
Munin Documentation
Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The Munin project and its contributors

Nov 13, 2018

Contents

1 Preface 3
1.1 What is Munin ? . 3
1.2 Conventions . 3
1.3 Further Information . 3
1.4 Bug Reporting Guidelines . 6
1.5 Documenting Munin . 7

2 Tutorial 11
2.1 Getting Started . 11
2.2 Wildcard Plugins . 13
2.3 Using SNMP plugins . 14
2.4 Let Munin croak alarm . 15
2.5 Munin and Nagios . 20
2.6 Advanced Features . 24
2.7 Extraordinary Usage . 25
2.8 Monitoring the “unreachable” hosts . 25
2.9 Troubleshooting . 28

3 Munin’s Architecture 35
3.1 Overview . 35
3.2 Components . 36
3.3 Protocols . 60
3.4 Syntax . 62
3.5 API . 64

4 Munin Installation 65
4.1 Prerequisites . 65
4.2 Installing Munin . 66
4.3 Initial Configuration . 68
4.4 Webserver Configuration . 69
4.5 Upgrade Notes . 70

5 Munin Advanced 71
5.1 TLS Setup . 71
5.2 Advanced Network . 74
5.3 Per plugin custom rrd sizing . 74

6 How-to Collection 77
6.1 How to remove spikes . 77

7 Developing Munin 79

i

7.1 Munin development environment . 79
7.2 Munin development tests . 81
7.3 Data Structures . 82

8 Developing Plugins 87
8.1 How to write Munin Plugins . 87
8.2 How to write SNMP Plugins . 94
8.3 Best Current Practices for good plugin graphs . 96
8.4 The Concise guide to plugin authoring . 99
8.5 Plugin Gallery . 103
8.6 Advanced Topics for Plugin Development . 105
8.7 Requirements for ‘Vetted Plugins’ . 107

9 Reference 109
9.1 Nomenclature . 109
9.2 Man pages . 113
9.3 Examples and Templates . 139
9.4 Other reference material . 160

10 Other docs 177
10.1 Contributing . 177
10.2 Developer Talk . 177

11 Indices and Tables 179

ii

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Contents:

Contents 1

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2 Contents

CHAPTER 1

Preface

1.1 What is Munin ?

Munin is a networked resource monitoring tool (started in 2002) that can help analyze resource trends and what
just happened to kill our performance? problems. It is designed to be very plug and play.

A default installation provides a lot of graphs with almost no work.

Note: In Norse mythology Hugin and Munin are the ravens of the god king Odin. They flew all over Midgard for
him, seeing and remembering, and later telling him. Munin means memory in old Norse.

1.2 Conventions

1.2.1 Example Consistency

Examples should be consistent throughout the documentation. We should standardize on a set of values/examples
used, e.g.:

• Example domains: example.com, example.org, example.net

• Example hosts: foo.example.com, bar.example.com

• Example IP addresses: 192.0.2.0/24 (pick from the range 192.0.2.0 - 192.0.2.255)

• Example plugins: FIXME

• Example datasources: FIXME

RFC2606 details which hostnames are reserved for such usage.

RFC3330 details special-use IPv4 addresses.

1.3 Further Information

Besides the official documentation, that is this guide, there are many other resources about Munin.

3

http://tools.ietf.org/html/rfc2606
http://tools.ietf.org/html/rfc3330

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The fact that info is scattered around makes it sometimes difficult to find relevant one. Each source has its purpose,
and is usually only well-suited for some kind of documentation.

1.3.1 Munin Guide

These are the pages you are currently reading. It is aimed at the first read. The chapters are designed as a walk-
through of Munin’s components in a very guided manner. Its read constitutes the basis of every documentation
available. Specially when asking live (IRC, mailing-lists) channels, users there will expect that you read the Guide
prior to asking.

It is regularly updated, as its sources are directly in the munin source directory, the last version can always be
accessed online at http://guide.munin-monitoring.org/ thanks to ReadTheDoc.

It is specially designed for easy contribution and distribution thanks to Sphinx. That aspect will be handled in
Contributing.

1.3.2 Web

The Munin web site is the other main source of information. It has a wiki format, but as spammers have become
lately very clever, all content is now added by registered users only.

Information there has the tendency of being rather extensive, but old. This is mostly due to the fact that it was the
first and only way of documenting Munin. So in case there is conflicting information on the wiki and on the Guide,
better trust the Guide. We are obviously very glad if you can pinpoint the conflicting infos so we can correct the
wrong one.

Still, a very important part is the FAQ (Frequently Asked Questions), which contains many answers to a wide
array of questions. It is the only part of the documentation in the wiki that is still regularly updated.

1.3.3 GitHub

The Munin GitHub has slowly become the center of all the community-driven development. It is a very solid
platform, and despites its drawback of delegation of control, given the importance it has today, no-one can ignore
it. The mere fact that we opened a presence there has increased the amount of small contributions by an order of
magnitude. Given that those are the meat of a global improvement, it ranked as a success.

Main Repository

Therefore, we will move more and more services to cloud platforms as GitHub, as it enables us to focus on
delivering software and not caring about so much infrastructure.

We already moved all code pull requests there, and new issues should be opened there also. We obviously still
accept any contribution by other means, such a email, but as we couldn’t resist the move from SVN to GIT, we
are moving from our Trac to GitHub.

Contrib Repository

The contrib part is even more live than before. It has very successfully replaced the old MuninExchange site. Now,
together with the Plugin Gallery it offer all the useful features the old site offered, and is much easier to contribute
to. It also ease the integration work, and therefore shortens the time it takes for your contributions to be reviewed
and merged.

4 Chapter 1. Preface

http://guide.munin-monitoring.org/
http://readthedocs.org/
http://sphinx-doc.org/
http://munin-monitoring.org/wiki/WikiStart
http://munin-monitoring.org/wiki/faq
https://github.com/munin-monitoring/munin
https://github.com/munin-monitoring/contrib
http://gallery.munin-monitoring.org/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

1.3.4 Mailing Lists

If you don’t find a specific answer to your question in the various documentations, the mailing lists are a very
good place to have your questions shared with other users.

• subscribe to the munin-users list (English)

• subscribe to the munin-users-de (German)

• subscribe to the munin-users-jp (Japanese)

Please also consult the list archives. Your Munin issue may have been discussed already.

• munin-users list archive (English)

• munin-users-de list archive (German)

• munin-users-jp list archive (Japanese)

It happens that they were much more used in the previous years, but nowadays it is much more common to seek
an immediate answer on a specific issue, which is best handled by IRC. Therefore the mailing lists do appear very
quiet, as most users go on other channels.

1.3.5 IRC

The most immediate way to get hold of us is to join our IRC channel:

#munin on server irc.oftc.net

The main timezone of the channel is Europe+America.

If you can explain your problem in a few clear sentences, without too much copy&paste, IRC is a good way to try
to get help. If you do need to paste log files, configuration snippets, scripts and so on, please use a pastebin.

If the channel is all quiet, try again some time later, we do have lives, families and jobs to deal with also.

You are more than welcome to just hang out, and while we don’t mind the occasional intrusion of the real world
into the flow, keep it mostly on topic, and don’t paste random links unless they are really spectacular and intelli-
gent.

Note that m-r-b is our beloved munin-relay-bot that bridges the #munin channel on various IRC net-
works, such as Freenode.

1.3.6 Yourself!

Munin is an open-source project.

As such, it depends on the user community for ongoing support. As you begin to use Munin, you will rely
on others for help, either through the documentation or through the mailing lists. Consider contributing your
knowledge back. Read the mailing lists and answer questions.

If you learn something which is not in the documentation, write it up and contribute it. If you add features to the
code, contribute them.

1.3.7 Planet Munin

In order to provide some central place to reference munin-related blogs out there, Planet Munin was created.

It aggregates many blogs via RSS, and presents them as just one feed.

To add your blog, just visit us on our IRC Channel, and ask there.

Note that providing a tagged or a category-filtered feed is the best way to remain on-topic.

1.3. Further Information 5

mailto:munin-users-request@lists.sourceforge.net?subject=subscribe
mailto:munin-users-de-request@lists.sourceforge.net?subject=subscribe
mailto:munin-users-jp-request@lists.sourceforge.net?subject=subscribe
https://sourceforge.net/p/munin/mailman/munin-users/
https://sourceforge.net/p/munin/mailman/munin-users-de/
https://sourceforge.net/p/munin/mailman/munin-users-jp
https://gist.github.com/
http://planet.munin-monitoring.org/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

1.4 Bug Reporting Guidelines

When you find a bug in Munin we want to hear about it. Your bug reports play an important part in making Munin
more reliable because even the utmost care cannot guarantee that every part of Munin will work on every platform
under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an effective
fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users, chances are
good that someone will look into it. It could also happen that we tell you to update to a newer version to see if
the bug happens there. Or we might decide that the bug cannot be fixed before some major rewrite we might be
planning is done. Or perhaps it is simply too hard and there are more important things on the agenda. If you need
help immediately, consider obtaining a commercial support contract.

1.4.1 Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do whatever it
is you are trying. If it is not clear from the documentation whether you can do something or not, please report
that too; it is a bug in the documentation. If it turns out that a program does something different from what the
documentation says, that is a bug. That might include, but is not limited to, the following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to a problem
in the program. (A counterexample might be a “disk full” message, since you have to fix that yourself.)

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

• Munin fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the back-end process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the mailing
lists for help in tuning your applications.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you cannot
decode the information on the TODO list, report your problem. The least we can do is make the TODO list clearer.

1.4.2 What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not speculate
what you think went wrong, what “it seemed to do”, or which part of the program has a fault. If you are not
familiar with the implementation you would probably guess wrong and not help us a bit. And even if you are,
educated explanations are a great supplement to but no substitute for facts. If we are going to fix the bug we still
have to see it happen for ourselves first. Reporting the bare facts is relatively straightforward (you can probably
copy and paste them from the screen) but all too often important details are left out because someone thought it
does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

• The exact sequence of steps from program start-up necessary to reproduce the problem. This should be
self-contained; it is not enough to send in a bare log output without the plugin config and fetch statements.

• The best format for a test case for a restitution issue (graphing or HTML) is a sample plugin that can be
run through a single munin install that shows the problem. (Be sure to not depend on anything outside
your sample plugin). You are encouraged to minimize the size of your example, but this is not absolutely
necessary. If the bug is reproducible, we will find it either way.

6 Chapter 1. Preface

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message, show
it, even if you do not understand it. If the program terminates with an operating system error, say which. If
nothing at all happens, say so. Even if the result of your test case is a program crash or otherwise obvious it
might not happen on our platform. The easiest thing is to copy the output from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message. Use the –debug
command line arg.

• The output you expected is very important to state. If you just write “This command gives me that output.”
or “This is not what I expected.”, we might run it ourselves, scan the output, and think it looks OK and is
exactly what we expected. We should not have to spend the time to decode the exact semantics behind your
commands. Especially refrain from merely saying that “This is not what Cacti/Collectd/. . . does.”

• Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you are
using a prepackaged distribution that starts the database server at boot time, you should try to find out how
that is done.

• Anything you did at all differently from the installation instructions.

• The Munin version. If you run a prepackaged version, such as RPMs, say so, including any Subversion the
package might have. If you are talking about a Git snapshot, mention that, including the commit hash.

• If your version is older than 2.0.x we will almost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an older
release of Munin has already been fixed. We can only provide limited support for sites using older releases
of Munin; if you require more than we can provide, consider acquiring a commercial support contract.

• Platform information. This includes the kernel name and version, perl version, processor, memory informa-
tion, and so on. In most cases it is sufficient to report the vendor and version, but do not assume everyone
knows what exactly “Debian” contains or that everyone runs on amd64.

1.4.3 Where to Report

In general fill in the bug report web-form available at the project’s GitHub.

If your bug report has security implications and you’d prefer that it not become immediately visible in public
archives, don’t send it to bugs. Security issues can be reported privately to <security@munin-monitoring.org>.

Do not send bug reports to any of the user mailing lists. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them. If
you have some doubts about your issue being a bug, just drop by on IRC and ask there first.

If you have a problem with the documentation, the best place to report it is on IRC where most of the devs hang
out. Please be specific about what part of the documentation you are unhappy with.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are closed mailing
lists. That is, you need to be subscribed to a list to be allowed to post on it.

If you would like to send mail but do not want to receive list traffic, you can subscribe and set your subscription
option to nomail.

1.5 Documenting Munin

1.5.1 Munin Guide

The pages you are just viewing ;)

1.5. Documenting Munin 7

mailto:security@munin-monitoring.org

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The guide contains documentation about the Munin software.

It is written using reStructuredText1.

If you have a GitHub account, you can even edit the pages online and send a pull request to contribute your work
to the official Munin repository.

1.5.2 Plugin Documentation

Plugin documentation is included in each plugin, written using the POD2 style format

The command line utility munindoc can be used to display the info pages about the plugins. Call munindoc
buddyinfo to get the documentation for plugin buddyinfo.

Have a look at the munindoc instruction page in our Trac wiki and edit or add the pod section in the plugins code
file accordingly.

Finally send a patch or a pull request on github to help us improve the plugins documentation.

1.5.3 Munin Gallery

The plugin documentation is also included in the Munin Gallery.

See our Wiki page for instructions how to contribute also example images for the gallery.

1.5.4 Unix Manual Pages

The manual pages are included in, and generated from, the man pages in the Munin Guide.

1.5.5 Munin’s Wiki

The wiki contains documentation concerning anything around munin, whilst the documentation of the Munin
software is here in the Munin Guide.

This guide is the official documentation of Munin. It has been written by the Munin developers and other volun-
teers in parallel to the development of the Munin software. It aims to describe all the functionality that the current
version of Munin officially supports.

To make the large amount of information about Munin manageable, this guide has been organized in several parts.
Each part is targeted at a different class of users, or at users in different stages of their Munin experience. It is
nevertheless still designed to be read as a book, sequentially, for the 3 first parts.

Further parts can be read in a more random manner, as one will search for a specific thing in it. Extensive care has
been taken to fully leverage the hyperlinking abilities of modern documentation readers.

Preface

This is the part you are currently reading.

It focus on very generic information about Munin, and also gives some guidelines on how to interact
with the Munin ecosystem.

Every Munin user should read this.

Part I - Tutorial
1 Pod is a simple-to-use markup language used for writing documentation for Perl, Perl programs, and Perl modules. (And Munin plugins)

See the perlpod Manual for help on the syntax.
2 The reStructuredText (frequently abbreviated as reST) project is part of the Python programming language Docutils project of the Python

Doc-SIG (Documentation Special Interest Group). Source Wikipedia: http://en.wikipedia.org/wiki/ReStructuredText
See the reSTructuredText Primer for help on the syntax.

8 Chapter 1. Preface

https://github.com/
http://munin-monitoring.org/wiki/munindoc
http://gallery.munin-monitoring.org
http://munin-monitoring.org/wiki/PluginGallery
http://munin-monitoring.org/wiki/
https://guide.munin-monitoring.org/
http://perldoc.perl.org/perlpod.html
http://en.wikipedia.org/wiki/ReStructuredText
http://sphinx-doc.org/rest.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

This part is an informal introduction for new users. It will try to cover most of what a user is expected
to know about Munin. The focus here is really about taking the user by the hand and showing him
around, while getting his hands a little wet.

Every Munin user should read this.

Part II - Architecture

This part documents the various syntax that are used all throughout Munin. It is about every thing
a normal user can look himself without being considered as a developer. It means the syntax of the
various config files, and the protocol on the network.

Every Munin user should read this.

Part III - Install

This part describes the installation and administration of the server. It is about the OS part of Munin,
which would be UID, path for the various components, how upgrades should be handled. It is also
about how Munin interacts with its environment, such as how to secure a Munin install1, how to
enhance the performance of it.

Everyone who runs a Munin server, be it for private use or for others, should read this part.

Part IV - API

This part describes the programming interfaces for Munin for advanced users, such as the SQL schema
of the metadata, or the structure of the spool directories. It should cover everything that isn’t covered
by Part II.

Part V - Advanced use

This part contains information for really advanced users about the obscure capabilities of Munin.
Topics include undocumented stuff or even unwritten stuff that is still only in RFC phase.

Part VI - Reference

This part contains reference information about Munin commands, client and server programs. This
part supports the other parts with structured information sorted by command or program. This also
serves as a repository for the full sample configs that are studied in the Part I

Part VII - Others

This part contains assorted information that might be of use to Munin developers. This section serves
usually as incubator for elements before they migrate to the previous parts.

Note: If you think that our Guide looks quite familiar, it is done on purpose, as we took a great inspiration of
PostgreSQL’s Manual. We even copied some generic sentences that were already very well worded.

In fact, the PostgreSQL project was, and still is, of a great guidance, as it does so many things right. The parts that
were imported from PostgreSQL are obviously still under the PostgreSQL license2.

1 Even how to configure SELinux with Munin !
2 We are not license experts, so if a PostgreSQL license guru has some issues with that, we’ll be happy to resolve them together.

1.5. Documenting Munin 9

http://www.postgresql.org/docs/devel/static/index.html
http://www.postgresql.org/about/licence/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

10 Chapter 1. Preface

CHAPTER 2

Tutorial

Welcome to the Munin Tutorial. The following few chapters are intended to give a simple introduction to Munin,
monitoring concepts, and the Munin protocol to those who are new to any one of these aspects. We only assume
some general knowledge about how to use computers. No particular Unix or programming experience is required.
This part is mainly intended to give you some hands-on experience with important aspects of the Munin system.
It makes no attempt to be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more formal
knowledge of the Munin protocol, or Part IV for information about developing applications for Munin. Those
who set up and manage their own server should also read Part III.

2.1 Getting Started

Please refer to the Nomenclature part to understand the terms used in this guide.

2.1.1 Installation

Before you can use Munin you need to install it, of course. It is possible that Munin is already installed at your site,
either because it was included in your operating system distribution or because the system administrator already
installed it. If that is the case, you should obtain information from the operating system documentation or your
system administrator about how to access Munin.

If you are installing Munin yourself, then refer to Install Chapter for instructions on installation, and return to
this guide when the installation is complete. Be sure to follow closely the section about setting up the appropriate
configuration files.

All the tutorial will assume a Debian installation, so all the commands are suited to the Debian package man-
agement system. As the one in Ubuntu is mostly the same, examples should work unchanged. For RPM-based
systems, the equivalent yum command is left as an exercise to the reader, but should not be very hard to get.

We cannot speak about every other OS, but any UNIX-like have been reported to work. Your safest best should
still to stick to a supported OS if you don’t feel adventurous.

Also, you should need a dedicated server for the master role, as it mostly requires root access. Again, it is not
required, but safety, and ability to copy/paste the samples, advise you to stick to these guidelines.

11

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.1.2 Architectural Fundamentals

Munin has a master-nodes architecture. See Munin’s Architecture for the details.

2.1.3 Adding a Node

Thanks to the plug-and-play architecture of Munin, this is very easy. You obviously have to install the node part
on the host you want to monitor.

$ apt-get install munin-node

This will install the node, some default plugins and launch it.

As the node runs as the root user in order to run plugins as any needed user, it now only listens on localhost as a
security measure. You have to edit munin-node.conf in order to listen to the network, and add the master’s IP on

12 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

the authorized list.

And don’t forget to install munin-node also on the “Munin master” machine to monitor Munin’s activities :-)

2.2 Wildcard Plugins

Wildcard plugins are plugins designed to be able to monitor more than one resource. By symlinking the plugin to
different identifiers, the exact same plugin will be executed several times and give the associated output.

2.2.1 Operation & Naming Convention

Our standard example plugin is the if_ plugin, which will collect data from the different network interfaces on a
system. By symlinking if_ to if_eth0 and if_eth1, both interfaces will be monitored, and creating separate
graphs, using the same plugin.

Wildcard plugins should, by nomenclature standards, end with an underscore (_).

2.2.2 Installation

Because a wildcard plugin normally relies on the symlink name to describe what item of data it is graphing,
the plugin itself should be installed in the system-wide plugin dir (/usr/share/munin/plugins in Linux).
Then via the munin-node-configure command, your munin-node will suggest shell commands to setup the required
symlinks in the servicedir under /etc/munin/plugins.

For 3rd-Party wildcard plugins We recommend to install them into an own directory e.g. /usr/local/
munin/lib/plugins and call munin-node-configure with flag --libdir <your 3rd-party
directory>.

E.g.:

Before the plugin is installed:

munin-node-configure --shell

Install the new plugin:

mv /tmp/smart_ /usr/share/munin/plugins/smart_

Rescan for installed plugin:

munin-node-configure --shell
ln -s /usr/share/munin/plugins/smart_ /etc/munin/plugins/smart_hda
ln -s /usr/share/munin/plugins/smart_ /etc/munin/plugins/smart_hdc

You can now either manually paste the symlink commands into a shell, or pipe the output of
munin-node-configure --shell to a shell to update in one sequence of commands.

2.2.3 SNMP Wildcard Plugins

SNMP plugins are a special case, as they have not only one but two parts of the symlinked filename replaced with
host-specific identifiers.

SNMP plugins follow this standard: snmp_[hostname]_something_[resource to be
monitored]

E.g.: snmp_10.0.0.1_if_6

which will monitor interface 6 on the host 10.0.0.1. The unlinked filename for this plugin is snmp__if_
(note two underscores between snmp and if).

2.2. Wildcard Plugins 13

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

See Using SNMP plugins for information about configuring SNMP plugins.

2.3 Using SNMP plugins

(Cribbed from an e-mail written by Rune Nordbøe Skilingstad)

The easy way to configure SNMP plugins in Munin is to use munin-node-configure.

In this setup, both munin and munin-node runs on the server “dumbledore”, and we also want to monitor the router
“netopia” using SNMP plugins. The setup is shown below:

On the node you want to use as an SNMP gateway (“dumbledore”), run the configure script against your SNMP-
enabled device (“netopia”).

dumbledore:~# munin-node-configure --shell --snmp netopia
ln -s /usr/share/munin/plugins/snmp__if_ /etc/munin/plugins/snmp_netopia_if_1
ln -s /usr/share/munin/plugins/snmp__if_err_ /etc/munin/plugins/snmp_netopia_if_
→˓err_1

Note that munin-node-configure also accepts other switches, namely --snmpversion and
--snmpcommunity:

munin-node-configure --shell --snmp <host|cidr> --snmpversion <ver> --
→˓snmpcommunity <comm>

This process will check each plugin in your Munin plugin directory for the magic markers family=snmpauto
and capabilities=snmpconf, and then run each of these plugins against the given host or CIDR network.

Cut and paste the suggested ln commands and restart your node.

The node will then present multiple virtual nodes:

dumbledore:~# telnet localhost 4949
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
munin node at dumbledore
nodes
netopia
dumbledore
.
list netopia

(continues on next page)

14 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

snmp_netopia_if_1
snmp_netopia_if_err_1

On your master server (where you gather the information into rrd files) you add this virtual node to your
munin.conf (example contains both real node and the virtual one – both with the same address line)

[dumbledore]
address 127.0.0.1
use_node_name yes

[netopia]
address 127.0.0.1
use_node_name no

Next time munin-cron runs, the virtual node should start showing up in your Munin website.

You cannot easily set the SNMP community if it is different from the default public.

Recommended solution:

munin-node-configure --snmp your.host.domain.tld --snmpcommunity "seacrat
→˓community"

Note that the community strings are not automatically saved anywhere. You will have to store them yourself to a
file under /etc/munin/plugin-conf.d/. This file should not be world readable.

Example file /etc/munin/plugin-conf.d/snmp_communities:

[snmp_netopia_*]
env.community seacrat community

[snmp_some.other.device_*]
env.community frnpeng pbzzhavgl

Always provide your community name unquoted. In fact, if you do quote it, it will treat the quote as part of the
community name, and that will usually not work. Just note that any prefix or trailing white space is stripped out,
so you cannot currently configure a community name with a prefix or trailing white space.

To probe SNMP hosts over IPv6, use --snmpdomain udp6 with munin-node-configure. To have the
SNMP plugins poll devices over IPv6, set the domain environment variable to udp6 in the plugin configuration
file. Other transports are available; see the Net::SNMP perldoc for more options.

2.4 Let Munin croak alarm

As of Munin 1.2 there is a generic interface for sending warnings and errors from Munin. If a Munin plugin
discovers that a plugin has a data source breaching its defined limits, Munin is able to alert the administrator either
through simple command line invocations or through a monitoring system like Nagios or Icinga.

Note that if the receiving system can cope with only a limited number of messages at the time, the configuration
directive contact.contact.max_messages may be useful.

When sending alerts, you might find good use in the Munin alert variables.

Note: Alerts not working? For some versions 1.4 and less, note that having more than one contact defined can
cause munin-limits to hang.

2.4. Let Munin croak alarm 15

http://munin-monitoring.org/ticket/732

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.4.1 Sending alerts through Nagios

How to set up Nagios and Munin to communicate has been thoroughly described in Munin and Nagios.

2.4.2 Alerts send by local system tools

Email Alert

To send email alerts directly from Munin use a command such as this:

contact.email.command mail -s "Munin-notification for ${var:group} :: ${var:host}"
→˓your@email.address.here

Syslog Alert

To send syslog message with priority use a command such as this:

contact.syslog.command logger -p user.crit -t "Munin-Alert"

Alerts to or through external scripts

To run a script (in this example, ‘script’) from Munin use a command such as this in your munin.conf.

Make sure that:

1. There is NO space between the ‘>’ and the first ‘script’

2. ‘script’ is listed twice and

3. The munin user can find the script – by either using an absolute path or putting the script somewhere on the
PATH – and has permission to execute the script.

contact.person.command >script script

This syntax also will work (this time, it doesn’t matter if there is a space between ‘|’ and the first ‘script’ . . .
otherwise, all the above recommendations apply):

contact.person.command | script script

Either of the above will pipe all of Munin’s warning/critical output to the specified script. Below is an example
script to handle this input and write it to a file:

#!/usr/bin/env ruby

File.open('/tmp/munin_alerts.log', 'a') do |f| #append
f.puts Time.now
for line in $stdin

f.puts line
end

end

The alerts getting piped into your script will look something like this:

localhost :: localdomain :: Inode table usage
CRITICALs: open inodes is 32046.00 (outside range [:6]).

16 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.4.3 Syntax of warning and critical

The plugin.warning and plugin.critical values supplied by a plugin can be overwritten by the Munin
master configuration in munin.conf .

Note that the warning/critical exception is raised only if the value is outside the defined value. E.g. foo.
warning 100:200 will raise a warning only if the value is outside the range of 100 to 200.

2.4.4 Reformatting the output message

You can redefine the format of the output message by setting Global Directive contact.<something>.text in
munin.conf using Munin alert variables.

Something like:

contact.pipevia.command | /path/to/script /path/to/script \
--cmdlineargs="${var:group} ${var:host} ${var:graph_category} '${var:graph_

→˓title}'"

contact.pipevia.always_send warning critical

contact.pipevia.text <munin group="${var:group}" host="${var:host}"\
graph_category="${var:graph_category}" graph_title="${var:graph_title}" >\
${loop< >:wfields <warning label="${var:label}" value="${var:value}"\
w="${var:wrange}" c="${var:crange}" extra="${var:extinfo}" /> }\

${loop< >:cfields <critical label="${var:label}" value="${var:value}"\
w="${var:wrange}" c="${var:crange}" extra="${var:extinfo}" /> }\

${loop< >:ufields <unknown label="${var:label}" value="${var:value}"\
w="${var:wrange}" c="${var:crange}" extra="${var:extinfo}" /> }\

</munin>

Calls the script with the command line arguments (as a python list):

['/path/to/script','/path/to/script','--cmdlineargs="example.com', 'test.example.
→˓com', 'disk', 'Disk usage in percent', '']

and the input sent to the script is (whitespace added to break long line):

'<munin group="example.com" host="test.example.com" graph_category="disk" graph_
→˓title="Disk usage in percent" >
<critical label="/home" value="98.41" w=":92" c=":98" extra="" />

</munin> '

(need for the second /path/to/script may vary, but this document says it is required)

If something goes wrong:

• check the log file for munin-limits.log.

• remember this script will run as the same user as the cron job that starts munin-cron.

For more examples see section Example usage below.

2.4.5 Munin Alert Variables

When using Munin’s built-in alert mechanisms, lots of variables are available. Generally, all directives recog-
nized in the configuration protocol and in munin.conf .conf are available as ${var:directive}. We list some
frequently used in the following section.

2.4. Let Munin croak alarm 17

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Group or host or plugin related variables

These are directly available.

Variable group

Syntax ${var:group}

Reference Group name as declared in munin.conf.

Variable host

Syntax ${var:host}

Reference Host name as declared in munin.conf.

Variable graph_title

Syntax ${var:graph_title}

Reference Plugin’s title as declared via config protocol or set in munin.conf.

Variable plugin

Syntax ${var:plugin}

Reference Plugin’s name as declared via config protocol or set in munin.conf.

Variable graph_category

Syntax ${var:graph_category}

Reference Plugin’s category as declared via config protocol or set in munin.conf.

Data source related variables

The below table lists some variables related to the data fields in a plugin. To extract these, they must be iterated
over, even if there is only one field. Iteration follows the syntax defined in the Perl module Text::Balanced (sample
below the table).

Variable {fieldname}.label

Syntax ${var:label}

Reference Label of the data field as declared via plugin’s config protocol or set in munin.conf.

Variable {fieldname}.value

Syntax ${var:value}

Reference Value of the data field as delivered by data fetch

Variable {fieldname}.extinfo

Syntax ${var:extinfo}

18 Chapter 2. Tutorial

http://search.cpan.org/dist/Text-Balanced/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Reference Extended info of the field, if declared via plugin’s config protocol or set in munin.conf.

Variable {fieldname}.warning

Syntax ${var:wrange}

Reference Numeric range for warning alerts of the field, if declared via plugin’s config protocol or
set in munin.conf.

Variable {fieldname}.critical

Syntax ${var:crange}

Reference Numeric range for critical alerts of the field, if declared via plugin’s config protocol or set
in munin.conf.

Variable wfields

Syntax ${var:wfields}

Reference Space separated list of fieldnames with a value outside the warning range as detected by
munin-limit.

Variable cfields

Syntax ${var:cfields}

Reference Space separated list of fieldnames with a value outside the critical range as detected by
munin-limit.

Variable ufields

Syntax ${var:ufields}

Reference Space separated list of fieldnames with an unknown value as detected by munin-limit.

How variables are expanded

The ${var:value} variables get the correct values from munin-limits prior to expansion of the variable.

Then, the ${var:*range} variables are set from {fieldname}.warning and {fieldname}.critical.

Based on those, {fieldname}.label occurrences where warning or critical levels are breached or unknown
are summarized into the ${var:*fields} variables.

Example usage

Note that the sample command lines are wrapped for readability.

Example 1, iterating through warnings and criticals

contact.mail.command mail -s "[${var:group};${var:host}] -> ${var:graph_title} ->
warnings: ${loop<,>:wfields ${var:label}=${var:value}

→˓} /
criticals: ${loop<,>:cfields ${var:label}=$

→˓{var:value}}" me@example.com

This stanza results in an e-mail with a subject like this:

2.4. Let Munin croak alarm 19

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

[example.com;foo] -> HDD temperature -> warnings: sde=29.00,sda=26.00,sdc=25.00,
→˓sdd=26.00,sdb=26.05 / criticals:

Note that there are no breaches of critical level temperatures, only of warning level temperatures.

Example 2, reading ${var:wfields}, ${var:cfields} and ${var:ufields} directly

contact.mail.command mail -s "[${var:group};${var:host}] -> ${var:graph_title} ->
warnings: ${var:wfields} /
criticals: ${var:cfields} /
unknowns: ${var:ufields}" me@example.com

The result of this is the following:

[example.com;foo] -> HDD temperature -> warnings: sde sda sdc sdd sdb / criticals:
→˓/ unknowns:

Iteration using Text::Balanced

The Text::Balanced iteration syntax used in munin-limits is as follows (extra spaces added for readability):

${ loop < join character > : list of words ${var:label} = ${var:value} }

Given a space separated list of words “a b c”, and the join character “,” (comma), the output from the above will
equal

a.label = a.value,b.label = b.value,c.label = c.value

in which the label and value variables will be substituted by their Munin values.

Please consult the Text::Balanced documentation for more details.

2.5 Munin and Nagios

Munin integrates perfectly with Nagios. There are, however, a few things of which to take notice. This article
shows example configurations and explains the communication between the systems.

2.5.1 Setting up Nagios passive checks

Receiving messages in Nagios

First you need a way for Nagios to accept messages from Munin. Nagios has exactly such a thing, namely the
NSCA which is documented here: NSCA.

NSCA consists of a client (a binary usually named send_nsca and a server usually run from inetd. We
recommend that you enable encryption on NSCA communication.

You also need to configure Nagios to accept messages via NSCA. NSCA is, unfortunately, not very well doc-
umented in Nagios’ official documentation. We’ll cover writing the needed service check configuration further
down in this document.

Configuring Nagios

In the main config file, make sure that the command_file directive is set and that it works. See External
Command File for details.

Below is a sample extract from nagios.cfg:

20 Chapter 2. Tutorial

http://search.cpan.org/dist/Text-Balanced/
http://nagios.sourceforge.net/docs/nagioscore/3/en/addons.html#nsca
http://nagios.sourceforge.net/docs/nagioscore/3/en/configmain.html#command_file
http://nagios.sourceforge.net/docs/nagioscore/3/en/configmain.html#command_file

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

command_file=/var/run/nagios/nagios.cmd

The /var/run/nagios directory is owned by the user nagios runs as. The nagios.cmd is a named pipe on
which Nagios accepts external input.

Configuring NSCA, server side

NSCA is run through some kind of (x)inetd.

