current model, with the provided positional and keyword arguments.

Arguments

• method (String) – method to call over rpc on the name

• args (Array<>) – positional arguments to pass to the method, optional

• kwargs (Object<>) – keyword arguments to pass to the method, optional

Return type Deferred<>

openerp.web.Model.query(fields)

Arguments

• fields (Array<String>) – list of fields to fetch during the search

Returns a Query() object representing the search to perform

class openerp.web.Query(fields)
The first set of methods is the “fetching” methods. They perform RPC queries using the internal data of the
object they’re called on.

openerp.web.Query.all()
Fetches the result of the current Query() object’s search.

Return type Deferred<Array<>>

openerp.web.Query.first()
Fetches the first result of the current Query(), or null if the current Query() does have any result.

Return type Deferred<Object | null>

openerp.web.Query.count()
Fetches the number of records the current Query() would retrieve.

Return type Deferred<Number>

openerp.web.Query.group_by(grouping...)
Fetches the groups for the query, using the first specified grouping parameter

Arguments

• grouping (Array<String>) – Lists the levels of grouping asked of the server.
Grouping can actually be an array or varargs.

22 Chapter 4. RPC Calls

OpenERP Web Developers Documentation, Release 7.0

Return type Deferred<Array<openerp.web.QueryGroup>> | null

The second set of methods is the “mutator” methods, they create a new Query() object with the relevant
(internal) attribute either augmented or replaced.

openerp.web.Query.context(ctx)
Adds the provided ctx to the query, on top of any existing context

openerp.web.Query.filter(domain)
Adds the provided domain to the query, this domain is AND-ed to the existing query domain.

opeenrp.web.Query.offset(offset)
Sets the provided offset on the query. The new offset replaces the old one.

openerp.web.Query.limit(limit)
Sets the provided limit on the query. The new limit replaces the old one.

openerp.web.Query.order_by(fields. . .)
Overrides the model’s natural order with the provided field specifications. Behaves much like Django’s
QuerySet.order_by:

•Takes 1..n field names, in order of most to least importance (the first field is the first sorting key).
Fields are provided as strings.

•A field specifies an ascending order, unless it is prefixed with the minus sign “-” in which case the
field is used in the descending order

Divergences from Django’s sorting include a lack of random sort (? field) and the inability to “drill down”
into relations for sorting.

4.1.1 Aggregation (grouping)

OpenERP has powerful grouping capacities, but they are kind-of strange in that they’re recursive, and level n+1 relies
on data provided directly by the grouping at level n. As a result, while read_group works it’s not a very intuitive
API.

OpenERP Web 7.0 eschews direct calls to read_group in favor of calling a method of Query(), much in the way
it is one in SQLAlchemy 1:

some_query.group_by(['field1', 'field2']).then(function (groups) {
// do things with the fetched groups

});

This method is asynchronous when provided with 1..n fields (to group on) as argument, but it can also be called without
any field (empty fields collection or nothing at all). In this case, instead of returning a Deferred object it will return
null.

When grouping criterion come from a third-party and may or may not list fields (e.g. could be an empty list), this
provides two ways to test the presence of actual subgroups (versus the need to perform a regular query for records):

• A check on group_by‘s result and two completely separate code paths

var groups;
if (groups = some_query.group_by(gby)) {

groups.then(function (gs) {
// groups

});
}
// no groups

1 with a small twist: SQLAlchemy’s orm.query.Query.group_by is not terminal, it returns a query which can still be altered.

4.1. High-level API: calling into OpenERP models 23

https://docs.djangoproject.com/en/dev/ref/models/querysets/#order-by
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.group_by
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.group_by

OpenERP Web Developers Documentation, Release 7.0

• Or a more coherent code path using when()‘s ability to coerce values into deferreds:

$.when(some_query.group_by(gby)).then(function (groups) {
if (!groups) {

// No grouping
} else {

// grouping, even if there are no groups (groups
// itself could be an empty array)

}
});

The result of a (successful) group_by() is an array of QueryGroup().

4.2 Low-level API: RPC calls to Python side

While the previous section is great for calling core OpenERP code (models code), it does not work if you want to call
the Python side of OpenERP Web.

For this, a lower-level API exists on on Connection() objects (usually available through
openerp.connection): the rpc method.

This method simply takes an absolute path (which is the combination of the Python controller’s _cp_path attribute
and the name of the method you want to call) and a mapping of attributes to values (applied as keyword arguments on
the Python method 2). This function fetches the return value of the Python methods, converted to JSON.

For instance, to call the resequence of the DataSet controller:

openerp.connection.rpc('/web/dataset/resequence', {
model: some_model,
ids: array_of_ids,
offset: 42

}).then(function (result) {
// resequenced on server

});

2 except for context, which is extracted and stored in the request object itself.

24 Chapter 4. RPC Calls

CHAPTER 5

QWeb

QWeb is the template engine used by the OpenERP Web Client. It is an XML-based templating language, similar to
Genshi, Thymeleaf or Facelets with a few peculiarities:

• It’s implemented fully in javascript and rendered in the browser.

• Each template file (XML files) contains multiple templates, where template engine usually have a 1:1 mapping
between template files and templates.

• It has special support in OpenERP Web’s Widget, though it can be used outside of OpenERP Web (and it’s
possible to use Widget without relying on the QWeb integration).

The rationale behind using QWeb instead of a more popular template syntax is that its extension mechanism is very
similar to the openerp view inheritance mechanism. Like openerp views a QWeb template is an xml tree and therefore
xpath or dom manipulations are easy to performs on it.

Here’s an example demonstrating most of the basic QWeb features:

<templates>
<div t-name="example_template" t-attf-class="base #{cls}">
<h4 t-if="title"><t t-esc="title"/></h4>

<li t-foreach="items" t-as="item" t-att-class="item_parity">
<t t-call="example_template.sub">
<t t-set="arg" t-value="item_value"/>

</t>

</div>
<t t-name="example_template.sub">
<t t-esc="arg.name"/>
<dl>

<t t-foreach="arg.tags" t-as="tag" t-if="tag_index lt 5">
<dt><t t-esc="tag"/></dt>
<dd><t t-esc="tag_value"/></dd>

</t>
</dl>

</t>
</templates>

rendered with the following context:

{
"class1": "foo",
"title": "Random Title",
"items": [

25

http://en.wikipedia.org/wiki/Genshi_(templating_language)
http://en.wikipedia.org/wiki/Thymeleaf
http://en.wikipedia.org/wiki/Facelets

OpenERP Web Developers Documentation, Release 7.0

{ "name": "foo", "tags": {"bar": "baz", "qux": "quux"} },
{ "name": "Lorem", "tags": {

"ipsum": "dolor",
"sit": "amet",
"consectetur": "adipiscing",
"elit": "Sed",
"hendrerit": "ullamcorper",
"ante": "id",
"vestibulum": "Lorem",
"ipsum": "dolor",
"sit": "amet"

}
}

]
}

will yield this section of HTML document (reformated for readability):

<div class="base foo">
<h4>Random Title</h4>

<li class="even">
foo
<dl>

<dt>bar</dt>
<dd>baz</dd>
<dt>qux</dt>
<dd>quux</dd>

</dl>

<li class="odd">

Lorem
<dl>

<dt>ipsum</dt>
<dd>dolor</dd>
<dt>sit</dt>
<dd>amet</dd>
<dt>consectetur</dt>
<dd>adipiscing</dd>
<dt>elit</dt>
<dd>Sed</dd>
<dt>hendrerit</dt>
<dd>ullamcorper</dd>

</dl>

</div>

5.1 API

While QWeb implements a number of attributes and methods for customization and configuration, only two things are
really important to the user:

class QWeb2.Engine()
The QWeb “renderer”, handles most of QWeb’s logic (loading, parsing, compiling and rendering templates).

26 Chapter 5. QWeb

OpenERP Web Developers Documentation, Release 7.0

OpenERP Web instantiates one for the user, and sets it to instance.web.qweb. It also loads all the template
files of the various modules into that QWeb instance.

A QWeb2.Engine() also serves as a “template namespace”.

QWeb2.Engine.render(template[, context])
Renders a previously loaded template to a String, using context (if provided) to find the variables
accessed during template rendering (e.g. strings to display).

Arguments

• template (String) – the name of the template to render

• context (Object) – the basic namespace to use for template rendering

Returns String

The engine exposes an other method which may be useful in some cases (e.g. if you need a separate template
namespace with, in OpenERP Web, Kanban views get their own QWeb2.Engine() instance so their templates
don’t collide with more general “module” templates):

QWeb2.Engine.add_template(templates)
Loads a template file (a collection of templates) in the QWeb instance. The templates can be specified as:

An XML string QWeb will attempt to parse it to an XML document then load it.

A URL QWeb will attempt to download the URL content, then load the resulting XML string.

A Document or Node QWeb will traverse the first level of the document (the child nodes of the provided
root) and load any named template or template override.

A QWeb2.Engine() also exposes various attributes for behavior customization:

QWeb2.Engine.prefix
Prefix used to recognize directives during parsing. A string. By default, t.

QWeb2.Engine.debug
Boolean flag putting the engine in “debug mode”. Normally, QWeb intercepts any error raised during
template execution. In debug mode, it leaves all exceptions go through without intercepting them.

QWeb2.Engine.jQuery
The jQuery instance used during template inheritance processing. Defaults to window.jQuery.

QWeb2.Engine.preprocess_node
A Function. If present, called before compiling each DOM node to template code. In OpenERP Web,
this is used to automatically translate text content and some attributes in templates. Defaults to null.

5.2 Directives

A basic QWeb template is nothing more than an XHTML document (as it must be valid XML), which will be output
as-is. But the rendering can be customized with bits of logic called “directives”. Directives are attributes elements
prefixed by prefix (this document will use the default prefix t, as does OpenERP Web).

