
Nengo SpiNNaker Documentation
Release 0.0a1

Andrew Mundy, Terry Stewart

October 15, 2014

Contents

1 Installation 3
1.1 Requirements . 3
1.2 Basic Installation . 3
1.3 Developer Installation . 3

2 Running Nengo models on SpiNNaker 5
2.1 Nengo SpiNNaker Simulator . 5

3 Running Nodes directly on SpiNNaker 7
3.1 Function-of-time Nodes . 7
3.2 Writing a SpiNNaker executable for a Node . 8
3.3 Using the binary . 8
3.4 Configuring the executable instances . 8

4 Writing new Input/Output Handlers 9
4.1 Node Builders . 9
4.2 Node Communicators . 10

5 Indices and tables 13

i

ii

Nengo SpiNNaker Documentation, Release 0.0a1

Nengo is a suite of software used to build and simulate large-scale brain models using the methods of the Neural
Engineering Framework. SpiNNaker is a neuromorphic hardware platform designed to run large-scale spiking neural
models in real-time. Using SpiNNaker to simulate Nengo models allows you to run models in real-time and interface
with external hardware devices such as robots.

Contents 1

https://github.com/ctn-waterloo/nengo/
http://compneuro.uwaterloo.ca/research/nef.html
http://compneuro.uwaterloo.ca/research/nef.html
https://apt.cs.manchester.ac.uk/projects/SpiNNaker

Nengo SpiNNaker Documentation, Release 0.0a1

2 Contents

CHAPTER 1

Installation

1.1 Requirements

Nengo SpiNNaker requires that you have installed appropriate versions of Nengo and the SpiNNaker tools package.

1.2 Basic Installation

We’re working towards providing the Nengo SpiNNaker package on PyPi at which point you will be able to:

pip install nengo_spinnaker

For now, like Nengo itself, do a developer installation.

1.3 Developer Installation

If you plan to make changes to Nengo SpiNNaker you should clone its git repository and install from it:

git clone https://github.com/ctn-waterloo/nengo_spinnaker
cd nengo_spinnaker
python setup.py develop --user

If you’re in a virtualenv you can omit the --user flag.

1.3.1 Building the SpiNNaker binaries

If you installed the Nengo SpiNNaker package from source you will need to go through a few additional steps prior to
running Nengo models. These steps build the executable binaries which are loaded to the SpiNNaker machine.

Change to the root directory of the SpiNNaker package
Edit ‘spinnaker_tools/setup‘ to point at your ARM cross-compilers
source ./setup
make

Now move to the root directory of the Nengo SpiNNaker package
cd spinnaker_components
make

3

https://github.com/ctn-waterloo/nengo
https://spinnaker.cs.manchester.ac.uk

Nengo SpiNNaker Documentation, Release 0.0a1

If you’re new to Nengo we recommend reading through the Nengo documentation and trying a few examples before
progressing on to running examples on SpiNNaker.

4 Chapter 1. Installation

CHAPTER 2

Running Nengo models on SpiNNaker

If this is how your Nengo model currently works:

import nengo

model = nengo.Network()
with model:

... Build a model
a = nengo.Ensemble(100, dimensions=1)

sim = nengo.Simulator(model)
sim.run(10.)

Then porting it to Nengo SpiNNaker requires very few changes:

import nengo
import nengo_spinnaker

model = nengo.Network()
with model:

... Build a model
a = nengo.Ensemble(100, dimensions=1)

sim = nengo_spinnaker.Simulator(model)
sim.run(10.)

2.1 Nengo SpiNNaker Simulator

Some hardware is already supported by Nengo SpiNNaker and more will be added over time.

• “PushBot” - Neuroscientific System Theory (NST)

While Ensembles and various other components are simulated directly on the SpiNNaker board this is, in general, not
possible for Nodes, which may be any arbitrary function.

5

https://github.com/ctn-waterloo/nengo_pushbot
http://www.nst.ei.tum.de

Nengo SpiNNaker Documentation, Release 0.0a1

6 Chapter 2. Running Nengo models on SpiNNaker

CHAPTER 3

Running Nodes directly on SpiNNaker

By default Nodes are executed on the host computer and communicate with the SpiNNaker board to transmit and
receive values. The result can be undesirable sampling of Node input and output.

For example:

import nengo
import nengo_spinnaker

model = nengo.Network()
with model:

n = nengo.Node(np.sin)
e = nengo.Ensemble(nengo.LIF(100), 1)
p = nengo.Probe(e)

nengo.Connection(n, e)

sim = nengo_spinnaker.Simulator(model)
sim.run(10.)

Results in:

For Nodes which are solely functions of time it is possible to precompute the output of the Node and play this back.
Nodes with a constant output value and no input are automatically added to the bias current of Ensemble which they
feed. Finally, more complex Nodes may be implemented as SpiNNaker executables and directly executed on the
SpiNNaker hardware.

3.1 Function-of-time Nodes

Nodes which are purely functions of time may be precomputed for the duration of the simulation (or the period of the
function if appropriate) and played back during the simulation. Nodes you wish to be executed in this way must be
marked with an appropriate directive:

As before...

Create the configuration and configure ‘n‘ as being f(t)
config = nengo_spinnaker.Config()
config[n].f_of_t = True # Mark Node as being a function of time
config[n].f_period = 2*np.pi # Mark the period of the function

Pass the configuration to the simulator
sim = nengo_spinnaker.Simulator(model, config=config)

7

Nengo SpiNNaker Documentation, Release 0.0a1

Results in:

The two directives are:

• f_of_t marks a Node as being precomputable. This is not checked - be careful!