Using inetd

the line below enables NSCA listening on port 5667:

5667 stream tcp nowait nagios /usr/sbin/tcpd /usr/sbin/nsca -c /
→˓etc/nsca.cfg --inetd

Using xinetd

the lines below enables NSCA listening on port 5667, allowing connections only from the local host:

description: NSCA (Nagios Service Check Acceptor)
service nsca
{
flags = REUSE
type = UNLISTED
port = 5667
socket_type = stream
wait = no

server = /usr/sbin/nsca
server_args = -c /etc/nagios/nsca.cfg --inetd
user = nagios
group = nagios

log_on_failure += USERID

only_from = 127.0.0.1
}

Common

The file /etc/nsca.cfg defines how NSCA behaves. Check in particular the nsca_user and
command_file directives, these should correspond to the file permissions and the location of the named pipe
described in nagios.cfg.

nsca_user=nagios
command_file=/var/run/nagios/nagios.cmd

Configuring NSCA, client side

The NSCA client is a binary that submits to an NSCA server whatever it received as arguments. Its behaviour is
controlled by the file /etc/send_nsca.cfg, which mainly controls encryption.

2.5. Munin and Nagios 21

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

You should now be able to test the communication between the NSCA client and the NSCA server, and conse-
quently whether Nagios picks up the message. NSCA requires a defined format for messages. For service checks,
it’s like this:

<host_name>[tab]<svc_description>[tab]<return_code>[tab]<plugin_output>[newline]

Below is shown how to test NSCA.

$ echo -e "foo.example.com\ttest\t0\t0" | /usr/sbin/send_nsca -H localhost -c /etc/
→˓send_nsca.cfg
1 data packet(s) sent to host successfully.

This caused the following to appear in /var/log/nagios/nagios.log:

[1159868622] Warning: Message queue contained results for service 'test' on host
→˓'foo.example.com'. The service could not be found!

2.5.2 Sending messages from Munin

Messages are sent by munin-limits based on the state of a monitored data source: OK, Warning, Critical and
Unknown (O/W/C/U).

Configuring munin.conf

Nagios uses the above mentioned send_nsca binary to send messages to Nagios. In /etc/munin/munin.
conf, enter this:

contacts nagios
contact.nagios.command /usr/bin/send_nsca -H your.nagios-host.here -c /etc/send_
→˓nsca.cfg

Note: Be aware that the -H switch to send_nsca appeared sometime after send_nsca version 2.1. Always
check send_nsca --help!

Configuring Munin plugins

Lots of Munin plugins have (hopefully reasonable) values for Warning and Critical levels. To set or override these,
you can change the values in munin.conf .

Configuring Nagios services

Now Nagios needs to recognize the messages from Munin as messages about services it monitors. To accomplish
this, every message Munin sends to Nagios requires a matching (passive) service defined or Nagios will ignore
the message (but it will log that something tried).

A passive service is defined through these directives in the proper Nagios configuration file:

active_checks_enabled 0
passive_checks_enabled 1

A working solution is to create a template for passive services, like the one below:

22 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

define service {
name passive-service
active_checks_enabled 0
passive_checks_enabled 1
parallelize_check 1
notifications_enabled 1
event_handler_enabled 1
register 0
is_volatile 1

}

When the template is registered, each Munin plugin should be registered as per below:

define service {
use passive-service
host_name foo
service_description bar
check_period 24x7
max_check_attempts 3
normal_check_interval 3
retry_check_interval 1
contact_groups linux-admins
notification_interval 120
notification_period 24x7
notification_options w,u,c,r
check_command check_dummy!0

}

Notes

• host_name is either the FQDN of the host_name registered to the Nagios plugin, or the host alias corre-
sponding to Munin’s notify_alias directive. The host_name must be registered as a host in Nagios.

• service_description must correspond to the plugin’s name, and for Nagios to be happy it shouldn’t
have any special characters. If you’d like to change the service description from Munin, use notify_alias on
the data source. Available in Munin-1.2.5 and later.

A working example is shown below:

[foo.example.com]
address foo.example.com
df.notify_alias Filesystem usage
The above changes from Munin's default "Filesystem usage (in %)"

What characters are allowed in a Nagios service definition?

See Nagios docs on Illegal Object Name Characters

service_description: This directive is used to define the description of the service, which may contain
spaces, dashes, and colons (semicolons, apostrophes, and quotation marks should be avoided). No two services
associated with the same host can have the same description. Services are uniquely identified with their host_name
and service_description directives.

Note: This means that lots of Munin plugins will not be accepted by Nagios. This limitation impacts every plugin
with special characters in them, e.g. ‘(‘, ‘)’, and ‘%’. Workarounds are described in ticket #34 and the bug has
been fixed in the Munin code in changeset 1081.

Alternatively you can use check_munin.pl to gather fresh data from nagios instead of check_dummy.

2.5. Munin and Nagios 23

http://munin-monitoring.org/wiki/host_name
http://munin-monitoring.org/wiki/notify_alias
http://munin-monitoring.org/wiki/notify_alias
http://nagios.sourceforge.net/docs/3_0/configmain.html#illegal_object_name_chars
http://munin-monitoring.org/ticket/34
http://exchange.nagios.org/directory/Plugins/Uncategorized/Operating-Systems/Linux/check_munin_rrd/details

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.5.3 Sample munin.conf

To illustrate, a (familiar) sample munin.conf configuration file shows the usage:

contact.nagios.command /usr/local/nagios/bin/send_nsca nagioshost.example.com -c /
→˓usr/local/nagios/etc/send_nsca.cfg -to 60

contacts no # Disables warning on a system-wide basis.

[example.com;]
contacts nagios # Enables warning through the "nagios" contact for

→˓the group example.com

[foo.example.com]
address localhost
contacts no # Disables warning for all plugins on the host foo.

→˓example.com.

[example.com;bar.example.com]
address bar.example.com
df.contacts no # Disables warning on the df plugin only.
df.notify_alias Disk usage # Uses the title "Disk usage" when sending warnings

→˓through munin-limits
Useful if the receiving end does not accept all

→˓kinds of characters
NB: Only available in Munin-1.2.5 or with the

→˓patch described in ticket 34.

2.5.4 Setting up Nagios active checks

Use check_munin.p to get data from munin-node directly into nagios and then use it as a regular check plugin.
Basically munin-node become a kind of snmp agent with a lot of preconfigured plugins.

2.6 Advanced Features

2.6.1 Introduction

2.6.2 Alias

2.6.3 Aggregate graphs

Now and again, the need to combine one or more graphs shows up.

Munin facilitates this through the use of fieldname.sum and/or fieldname.stack.

See Graph aggregation stacking example and Graph aggregation by example for details.

24 Chapter 2. Tutorial

http://exchange.nagios.org/directory/Plugins/Uncategorized/Operating-Systems/Linux/check_munin_rrd/details

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.6.4 Supersampling

2.6.5 Conclusion

2.7 Extraordinary Usage

2.7.1 Introduction

Most of us use Munin to monitor network traffic and service activities in IT environment, but as it can monitor
anything that is expressible in numbers. There are a lot more operational scenarios one can think of. Here we
collect reports and links about these unusual use cases ;-)

2.7.2 Examples

• Monitoring the temparature values of a Ökofen Pellematic

• How to write a plugin to monitor departures from Munich airport

2.8 Monitoring the “unreachable” hosts

There are a number of situations where you’d like to run munin-node on hosts not directly available to the Munin
server. This article describes a few scenarios and different alternatives to set up monitoring. Monitoring hosts
behind a non-routing server.

In this scenario, a *nix server sits between the Munin server and one or more Munin nodes. The server in-between
reaches both the Munin server and the Munin node, but the Munin server does not reach the Munin node or vice
versa.

To enable for Munin monitoring, there are several approaches, but mainly either using SSH tunneling or “bounc-
ing” via the in-between server.

2.8.1 SSH tunneling

The illustration below shows the principle. By using SSH tunneling only one SSH connection is required, even if
you need to reach several hosts on “the other side”. The Munin server listens to different ports on the localhost
interface. A configuration example is included. Note that there is also a FAQ entry on using SSH that contains
very useful information.

2.7. Extraordinary Usage 25

http://honk.sigxcpu.org/con/Monitoring_the_temparature_values_of_a__kofen_Pellematic_using_munin.html
http://www.linuxjournal.com/magazine/muninmdashthe-raven-reports
http://munin-monitoring.org/wiki/MuninConfigurationNetworkTunneling
http://munin-monitoring.org/wiki/faq#Q:HowcanIuseanSSHtunneltoconnecttoanode

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.8.2 Bouncing

This workaround uses netcat and inetd/xinetd to forward the queries from the Munin server. All incoming con-
nections to defined ports are automatically forwarded to the Munin node using netcat.

The in-between server (“bouncer”) assigns and opens different TCP ports pointing to each of the Munin nodes
you need to reach. This is really quite identical to regular port forwarding (see next section below).

Comparing this method to SSH tunneling, using (x)inetd does not require a login account on the bouncer, while
the downside is that the access control may be weaker and you might need to open lots of TCP ports.

From /etc/services on the bouncer:

munin 4949/tcp
munin-server-a 5001/tcp
munin-server-b 5002/tcp
munin-server-c 5003/tcp

If you use inetd, entries like these must exist in /etc/inetd.conf on the bouncer:

munin-server-a stream tcp nowait root /usr/bin/nc /usr/bin/nc -w 30
→˓server-a munin
munin-server-b stream tcp nowait root /usr/bin/nc /usr/bin/nc -w 30
→˓server-b munin
munin-server-c stream tcp nowait root /usr/bin/nc /usr/bin/nc -w 30
→˓server-c munin

If you use xinetd, the /etc/xinetd.d/ directory on the bouncer needs one file each for the different servers
(Server-A, Server-B and Server-C). For easier recognition, it’s a good idea to prefix the files with for example
“munin-“. A sample munin-server-a file looks like this (note that the file name equals the “service” directive, and
that the destination server and port are given as server_args):

service munin-server-a
{

disable = no
socket_type = stream
wait = no
user = root
protocol = tcp
server = /usr/bin/nc
server_args = -w 30 server-a munin

}

The node definitions in munin.conf on Munin Master must be configured accordingly:

26 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

[Server-A]
address bouncer
port 5001
use_node_name yes

[Server-B]
address bouncer
port 5002
use_node_name yes

[Server-C]
address bouncer
port 5003
use_node_name yes

Note: In this scenario your Munin Nodes have to allow connections (in munin-node.conf) from the IP address
of the bouncer and not from the Munin Master as usual.

2.8.3 Behind a NAT device

Monitoring hosts behind a NAT device (e.g. DSL router or firewall)

If you have one or more Munin nodes on the “inside” of a NAT device, port forwarding is probably the easiest
way to do it. Configuring port forwarding on all kinds of network units and firewall flavours is way beyond the
scope of the Munin documentation, but the illustration below show the principle.

The port mapping links TCP port 5001 to server A, port 5002 to server B, and port 5003 to server C.

After you have successfully configured this, the node definitions in munin.conf on Munin Master must be config-
ured accordingly:

[Server-A]
address bouncer
port 5001
use_node_name yes

[Server-B]
address bouncer
port 5002
use_node_name yes

[Server-C]

(continues on next page)

2.8. Monitoring the “unreachable” hosts 27

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

address bouncer
port 5003
use_node_name yes

Note that if the NAT device is a *nix system, you may also use the two approaches described above.

2.9 Troubleshooting

This page lists some general troubleshooting strategies and methods for Munin.

2.9.1 Check node agent

Is the munin-node process (daemon) running on the host you want to monitor?

Did you restart the munin-node process after you made changes to its configuration?

2.9.2 Check connectivity

The examples show a munin-node agent running on 127.0.0.1; replace it with your node address.

Note: You can use netcat to port 4949.

Using telnet was the previous recommended way as it was a fairly standard install. We don’t recommend
it anymore since netcat is now almost as ubiquitous as telnet and it offers a real native TCP connection,
whereas telnet does not. Note that using socat also works perfectly, but it is not as mainstream.

Does the munin-node agent allow connections from your munin master?

Here we try to connect manually to the munin-node that runs on the Munin master host. It can be reached via IP
address 127.0.0.1 or hostname localhost and port 4949.

Output of a netcat session should be something like this:

nc localhost 4949
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
munin node at [your hostname]

Does the above output give the same hostname that should be expected upon configuration in munin.conf ?

Note: If you have a fully qualified domain name (FQDN) in munin-node.conf , the host you’re monitoring has to
identify itself with FQDN as well.

E.g. if the masters node tree has the following entry:

[foo.example.com]
address foo.example.com

. . . then a netcat session to the node should give you the following output:

munin node at foo.example.com

28 Chapter 2. Tutorial

http://netcat.sourceforge.net/
http://stackoverflow.com/questions/12730293/how-does-telnet-differ-from-a-raw-tcp-connection

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Note: If the connection test fails, check the allow directive in munin-node.conf and make sure any firewalls allow
contact on destination port 4949.

2.9.3 Check the Logs

Munin’s log files (typically below /var/log/munin/) are a good source of information while debugging
problems.

Log files of a munin-node:

• munin-node.log and munin-node-configure.log: configuration issues and connection mes-
sages

Log files of a munin master:

• munin-cgi-graph.log and munin-graph.log: issues with generating graphs

• munin-cgi-html.log and munin-html.log: issues with generating html content

• munin-update.log: fetch configuration and values from a remote munin-node

• munin-limits.log: generated alarms due to specified warning/critical thresholds

2.9.4 Debugging Plugins

Which plugins are enabled on the node?

Does munin-node recognize any plugins? Try issuing the command list (being connected to the agent) and a
(long) list of plugins should show.

nc localhost 4949
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
munin node at foo.example.com
list
open_inodes irqstats if_eth0 df uptime [...]

Note: Some plugins require specific capabilities (most notably: multigraph). These plugins do not show up in
the list, unless the client announces this capability. For example type cap multigraph before list in order
to also find multigraph plugins in the list.

Check a particular plugin

Check on agent host

Note: All the commands here need to be run as user root. A common method of becoming root is via the
sudo command, but refer to your local documentation for a more specific instruction.

Restart munin-node, as it only reads the plugin list upon start. (Good to test a plugin with munin-run, without
enabling it right away.)

/etc/init.d/munin-node restart

2.9. Troubleshooting 29

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Call munin-run on the monitored host to see whether the plugin runs through.

Try with and without the config plugin argument. Both runs should not emit any error message.

Note: You can also use the --debug flag, as it shows if the configuration file is correctly parsed, mostly for
UID & environment variables.

Regular run:

munin-run df
_dev_hda1.value 83

Config run:

munin-run df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_category disk
graph_info This graph shows disk usage on the machine.
_dev_hda1.label /
_dev_hda1.info / (ext3) -> /dev/hda1
_dev_hda1.warning 92
_dev_hda1.critical 98

Check from Munin master

Does the plugin run through munin-node, with and without config?

Regular run:

nc foo.example.com 4949
Trying foo.example.com...
Connected to foo.example.com.
Escape character is '^]'.
munin node at foo.example.com
fetch df
_dev_hda1.value 83
[...]
.

With config:

nc foo.example.com 4949
Trying foo.example.com...
Connected to foo.example.com.
Escape character is '^]'.
munin node at foo.example.com
config df
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_category disk
graph_info This graph shows disk usage on the machine.
_dev_hda1.label /boot
_dev_hda1.info /boot (ext3) -> /dev/hda1
_dev_hda1.warning 92
_dev_hda1.critical 98
[...]
.

If the plugin works for munin-run but not through netcat, you might have a $PATH problem.

30 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Note: Set {{{env.PATH}}} for the plugin in the plugin’s environment file.

2.9.5 Check Munin Master

Do the directories specified by dbdir, htmldir, logdir and rundir defined in munin.conf have the correct
permissions? (If you first run munin as root, maybe they’re not readable/writeable by the user that runs the cron
job)

Is munin-cron established as a cron controlled process, run as the Munin user?

Does the output when running munin-update as the Munin user on the server node show any errors?

Try running “munin-cron --debug > /tmp/munin-cron.debug” and check the output file /tmp/
munin-cron.debug.

Check data collection

This step will tell you whether munin-update (the master) is able to communicate with munin-node (the agent).

Run munin-update as user munin on the Munin master machine.

su -s /bin/bash munin
$ /usr/share/munin/munin-update --debug --nofork --host foo.example.com --service
→˓df

You should get a line like this:

Aug 11 22:39:51 - [6846] Updating /var/lib/munin/example.com/foo.example.com-df-_
→˓dev_hda1-g.rrd with 57

After this, replace df with the service you want to check, such as hddtemp_smartctl.

If one of these steps does not work, something is probably wrong with the plugin or how munin-node talks to the
plugin.

1. Does the plugin run when executed directly? If it runs when executed as root and not through munin-run
(as described above), the plugin has a permission problem. See this article on environment files.

2. Does the plugin output contain too few, too many and/or illegal characters?

3. Does Munin (munin-cron and its children) write values into RRD files? Hint: rrdtool fetch [rrd
file] AVERAGE

4. Does the plugin use legal field names? See Notes on Field names.

5. In case you loan data from other graphs, check that the fieldname.type is set properly. See Munin file names
for a quick reference on what any error messages in the logs might indicate.

2.9.6 Frequent Incidents

SELinux blocks Munin plugins

• See the documentation start page for links to SELinux rules for Munin.

RRD files are filled with 0

although munin-node seems to show sane values.

2.9. Troubleshooting 31

http://munin-monitoring.org/wiki/munin-node_behaviour_file
http://munin-monitoring.org/wiki/LoaningData
http://munin-monitoring.org/wiki/fieldname.type
http://munin-monitoring.org/wiki/MuninFileNames
http://munin-monitoring.org/wiki/Documentation#ThirdPartyArticles/Documents

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

• The plugin’s output shows GAUGE values, but were declared as COUNTER or DERIVE in the plugin’s
config.

Note: GAUGE is the default data type in Munin! Any other data type for a field must be explicitly declared.

RRD files are filled with NaN

although munin-node seems to show sane values.

• Check that there are no invalid characters in the plugin’s output.

• For new plugins let munin gather data for about 20 minutes and things will unwrinkle

munin-node won’t give any data

although it is configured properly.

• Check that there is a .value directive for every of the plugin’s field names (yes, I managed to forget that
recently).

munin-node only temporary returns valid data

• Check that no race conditions occur. A typical race condition is updating a file with crontab while the plugin
is trying to read the file.

The graphs are empty

• The plugin’s output shows GAUGE values, but were declared as COUNTER or DERIVE in the plugin’s
config. (GAUGE is default data type in Munin)

• The files to be updated by Munin are owned by root or another user account

• The local user browser cache may be corrupt, especially if “most” graphs are displayed correctly and “some”
graphs are blank. In Firefox (or your browser of choice) go to tools and clear recent history, then check to
see if the graphs are now properly displayed.

A plugin’s graph is missing

Check the following conditions if there is no graph produced for plugin:

• the plugin file (or a symlink to it) is placed in the plugin directory (typically: /etc/munin/plugins)

• the executable permission of the plugin file is set

• munin-node was restarted after the plugin was added

• user/group is configured for the plugin (if necessary)

• the plugin works as expected locally via munin-run

• the munin master supports all capabilities required by the plugin (e.g. type cap multigraph before
list in an interactive nc/telnet session)

• no related error messages for this plugin appear in /var/log/munin/munin-update.log (on the
munin master)

• an rrd file is created on the munin master (e.g. below /var/lib/munin)

32 Chapter 2. Tutorial

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Other mumbo-jumbo

• Run the different stages in munin-cron manually, using --debug, --nofork, something like this:

su - munin -c "/usr/lib/munin/munin-update \
--debug --nofork \
--host foo.example.com \
--service df"

2.9.7 See also

• No Graph FAQ

• Upgrade notes

2.9. Troubleshooting 33

http://munin-monitoring.org/wiki/FAQ_no_graphs

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

34 Chapter 2. Tutorial

CHAPTER 3

Munin’s Architecture

3.1 Overview

Munin has a master-nodes architecture.

35

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

3.2 Components

Here we describe the components of Munin. On page Protocols we talk about the rules for interaction between
them.

3.2.1 Munin-Master

The master is responsible for all central Munin-related tasks.

It regularly connects to the various nodes, and then synchronously asks for the various metrics configuration and
values and stores the data in RRD <https://oss.oetiker.ch/rrdtool/> files.

36 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

On the fly the values are checked against limits (that you may set) and the Munin-Master will croak, if values go
above or below the given thresholds.

Here we also generate the graphs, as this is a heavy task that needs some resources. Recent versions of Munin use
cgi-graphing to generate graphs only when the user wants to see them.

The Munin master

For an overview see Architectural Fundamentals

Role

The munin master is responsible for gathering data from munin nodes. It stores this data in RRD1, files, and graphs
them on request. It also checks whether the fetched values fell below or go over specific thresholds (warning,
critical) and will send alerts if this happens and the administrator configured it to do so.

Components

The following components are part of munin-master:

• munin-cron runs munin-limits and munin-update.
• munin-update is run by munin-cron. It is the munin data collector, and it fetches data from munin nodes,

which is then stored in RRD files.
• munin-limits is run by munin-cron. It notifies any configured contacts if a value moves between “ok”, “warn”

or “crit”. Munin is commonly used in combination with Nagios, which is then configured as a contact.

Additionally munin 2.0 contains two more components:

• munin-graph is run by munin-cron. It generates static graphs in PNG format. It is not needed if munin-httpd
is used.

• munin-cgi-graph is run by a web server, and generates graphs on request.
• munin-html is run by munin-cron. It generates static HTML pages. It is not needed if munin-httpd is used.
• munin-cgi-html is run by a web server, and generates HTML pages on request.

Configuration

The munin master has its primary configuration file at /etc/munin/munin.conf .

Fetching values

Data exchange between master and node

Connect to the node

telnet localhost 4949
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
munin node at foo.example.com
help
Unknown command. Try cap, list, nodes, config, fetch, version or quit

(continues on next page)

1 RRDtool (acronym for round-robin database tool) aims to handle time-series data like network bandwidth, temperatures, CPU load, etc.
The data are stored in a round-robin database (circular buffer), thus the system storage footprint remains constant over time. Source Wikipedia:
http://en.wikipedia.org/wiki/RRDtool

3.2. Components 37

https://oss.oetiker.ch/rrdtool/
http://en.wikipedia.org/wiki/RRDtool

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

.
Connection closed by foreign host.

Node commands

The Munin node daemon will understand and answer to the following inquiries.

cap Lists the capabilities of the node, e.g. multigraph dirtyconfig

list [node] Simply lists items available for gathering for this host. E.g. load, cpu, memory, df, et alia. If no host
is given, default to host that runs the munin-node.

nodes Lists hosts available on this node.

config <query-item> Shows the plugins configuration items. See the config protocol for a full description.

fetch <query-item> Fetches values

version Print version string

quit Close the connection. Also possible to use a point “.”.

capabilities

The master can exchange capabilities with the node using the “cap” keyword, and a list of capabili-
ties. For each capability supported by both the master and node, the node setes an environment variable
“MUNIN_CAP_CAPABILITY”, where CAPABILITY is the capability in upper case.

Capabilities used so far by munin node and master:

dirtyconfig

If the node and master support the “dirtyconfig” capability, the MUNIN_CAP_DIRTYCONFIG environment
variable is set for all plugins.

This allows plugin to send config and data when the master asks for “config” for this plugin, reducing the round
trip time.

multigraph

If the node and master support the “multigraph” capability, the MUNIN_CAP_MULTIGRAPH environment vari-
able is set for all plugins.

This allows plugins to use the “multigraph” format.

See also Protocol extension: multiple graphs from one plugin

spoolfetch

If the node and master support the “spoolfetch” capability, the master can use the “spoolfetch” command to retrieve
a spool of all plugin output since a given time.

This is used by Asynchronous proxy node.

38 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Example outputs

config

> config load
< graph_args --title "Load average"
< load.label Load
< .
> config memory
< graph_args --title "Memory usage" --base 1024
< used.label Used
< used.draw AREA
< shared.label Shared
< shared.draw STACK
< buffers.label Buffers
< buffers.draw STACK
< cache.label Cache
< cache.draw STACK
< free.label Free
< free.draw STACK
< swap.label Swap
< swap.draw STACK

fetch

Fetches the current values.

Returned data fields:

<field>.value

Numeric value, or ‘U’.

> fetch load
< load.value 0.42
< .
> fetch memory
< used.value 98422784
< shared.value 1058086912
< buffers.value 2912256
< cache.value 8593408
< free.value 235753472
< swap.value 85053440

Graphing Charts

Other documentation

Scaling the munin master with rrdcached

When the master grows big, and has a lot of nodes, there is a risk of disk IO becoming a bottleneck.

To reduce this disk IO, you can use the RRD Cache Daemon.

This will spool RRD changes in a queue, and flush changes on demand, and periodically. This will replace lots of
random writes with a much smaller amount of sequential writes.

The effects on disk IO can be quite dramatic.

3.2. Components 39

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

This example is a graph of a munin master with 400 nodes. Even with storage on mirrored SSDs, the effect of
adding rrdcached is an immediate reduction in IO, and especially on wait times.

Configuring rrdcached

Parameters

RRDCached writes the spool data every 5 minutes by default. This is the same as the munin master. To have an
effect, change the flushing intervals to allow more data to be spooled. Use the following parameters, and tune to
your liking:

-w 1800 Wait 30 minutes before writing data
-z 1800 Delay writes by a random factor of up to 30 minutes (this should be equal to, or lower than, “-w”)
-f 3600 Flush all data every hour

Example

Create a directory for the rrdcached journal, and have the “munin” user own it. (in this example:
/var/lib/munin/rrdcached-journal).

Set up a separate RRDCached instance, run by the munin user. The following command starts an RRDCached
instance, and can be added to /etc/rc.local.

sudo -u munin /usr/bin/rrdcached \
-p /run/munin/rrdcached.pid \
-B -b /var/lib/munin/ \
-F -j /var/lib/munin/rrdcached-journal/ \
-m 0660 -l unix:/run/munin/rrdcached.sock \
-w 1800 -z 1800 -f 3600

Note: While testing, add “-g” to the command line to prevent rrdcached from forking into the background.

40 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The munin grapher also needs write access to this socket, in order for it to tell the RRDCached to flush data needed
for graphing. If you run munin with CGI graphing, you will need to give the web server access. For a common
setup, run the following command, as root, after starting rrdcached:

chgrp www-data /run/munin/rrdcached.sock

Recommended: If you have systemd or upstart installed, use the examples below.

• Upstart configuration for rrdcached

• Systemd configuration for rrdcached

Configuring munin to use rrdcached

To enable rrdcached on the munin master, you will need to set the “rrdcached_socket” line in
/etc/munin/munin.conf

rrdcached_socket /run/munin/rrdcached.sock

Is it working?

If all goes well, you should see the following:

Munin logging

There should be no messages regarding rrdcached in /var/log/munin/munin-update.log.

On failure to connect, there will be log lines like:

2012/06/26 18:56:12 [WARN] RRDCached feature ignored: rrdcached socket not writable

. . . and you should then check for permissions problems.

RRDCached spool

The rrdcached spool file should be in /var/lib/munin/rrdcached-journal/, and it should grow for each run of munin-
update until it hits the flush time. The file looks like:

/var/lib/munin/rrdcached-journal/rrd.journal.1340869388.141124

For a munin master with 200 nodes, this could well grow to 100MiB, depending on the number of plugins, and
the spool file time parameters.

Monitoring rrdcached

Munin plugins to monitor rrdcached are in the distribution. You can download them also from our repository
plugin for stable 2.0 and plugin from master branch You need to configure your munin-node to run this plugin as
group rrdcached.

3.2.2 Munin-Node

The node is a small agent running on each monitored host. We can have agent-less monitoring but this is a special
case that will be addressed later. On machines without native support for Perl scripting you can use munin-c,
which is a C rewrite of munin node components. (Look for the details in the munin-c chapter.)

3.2. Components 41

https://github.com/munin-monitoring/munin/blob/stable-2.0/plugins/node.d.debug/rrdcached.in
https://github.com/munin-monitoring/munin/blob/master/plugins/node.d.debug/rrdcached
https://github.com/munin-monitoring/munin-c

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Note that an usual setup involves having a node running also on the master host, in order to munin to monitor
itself.

The Munin node

Role

The munin node is installed on all monitored servers. It accepts connections from the munin master, and runs
plugins on demand.

By default, it is started at boot time, listens on port 4949/TCP, accepts connections from the munin master, and
runs munin plugins on demand.

Configuration

The configuration file is munin-node.conf .

Other documentation

Asynchronous proxy node

Context

We already discussed that munin-update is the fragile link in the munin architecture. A missed execution means
that some data is lost.

The problem : updates are synchronous

In Munin 1.x, updates are synchronous : the epoch and value in each service are the ones munin-update retrieves
each scheduled run.

The issue is that munin-update has to ask every service on every node every run for their values. Since the values
are only computed when asked, munin-update has to wait quite some time for every value.

This design is very simple, it therefore enables munin to have the simplest plugins since they are completely
stateless. While being the greatest strength of munin, it still puts a severe blow on scalability : more plugins
and/or nodes means obviously a slower retrieval.

Evolving Solution : Parallel Fetching

1.4 addresses some of these scalability issues by implementing parallel fetching. It takes into account that the
most of the execution time of munin-update is spent waiting for replies.

Note that there is the max_processes configuration parameter that control how many nodes in parallel munin-
update can ask.

Now, the I/O part is becoming the next limiting factor, since updating many RRD files in parallel means massive
and completely random I/O for the underlying munin-master OS.

Serializing & grouping the updates is possible with the rrdcached daemon from rrdtool starting at 1.4 and on-
demand graphing. This looks very promising, but doesn’t address the root defect in this design : a hard dependence
of regular munin-update runs. And upon close analysis, we can see that 1.4 isn’t ready for rrdcached as it asks for
flush each run, in munin-limits.

42 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

2.0 : Stateful plugins (supersampling)

2.0 provides a way for plugins to be stateful. They might schedule their polling themselves, and then when munin-
update runs, only emit collect already computed values. This way, a missed run isn’t as dramatic as it is in the 1.x
series, since data isn’t lost. The data collection is also much faster because the real computing is done ahead of
time. This behavior is called supersampling.

2.0 : Asynchronous proxy node

But changing plugins to be self-polled is difficult and tedious. It even works against of one of the real strength of
munin : having very simple, therefore stateless, plugins.

To address this concern, a proxy node was created. For 2.0 it takes the form of 2 tools : munin-asyncd and
munin-async.

The proxy node in detail (munin-async)

Overview

These 2 processes form an asynchronous proxy between munin-update and munin-node. This avoids the need to
change the plugins or upgrade munin-node on all nodes.

munin-asyncd should be installed on the same host than the proxied munin-node in order to avoid any network
issue. It is the process that will poll regularly munin-node. The I/O issue of munin-update is here non-existent,
since munin-async stores all the values by plainly appending them in text files without any processing. The files
are defined as one per plugin, rotated per a timeframe.

Theses files are later read by munin-async client part that is typically accessed via ssh from munin-update. Here
again no fancy processing is done, just plainly read back to the calling munin-update to be processed there. This
way the overhead on the node is minimal.

The nice part is that the munin-async client does not need to run on the node, it can run on a completely different
host. All it takes is to synchronize the spoolfetch dir. Sync can be periodic (think rsync) or real-time (think NFS).

In the same idea, the munin-asyncd can also be hosted elsewhere for disk-less nodes.

Specific update rates

Having one proxy per node enables a polling of all the services there with a plugin specific update rate.

To achieve this, munin-asyncd optionally forks into multiple processes, one for each plugin. This way each plugin
is completely isolated from others. It can set its own update_rate, it is isolated from other plugins slowdowns, and
it does even completely parallelize the information gathering.

SSH transport munin-async-client uses the new SSH native transport of 2.0. It permits a very simple install of the
async proxy.

Notes

In 1.2 a service is the same as plugin, but since 1.4 and the introduction of multigraph, one plugin can provide
multiple services. Think it as one service, one graph.

Installation

munin-async is a helper to poll regularly

3.2. Components 43

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The munin asynchronous proxy node (or “munin-async”) connects to the local node periodically, and spools the
results.

When the munin master connects, all the data is available instantly.

munin-asyncd

The Munin async daemon starts at boot, and connects to the local munin-node periodically, like a munin master
would. The results are stored the results in a spool, tagged with timestamp.

You can also use munin-asyncd to connect to several munin nodes. You will need to use one spooldir for each
node you connect to. This enables you to set up a “fanout” setup, with one privileged node per site, and site-to-site
communication being protected by ssh.

munin-async

The Munin async client is invoked by the connecting master, and reads from the munin-async spool using the
“spoolfetch” command.

Example configuration

On the munin master

We use ssh encapsulated connections with munin async. In the the munin master configuration you need to
configure a host with a “ssh://” address.

[random.example.org]
address ssh://munin-async@random.example.org

You will need to create an SSH key for the “munin” user, and distribute this to all nodes running munin-asyncd.

The ssh command and options can be customized in munin.conf with the ssh_command and ssh_options configu-
ration options.

You can also specify the SSH port directly in the address, if a node is not reachable using the default SSH port
(22):

[random2.example.org]
address ssh://munin-async@random2.example.org:2222

On the munin node

Configure your munin node to only listen on “127.0.0.1”.

You will also need to add the public key of the munin user to the authorized_keys file for this user.

• You must add a “command=” parameter to the key to run the command specified instead of whatever com-
mand the connecting user tries to use.

command="/usr/share/munin/munin-async --spoolfetch" ssh-rsa AAAA[...] munin@master

The following options are recommended for security, but are strictly not necessary for the munin-async connection
to work

• You should add a “from=” parameter to the key to restrict where it can be used from.

44 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

• You should add hardening options. At the time of writing, these are “no-X11-forwarding”, “no-agent-
forwarding”, “no-port-forwarding”, “no-pty” and “no-user-rc”.

Some of these may also be set globally in /etc/ssh/sshd_config.

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty,no-user-rc,from=
→˓"192.0.2.0/24",command="/usr/share/munin/munin-async --spoolfetch" ssh-rsa AAAA[.
→˓..] munin@master

See the sshd_config (5) and authorized_keys(5) man pages for more information.

3.2.3 Munin-Plugin

The munin plugin is a simple executable, which role is to gather one set of facts about the local server (or fetching
data from a remote machine via SNMP)

The plugin is called with the argument “config” to get metadata, and with no arguments to get the values. These
are mandatory arguments for each plugin. We have some more standard arguments, which play a role in the
process of automatic configuration.