A directive will usually control or alter the output of the element it is set on. If no suitable element is available, the
prefix itself can be used as a “no-operation” element solely for supporting directives (or internal content, which will
be rendered). This means:

5.2. Directives 27

OpenERP Web Developers Documentation, Release 7.0

<t>Something something</t>

will simply output the string “Something something” (the element itself will be skipped and “unwrapped”):

var e = new QWeb2.Engine();
e.add_template('<templates>\

<t t-name="test1"><t>Test 1</t></t>\
<t t-name="test2">Test 2</t>\

</templates>');
e.render('test1'); // Test 1
e.render('test2'); // Test 2

Note: The conventions used in directive descriptions are the following:

• directives are described as compound functions, potentially with optional sections. Each section of the function
name is an attribute of the element bearing the directive.

• a special parameter is BODY, which does not have a name and designates the content of the element.

• special parameter types (aside from BODYwhich remains untyped) are Name, which designates a valid javascript
variable name, Expression which designates a valid javascript expression, and Format which designates
a Ruby-style format string (a literal string with #{Expression} inclusions executed and replaced by their
result)

Note: Expression actually supports a few extensions on the javascript syntax: because some syntactic elements
of javascript are not compatible with XML and must be escaped, text substitutions are performed from forms which
don’t need to be escaped. Thus the following “keyword operators” are available in an Expression: and (maps to
&&), or (maps to ||), gt (maps to >), gte (maps to >=), lt (maps to <) and lte (maps to <=).

5.2.1 Defining Templates

t-name=name

Parameters name (String) – an arbitrary javascript string. Each template name is unique in a
given QWeb2.Engine() instance, defining a new template with an existing name will over-
write the previous one without warning.

When multiple templates are related, it is customary to use dotted names as a kind of “names-
pace” e.g. foo and foo.bar which will be used either by foo or by a sub-widget of the
widget used by foo.

Templates can only be defined as the children of the document root. The document root’s name is irrelevant (it’s
not checked) but is usually <templates> for simplicity.

<templates>
<t t-name="template1">

<!-- template code -->
</t>

</templates>

t-name can be used on an element with an output as well:

<templates>
<div t-name="template2">

<!-- template code -->

28 Chapter 5. QWeb

OpenERP Web Developers Documentation, Release 7.0

</div>
</templates>

which ensures the template has a single root (if a template has multiple roots and is then passed directly to
jQuery, odd things occur).

5.2.2 Output

t-esc=content

Parameters content (Expression) –

Evaluates, html-escapes and outputs content.

t-escf=content

Parameters content (Format) –

Similar to t-esc but evaluates a Format instead of just an expression.

t-raw=content

Parameters content (Expression) –

Similar to t-esc but does not html-escape the result of evaluating content. Should only ever be used for
known-secure content, or will be an XSS attack vector.

t-rawf=content

Parameters content (Format) –

Format-based version of t-raw.

t-att=map

Parameters map (Expression) –

Evaluates map expecting an Object result, sets each key:value pair as an attribute (and its value) on the holder
element:

will yield

t-att-ATTNAME=value

Parameters

• ATTNAME (Name) –

• value (Expression) –

Evaluates value and sets it on the attribute ATTNAME on the holder element.

If value‘s result is undefined, suppresses the creation of the attribute.

t-attf-ATTNAME=value

Parameters

• ATTNAME (Name) –

• value (Format) –

5.2. Directives 29

OpenERP Web Developers Documentation, Release 7.0

Similar to t-att-* but the value of the attribute is specified via a Format instead of an expression. Useful for
specifying e.g. classes mixing literal classes and computed ones.

5.2.3 Flow Control

t-set=name (t-value=value | BODY)

Parameters

• name (Name) –

• value (Expression) –

• BODY –

Creates a new binding in the template context. If value is specified, evaluates it and sets it to the specified
name. Otherwise, processes BODY and uses that instead.

t-if=condition

Parameters condition (Expression) –

Evaluates condition, suppresses the output of the holder element and its content of the result is falsy.

t-foreach=iterable [t-as=name]

Parameters

• iterable (Expression) –

• name (Name) –

Evaluates iterable, iterates on it and evaluates the holder element and its body once per iteration round.

If name is not specified, computes a name based on iterable (by replacing non-Name characters by _).

If iterable yields a Number, treats it as a range from 0 to that number (excluded).

While iterating, t-foreach adds a number of variables in the context:

#{name} If iterating on an array (or a range), the current value in the iteration. If iterating on an object, the
current key.

#{name}_all The collection being iterated (the array generated for a Number)

#{name}_value The current iteration value (current item for an array, value for the current item for an
object)

#{name}_index The 0-based index of the current iteration round.

#{name}_first Whether the current iteration round is the first one.

#{name}_parity "odd" if the current iteration round is odd, "even" otherwise. 0 is considered even.

t-call=template [BODY]

Parameters

• template (String) –

• BODY –

Calls the specified template and returns its result. If BODY is specified, it is evaluated before calling
template and can be used to specify e.g. parameters. This usage is similar to call-template with with-param
in XSLT.

30 Chapter 5. QWeb

http://zvon.org/xxl/XSLTreference/OutputOverview/xslt_with-param_frame.html
http://zvon.org/xxl/XSLTreference/OutputOverview/xslt_with-param_frame.html

OpenERP Web Developers Documentation, Release 7.0

5.2.4 Template Inheritance and Extension

t-extend=template BODY

Parameters template (String) – name of the template to extend

Works similarly to OpenERP models: if used on its own, will alter the specified template in-place; if used in
conjunction with t-name will create a new template using the old one as a base.

BODY should be a sequence of t-jquery alteration directives.

Note: The inheritance in the second form is static: the parent template is copied and transformed when t-
extend is called. If it is altered later (by a t-extend without a t-name), these changes will not appear in the
“child” templates.

t-jquery=selector [t-operation=operation] BODY

Parameters

• selector (String) – a CSS selector into the parent template

• operation – one of append, prepend, before, after, inner or replace.

• BODY – operation argument, or alterations to perform

•If operation is specified, applies the selector to the parent template to find a context node, then applies
operation (as a jQuery operation) to the context node, passing BODY as parameter.

Note: replace maps to jQuery’s replaceWith(newContent), inner maps to html(htmlString).

•If operation is not provided, BODY is evaluated as javascript code, with the context node as this.

Warning: While this second form is much more powerful than the first, it is also much harder to
read and maintain and should be avoided. It is usually possible to either avoid it or replace it with a
sequence of t-jquery:t-operation:.

5.2.5 Escape Hatches / debugging

t-log=expression

Parameters expression (Expression) –

Evaluates the provided expression (in the current template context) and logs its result via console.log.

t-debug
Injects a debugger breakpoint (via the debugger; statement) in the compiled template output.

t-js=context BODY

Parameters

• context (Name) –

• BODY – javascript code

Injects the provided BODY javascript code into the compiled template, passing it the current template context
using the name specified by context.

5.2. Directives 31

http://api.jquery.com/replaceWith/
http://api.jquery.com/html/

OpenERP Web Developers Documentation, Release 7.0

32 Chapter 5. QWeb

CHAPTER 6

Client actions

Client actions are the client-side version of OpenERP’s “Server Actions”: instead of allowing for semi-arbitrary code
to be executed in the server, they allow for execution of client-customized code.

On the server side, a client action is an action of type ir.actions.client, which has (at most) two properties:
a mandatory tag, which is an arbitrary string by which the client will identify the action, and an optional params
which is simply a map of keys and values sent to the client as-is (this way, client actions can be made generic and
reused in multiple contexts).

6.1 General Structure

In the OpenERP Web code, a client action only requires two pieces of information:

• Mapping the action’s tag to an object

• Providing said object. Two different types of objects can be mapped to a client action:

– An OpenERP Web widget, which must inherit from openerp.web.Widget()

– A regular javascript function

The major difference is in the lifecycle of these:

• if the client action maps to a function, the function will be called when executing the action. The function can
have no further interaction with the Web Client itself, although it can return an action which will be executed
after it.

The function takes 2 parameters: the ActionManager calling it and the descriptor for the current action (the
ir.actions.client dictionary).

• if, on the other hand, the client action maps to a Widget(), that Widget() will be instantiated and added to
the web client’s canvas, with the usual Widget() lifecycle (essentially, it will either take over the content area
of the client or it will be integrated within a dialog).

For example, to create a client action displaying a res.widget object:

// Registers the object 'openerp.web_dashboard.Widget' to the client
// action tag 'board.home.widgets'
instance.web.client_actions.add(

'board.home.widgets', 'instance.web_dashboard.Widget');
instance.web_dashboard.Widget = instance.web.Widget.extend({

template: 'HomeWidget'
});

33

OpenERP Web Developers Documentation, Release 7.0

At this point, the generic Widget() lifecycle takes over, the template is rendered, inserted in the client DOM, bound
on the object’s $el property and the object is started.

The second parameter to the constructor is the descriptor for the action itself, which contains any parameter provided:

init: function (parent, action) {
// execute the Widget's init
this._super(parent);
// board.home.widgets only takes a single param, the identifier of the
// res.widget object it should display. Store it for later
this.widget_id = action.params.widget_id;

}

More complex initialization (DOM manipulations, RPC requests, ...) should be performed in the start() method.