• f_period marks the period of the function in seconds. If this is None then the Node will be precomputed
for the entire duration of the simulation - it is possible to run out of memory. Again, this cannot be trivially
validated.

3.2 Writing a SpiNNaker executable for a Node

3.3 Using the binary

3.4 Configuring the executable instances

8 Chapter 3. Running Nodes directly on SpiNNaker

CHAPTER 4

Writing new Input/Output Handlers

Input/Output Handlers manage the communication between the host and the SpiNNaker machine running the simula-
tion. This entails two tasks:

1. Modifying the SpiNNaker model to include appropriate executables and connections for handling Node in-
put/output.

2. Providing functions for getting input for Nodes and setting Node output.

The first of these tasks is handled by “Node Builders”, the second by “Node Communicators”.

4.1 Node Builders

When building a model for simulation a nengo_spinnaker.builder.Builder delegates the tasks of building
Nodes and the connections into or out of Nodes to a Node Builder.

Additionally, the nengo_spinnaker.Simulator will expect the Node Builder to provide a context manager for
the Node Communicator.

A Node Builder is expected to look like the following:

class GenericNodeBuilder

get_node_in_vertex(self, builder, connection)
Get the PACMAN vertex where input to the Node should be sent.

Parameters

• builder – A nengo_spinnaker.builder.Builder instance providing add_vertex
and add_edge methods.

• connection – A nengo.Connection object which specifies the connection being built.
The Node will be referred to by connection.post.

Returns The PACMAN vertex where input for the Node at the end of the given connection
should be sent.

It is expected that this function will need to create new PACMAN vertices and add them to the graph using
the builder object.

get_node_out_vertex(self, builder, connection)
Get the PACMAN vertex where output from the Node can be expected to arrive in the SpiNNaker network.

Parameters

9

Nengo SpiNNaker Documentation, Release 0.0a1

• builder – A nengo_spinnaker.builder.Builder instance providing add_vertex
and add_edge methods.

• connection – A nengo.Connection object which specifies the connection being built.
The Node will be referred to by connection.pre.

Returns The PACMAN vertex where output from the Node will appear.

It is expected that this function will need to create new PACMAN vertices and add them to the graph using
the builder object.

build_node(self, builder, node)
Perform any tasks necessary to build a Node which is neither constant nor a function of time.

Parameters

• builder – A nengo_spinnaker.builder.Builder instance providing add_vertex
and add_edge methods.

• node – The nengo.Node object for which to provide IO.

Note: In all current implementations this method does nothing, it is generally more useful to instantiate
any vertices or edges when connecting to or from a Node.

io
A reference to the Communicator object.

__enter__(self)
Create and return a Communicator to handle input/output for Nodes.

Returns A Communicator of the appropriate type.

__exit__(self, exception_type, exception_value, traceback)
Perform any tasks necessary to stop the Communicator from running.

4.2 Node Communicators

The nengo_spinnaker.Simulator delegates the task of getting Node input and setting Node output to a com-
municator which is generated by the Node Builder.

A Node Communicator is required to look like the following:

class GenericNodeCommunicator
Warning: It is required that the Communicator be thread safe. Each Node is independently responsible for
getting its input and setting its output and each Node will be executed within its own thread.

start(self)
Start execution of the communicator thread.

get_node_input(self, node)
Return the latest received input for the given Node.

Parameters node – A nengo.Node for which input is desired.

Returns The latest received value as a Numpy array, or None if no data has yet been received
from the Node.

Raises KeyError if the Node is not recognised by the Communicator.

10 Chapter 4. Writing new Input/Output Handlers

Nengo SpiNNaker Documentation, Release 0.0a1

set_node_output(self, node, output)
Transmit the output of the Node to the SpiNNaker board.

Parameters

• node – A nengo.Node for which output is being provided.

• output – The latest output from the Node.

Raises KeyError if the Node is not recognised by the Communicator.

4.2. Node Communicators 11

Nengo SpiNNaker Documentation, Release 0.0a1

12 Chapter 4. Writing new Input/Output Handlers

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

Nengo SpiNNaker Documentation, Release 0.0a1

14 Chapter 5. Indices and tables

Index

Symbols
__enter__() (GenericNodeBuilder method), 10
__exit__() (GenericNodeBuilder method), 10

B
build_node() (GenericNodeBuilder method), 10

G
GenericNodeBuilder (built-in class), 9
GenericNodeCommunicator (built-in class), 10
get_node_in_vertex() (GenericNodeBuilder method), 9
get_node_input() (GenericNodeCommunicator method),

10
get_node_out_vertex() (GenericNodeBuilder method), 9

I
io (GenericNodeBuilder attribute), 10

S
set_node_output() (GenericNodeCommunicator method),

10
start() (GenericNodeCommunicator method), 10

15

	Installation
	Requirements
	Basic Installation
	Developer Installation

	Running Nengo models on SpiNNaker
	Nengo SpiNNaker Simulator

	Running Nodes directly on SpiNNaker
	Function-of-time Nodes
	Writing a SpiNNaker executable for a Node
	Using the binary
	Configuring the executable instances

	Writing new Input/Output Handlers
	Node Builders
	Node Communicators

	Indices and tables