The Munin plugin

Introduction

A Munin plugin is a simple executable invoked in a command line environment whose role is to gather a set of
facts on a host and present them in a format Munin can use.

A plugin is usually called without any arguments. In this circumstance, the plugin returns the data in a ‘key value’
format. For example, the ‘load’ plugin, which comes standard with Munin, will output the current system load:

munin-run load
load.value 0.03

All plugins must also support the argument ‘config’ to get metadata on the plugin:

munin-run load config
graph_title Load average
graph_args --base 1000 -l 0
graph_vlabel load
graph_scale no
graph_category system
load.label load
graph_info The load average of the machine describes how many processes are in the
→˓run-queue (scheduled to run "immediately").
load.info 5 minute load average

Plugins may support other arguments, but the two cases described above will work for any plugin.

See Also

• How to use Munin plugins.

• How to write your own Munin plugins.

Environment variables accessible in plugins

The node automatically defines some environment vars. All the munin-related vars do begin with the MUNIN_
prefix and are all capitals.

3.2. Components 45

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Munin related

MUNIN_DEBUG Defines the debug level the plugin should run in.

Default: 0

MUNIN_MASTER_IP Contains the IP of the connecting master. If using munin-run, it is equal to the "-"
string.

MUNIN_CAP_DIRTYCONFIG Indicates whether the master is able to understand the dirtyconfig protocol.

Table 1: Values
Value Description
0 Master does not understand value lines that are returned within a config response.
1 Master is able to consume value lines right after reading the configuration from a plugin.

MUNIN_CAP_MULTIGRAPH Indicates whether the master is able to understand the multigraph keyword.

Table 2: Values
Value Description
0 Master does not understand the multigraph keyword.
1 Master does understand the multigraph keyword.

MUNIN_PLUGSTATE Defines the directory that a plugin must use if it wants to store stateful data that is shared
with other plugins.

Default: /var/lib/munin-node/$USER

Note: Only the plugins that execute themselves as the same user can exchange data, for obvious security reasons.

MUNIN_STATEFILE Defines a file that the plugin must use if it wants to store stateful data for himself.

It is guaranteed to be unique, per plugin and per master. Therefore 2 masters will have 2 different state files
for the same plugin.

Config related

Here is a list of other environment vars, that are derived from the Munin::Common::Defaults package.

MUNIN_PREFIX
MUNIN_CONFDIR
MUNIN_BINDIR
MUNIN_SBINDIR
MUNIN_DOCDIR
MUNIN_LIBDIR
MUNIN_HTMLDIR
MUNIN_CGIDIR
MUNIN_CGITMPDIR
MUNIN_DBDIR
MUNIN_PLUGSTATE
MUNIN_SPOOLDIR
MUNIN_MANDIR
MUNIN_LOGDIR
MUNIN_STATEDIR
MUNIN_USER
MUNIN_GROUP
MUNIN_PLUGINUSER
MUNIN_VERSION

(continues on next page)

46 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

MUNIN_PERL
MUNIN_PERLLIB
MUNIN_GOODSH
MUNIN_BASH
MUNIN_PYTHON
MUNIN_RUBY
MUNIN_OSTYPE
MUNIN_HOSTNAME
MUNIN_HASSETR

System related

Munin does redefine some system environment vars :

PATH This is redefined for security. It does provide a safe environment so that shell scripts are able to launch
regular commands such as cat, grep without having to be explicit in their location.

LC_ALL & LANG This is redefined to ease the work of plugin authors. It enables a standard output when parsing
common commands output.

See also

• Environment variables in plugin configuration

Multigraph plugins

As of 1.4.0 Munin supports multigraph plugins.

What are they?

A multigraph plugin supports a “hierarchy of graphs” to provide drill-down from general graphs to more specific
graphs. One of the most obvious cases for this is network switch graphing where showing per-port traffic for 48
ports in the main host view would be overwhelming. Therefore the snmp__if_multi plugin presents two graphs
on the main host view: if_bytes and if_errors. If you click on the if_bytes graph you will arrive at another page
showing the throughput on all interfaces. If you click on the if_errors graph you will arrive on a page showing
errors on all interfaces.

When to use them?

Ordinarily one does not want to use multigraph plugins. This is because they quickly become much more like
“ordinary software”, e.g. that the number of lines of code passes around 50-100 lines, and that the data structures
become more complex than a very simple hash or array. Most Munin plugins are simple and quick (and fun) to
write, and that is by many considered one of the killer features of Munin. A multigraph plugin quickly becomes
more unwieldy to write and takes away the quickness and fun from plugin writing.

But, if in your plugins you notice

• duplication of code

• duplication of work

• you have more data than you know how to present in one or a few graphs

and this bothers you or makes things unnecessarily slow you may want to write a multigraph plugin

3.2. Components 47

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Features often needed

It turns out that multigraph plugins are written to generate graphs for all network devices or all disk devices on
a system. There is a definitive need to provide filtering (include) features, such as device name patterns for disk
devices or media types for network boxes so that only e.g. ethernet and ppp devices are included in the graphs,
and not the loopback and serial devices (unless the serial device is actually interesting since it’s really a long haul
WAN line). Or, on the other hand a exclude feature to drop specifically uninteresting things. How to make one?

It’s quite simple, even if it’s not as simple as without multigraph.

The setup is done in the usual way, with graph_title and other configuration items for the two “root” graphs of the
multigraph plugin:

multigraph if_bytes
graph_title $host interface traffic
graph_order recv send
graph_args --base 1000
graph_vlabel bits in (-) / out (+) per \${graph_period}
graph_category network
graph_info This graph shows the total traffic for $host

send.info Bits sent/received by $host
recv.label recv
recv.type DERIVE
recv.graph no
recv.cdef recv,8,*
recv.min 0
send.label bps
send.type DERIVE
send.negative recv
send.cdef send,8,*
send.min 0

multigraph if_errors
graph_title $host interface errors
graph_order recv send
graph_args --base 1000
graph_vlabel errors in (-) / out (+) per \${graph_period}
graph_category network
graph_info This graph shows the total errors for $host

send.info Errors in outgoing/incoming traffic on $host
recv.label recv
recv.type DERIVE
recv.graph no
recv.cdef recv,8,*
recv.min 0
send.label bps
send.type DERIVE
send.negative recv
send.cdef send,8,*
send.min 0

Then for each of the interfaces the plugin emits these configuration items (interface number is indexed with $if
in this, and should be replaced with name or number by the plugin itself, likewise for the other settings such as
$alias, $speed and $warn. ${graph_period} is substituted by Munin.

multigraph if_bytes.if_$if

graph_title Interface $alias traffic
graph_order recv send
graph_args --base 1000

(continues on next page)

48 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

graph_vlabel bits in (-) / out (+) per \${graph_period}
graph_category network
graph_info This graph shows traffic for the "$alias" network interface.
send.info Bits sent/received by this interface.
recv.label recv
recv.type DERIVE
recv.graph no
recv.cdef recv,8,*
recv.max $speed
recv.min 0
recv.warning -$warn
send.label bps
send.type DERIVE
send.negative recv
send.cdef send,8,*
send.max $speed
send.min 0
send.warning $warn

multigraph if_errors.if_$if

graph_title Interface $alias errors
graph_order recv send
graph_args --base 1000
graph_vlabel bits in (-) / out (+) per \${graph_period}
graph_category network
graph_info This graph shows errors for the \"$alias\" network interface.
send.info Errors in outgoing/incoming traffic on this interface.
recv.label recv
recv.type DERIVE
recv.graph no
recv.cdef recv,8,*
recv.max $speed
recv.min 0
recv.warning 1
send.label bps
send.type DERIVE
send.negative recv
send.cdef send,8,*
send.max $speed
send.min 0
send.warning 1

As you probably can see the hierarchy is provided by the “multigraph” keyword:

multigraph if_bytes
multigraph if_bytes.if_1
multigraph if_bytes.if_2
...
multigraph if_errors
multigraph if_errors.if_1
multigraph if_errors.if_2
...

When it comes to getting readings from the plugin this is done with the normal fieldname.value protocol, but with
the same multigraph “commands” between each value set as between the each “config” set.

Important: The plugin’s name is snmp__if_multi but, unlike all other plugins, that name never appears in the
munin html pages. The “multigraph” keyword overrides the name of the plugin. If multiple plugins try to claim
the same names (the same part of the namespace) this will be logged in munin-update.log.

3.2. Components 49

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Notes

For 1.4.0 we never tested with deeper levels of graphs than two as shown above. If you try deeper nestings anything
could happen! ;-)

Other documentation

Protocol extension: multiple graphs from one plugin

Multigraph plugins are implemented in 1.4.0 and on.

Objective

The object of this extension is to help with one issue:

• Quite a few plugins could after execution with very little additional overhead report on several measurable
aspects of whatever it is examining. In these cases it will be cheaper to execute one plugin once to produce
multiple graphs instead of executing multiple plugins to generate the same graphs.

This one-plugin one-graph property has resulted in the if_ and if_err_ plugins which are basically the same -
almost identical code being maintained twice instead of once. The sensors plugins which reports on temperatures,
fan speeds and voltages - running one sensors command each time (a slow executing program) or caching the
results. There are several plugins that cache execution results because of this.

In all we should be able to maintain fewer plugins with less complexity than we are able to now.

Network protocol

A server that is capable of handling “multigraph” output MUST announce this to the node - otherwise the node
MUST only announce and give access to single-graph plugins.

> # munin node at lookfar.langfeldt.net
< cap multigraph
> cap multigraph
< list
> if df netstat interrupts ...
< fetch if
> multigraph if_eth0
> out.value 6570
> in.value 430986
> multigraph if_err_eth0
> rcvd.value 0
> trans.value 0
> multigraph if_eth1
> ...
> multigraph if_err_eth1
> ...
> .
< quit

If the server had not announced cap multigraph the node MUST NOT respond with the names of multigraph
plugins when the server issues a list command. This is to stay compatible with old munin masters that do not
understand multigraph.

The value of each consecutive multigraph attribute show above was used to preserve compatibility with present
if_ and if_err_wildcard plugins. The field names in the response likewise. When combining separate plugins
into one please keep this compatibility issue in mind.

50 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The response to the config plugin protocol command MUST be similarly interspersed with multigraph
attributes.

Node issues

This introduces the need for the node to know which plugins are multigraph. Since the node runs each and every
plugin with “config” at startup (or when receiving HUP) it can simply examine the output. If the output contains
/^multigraph\s+/ then the plugin is a multigraph plugin and MUST be kept on a separate, additional list of
plugins only shown to the masters with multigraph capability.

Plugin issues

In case a multigraph plugin is attempted installed on a node which does not understand multigraph capability
it will be able to detect this by the lack of the environment variable MUNIN_CAP_MULTIGRAPH that the node
uses to communicate that it knows about multigraph plugins. If this environment variable is absent the plugin
SHOULD not make any kind of response to any kind of request.

In the perl and sh libraries support libraries there are functions to detect if the plugin is run by a capable node
and if not simply emit dummy graph_title and other graph values to make it obvious that the plugin finds the
node/environment lacking.

Future development of Multigraph plugins

The features in the following paragraphs are not implemented, and may never be. They were things and issues
that were considered while planning the multigraph feature, but did not make it into 1.4.

Plugin issues

This is not implemented or otherwise addressed

For a multigraph plugin replacing if_ and if_err_ we probably want a static behavior, as network interfaces
are easily taken up and down (ppp*, tun*).

To preserve the static behavior of the present wildcard plugins the node can somehow preserve the needed data
in munin-node.conf or /etc/munin/plugin-conf.d} and pass the response to the plugin in some
environment variable to tell it what to do so the same is done each time. This must be user editable so that it
changes when more network interfaces is added, or to enable removing graphing of a specific interface which
though present does not actually pass any traffic.

[if]
multigraph :eth0 :eth1 err:eth0 err:eth1

The separator character may well be something different than “:”. Any character not normally allowed in a plugin
name should suffice.

Sample output

See Multigraph plugins for an example.

Protocol extension: dirtyconfig

The dirtyconfig capability is implemented in munin 2.0 and on.

3.2. Components 51

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Objective

Reduce execution time for plugins.

Description

Munin plugins are usually run twice. Once to provide configuration, and once to provide values.

Plugins which have to fetch data in order to provide meaningful configuration can use the “dirtyconfig” capability
to send both configuration and values in the same run.

Using “dirtyconfig”, plugins no longer have to be run twice. There is no longer a need to keep a state file to keep
state between “config” and “fetch” invocations for plugins with long execution times.

Network protocol

>> command from master to node
<< response from node to master

<< # munin node at somewhere.example.com
>> cap dirtyconfig
<< cap dirtyconfig
>> list
<< lorem ...
>> config lorem
<< graph_title Lorem ipsum
<< lorem.label Lorem
<< lorem.value 1

The master and node exchange capabilities with the cap command, with an argument list containing supported
capabilities.

The server must send cap with dirtyconfig as one of the arguments.

The node must respond with cap, and include dirtyconfig as one of the capabilities.

Effects

The munin node will sets the MUNIN_CAP_DIRTYCONFIG variable to 1 in the plugin environment.

The munin master will call the plugin once with config plugin, and if the output includes .value fields, it
will skip the fetch plugin step.

Using dirtyconfig

In a plugin, check the environment variable MUNIN_CAP_DIRTYCONFIG, ensure it has a value of 1.

If this is correct, you can emit values when the plugin is called with the config argument.

sample plugin

#!/bin/sh

emit_config() {
echo "graph_title test with single word"

(continues on next page)

52 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

echo "graph_category test"
echo "test.label test"

}

emit_values() {
echo "test.value 1"

}

case "$1" in
config)
emit_config
if ["$MUNIN_CAP_DIRTYCONFIG" = "1"]; then

emit_values
fi
;;

*)
emit_values
;;

esac

SNMP Plugins

• Using SNMP Plugins

Using munin plugins

Default Installation

The default directory for plugin scripts is /usr/share/munin/plugins/. A plugin is activated when a symbolic link is
created in the servicedir (usually /etc/munin/plugins/ for a package installation of Munin) and munin-node is
restarted.

activating a simple plugin
ln -s /usr/share/munin/plugins/cpu /etc/munin/plugins/
activating a wildcard plugin
ln -s /usr/share/munin/plugins/if_ /etc/munin/plugins/if_eth0
restart munin-node with your distribution's tools (e.g. systemctl or service)
service munin-node restart

The utility munin-node-configure is used by the Munin installation procedure to check which plugins are suitable
for your node and create the links automatically. It can be called every time when a system configuration changes
(services, hardware, etc) on the node and it will adjust the collection of plugins accordingly.

To have munin-node-configure remove plugins for software that may no longer be installed, use the option
‘–remove-also’.

Installing Third Party Plugins

To use a Munin plugin being delivered from a 3rd-Party, place it in directory /usr/local/munin/lib/
plugins (or any other directory), make it executable, and create the service link. It it also possible to place the
plugin directly into the servicedir, but this is not recommended for the following reasons: * it undermines
the utility munin-node-configure * it is not appropriate for wildcard plugins * it interferes with SELinux

It is also possible to put 3rd-Party plugins in the official plugin directory (usually /usr/share/munin/
plugins), but this runs the risk of having said plugins overitten by distribution updates.

3.2. Components 53

http://gallery.munin-monitoring.org/contrib/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Configuring

/etc/munin/plugin-conf.d (sometimes /etc/opt/munin/plugin-conf.d) is where plugin con-
figuration files are stored.

To make sure that plugin configurations are updated with software updates admins should not change the file
munin-node which is delivered with the munin package. Instead place customized configuration in a file called
zzz-myconf. As the config files are read in alphabetical order, this file is read last and will override configuration
data found in the other files.

The file should consist of one or more sections, one section for each (group of) plugin(s) that should run with
different privileges and/or environment variables.

Start a plugins configuration section with the plugins name in square brackets:

[<plugin-name>] The following lines are for <plugin-name>. May include one wildcard (‘*’) at the start or end
of the plugin-name, but not both, and not in the middle.

After that each section can set attributes in the following format, where all attributes are optional.

user <username|userid> Run plugin as this user

Default: munin

group <groupname|groupid>[, <groupname|groupid>] [. . .] Run plugin as this group. If group is inside paren-
theses, the plugin will continue if the group doesn’t exist.

What does comma separated groups do? See $EFFECTIVE_GROUP_ID in the manual page for perlvar

Default: munin

env.var <variable content> Will cause the environment variable <var> to be set to <contents> when running the
plugin. More than one env line may exist. See the individual plugins to find out which variables they care
about.

There is no need to quote the variable content.

host_name <host-name> Forces the plugin to be associated with the given host, overriding anything that “plugin
config” may say.

timeout <seconds> Maximum number of seconds before the plugin script should be killed when fetching values.
The default is 10 seconds, but some plugins may require more time.

command <command> Run <command> instead of plugin. %c will be expanded to what would otherwise have
been run. E.g. command sudo -u root %c.

disable_autoconf <boolean> If set to True, ignore plugin when running munin-node-configure. This prevents
the plugin even when possibly be supported on the system to be installed.

Default: False

Note: When configuring a munin plugin, add the least amount of extra privileges needed to run the plugin. For
instance, do not run a plugin with “user root” to read syslogs, when it may be sufficient to set “group adm” instead.

Examples:

[mysql*]
user root
env.mysqlopts --defaults-extra-file=/etc/mysql/debian.cnf

[exim_mailqueue]
group mail, (Debian-exim)

[exim_mailstats]
group mail, adm

(continues on next page)

54 Chapter 3. Munin’s Architecture

http://perldoc.perl.org/perlvar.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

[ldap_*]
env.binddn cn=munin,dc=foo,dc=bar
env.bindpw secret

[snmp_*]
env.community SecretSNMPCommunityString

[smart_*] # The following configuration affects
every plugin called by a service-link starting with

→˓smart_
Examples: smart_hda, smart_hdb, smart_sda, smart_sdb

user root
group disk

Plugin configuration is optional.

Inheritance

In the plugin configuration file(s), values are inherited. Values assigned in sections with more specific expressions
have higher priority.

This means that values from [foo_bar_*] have precedence over values from [foo_*], regardless of order in
the plugin config file.

Non-conflicting values

Consider the following example for a plugin called dummy_foo_gazonk:

[dummy_*]
env.test1 foo

[dummy_foo_*]
env.test2 baz

In this case, the resulting environment values are:

test1 = foo
test2 = baz

Conflicting values

Another example for the plugin called dummy_foo_gazonk:

[dummy_*]
env.test1 foo

[dummy_foo_*]
env.test1 bar
env.test2 baz

As the more specific env.test1 has priority, these are the result values:

test1 = bar
test2 = baz

3.2. Components 55

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Testing

To test if the plugin works when executed by munin, you can use the munin-run command.

munin-run myplugin config

munin-run myplugin

munin-run -d myplugin

Examples:

munin-run df_abs config
graph_title Filesystem usage (in bytes)
graph_args --base 1024 --lower-limit 0
graph_vlabel bytes
graph_category disk
graph_total Total
_dev_mapper_vg_demo_lv_root__.label /
_dev_mapper_vg_demo_lv_root__.cdef _dev_mapper_vg_demo_lv_root__,1024,*
tmpfs__dev_shm.label /dev/shm
tmpfs__dev_shm.cdef tmpfs__dev_shm,1024,*
_dev_vda1__boot.label /boot
_dev_vda1__boot.cdef _dev_vda1__boot,1024,*
_dev_mapper_vg_demo_lv_tmp__tmp.label /tmp
_dev_mapper_vg_demo_lv_tmp__tmp.cdef _dev_mapper_vg_demo_lv_tmp__tmp,1024,*
_dev_mapper_vg_demo_lv_var__var.label /var
_dev_mapper_vg_demo_lv_var__var.cdef _dev_mapper_vg_demo_lv_var__var,1024,*

munin-run -d df_abs
Processing plugin configuration from /etc/munin/plugin-conf.d/df
Processing plugin configuration from /etc/munin/plugin-conf.d/fw_
Processing plugin configuration from /etc/munin/plugin-conf.d/hddtemp_smartctl
Processing plugin configuration from /etc/munin/plugin-conf.d/munin-node
Processing plugin configuration from /etc/munin/plugin-conf.d/postfix
Processing plugin configuration from /etc/munin/plugin-conf.d/sendmail
Setting /rgid/ruid/ to /99/99/
Setting /egid/euid/ to /99 99/99/
Setting up environment
Environment exclude = none unknown iso9660 squashfs udf romfs ramfs debugfs
→˓binfmt_misc rpc_pipefs fuse.gvfs-fuse-daemon
About to run '/etc/munin/plugins/df_abs'
_dev_mapper_vg_demo_lv_root__.value 1314076
tmpfs__dev_shm.value 0
_dev_vda1__boot.value 160647
_dev_mapper_vg_demo_lv_tmp__tmp.value 34100
_dev_mapper_vg_demo_lv_var__var.value 897644

Writing a munin plugin

Tutorials:

• How to write plugins

• The Concise guide to plugin authoring

• How to write SNMP Munin plugins

A munin plugin is a small executable. Usually, it is written in some interpreted language.

In its simplest form, when the plugin is executed with the argument “config”, it outputs metadata needed for
generating the graph. If it is called with no arguments, it outputs the data which is to be collected, and graphed

56 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

later.

Plugin output

The minimum plugin output when called with “config” it must output the graph title.

It should also output a label for at least one datasource.

graph_title Some title for our plugin
something.label Foobar per second

When the plugin is executed with no arguments, it should output a value for the datasource labelled in “config”. It
must not output values for which there are no matching labels in the configuration output.

something.value 42

For a complete description of the available fields, see the Plugin reference.

Example shell plugin

The base of a plugin is a small option parser, ensuring the plugin is called with the correct argument, if any.

Two main functions are defined: One for printing the configuration to the standard output, and one for printing the
data. In addition, we have defined a function to generate the data itself, just to keep the plugin readable.

The “output_usage” function is there just to be polite, it serves no other function. :)

#!/bin/sh

output_config() {
echo "graph_title Example graph"
echo "plugins.label Number of plugins"

}

output_values() {
printf "plugins.value %d\n" $(number_of_plugins)

}

number_of_plugins() {
find /etc/munin/plugins -type l | wc -l

}

output_usage() {
printf >&2 "%s - munin plugin to graph an example value\n" ${0##*/}
printf >&2 "Usage: %s [config]\n" ${0##*/}

}

case $# in
0)

output_values
;;

1)
case $1 in

config)
output_config
;;

*)
output_usage
exit 1
;;

(continues on next page)

3.2. Components 57

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

esac
;;

*)
output_usage
exit 1
;;

esac

Activating the plugin

Place the plugin in the /etc/munin/plugins/ directory, and make it executable. Note that most distributions place
plugins in a different directory, and ‘activate’ them by symlinking htem to /etc/munin/plugins. New module
development should use a similar approach so that in-process development doesn’t get run by mistake.

Any time a new plugin is placed or symlinked into /etc/munin/plugins, munin-node should be restarted.

Debugging the plugin

Plugins are just small programs or scripts, and just like small programs, are prone to problems or unexpected
behaviour. When either developing a new plugin, or debugging an already existing one, use the following infor-
mation to help track down the problem:

• A plugin may be tested ‘by hand’ by using the command ‘munin-run’. Note the plugin needs to have been
activated before this will work (see above).

• If an error occurs, error messages will be written to STDERR, and exit status will be non-zero.

• If a plugin is already activated, any errors that may happen when the ‘munin-node’ cron job is executed will
be logged, via stderr, to /var/log/munin/munin-node.log

Supersampling

Every monitoring software has a polling rate. It is usually 5 min, because it’s the sweet spot that enables frequent
updates yet still having a low overhead.

Munin is not different in that respect: its data fetching routines have to be launched every 5 min, otherwise you’ll
face data loss. And this 5 min period is deeply ingrained in the code. So changing it is possible, but very tedious
and error prone.

But sometimes we need a very fine sampling rate. Every 10 seconds enables us to track fast changing metrics that
would be averaged out otherwise. Changing the whole polling process to cope with a 10s period is very hard on
hardware, since now every update has to finish in these 10 seconds.

This triggered an extension in the plugin protocol, commonly known as “supersampling”.

Overview

The basic idea is that fine precision should only be for selected plugins only. It also cannot be triggered from the
master, since the overhead would be way too big.

So, we just let the plugin sample itself the values at a rate it feels adequate. Then each polling round, the master
fetches all the samples since last poll.

This enables various constructions, mostly around “streaming” plugins to achieve highly detailed sampling with a
very small overhead.

58 Chapter 3. Munin’s Architecture

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Notes

This protocol is currently completely transparent to munin-node, and therefore it means that it can be used even
on older (1.x) nodes. Only a 2.0 master is required.

Protocol details

The protocol itself is derived from the OPTIONS extension.

Config

A new plugin directive is used, update_rate. It enables the master to create the rrd with an adequate step.

Omitting it would lead to rrd averaging the supersampled values onto the default 5 min rate. This means data loss.

Note: Heartbeat

The heartbeat has always a 2 step size, so failure to send all the samples will result with unknown values, as
expected.

Note: Data size

The RRD file size is always the same in the default config, as all the RRA are configured proportionally to the
update_rate. This means that, since you’ll keep as much data as with the default, you keep it for a shorter time.

Fetch

When spoolfetching, the epoch is also sent in front of the value. Supersampling is then just a matter of sending
multiple epoch/value lines, with monotonically increasing epoch.

Note: Note that since the epoch is an integer value for rrdtool, the smallest granularity is 1 second. For the
time being, the protocol itself does also mandates integers. We can easily imagine that with another database as
back-end, an extension could be hacked together.

Compatibility with 1.4

On older 1.4 masters, only the last sampled value gets into the RRD.

Sample implementation

The canonical sample implementation is multicpu1sec, a contrib plugin on github. It is also a so-called streaming
plugin.

Streaming plugins

These plugins fork a background process when called that streams a system tool into a spool file. In multicpu1sec,
it is the mpstat tool with a period of 1 second.

3.2. Components 59

https://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html
https://github.com/munin-monitoring/contrib/tree/master/plugins/system/multicpu1sec
https://github.com/munin-monitoring/contrib/tree/master/plugins/system/multicpu1sec
https://en.wikipedia.org/wiki/Mpstat

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Undersampling

Some plugins are on the opposite side of the spectrum, as they only need a lower precision.

It makes sense when :

• data should be kept for a very long time

• data is very expensive to generate and it varies only slowly.

3.2.4 Relations

• Each Munin master may monitor one or more Munin nodes (1:n)

• More than one Munin master may monitor one or more Munin nodes (n:m)

– Does this confuse lightly stupid plugins?

– Is “multi-master” configurations tested, known and/or documented?

– Does the Plugin-writing-howto describe how the plugin should behave if queried more often than
in five minutes intervals and/or from different Munin masters?

• Each Munin node controls one or more plugins (1:n)

• Each plugin returns, when queried:

– One or more general directives to control the plugin itself, with corresponding values

– One or more data sources (fields) described by fieldname (1:n)

– Each data source has one or more attributes (1:n), with corresponding values

3.3 Protocols

3.3.1 The Munin Protocols

Here we describe the rules for collaboration and communication between Munin’s components.

Introduction

Contents on this page will focus on already implemented features. For proposals and ideas look in the Wiki.

Concepts

Fetching Data

Poller-based monitoring infrastructure

60 Chapter 3. Munin’s Architecture

http://www.munin-monitoring.org/wiki/development

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

munin
master

node1

node2

node3

Using the Asynchronous proxy node:

node1

munin-asyncd munin-noderead

spool

write

munin-async

munin
master

ssh

node2

node3

Using SNMP Plugins.

3.3. Protocols 61

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

munin
master

node1

node2

node3

switch
snmp

routersnmp

access
point

snmp

Network Protocol

Common Plugins

• See Protocol for data exchange between master and node

Multigraph Plugins

• See Protocol for Multigraph Plugins

Dirtyconfig plugins

• See Protocol extension: dirtyconfig

3.4 Syntax

3.4.1 Munin’s Syntax

POD style documentation

Wiki Pages:

• munindoc

Configuration

• For the Munin master in /etc/munin/munin.conf .

• For the Munin node daemon in /etc/munin/munin-node.conf .

62 Chapter 3. Munin’s Architecture

http://munin-monitoring.org/wiki/munindoc

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

• For the Munin plugins in /etc/munin/plugin-conf.d/...

Magic Markers

Munin can only autoconfigure plugins that have the corresponding (optional) magic markers. Magic markers are
prefixed with #%# and consists of a keyword, an equal sign, and one or more whitespace-separated values.

For a plugin that is part of munin, you should expect to see:

#%# family=auto
#%# capabilities=autoconf suggest

family

For the magic marker family, the following values may be used.

auto This is a plugin that can be automatically installed and configured by munin-node-configure

snmpauto This is a plugin that can be automatically installed and configured by munin-node-configure if
called with --snmp (and related arguments)

manual This is a plugin that is to be manually configured and installed

contrib This is a plugin which has been contributed to the munin project by others, and has not been checked for
conformity to the plugin standard.

test This is a test plugin. It is used when testing munin.

example This is an example plugin. It serves as a starting point for writing new plugins.

capabilities

For the magic marker capabilities, the following values may be used.

autoconf The plugin may be automatically configured by “munin-node-configure”.

suggest The plugin is a wildcard plugin, and may suggest a list of link names for the plugin.

Datatypes

GAUGE

“is for things like temperatures or number of people in a room or the value of a RedHat share.” (Source: rrdcreate
man page)

If a plugin author does not declare datatype explicitly, GAUGE is the default datatype.

COUNTER

“is for continuous incrementing counters like the ifInOctets counter in a router. The COUNTER data source
assumes that the counter never decreases, except when a counter overflows. The update function takes the overflow
into account. The counter is stored as a per-second rate. When the counter overflows, RRDtool checks if the
overflow happened at the 32bit or 64bit border and acts accordingly by adding an appropriate value to the result.”
(Source: rrdcreate man page)

Note: on COUNTER vs DERIVE

by Don Baarda <don.baarda@baesystems.com> from https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html

3.4. Syntax 63

https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IGAUGE
https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IGAUGE
https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#ICOUNTER
mailto:don.baarda@baesystems.com
https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IDDERIVE

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

If you cannot tolerate ever mistaking the occasional counter reset for a legitimate counter wrap, and would prefer
“Unknowns” for all legitimate counter wraps and resets, always use DERIVE with min=0. Otherwise, using
COUNTER with a suitable max will return correct values for all legitimate counter wraps, mark some counter
resets as “Unknown”, but can mistake some counter resets for a legitimate counter wrap.

For a 5 minute step and 32-bit counter, the probability of mistaking a counter reset for a legitimate wrap is arguably
about 0.8% per 1Mbps of maximum bandwidth. Note that this equates to 80% for 100Mbps interfaces, so for high
bandwidth interfaces and a 32bit counter, DERIVE with min=0 is probably preferable. If you are using a 64bit
counter, just about any max setting will eliminate the possibility of mistaking a reset for a counter wrap.

DERIVE

“will store the derivative of the line going from the last to the current value of the data source. This can be useful
for gauges, for example, to measure the rate of people entering or leaving a room. Internally, derive works exactly
like COUNTER but without overflow checks. So if your counter does not reset at 32 or 64 bit you might want to
use DERIVE and combine it with a MIN value of 0.” (Source: rrdcreate man page)

ABSOLUTE

“is for counters which get reset upon reading. This is used for fast counters which tend to overflow. So instead of
reading them normally you reset them after every read to make sure you have a maximum time available before
the next overflow. Another usage is for things you count like number of messages since the last update.” (Source:
rrdcreate man page)

Note: When loaning data from other graphs, the {fieldname}.type must be set to the same data type as the
original data. If not, Munin default to searching for gauge files, i.e. files ending with -g.rdd. See dbdir for the
details on RRD filenames.

3.5 API

3.5.1 Munin’s API

64 Chapter 3. Munin’s Architecture

https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IDERIVE
https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IABSOLUTE
http://munin-monitoring.org/wiki/LoaningData

CHAPTER 4

Munin Installation

This document explains how to get Munin onto your system, where to get help, and how to report bugs.

4.1 Prerequisites

In order for you to install Munin you must have the following:

4.1.1 Building munin

In order to build munin, you need:

• A reasonable Perl 5 (Version 5.10 or newer)

• The Module::Build perl module

• The perl modules listed in “requires” in Build.PL

Developers / packagers need, in addition to the above

• The dependencies listed in “test_requires” in Build.PL

• RRDtool perl bindings

In order to build the documentation, you need:

• sphinx

Installing RRDtool bindings

The RRDtool perl bindings needed by munin are normally only installed for the system perl. To install munin
using a separate perl installation, add the Alien::RRDtool perl module.

4.1.2 Running munin

Munin master

In order to run the munin master, you need:

65

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

• A reasonable perl 5 (Version 5.10 or newer)

• All the perl modules used when building Munin

• A web server (optional)

Munin node

The munin node is lighter on the requirements, and need only the following perl modules:

• Net::Server

• Net::Server::Fork

• Time::HiRes

• Net::SNMP (Optional)

The Munin plugins run by the node have their own needs. Many plugins need libraries or utilities related to what
they monitor. Please refer to each plugin.

4.2 Installing Munin

Due to Munin’s Architecture you have to install two different software packages depending on the role, that the
machine will play.

You will need to install “munin-master” on the machine that will collect data from all nodes, and graph the results.
When starting with Munin, it should be enough to install the Munin master on one server.

The munin master runs munin-httpd which is a basic webserver which provides the munin web interface on port
4948/tcp.

Install “munin-node” on the machines that shall be monitored by Munin.

4.2.1 Source or packages?

With open source software, you can choose to install binary packages or install from source-code.

Note: We strongly recommend a packaged install, as the source distribution isn’t as tested as the packaged one.
The current state of the packages is so satisfactory, that even the developers use them instead.