Note: As required by Widget()‘s contract, if start() executes any asynchronous code it should return a
$.Deferred so callers know when it’s ready for interaction.

start: function () {
return $.when(

this._super(),
// Simply read the res.widget object this action should display
new instance.web.Model('res.widget').call(

'read', [[this.widget_id], ['title']])
.then(this.proxy('on_widget_loaded'));

}

The client action can then behave exactly as it wishes to within its root (this.$el). In this case, it performs further
renderings once its widget’s content is retrieved:

on_widget_loaded: function (widgets) {
var widget = widgets[0];
var url = _.sprintf(

'/web_dashboard/widgets/content?session_id=%s&widget_id=%d',
this.session.session_id, widget.id);

this.$el.html(QWeb.render('HomeWidget.content', {
widget: widget,
url: url

}));
}

34 Chapter 6. Client actions

CHAPTER 7

Guidelines and Recommendations

7.1 Web Module Recommendations

7.1.1 Identifiers (id attribute) should be avoided

In generic applications and modules, @id limits the reusabily of components and tends to make code more brittle.

Just about all the time, they can be replaced with nothing, with classes or with keeping a reference to a DOM node or
a jQuery element around.

Note: If it is absolutely necessary to have an @id (because a third-party library requires one and can’t take a DOM
element), it should be generated with _.uniqueId or some other similar method.

7.1.2 Avoid predictable/common CSS class names

Class names such as “content” or “navigation” might match the desired meaning/semantics, but it is likely an other
developer will have the same need, creating a naming conflict and unintended behavior. Generic class names should
be prefixed with e.g. the name of the component they belong to (creating “informal” namespaces, much as in C or
Objective-C)

7.1.3 Global selectors should be avoided

Because a component may be used several times in a single page (an example in OpenERP is dashboards),
queries should be restricted to a given component’s scope. Unfiltered selections such as $(selector) or
document.querySelectorAll(selector) will generally lead to unintended or incorrect behavior.

OpenERP Web’s Widget() has an attribute providing its DOM root Widget.$el, and a shortcut to select nodes
directly Widget.$.

More generally, never assume your components own or controls anything beyond its own personal DOM.

7.1.4 Understand deferreds

Deferreds, promises, futures, . . .

Known under many names, these objects are essential to and (in OpenERP Web) widely used for making asynchronous
javascript operations palatable and understandable.

35

http://underscorejs.org/#uniqueId

OpenERP Web Developers Documentation, Release 7.0

7.2 OpenERP Web guidelines

• HTML templating/rendering should use QWeb unless absolutely trivial.

• All interactive components (components displaying information to the screen or intercepting DOM events) must
inherit from Widget and correctly implement and use its API and lifecycle.

• All css classes must be prefixed with oe_ .

• Asynchronous functions (functions which call session.rpc directly or indirectly at the very least) must return
deferreds, so that callers of overriders can correctly synchronize with them.

36 Chapter 7. Guidelines and Recommendations

CHAPTER 8

Testing in OpenERP Web

8.1 Javascript Unit Testing

OpenERP Web 7.0 includes means to unit-test both the core code of OpenERP Web and your own javascript modules.
On the javascript side, unit-testing is based on QUnit with a number of helpers and extensions for better integration
with OpenERP.

To see what the runner looks like, find (or start) an OpenERP server with the web client enabled, and navigate to
/web/tests e.g. on OpenERP’s CI. This will show the runner selector, which lists all modules with javascript unit
tests, and allows starting any of them (or all javascript tests in all modules at once).

Clicking any runner button will launch the corresponding tests in the bundled QUnit runner:

37

http://qunitjs.com/
http://trunk.runbot.openerp.com/web/tests
http://qunitjs.com/

OpenERP Web Developers Documentation, Release 7.0

8.2 Writing a test case

The first step is to list the test file(s). This is done through the test key of the openerp manifest, by adding javascript
files to it (next to the usual YAML files, if any):

{
'name': "Demonstration of web/javascript tests",
'category': 'Hidden',
'depends': ['web'],
'test': ['static/test/demo.js'],

}

and to create the corresponding test file(s)

Note: Test files which do not exist will be ignored, if all test files of a module are ignored (can not be found), the test
runner will consider that the module has no javascript tests.

After that, refreshing the runner selector will display the new module and allow running all of its (0 so far) tests:

38 Chapter 8. Testing in OpenERP Web

OpenERP Web Developers Documentation, Release 7.0

The next step is to create a test case:

openerp.testing.section('basic section', function (test) {
test('my first test', function () {

ok(false, "this test has run");
});

});

All testing helpers and structures live in the openerp.testing module. OpenERP tests live in a section(),
which is itself part of a module. The first argument to a section is the name of the section, the second one is the section
body.

test, provided by the section() to the callback, is used to register a given test case which will be run whenever
the test runner actually does its job. OpenERP Web test case use standard QUnit assertions within them.

Launching the test runner at this point will run the test and display the corresponding assertion message, with red
colors indicating the test failed:

Fixing the test (by replacing false to true in the assertion) will make it pass:

8.2. Writing a test case 39

http://api.qunitjs.com/category/assert/

OpenERP Web Developers Documentation, Release 7.0

8.3 Assertions

As noted above, OpenERP Web’s tests use qunit assertions. They are available globally (so they can just be called
without references to anything). The following list is available:

ok(state[, message])
checks that state is truthy (in the javascript sense)

strictEqual(actual, expected[, message])
checks that the actual (produced by a method being tested) and expected values are identical (roughly equivalent
to ok(actual === expected, message))

notStrictEqual(actual, expected[, message])
checks that the actual and expected values are not identical (roughly equivalent to ok(actual !==
expected, message))

deepEqual(actual, expected[, message])
deep comparison between actual and expected: recurse into containers (objects and arrays) to ensure that they
have the same keys/number of elements, and the values match.

notDeepEqual(actual, expected[, message])
inverse operation to deepEqual()

throws(block[, expected][, message])
checks that, when called, the block throws an error. Optionally validates that error against expected.

Arguments

• block (Function) –

• expected (Error | RegExp) – if a regexp, checks that the thrown error’s message
matches the regular expression. If an error type, checks that the thrown error is of that type.

equal(actual, expected[, message])
checks that actual and expected are loosely equal, using the == operator and its coercion rules.

notEqual(actual, expected[, message])
inverse operation to equal()

40 Chapter 8. Testing in OpenERP Web

http://api.qunitjs.com/category/assert/

OpenERP Web Developers Documentation, Release 7.0

8.4 Getting an OpenERP instance

The OpenERP instance is the base through which most OpenERP Web modules behaviors (functions, objects, . . .) are
accessed. As a result, the test framework automatically builds one, and loads the module being tested and all of its
dependencies inside it. This new instance is provided as the first positional parameter to your test cases. Let’s observe
by adding javascript code (not test code) to the test module:

{
'name': "Demonstration of web/javascript tests",
'category': 'Hidden',
'depends': ['web'],
'js': ['static/src/js/demo.js'],
'test': ['static/test/demo.js'],

}

// src/js/demo.js
openerp.web_tests_demo = function (instance) {

instance.web_tests_demo = {
value_true: true,
SomeType: instance.web.Class.extend({

init: function (value) {
this.value = value;

}
})

};
};

and then adding a new test case, which simply checks that the instance contains all the expected stuff we created
in the module:

// test/demo.js
test('module content', function (instance) {

ok(instance.web_tests_demo.value_true, "should have a true value");
var type_instance = new instance.web_tests_demo.SomeType(42);
strictEqual(type_instance.value, 42, "should have provided value");

});

8.5 DOM Scratchpad

As in the wider client, arbitrarily accessing document content is strongly discouraged during tests. But DOM access
is still needed to e.g. fully initialize widgets before testing them.

Thus, a test case gets a DOM scratchpad as its second positional parameter, in a jQuery instance. That scratchpad
is fully cleaned up before each test, and as long as it doesn’t do anything outside the scratchpad your code can do
whatever it wants:

// test/demo.js
test('DOM content', function (instance, $scratchpad) {

$scratchpad.html('<div>ok</div>');
ok($scratchpad.find('span').hasClass('foo'),

"should have provided class");
});
test('clean scratchpad', function (instance, $scratchpad) {

ok(!$scratchpad.children().length, "should have no content");
ok(!$scratchpad.text(), "should have no text");

});

8.4. Getting an OpenERP instance 41

OpenERP Web Developers Documentation, Release 7.0

Note: The top-level element of the scratchpad is not cleaned up, test cases can add text or DOM children but shoud
not alter $scratchpad itself.

8.6 Loading templates

To avoid the corresponding processing costs, by default templates are not loaded into QWeb. If you need to render e.g.
widgets making use of QWeb templates, you can request their loading through the templates option to the test
case function.

This will automatically load all relevant templates in the instance’s qweb before running the test case:

{
'name': "Demonstration of web/javascript tests",
'category': 'Hidden',
'depends': ['web'],
'js': ['static/src/js/demo.js'],
'test': ['static/test/demo.js'],
'qweb': ['static/src/xml/demo.xml'],

}

<!-- src/xml/demo.xml -->
<templates id="template" xml:space="preserve">

<t t-name="DemoTemplate">
<t t-foreach="5" t-as="value">

<p><t t-esc="value"/></p>
</t>

</t>
</templates>

// test/demo.js
test('templates', {templates: true}, function (instance) {

var s = instance.web.qweb.render('DemoTemplate');
var texts = $(s).find('p').map(function () {

return $(this).text();
}).get();

deepEqual(texts, ['0', '1', '2', '3', '4']);
});

8.7 Asynchronous cases

The test case examples so far are all synchronous, they execute from the first to the last line and once the last line has
executed the test is done. But the web client is full of asynchronous code, and thus test cases need to be async-aware.

This is done by returning a deferred from the case callback:

// test/demo.js
test('asynchronous', {

asserts: 1
}, function () {

var d = $.Deferred();
setTimeout(function () {

ok(true);

42 Chapter 8. Testing in OpenERP Web

OpenERP Web Developers Documentation, Release 7.0

d.resolve();
}, 100);
return d;

});

This example also uses the options parameter to specify the number of assertions the case should expect, if less
or more assertions are specified the case will count as failed.

Asynchronous test cases must specify the number of assertions they will run. This allows more easily catching situa-
tions where e.g. the test architecture was not warned about asynchronous operations.

Note: Asynchronous test cases also have a 2 seconds timeout: if the test does not finish within 2 seconds, it will be
considered failed. This pretty much always means the test will not resolve. This timeout only applies to the test itself,
not to the setup and teardown processes.

Note: If the returned deferred is rejected, the test will be failed unless fail_on_rejection is set to false.

8.8 RPC

An important subset of asynchronous test cases is test cases which need to perform (and chain, to an extent) RPC calls.

Note: Because they are a subset of asynchronous cases, RPC cases must also provide a valid assertions count.

By default, test cases will fail when trying to perform an RPC call. The ability to perform RPC calls must be explicitly
requested by a test case (or its containing test suite) through rpc, and can be one of two modes: mock or rpc.

8.8.1 Mock RPC

The preferred (and fastest from a setup and execution time point of view) way to do RPC during tests is to mock the
RPC calls: while setting up the test case, provide what the RPC responses “should” be, and only test the code between
the “user” (the test itself) and the RPC call, before the call is effectively done.

To do this, set the rpc option to mock. This will add a third parameter to the test case callback:

mock(rpc_spec, handler)
Can be used in two different ways depending on the shape of the first parameter:

•If it matches the pattern model:method (if it contains a colon, essentially) the call will set up the
mocking of an RPC call straight to the OpenERP server (through XMLRPC) as performed via e.g.
openerp.web.Model.call().

In that case, handler should be a function taking two arguments args and kwargs, matching the
corresponding arguments on the server side and should simply return the value as if it were returned by the
Python XMLRPC handler:

test('XML-RPC', {rpc: 'mock', asserts: 3}, function (instance, $s, mock) {
// set up mocking
mock('people.famous:name_search', function (args, kwargs) {

strictEqual(kwargs.name, 'bob');
return [

[1, "Microsoft Bob"],

8.8. RPC 43

OpenERP Web Developers Documentation, Release 7.0

[2, "Bob the Builder"],
[3, "Silent Bob"]

];
});

// actual test code
return new instance.web.Model('people.famous')

.call('name_search', {name: 'bob'}).then(function (result) {
strictEqual(result.length, 3, "shoud return 3 people");
strictEqual(result[0][1], "Microsoft Bob",

"the most famous bob should be Microsoft Bob");
});

});

•Otherwise, if it matches an absolute path (e.g. /a/b/c) it will mock a JSON-RPC call to a web client con-
troller, such as /web/webclient/translations. In that case, the handler takes a single params
argument holding all of the parameters provided over JSON-RPC.

As previously, the handler should simply return the result value as if returned by the original JSON-RPC
handler:

test('JSON-RPC', {rpc: 'mock', asserts: 3, templates: true}, function (instance, $s, mock) {
var fetched_dbs = false, fetched_langs = false;
mock('/web/database/get_list', function () {

fetched_dbs = true;
return ['foo', 'bar', 'baz'];

});
mock('/web/session/get_lang_list', function () {

fetched_langs = true;
return [['vo_IS', 'Hopelandic / Vonlenska']];

});

// widget needs that or it blows up
instance.webclient = {toggle_bars: openerp.testing.noop};
var dbm = new instance.web.DatabaseManager({});
return dbm.appendTo($s).then(function () {

ok(fetched_dbs, "should have fetched databases");
ok(fetched_langs, "should have fetched languages");
deepEqual(dbm.db_list, ['foo', 'bar', 'baz']);

});
});

Note: Mock handlers can contain assertions, these assertions should be part of the assertions count (and if multiple
calls are made to a handler containing assertions, it multiplies the effective number of assertions).

8.8.2 Actual RPC

A more realistic (but significantly slower and more expensive) way to perform RPC calls is to perform actual calls to
an actually running OpenERP server. To do this, set the rpc option to rpc, it will not provide any new parameter
but will enable actual RPC, and the automatic creation and destruction of databases (from a specified source) around
tests.

First, create a basic model we can test stuff with:

44 Chapter 8. Testing in OpenERP Web

OpenERP Web Developers Documentation, Release 7.0

from openerp.osv import orm, fields

class TestObject(orm.Model):
_name = 'web_tests_demo.model'

_columns = {
'name': fields.char("Name", required=True),
'thing': fields.char("Thing"),
'other': fields.char("Other", required=True)

}
_defaults = {

'other': "bob"
}

then the actual test:

test('actual RPC', {rpc: 'rpc', asserts: 4}, function (instance) {
var Model = new instance.web.Model('web_tests_demo.model');
return Model.call('create', [{name: "Bob"}])

.then(function (id) {
return Model.call('read', [[id]]);

}).then(function (records) {
strictEqual(records.length, 1);
var record = records[0];
strictEqual(record.name, "Bob");
strictEqual(record.thing, false);
// default value
strictEqual(record.other, 'bob');

});
});

This test looks like a “mock” RPC test but for the lack of mock response (and the different rpc type), however it
has further ranging consequences in that it will copy an existing database to a new one, run the test in full on that
temporary database and destroy the database, to simulate an isolated and transactional context and avoid affecting
other tests. One of the consequences is that it takes a long time to run (5~10s, most of that time being spent waiting
for a database duplication).

Furthermore, as the test needs to clone a database, it also has to ask which database to clone, the database/super-admin
password and the password of the admin user (in order to authenticate as said user). As a result, the first time the test
runner encounters an rpc: "rpc" test configuration it will produce the following prompt:

8.8. RPC 45

OpenERP Web Developers Documentation, Release 7.0

and stop the testing process until the necessary information has been provided.

The prompt will only appear once per test run, all tests will use the same “source” database.

Note: The handling of that information is currently rather brittle and unchecked, incorrect values will likely crash the
runner.

Note: The runner does not currently store this information (for any longer than a test run that is), the prompt will
have to be filled every time.

8.9 Testing API

openerp.testing.section(name[, options], body)
A test section, serves as shared namespace for related tests (for constants or values to only set up once). The
body function should contain the tests themselves.

Note that the order in which tests are run is essentially undefined, do not rely on it.

Arguments

• name (String) –

• options (TestOptions) –

• body (Function<case(), void>) –

openerp.testing.case(name[, options], callback)
Registers a test case callback in the test runner, the callback will only be run once the runner is started (or maybe
not at all, if the test is filtered out).

Arguments

• name (String) –

• options (TestOptions) –

• callback (Function<instance, $, Function<String, Function,
void>>) –

class TestOptions()
the various options which can be passed to section() or case(). Except for setup and teardown,
an option on case() will overwrite the corresponding option on section() so e.g. rpc can be set for a
section() and then differently set for some case() of that section()

TestOptions.asserts
An integer, the number of assertions which should run during a normal execution of the test. Mandatory
for asynchronous tests.

TestOptions.setup
Test case setup, run right before each test case. A section’s setup() is run before the case’s own, if both
are specified.

TestOptions.teardown
Test case teardown, a case’s teardown() is run before the corresponding section if both are present.

46 Chapter 8. Testing in OpenERP Web

OpenERP Web Developers Documentation, Release 7.0

TestOptions.fail_on_rejection
If the test is asynchronous and its resulting promise is rejected, fail the test. Defaults to true, set to
false to not fail the test in case of rejection:

// test/demo.js
test('unfail rejection', {

asserts: 1,
fail_on_rejection: false

}, function () {
var d = $.Deferred();
setTimeout(function () {

ok(true);
d.reject();

}, 100);
return d;

});

TestOptions.rpc
RPC method to use during tests, one of "mock" or "rpc". Any other value will disable RPC for the test
(if they were enabled by the suite for instance).

TestOptions.templates
Whether the current module (and its dependencies)’s templates should be loaded into QWeb before starting
the test. A boolean, false by default.

The test runner can also use two global configuration values set directly on the window object:

• oe_all_dependencies is an Array of all modules with a web component, ordered by dependency (for a
module A with dependencies A’, any module of A’ must come before A in the array)

• oe_db_info is an object with 3 keys source, supadmin and password. It is used to pre-configure actual
RPC tests, to avoid a prompt being displayed (especially for headless situations).

8.10 Running through Python

The web client includes the means to run these tests on the command-line (or in a CI system), but while actually
running it is pretty simple the setup of the pre-requisite parts has some complexities.

1. Install unittest2 and QUnitSuite in your Python environment. Both can trivially be installed via pip or
easy_install.

The former is the unit-testing framework used by OpenERP, the latter is an adapter module to run qunit test
suites and convert their result into something unittest2 can understand and report.

2. Install PhantomJS. It is a headless browser which allows automating running and testing web pages. QUnitSuite
uses it to actually run the qunit test suite.

The PhantomJS website provides pre-built binaries for some platforms, and your OS’s package management
probably provides it as well.

If you’re building PhantomJS from source, I recommend preparing for some knitting time as it’s not exactly fast
(it needs to compile both Qt and Webkit, both being pretty big projects).

Note: Because PhantomJS is webkit-based, it will not be able to test if Firefox, Opera or Internet Explorer can
correctly run the test suite (and it is only an approximation for Safari and Chrome). It is therefore recommended
to also run the test suites in actual browsers once in a while.

8.10. Running through Python 47

http://pypi.python.org/pypi/unittest2
http://pypi.python.org/pypi/QUnitSuite/
http://pip-installer.org
http://packages.python.org/distribute/easy_install.html
http://qunitjs.com/
http://pypi.python.org/pypi/unittest2
http://phantomjs.org/
http://pypi.python.org/pypi/QUnitSuite/
http://qunitjs.com/
http://phantomjs.org/
http://phantomjs.org/
http://qt-project.org/
http://www.webkit.org/
http://phantomjs.org/

OpenERP Web Developers Documentation, Release 7.0

Note: The version of PhantomJS this was build through is 1.7, previous versions should work but are not
actually supported (and tend to just segfault when something goes wrong in PhantomJS itself so they’re a pain
to debug).