Installing Munin on most relevant operating systems can usually be done with the systems package manager,
typical examples being:

4.2.2 Installing Munin from a package

FreeBSD

From source:

cd /usr/ports/sysutils/munin-master && make install clean
cd /usr/ports/sysutils/munin-node && make install clean

Binary packages:

pkg install munin-master
pkg install munin-node

66 Chapter 4. Munin Installation

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Debian/Ubuntu

Munin is distributed with both Debian and Ubuntu.

In order to get Munin up and running type

sudo apt-get install munin-node

on all nodes, and

sudo apt-get install munin

on the master.

Please note that this might not be the latest version of Munin. On Debian you have the option of enabling “back-
ports”, which may give access to later versions of Munin.

RedHat / CentOS / Fedora

Current versions are available at EPEL.

In order to install Munin type

sudo yum install munin-node

on all nodes, and

sudo yum install munin

on the master.

You will have to enable the services in systemd to get them up and running.

Likely you will have to fix SELinux issues when using 3rd-Party plugins and SELinux active and set to enforcing
mode on the Munin node. In case you get competent and friendly support on SELinux mailinglist.

Other systems

On other systems, you are probably best off compiling your own code. See Installing Munin from source.

4.2.3 Installing Munin from source

Warning: Usually you don’t want to do that. The following lines are for completeness, and reference for
packagers.

The other reason would be because you want to contribute to the development of Munin, and then you should
use a development install.

If there are no binary packages available for your system, or if you want to install Munin from source for other
reasons, follow these steps:

We recommend downloading a release tarball, which you can find on sourceforge.net.

Alternatively, if you want to hack on Munin, you should clone our git repository by doing.

git clone git://github.com/munin-monitoring/munin

Please note that a git checkout will need some more build-dependencies than listed below, in particular the Python
Docutils and Sphinx.

4.2. Installing Munin 67

https://fedoraproject.org/wiki/EPEL#What_packages_and_versions_are_available_in_EPEL.3F
https://admin.fedoraproject.org/mailman/listinfo/selinux
http://sourceforge.net/projects/munin/files/stable/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Build dependencies on Debian / Ubuntu

In order to build Munin from source you need a number of packages installed. On a Debian or Ubuntu system
these are:

• perl

• htmldoc

• html2text

• default-jdk

Configuring and installing

Warning for NFS users

If you’re using NFS please note that the “make install” process is slightly problematic in that it (Module::Build
actually) writes files under $CWD. Since “make install” is usually run by root and root usually cannot write files
on a NFS volume, this will fail. If you use NFS please install munin from /var/tmp, /tmp or some such to work
around this.

Running make

There are make targets for node, master, documentation and man files. Generally you want to install everything
on the master, and just the node and plugins on the nodes.

• Edit Makefile.config to suit your needs.

• Create the user “munin” with the primary group “munin”.

The user needs no shell and no privileges. On most Linux systems the munin user’s shell is the nologin shell
(it has different paths on different systems - but the user still needs to be able to run cron jobs.

Node

For the node, you need only the common parts, the node and the plugins.

make
make install-common-prime install-node-prime install-plugins-prime

Master

For the master, this will install everything.

make
make install

4.3 Initial Configuration

4.3.1 Node

Plugins

Decide which plugins to use. The munin node runs all plugins present in CONFDIR/plugins/ (usually
/etc/munin/plugins).

68 Chapter 4. Munin Installation

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The quick auto-plug-and-play solution:

munin-node-configure --shell --families=contrib,auto | sh -x

See Using munin plugins for more details.

Access

The munin node listens on all interfaces by default, but has a restrictive access list. You need to add your master’s
IP address.

The “cidr_allow”, “cidr_deny”, “allow” and “deny” statements are used.

cidr_allow uses the following syntax (the /32 is not implicit, so for a single host, you need to add it):

cidr_allow 127.0.0.0/8
cidr_allow 192.0.2.1/32

allow uses regular expression matching against the client IP address.

allow ‘^127.’
allow ‘^192.0.2.1$’

For specific information about the syntax, see Net::Server. Please keep in mind that cidr_allow is a recent addition,
and may not be available on all systems.

Startup

Start the node agent (as root) SBINDIR/munin-node. Restart it if it was already started. The node only discovers
new plugins when it is restarted.

You probably want to use an init-script instead and you might find a good one under build/dists or in the
build/resources directory (maybe you need to edit the init script, check the given paths in the script you might
use).

4.3.2 Master

Add some nodes

Add some nodes to CONFDIR/munin.conf

[node.example.com] address 192.0.2.4

[node2.example.com] address node2.example.com

[node3.example.com] address 2001:db8::de:caf:bad

4.4 Webserver Configuration

4.4.1 Configure web server

On the master, you need to configure a web server.

If you have installed “munin” through distribution packages, a webserver may have been configured for you
already.

If you installed from source, you may want to take a look at the following examples:

4.4. Webserver Configuration 69

http://search.cpan.org/dist/Net-Server/lib/Net/Server.pod

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Mode of Operation Example Configurations
Generate graphs and HTML pages on demand (recommended) apache
Periodically generate graphs and HTML pages apache / nginx
Proxy connections to separate munin-httpd process (Munin 2.999 or later) apache / nginx / lighttpd

4.5 Upgrade Notes

4.5.1 Upgrading Munin from 2.0.x to 2.1.x

Munin HTTPD

munin-httpd replaces FastCGI. It is a basic webserver capable of serving pages and graphs.

To add transport layer security or authentication, use a webserver with more features as a proxy.

If you choose to use munin-httpd, set graph_strategy and html_strategy to “cgi”.

FastCGI

. . . is gone. It was hard to set up, hard to debug, and hard to support.

4.5.2 Upgrading Munin from 1.x to 2.x

This is a compilation of items you need to pay attention to when upgrading from Munin 1.x to munin 2.x

FastCGI

Munin graphing is now done with FastCGI.

Munin HTML generation is optionally done with FastCGI.

Logging

The web server needs write access to the munin-cgi-html and munin-cgi-graph logs.

70 Chapter 4. Munin Installation

CHAPTER 5

Munin Advanced

5.1 TLS Setup

If your Munin installations reside in a hostile network environment, or if you just don’t want anyone passing by
with a network sniffer to know the CPU load of your Munin nodes, a quick solution is to enable Munin’s built-in
Transport Layer Security (TLS) support. Other tricks involve using SSH tunnels and key logins, methods “outside
of” Munin.

5.1.1 Requirements

In order for this to work you need the Perl package Net::SSLEay available. If you are running Debian or
Ubuntu this is available in the package libnet-ssleay-perl.

5.1.2 Scenarios

The test setups described below consist of two servers, Aquarium and Laudanum (the Norwegian names of two of
the Roman fortifications outside the village of Asterix the Gaul). Laudanum is a Munin master and Aquarium is a
Munin slave.

Non-paranoid TLS setup

This first setup will only provide TLS encrypted communication, not a complete verification of certificate chains.
This means that the communication will be encrypted, but that anyone with a certificate, even an invalid one, will
be able to talk to the node.

First of all, you must create an X.509 key and certificate pair. That is somewhat outside the scope of this
howto (it should be inside the scope, if anyone is willing to include the needed openssl commands and com-
mentary that would be good -janl), but this link explains it in detail. On a Debian system, you can install the
ssl-cert package, which automatically creates a dummy key/certificate pair, stored as /etc/ssl/private/
ssl-cert-snakeoil.key and /etc/ssl/certs/ssl-cert-snakeoil.pem. Please note that the
permissions on the key file must be restrictive, e.g. chmod 700.

Instead of creating your own CA and certificates, you may want to use Let’s Encrypt instead.

71

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/X509
https://security.ncsa.uiuc.edu/research/grid-howtos/usefulopenssl.php
https://packages.debian.org/sid/ssl-cert

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

On the Munin master

To make munin-update on Laudanum do TLS enabled requests, add the following to munin.conf :

tls enabled
tls_verify_certificate no
tls_private_key /etc/ssl/private/ssl-cert-snakeoil.key
tls_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem

And, believe it or not, that’s actually it on the Munin-master side. If we run munin-update now, we see that the
traffic is now encrypted after the command STARTTLS has been issued.

On the Munin node

Even though we’ve now asked the Munin master to perform all its requests in TLS mode, but anyone can still
request data from the Munin node in plain text. So how should we restrict that? Well, that’s quite simple as well!
Add the following lines to munin-node.conf , replacing the paths to the certificate and key as appropriate for your
server. Don’t forget to restart the munin-node process afterwards.

tls enabled
tls_verify_certificate no
tls_private_key /etc/ssl/private/ssl-cert-snakeoil.key
tls_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem

This will let munin-node accept TLS encrypted communication, but will not check the validity of the certificate
presented.

Now, when we try to pump the Munin node for information without starting TLS, this is what happens:

laudanum:~# telnet 192.168.1.163 4949
Trying 192.168.1.163...
Connected to 192.168.1.163.
Escape character is '^]'.
munin node at aquarium
list
I require TLS. Closing.
Connection closed by foreign host.
laudanum:~#

TLS configuration with complete certificate chain

If we switch to a stricter mode, munin-node will only accept update requests from a master presenting a certificate
signed by the same CA as its own certificate.

For this setup, the tools provided with OpenSSL can be used to create a CA (Certificate Authority) and one
certificate per server signed by the same CA. Creating your own CA should be more that sufficient, unless you
really want to spend money on certificates from a real CA. Remember that the “common name” of the server
certificate must be the host’s fully qualified domain name as it is known in DNS.

The TLS directives are the same on both master and node. This setup requires that both key/cert pairs are signed
by the same CA, and the CA certificate must be distributed to each Munin node. Also note that the passphrase
protection must be removed from the keys so that the munin-update and munin-node processes won’t require
manual intervention every time they start.

On the Munin master

This extract is from munin.conf on the master, Laudanum:

72 Chapter 5. Munin Advanced

https://en.wikipedia.org/wiki/Certificate_authority
http://www.modssl.org/docs/2.8/ssl_faq.html#ToC31
http://www.modssl.org/docs/2.8/ssl_faq.html#ToC31

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

tls paranoid
tls_verify_certificate yes
tls_private_key /etc/opt/munin/laudanum.key.pem
tls_certificate /etc/opt/munin/laudanum.crt.pem
tls_ca_certificate /etc/opt/munin/cacert.pem
tls_verify_depth 5

On the Munin node

This extract is from munin-node.conf on the node, Aquarium:

tls paranoid
tls_verify_certificate yes
tls_private_key /etc/opt/munin/aquarium.key.pem
tls_certificate /etc/opt/munin/aquarium.crt.pem
tls_ca_certificate /etc/opt/munin/cacert.pem
tls_verify_depth 5

What to expect in the logs

Note that log contents have been formatted for readability.

In munin-update.log (in versions above 1.4.4, the TLS lines only show up in debug mode):

Starting munin-update
Processing domain: aquarium
Processing node: aquarium
Processed node: aquarium (0.05 sec)
Processed domain: aquarium (0.05 sec)
[TLS] TLS enabled.
[TLS] Cipher `AES256-SHA'.
[TLS] client cert:

Subject Name: /C=NO/ST=Oslo/O=Example/CN=aquarium.example.com/
→˓emailAddress=bjorn@example.com\n

Issuer Name: /C=NO/ST=Oslo/O=Example/CN=CA master/emailAddress=bjorn@example.
→˓com
Configured node: aquarium (0.07 sec)
Fetched node: aquarium (0.00 sec)
connection from aquarium -> aquarium (31405)
connection from aquarium -> aquarium (31405) closed
Munin-update finished (0.14 sec)

In munin-node.log, something like will show up (in versions above 1.4.4, the TLS lines only show up in debug
mode):

CONNECT TCP Peer: "192.168.1.161:2104" Local: "192.168.1.163:4949"
TLS Notice: TLS enabled.
TLS Notice: Cipher `AES256-SHA'.
TLS Notice: client cert:

Subject Name: /C=NO/ST=Oslo/O=Example/CN=laudanum.example.com/
→˓emailAddress=bjorn@example.com\n

Issuer Name: /C=NO/ST=Oslo/O=Example/CN=CA master/emailAddress=bjorn@example.
→˓com

5.1. TLS Setup 73

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

5.1.3 Miscellaneous

Intermediate Certificates / Certificate Chains

It is common that external Certificate Authorities use a multi-layer certification process, e.g. the root certificate
signs an intermediate certificate, which is used for signing the client or server certificates.

In this case you should assemble the TLS related files in the following way:

• tls_certificate:

1. the leaf certificate (for the client or server)

• tls_ca_certificate:

1. intermediate certificate

2. root certificate

Selective TLS

If you want to run munin-node on the Munin master server, you shouldn’t need to enable TLS for that connection
as one can usually trust localhost connections. Likewise, if some of the nodes are on a trusted network they
probably won’t need TLS. In Munin, TLS is enabled on a per node basis.

The node definitions in munin.conf on Laudanum looks like this (tls disabled for localhost communication):

[Group;laudanum]
address 127.0.0.1
use_node_name yes
tls disabled

[Group;aquarium]
address 192.168.1.163
use_node_name yes

From the source code, it seems you can even use different certificates for different hosts. This, however, has not
been tested for the purpose of this article.

Let’s Encrypt

You may want to use certificates from the Let’s Encrypt CA. Technically they work fine. But please note, that you
will not be able to restrict access to specific peers. Instead all users of Let’s Encrypt will be able to connect to your
nodes and your nodes will be unable to distinguish between your master and any other master connecting with a
certificate from the CA.

Thus by using certificates from Let’s Encrypt you are following a non-paranoid approach.

5.2 Advanced Network

• Monitoring “unreachable” hosts

• HOWTO Monitor Windows

5.3 Per plugin custom rrd sizing

Choosing the RRD sizing is possible via the config option graph_data_size since 1.4.0, but for 2.0 there is also a
custom format.

74 Chapter 5. Munin Advanced

https://en.wikipedia.org/wiki/Public_key_certificate#Intermediate_certificate
https://letsencrypt.org/
http://munin-monitoring.org/wiki/HowToMonitorWindows

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Note: The configuration should be done on the Munin Master (munin.conf) as the plugins usually do not
integrate this config option in their setup!

5.3.1 Objective

The object of this extension is to help with two issues:

• Per default there are only two values normal and huge. For some users this isn’t enough, specially
coupled with the update_rate option. A new special value custom, followed by its definition should offer
as much flexibility as anyone needs.

• The RRD sizing is global. Since update_rate is per plugin, this should also be per plugin.

5.3.2 The custom format

There are 2 custom formats: the computer one, and the human-readable one. The human-readable one will be
converted on-the-fly to the computer one.

computer-readable

The format is comma-separated:

full_rra_nb, multiple_1 multiple_rra_nb_1, multiple_2 multiple_rra_nb_2, ...
→˓multiple_N multiple_rra_nb_N

• multiple_N is the step of the RRA, in multiple of the update_rate of the plugin.

• multiple_rra_nb_N is the number of RRA frames to keep. The total time amount is function of
multiple_N.

In this format the original values normal/huge can be translated:

• normal meaning custom 576, 6 432, 24 540, 288 450

• huge meaning custom 115200

Note: The first multiple isn’t asked, since it’s always 1 (full resolution).

human-readable

Editing the computer format is powerful, but not very friendly. So, another format is available that specifies time
duration instead of multiples. It is therefore independent of the update_rate of the plugin.

The format is still comma-separated, only the elements are translated:

time_res_1 for time_duration_1, time_res_2 for time_duration_2, ... time_res_N for
→˓time_duration_N

• time_res_N represents the step of the RRA.

• time_duration_N represents the time of RRA frames to keep. The actual number of frames is function
of time_res_N.

The format for both fields is the same : a number followed by a unit like 134d or 67w.

The units are case sensitive and mean:

• s: second

5.3. Per plugin custom rrd sizing 75

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

• m: minute (60s)

• h: hour (60m)

• d: day (24h)

• w: week (7d)

• t: month (31d)

• y: year (365d)

In this format the original values normal/huge can be translated:

• normal meaning custom 2d, 30m for 9d, 2h for 45d, 1d for 450d

• huge meaning custom 400d

Note: The 2 last units (t and y) are a fixed number of days. They do not take the real number of days in the
current month.

5.3.3 Notes

• The RRA is always created with a 10% increase so you can really compare on 10% of the period instead of
just the last value.

5.3.4 Issues

• If a human readable config value isn’t a multiple of update_rate, no graph should be emitted, so the user is
immediately alerted of his misconfiguration.

• The first number always represent the full resolution: update_rate.

76 Chapter 5. Munin Advanced

CHAPTER 6

How-to Collection

Here we collect how-to articles which do not fit into the other chapters of the Munin Guide.

6.1 How to remove spikes

If a plugins field is initially created with datatype COUNTER and no declaration of a .max value, there may occur
spikes in the back-end RRD database when the counter goes back to zero. Here we show a simple way to fix this.

6.1.1 Set a MAX value

First, the plugins config must be enhanced to present a .max value.

Once this has been accomplished and the Munin master has polled the plugin at least once, the masters datafile
will have the .max value stored for the plugin.

Then the following perl 1-liner can be used to update all matching RRDs. Replace DOMAIN with the name of
the Munin domain being polled, and replace PLUGIN with the name of the plugins RRD database files that need
updating.

cd /var/lib/munin/DOMAIN
perl -ne 'next unless /:PLUGIN/; if (/.*;(\S+):(\S+)\.(\S+)\.max\s+(\d+)/)
→˓{foreach (glob "$1-$2-$3-?.rrd") {print qq{File: $_\tMax: $4\n};qx{rrdtool tune
→˓$_ -a 42:$4};qx{rrdtool dump $_ > /tmp/rrdtool-xml};qx{mv $_ $_.bak};qx{rrdtool
→˓restore -r /tmp/rrdtool-xml $_};qx{chown munin:munin $_}}}' ../datafile

An example, updating the MAX value in all the xvm_ plugins that have been updated to report a .max value:

cd /var/lib/munin/example.com
perl -ne 'next unless /:xvm_/; if (/.*;(\S+):(\S+)\.(\S+)\.max\s+(\d+)/) {foreach
→˓(glob "$1-$2-$3-?.rrd") {print qq{File: $_\tMax: $4\n};qx{rrdtool tune $_ -a 42:
→˓$4};qx{rrdtool dump $_ > /tmp/rrdtool-xml};qx{mv $_ $_.bak};qx{rrdtool restore -
→˓r /tmp/rrdtool-xml $_};qx{chown munin:munin $_}}}' ../datafile
File: ic5.example.com-xvm_arch4-xvm_arch4_read_bytes-c.rrd Max: 34359738352
File: ic6.example.com-xvm_arch3-xvm_arch3_read_bytes-c.rrd Max: 34359738352
File: ic3.example.com-xvm_dwork-xvm_dwork_write_bytes-c.rrd Max: 25769803764

77

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

6.1.2 Modify the RRD files concerned

Note: The following is a distillation of the process, outlined1 by Greg Connor in 2004-05-06.

Here is a quick recipe for getting rid of spikes.

In this example dnscache is the name of the plugin and dns1.example.com is one of the affected hosts.

The desired MAX value is 1000.

Verify that the plugin now sets the right .max parameter. Fix the plugin if needed.

cd /var/lib/munin
cat datafile | grep dnscache | grep max

View the rrd file with “rrdtool info”

rrdtool info DNS/dns1.example.com-dnscache-cache-c.rrd

to look for

ds[42].max = NaN

This indicates that the plugin didn’t have a .max defined at the time the rrd file was started. If you don’t mind
losing the data, you can delete the RRD files at this point and the new ones will be created with the right max.

If you want to save the data, first modify each .rrd file so that it has a max for datasource 42 (not sure why it is
always 42, probably a tribute to d.adams) (Best to do this right after an update like at :06 :11 or so)

bash
for j in `find /var/lib/munin -name "*dnscache*-c.rrd"`; do \
rrdtool tune $j -a 42:1000;
done

Note: Replace 1000 with the desired MAX value.

Finally, dump each rrd file to xml and restore with -r flag. There will be some output to let you know which data
points were dropped and replaced with NaN.

bash
for j in `find /var/lib/munin -name "*dnscache*-c.rrd"`; do
rrdtool dump $j > /tmp/xml ;
mv $j $j~ ;
rrdtool restore -r /tmp/xml $j;
chown munin:munin $j ;
done

If you are impatient, rebuild one host’s graphs and look at it, or just wait 5 min and check.

su munin -c "/usr/share/munin/munin-graph --nolazy --host DNSOverview "

1 See the post to munin-user mailing list by Greg Connor.

78 Chapter 6. How-to Collection

https://sourceforge.net/p/munin/mailman/message/4317396/

CHAPTER 7

Developing Munin

Guidelines for developing Munin.

7.1 Munin development environment

7.1.1 Getting started

1. Install perl

2. Check out the munin repository

3. Install perl dependencies

4. Install munin in a sandbox

5. Start munin in a sandbox

6. Start hacking

7.1.2 Install perl

You need perl 5.10 or newer for munin development. Check your installed version with perl --version.

If you have an older perl, look at using perlbrew to have perl in a sandbox.

7.1.3 Check out the munin repository

Munin is hosted on github. Clone the git repository, and enter the work directory.

git clone https://github.com/munin-monitoring/munin
cd munin

7.1.4 Install perl dependencies

Munin needs a lot of perl modules. The dependencies needed to develop, test, build and run munin is listed in the
Build.PL file.

79

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

With the Debian osfamily

This includes Debian, Ubuntu, and many other operating systems.

Dependencies for running Munin from the development environment.

apt install libdbd-sqlite3-perl libdbi-perl \
libfile-copy-recursive-perl libhtml-template-perl \
libhtml-template-pro-perl libhttp-server-simple-perl \
libio-socket-inet6-perl liblist-moreutils-perl \
liblog-dispatch-perl libmodule-build-perl libnet-server-perl \
libnet-server-perl libnet-snmp-perl librrds-perl \
libnet-ssleay-perl libparams-validate-perl liburi-perl \
libwww-perl libxml-dumper-perl

Dependencies for running the Munin development tests:

apt install libdbd-pg-perl libfile-readbackwards-perl \
libfile-slurp-perl libio-stringy-perl libnet-dns-perl \
libnet-ip-perl libtest-deep-perl libtest-differences-perl \
libtest-longstring-perl libtest-mockmodule-perl \
libtest-mockobject-perl libtest-perl-critic-perl \
libxml-libxml-perl libxml-parser-perl

With modules from CPAN

perl Build.PL
./Build installdeps

7.1.5 Install munin in a sandbox

The dev_scripts directory contains scripts to install munin in a sandbox. We also need to disable taint in
the perl scripts to enable it to run outside the normal perl installation.

dev_scripts/install node
dev_scripts/disable_taint

7.1.6 Run munin in a sandbox

Each of these can be done in a separate terminal window, to keep the logs apart.

Start a munin node. This will start the node in the background, and tail the log. If you hit Ctrl-C, the log tailing
will stop, and the node will still run in the background.

dev_scripts/start_munin-node

The contrib directory contains a daemon used for simulating a lot of munin nodes. This step is optional. First
output a number of node definitions to the munin configuration, and then run the daemon in the background.

contrib/munin-node-debug -d > sandbox/etc/munin-conf.d/nodes.debug
contrib/munin-node-debug &

Start a munin-update loop. Normally, munin-update runs from cron every 5 minutes.

while :; do dev_scripts/run munin-update; sleep 60; done &

The munin httpd listens on http://localhost:4948/ by default.

80 Chapter 7. Developing Munin

http://localhost:4948/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

dev_scripts/run munin-httpd

7.1.7 Run plugins in a sandbox

Very simple plugins can be executed directly. Other plugins may require additional environment settings (e.g. for
storing the plugin state or for sourcing the shell helpers). Testing a symlink configuration also requires a bit of
manual preparation.

Many non-trivial situations can be simplified with the sandbox plugin wrapper dev_scripts/plugin:

dev_scripts/plugin run ./my_foo_plugin
dev_scripts/plugin run if_ suggest
dev_scripts/plugin run_as if_eth0 if_
MUNIN_CAP_MULTIGRAPH=1 dev_scripts/plugin run diskstats config
MUNIN_CAP_DIRTYCONFIG=1 dev_scripts/plugin run df

7.1.8 Start hacking

Make changes, restart sandboxed services as necessary.

Make a git feature branch, commit changes, publish branch to a public git repository somewhere, submit pull
requests, make things happen.

7.2 Munin development tests

7.2.1 Scope

The tests we use check for different things.

• Is function x in module y working as expected?

• Can we establish an encrypted network connection between two components?

• Do we follow the perl style guidelines?

• Does this component scale well?

The code tests are broadly separated by scope.

Inspired by https://pages.18f.gov/automated-testing-playbook/principles-practices-idioms/

Small

In this category, we place tests for simple classes and functions, preferably with fast execution and without using
external resources.

Medium

Enabled with the TEST_MEDIUM variable set.

In this category, we test interaction between components. These may use the file system, fork processes, or access
test data sets.

7.2. Munin development tests 81

https://pages.18f.gov/automated-testing-playbook/principles-practices-idioms/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Large

Enabled with the TEST_LARGE variable set.

In this category, we may test the entire system.

A munin master, node, and plugins all running together would be placed in this category.

Performance and bottleneck testing would also be at home in this category.

7.3 Data Structures

The following documentation discusses the flow, handling and storage of data used by the various Munin com-
ponents. This includes partially internal processing details, in order to provide a good understanding of data
structures within Munin for interested developers.

7.3.1 Munin Node

The Munin Node parses its configuration once during startup.

Node Configuration

The Node configuration specifies the details of the node service, which is responding to requests from the Munin
Master.

The Node configuration is read from plain text files (e.g. /etc/munin/munin-node.conf). Its content
is stored in a simple perl object (usually called $config). All settings are available as object attributes (e.g.
$config->{default_plugin_user}).

Configuration settings with different names (for compatibility over multiple Munin releases) are normalized while
parsing (see Munin::Node::Config::_parse_line). One example for normalization is hostname and
host_name - both are normalized to fqdn.

Plugin Configuration

During the startup of the Munin Node server, the list of plugins (e.g. below /etc/munin/plugins) ist
collected once. Additionally the plugin configuration files (e.g. below /etc/munin/plugin-conf.d) are
parsed. Afterwards all configuration settings (including wildcard configurations) for all locally enabled plugins
are stored in the hash $config->{sconf}.

Configuration settings for a specific plugin are accessible as a hash ($config->{sconf}{$plugin_name}).

7.3.2 Munin Master

Periodic operations of the Munin Master are executed by munin-cron (via munin-update and
munin-limits). Web resources (html and graphs) are generated by munin-html and munin-graph. De-
livery happens either directly (via CGI) or indirectly via munin-httpd.

Master Configuration

The Master configuration specifies the details of the update operation (collecting data from nodes), outbound
connection details, resource locations, logging and process management.

The Master configuration is read from plain text files (e.g. /etc/munin/munin.conf) by munin-update
via Munin::Master::Update->run(). Its content is stored in the database storage in table param (see
_db_params_update).

82 Chapter 7. Developing Munin

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

All other processes query the database, whenever they need a configuration setting.

Service Configurations

The config of every plugin is requested periodically via Munin’s network protocol. The resulting information
describe the service, as well as its datasets.

Database Storage

The database is used for exchanging information between different parts of munin. By default the database is an
sqlite3 file stored as /var/lib/munin/datafile.sqlite.

Table “param”

The param table is used for storing Munin Master config parameters. It is populated during every initialization of
munin-update (Munin::Master::Update::_db_params_update).

Field Value
name name of the configuration setting (e.g. logdir)
value configured value of the configuration setting

Every configuration setting is stored in the database. The default value is stored in case of a missing explicit
setting.

Table “grp”

The grp table contains all group/member relationships. Nodes and groups can be members of groups. Thus
hierarchical relationships with multiple levels are supported.

Field Value
id unique ID
p_id ID of parent group (special group 0: this group has no parent)
name name of the group
path not used anymore

Table “node”

The node table stores the identity of a Munin Node.

Field Value
id unique ID
grp_id ID of the group (or 0 if the node is not part of a group)
name name of the node
path not used anymore

Table “node_attr”

The node_attr table contains all attributes related to a Munin None.

7.3. Data Structures 83

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Field Value
id ID of the related node
name name of the attribute (e.g. use_node_name)
value string representation of the value (e.g. 1)

Table “service”

The service table stores the identity of the service datastructure.

Field Value
id unique ID
node_id ID of the node this service belongs to
name unique name of the service within the node
service_title human readable name of the service
graph_info human readable description of the service (see graph_info)
subgraphs number of related graphs produced by this service
path not used anymore

Table “service_attr”

The service_attr table contains all attributes related to a service.

Field Value
id ID of the related service
name name of the attribute (e.g. graph_vlabel)
value string representation of the value (e.g. Bytes)

Table “service_categories”

Multiple category names can be assigned to a service.

Field Value
id ID of the related service
category category name assigned to the service

Table “ds”

Every dataset is described by Field-level attributes (see Nomenclature). The collected values for a dataset are
stored in an RRD file.

Field Value
id unique ID
service_id ID of the service to which this dataset belongs
name unique name of the dataset within the service
type field type (e.g. DERIVE)
ordr datasets of a service are sorted according to their respective ordr attribute
unknown TODO
warning description of the warning range (TODO: format?)
critical description of the critical range (TODO: format?)
path not used anymore

84 Chapter 7. Developing Munin

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Table “ds_attr”

The ds_attr table contains all attributes related to a dataset.

Field Value
id ID of the related ds
name name of the attribute (e.g. draw)
value string representation of the value (e.g. AREASTACK)

Table “url”

The url table is used for caching the URL path of entities (groups, nodes or services). The path is calculated, when
the entity is created.

Field Value
id ID of the related entity
type text specifying the type of the related entity (one of: group, node and service)
path URL path to be used when accessing the service graphs (e.g. group1/group2/host/plugin/

graphFoo/subGraphBar)

Table “state”

The state table is used for storing the current state of datasets. These values can be used for determining alert
conditions.

Field Value
id ID of the related entity
type type of the related entity (currently only used as ds)
previ-
ously_epoch

timestamp of the second to last retrieved value

previ-
ously_value

second to last retrieved value

last_epoch timestamp of the most recently retrieved value
last_value most recently retrieved value
alarm current state of the related entity (one of: unknown, critical, warning, “” (empty))
num_unknowns count of recent successively received unknown values (used for delayed “unknown” detec-

tion via <unknown_limit)

7.3. Data Structures 85

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

86 Chapter 7. Developing Munin

CHAPTER 8

Developing Plugins

Guidelines for developing Munin plugins

8.1 How to write Munin Plugins

Writing a Munin plugin is astoundingly simple. If you know where the data is and know a minimum of scripting
in perl/shell/awk/sed or something like that you can do it.

In way of explaining it all we’ll write two plugins the simplest way. Since I’m kind of old school I’ll use shell and
shell tools for these plugins. You can do them completely in perl or any other language you like.

8.1.1 Load average plugin

On Unix you can get a hosts load average from the command uptime. However, on Linux the load average is
also available from the file called /proc/loadavg. One less external command will make the plugin faster.

Getting a field value

$ cat /proc/loadavg
0.05 0.07 0.14 1/74 30026

The file consists of numbers separated by only one space. The Unix cut command should be good for that:

$ cut -d' ' -f1 /proc/loadavg
0.05

As easy as it gets. One thing wrong here though: Munin calls the plugins every 5 minutes (this may change in the
future). The better value to report is not the first one but the second one. In the man page for uptime you’ll see
this called the 5 minute load average.

Also, munin wants the value in a more structured form:

printf "load.value "; cut -d' ' -f2 /proc/loadavg
load.value 0.06

87

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Here the load is called the field or field name, value the attribute, and the number is of course the value. (See
our complete overview of Munin specific terminology).

That was the hard part of the plugin. The rest is just book-keeping.

Munin plugin config command

For munin to know how to draw a graph of the reported numbers, it calls the plugin script with config as the only
argument. A minimal output looks like this:

graph_title Load average
graph_vlabel load
load.label load

The global attribute graph_title sets the title of the graph - in large lettering across the top. The other global
attribute graph_vlabel labels the vertical axis of the graph. In addition load. label provides a color coded legend
for the graphed line provided by load. value.

Everything in a script

The most trivial plugin is then this script:

#!/bin/sh

case $1 in
config)

cat <<'EOM'
graph_title Load average
graph_vlabel load
load.label load
EOM

exit 0;;
esac

printf "load.value "
cut -d' ' -f2 /proc/loadavg

Testing it:

$./load
load.value 0.08
$./load config
graph_title Load average
graph_vlabel load
load.label load

Place the plugin in /etc/munin/plugins. To test it for real use munin-run. This sets up the environment for
the plugin exactly like it would be when run from the munin-node network service.

munin-run load
load.value 0.08
munin-run load config
graph_title Load average
graph_vlabel load
load.label load

Alternatively can also run the plugin in your development sandbox.

88 Chapter 8. Developing Plugins

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Finishing touches

There are a couple more things you can add to improve the plugin. For example Munin supports more explanatory
legends, and the graph should be tweaked. For instance, one may add these attributes to the config output:

graph_args --base 1000 -l 0
graph_scale no
graph_category system
load.warning 10
load.critical 120
graph_info The load average of the machine describes how many processes are in the
→˓runqueue (scheduled to run "immediately").
load.info Average load for the five minutes.

The values of graph_args are passed to the graphing tool (rrd) to instruct it about how to draw the graphs.

--base is to make it scale the graph with a 1000 base (1000=1k 1000k=1M and so on. If you give the base as
1024 as you might when measuring bytes then 1024=1k 1024k=1M and so on. Disks are usually measured in
units of 1000 due to the industry standard for marketing disks that people have gotten used to).

The -l 0 sets the lowest value to 0. If all readings of a plugin were between 10 and 100 the lowest value on the
graph might otherwise be set to 10. On a graph showing readings in percent you might add --upper-limit
100 (of course some percentage readings goes past 100%).

graph_scale no makes munin (rrd) not scale the number. Normally a reading of 1000 would be scaled to 1k and
1000000 to 1M (according to scales set with --base explained above).

Pick a suitable graph_category from the list of well-known categories.

The .warning and .critical attributes are used to issue status messages. In the case of load average they’re probably
set statically by the plugin author. A plugin may also examine the system on which it runs to determine good values
for these. The best way is for the plugin author provide defaults, and then code the plugin to get defaults from
environment variables such as $warning and $critical.

The values graph_info attribute and each of the .info field-attributes are added as text on the html page under the
graphs. They serve as legends for the graphs shown. In the case of this plugin there is not much to say - in other
cases, when presenting output from more complex systems (much) more explanation is in order. Imagine writing
for a person that knows Unix/networks/operating systems in general but not the specific sub-system the plugin
measures in particular.

This results in a graph such as this:

8.1. How to write Munin Plugins 89

https://oss.oetiker.ch/rrdtool/doc/rrdgraph.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The html load page looks like the page pointed to here. There you can see the use of the info attributes as well.

Restarting munin-node

The munin-node network service will not discover new plugins in the plugin directory until you restart it.

service munin-node reload
Stopping Munin Node agents: [OK]
Starting Munin Node: [OK]

Now you can check the reading by telnet:

telnet localhost 4949
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
munin node at foo.example.com
fetch load
load.value 0.06
.
quit

And now Munin will find the plugin as well - and you should have a readable graph within 15-20 minutes.

Here is the real source for the load average plugin for different architectures:

• Linux load plugin

• FreeBSD load plugin

• Solaris load plugin

You will see that they observe some additional niceties that I’ve not described here.

8.1.2 Error handling in plugins

The unix way of communicating errors in such small programs is to set the exit code. But just setting the exit code
(exit 2, exit 3, exit 4) and not issuing a error message is not very friendly. Therefore, if there is a execution error,
such as not being able to open a file that the plugin should be able to access, please both give a error message and
exit with a non-zero value. In shell it goes like this:

if [! -r /proc/loadavg] ; then
echo Cannot read /proc/loadavg >&2
exit -1

fi

In perl:

open(LOAD,"</proc/loadavg") or die "Could not open /proc/loadavg for reading: $!\n
→˓";

8.1.3 Network interface plugin

This plugin demonstrates some additional points but it is much the same as the load plugin. Firstly this plugin will
make two curves in one. This graph will show how many bytes pass over each network interface on the host it is
run. In quite many Unixes you’ll find these numbers in the output of /sbin/ifconfig:

90 Chapter 8. Developing Plugins

http://munin.ping.uio.no/ping.uio.no/knuth.ping.uio.no/load.html
https://raw.githubusercontent.com/munin-monitoring/munin/stable-2.0/plugins/node.d.linux/load.in
https://raw.githubusercontent.com/munin-monitoring/munin/stable-2.0/plugins/node.d.freebsd/load.in
https://raw.githubusercontent.com/munin-monitoring/munin/stable-2.0/plugins/node.d.sunos/load.in

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

$ /sbin/ifconfig
eth1 Link encap:Ethernet HWaddr 00:13:CE:63:45:B2

inet addr:10.0.0.2 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: fe80::213:ceff:fe63:45b2/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2610 errors:0 dropped:0 overruns:0 frame:0
TX packets:3162 errors:0 dropped:0 overruns:0 carrier:42
collisions:0 txqueuelen:1000
RX bytes:817182918 (779.3 MiB) TX bytes:2835962961 (2.6 GiB)
Interrupt:18 Base address:0xc000 Memory:b0204000-b0204fff

...

As usual in Linux though you can also find these numbers in a file. In this case it’s /proc/net/dev:

Inter-| Receive | Transmit
face | bytes packets errs drop fifo frame compressed multicast| bytes packets
→˓errs drop fifo colls carrier compressed
lo:22763978 191841 0 0 0 0 0 0 22763978 191841

→˓ 0 0 0 0 0 0
eth0: 0 0 0 0 0 0 0 0 0 0

→˓ 0 0 0 0 0 0
eth1:817283042 3242 0 0 0 0 0 0 2836088627

→˓4372 0 0 0 0 42 0
sit0: 0 0 0 0 0 0 0 0 0 0

→˓ 0 0 0 0 0 0

This is food for awk. For each interface we’re interested in, it shows the interface name, received bytes and
transmitted bytes. Awk usually uses whitespace as column separator, but this file uses “:” as well. Fortunately we
can adjust awk’s column separator.

$ awk -v interface="eth1" -F'[: \t]+' \
'{ sub(/^ */,""); // Remove leading space

if ($1 == interface) print "down.value "$2"\nup.value "$10;
}' /proc/net/dev

down.value 818579628
up.value 2837327179

But there is one important difference: The load plugin reports a number that can simply be plotted on the Y axis.
These ethernet numbers will just continue to grow into the sky as long as the machine is up. What we actually
want to graph is the increase in the numbers between each sampling measured in bits (or bytes) per second. Munin
(rrd) will take the number and divide by the number of seconds between the samples (currently the sample interval
is fixed at 5 minutes, or 300 seconds), so the “per second” part is taken care of. The bytes to bits we’ll get into in
a second. This is the appropriate config output for the plugin thus far:

graph_order down up
graph_title eth1 traffic
graph_args --base 1000
graph_vlabel bits in (-) / out (+) per ${graph_period}
down.label received
down.type COUNTER

The data type COUNTER here says that the value is a counter that keeps increasing rather than a GAUGE which
the load reading was. If you put this into a script and add a config section you’ll have a working plugin producing
two curves in one graph.

But there is more:

down.graph no
down.cdef down,8,*
up.label bps
up.type COUNTER

(continues on next page)

8.1. How to write Munin Plugins 91

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

up.negative down
up.cdef up,8,*

Here are two or three points. The .cdef thing takes care of multiplying by 8 to get from bytes (or bytes per second)
which is what the file shows to bits (i.e., bits per second), which is the unit most humans use when they think
about network speeds.

There is a munin policy that input and output to the same device should be graphed in the same graph, this we
already do. BUT, we want the output above the X axis and input below. This is done by first disabling graphing
of the input (downloaded) value, then using up.negative down. Instead of just negating the down value this keeps
the sign and gives the down graph the same color as the up graph. The values in the database are kept as normal,
the whole thing is magicked by Munin while graphing.

The end result is this kind of graph:

Given a full set of info attributes (I’ve broken the first line to make it practical to read):

graph_info This graph shows the traffic of the eth0 network interface. Please note
that the traffic is shown in bits per second, not bytes. IMPORTANT: Since the
data source for this plugin use 32bit counters, this plugin is really unreliable
and unsuitable for most 100Mb (or faster) interfaces, where bursts are expected
to exceed 50Mbps. This means that this plugin is usuitable for most production
environments. To avoid this problem, use the ip_ plugin instead.

up.info Traffic of the eth0 interface. Maximum speed is 1000Mbps

Then you end up with a generated page like this.

8.1.4 Validate fieldnames

There are some restrictions on the characters you can use in field names. They are documented in Notes on field
names.

Since Munin version 1.3.3 and 1.2.6 we have support modules for shell and perl plugins (see next sections).

92 Chapter 8. Developing Plugins

http://gauc.no-ip.org/munin/phx2.fedoraproject.org/x86-09.phx2.fedoraproject.org/if_wlan0.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Perl and sed

These regular expressions should be applied to all field names to make them safe:

s/^[^A-Za-z_]/_/
s/[^A-Za-z0-9_]/_/g

Shell plugin

...

. "$MUNIN_LIBDIR/plugins/plugin.sh"

...

fieldname="$(clean_fieldname "$dev")"

...

Perl plugin

...

use Munin::Plugin;

...

my $fieldname=clean_fieldname($dev);

...

Python plugin

...

def clean_fieldname(text):
if text == "root":

return "_root"
else:

return re.sub(r"(^[^A-Za-z_]|[^A-Za-z0-9_])", "_", text)

...

fieldname = clean_fieldname(label)

...

8.1.5 Going on

The plugin documentation should have all the information you need. I suggest the next thing you read about
plugins is Best Practices which should tell you all you need to know to get nice graphs in as few tries as possible.
If planning to write a plugin as a shell script, please read Shell Plugins. If your plugin does not work like you
think it should, try Debugging Plugins. If you want to get the plugin autoconfigured on install and such take a
look at page PluginConcise.

8.1. How to write Munin Plugins 93

http://munin-monitoring.org/wiki/plugins
http://munin-monitoring.org/wiki/PluginShell

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

8.1.6 See also

• Concise guide to plugin authoring

• Debugging Plugins

• Global plugin attributes

• Datasource-specific plugin attributes

• Multi-graph plugins

• Shell Plugins

• Perl plugins

8.2 How to write SNMP Plugins

This HOWTO is not quite done yet.

As writing a Munin plugin is simple writing a SNMP one is even simpler. The SNMP agent on the device has
done all the hard work for us. We just need to be able to autodetect if a particular device supports our plugin, and
then present the stats the SNMP agent gives us.

If you do not know or understand what SNMP is or what a community string is used for please find (and read)
some general SNMP material before you go on.

8.2.1 Supporting library

If you have used SNMP plugins with Munin you may have noticed that there is a uniform way to configure them.
This is implemented in the perl library Munin::Plugin::SNMP (Perl module) which is supplied in Munin 1.4.

If you run perldoc Munin::Plugin::SNMP you’ll see the programmers documentation for the module and its public
functions - as usual. This also explains how to configure a plugin using this module for different authentications
and versions of SNMP.

8.2.2 A load plugin

Returning to the absolute simplest case I would have picked a snmp__load plugin for this HOWTO, but not many
devices supports that. Uptime on the other hand is very basic to SNMP devices. If you snmpwalk some device the
uptime will be there among the first 10 lines:

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (138007908) 15 days, 23:21:19.08

The numeric OID for that is

$ snmptranslate -On DISMAN-EVENT-MIB::sysUpTimeInstance
.1.3.6.1.2.1.1.3.0

A Perl script to get the basics

#! /usr/bin/perl

use strict;
use warnings;
use Munin::Plugin::SNMP;

my $session = Munin::Plugin::SNMP->session(-translate =>
[-timeticks => 0x0]);

(continues on next page)

94 Chapter 8. Developing Plugins

http://munin-monitoring.org/wiki/PluginShell
http://munin-monitoring.org/wiki/PerlPlugins

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

my $uptime = $session->get_single (".1.3.6.1.2.1.1.3.0") || 'U';

if ($uptime ne 'U') {
$uptime /= 8640000; # Convert to days

}

print "uptime.value ", $uptime, "\n";

The -translate option is to stop the SNMP stack from converting the timetics into a human readable time string,
we want a integer to graph.

If you call this snmp__uptime and then in /etc/munin/plugins make a symlink to it: If your device is called “switch”
(this should be in DNS (or the hosts file) and possible to look up): ln -s snmp_switch_uptime . . .

Then the plugin has to be configured, /etc/munin/plugin-conf.d/snmp for the imagined device called “switch”:

[snmp_*]
env.version 2
env.community public

Now you can do munin-run snmp_switch_uptime as root:

munin-run snmp_switch_uptime
uptime.value 15.979475462963

You need a config section too.

if (defined $ARGV[0] and $ARGV[0] eq "config") {
my ($host) = Munin::Plugin::SNMP->config_session();

print "host_name $host\n" unless $host eq 'localhost';
print "graph_title System Uptime

graph_args --base 1000 -l 0
graph_vlabel uptime in days
graph_category system
graph_info This graph shows the number of days that the the host is up and running
→˓so far.
uptime.label uptime
uptime.info The system uptime itself in days.
uptime.draw AREA
";

exit 0;
}

That makes the plugin configurable. Please notice that the plugin prints a host_name line if it’s not examining the
localhost. This is the way Munin knows which device a non-local plugin is examining.

All cool and good. Now we need it to autoconfigure for each new SNMP agent you configure for. In general you
would run this command:

munin-node-configure --snmp --snmpversion 2 --snmpcommunity public 192.168.2.0/
→˓24 | sh -x

This will interogate all IP addresses in the given CIDR range with the given SNMP version and community
string and then the script figures out which SNMP plugins will work on a device it finds and makes goes ln
-s snmp_switch_uptime /usr/share/munin/plugins/snmp__uptime if the device known as “switch” supports the
uptime plugin.

The way it does this is by knowing which plugins to talk to, and then by asking them what OIDs they are interested
in:

=head1 MAGIC MARKERS

(continues on next page)

8.2. How to write SNMP Plugins 95

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

#%# family=snmpauto
#%# capabilities=snmpconf

...

=cut

...

if (defined $ARGV[0] and $ARGV[0] eq "snmpconf") {
print "require 1.3.6.1.2.1.1.3.0 [0-9]\n"; # Number
exit 0;

}

Given those magic markers munin-node-configure will run the plugin with the argument snmpconf which makes
the plugin tell munin-node-configure what OIDs it requires for operation.

In a more complex case, snmp__if_ more is needed to generate the needed symlinks:

TODO

8.3 Best Current Practices for good plugin graphs

These are some guidelines that will make it easier to understand the graphs produced by your plugins.

8.3.1 Graph labeling

• The different labels should be short enough to fit the graph

• The label should be specific: “transaction volume” is better than “volume”, “5 min load average” is better
than “load average”.

• If the measure is a rate the time unit should be given in the vertical label: “bytes / ${graph_period}” is better
than “bytes” or the even worse “throughput”.

• All the graph_* values specified by the plugin can be used in the title and vlabel values.

${graph_*} in plugin output will be magically replaced with the correct value by Munin.

This is a good example of all this: exim_mailstats

8.3.2 Values

Plugins that measure rates should strive to use absolute counters (COUNTER, DERIVE) rather than averages
(GAUGE) calculated by an OS tool. E.g. iostat on Solaris or ifconfig (see the demonstration plugin) will
output counters rather than short term averages. Counters will be much more correct since Munin can average the
measure over its own sample interval instead - this will for example pick up short peaks in loads that Munin might
otherwise not see.

DERIVE vs. COUNTER

To avoid spikes in the graph when counters are reset (as opposed to wrapping), use ${name}.type DERIVE and
${name}.min 0. Note that this will cause lost data points when the counter wraps, and should therefore not be used
with plugins that are expected to wrap more often than be reset (or sampled). An example of this is the Linux if_
plugin on 32bit machines with a busy (100Mbps) network.

96 Chapter 8. Developing Plugins

http://munin.ping.uio.no/ping.uio.no/pike.ping.uio.no/exim_mailstats.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The reasons behind this is rooted in the nature of 32 bit two’s complement arithmetic and the way such numbers
wrap around from huge positive numbers to huge negative numbers when they overflow. Please refer to these two
articles in wikipedia to learn more: Binary Arithmetic and Two’s complement.

To summarize:

1. Use DERIVE

2. Use ${name}.min to avoid negative spikes

8.3.3 Graph scaling

graph_args --base 1000 --lower-limit 0
graph_scale no

See graph_args for its documentation.

Choosing a scaler:

• For disk bytes use 1024 as base (df and other Unix tools still use this though disks are sold assuming
1K=1000)

• For RAM bytes use 1024 as base (RAM is sold that way and always accounted for that way)

• For network bits or bytes use 1000 as base (ethernet and line vendors use this)

• For anything else use 1000 as base

The key is to choose the base that people are used to dealing with the units in. Of the four points above, what
units to use for disk storage is most in doubt: the sale of disks the last 10-15 years with 1K=1000 and the recent
addition of --si options to GNU tools tell us that people are starting to think of disks that way too. But 1024 is
‘’very” basic to the design of disks and filesystems on a low level so the 1024 is likely to remain.

In addition, most people want to see network speeds in bits not bytes. If your readings are in bytes you might
multiply the number by 8 yourself to get bits, or you may leave it to Munin (actually rrd). If the throughput
number is reported in down.value the config output may specify down.cdef down,8,* to multiply the
down number by 8 (this syntax is known as Reverse Polish Notation).

8.3.4 Direction

For a rate measurement plugin that can report on data both going in and out, such as the if_(“eth0”) plugin that
would report on bytes (or packets) going in and out, it makes sense to graph incoming and outgoing on the same
graph. The convention in Munin has become that outgoing data is graphed above the x-axis (i.e., positive) and
incoming data is graphed below the y-axis like this:

8.3. Best Current Practices for good plugin graphs 97

http://en.wikipedia.org/wiki/Binary_arithmetic
http://en.wikipedia.org/wiki/Two%27s_complement

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

This is achieved by using the following field attributes. This example assumes that your plugin generates two
fieldnames inputrate and outputrate. The input rate goes under the x-axis so it needs to be manipulated:

inputrate.graph no
outputrate.negative inputrate

The first disables normal graphing of inputrate. The second activates a hack in munin to get the input and output
graphs in the same color and on opposite sides of the x-axis.

8.3.5 Legends

As of version 1.2 Munin supports explanatory legends on both the graph and field level. Many plugins - even the
CPU use plugin - should make use of this. The CPU “io wait” number for example will only get larger than 0
if the CPU has nothing else to do in the time interval. Many (nice) graphs will only be completely clear once a
rather obscure man page has been read (or in the Linux case perhaps even the kernel source). Using the legend
possibilities Munin supports will help this.

Graph legends are added by using the graph_info attribute, while field legends use the fieldname.info attribute.

8.3.6 Graph category

If the plugin gives the graph_category attribute in its config output, the graph will be grouped together with other
graphs of the same category. Please consult the well-known categories for a list of the categories currently in use.

8.3.7 Legal characters

The legal characters in a field name are documented in Notes on field names

8.3.8 Documentation

Extended documentation should be added within the documentation header of the plugin script. See our instruc-
tions on POD style documentation in the wiki.

98 Chapter 8. Developing Plugins

http://munin-monitoring.org/wiki/munindoc
http://munin-monitoring.org/wiki/munindoc

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

8.4 The Concise guide to plugin authoring

First of all you should have read the HOWTO. This page is an attempt to be brief and yet complete rather than
helpful to a beginner.

8.4.1 What is a plugin?

A plugin is a stand-alone program. In its most common form it is a small perl program or shell script.

The plugins are run by munin-node and invoked when contacted by the Munin master. When this happens the
munin-node runs each plugin twice. Once with the argument config to get the graph configuration and once
with no argument to get the graph data.

8.4.2 Run Time Arguments

A plugin is invoked twice every update-cycle. Once to emit config information and once to fetch values.
Please see Data exchange between master and node for more information about the over-the-wire transactions.

config

This argument is mandatory.

The config output describes the plugin and the graph it creates. The full set of attributes you can use is found
in the config reference.

fetch

This argument is mandatory.

When the node receives a fetch command for a plugin, the plugin is invoked without any arguments on the
command line and is expected to emit one or more field.value attribute values. One for each thing the plugin
observes as defined by the config output. Plotting of graphs may be disabled by the config output.

Please note the following about plugin values:

• If the plugin - for any reason - has no value to report, then it may send the value U for undefined. It should
report values for every field it has configured during config.

• In 1.3.4 and later: The plugin may back-date values by reporting them on the format field.value
<epoch>:<value>, where <epoch> is the number of seconds since 1970/1/1 00:00 (unix epoch) and
<value> is the value in the ordinary way. This can be useful for systems where the plugin receives old data
and gives the correct time axis on the graph.

8.4.3 Install Time Arguments

Install time is managed by one utility: munin-node-configure. It can both auto configure host plugins and (given
the right options) it will auto configure snmp plugins for a specific host.

To do this it looks inside the plugins to determine how much plug-and-play ability features have been implemented
for the user. For details read the section about magic markers.

An automated installation will run munin-node-configure and hereby selects the plugins that are ready
to run on the specific node. The integration is then done by symlinking them in the service directory (usually
/etc/munin/plugins).

Every plugin with a family=auto magic marker (#%# family=auto) will be interrogated automatically with
the autoconf and perhaps the suggest methods. You can change the family list with the --families
option.

8.4. The Concise guide to plugin authoring 99

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Any snmp__* plugins will be auto configured and installed by munin-node-configure --snmp with the
appropriate arguments.

Every plugin magic marked with family=snmpauto and capabilities=snmpconf will be interrogated - when appro-
priately run by munin-node-configure.

autoconf

A plugin with a capabilities=autoconf magic marker will first be invoked with autoconf as the sole argument.
When invoked thus the plugin should do one of these two:

1. Print “yes” to signal that the plugin thinks it can be useful on this host

2. Print “no” to signal that the plugin does not think so.

The plugin should always exit 0, even if the response is “no”.

If the answer was “yes” and it’s not a wildcard plugin, the plugin will be linked into the plugins catalog of munin-
node.

Example:

./load autoconf
yes

If the answer is “no” the plugin may give a reason in parentheses. This may help the user to troubleshoot why the
plugin is not used/does not work.

./load autoconf
no (No /proc/loadavg)

Note: If a plugin is autoconf-igurable it SHOULD not terminate in a uncontrolled way during autoconfiguration.
Please make sure that whatever happens it ends up printing a “yes” or a “no” with a reasonable reason for why
not.

In particular plugins written in Perl, Python and the like SHOULD not require non-core modules without pro-
tecting the code section. In perl one would do something like this (from apache_accesses at the time I write
this):

if (! eval "require LWP::UserAgent;") {
$ret = "LWP::UserAgent not found";

}
...
if (defined $ARGV[0] and $ARGV[0] eq "autoconf") {

if ($ret) {
print "no ($ret)\n";
exit 0;

}
}

If the plugin is to be distributed with Munin the SHOULDs above are MUSTs.

suggest

Munin creates one graph per plugin. To create many graphs from one plugin, you can write a wildcard plugin.

These plugins take one or more bits of configuration from the file name it is run as. The plugin is stored as one
file in the directory for available plugins, but is linked as multiple files in the directory for enabled plugins. This
creates one graph per link name, using just one plugin as source.

Example:

100 Chapter 8. Developing Plugins

https://github.com/munin-monitoring/munin/blob/stable-2.0/plugins/node.d/apache_accesses.in

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

/etc/munin/plugins/if_eth0 -> /usr/share/munin/plugins/if_
/etc/munin/plugins/if_eth1 -> /usr/share/munin/plugins/if_

As you see: wildcard plugins are easily recognized by their names ending in _.

A wildcard plugin that has a capabilities=suggest magic marker will - after autoconf - be invoked with
suggest as the sole argument. It then should examine the system and determine which of the similar things
it can report on and output a list of these.

./if_ suggest
eth0
eth1

This means that the plugin can be run as if_eth0 and if_eth1. The plugin will then have to examine what’s
in C is called ARGV[0], and in perl and shell scripts as $0 to determine what exactly the start command was.

snmpconf

As stated above a plugin magic marked with family=snmpauto and capabilities=snmpconf will be invoked with
snmpconf as the sole argument. A SNMP plugin is by definition a wildcard plugin, it may examine any host
that supports SNMP. The name convention for a SNMP plugin is examplified by the df plugin: snmp__df. The
hostname goes between the two consecutive underlines (_), and when invoked, the plugin may examine $0, as
any wildcard plugin must, to determine the name of the host it is to work with. It may also contain two wildcards
as in snmp__if_. Here the index of the network interface appears after the third underline (_) at the end of the
string. e.g. snmp_foo.example.com_if_1.

On the occasion of being run with snmpconf the plugin shall output one or more of the following:

For a plugin that is to monitor a number of (enumerated) items: the items have to be counted and indexed in the
MIB and the plugin can express this so:

• The word number followed by a OID giving the number of items

• The word index, followed by a OID ending with a trailing dot on to the table of indices

Both the snmp__df and the snmp__if_ plugins use this. The df plugin because it monitors multiple storage
resources and wants to monitor only fixed disks. It expresses this by asking for the index OID for storage be
present. The snmp__if_ plugin uses both number and index. The number OID gives the number of network
interfaces on the device.

For a plugin named in the pattern analogous to snmp__if_ each of the indices will be used at the end of the
plugin name, e.g. snmp_switch_if_10 for a device named switch, interface index 10.

• The word require followed by an OID or the root of an OID that must exist on a SNMP agent. The OID
may optionally be followed by a string or RE-pattern that specifies what sort of response is expected. For
a indexed plugin (one that gives “number” and “index” the indecies will be appended to the require OID to
check that OID for each indexed item (e.g. a interface)

Example:

./snmp__if_ snmpconf
number 1.3.6.1.2.1.2.1.0
index 1.3.6.1.2.1.2.2.1.1.
require 1.3.6.1.2.1.2.2.1.5. [0-9]
require 1.3.6.1.2.1.2.2.1.10. [0-9]

A require supports any perl RE, so for example one could require (6|32) from a OID to filter out only certain kinds
of items.

If all the named items require and number, index given are found (and matched if a RE is given) the plugin
will be activated by munin-node-configure.

8.4. The Concise guide to plugin authoring 101

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

munin-node-configure will send queries to devices that the user has claimed to be interested in, to see if these
OIDs exist and have matching values if required. If so the plugin will be linked into the munin-node service
directory (usually /etc/munin/plugins).

8.4.4 Configuration

Plugins are configured through files on each node.

The munin-node plugin configuration files reside in /etc/munin/plugin-conf.d/. These are used by
munin-node to determine which privileges a plugin should get (which user and group runs the plugin) and which
settings of environment variables should be done for the plugins. Each file in /etc/munin/plugin-conf.
d/ can contain configuration for one or more plugins.

The configuration files are read in alphabetical order and configuration of the last read file overrides earlier con-
figuration.

The format is:

[name or wildcard]
user <username>
group <group>
env.<variable name> <variable content>

Privileges

Munin usually runs each plugin as an unprivileged user.

To run the plugin as a specific user:

[example]
user someuser

To run a plugin with an additional group:

[example]
group somegroup

Environment variables

To set the variable logfile to /var/log/example.log:

[example]
env.logfile /var/log/some.log

When using environment variables in your plugins, the plugin should contain sensible defaults.

Example /bin/sh code. This adds an environment variable called $LOG, and sets it to the value of $logfile
(from env.logfile in the Munin plugin configuration), with a default of /var/log/syslog if $logfile
is empty:

#!/bin/sh

LOG=${logfile:-/var/log/syslog}

Example configuration

This plugin reads from /var/log/example.log, which is readable by user root and group adm. We set
an environment variable for the logfile, and we need additional privileges to be able to read it. Choosing the least
amount of privileges, we choose to run the plugin with the group adm instead of user root.

102 Chapter 8. Developing Plugins

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

[example]
group adm
env.logfile /var/log/example.log

Activating a Munin plugin

To activate a plugin it needs to be executable and present in the munin plugin directory, commonly /etc/munin/
plugins. It can be copied or symlinked here.

Plugins shipped with munin-node are placed in the directory for available Munin plugins, commonly /usr/
share/munin/plugins. To activate these, make symlinks to the Munin plugin directory, commonly /etc/
munin/plugins.

8.4.5 Running a Munin plugin interactively

A munin plugin is often run with modified privileges and with a set of environment variables. To run a plugin
within its configured environment, use the munin-run command. It takes a plugins service link name as the first
argument and any plugin argument as the next.

Example (with long lines broken):

ssm@mavis:~$ munin-run load config
graph_title Load average
graph_args --base 1000 -l 0
graph_vlabel load
graph_scale no
graph_category system
load.label load
load.warning 10
load.critical 120
graph_info The load average of the machine describes how many processes \

are in the run-queue (scheduled to run "immediately").
load.info Average load for the five minutes.

ssm@mavis:~$ munin-run load
load.value 0.11

8.5 Plugin Gallery

In the gallery you can browse description and graph images for our Munin Plugins. It is not ready and complete
yet. Example graph images are still missing and many plugins have empty documentation pages (due to missing
perldoc sections in the plugin script).

Here some examples pages with graph images:

• packages.py - complete

• quota2percent_ - complete

• oracle_sysstat - complete

• ejabberd - Image only, missing perldoc

• apache_activity - Image only, missing perldoc

The HTML-Presentation is auto-generated in a daily cronjob at our project server. It generates the plugins docu-
mentation page, that is accessible via munindoc otherwise. Example graphs for the plugins have to be placed in
our github repositories.

Help from contributors is welcome. Please take a look at the instructions in the next section below.

8.5. Plugin Gallery 103

http://gallery.munin-monitoring.org/
http://gallery.munin-monitoring.org/contrib/apt/deb_packages/deb_packages.py.html
http://gallery.munin-monitoring.org/contrib/disk/quota2percent_.html
http://gallery.munin-monitoring.org/contrib/oracle/oracle_sysstat.html
http://gallery.munin-monitoring.org/contrib/ejabberd/ejabberd_resources_.html
http://gallery.munin-monitoring.org/contrib/apache/apache_activity.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The gallery has two showrooms. One called Core Collection for the plugins that we deliver with the distribution of
Munin-Node and one called 3rd-Party Collection for the plugins from the wild, that were uploaded to our Contrib-
Repository. Especially the latter need a lot of documentation work and we are happy if you add info in perldoc
format and representative example graph images to the contrib repo. The more descriptive content is there, the
more helpful the Plugin Gallery will be.

8.5.1 Categories

The plugins category is the main navigation criterion of the galley. So the first step of the build procedure is
the search for the keyword graph_category within the plugin scripts and parse the string, that follows in the
same line. It makes things easier if you don’t use spaces within in the cagetories name. Please use the character
underscore instead if a separator is needed.

The following pages contain information and recommendations concerning categories:

• graph-category

• Well-known plugin categories

• Best Current Practices for good plugin graphs

8.5.2 Rules for plugin contributors

To make sure that we can auto-generate the portrait pages for each plugin please pay attention to the following
instructions.

1. Add documentation about your plugin in perldoc style (information about perldoc) to show with munin-
doc and in the Plugin Gallery on the web. (See Best Current Practices).

• Add these sections at the start or end of your plugins script file.

2. Upload the plugins files to Github contrib directory.

• Put the plugins script in a subdirectory named after the software or product that it monitors, e.g. apache,
mariadb, postfix. In case of plugins targeting specific operating systems, place these in a subdirectory with
that name, e.g. debian or vmware. The directory’s name will act as an outline on 2nd level of the plugin
gallery (within the plugin category index pages).

• Don’t use generic terms as directory name like “mail”. We already use generic terms to navigate on the
1st level in the plugin gallery and also in the Munin overview!

3. Choose and upload a Munin generated graph of your plugin for demonstration purpose.

• Take one in original size of the Munin website plugin page. Please do not upload scaled images. Each
image should be a file in PNG format.

• Place the image in the subdirectory example-graphs of your plugins directory. This is one level deeper
in the file hierarchy.

• The name of the image file should begin with the name of your plugins script file followed by -day.png
for a daily graph, -week.png for a weekly graph, -month.png for a monthly graph, -year.png for
a yearly graph, e.g. cpu-day.png or smart_-month.png.

4. Upload more image files to the subdirectory example-graphs in PNG-Format if you want to illustrate
the documentation section Interpretation

• The filename of such an additional image should match the following format <plugins_name> -n.png
with n standing for a digit between 1 and 9, e.g. cpu-1.png

8.5.3 Current state of the project

We have scripts to auto-generate the HTML presentation called “Munin Plugin Gallery” per daily cronjob.

104 Chapter 8. Developing Plugins

http://gallery.munin-monitoring.org/index.html
http://gallery.munin-monitoring.org/contrib/index.html
http://juerd.nl/site.plp/perlpodtut
http://gallery.munin-monitoring.org/
https://github.com/munin-monitoring/contrib/tree/master/plugins
https://github.com/munin-monitoring/munin/tree/master/contrib/plugin-gallery

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

ToDo

Whenever the scripts fails to find the relationship between plugins and categories, we put these into category
other. It would be good to improve the plugins data concerning the category or to improve the parse method to
decrease the number of these unrelated plugins.

8.6 Advanced Topics for Plugin Development

When developing plugins for Munin, there are some guidelines that should be observed.

8.6.1 Error Handling

Munin plugins should handle error conditions in a fashion that make them easy to understand and debug. Use
these guidelines when developing a plugin:

• Output may always contain comments. Use comment blocks (lines starting with #) within the output to give
more information

• If an error occurs in the plugin, two things should happen:

• A non-zero exit code must be issued

• A descriptive message should be written to STDERR. On a deployed plugin, this message will appear in
munin-node.log. When invoked via munin-run, it’ll appear in the console.

8.6.2 Handling temporary files

Munin plugins often run with elevated privileges.

When creating and using temporary files, it is important to ensure that this is done securely.

Example shell plugin

#!/bin/sh

Allow others to override mktemp command with env.mktemp_command in the plugin
→˓config
mktemp_command="${mktemp_command:-/bin/mktemp}"

make a temporary file, exit if something goes wrong, and ensure it is removed
→˓after exit
my_tempfile=$(mktemp_command) || exit 73
trap 'rm -f "$my_tempfile"' EXIT

rest of the plugin...

Example perl plugin

For perl, you have better tools available to keep data in memory, but if you need a temporary file or directory, you
can use File::Temp.

#!/usr/bin/perl

use strict;
use warnings;

(continues on next page)

8.6. Advanced Topics for Plugin Development 105

https://metacpan.org/pod/File::Temp

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

make a tempfile, it will be removed on plugin exit
use File::Temp qw/ tempfile /;
my ($fh, $filename) = tempfile();

8.6.3 Storing the Plugin’s State

Very few plugins need to access state information from previous executions of this plugin itself. The munin-node
prepares the necessary environment for this task. This includes a separate writable directory that is owned by the
user running the plugin and a file that is unique for each master that is requesting data from this plugin. These two
storage locations serve different purposes and are accessible via environment variables:

• MUNIN_PLUGSTATE: directory to be used for storing files that should be accessed by other plugins

• MUNIN_STATEFILE: single state file to be used by a plugin that wants to track its state from the last time
it was requested by the same master

Note: The datatype DERIVE is an elegant alternative to using a state file for tracking the rate of change of a given
numeric value.

8.6.4 Portability

Plugins should run on a wide variety of platforms.

Shell Plugins

Please prefer /bin/sh over /bin/bash (or other shells) if you do not need advanced features (e.g. arrays). This
allows such plugins to run on embedded platforms and some *BSD systems that do not contain advanced shells
by default. When using /bin/sh as the interpreter, a feature set similar to busybox’s ash or Debian’s dash can be
expected (i.e. use shellcheck -s dash PLUGIN for code quality checks).