3. Set up OpenERP Command, which will be used to actually run the tests: running the qunit test suite requires a
running server, so at this point OpenERP Server isn’t able to do it on its own during the building/testing process.

4. Install a new database with all relevant modules (all modules with a web component at least), then restart the
server

Note: For some tests, a source database needs to be duplicated. This operation requires that there be no connec-
tion to the database being duplicated, but OpenERP doesn’t currently break existing/outstanding connections,
so restarting the server is the simplest way to ensure everything is in the right state.

5. Launch oe run-tests -d $DATABASE -mweb with the correct addons-path specified (and replacing
$DATABASE by the source database you created above)

Note: If you leave out -mweb, the runner will attempt to run all the tests in all the modules, which may or may
not work.

If everything went correctly, you should now see a list of tests with (hopefully) ok next to their names, closing with a
report of the number of tests run and the time it took:

test_empty_find (openerp.addons.web.tests.test_dataset.TestDataSetController) ... ok
test_ids_shortcut (openerp.addons.web.tests.test_dataset.TestDataSetController) ... ok
test_regular_find (openerp.addons.web.tests.test_dataset.TestDataSetController) ... ok
web.testing.stack: direct, value, success ... ok
web.testing.stack: direct, deferred, success ... ok
web.testing.stack: direct, value, error ... ok
web.testing.stack: direct, deferred, failure ... ok
web.testing.stack: successful setup ... ok
web.testing.stack: successful teardown ... ok
web.testing.stack: successful setup and teardown ... ok

[snip ~150 lines]

test_convert_complex_context (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_convert_complex_domain (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_convert_literal_context (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_convert_literal_domain (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_retrieve_nonliteral_context (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_retrieve_nonliteral_domain (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok

--
Ran 181 tests in 15.706s

OK

Congratulation, you have just performed a successful “offline” run of the OpenERP Web test suite.

Note: Note that this runs all the Python tests for the web module, but all the web tests for all of OpenERP. This can
be surprising.

48 Chapter 8. Testing in OpenERP Web

http://phantomjs.org/
http://phantomjs.org/
http://qunitjs.com/

CHAPTER 9

Search View

OpenERP Web 7.0 implements a unified facets-based search view instead of the previous form-like search view (com-
posed of buttons and multiple fields). The goal for this change is twofold:

• Avoid the common issue of users confusing the search view with a form view and trying to create their records
through it (or entering all their data, hitting the Create button expecting their record to be created and losing
everything).

• Improve the looks and behaviors of the view, and the fit within OpenERP Web’s new design.

The internal structure of the faceted search is inspired by VisualSearch 1.

As does VisualSearch, the new search view is based on Backbone and makes significant use of Backbone’s models and
collections (OpenERP Web’s widgets make a good replacement for Backbone’s own views). As a result, understanding
the implementation details of the OpenERP Web 7 search view also requires a basic understanding of Backbone’s
models, collections and events.

Note: This document may mention fetching data. This is a shortcut for “returning a Deferred() to [whatever is
being fetched]”. Unless further noted, the function or method may opt to return nothing by fetching null (which can
easily be done by returning $.when(null), which simply wraps the null in a Deferred).

9.1 Working with the search view: creating new inputs

The primary component of search views, as with all other OpenERP views, are inputs. The search view has two types
of inputs — filters and fields — but only one is easly customizable: fields.

The mapping from OpenERP field types (and widgets) to search view objects is stored in the
openerp.web.search.fields Registry() where new field types and widgets can be added.

Search view inputs have four main roles:

9.1.1 Loading defaults

Once the search view has initialized all its inputs, it will call facet_for_defaults() on each input, passing it a
mapping (a javascript object) of name:value extracted from the action’s context.

This method should fetch a Facet() (or an equivalent object) for the field’s default value if applicable (if a default
value for the field is found in the defaults mapping).

1 the original view was implemented on top of a monkey-patched VisualSearch, but as our needs diverged from VisualSearch’s goal this made
less and less sense ultimately leading to a clean-room reimplementation

49

http://documentcloud.github.com/visualsearch/
http://documentcloud.github.com/backbone/

OpenERP Web Developers Documentation, Release 7.0

A default implementation is provided which checks if defaults contains a non-falsy value for the field’s @name
and calls openerp.web.search.Input.facet_for() with that value.

There is no default implementation of openerp.web.search.Input.facet_for() 2, but
openerp.web.search.Field() provides one, which uses the value as-is to fetch a Facet().

9.1.2 Providing completions

An important component of the new search view is the auto-completion pane, and the task of providing completion
items is delegated to inputs through the complete() method.

This method should take a single argument (the string being typed by the user) and should fetch an Array of possible
completions 3.

A default implementation is provided which fetches nothing.

A completion item is a javascript object with two keys (technically it can have any number of keys, but only these two
will be used by the search view):

label

The string which will be displayed in the completion pane. It may be formatted using HTML (inline
only), as a result if value is interpolated into it it must be escaped. _.escape can be used for this.

facet

Either a Facet() object or (more commonly) the corresponding attributes object. This is the facet which
will be inserted into the search query if the completion item is selected by the user.

If the facet is not provided (not present, null, undefined or any other falsy value), the completion item will
not be selectable and will act as a section title of sort (the label will be formatted differently). If an input may
fetch multiple completion items, it should prefix those with a section title using its own name. This has no technical
consequence but is clearer for users.

Note: If a field is invisible, its completion function will not be called.

9.1.3 Providing drawer/supplementary UI

For some inputs (fields or not), interaction via autocompletion may be awkward or even impossible.

These may opt to being rendered in a “drawer” as well or instead. In that case, they will undergo the normal widget
lifecycle and be rendered inside the drawer.

Any input can note its desire to be rendered in the drawer by returning a truthy value from in_drawer().

By default, in_drawer() returns the value of _in_drawer, which is false. The behavior can be toggled either
by redefining the attribute to true (either on the class or on the input), or by overriding in_drawer() itself.

The input will be rendered in the full width of the drawer, it will be started only once (per view).

Todo

drawer API (if a widget wants to close the drawer in some way), part of the low-level SearchView API/interactions?

2 In case you are extending the search view with a brand new type of input
3 Ideally this array should not hold more than about 10 items, but the search view does not put any constraint on this at the moment. Note that

this may change.

50 Chapter 9. Search View

OpenERP Web Developers Documentation, Release 7.0

Todo

handle filters and filter groups via a “driver” input which dynamically collects, lays out and renders filters? => exercises
drawer thingies

Note: An invisible input will not be inserted into the drawer.

9.1.4 Converting from facet objects

Ultimately, the point of the search view is to allow searching. In OpenERP this is done via domains. On the other
hand, the OpenERP Web 7 search view’s state is modelled after a collection of Facet(), and each field of a search
view may have special requirements when it comes to the domains it produces 5.

So there needs to be some way of mapping Facet() objects to OpenERP search data.

This is done via an input’s get_domain() and get_context(). Each takes a Facet() and returns whatever
it’s supposed to generate (a domain or a context, respectively). Either can return null if the current value does not
map to a domain or context, and can throw an Invalid() exception if the value is not valid at all for the field.

Note: The Facet() object can have any number of values (from 1 upwards)

Note: There is a third conversion method, get_groupby(), which returns an Array of groupby domains rather
than a single context. At this point, it is only implemented on (and used by) filters.

9.2 Programmatic interactions: internal model

This new searchview is built around an instance of SearchQuery() available as
openerp.web.SearchView.query.

The query is a backbone collection of Facet() objects, which can be interacted with directly by external objects or
search view controls (e.g. widgets displayed in the drawer).

class openerp.web.search.SearchQuery()
The current search query of the search view, provides convenience behaviors for manipulating Facet() on top
of the usual backbone collection methods.

The query ensures all of its facets contain at least one FacetValue() instance. Otherwise, the facet is
automatically removed from the query.

openerp.web.search.SearchQuery.add(values, options)
Overridden from the base add method so that adding a facet which is already in the collection will merge
the value of the new facet into the old one rather than add a second facet with different values.

Arguments

• values – facet, facet attributes or array thereof

Returns the collection itself
5 search view fields may also bundle context data to add to the search context

9.2. Programmatic interactions: internal model 51

http://documentcloud.github.com/backbone/#Collection
http://documentcloud.github.com/backbone/#Collection

OpenERP Web Developers Documentation, Release 7.0

openerp.web.search.SearchQuery.toggle(value, options)
Convenience method for toggling facet values in a query: removes the values (through the facet itself) if
they are present, adds them if they are not. If the facet itself is not in the collection, adds it automatically.

A toggling is atomic: only one change event will be triggered on the facet regardless of the number of
values added to or removed from the facet (if the facet already exists), and the facet is only removed from
the query if it has no value at the end of the toggling.

Arguments

• value – facet or facet attributes

Returns the collection

class openerp.web.search.Facet()
A backbone model representing a single facet of the current research. May map to a search field, or to a more
complex or fuzzier input (e.g. a custom filter or an advanced search).

category
The displayed name of the facet, as a String. This is a backbone model attribute.

field
The Input() instance which originally created the facet 4, used to delegate some operations (such as
serializing the facet’s values to domains and contexts). This is a backbone model attribute.

values
FacetValues() as a javascript attribute, stores all the values for the facet and helps propagate their
events to the facet. Is also available as a backbone attribute (via #get and #set) in which cases it serial-
izes to and deserializes from javascript arrays (via Collection#toJSON and Collection#reset).

[icon]
optional, a single ASCII letter (a-z or A-Z) mapping to the bundled mnmliconsRegular icon font.