The availability of the following tools can be assumed:

• all the goodies within coreutils

• awk (e.g. gawk)

– it is recommended to stick to the POSIX set of features (verify via POSIXLY_CORRECT=1; export
POSIXLY_CORRECT)

• find

• grep

• sed

In order to avoid external tools (e.g. bc or dc), the shell’s arithmetic substition (e.g. a=$((b + 3))) should be used
for integer operations and awk (e.g. awk ‘{print $1/1000}’) for non-trivial calculations.

Python Plugins

Python2 is approaching its end-of-life in 2020 and Python3 was released 2008. Thus new plugins should be
written in Python3 only.

Core modules (included in CPython) should be preferred over external modules, whenever possible (e.g. use urllib
instead of requests).

106 Chapter 8. Developing Plugins

https://www.gnu.org/software/coreutils
https://www.gnu.org/software/gawk
https://www.gnu.org/software/findutils
https://www.gnu.org/software/grep
https://www.gnu.org/software/sed
https://docs.python.org/3/library/urllib
http://python-requests.org

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

8.7 Requirements for ‘Vetted Plugins’

This is a draft paper written in 2009 by niclan and dipohl. It should be reviewed, completed (at least merged with
the docs for plugin contributors, that were published on github) and then decreed by the developer team.

Purpose is to define requirements for quality plugins that get starred / recommended in the plugin gallery and also
may be accepted for the official distribution of munin-node.

8.7.1 Usability

Vetted plugins should work well out of the box, and should autoconf correctly in most cases. The Concise guide
to plugin authoring describes plugins methods autoconf and suggest.

Their graph should be significant and easy to comprehend. See the Guide for good plugin graphs.

8.7.2 Security

Important demands should be added here..

8.7.3 Documentation

POD Style documentation in the plugin (See Munin documentation for the details)

Examples on what information should be included in a plugin POD can be found in apache and buddyinfo (here
contribution includes also example graph images for the Munin Plugin Gallery :-)

8.7.4 Packaging

Vetted plugins shouldn’t conflict with plugins in other packages as well (ie: plugins in munin-node or munin-
plugins-extra).

These plugins can go in $(DESTDIR)/usr/share/munin/plugins.

8.7. Requirements for ‘Vetted Plugins’ 107

https://github.com/munin-monitoring/contrib/tree/master/plugins#contributed-munin-plugins
http://gallery.munin-monitoring.org
https://raw.githubusercontent.com/munin-monitoring/munin/master/plugins/node.d/apache
http://gallery.munin-monitoring.org/distro/svn/munin-stable-2.0/plugins/node.d.linux/buddyinfo.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

108 Chapter 8. Developing Plugins

CHAPTER 9

Reference

This section contains man pages and other reference material

9.1 Nomenclature

9.1.1 Nomenclature

To be able to use Munin, to understand the documentation, and - not to be neglected - to be able to write docu-
mentation that is consistent with Munin behavior, we need a common nomenclature.

Common terms

Term Munin Master

Explanation The central host/server where Munin gathers all data to. This machine runs munin-cron

Synonyms master

Term Munin Node

Explanation The daemon/network service running on each host to be contacted by the munin master
to gather data. Each node may monitor several hosts. The Munin master will likely run a
munin-node itself.

Synonyms In SNMP this might be called an agent.

Term Plugin

Explanation Each Munin node handles one or more plugins to monitor stuff on hosts

Synonym service

Term Host

Explanation A machine monitored by Munin, maybe by proxy on a munin node or via a snmp plugin

Synonym N/A

Term Field

109

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Explanation Each plugin presents data from one or more data sources. Each found, read, calculated
value corresponds to a field.attribute tuple

Synonym Data source

Term FQN

Explanation A Fully Qualified Name used to address a specific group, node, service or data source.

Synonym Fully Qualified Name

Term Attribute

Explanation Description found in output from plugins, both general (global) to the plugin and also
specific to each field

Synonym N/A

Term Directive

Explanation Statements used in configuration files like munin.conf, munin-node.conf and plugin
configuration directory (/etc/munin/plugin-conf.d/).

Synonym N/A

Term Environment variable

Explanation Set up by munin-node, used to control plugin behaviour, found in plugin configuration
directory (/etc/munin/plugin-conf.d/)

Synonym N/A

Term Global (plugin) attributes

Explanation Used in the global context in a plugin’s configuration output. NB: The attribute is
considered “global” only to the plugin (and the node) and only when executed.

Synonym

Term Datasource-specific plugin attributes

Explanation Used in the datasource-specific context in a plugin’s output.

Synonym N/A

Term Node-level directives

Explanation Used in munin.conf.

Synonym

Term Group-level directives

Explanation Used in munin.conf.

Synonym

Term Field-level directives

Explanation Used in munin.conf.

Synonym

Examples

To shed some light on the nomenclature, consider the examples below:

110 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Global plugin attribute

Global plugin attributes are in the plugins output when run with the config argument. The full list of these attributes
is found on the protocol config page. This output does not configure the plugin, it configures the plugins graph.

graph_title Load average
----------- ------------

| `------ value
`------------------ attribute

Datasource specific plugin attribute

These are found both in the config output of a plugin and in the normal readings of a plugin. A plugin may provide
data from one or more data sources. Each data source needs its own set of field.attribute tuples to define how the
data source should be presented.

load.warning 100
---- ------- ---

| | `- value
| `------- one of several attributes used in config output
`------------- field

load.value 54
---- ----- --

| | `- value
| `------ only attribute when getting values from a plugin
`----------- field

Configuration files

This one is from the global section of munin.conf:

dbdir /var/lib/munin/
----- ---------------

| `--------- value
`-------------------------- global directive

And then one from the node level section:

[foo.example.org]
address localhost
------- ---------

| `----- value
`-------------- node level directive

The relation between directives and attributes

Attributes A plugin has a given set of data sources, and the data sources present themselves through a defined set
of field.attributes with corresponding values. From a Munin administrator’s point of view, these (the names
of the fields and attributes) should not be changed as they are part of how the plugins work.

Directives The configuration files, however, are the administrator’s domain. Here, the administrator may –
through directives – control the plugins’ behavior and even override the plugin’s attributes if so desired.
As such, directives (in configuration files) may override attributes (in plugins).

The distinction between attributes and directives defines an easily understandable separation between how the (for
many people) shrink-wrapped plugins and the editable configuration files.

9.1. Nomenclature 111

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

9.1.2 Fully Qualified Name

The Fully Qualified Name, or “FQN” is the address of a group, node, service, or a data source in munin.

It is most often used when configuring graphs which has no single corresponding plugin, but borrow data sources
from other services.

Group FQN

The group FQN consists of one or more components, separated with a semicolon.

Note: If a node is configured without a group, the domain of the hostname becomes the group.

Examples

example.com

|
`--- group "example.com"

acme;webservers
---- ----------
| |
| `--- group "webservers"
`-------- group "acme"

Node FQN

The fully qualified name to a node consists of a group FQN, a semicolon, and a hostname.

Examples:

example.com;foo.example.com
----------- ---------------
| |
| `--- node "foo.example.com"
`--------------- group "example.com"

acme;webservers;www1.example.net
---- ---------- ----------------
| | |
| | `-------------- node "www1.example.net"
| `------------------------- group "webservers"
`------------------------------ group "acme"

Service FQN

The fully qualified name to a service consists of a node FQN, a colon, and a service name.

Note: A simple munin plugin will provide a service with the same name as the plugin. A multigraph plugin will
provide one or more services, with arbitrary names.

Example:

112 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

acme;webservers;www1.example.net:https_requests
---- ---------- ---------------- --------------
| | | |
| | | `--- service "https_requests"
| | `-------------------- node "www1.example.net"
| `------------------------------- group "webservers"
`------------------------------------ group "acme"

Data source FQN

The fully qualified name to a data source consists of a service fqn, a dot, and a data source name.

Note: A data source normally corresponds to one line in a graph.

Example:

acme;webservers;www1.example.net:https_requests.denied
---- ---------- ---------------- -------------- ------
| | | | |
| | | | `--- data source "denied"
| | | `------------------ service "https_requests"
| | `----------------------------------- node "www1.example.net"
| `-- group "webservers"
`--- group "acme"

9.2 Man pages

9.2.1 munin

DESCRIPTION

Munin is a group of programs to gather data from hosts, graph them, create html-pages, and optionally warn
contacts about any off-limit values.

Munin master

The Munin master contains the following command line programs:

• munin-cron to run other munin programs every 5 minutes. It is run from cron.

• munin-update to gather data from machines running munin-node. Usually run by munin-cron.

• munin-limits to check for any off-limit values. Usually run by munin-cron.

• munin-httpd runs the munin master web interface.

Munin 2.0 contains the following additional command line programs:

• munin-graph to create graphs from data contained in rrd-files. Usually run by munin-cron unless
graph_strategy is set to “cgi” in munin.conf .

• munin-cgi-graph is used to provide graph images on demand (if graph_strategy is set to “cgi”).

• munin-html to draw html-pages on an Munin installation. Usually run by munin-cron unless
html_strategy is set to “cgi” in munin.conf .

• munin-cgi-html is used to provide HTML pages on demand (if graph_strategy is set to “cgi”).

9.2. Man pages 113

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Munin node

The munin node consists of the following programs

Daemons

• munin-node runs on all nodes where data is collected.

• munin-asyncd is a daemon that runs alongside a munin-node. It queries the local munin-node, and spools
the results.

Command line scripts

• munin-node-configure can automatically configure plugins for the local node.

• munindoc outputs plugin documentation.

• munin-run runs a plugin with the same environment as if run from munin-node. Very useful for debugging.

• munin-async is a command line utility, known as an “asynchronous proxy node”. munin-update can connect
via ssh and run munin-async this to retrieve data from the munin async spool without waiting for the node
to run plugins.

AUTHORS

Jimmy Olsen, Audun Ytterdal, Brian de Wolf, Nicolai Langfeldt

SEE ALSO

munin-update, munin-limits, munin.conf ,

9.2.2 munin-async

DESCRIPTION

The munin async clients reads from a spool directory written by munin-asyncd.

It can optionally request a cleanup of this directory.

OPTIONS

--spooldir | -s <spooldir>
Directory for spooled data [/var/lib/munin/spool]

--hostname <hostname>
Overrides the hostname [The local hostname]

This is used to override the hostname used in the greeting banner. This is used when using munin-async
from the munin master, and the data fetched is from another node.

--cleanup
Clean up the spooldir after interactive session completes

--cleanupandexit
Clean up the spooldir and exit (non-interactive)

--spoolfetch
Enables the “spool” capability [no]

114 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--vectorfetch
Enables the “vectorized” fetching capability [no]

Note that without this flag, the “fetch” command is disabled.

--verbose | -v
Be verbose

--help | -h
View this message

EXAMPLES

munin-async --spoolfetch

This starts an interactive munin node session, enabling the “spoolfetch” command. This does not connect to
the local munin node. Everything happens within munin-async, which reads from the spool directory instead of
connecting to the node.

SEE ALSO

See munin for an overview over munin.

See also Asynchronous proxy node for more information and examples of how to configure munin-async.

9.2.3 munin-asyncd

DESCRIPTION

The munin async daemon connects to a munin node periodically, and requests plugin configuration and data.

This is stored in a spool directory, which is read by munin-async.

OPTIONS

--spool | -s <spooldir>
Directory for spooled data [/var/lib/munin/spool]

--host <hostname:port>
Connect a munin node running on this host name and port [localhost:4949]

--interval <seconds>
Set default interval size [86400 (one day)]

--retain <count>
Number of interval files to retain [7]

--nocleanup
Disable automated spool dir cleanup

--fork
Fork one thread per plugin available on the node. [no forking]

--verbose | -v
Be verbose

--help | -h
View this message

9.2. Man pages 115

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

SEE ALSO

See munin for an overview over munin.

See also Asynchronous proxy node for more information and examples of how to configure munin-asyncd.

9.2.4 munin-check

DESCRIPTION

munin-check is a utility that fixes the permissions of the munin directories and files.

Note: munin-check needs superuser rights.

OPTIONS

--fix-permissions | -f
Fix the permissions of the munin files and directories.

--help | -h
Display usage information

SEE ALSO

See munin for an overview over munin.

9.2.5 munin-cgi-graph

DESCRIPTION

The munin-cgi-graph program is intended to be run from a web server. It can either run as CGI, or as FastCGI.

OPTIONS

munin-cgi-graph is controlled using environment variables. See environment variables PATH_INFO and
QUERY_STRING.

Note: The munin-cgi-graph script may be called with the command line options of munin-graph. However, the
existence of this should not be relied upon.

ENVIRONMENT VARIABLES

The following environment variables are used to control the output of munin-cgi-graph:

PATH_INFO
This is the remaining part of the URI, after the path to the munin-cgi-graph script has been removed.

The group, host, service and timeperiod values are extracted from this variable. The group may be nested.

CGI_DEBUG
If this variable is set, debug information is logged to STDERR, and to /var/log/munin/munin-cgi-graph.log

QUERY_STRING
A list of key=value parameters to control munin-cgi-graph. If QUERY_STRING is set, even to an empty
value, a no_cache header is returned.

116 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

HTTP_CACHE_CONTROL
If this variable is set, and includes the string “no_cache”, a no_cache header is returned.

HTTP_IF_MODIFIED_SINCE
Returns 304 if the graph is not changed since the timestamp in the HTTP_IF_MODIFIED_SINCE variable.

EXAMPLES

When given an URI like the following:

http://munin/munin-cgi/munin-cgi-graph/example.org/client.example.org/cpu-week.png

munin-cgi-graph will be called with the following environment:

PATH_INFO=/example.org/client.example.org/cpu-week.png

To verify that munin is indeed graphing as it should, you can use the following command line:

sudo -u www-data \
PATH_INFO=/example.org/client.example.org/irqstats-day.png \
/usr/lib/munin/cgi/munin-cgi-graph | less

The “less” is strictly not needed, but is recommended since munin-cgi-graph will output binary data to your
terminal.

You can add the CGI_DEBUG variable, to get more log information. Content and debug information is logged to
STDOUT and STDERR, respectively. If you only want to see the debug information, and not the HTTP headers
or the content, you can redirect the file descriptors:

sudo -u www-data \
CGI_DEBUG=yes \
PATH_INFO=/example.org/client.example.org/irqstats-day.png \
/usr/lib/munin/cgi/munin-cgi-graph 2>&1 >/dev/null | less

SEE ALSO

See munin for an overview over munin.

9.2.6 munin-cgi-html

DESCRIPTION

The munin-cgi-html program is intended to be run from a web server. It can either run as CGI, or as FastCGI.

OPTIONS

munin-cgi-html takes no options. It is controlled using environment variables.

ENVIRONMENT VARIABLES

The following environment variables are used to control the output of munin-cgi-html:

PATH_INFO
This is the remaining part of the URI, after the path to the munin-cgi-html script has been removed.

The group, host, service and timeperiod values are extracted from this variable. The group may be nested.

9.2. Man pages 117

http://munin/munin-cgi/munin-cgi-graph/example.org/client.example.org/cpu-week.png

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

EXAMPLES

PATH_INFO

“/” refers to the top page.

“/example.com/” refers to the group page for “example.com” hosts.

“/example.com/client.example.com/” refers to the host page for “client.example.com” in the “example.com”
group

COMMAND-LINE

When given an URI like the following: http://munin.example.org/munin-cgi/munin-cgi-html/example.org

munin-cgi-html will be called with the following environment:

PATH_INFO=/example.org

To verify that munin is able to create HTML pages, you can use the following command line:

sudo -u www-data \
PATH_INFO=/example.org \
/usr/lib/munin/cgi/munin-cgi-html

SEE ALSO

See munin for an overview over munin.

munin-cgi-graph.

9.2.7 munin-cron

DESCRIPTION

Munin-cron is a part of the package Munin, which is used in combination with munin-node.

Munin is a group of programs to gather data from Munin’s nodes, graph them, create html-pages, and optionally
warn Nagios about any off-limit values.

“munin-cron” runs the following programs, in the given order:

1. munin-update

2. munin-limits

For munin 2.0 it additionally runs the following programs (unless configured for CGI):

1. munin-graph

2. munin-html

Unless the munin master is configured otherwise, “munin-cron” should run every 5 minutes.

OPTIONS

--service <service>
Limit services to <service>. Multiple –service options may be supplied. [unset]

--host <host>
Limit hosts to <host>. Multiple –host options may be supplied. [unset]

118 Chapter 9. Reference

http://munin.example.org/munin-cgi/munin-cgi-html/example.org

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--config <file>
Use <file> as configuration file. [/etc/munin/munin.conf]

SEE ALSO

See munin for an overview over munin.

munin-update, munin-limits, munin.conf ,

9.2.8 munin-graph

DESCRIPTION

munin-graph script is one of the munin master components run from the munin-cron script.

If “graph_strategy” is set to “cron”, munin-graph creates static graphs from all RRD files in the munin database
directory.

If graph_strategy is set to “cgi”, munin-graph will not create graphs. This is the proper setting when you run
munin-httpd.

OPTIONS

Some options can be negated by prefixing them with “no”. Example: –fork and –nofork

--fork
By default munin-graph forks subprocesses for drawing graphs to utilize available cores and I/O bandwidth.
Can be negated with –nofork [–fork]

--n <processes>
Max number of concurrent processes [6]

--force
Force drawing of graphs that are not usually drawn due to options in the config file. Can be negated with
–noforce [–noforce]

--lazy
Only redraw graphs when needed. Can be negated with –nolazy [–lazy]

--help
View this message.

--version
View version information.

--debug
Log debug messages.

--screen
If set, log messages to STDERR on the screen.

--cron
Behave as expected when run from cron. (Used internally in Munin.) Can be negated with –nocron

--host <host>
Limit graphed hosts to <host>. Multiple –host options may be supplied.

--only-fqn <FQN>
For internal use with CGI graphing. Graph only a single fully qualified named graph,

For instance: –only-fqn root/Backend/dafnes.example.com/diskstats_iops

Always use with the correct –host option.

9.2. Man pages 119

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--config <file>
Use <file> as configuration file. [/etc/munin/munin.conf]

--list-images
List the filenames of the images created. Can be negated with –nolist-images. [–nolist-images]

--output-file | -o
Output graph file. (used for CGI graphing)

--log-file | -l
Output log file. (used for CGI graphing)

--day
Create day-graphs. Can be negated with –noday. [–day]

--week
Create week-graphs. Can be negated with –noweek. [–week]

--month
Create month-graphs. Can be negated with –nomonth. [–month]

--year
Create year-graphs. Can be negated with –noyear. [–year]

--sumweek
Create summarised week-graphs. Can be negated with –nosumweek. [–summweek]

--sumyear
Create summarised year-graphs. Can be negated with –nosumyear. [–sumyear]

--pinpoint <start,stop>
Create custom-graphs. <start,stop> is the time in the standard unix Epoch format. [not active]

--size_x <pixels>
Sets the X size of the graph in pixels [175]

--size_y <pixels>
Sets the Y size of the graph in pixels [400]

--lower_limit <lim>
Sets the lower limit of the graph

--upper_limit <lim>
Sets the upper limit of the graph

Note: --pinpoint and --only-fqn must not be combined with any of --day , --week, --month or
--year (or their negating forms). The result of doing that is undefined.

SEE ALSO

See munin for an overview over munin.

munin-cron, munin-httpd

9.2.9 munin-html

DESCRIPTION

munin-html is one of the munin master components run from the munin-cron script.

If html_strategy is unset, or set to “cron”, munin-html creates static HTML pages. If set to “cgi”, it will not
generate static pages, this is the proper setting when munin-httpd is used.

120 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

OPTIONS

munin-html has one significant option, which configuration file to use.

Several other options are recognized and ignored as “compatibility options”, since munin-cron passes all options
through to the underlying components, of which munin-html is one.

--config <file>
Use <file> as configuration file. [/etc/munin/munin.conf]

--help
View this message.

--debug
Log debug messages.

--screen
If set, log messages to STDERR on the screen.

--version
View version information.

--nofork
Compatibility. No effect.

--service <service>
Compatibility. No effect.

--host <host>
Compatibility. No effect.

SEE ALSO

See munin for an overview over munin.

munin-cron, munin-httpd

9.2.10 munin-httpd

DESCRIPTION

munin-httpd is a basic webserver. It provides a munin web interface on port 4948/tcp, generating pages and graphs
on demand.

If transport layer security and authentication is desired, place a webserver with those features as a reverse proxy
in front of munin-httpd.

munin-httpd was introduced after the 2.0.x release series. It replaces the FastCGI scripts munin-cgi-graph and
munin-cgi-html, that were used in munin 2.0.

OPTIONS

munin-httpd takes no options.

CONFIGURATION

munin-httpd reads its configuration from munin.conf .

9.2. Man pages 121

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

SEE ALSO

See munin for an overview over munin.

munin.conf

9.2.11 munin-limits

DESCRIPTION

munin-limits is one of the processes regularly run from the munin-cron script.

It reads the current and the previous collected values for each plugin, and compares them to the plugin’s warning
and critical values, if it has any.

If the limits are breached, for instance, if a value moves from “ok” to “warning”, or from “critical” to “ok”, it
sends an event to any configured contacts.

A common configured contact is “nagios”, which can use events from munin-limits as a source of passive service
check results.

OPTIONS

--config <file>
Use <file> as configuration file. [/etc/munin/munin.conf]

--contact <contact>
Limit contacts to those of <contact<gt>. Multiple –contact options may be supplied. [unset]

--host <host>
Limit hosts to those of <host<gt>. Multiple –host options may be supplied. [unset]

--service <service>
Limit services to those of <service>. Multiple –service options may be supplied. [unset]

--always-send <severity list>
Force sending of messages even if you normally wouldn’t.

The <severity list> can be a whitespace or comma separated list of the values “ok”, “warning”, “critical” or
“unknown”.

This option may be specified several times, to add more values.

Use of “–always-send” overrides the “always_send” value in munin.conf for configured contacts. See also
–force.

--force
Alias for “–always-send ok,warning,critical,unknown”

--force-run-as-root
munin-limits will normally prevent you from running as root. Use this option to override this.

The use of this option is not recommended. You may have to clean up file permissions in order for munin
to run normally afterwards.

--help
View help message.

--debug
Log debug messages.

--screen
If set, log messages to STDERR on the screen.

122 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

FILES

/etc/munin/munin.conf

/var/lib/munin/*

/var/run/munin/*

SEE ALSO

See munin for an overview over munin.

munin.conf

9.2.12 munin-node-configure

SYNOPSIS

munin-node-configure [options]

DESCRIPTION

munin-node-configure reports which plugins are enabled on the current node, and suggest changes to this list.

By default this program shows which plugins are activated on the system.

If you specify “–suggest”, it will present a table of plugins that will probably work (according to the plugins’
autoconf command).

If you specify “–snmp”, followed by a list of hosts, it will present a table of SNMP plugins that they support.

If you additionally specify “–shell”, shell commands to install those same plugins will be printed. These can be
reviewed or piped directly into a shell to install the plugins.

OPTIONS

General options

--help
Show this help page.

--version
Show version information.

--debug
Print debug information on the operations of “munin-node-configure”. This can be very verbose.

All debugging output is printed to STDOUT, and each line is prefixed with ‘#’. Only errors are printed to
STDERR.

--pidebug
Plugin debug. Sets the environment variable MUNIN_DEBUG to 1 so that plugins may enable debugging.

--config <file>
Override configuration file [/etc/munin/munin-node.conf]

--servicedir <dir>
Override plugin directory [/etc/munin/plugins/]

--sconfdir <dir>
Override plugin configuration directory [/etc/munin/plugin-conf.d/]

9.2. Man pages 123

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--libdir <dir>
Override plugin library [/usr/share/munin/plugins/]

--exitnoterror
Do not consider plugins that exit non-zero exit-value as error.

--suggest
Suggest plugins that might be added or removed, instead of those that are currently enabled.

Output options

By default, “munin-node-configure” will print out a table summarising the results.

--shell
Instead of a table, print shell commands to install the new plugin suggestions.

This implies “–suggest”, unless “–snmp” was also enabled. By default, it will not attempt to remove any
plugins.

--remove-also
When “–shell” is enabled, also provide commands to remove plugins that are no longer applicable from the
service directory.

Plugin selection options

--families <family,...>
Override the list of families that will be used (auto, manual, contrib, snmpauto). Multiple families can be
specified as a comma-separated list, by repeating the “–families” option, or as a combination of the two.

When listing installed plugins, the default families are ‘auto’, ‘manual’ and ‘contrib’. Only ‘auto’ plugins
are checked for suggestions. SNMP probing is only performed on ‘snmpauto’ plugins.

--newer <version>
Only consider plugins added to the Munin core since <version>. This option is useful when upgrading,
since it can prevent plugins that have been manually removed from being reinstalled. This only applies to
plugins in the ‘auto’ family.

SNMP options

--snmp <host|cidr,...>
Probe the SNMP agents on the host or CIDR network (e.g. “192.168.1.0/24”), to see what plugins they
support. This may take some time, especially if the many hosts are specified.

This option can be specified multiple times, or as a comma-separated list, to include more than one
host/CIDR.

--snmpversion <ver>
The SNMP version (1, 2c or 3) to use. [‘2c’]

--snmpport <port>
The SNMP port to use [161]

--snmpdomain <domain>
The Transport Domain to use for exchanging SNMP messages. The default is UDP/IPv4. Possible values:
‘udp’, ‘udp4’, ‘udp/ipv4’; ‘udp6’, ‘udp/ipv6’; ‘tcp’, ‘tcp4’, ‘tcp/ipv4’; ‘tcp6’, ‘tcp/ipv6’.

SNMP 1/2c authentication

SNMP versions 1 and 2c use a “community string” for authentication. This is a shared password, sent in plaintext
over the network.

124 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--snmpcommunity <string>

The community string for version 1 and 2c agents. [‘public’] (If this works your device is probably very insecure
and needs a security checkup).

SNMP 3 authentication

SNMP v3 has three security levels. Lowest is “noAuthNoPriv”, which provides neither authentication nor encryp-
tion. If a username and “authpassword” are given it goes up to “authNoPriv”, and the connection is authenticated.
If “privpassword” is also given the security level becomes “authPriv”, and the connection is authenticated and
encrypted.

Note: Encryption can slow down slow or heavily loaded network devices. For most uses “authNoPriv” will be
secure enough – the password is sent over the network encrypted in any case.

ContextEngineIDs are not (yet) supported.

For further reading on SNMP v3 security models please consult RFC3414 and the documentation for Net::SNMP.

--snmpusername <name>
Username. There is no default.

--snmpauthpass <password>
Authentication password. Optional when encryption is also enabled, in which case defaults to the privacy
password (“–snmpprivpass”).

--snmpauthproto <protocol>
Authentication protocol. One of ‘md5’ or ‘sha’ (HMAC-MD5-96, RFC1321 and SHA-1/HMAC-SHA-96,
NIST FIPS PIB 180, RFC2264). [‘md5’]

--snmpprivpass <password>
Privacy password to enable encryption. There is no default. An empty (‘’) password is considered as no
password and will not enable encryption.

Privacy requires a privprotocol as well as an authprotocol and a authpassword, but all of these are defaulted
(to ‘des’, ‘md5’, and the privpassword value, respectively) and may therefore be left unspecified.

--snmpprivproto <protocol>
If the privpassword is set this setting controls what kind of encryption is used to achieve privacy in the
session. Only the very weak ‘des’ encryption method is supported officially. [‘des’]

munin-node-configure also supports ‘3des’ (CBC-3DES-EDE, aka Triple-DES, NIST FIPS 46-3) as speci-
fied in IETF draft-reeder-snmpv3-usm-3desede. Whether or not this works with any particular device, we
do not know.

FILES

• /etc/munin/munin-node.conf

• /etc/munin/plugin-conf.d/*

• /etc/munin/plugins/*

• /usr/share/munin/plugins/*

SEE ALSO

See munin for an overview over munin.

9.2. Man pages 125

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

9.2.13 munin-node

DESCRIPTION

munin-node is a daemon for reporting statistics on system performance.

By default, it is started at boot time, listens on port 4949/TCP, accepts connections from the munin master, and
runs munin plugins on demand.

OPTIONS

--config <configfile>
Use <file> as configuration file. [/etc/munin/munin-node.conf]

--paranoia
Only run plugins owned by root. Check permissions as well. Can be negated with –noparanoia [–nopara-
noia]

--help
View this help message.

--debug
View debug messages.

Note: This can be very verbose.

--pidebug
Plugin debug. Sets the environment variable MUNIN_DEBUG to 1 so that plugins may enable debugging.

CONFIGURATION

The configuration file is munin-node.conf .

FILES

/etc/munin/munin-node.conf

/etc/munin/plugins/*

/etc/munin/plugin-conf.d/*

/var/run/munin/munin-node.pid

/var/log/munin/munin-node.log

SEE ALSO

munin-node.conf

Example configuration

/etc/munin/munin-node.conf - config-file for munin-node
#

host_name random.example.org
log_level 4
log_file /var/log/munin/munin-node.log

(continues on next page)

126 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

pid_file /var/run/munin/munin-node.pid
background 1
setsid 1

Which port to bind to;

host [::]
port 4949
user root
group root

Regexps for files to ignore

ignore_file ~$
ignore_file \.bak$
ignore_file %$
ignore_file \.dpkg-(tmp|new|old|dist)$
ignore_file \.rpm(save|new)$
ignore_file \.puppet-bak$

Hosts to allow

cidr_allow 127.0.0.0/8
cidr_allow 192.0.2.129/32

SEE ALSO

See munin for an overview over munin.

9.2.14 munin-run

DESCRIPTION

munin-run is a script to run Munin plugins from the command-line.

It is primarily used to debug plugins; munin-run runs these plugins in the same conditions as they are under
munin-node.

OPTIONS

--config <configfile>
Use <file> as configuration file. [/etc/munin/munin-node.conf]

--servicedir <dir>
Use <dir> as plugin dir. [/etc/munin/plugins/]

--sconfdir <dir>
Use <dir> as plugin configuration dir. [/etc/munin/plugin-conf.d/]

--sconffile <file>
Use <file> as plugin configuration. Overrides sconfdir. [undefined]

--paranoia
Only run plugins owned by root and check permissions. [disabled]

--help
View this help message.

9.2. Man pages 127

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--debug
Print debug messages.

Debug messages are sent to STDOUT and are prefixed with “#” (this makes it easier for other parts of munin
to use munin-run and still have –debug on). Only errors go to STDERR.

--pidebug
Enable debug output from plugins. Sets the environment variable MUNIN_DEBUG to 1 so that plugins may
enable debugging. [disabled]

--version
Show version information.

FILES

/etc/munin/munin-node.conf

/etc/munin/plugins/*

/etc/munin/plugin-conf.d/*

/var/run/munin/munin-node.pid

/var/log/munin/munin-node.log

SEE ALSO

See munin for an overview over munin.

9.2.15 munin-update

DESCRIPTION

munin-update is the primary Munin component. It is run from the munin-cron script.

This script is responsible for contacting all the agents (munin-nodes) and collecting their data. Upon fetching the
data, munin-update stores everything in RRD files - one RRD files for each field in each plugin.

Running munin-update with the –debug flag will often give plenty of hints on what might be wrong.

munin-update is a component in the Munin server.

OPTIONS

--config_file <file>
Use <file> as the configuration file. [/etc/munin/munin.conf]

--debug
Log debug messages.

--screen
If set, log messages to STDERR on the screen.

--fork
If set, will fork off one process for each host. Can be negated with –nofork [–fork]

--host <host>
Limit fetched data to those from <host<gt>. Multiple –host options may be supplied. [unset]

--service <service>
Limit fetched data to those of <service>. Multiple –service options may be supplied. [unset]

128 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--timeout <seconds>
Set the network timeout to <seconds>. [180]

--help
Print the help message then exit.

--version
Print version information then exit.

SEE ALSO

See munin for an overview over munin.

munin-cron

9.2.16 munin.conf

DESCRIPTION

This is the configuration file for the munin master. It is used by munin-update, munin-limits and munin-httpd.

Location in packages is usually /etc/munin/ while if compiled from source it is often found in /etc/opt/
munin/.

The structure is:

1. One general/global section

2. Zero or more group section(s)

3. One or more host section(s)

Group and host sections are defined by declaring the group or host name in brackets. Everything under a section
definition belongs to that section, until a new group or host section is defined.

Note: As the global section is not defined through brackets, it must be found prior to any group or host
sections. It will not work if you place them in later sections of the config file. We recommend to use the delivered
munin.conf file and adapt it to your needs.

GLOBAL DIRECTIVES

Global directives affect all munin master components unless specified otherwise.

dbdir <path>
The directory where munin stores its database files (Default: /var/lib/munin). It must be writable for
the user running munin-cron. RRD files are placed in subdirectories $dbdir/$domain/

htmldir <path>
The directory shown by munin-httpd. It must be writable for the user running munin-httpd. For munin 2.0:
The directory where munin-html stores generated HTML pages, and where munin-graph stores graphs.

logdir <path>
The directory where munin stores its logfiles (Default: /var/log/munin). It must be writable by the
user running munin-cron.

rundir <path>
Directory for files tracking munin’s current running state. Default: /var/run/munin

tmpldir <path>
Directories for templates used by munin-httpd (munin 2.0: munin-html) to generate HTML pages. Default
/etc/munin/templates

9.2. Man pages 129

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

staticdir <path>
Where to look for the static www files.

cgitmpdir <path>
Temporary cgi files are here. It has to be writable by the cgi user (For Munin stable 2.0 usually nobody or
httpd).

includedir <path>
(Exactly one) directory to include all files from. Default /etc/munin/plugin-conf.d/

local_address <address>
Sets the local IP address that munin-update should bind to when contacting the nodes. May be used several
times (one line each) on a multi-homed host. Should default to the most appropriate interface, based on
routing decision.

Note: This directive can be overwritten via settings on lower hierarchy levels (group, node).

fork <yes|no>
This directive determines whether munin-update fork when gathering information from nodes. Default is
“yes”.