When a facet with an icon attribute is rendered, the icon is displayed (in the icon font) in the first section
of the facet instead of the category.

By default, only filters make use of this facility.

class openerp.web.search.FacetValues()
Backbone collection of FacetValue() instances.

class openerp.web.search.FacetValue()
Backbone model representing a single value within a facet, represents a pair of (displayed name, logical value).

label
Backbone model attribute storing the “displayable” representation of the value, visually output to the user.
Must be a string.

value
Backbone model attribute storing the logical/internal value (of itself), will be used by Input() to serialize
to domains and contexts.

Can be of any type.

4 field does not actually need to be an instance of Input(), nor does it need to be what created the facet, it just needs to provide the three
facet-serialization methods get_domain(), get_context() and get_gropuby(), existing Input() subtypes merely provide convenient
base implementation for those methods.

Complex search view inputs (especially those living in the drawer) may prefer using object literals with the right slots returning closed-over
values or some other scheme un-bound to an actual Input(), as CustomFilters() and Advanced() do.

52 Chapter 9. Search View

http://documentcloud.github.com/backbone/#Model
http://documentcloud.github.com/backbone/#Collection
http://documentcloud.github.com/backbone/#Model

OpenERP Web Developers Documentation, Release 7.0

9.3 Field services

Field() provides a default implementation of get_domain() and get_context() taking care of most of the
peculiarities pertaining to OpenERP’s handling of fields in search views. It also provides finer hooks to let devel-
opers of new fields and widgets customize the behavior they want without necessarily having to reimplement all of
get_domain() or get_context():

openerp.web.search.Field.get_context(facet)
If the field has no @context, simply returns null. Otherwise, calls value_from() once for
each FacetValue() of the current Facet() (in order to extract the basic javascript object from the
FacetValue() then evaluates @context with each of these values set as self, and returns the union
of all these contexts.

Arguments

• facet (openerp.web.search.Facet) –

Returns a context (literal or compound)

openerp.web.search.Field.get_domain(facet)
If the field has no @filter_domain, calls make_domain() once with each FacetValue() of the cur-
rent Facet() as well as the field’s @name and either its @operator or default_operator.

If the field has an @filter_value, calls value_from() once per FacetValue() and evaluates
@filter_value with each of these values set as self.

In either case, “ors” all of the resulting domains (using |) if there is more than one FacetValue() and returns
the union of the result.

Arguments

• facet (openerp.web.search.Facet) –

Returns a domain (literal or compound)

openerp.web.search.Field.make_domain(name, operator, facetValue)
Builds a literal domain from the provided data. Calls value_from() on the FacetValue() and evaluates
and sets it as the domain’s third value, uses the other two parameters as the first two values.

Can be overridden to build more complex default domains.

Arguments

• name (String) – the field’s name

• operator (String) – the operator to use in the field’s domain

• facetValue (openerp.web.search.FacetValue) –

Returns Array<(String, String, Object)>

openerp.web.search.Field.value_from(facetValue)
Extracts a “bare” javascript value from the provided FacetValue(), and returns it.

The default implementation will simply return the value backbone property of the argument.

Arguments

• facetValue (openerp.web.search.FacetValue) –

Returns Object

openerp.web.search.Field.default_operator
Operator used to build a domain when a field has no @operator or @filter_domain. "=" for Field()

9.3. Field services 53

OpenERP Web Developers Documentation, Release 7.0

9.4 Arbitrary data storage

Facet() and FacetValue() objects (and structures) provided by your widgets should never be altered by the
search view (or an other widget). This means you are free to add arbitrary fields in these structures if you need to
(because you have more complex needs than the attributes described in this document).

Ideally this should be avoided, but the possibility remains.

9.5 Changes

Todo

merge in changelog instead?

The displaying of the search view was significantly altered from OpenERP Web 6.1 to OpenERP Web 7.

As a result, while the external API used to interact with the search view does not change many internal details —
including the interaction between the search view and its widgets — were significantly altered:

9.5.1 Internal operations

• openerp.web.SearchView.do_clear() has been removed

• openerp.web.SearchView.do_toggle_filter() has been removed

9.5.2 Widgets API

• openerp.web.search.Widget.render() has been removed

• openerp.web.search.Widget.make_id() has been removed

• Search field objects are not openerp widgets anymore, their start is not generally called

• clear() has been removed since clearing the search view now simply consists of removing all search facets

• get_domain() and get_context() now take a Facet() as parameter, from which it’s their job to get
whatever value they want

• get_groupby() has been added. It returns an Array() of context-like constructs. By default, it does not
do anything in Field() and it returns the various contexts of its enabled filters in FilterGroup().

9.5.3 Filters

• openerp.web.search.Filter.is_enabled() has been removed

• FilterGroup() instances are still rendered (and started) in the “advanced search” drawer.

54 Chapter 9. Search View

OpenERP Web Developers Documentation, Release 7.0

9.5.4 Fields

• get_value has been replaced by value_from() as it now takes a FacetValue() argument (instead of
no argument). It provides a default implementation returning the value property of its argument.

• The third argument to make_domain() is now a FacetValue() so child classes have all the information
they need to derive the “right” resulting domain.

9.5.5 Custom filters

Instead of being an intrinsic part of the search view, custom filters are now a special case of filter groups. They are
treated specially still, but much less so than they used to be.

9.5.6 Many To One

• Because the autocompletion service is now provided by the search view itself,
openerp.web.search.ManyToOneField.setup_autocomplete() has been removed.

9.5.7 Advanced Search

• The advanced search is now a more standard Input() configured to be rendered in the drawer.

• Field() are now standard widgets, with the “right” behaviors (they don’t rebind their $element in
start())

• The ad-hoc optional setting of the openerp field descriptor on a Field() has been removed, the field descriptor
is now passed as second argument to the Field()‘s constructor, and bound to its field.

• Instead of its former domain triplet (field, operator, value), get_proposition() now returns
an object with two fields label and value, respectively a human-readable version of the proposition and the
corresponding domain triplet for the proposition.

9.5. Changes 55

OpenERP Web Developers Documentation, Release 7.0

56 Chapter 9. Search View

CHAPTER 10

List View

10.1 Style Hooks

The list view provides a few style hook classes for re-styling of list views in various situations:

.oe_list

The root element of the list view, styling rules should be rooted on that class.

table.oe_list_content

The root table for the listview, accessory components may be generated or added outside this section, this
is the list view “proper”.

.oe_list_buttons

The action buttons array for the list view, with its sub-elements

.oe_list_add

The default “Create”/”Add” button of the list view

.oe_alternative

The “alternative choice” for the list view, by default text along the lines of “or import” with a
link.

.oe_list_field_cell

The cell (td) for a given field of the list view, cells which are not fields (e.g. name of a group, or number
of items in a group) will not have this class. The field cell can be further specified:

.oe_number

Numeric cell types (integer and float)

.oe_button

Action button (button tag in the view) inside the cell

.oe_readonly

Readonly field cell

.oe_list_field_$type

Additional class for the precise type of the cell, $type is the field’s @widget if there is one,
otherwise it’s the field’s type.

.oe_list_record_selector

57

OpenERP Web Developers Documentation, Release 7.0

Selector cells

10.1.1 Editable list view

The editable list view module adds a few supplementary style hook classes, for edition situations:

.oe_list_editable

Added to the .oe_list when the list is editable (however that was done). The class may be removed
on-the-fly if the list becomes non-editable.

.oe_editing

Added to both .oe_list and .oe_list_button (as the buttons may be outside of the list view)
when a row of the list is currently being edited.

tr.oe_edition

Class set on the row being edited itself. Note that the edition form is not contained within the row, this
allows for styling or modifying the row while it’s being edited separately. Mostly for fields which can not
be edited (e.g. read-only fields).

10.2 Columns display customization

The list view provides a registry to openerp.web.list.Column() objects allowing for the customization of a
column’s display (e.g. so that a binary field is rendered as a link to the binary file directly in the list view).

The registry is instance.web.list.columns, the keys are of the form tag.type where tag can be field
or button, and type can be either the field’s type or the field’s @widget (in the view).

Most of the time, you’ll want to define a tag.widget key (e.g. field.progressbar).

class openerp.web.list.Column(id, tag, attrs)

openerp.web.list.Column.format(record_data, options)
Top-level formatting method, returns an empty string if the column is invisible (unless the
process_modifiers=false option is provided); returns options.value_if_empty or an
empty string if there is no value in the record for the column.

Otherwise calls _format() and returns its result.

This method only needs to be overridden if the column has no concept of values (and needs to bypass that
check), for a button for instance.

Otherwise, custom columns should generally override _format() instead.

Returns String

openerp.web.list.Column._format(record_data, options)
Never called directly, called if the column is visible and has a value.

The default implementation calls format_value() and htmlescapes the result (via _.escape).

Note that the implementation of _format() must escape the data provided to it, its output will not be
escaped by format().

Returns String

58 Chapter 10. List View

OpenERP Web Developers Documentation, Release 7.0

10.3 Editable list view

List view edition is an extension to the base listview providing the capability of inline record edition by delegating to
an embedded form view.

10.3.1 Editability status

The editability status of a list view can be queried through the editable() method, will return a falsy value if the
listview is not currently editable.

The editability status is based on three flags:

tree/@editable

If present, can be either "top" or "bottom". Either will make the list view editable, with new records
being respectively created at the top or at the bottom of the view.

context.set_editable

Boolean flag extracted from a search context (during the do_search‘() handler), true will make the
view editable (from the top), false or the absence of the flag is a noop.

defaults.editable

Like tree/@editable, one of absent (null)), "top" or "bottom", fallback for the list view if
none of the previous two flags are set.

These three flags can only make a listview editable, they can not override a previously set flag. To do that, a listview
user should instead cancel the edit:before event.

The editable list view module adds a number of methods to the list view, on top of implementing the
EditorDelegate() protocol:

10.3.2 Interaction Methods

openerp.web.ListView.ensure_saved()
Attempts to resolve the pending edition, if any, by saving the edited row’s current state.

Returns delegate resolving to all editions having been saved, or rejected if a pending edition could
not be saved (e.g. validation failure)

openerp.web.ListView.start_edition([record][, options])
Starts editing the provided record inline, through an overlay form view of editable fields in the record.

If no record is provided, creates a new one according to the editability configuration of the list view.

This method resolves any pending edition when invoked, before starting a new edition.

Arguments

• record (Record()) – record to edit, or null to create a new record

• options (EditOptions) –

Returns delegate to the form used for the edition

openerp.web.ListView.save_edition()
Resolves the pending edition.

10.3. Editable list view 59

OpenERP Web Developers Documentation, Release 7.0

Returns delegate to the save being completed, resolves to an object with two attributes created
(flag indicating whether the saved record was just created or was updated) and record the
reloaded record having been edited.

openerp.web.ListView.cancel_edition([force=false])
Cancels pending edition, cleans up the list view in case of creation (removes the empty record being created).

Arguments

• force (Boolean) – doesn’t check if the user has added any data, discards the edition
unconditionally

10.3.3 Utility Methods

openerp.web.ListView.get_cells_for(row)
Extracts the cells from a listview row, and puts them in a {fieldname: cell} mapping for analysis and manipula-
tion.

Arguments

• row (jQuery) –

Return type Object

openerp.web.ListView.with_event(event_name, event, action[, args][, trigger_params])
Executes action in the context of the view’s editor, bracketing it with cancellable event signals.

Arguments

• event_name (String) – base name for the bracketing event, will be postfixed by
:before and :after before being called (respectively before and after action is exe-
cuted)

• event (Object) – object passed to the :before event handlers.

• action (Function) – function called with the view’s editor as its this. May return a
deferred.

• args (Array) – arguments passed to action

• trigger_params (Array) – arguments passed to the :after event handler alongside
the results of action

10.3.4 Behavioral Customizations

openerp.web.ListView.handle_onwrite(record)
Implements the handling of the onwrite listview attribute: calls the RPC methods specified by @onwrite,
and if that method returns an array of ids loads or reloads the records corresponding to those ids.

Arguments

• record (openerp.web.list.Record) – record being written having triggered the
onwrite callback

Returns deferred to all reloadings being done

60 Chapter 10. List View

OpenERP Web Developers Documentation, Release 7.0

10.3.5 Events

For simpler interactions by/with external users of the listview, the view provides a number of dedicated events to its
lifecycle.

Note: if an event is defined as cancellable, it means its first parameter is an object on which the cancel attribute
can be set. If the cancel attribute is set, the view will abort its current behavior as soon as possible, and rollback any
state modification.

Generally speaking, an event should only be cancelled (by setting the cancel flag to true), uncancelling an event
is undefined as event handlers are executed on a first-come-first-serve basis and later handlers may re-cancel an un-
cancelled event.

edit:before cancellable

Invoked before the list view starts editing a record.

Provided with an event object with a single property record, holding the attributes of the record being
edited (record is empty but not null for a new record)

edit:after

Invoked after the list view has gone into an edition state, provided with the attributes of the record being
edited (see edit:before) as first parameter and the form used for the edition as second parameter.

save:before cancellable

Invoked right before saving a pending edition, provided with an event object holding the listview’s editor
(editor) and the edition form (form)

save:after

Invoked after a save has been completed

cancel:before cancellable

Invoked before cancelling a pending edition, provided with the same information as save:before.

cancel:after

Invoked after a pending edition has been cancelled.

10.3.6 DOM events

The list view has grown hooks for the keyup event on its edition form (during edition): any such event bubbling out
of the edition form will be forwarded to a method keyup_EVENTNAME, where EVENTNAME is the name of the key
in $.ui.keyCode.

The method will also get the event object (originally passed to the keyup handler) as its sole parameter.

The base editable list view has handlers for the ENTER and ESCAPE keys.

10.4 Editor

The list-edition modules does not generally interact with the embedded formview, delegating instead to its Editor().

10.4. Editor 61

OpenERP Web Developers Documentation, Release 7.0

class openerp.web.list.Editor(parent[, options])
The editor object provides a more convenient interface to form views, and simplifies the usage of form views
for semi-arbitrary edition of stuff.

However, the editor does not task itself with being internally consistent at this point: calling e.g. edit()
multiple times in a row without saving or cancelling each edit is undefined.

Arguments

• parent (Widget()) –

• options (EditorOptions) –

openerp.web.list.Editor.is_editing([record_state])
Indicates whether the editor is currently in the process of providing edition for a record.

Can be filtered by the state of the record being edited (whether it’s a record being created or a record
being altered), in which case it asserts both that an edition is underway and that the record being edited
respectively does not yet exist in the database or already exists there.

Arguments

• record_state (String) – state of the record being edited. Either "new" or
"edit".

Return type Boolean

openerp.web.list.Editor.edit(record, configureField[, options])
Loads the provided record into the internal form view and displays the form view.

Will also attempt to focus the first visible field of the form view.

Arguments

• record (Object) – record to load into the form view (key:value mapping similar to the
result of a read)

• configureField (Function<String, openerp.web.form.Field>) –
function called with each field of the form view right after the form is displayed, lets
whoever called this method do some last-minute configuration of form fields.

• options (EditOptions) –

Returns jQuery delegate to the form object

openerp.web.list.Editor.save()
Attempts to save the internal form, then hide it

Returns delegate to the record under edition (with id added for a creation). The record is not
updated from when it was passed in, aside from the id attribute.

openerp.web.list.Editor.cancel([force=false])
Attemps to cancel the edition of the internal form, then hide the form

Arguments

• force (Boolean) – unconditionally cancels the edition of the internal form, even if the
user has already entered data in it.

Returns delegate to the record under edition

class EditorOptions()

62 Chapter 10. List View

OpenERP Web Developers Documentation, Release 7.0

EditorOptions.formView
Form view (sub)-class to instantiate and delegate edition to.

By default, FormView()

EditorOptions.delegate
Object used to get various bits of information about how to display stuff.

By default, uses the editor’s parent widget. See EditorDelegate() for the methods and attributes to
provide.

class EditorDelegate()
Informal protocol defining the methods and attributes expected of the Editor()‘s delegate.

EditorDelegate.dataset
The dataset passed to the form view to synchronize the form view and the outer widget.

EditorDelegate.edition_view(editor)
Called by the Editor() object to get a form view (JSON) to pass along to the form view it created.

The result should be a valid form view, see Form Notes for various peculiarities of the form view format.

Arguments

• editor (Editor()) – editor object asking for the view

Returns form view

Return type Object

EditorDelegate.prepends_on_create()
By default, the Editor() will append the ids of newly created records to the
EditorDelegate.dataset. If this method returns true, it will prepend these ids instead.

Returns whether new records should be prepended to the dataset (instead of appended)

Return type Boolean

class EditOptions()
Options object optionally passed into a method starting an edition to configure its setup and behavior

focus_field
Name of the field to set focus on after setting up the edition of the record.

If this option is not provided, or the requested field can not be focused (invisible, readonly or not in the
view), the first visible non-readonly field is focused.

10.5 Changes from 6.1

• The editable listview behavior has been rewritten pretty much from scratch, any code touching on editability
will have to be modified

– The overloading of Groups() and List() for editability has been drastically simplified, and most of
the behavior has been moved to the list view itself. Only row_clicked() is still overridden.

– A new method get_row_for(record) -> jQuery(tr) | null has been added to both
ListView.List and ListView.Group, it can be called from the list view to get the table row matching a
record (if such a row exists).

• do_button_action()‘s core behavior has been split away to handle_button(). This allows bypassing
overrides of do_button_action() in a parent class.

Ideally, handle_button() should not be overridden.

10.5. Changes from 6.1 63

OpenERP Web Developers Documentation, Release 7.0

• Modifiers handling has been improved (all modifiers information should now be available through
modifiers_for(), not just invisible)

• Changed some handling of the list view’s record: a record may now have no id, and the listview will handle that
correctly (for new records being created) as well as correctly handle the id being set.

• Extended the internal collections structure of the list view with #find, #succ and #pred.

64 Chapter 10. List View

http://underscorejs.org/#find
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:succ
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:pred

CHAPTER 11

Notes on the usage of the Form View as a sub-widget

11.1 Undocumented stuff

• initial_mode option defines the starting mode of the form view, one of view and edit (?). Default value
is view (non-editable form).

• embedded_view attribute has to be set separately when providing a view directly, no option available for that
usage.

– View arch must contain node with @class="oe_form_container", otherwise everything will break
without any info

– Root element of view arch not being form may or may not work correctly, no idea.

– Freeform views => @version="7.0"

• Form is not entirely loaded (some widgets may not appear) unless on_record_loaded is called (or
do_show, which itself calls on_record_loaded).

• “Empty” form => on_button_new (...), or manually call default_get + on_record_loaded

• Form fields default to width: 100%, padding, !important margin, can be reached via .oe_form_field

• Form will render buttons and a pager, offers options to locate both outside of form itself ($buttons and
$pager), providing empty jquery objects ($()) seems to stop displaying both but not sure if there are delete-
rious side-effects.

Other options:

– Pass in $(document.createDocumentFragment) to ensure it’s a DOM-compatible tree com-
pletely outside of the actual DOM.

– ???

• readonly fields probably don’t have a background, beware if need of overlay

– What is the difference between readonly and effective_readonly?

• No facilities for DOM events handling/delegations e.g. handling keyup/keydown/keypress from a form fields
into the form’s user.