If you set it to “no” munin-update will collect data from the nodes in sequence. This will take more time,
but use less resources. Not recommended unless you have only a handful of nodes.

Affects: munin-update

timeout <seconds>
This directive determines how long munin-update allows a worker to fetch data from a single node. Default
is “180”.

Affects: munin-update

palette <default|old>
The palette used by munin-httpd to color the graphs. The “default” palette has more colors and better
contrast than the “old” palette.

custom_palette rrggbb rrggbb ...
The user defined custom palette used by munin-httpd to color the graphs. This option overrides the existing
palette. The palette must be space-separated 24-bit hex color code.

graph_period <second>
You can choose the time reference for “DERIVE” like graphs, and show “per minute” => minute, “per
hour” => hour values instead of the default “per second”.

html_dynamic_images 1
Munin HTML templates use this variable to decide whether to use dynamic (“lazy”) loading of images with
javascript so that images are loaded as they are scrolled in view. This prevents excessive load on the web
server. Default is 0 (off).

max_graph_jobs 6
Available since Munin 1.4.0. Maximum number of parallel processes used by munin-graph when calling
rrdgraph. The optimal number is very hard to guess and depends on the number of cores of CPU, the I/O
bandwidth available, if you have SCSI or (S)ATA disks and so on. You will need to experiment. Set on the
command line with the -n n option. Set to 0 for no forking.

munin_cgi_graph_jobs 6
munin-cgi-graph is invoked by the web server up to very many times at the same time. This is not op-
timal since it results in high CPU and memory consumption to the degree that the system can thrash.
Again the default is 6. Most likely the optimal number for max_cgi_graph_jobs is the same as
max_graph_jobs.

cgiurl_graph /munin-cgi/munin-cgi-graph
If the automatic CGI url is wrong for your system override it here.

130 Chapter 9. Reference

http://guide.munin-monitoring.org/en/stable-2.0/reference/munin-graph.html#munin-graph
https://oss.oetiker.ch/rrdtool/doc/rrdgraph.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

max_size_x 4000
The max width of images in pixel. Default is 4000. Do not make it too large otherwise RRD might use all
RAM to generate the images.

max_size_y 4000
The max height of images in pixel. Default is 4000. Do not make it too large otherwise RRD might use all
RAM to generate the images.

graph_strategy <cgi|cron>
This option is available only in munin 2.0. In munin 2.0 graphics files are generated either via cron or by a
CGI process.

If set to “cron”, munin-graph will graph all services on all nodes every run interval.

If set to “cgi”, munin-graph will do nothing. Instead graphs are generated by the webserver on demand.

html_strategy <cgi|cron>
This option is available only in munin 2.0. In munin 2.0 HTML files are generated either via cron (default)
or by a CGI process.

If set to “cron”, munin-html will recreate all html pages every run interval.

If set to “cgi”, munin-html will do nothing. Instead HTML files are generated by the webserver on demand.
This setting implies graph_strategy cgi

max_processes 16
munin-update runs in parallel.

The default max number of processes is 16, and is probably ok for you. Should be not higher than 4 x CPU
cores.

If set too high, it might hit some process/ram/filedesc limits. If set too low, munin-update might take more
than 5 min. If you want munin-update to not be parallel set it to 1.

rrdcached_socket /var/run/rrdcached.sock
RRD updates are per default, performed directly on the rrd files. To reduce IO and enable the use of the
rrdcached, uncomment it and set it to the location of the socket that rrdcached uses.

graph_data_size <normal|huge|custom>
This directive sets the resolution of the RRD files that are created by munin-update.

Default is “normal”.

“huge” saves the complete data with 5 minute resolution for 400 days.

With “custom” you can define your own resolution. See the instruction on custom RRD sizing for the details.

Changing this directive has no effect on existing graphs

contact.your_contact_name.command <command>
Define which contact command to run. See the tutorial Let Munin croak alarm for detailed instruction about
the configuration.

contact.your_contact_name.text <text>
Text to pipe into the command.

contact.your_contact_name.max_messages <number>
Close (and reopen) command after given number of messages. E.g. if set to 1 for an email target, Munin
sends 1 email for each warning/critical. Useful when relaying messages to external processes that may
handle a limited number of simultaneous warnings.

ssh_command <command>
The name of the secure shell command to use. Can be fully qualified or looked up in $PATH.

Defaults to “ssh”.

ssh_options <options>
The options for the secure shell command.

9.2. Man pages 131

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Defaults are “-o ChallengeResponseAuthentication=no -o StrictHostKeyChecking=no”. Please adjust this
according to your desired security level.

With the defaults, the master will accept and store the node ssh host keys with the first connection. If a host
ever changes its ssh host keys, you will need to manually remove the old host key from the ssh known hosts
file. (with: ssh-keygen -R <node-hostname>, as well as ssh-keygen -R <node-ip-address>)

You can remove “StrictHostKeyChecking=no” to increase security, but you will have to manually manage
the known hosts file. Do so by running “ssh <node-hostname>” manually as the munin user, for each node,
and accept the ssh host keys.

If you would like the master to accept all node host keys, even when they change, use the options “-o
UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -o PreferredAuthentications=publickey”.

domain_order <group1> <group2> ..
Change the order of domains/groups. Default: Alphabetically sorted

GROUP DIRECTIVES

If you want to set directives on the group level you have to start the group section with the groups name in square
brackets.

[mygroup.mydomain]

node_order <node1> <node2> ..
Changes the order of nodes in a domain. Default: Alphabetically sorted.

contacts <no|your_contact_name1 your_contact_name2 ...>
A list of contacts used by munin-limits to report values passing the warning and critical thresholds.

If set to something else than “no”, names a list of contacts which should be notified for this node. Default
is “no” and then all defined contacts will get informed when values go over or below thresholds.

Note: This directive can be overwritten via settings on lower levels of the hierarchy (node, plugin).

NODE DEFINITIONS

Node definitions can have several types. In all forms, the definition is used to generate the node name and group
for the node, and the following lines define its directives. All following directives apply to that node until another
node definition or EOF.

When defining a nodename it is vital that you use a standard DNS name, as in, one that uses only “a-z”, “-“, and
“.”. While other characters can be used in a DNS name, it is against the RFC, and Munin uses the other characters
as delimiters. If they appear in nodenames, unexpected behavior may occur.

The simplest node definition defines the section for a new node by simply wrapping the DNS name of the node
in brackets, e.g. [machine1.example.com]. This will add the node machine1.example.com to the group
example.com.

The next form of definition is used to define the node and group explicitly. It follows the form [example.com;
machine1.sub.example.com]. This adds the node machine1.sub.example.com to the group example.com.
This can be useful if you have machines you want to put together as a group that are under different domains (as
in the given example). This can also solve a problem if your machine is example.com, where having a group of
com makes little sense.

A deeper hierarchy can be specified by using a list of groups, separated with “;”. For example: [site1;
customer2;production;mail.customer2.example.org].

132 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

NODE DIRECTIVES

These are directives that can follow a node definition and will apply only to that node.

address <value>
Specifies the host name or IP address, with an optional scheme.

Permitted schemes are “munin://”, “ssh://” or “cmd://”. If no scheme is specified, the default is “munin://”

The “ssh://” and “cmd://” schemes take arguments after the URL. See Address schemes for examples.

port <port number>
The port number of the node. Ignored if using alternate transport. Default is “4949”.

use_node_name <yes|no>
Overrides the name supplied by the node. Allowed values: “yes” and “no”. Defaults to “no”.

notify_alias <node name>
Used by munin-limits.

If set, changes the name by which the node presents itself when warning through munin-limits.

Note: This directive can also be used on hierarchy level plugin to change the name by which the plugin presents
itself when warning through munin-limits.

ignore_unknown <yes|no>
If set, ignore any unknown values reported by the node. Allowed values are “yes” and “no”. Defaults to
“no”.

Useful when a node is expected to be off-line frequently.

update <yes|no>
Fetch data from this node with munin-update? Allowed values are “yes” and “no”. Defaults to “yes”.

If you make a virtual node which borrow data from real nodes for aggregate graphs, set this to “no” for that
node.

PLUGIN DIRECTIVES

These directives follow a node definition and are of the form “plugin.directive <value>”.

Using these directives you can override various directives for a plugin, such as its contacts, and can also be used
to create graphs containing data from other plugins.

graph_height <value>
The graph height for a specific service. Default is 200.

Affects: munin-httpd.

graph_width <value>
The graph width for a specific service. Default is 400.

Affects: munin-httpd.

For a complete list see the reference of global plugin attributes.

FIELD DIRECTIVES

These directives follow a node definition and are of the form “plugin.field <value>”.

Using these directives you can override values originally set by plugins on the nodes, such as warning and critical
levels or graph names.

9.2. Man pages 133

ssh://

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

warning <value>
The value at which munin-limits will mark the service as being in a warning state. Value can be a single
number to specify a limit that must be passed or they can be a comma separated pair of numbers defining a
valid range of values.

Affects: munin-limits.

critical <value>
The value at which munin-limits will mark the service as being in a critical state. Value can be a single
number to specify a limit that must be passed or they can be a comma separated pair of numbers defining a
valid range of values.

Affects: munin-limits.

For a complete list see the reference of plugin data source attributes.

EXAMPLES

Three nodes

A minimal configuration file, using default settings for everything, and specifying three nodes.

[mail.example.com]
address mail.example.com

[web.example.com]
address web.example.com

[munin.example.com]
address localhost

Virtual node

A virtual node definition. Disable update, and make a graph consisting of data from other graphs.

[example.com;Totals]
update no
load.graph_title Total load
load.sum_load.label load
load.sum_load.stack mail=mail.example.com web=web.example.com munin=munin.example.
→˓com

Address schemes

The scheme tells munin how to connect to munin nodes.

The munin:// scheme is default, if no scheme is specified. By default, Munin will connect to the munin node with
TCP on port 4949.

The following examples are equivalent:

master: /etc/munin/munin.conf.d/node.example.conf
[mail.site2.example.org]
address munin://mail.site2.example.org

[mail.site2.example.org]
address munin://mail.site2.example.org:4949

[mail.site2.example.org]
(continues on next page)

134 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

address mail.site2.example.org

[mail.site2.example.org]
address mail.site2.example.org
port 4949

To connect to a munin node through a shell command, use the “cmd://” prefix.

master: /etc/munin/munin.conf.d/node.example.conf
[mail.site2.example.org]
address cmd:///usr/bin/munin-async [...]

To connect through ssh, use the “ssh://” prefix.

master: /etc/munin/munin.conf.d/node.example.conf
[mail.site2.example.org]
address ssh://bastion.site2.example.org/bin/nc mail.site2.example.org 4949

[www.site2.example.org]
address ssh://bastion.site2.example.org/bin/nc www.site2.example.org 4949

Note: When using the ssh:// transport, you can configure how ssh behaves by editing ~munin/.ssh/config. See the
ssh transport configuration examples.

SEE ALSO

See munin for an overview over munin.

Examples for ssh transport

9.2.17 munin-node.conf

DESCRIPTION

This is the configuration file for munin-node and munin-run.

The directives “host_name”, “paranoia” and “ignore_file” are munin node specific.

All other directives in munin-node.conf are passed through to the Perl module Net::Server. Depending on the
version installed, you may have different settings available.

DIRECTIVES

Native

host_name
The hostname used by munin-node to present itself to the munin master. Use this if the local node name
differs from the name configured in the munin master.

ignore_file
Files to ignore when locating installed plugins. May be repeated.

paranoia
If set to a true value, munin-node will only run plugins owned by root.

9.2. Man pages 135

ssh://

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Inherited

These are the most common Net::Server options used in munin-node.

log_level
Ranges from 0-4. Specifies what level of error will be logged. “0” means no logigng, while “4” means
very verbose. These levels correlate to syslog levels as defined by the following key/value pairs. 0=err,
1=warning, 2=notice, 3=info, 4=debug.

Default: 2

log_file
Where the munin node logs its activity. If the value is Sys::Syslog, logging is sent to syslog

Default: undef (STDERR)

pid_file
The pid file of the process

Default: undef (none)

background
To run munin node in background set this to “1”. If you want munin-node to run as a foreground process,
comment this line out and set “setsid” to “0”.

user
The user munin-node runs as

Default: root

group
The group munin-node runs as

Default: root

setsid
If set to “1”, the server forks after binding to release itself from the command line, and runs the
POSIX::setsid() command to daemonize.

Default: undef

global_timeout
munin-node holds the connection to Munin master only a limited number of seconds to get the requested
operation finished. If the time runs out the node will close the connection.

Timeout for the whole transaction. Units are in sec.

Default: 900 seconds (15 min)

timeout
This is the timeout for each plugin. If plugins take longer to run, this will disconnect the master.

Default: 60 seconds

allow
A regular expression defining which hosts may connect to the munin node.

Note: Use cidr_allow if available.

cidr_allow
Allowed hosts given in CIDR notation (192.0.2.1/32). Replaces or complements “allow”. Requires the
presence of Net::Server, but is not supported by old versions of this module.

cidr_deny
Like cidr_allow, but used for denying host access

136 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

host
The IP address the munin node process listens on

Default: * (All interfaces)

port
The TCP port the munin node listens on

Default: 4949

EXAMPLE

A pretty normal configuration file:

#
Example config-file for munin-node
#

log_level 4
log_file /var/log/munin-node/munin-node.log
pid_file /var/run/munin/munin-node.pid

background 1
setsid 1

user root
group root

This is the timeout for the whole transaction.
Units are in sec. Default is 15 min
#
global_timeout 900

This is the timeout for each plugin.
Units are in sec. Default is 1 min
#
timeout 60

Regexps for files to ignore
ignore_file [\#~]$
ignore_file DEADJOE$
ignore_file \.bak$
ignore_file %$
ignore_file \.dpkg-(tmp|new|old|dist)$
ignore_file \.rpm(save|new)$
ignore_file \.pod$

Set this if the client doesn't report the correct hostname when
telnetting to localhost, port 4949
#
host_name localhost.localdomain

A list of addresses that are allowed to connect. This must be a
regular expression, since Net::Server does not understand CIDR-style
network notation unless the perl module Net::CIDR is installed. You
may repeat the allow line as many times as you'd like

allow ^127\.0\.0\.1$
allow ^::1$

If you have installed the Net::CIDR perl module, you can use one or more
cidr_allow and cidr_deny address/mask patterns. A connecting client must

(continues on next page)

9.2. Man pages 137

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

match any cidr_allow, and not match any cidr_deny. Note that a netmask
must be provided, even if it's /32
#
Example:
#
cidr_allow 127.0.0.1/32
cidr_allow 192.0.2.0/24
cidr_deny 192.0.2.42/32

Which address to bind to;
host *
host 127.0.0.1

And which port
port 4949

SEE ALSO

See munin for an overview over munin.

munin-node, munin-run

9.2.18 munindoc

SYNOPSIS

munindoc <plugin>

DESCRIPTION

This program displays Munin plugin documentation.

The documentation for plugins includes include basic usage information, how it can be configured, and how the
output can be interpreted.

Additional information typically found is usually the name of the plugin author, licensing and “magic markers”
which controls plugin auto configuration (done by munin-node-configure).

NOTES

Most Munin commands (such as munin-run, and munindoc itself) is only documented through the usual Unix man
command.

Note that not all plugins are documented yet. If you want to contribute plugin documentation, take a look at the
munindoc instruction page in our Trac wiki

SEE ALSO

See munin for an overview over munin.

138 Chapter 9. Reference

http://munin-monitoring.org/wiki/munindoc

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

9.3 Examples and Templates

9.3.1 Examples

Examples of munin and related configuration are gathered here.

Apache CGI Configuration

This example describes how to generate graphs and HTML files dynamically (on demand) via Apache.

Virtualhost configuration

Add a new virtualhost, using the following example:

<VirtualHost *:80>
ServerName munin.example.org
ServerAlias munin

ServerAdmin info@example.org

DocumentRoot /var/www

Alias /munin/static/ /etc/munin/static/
<Directory /etc/munin/static>

Require all granted
</Directory>

ScriptAlias /munin-cgi/munin-cgi-graph /usr/lib/munin/cgi/munin-cgi-graph
ScriptAlias /munin /usr/lib/munin/cgi/munin-cgi-html
<Directory /usr/lib/munin/cgi>

Require all granted
<IfModule mod_fcgid.c>

SetHandler fcgid-script
</IfModule>
<IfModule !mod_fcgid.c>

SetHandler cgi-script
</IfModule>

</Directory>

CustomLog /var/log/apache2/munin.example.org-access.log combined
ErrorLog /var/log/apache2/munin.example.org-error.log

</VirtualHost>

Apache Cron Configuration

This example describes how to use Apache for delivering graphs and HTML files that were generated via cron.

Virtualhost configuration

Add a new virtualhost, using the following example:

<VirtualHost *:80>
ServerName munin.example.org
ServerAlias munin

ServerAdmin info@example.org
(continues on next page)

9.3. Examples and Templates 139

https://httpd.apache.org/
https://httpd.apache.org/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

DocumentRoot /var/www

Alias /munin/static/ /etc/munin/static/
<Directory /etc/munin/static>

Require all granted
</Directory>

Alias /munin /var/cache/munin/www
<Directory /var/cache/munin/www>

Require all granted
</Directory>

CustomLog /var/log/apache2/munin.example.org-access.log combined
ErrorLog /var/log/apache2/munin.example.org-error.log

</VirtualHost>

Apache Proxy Configuration

This example describes how to run a separate munin-httpd process and proxy all requests via Apache to this
instance.

Virtualhost configuration

Add a new virtualhost, using the following example:

<VirtualHost *:80>
ServerName munin.example.org
ServerAlias munin

ServerAdmin info@example.org

DocumentRoot /srv/www/munin.example.org

ErrorLog /var/log/apache2/munin.example.org-error.log
CustomLog /var/log/apache2/munin.example.org-access.log combined

serve static files directly
RewriteEngine On
RewriteRule ^/(.*\.html)$ /srv/www/munin.example.org/$1 [L]

Proxy everything to munin-httpd
ProxyPass / http://localhost:4948/
ProxyPassReverse / http://localhost:4948/

</VirtualHost>

lighttpd Proxy Configuration

This example describes how to use lighttpd in front of munin-httpd.

Webserver configuration

alias.url += ("/munin-static" => "/etc/munin/static")
alias.url += ("/munin" => "/var/cache/munin/www/")

(continues on next page)

140 Chapter 9. Reference

https://httpd.apache.org/
http://lighttpd.org

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

$HTTP["url"] =~ "^/munin" {
proxy.server = ("" => (("host" => "127.0.0.1", "port" => 4948)))

}

Nginx Static Configuration

This example describes how to set up nginx for serving content generated by munin via cron.

Site Configuration

Nginx is quite good at serving static files, and as such the configuration is mostly in place already.

The paths are as in use on a Debian Linux system.

Add the following to /etc/nginx/sites-enabled/default:

location /munin/static/ {
alias /etc/munin/static/;
expires modified +1w;

}

location /munin/ {
auth_basic "Restricted";
Create the htpasswd file with the htpasswd tool.
auth_basic_user_file /etc/nginx/htpasswd;

alias /var/cache/munin/www/;
expires modified +310s;

}

For Zoom to work you also need to add the following to the same configuration file:

location ^~ /munin-cgi/munin-cgi-graph/ {
access_log off;
fastcgi_split_path_info ^(/munin-cgi/munin-cgi-graph)(.*);
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_pass unix:/var/run/munin/fastcgi-graph.sock;
include fastcgi_params;

}

If this is a dedicated Munin server, you might want to redirect the frontpage as well:

location = / {
rewrite ^/$ munin/ redirect; break;

}

Nginx Proxy Configuration

You can use nginx as a proxy in front of munin-httpd.

This enables you to add transport layer security and http authentication (not included in this example).

Site Configuration

9.3. Examples and Templates 141

http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/ngx_http_auth_basic_module.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

location /munin/static/ {
alias /etc/munin/static/;

}

location /munin/ {
proxy_pass http://localhost:4948/;

}

Upstart configuration for rrdcached

This example sets up a dedicated rrdcached instance for munin.

If rrdcached stops, it is restarted.

A pre-start script ensures we have the needed directories

A post-start script adds permissions for the munin fastcgi process. This assumes that your fastcgi graph process is
running as the user “www-data”, and that the file system is mounted with “acl”.

description "munin instance of rrdcached"
author "Stig Sandbeck Mathisen <ssm@fnord.no>"

start on filesystem
stop on runlevel [!2345]

respawn
umask 022

pre-start script
install -d -o munin -g munin -m 0755 /var/lib/munin/rrdcached-journal
install -d -o munin -g munin -m 0755 /run/munin

end script

script
start-stop-daemon \

--start \
--chuid munin \
--exec /usr/bin/rrdcached \
--pidfile /run/munin/rrdcached.pid \
-- \
-g \
-p /run/munin/rrdcached.pid \
-B -b /var/lib/munin/ \
-F -j /var/lib/munin/rrdcached-journal/ \
-m 0660 -l unix:/run/munin/rrdcached.sock \
-w 1800 -z 1800 -f 3600

end script

post-start script
sleep 1
setfacl -m u:www-data:rw /run/munin/rrdcached.sock

end script

Systemd configuration for rrdcached

This example sets up a dedicated rrdcached instance for munin.

If rrdcached stops, it is restarted.

A pre-start script ensures we have the needed directories

142 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

A post-start script adds permissions for the munin fastcgi process. This assumes that your fastcgi graph process is
running as the user “www-data”, and that the file system is mounted with “acl”.

[Unit]
Description=Munin rrdcached

[Service]
Restart=always
User=munin
PermissionsStartOnly=yes
ExecStartPre=/usr/bin/install -d -o munin -g munin -m 0755 \

/var/lib/munin/rrdcached-journal /run/munin
ExecStart=/usr/bin/rrdcached \

-g -B -b /var/lib/munin/ \
-p /run/munin/munin-rrdcached.pid \
-F -j /var/lib/munin/rrdcached-journal/ \
-m 0660 -l unix:/run/munin/rrdcached.sock \
-w 1800 -z 1800 -f 3600

ExecStartPost=/bin/sleep 1 ; /bin/setfacl -m u:www-data:rw /run/munin/rrdcached.
→˓sock
[Install]
WantedBy=multi-user.target

Recommended graph_args

Set arguments for the rrd grapher with attribute graph_args. This is used to control how the generated graph looks,
and how values are interpreted or presented.

You can override plugin defaults on Munin master via your own settings on plugin level in munin.conf .

See rrdgraph man page for more details.

Scale

--logarithmic
Plot these values on a logarithmic scale. Should almost never be used, but probably more often than we do
now. Logarithmic scale is very useful when the collected values spans more than one to two magnitudes. It
makes it possible to see the different small values as well as the different large values - instead of just the
large values as usual.

Logarithmic has been tested on netstat (connection count) and some other graphs with good results.

Units

See Best Current Practices for good plugin graphs

--base <value>
Set to 1024 for things that are counted in binary units, such as memory (but not network bandwidth)

Set to 1000 for default SI units

--units-exponent <value>
Set to 3 force display unit to K, -6 would force display in u/micro.

Axis

--lower-limit <value>
Start the Y-axis at value e.g. --lower-limit 0 (also seen as: -l 0)

9.3. Examples and Templates 143

https://oss.oetiker.ch/rrdtool/doc/rrdgraph.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

--upper-limit <value>
Set value to 100 for percentage graphs, ends the Y-axis at 100 (also seen as: -u 100)

--rigid
Force rrdgraph y-axis scale to the set upper and lower limit. Usually, the graph scale can overrun. (also
seen as: -r)

Graph aggregation by example

This example covers creating aggregate graphs. The configuration reads the current and power from two UPSes
(i.e. two hosts with two plugins each) and then creates one virtual host with two virtual plugins; one for current
and one for power.

Plugins involved

The example uses a plugin for monitoring UPSes through SNMP, where the UPS address and the different aspects
are defined through symlinks. The two UPSes, called “ups-5a” and “ups-5b”, are monitored with respect to
“current” and “power”. Thus, the affected plugins are called as:

snmp_ups_ups-5a_current
snmp_ups_ups-5b_current
snmp_ups_ups-5a_power
snmp_ups_ups-5b_power

The original plugin name is actually “snmp_ups__” - note the “two” underscores at the end. The plugin is then
symlinked to the given host name(s) (e.g. ups-5a) and what we want to monitor (e.g. power). Let’s just take one
closer look at one of them:

snmp_ups_ups-5a_power
-------- ------ -----

| | |
| | `--- The function we want to monitor
| `--------- The node name of the UPS
`----------------- The plugin

Extract from munin.conf

The following extract from /etc/munin/munin.conf is explained in detail, step by step, below the configuration.

1 [UPS;ups-5a]
2 address 127.0.0.1 # localhost fetches data
3
4 [UPS;ups-5b]
5 address 127.0.0.1 # localhost fetches data
6
7 [UPS;Aggregated]
8 update no
9 contacts no

10
11 snmp_ups_current.update no
12 snmp_ups_current.graph_args --base 1000 -l 0
13 snmp_ups_current.graph_category UPS
14 snmp_ups_current.graph_title Aggregated input/output current
15 snmp_ups_current.graph_vlabel Ampere
16 snmp_ups_current.inputtotal.label Input current
17 snmp_ups_current.outputtotal.label Output current
18 snmp_ups_current.graph_order inputtotal outputtotal
19 snmp_ups_current.inputtotal.sum \

(continues on next page)

144 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

20 ups-5a:snmp_ups_ups-5a_current.inputcurrent \
21 ups-5b:snmp_ups_ups-5b_current.inputcurrent
22 snmp_ups_current.outputtotal.sum \
23 ups-5a:snmp_ups_ups-5a_current.outputcurrent \
24 ups-5b:snmp_ups_ups-5b_current.outputcurrent
25
26 snmp_ups_power.update no
27 snmp_ups_power.graph_args --base 1000 -l 0
28 snmp_ups_power.graph_category UPS
29 snmp_ups_power.graph_title Aggregated output power
30 snmp_ups_power.graph_vlabel Watts
31 snmp_ups_power.output.label Output power
32 snmp_ups_power.graph_order output
33 snmp_ups_power.output.sum \
34 ups-5a:snmp_ups_ups-5a_power.outputpower \
35 ups-5b:snmp_ups_ups-5b_power.outputpower

Explanations, per line

• 1 - 2: The SNMP-based plugin for the UPS known as “ups-5a” is defined. The group name is “UPS” and
the node name is “ups-5a”. The plugin is run from localhost.

• 4 - 5: The SNMP-based plugin for the UPS known as “ups-5b” is defined. The group name is “UPS” and
the node name is “ups-5b”. The plugin is run from localhost.

• 7: The group and “virtual node name” for the aggregated graphs are defined. The group name is “UPS” and
the virtual node name is “Aggregated”.

• 8: Make sure that Munin (specifically, “munin-update”) does not try to actively gather information for this
node.

• 9: Tell “munin-limits” not to send alerts if any limit is breached.

The above lines (1 - 9) have now established the fundament for three different graph pages; one for each of the
two UPSes and one for the aggregate graphs.

• 11 - 15: Define the basic information for the virtual plugin for aggregated current. Note that
“snmp_ups_current” is the virtual plugin’s name.

• 16 - 17: Simultaneously define and label “two” values to be graphed in the virtual plugin: “inputtotal” and
“outputtotal”.

• 18: Order the values.

• 19 - 21: Calculate the value for “inputtotal” by reading the “inputcurrent” values from each of the two
UPSes.

Let’s take a closer look at the components

snmp_ups_current.inputtotal.sum \
---------------- ---------- ---

| | |
| | `-- The sum mechanism
| `--------- One of this virtual plugin's values
`----------------------- The name of the virtual plugin

ups-5a:snmp_ups_ups-5a_current.inputcurrent \
ups-5b:snmp_ups_ups-5b_current.inputcurrent
------ ----------------------- ------------

| | |
| | `------ The "inputcurrent" value from the

→˓real plugin

(continues on next page)

9.3. Examples and Templates 145

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

| `------------------------ The real plugin's name (symlink)
`-- The host name from which to seek

→˓information

• 22 - 24: Similarly for “outputtotal”.

• 26 - 35: Like the above, but for power instead. Note that this virtual plugin graphs only “one” value, and as
such, only “one” “sum” mechanism is used.

Result graphs

The graphs below show one of the UPSes, and the aggregated values. The graphs used are by week, because they
had a nice dip in the beginning of the graphing period :-)

Source graphs for one of the UPSes:

146 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Aggregate graphs:

9.3. Examples and Templates 147

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Summary

We have now, in addition to the two real UPS nodes “ups-5a” and “ups-5b” (lines 1 - 5), created one virtual host
named “Aggregated” (line 7) with two virtual plugins: “snmp_ups_current” (lines 11 - 24) and “snmp_ups_power”
(lines 26 - 35).

The “snmp_ups_current” virtual plugin outputs two field names: “inputtotal” (lines 16 and 19 - 21) and “output-
total” (lines 17 and 22 - 24), while the “snmp_ups_power” virtual plugin outputs only one field name, namely
“output” (lines 31 - 35).

Further reading

• Graph aggregation stacking example

• Using SNMP plugins

• munin.conf directives explained

Graph aggregation stacking example

Here we show how to create a stacked graph with data sources from multiple nodes.

Plugin involved

The example uses a plugin that monitors Postfix message throughput.

Let’s first look at its config output:

munin-run postfix_mailstats config
graph_title Postfix message throughput
graph_args --base 1000 -l 0
graph_vlabel mails / ${graph_period}
graph_scale no
graph_total Total

(continues on next page)

148 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

graph_category postfix
graph_period minute
delivered.label delivered
delivered.type DERIVE
delivered.draw AREA
delivered.min 0
r450.label reject 450
r450.type DERIVE
r450.draw STACK
r450.min 0
r454.label reject 454
r454.type DERIVE
r454.draw STACK
r454.min 0
r550.label reject 550
r550.type DERIVE
r550.draw STACK
r550.min 0
r554.label reject 554
r554.type DERIVE
r554.draw STACK
r554.min 0

Extract from munin.conf

The following extract from munin.conf is explained in detail, step by step, below the configuration.

1 [foo.example.com]
2 address ..
3
4 [bar.example.com]
5 address ..
6
7 [baz.example.com]
8 address ..
9

10 [aggregates.example.com]
11 update no
12 contacts no
13
14 # This graph stacks the number of postfix delivered mails / minute
15 # from the nodes foo.example.com, bar.example.com and baz.example.com
16
17 total_mailstats.update no
18 total_mailstats.graph_args --base 1000 -l 0
19 total_mailstats.graph_category postfix
20 total_mailstats.graph_period minute
21 total_mailstats.graph_title Postfix delivered messages
22 total_mailstats.graph_vlabel mails / ${graph_period}
23 total_mailstats.graph_scale no
24 total_mailstats.graph_total Total
25 total_mailstats.total_delivered.label not_used
26 total_mailstats.total_delivered.type DERIVE
27 total_mailstats.total_delivered.draw AREA
28 total_mailstats.total_delivered.min 0
29 total_mailstats.total_delivered.stack \
30 foo=Infrastruktur;foo.example.com:postfix_mailstats.delivered \
31 bar=Infrastruktur;bar.example.com:postfix_mailstats.delivered \
32 baz=Infrastruktur;baz.example.com:postfix_mailstats.delivered

9.3. Examples and Templates 149

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Explanations, per line

• 1 - 2: Configuration of Node foo.example.com.

• 4 - 5: Configuration of Node bar.example.com.

• 7 - 8: Configuration of Node bar.example.com.

• 10: Define the name of the virtual node. The name of a node group can optionally be added here, e.g.
“[Virtual; aggregates.example.com]”.

• 11: Make sure that munin-update does not try to actively gather information for this node.

• 12: Tell munin-limits not to send alerts if any limit is breached.

The above lines (1 - 12) have now established the fundament for four nodes in the Munin tree; three real nodes
delivering data on connect by munin-update and one virtual node for the aggregate graphs.

• 17: No fetch from node should be done for this virtual plugin (which is named implicitly herewith to
“total_mailstats”).

• 18 - 24: Define the virtual plugin’s config in the same way as set for its ancestor plugin
postfix_mailstats (see output in section Plugin involved above). We set a different graph title
though, as we graph only field delivered here.

• 25: The virtual plugin’s field itself will not show up in the graph but only the fields loaned from the real
nodes. Therefore this hint that will be shown in the graphs legend.

• 26: Default type is GAUGE but we have type DERIVE here. So the field’s type has to be declared explicitly.

• 27: Values should be drawn as AREA and not as LINE for better recognition of small values.

• 28: Cut off negative values which can arise at arithmetic overflow for data type DERIVE. See manual of
rrdgraph

• 29: This directive is the key that opens the door for loaning data sources from other nodes and plugins. As
we choose option stack here, the values of the hereafter referenced data sources will show up stacked on
each other in the graph.

• 30 - 33: Declare the virtual data fields as reference to the original data source in node foo, bar and baz. The
string on the left side of the expression will be the name of the data field shown in the graph of this virtual
plugin. Hint: If you need to reference a node that is member of a node group, then enter its name with the
leading group name like “Group;node.name”.

Result graph

Source graph for bar.example.com:

150 Chapter 9. Reference

https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IDERIVE
https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html#IDERIVE

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Aggregate graph:

Further reading

• Graph aggregation by example

• munin.conf directives explained

9.3. Examples and Templates 151

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Loaning data combined with sum and cdef

Different arithmetic operations may be combined to create the graphs you want. Insert appropriate lines in the
Munin Master configuration file munin.conf .

The first example shows how to create a graph by loaning data from other sources, then adding an average value
from five other data sources using sum and cdef . The data in the example uses the following types of temperature
measurements

1. Disk temperatures from S.M.A.R.T. readouts from servers called donald and ferdinand (lines 06, 07)

2. Motherboard temperatures from sensors readouts from the same servers (lines 08, 09)

3. weather.com reading from Oslo airport, Gardermoen (line 10)

4. A regular temperature sensor (line 11)

Line 06 is only a placeholder, which will be populated later by using sum and cdef .