– Also no way to reverse from a DOM node (e.g. DOMEvent#target) back to a form view field easily

65

OpenERP Web Developers Documentation, Release 7.0

66 Chapter 11. Notes on the usage of the Form View as a sub-widget

CHAPTER 12

API changes from OpenERP Web 6.1 to 7.0

12.1 Supported browsers

The OpenERP Web Client supports the following web browsers:

• Internet Explorer 9+

• Google Chrome 22+

• Firefox 13+

• Any browser using the latest version of Chrome Frame

12.2 DataSet -> Model

The 6.1 DataSet API has been deprecated in favor of the smaller and more orthogonal Model API, which more
closely matches the API in OpenERP Web’s Python side and in OpenObject addons and removes most stateful behavior
of DataSet.

12.2.1 Migration guide

• Actual arbitrary RPC calls can just be remapped on a Model() instance:

dataset.call(method, args)

or

dataset.call_and_eval(method, args)

can be replaced by calls to openerp.web.Model.call():

model.call(method, args)

If callbacks are passed directly to the older methods, they need to be added to the new one via .then().

Note: The context_index and domain_index features were not ported, context and domain now need
to be passed in “in full”, they won’t be automatically filled with the user’s current context.

67

OpenERP Web Developers Documentation, Release 7.0

• Shorcut methods (name_get, name_search, unlink, write, ...) should be ported to
openerp.web.Model.call(), using the server’s original signature. On the other hand, the non-shortcut
equivalents can now use keyword arguments (see call()‘s signature for details)

• read_slice, which allowed a single round-trip to perform a search and a read, should be reimplemented
via Query() objects (see: query()) for clearer and simpler code. read_index should be replaced by a
Query() as well, combining offset() and first().

12.2.2 Rationale

Renaming

The name DataSet exists in the CS community consciousness, and (as its name implies) it’s a set of data
(often fetched from a database, maybe lazily). OpenERP Web’s dataset behaves very differently as it does
not store (much) data (only a bunch of ids and just enough state to break things). The name “Model”
matches the one used on the Python side for the task of building an RPC proxy to OpenERP objects.

API simplification

DataSet has a number of methods which serve as little more than shortcuts, or are there due to domain
and context evaluation issues in 6.1.

The shortcuts really add little value, and OpenERP Web 6.2 embeds a restricted Python evaluator (in
javascript) meaning most of the context and domain parsing & evaluation can be moved to the javascript
code and does not require cooperative RPC bridging.

12.3 DataGroup -> also Model

Alongside the deprecation of DataSet for Model(), OpenERP Web 7.0 removes DataGroup and its subtypes as
public objects in favor of a single method on Query(): group_by().

12.3.1 Migration guide

12.3.2 Rationale

While the DataGroup API worked (mostly), it is quite odd and alien-looking, a bit too Smalltalk-inspired (behaves
like a self-contained flow-control structure for reasons which may or may not have been good).

Because it is heavily related to DataSet (as it yields DataSet objects), deprecating DataSet automatically dep-
recates DataGroup (if we want to stay consistent), which is a good time to make the API more imperative and look
more like what most developers are used to.

But as DataGroup users in 6.1 were rare (and there really was little reason to use it), it has been removed as a public
API.

68 Chapter 12. API changes from OpenERP Web 6.1 to 7.0

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

69

OpenERP Web Developers Documentation, Release 7.0

70 Chapter 13. Indices and tables

Index

Symbols
[icon] (None attribute), 52

C
category (None attribute), 52

D
deepEqual() (built-in function), 40
Deferred() (class), 18
Deferred.done() (Deferred method), 18
Deferred.fail() (Deferred method), 19
Deferred.promise() (Deferred method), 19
Deferred.reject() (Deferred method), 19
Deferred.resolve() (Deferred method), 19
Deferred.then() (Deferred method), 18

E
EditOptions() (class), 63
EditorDelegate() (class), 63
EditorDelegate.dataset (EditorDelegate attribute), 63
EditorDelegate.edition_view() (EditorDelegate method),

63
EditorDelegate.prepends_on_create() (EditorDelegate

method), 63
EditorOptions() (class), 62
EditorOptions.delegate (EditorOptions attribute), 63
EditorOptions.formView (EditorOptions attribute), 62
equal() (built-in function), 40

F
field (None attribute), 52
focus_field (None attribute), 63

L
label (None attribute), 52

M
mock() (built-in function), 43

N
notDeepEqual() (built-in function), 40
notEqual() (built-in function), 40
notStrictEqual() (built-in function), 40

O
ok() (built-in function), 40
opeenrp.web.Query.offset() (opeenrp.web.Query

method), 23
openerp.testing.case() (openerp.testing method), 46
openerp.testing.section() (openerp.testing method), 46
openerp.web.list.Column() (class), 58
openerp.web.list.Column._format() (open-

erp.web.list.Column method), 58
openerp.web.list.Column.format() (open-

erp.web.list.Column method), 58
openerp.web.list.Editor() (class), 61
openerp.web.list.Editor.cancel() (openerp.web.list.Editor

method), 62
openerp.web.list.Editor.edit() (openerp.web.list.Editor

method), 62
openerp.web.list.Editor.is_editing() (open-

erp.web.list.Editor method), 62
openerp.web.list.Editor.save() (openerp.web.list.Editor

method), 62
openerp.web.ListView.cancel_edition() (open-

erp.web.ListView method), 60
openerp.web.ListView.ensure_saved() (open-

erp.web.ListView method), 59
openerp.web.ListView.get_cells_for() (open-

erp.web.ListView method), 60
openerp.web.ListView.handle_onwrite() (open-

erp.web.ListView method), 60
openerp.web.ListView.save_edition() (open-

erp.web.ListView method), 59
openerp.web.ListView.start_edition() (open-

erp.web.ListView method), 59
openerp.web.ListView.with_event() (open-

erp.web.ListView method), 60
openerp.web.Model() (class), 22

71

OpenERP Web Developers Documentation, Release 7.0

openerp.web.Model.call() (openerp.web.Model method),
22

openerp.web.Model.name (openerp.web.Model attribute),
22

openerp.web.Model.query() (openerp.web.Model
method), 22

openerp.web.Query() (class), 22
openerp.web.Query.all() (openerp.web.Query method),

22
openerp.web.Query.context() (openerp.web.Query

method), 23
openerp.web.Query.count() (openerp.web.Query

method), 22
openerp.web.Query.filter() (openerp.web.Query method),

23
openerp.web.Query.first() (openerp.web.Query method),

22
openerp.web.Query.group_by() (openerp.web.Query

method), 22
openerp.web.Query.limit() (openerp.web.Query method),

23
openerp.web.Query.order_by() (openerp.web.Query

method), 23
openerp.web.search.Facet() (class), 52
openerp.web.search.FacetValue() (class), 52
openerp.web.search.FacetValues() (class), 52
openerp.web.search.Field.default_operator (open-

erp.web.search.Field attribute), 53
openerp.web.search.Field.get_context() (open-

erp.web.search.Field method), 53
openerp.web.search.Field.get_domain() (open-

erp.web.search.Field method), 53
openerp.web.search.Field.make_domain() (open-

erp.web.search.Field method), 53
openerp.web.search.Field.value_from() (open-

erp.web.search.Field method), 53
openerp.web.search.SearchQuery() (class), 51
openerp.web.search.SearchQuery.add() (open-

erp.web.search.SearchQuery method), 51
openerp.web.search.SearchQuery.toggle() (open-

erp.web.search.SearchQuery method), 51
openerp.web.Widget() (class), 11
openerp.web.Widget.$() (openerp.web.Widget method),

12
openerp.web.Widget.attributes (openerp.web.Widget at-

tribute), 12
openerp.web.Widget.className (openerp.web.Widget at-

tribute), 11
openerp.web.Widget.delegateEvents() (open-

erp.web.Widget method), 13
openerp.web.Widget.events (openerp.web.Widget at-

tribute), 13
openerp.web.Widget.id (openerp.web.Widget attribute),

11

openerp.web.Widget.renderElement() (open-
erp.web.Widget method), 12

openerp.web.Widget.setElement() (openerp.web.Widget
method), 12

openerp.web.Widget.tagName (openerp.web.Widget at-
tribute), 11

openerp.web.Widget.template (openerp.web.Widget at-
tribute), 11

openerp.web.Widget.undelegateEvents() (open-
erp.web.Widget method), 13

Q
QWeb2.Engine() (class), 26
QWeb2.Engine.add_template() (QWeb2.Engine method),

27
QWeb2.Engine.debug (QWeb2.Engine attribute), 27
QWeb2.Engine.jQuery (QWeb2.Engine attribute), 27
QWeb2.Engine.prefix (QWeb2.Engine attribute), 27
QWeb2.Engine.preprocess_node (QWeb2.Engine at-

tribute), 27
QWeb2.Engine.render() (QWeb2.Engine method), 27

S
strictEqual() (built-in function), 40

T
TestOptions() (class), 46
TestOptions.asserts (TestOptions attribute), 46
TestOptions.fail_on_rejection (TestOptions attribute), 46
TestOptions.rpc (TestOptions attribute), 47
TestOptions.setup (TestOptions attribute), 46
TestOptions.teardown (TestOptions attribute), 46
TestOptions.templates (TestOptions attribute), 47
throws() (built-in function), 40

V
value (None attribute), 52
values (None attribute), 52

W
when() (built-in function), 18

72 Index

	Building an OpenERP Web module
	Widget
	Asynchronous Operations
	RPC Calls
	QWeb
	Client actions
	Guidelines and Recommendations
	Testing in OpenERP Web
	Search View
	List View
	Notes on the usage of the Form View as a sub-widget
	API changes from OpenERP Web 6.1 to 7.0
	Indices and tables