01 temperatures.update no
02 temperatures.graph_args --base 1000 -l 0
03 temperatures.graph_category Sensors
04 temperatures.graph_title Different temperatures
05 temperatures.graph_order \
06 donald_disk \
07 ferdinand_disk=ferdinand.example.com:hddtemp_smartctl.sda \
08 donald_mb=donald.example.com:sensors_temp.temp1 \
09 ferdinand_mb=ferdinand.example.com:sensors_temp.temp1 \
10 gardermoen=ferdinand.example.com:temperatures.ENGM \
11 VG=donald.example.com:munintemp.vg
12 temperatures.donald_disk.sum \
13 donald.example.com:hddtemp_smartctl.sda \
14 donald.example.com:hddtemp_smartctl.sdb \
15 donald.example.com:hddtemp_smartctl.sdc \
16 donald.example.com:hddtemp_smartctl.sdd \
17 donald.example.com:hddtemp_smartctl.sde
18 temperatures.donald_disk.cdef donald_disk,5,/
19 temperatures.VG.label VG
20 temperatures.donald_mb.label Mainboard donald
21 temperatures.ferdinand_mb.label Mainboard ferdinand
22 temperatures.gardermoen.label Oslo/Gardermoen
23 temperatures.ferdinand_disk.label Avg disk temp ferdinand
24 temperatures.donald_disk.label Avg disk temp donald

Explanations, per line

• 01 - 04: The usual headers

• 05 - 11: Defines the graph order, where 5 out of 6 data sources are borrowed elsewhere Note: Line 11
defines a not yet “populated” data source.

• 12 - 17: Sums 5 other data sources (temperatures from 5 disks), into the “donald_disk” data source

• 18: Divides the “donald_disk” data source by the number of sources (5) to create an average

• 19 - 24: Labels to make it all look neat

This produces a pretty graph like this, to show the relation between outside temperatures and disk/mainboard
temperatures:

152 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Further reading

• Graph aggregation by example

• Graph aggregation stacking example

• munin.conf directives explained

Virtual plugin to graph distribution by percentages

Why?

In the FAQ it’s explained how to create a percentage graph with two data sources by using a somewhat heavy cdef
trick. Graphing more than two data sources using that method would

1. require CDEF incantations from somewhere beyond hell

2. require Munin to perform the same calculations in CDEF over and over again

Of course, an alternative is to create a wildcard version of the plugin; one that gives the numbers and one that
gives the ratio(s). This will, however, dump the load on the munin-node.

Creating graphs showing distribution by percentage is often required, while lots of the Munin plugins deal with
occurrences and hits. For example, the numbers of hits and misses in a reverse proxy are indeed interesting to see
the throughput, while the hits/misses ratio is interesting to see how efficient the caching is.

(Yes, I realise this example was a bad one as it has only two data sources. Bear with me ;-)

9.3. Examples and Templates 153

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

How?

By combining loaning data from other data sources, and massaging them with CDEF, Munin is able to create
another view of existing graphs not currently graphing in percentage shares by itself, showing the data distributed
by percentage.

The munin.conf extract below is based on the fw_conntrack plugin, which has as much as 5 relevant data
sources. The sections are commented below through line numbers.

Sample munin.conf extract

01 [foo.example.com]
02
03 [...]
04
05 conntrack_percent.update no
06 conntrack_percent.graph_category network
07 conntrack_percent.graph_args --base 1000 -l 0 -u 100 -r
08 conntrack_percent.graph_scale no
09 conntrack_percent.graph_title Connections through firewall, by
→˓percentage
10 conntrack_percent.graph_vlabel Connections (percentage)
11
12 conntrack_percent.graph_order \
13 established=fw_conntrack.established \
14 fin_wait=fw_conntrack.fin_wait \
15 time_wait=fw_conntrack.time_wait \
16 syn_sent=fw_conntrack.syn_sent \
17 udp=fw_conntrack.udp \
18 total=fw_conntrack.nated \
19 in_established=fw_conntrack.nated \
20 in_fin_wait=fw_conntrack.nated \
21 in_time_wait=fw_conntrack.nated \
22 in_syn_sent=fw_conntrack.nated \
23 in_udp=fw_conntrack.nated
24
25 conntrack_percent.established.graph no
26 conntrack_percent.fin_wait.graph no
27 conntrack_percent.time_wait.graph no
28 conntrack_percent.syn_sent.graph no
29 conntrack_percent.udp.graph no
30
31 conntrack_percent.total.graph no
32 conntrack_percent.total.cdef established,fin_wait,time_wait,syn_sent,udp,
→˓0.00001,+,+,+,+,+
33
34 conntrack_percent.in_established.cdef established,total,/,100,*
35 conntrack_percent.in_established.label Established
36 conntrack_percent.in_established.draw AREA
37
38 conntrack_percent.in_fin_wait.cdef fin_wait,total,/,100,*
39 conntrack_percent.in_fin_wait.label FIN_WAIT
40 conntrack_percent.in_fin_wait.draw STACK
41
42 conntrack_percent.in_time_wait.cdef time_wait,total,/,100,*
43 conntrack_percent.in_time_wait.label TIME_WAIT
44 conntrack_percent.in_time_wait.draw STACK
45
46 conntrack_percent.in_syn_sent.cdef syn_sent,total,/,100,*
47 conntrack_percent.in_syn_sent.label SYN_SENT

(continues on next page)

154 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

(continued from previous page)

48 conntrack_percent.in_syn_sent.draw STACK
49
50 conntrack_percent.in_udp.cdef udp,total,/,100,*
51 conntrack_percent.in_udp.label UDP connections
52 conntrack_percent.in_udp.draw STACK

The config explained

• 01 - A standard definition for a node.

• 03 - Any other (required) information for defining a node, like address, has been omitted for readability.

• 05 - This virtual plugin should not be run by munin-update.

• 07 - Set min and max values for the graphs, and also include -r which tells RRD that the graph shall not
exceed 100% even if the summarized values (because of rounding errors) do.

• 08 - No auto-scaling.

• 09-10 - The graph title and its vertical title.

• 12-23 - Use graph_order to loan data from other graphs, and to define not yet existing field names. Note
that the first seven field names (11-17) loan data from corresponding graphs to be used later, while the rest
(18-25) just need some dummy data for the definitions.

• 25-29 - Make sure Munin won’t try to graph the base data.

• 31 - Munin shouldn’t try to do anything funny with the total value either, as this value is only used internally
when creating the graph.

• 32 - Here, the fieldname ‘total’ is defined as the sum of the 5 original data sources (in_*). We add the
value 0.00001 to the value if all the original data sources should yield the value ‘0’, in which case Munin
will crash and burn.

• 34 - Define the value for the first field name, derived as a percentage share of the total sum.

• 35 - The field name needs a label. This should correspond to the original graph (in this case, fw_conntrack).

• 36 - Finally for this field name, define it as draw type AREA.

• 38-40 - Like the above, but use STACK instead. Repeat until all 5 data sources are covered.

When the configuration is complete, Munin will be able to create percentage graphs from your already existing
data, i.e. the new graph(s) should appear immediately.

Sample graphs

The plugin’s own graph:

9.3. Examples and Templates 155

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

The resulting graph of the above munin.conf section, loaning data from the plugin and manipulating them:

Note that the data sources assured and nated differ from the other data sources the fw_conntrack plugin
monitors. Consequently they are excluded from the percentage graph.

156 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Further reading

• Loaning data from other graphs

• Graph aggregation by example

• munin.conf directives explained

multiple master data aggregation

This example describes a way to have multiple master collecting different information, and show all the data in a
single presentation.

When you reach some size (probably several hundreds of nodes, several tousands plugins), 5 minutes is not enough
for your single master to connect and gather data from all hosts, and you end up having holes in your graph.

Requirements

This example requires a shared nfs space for the munin data between the nodes.

Before going that road, you should make sure to check other options first, like changing the number of update
threads, and having rrdcached.

Another option you might consider, is using munin-async. It requires modifications on all nodes, so it might not be
an option, but I felt compeled to mention it. If you can’t easily have shared nfs, or if you might have connectivity
issues between master and some node, async would probably be a better approach.

Because there is some rrd path merge required, it is highly recommended to have all nodes in groups.

Overview

Munin-Master runs different scripts via the cron script (munin-cron).

munin-update is the only part actually connecting to the nodes. It gathers information and updates the rrd
(you’ll probably need rrdcached, especially via nfs).

munin-limits checks what was collected, compared to the limits and places warning and criticals.

The trick about having multiple master running to update is :

• run munin-update on different masters (called update-masters there after), having dbdir on nfs

• run munin-limits on either each of the update-masters, or the html-master (see next line)

Of course, all hosts must have access to the shared nfs directory.

Exemples will consider the shared folder /nfs/munin.

Running munin-update

Change the munin-cron to only run munin-update (and munin-limits, if you have alerts you want to
be managed directly on those masters).

Change your munin.conf to use a dbdir within the shared nfs, (ie: /nfs/munin/db/<hostname>).

To make it easier to see the configuration, you can also update the configuration with an includedir on nfs,
and declare all your nodes there (ie: /nfs/munin/etc/<hostname>.d/).

If you configured at least one node, you should have /nfs/munin/db/<hostname> that starts getting pop-
ulated with subdirectories (groups), and a few files, including datafile, and datafile.storable (and
limits if you also have munin-limits running here).

9.3. Examples and Templates 157

http://munin-monitoring.org/wiki/LoaningData

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Merging data

All our update-masters generate update their dbdir including:

• datafile and datafile.storable which contain information about the collected plugins, and
graphs to generate.

• directory tree with the rrd files

Merging files

datafile is just plain text with lines of key value, so concatenating all the files is enough.

datafile.storable is a binary representation of the data as loaded by munin. It requires some munin internal
structures knowledge to merge them.

If you have munin-limits also running on update-masters, it generate a limits files, those are also plain
text.

Merging rrd tree

The main trick is about rrd. As we are using a shared nfs, we can use symlinks to get them to point to one an other,
and not have to duplicate them. (Would be hell to keep in sync, that’s why we really need shared nfs storage.)

As we deal with groups, we could just link top level groups to a common rrd tree.

Example, if you have two updaters (update1 and update2), and 4 groups (customer1, customer2, customer3,
customer4), you could make something like that:

/nfs/munin/db/shared-rrd/customer1/
/nfs/munin/db/shared-rrd/customer2/
/nfs/munin/db/shared-rrd/customer3/
/nfs/munin/db/shared-rrd/customer4/
/nfs/munin/db/update1/customer1 -> ../shared-rrd/customer1
/nfs/munin/db/update1/customer2 -> ../shared-rrd/customer2
/nfs/munin/db/update1/customer3 -> ../shared-rrd/customer3
/nfs/munin/db/update1/customer4 -> ../shared-rrd/customer4
/nfs/munin/db/update2/customer1 -> ../shared-rrd/customer1
/nfs/munin/db/update2/customer2 -> ../shared-rrd/customer2
/nfs/munin/db/update2/customer3 -> ../shared-rrd/customer3
/nfs/munin/db/update2/customer4 -> ../shared-rrd/customer4
/nfs/munin/db/html/customer1 -> ../shared-rrd/customer1
/nfs/munin/db/html/customer2 -> ../shared-rrd/customer2
/nfs/munin/db/html/customer3 -> ../shared-rrd/customer3
/nfs/munin/db/html/customer4 -> ../shared-rrd/customer4

At some point, an option to get the rrd tree separated from the dbdir, and should avoid the need of such links.

Examples for ssh transport

SSH options

Options for the ssh:// transport can be added to .ssh/config in the home directory of the munin user.

The available options are available with man ssh_config. Here are some examples.

158 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Compression

SSH has the option of compressing the data transport. To add compression to all SSH connections:

Host *
Compression yes

If you have a lot of nodes, you will reduce data traffic by spending more CPU time. See also the CompressionLevel
setting from the ssh_config man page.

Connecting through a Proxy

By using the ProxyCommand SSH option, you can connect with ssh via a jump host, and reach munin-node
instances which are not available directly from the munin master:

Host *.customer.example.com !proxy.customer.example.com
ProxyCommand ssh -W %h:%p proxy.customer.example.com

This will make all connections to host ending with .customer.example.com, connect through
proxy.customer.example.com, with an exemption for the proxy host itself.

Note: If you use Compression, try not to compress data twice. Disable compression for the proxied connections
with Compression no.

Re-using SSH connections

If you connect to a host often, you can re-use the SSH connection instead. This is a good example to combine
with the Connecting through a proxy and the Compression examples:

Host proxy.customer.example.com
ControlMaster auto
ControlPath /run/munin/ssh.%h_%p_%r
ControlPersist 360
TCPKeepAlive yes
ServerAliveInterval 60

This will keep a long-lived SSH connection open to proxy.customer.example.com, it will be re-used for all con-
nections. The SSH options TCPKeepAlive and ServerAliveInterval are added to detect and restart a dropped
connection on demand.

service examples

Generic

• munin crontab entry

HP-UX

• munin-node init script /etc/init.d/munin-node

• munin-node rc.conf /etc/rc.config.d/munin-node

9.3. Examples and Templates 159

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Linux

• munin cron.d /etc/cron.d/munin

• munin-node cron.d /etc/cron.d/munin-node

• munin-node systemd service /etc/systemd/system/munin-node.service

• munin-httpd systemd service /etc/systemd/system/munin-httpd.service

• munin-node upstart job /etc/init/munin-node.conf

Solaris

• munin-node SMF manifest /var/svc/manifest/site/munin-node.xml

• munin-node SMF method /lib/svc/method/munin-node

Examples from Munin Wiki

These should be checked against recent Munin versions and be transferred to the Munin-Guide.

• Loaning data from other graphs

9.4 Other reference material

9.4.1 Directories

dbdir

This directory (usually /var/lib/munin) is used to store the Munin master database.

It contains subdirectories for the RRD files per group of hosts as well as files to store variable states that the munin
master will need.

The RRD files are named in the following way: <dbdir>/<group>/
<nodename>-<servicename>-<fieldname>-[acdg].rrd

Example:

/var/lib/munin/SomeGroup/foo.example.com-cpu-irq-d.rrd
--------- --------------- --- --- -

| | | | `-- Data type (a = absolute, c =
→˓counter, d = derive, g = gauge)

| | | `----- Field name / data source: 'irq
→˓'

| | `--------- Plugin name: 'cpu'
| `------------------- Node name: 'foo.example.com'
`-------------------------------- Group name: 'SomeGroup'

plugindir

This directory (usually /usr/share/munin/plugins) contains all the plugins available to run on the node.

servicedir

This directory (usually /etc/munin/plugins) contains symlinks to all the plugins that are selected to run
on the node. These will be shown when we are connected to munin node and say list.

160 Chapter 9. Reference

http://munin-monitoring.org/wiki/LoaningData

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

pluginconfdir

This directory (usually /etc/munin/plugin-conf.d) contains plugin configuration.

rundir

This directory (usually /var/run/munin) contains files needed to track the munin run state. PID files, lock
files, and possibly sockets.

logdir

Attention! On a host where Munin master resides there may be two of them! One (usually /var/log/munin)
contains the log files for Munin master related applications and another (usually /var/log/munin-node)
contains the logfiles of munin node.

9.4.2 Plugin reference

When a plugin is invoked with “config” as (the only) argument it is expected to output configuration information
for the graph it supports. This output consists of a number of attributes. They are divided into one set of global
attributes and then one or more set(s) of datasource-specific attributes. (Things are more complex in the case of
Multigraph plugins due to their nested hierarchy.)

Global attributes

Attribute graph

Value yes|no

Type optional

Description Decides whether to draw the graph.

See also

Default yes

Attribute graph_args

Value string

Type optional

Description Arguments for the rrd grapher. This is used to control how the generated graph looks,
and how values are interpreted or presented.

See also rrdgraph

Default

Attribute graph_category

Value string (Allowed characters: [a-z0-9-.])

Type optional

Description

Name of the category used to sort the graphs on the generated index web page.
Lower case string as we like a consistent view and want to avoid duplicates.
No whitespace as this makes the build of Munin Gallery a lot easier.

9.4. Other reference material 161

https://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

See also Well known categories, Plugin Gallery

Default ‘other’

Attribute graph_height

Value integer (pixel)

Type optional

Description The height of the graph. Note that this is only the graph’s height and not the height of
the whole PNG image.

See also

Default 200

Attribute graph_info

Value html text

Type optional

Description Provides general information on what the graph shows.

See also

Default

Attribute graph_order

Value space separated list of data sources (fieldnames)

Type optional

Description

Ensures that the listed fields are displayed in specified order. Any additional fields are added in
the order of appearance after fields appearing on this list. This attribute is useful when
STACKing data sources with fieldname.draw.

It’s also used for loaning data from other data sources (other plugins), which enables Munin to
create aggregate or other kinds of combined graphs.

See also Loaning Data, Aggregate Graphs

Default None (If not set, the order of the graphs follows the order in which the data sources are read;
i.e. the order that the plugin itself provides.)

Attribute graph_period

Value second|minute|hour

Type optional

Description

Controls the time unit munin (actually rrd) uses to calculate the average rates of change.
Changing the default “second” to “minute” or “hour” is useful in cases of a low frequency of
whatever the plugin is measuring.

Changing the graph_period makes sense only when the data type is COUNTER or DERIVE.

162 Chapter 9. Reference

http://munin-monitoring.org/wiki/PluginGallery
http://munin-monitoring.org/wiki/LoaningData

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

This does not change the sample interval - it remains per default at 5 minutes.

See also

Default second

Attribute graph_printf

Value Default format string for data source values.

Type optional

Description

Controls the format munin (actually rrd) uses to display data
source values in the graph legend.

See also

Default “%7.2lf” if –base is 1024, otherwise “%6.2lf”

Attribute graph_scale

Value yes|no

Type optional

Description Per default the unit written on the graph will be scaled. So instead of 1000 you will see
1k or 1M for 1000000. You may disable autoscale by setting this to ‘no’.

See also

Default ‘yes’

Attribute graph_title

Value string [a-zA-Z0-9-.]

Type required

Description Sets the title of the graph

See also

Default The plugin’s file name

Attribute graph_total

Value string

Type optional

Description

If set, summarizes all the data sources’ values and reports the results in an extra row in the
legend beneath the graph. The value you set here is used as label for that line.

Note that, since Munin version 2.1, using the special undef keyword disables it (to override in
munin.conf).

See also

Default

9.4. Other reference material 163

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Attribute graph_vlabel

Value string

Type optional

Description Label for the vertical axis of the graph. Don’t forget to also mention the unit ;)

See also

Default

Attribute graph_width

Value integer (pixel)

Type optional

Description The width of the graph. Note that this is only the graph’s width and not the width of the
whole PNG image.

See also

Default 400

Attribute host_name

Value string [a-zA-Z0-9-.]

Type optional

Description Fully qualified host name (FQDN). Override the host name for which the plugin is run.
Should normally not be set in the plugin. It is meant to be used when the munin-node acts as
proxy to monitor remote hosts e.g. per SNMP plugins. In these cases you have to add an own
entry for the remote host in the Munin master configuration to pick up these additional host
names.

See also Using SNMP plugins

Default Host name as declared in munin.conf.

Attribute multigraph

Value string

Type optional

Description

Herewith the plugin tells that it delivers a hierarchy of graphs. The attribute will show up
multiple times in the config section, once for each graph that it contains. It announces the name
of the graph for which the further configuration attributes then follow.

This feature is available since Munin version 1.4.0.

See also Multigraph plugins

Default

Attribute update

Value yes | no

Type optional

Description

164 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Decides whether munin-update should fetch data for the graph.

Note that the graph will be shown even if updates are disabled and then be blank.

See also Set to no when dealing with Graph aggregation and/or loaning data.

Default ‘yes’

Attribute update_rate

Value integer (seconds)

Type optional

Description

Sets the update_rate used by the Munin master when it creates the RRD file.

The update rate is the interval at which the RRD file expects to have data.

This attribute requires a Munin master version of at least 2.0.0

See also

Default

Data source attributes

Notes on field names

Each data source in a plugin must be identified by a field name.

The characters must be [a-zA-Z0-9_], while the first character must be [a-zA-Z_].

Reserved keyword(s): A field must not be named root. If it’s done Graph generation would be stopped.

In earlier versions of Munin the fieldname may not exceed 19 characters in length. Since munin 1.2 this limit has
been circumvented.

Field name attributes

Attribute {fieldname}.cdef

Value CDEF statement

Type optional

Description

A CDEF statement is a Reverse Polish Notation statement. It can be used here to modify the
value(s) before graphing.

This is commonly used to calculate percentages. See the FAQ for examples.

See also cdeftutorial

Default

Attribute {fieldname}.colour

Value Hexadecimal colour code

9.4. Other reference material 165

http://munin-monitoring.org/ticket/921
http://munin-monitoring.org/wiki/faq
https://oss.oetiker.ch/rrdtool/tut/cdeftutorial.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Type optional

Description Custom specification of colour for drawing curve. Available since 1.2.5 and 1.3.3.

See also

Default Selected by order sequence from Munin standard colour set

Attribute {fieldname}.critical

Value integer or decimal numbers (both may be signed)

Type optional

Description Can be a max value or a range separated by colon. E.g. “min:”, “:max”, “min:max”,
“max”. Used by munin-limits to submit an error code indicating critical state if the value fetched
is outside the given range.

See also Let Munin croak alarm

Default

Attribute {fieldname}.draw

Value AREA, LINE, LINE[n], STACK, AREASTACK, LINESTACK, LINE[n]STACK

Type optional

Description

Determines how the data points are displayed in the graph. The “LINE” takes an optional
width suffix, commonly “LINE1”, “LINE2”, etc. . .

The *STACK values are specific to munin and makes the first a LINE, LINE[n] or AREA
datasource, and the rest as STACK.

See also rrdgraph

Default ‘LINE1’ since Munin version 2.0.

Attribute {fieldname}.extinfo

Value html text

Type optional

Description Extended information that is included in alert messages (see warning and critical).
Since 1.4.0 it is also included in the HTML pages.

See also

Default

Attribute {fieldname}.graph

Value yes|no

Type optional

Description Determines if the data source should be visible in the generated graph.

See also

Default yes

166 Chapter 9. Reference

https://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Attribute {fieldname}.info

Value html text

Type optional

Description Explanation on the data source in this field. The Info is displayed in the field description
table on the detail web page of the graph.

See also

Default

Attribute {fieldname}.label

Value anything except # and \

Type required

Description The label used in the legend for the graph on the HTML page.

See also

Default

Attribute {fieldname}.line

Value value [:color[:label]]

Type optional

Description Adds a horizontal line with the fieldname’s colour (HRULE) at the value defined. Will
not show if outside the graph’s scale.

See also rrdgraph

Default

Note: Didn’t work here (munin-2.0.25-2.el6.noarch, rrdtool-1.3.8-7.el6.x86_64). Please investigate on your
platforms and report the versions of Munin and rrdtool to Munin mailinglist if it worked for you.

Attribute {fieldname}.max

Value numerical of same data type as the field it belongs to.

Type optional

Description Sets a maximum value. If the fetched value is above “max”, it will be discarded.

See also

Default

Attribute {fieldname}.min

Value numerical of same data type as the field it belongs to.

Type optional

Description Sets a minimum value. If the fetched value is below “min”, it will be discarded.

See also

Default

9.4. Other reference material 167

https://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Attribute {fieldname}.negative

Value {fieldname} of related field.

Type optional

Description You need this for a “mirrored” graph. Values of the named field will be drawn below
the X-axis then (e.g. plugin if_ that shows traffic going in and out as mirrored graph).

See also See the Best Current Practices for good plugin graphs for examples

Default

Attribute {fieldname}.stack

Value List of field declarations referencing the data sources from other plugins by their virtual path.
(FIXME: Explanation on topic “virtual path” should be added elsewhere to set a link to it here)

Type optional

Description Function for creating stacked graphs.

See also How do I use fieldname.stack? and Graph aggregation stacking example

Default

Attribute {fieldname}.sum

Value List of fields to summarize. If the fields are loaned from other plugins they have to be ref-
erenced by their virtual path. (FIXME: Explanation on topic “virtual path” should be added
elsewhere to set a link to it here)

Type optional

Description Function for creating summary graphs.

See also How do I use fieldname.sum? and Graph aggregation by example

Default

Attribute {fieldname}.type

Value GAUGE|COUNTER|DERIVE|ABSOLUTE

Type optional

Description Sets the RRD Data Source Type for this field. The values must be written in capitals.
The type used may introduce restrictions for {fieldname.value}.

See also Datatypes, rrdcreate

Default GAUGE

Note: COUNTER is now considered harmful because you can’t specify the wraparound value. The same effect
can be achieved with a DERIVE type, coupled with a min 0.

Attribute {fieldname}.unknown_limit

Value positive integer

Type optional

168 Chapter 9. Reference

http://munin-monitoring.org/wiki/faq#Q:HowdoIusefieldname.stack
http://munin-monitoring.org/wiki/faq#Q:HowdoIusefieldname.sum
https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Description Defines the number of unknown values to be received successively, before the state of
the dataset changes from ok to unknown. Use a higher value, if you want to tolerate a certain
number of non-computable values, before an alarm should be raised. This attribute is available
since Munin 3.0.

See also Let Munin croak alarm

Default 3

Attribute {fieldname}.warning

Value integer or decimal numbers (both may be signed)

Type optional

Description Can be a max value or a range separated by colon. E.g. “min:”, “:max”, “min:max”,
“max”. Used by munin-limits to submit an error code indicating warning state if the value
fetched is outside the given range.

See also Let Munin croak alarm

Default

On a data fetch run, the plugin is called with no arguments. the following fields are used.

Attribute {fieldname}.value

Value integer, decimal numbers, or “U” (may be signed). For DERIVE and COUNTER values this
must be an integer. See rrdcreate for restrictions.

Type required

Description The value to be graphed.

See also

Default No default

Example

This is an example of the plugin fields used with the “df” plugin. The “munin-run” command is used to run the
plugin from the command line.

Configuration run

munin-run df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_category disk
graph_info This graph shows disk usage on the machine.
_dev_hda1.label /
_dev_hda1.info / (ext3) -> /dev/hda1
_dev_hda1.warning 92
_dev_hda1.critical 98

9.4. Other reference material 169

https://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Data fetch run

munin-run df
_dev_hda1.value 83

9.4.3 Plugin graph categories

The graph categories should create a general grouping of plugins.

A plugin that outputs a “graph_category” attribute will get the graph grouped with other plugin graphs using the
same category, across all nodes on the same Munin master.

If a plugin doesn’t declare a graph_category in its config output, the graph is moved to default plugin category
other.

A graph may only belong to one category.

Note: A multigraph plugin may create multiple graphs, and may place those in different categories.

To get a clear and concise overview in the Munin web interface the list of categories should be small and
meaningful.

Therefore we compiled a list of well-known categories (see below).

Customizing category names

If you have lots of different types of databases in use, it makes sense to be more specific, and add a graph_category
for each e.g. “oracle”, “mysql”.

Also graphs in several categories could be moved to a “security” category, but that may not make sense for
everyone.

Or in our example below we add a new category mem to collect graphs that show memory aspects of the machine.

In short: Categories should reflect your monitoring perspective and you can move graphs to other categories or
create new category names by overwriting the graph_category directives in the concerning host tree section
of the Munin Master configuration in munin.conf .

Example configuration

[munin.example.com]
address localhost

Node specific changes of plugin directives
memory.graph_category mem
buddyinfo.graph_category mem
swap.graph_category mem

Well known categories

Below we name our well-known graph categories (as already implemented in the contrib repository) and describe
which data sources are suitable for the different categories.

The list is meant as a proposal to discuss and comment. You can do so on our munin-users mailing list or by
creating a bug report (issue) on github.

170 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Info for plugin contributors

You should refer to the “well known categories” when uploading your plugins to the repository.

The graph categories set for plugins in the repositories are also used to browse the Munin Plugin Gallery. They
are shown on each index page on the left side with a link to the concerning category page which lists all plugins
with graphs in this category.

Therefore it makes sense to use generic terms only for the categories. This way we make sure that users get
significant search results when looking for a special software product using a search engine. Specific product
names should be used to name the directories in the repository, where you place the plugin. Their names are
shown in the Plugin Gallery as title of the section where the plugins are listed. This way the search for product
names brings only those Gallery pages as hits, where significant plugins are listed.

Please do not contribute plugins with product specific category terms as the search will then bring all index
pages as hits, which is not helpful for the users of the Gallery. It should operate in an effective way as Plugin
Shop, so significant retrieval is an important and critical demand here.

Note: Important! Please write the config line for plugins category in a concrete string (e.g. graph_category
memory). The gallery build script scans for such a line in the plugins source code and needs it. Otherwise (e.g.
use of variables) your plugin will only be shown under category “other”.

graph_category 1sec

Description

Examples

graph_category antivirus

Description Anti virus tools

Examples

graph_category appserver

Description Application servers

Examples

graph_category auth

Description Authentication servers and services

Examples

graph_category backup

Description All measurements around backup creation

Examples

graph_category chat

Description Messaging servers

Examples

9.4. Other reference material 171

http://gallery.munin-monitoring.org/

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

graph_category cloud

Description Cloud providers and cloud components

Examples

graph_category cms

Description Content Management Systems

Examples

graph_category cpu

Description CPU measurements

Examples

graph_category db

Description Database servers

Examples MySQL, PosgreSQL, MongoDB, Oracle

graph_category devel

Description (Software) Development Tools

Examples

graph_category disk

Description Disk and other storage measurements

Examples : used space, free inodes, activity, latency, throughput

graph_category dns

Description Domain Name Server

Examples

graph_category filetransfer

Description Filetransfer tools and servers

Examples

graph_category forum

Description Forum applications

Examples

graph_category fs

172 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Description (Network) Filesystem activities, includes also monitoring of distributed storage appli-
ances

Examples

graph_category fw

Description All measurements around network filtering

Examples

graph_category games

Description Game-Server

Examples

graph_category htc

Description High-throughput computing

Examples

graph_category loadbalancer

Description Load balancing and proxy servers..

Examples

graph_category mail

Description Mail throughput, mail queues, etc.

Examples Postfix, Exim, Sendmail

Comment For monitoring a large mail system, it makes sense to override this with configuration
on the Munin master, and make graph categories for the mail roles you provide. Mail Transfer
Agent (postfix and exim), Mail Delivery Agent (filtering, sorting and storage), Mail Retrieval
Agent (imap server).

graph_category mailinglist

Description Listserver

Examples

graph_category memory

Description All kind of memory measurements. Note that info about memory caching servers is also
placed here

Examples

graph_category munin

Description Monitoring the monitoring.. (includes other monitoring servers also)

Examples

9.4. Other reference material 173

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

graph_category network

Description General networking metrics.

Examples interface activity, latency, number of open network connections

graph_category other

Description Plugins that address seldom used products. Category /other/ is the default, so if the
plugin doesn’t declare a category, it is also shown here.

Examples

graph_category printing

Description Monitor printers and print jobs

Examples

graph_category processes

Description Process and kernel related measurements

Examples

graph_category radio

Description Receivers, signal quality, recording, ..

Examples

graph_category san

Description Storage Area Network

Examples

graph_category search

Description All kinds of measurement around search engines

Examples

graph_category security

Description Security information

Examples login failures, number of pending update packages for OS, number of CVEs in the running
kernel fixed by the lastest installed kernel, firewall counters.

graph_category sensors

Description Sensor measurements of device and environment

Examples temperature, power, devices health state, humidity, noise, vibration

174 Chapter 9. Reference

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

graph_category spamfilter

Description Spam fighters at work

Examples

graph_category streaming

Description

Examples

graph_category system

Description General operating system metrics.

Examples CPU speed and load, interrupts, uptime, logged in users

graph_category time

Description Time synchronization

Examples

graph_category tv

Description Video devices and servers

Examples

graph_category virtualization

Description All kind of measurements about server virtualization. Includes also Operating-system-
level virtualization

Examples

graph_category voip

Description Voice over IP servers

Examples

graph_category webserver

Description All kinds of webserver measurements and also for related components

Examples requests, bytes, errors, cache hit rate for Apache httpd, nginx, lighttpd, varnish, hitch, and
other web servers, caches or TLS wrappers.

graph_category wiki

Description wiki applications

Examples

graph_category wireless

Description

Examples

9.4. Other reference material 175

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

9.4.4 A Brief History of Munin

2002 Born as LRRD

2004 Renamed as Munin

2007 Hacked zooming for 1.2

2009 1.4 came out

2011 EOL of Munin Exchange website, content moved to GitHub branch contrib

2012 Released 2.0, for its 10 years !

2013 Released 2.1

July 2014 target for 2.2

Glossary

Munin Exchange

Was a web platform in the beginning setup and hosted by Linpro (Bjorn Ruberg?). Later (when?) a Munin
supporter re-invented the Munin Exchange website to improve its usablity. When he left the project (when?)
it was not possible to maintain the website any longer, because it was coded in Python with Django and Steve
Schnepp said “we clearly lack skills on that”. So it was decided to move all the plugins over to github branch
“contrib”.

Github is now the official way of contributing 3rd-party plugins.

These are tagged with family contrib (see: --families in munin-node-configure).

Only if they meet the requirements for vetted plugins they can be included in the core plugins collection (dis-
tributed as official Munin release by the Munin developer team). They get tagged with family auto then as all
core collection plugins should have the command autoconf implemented.

See also: Munin Gallery

176 Chapter 9. Reference

http://munin-monitoring.org/wiki/requirements-vetted

CHAPTER 10

Other docs

10.1 Contributing

We need help with completing the Munin Gallery. A lot of plugins don’t have their documentation in POD style
format. And the Gallery needs more pics!

See our wiki page with instructions for gallery contributors.

10.2 Developer Talk

• Proposed extensions

10.2.1 Specifications

• Munin Relay : a multiplexing relay (not yet implemented)

• REST API (RFC)

• Stream plugin (RFC)

10.2.2 Ideas

• Some thoughts about Tags

• Some thoughts about basic module API for plugins written in Perl, Python and Ruby

10.2.3 Snippets

Dirty config

A dirty fetch is not desirable because some plugins (rightly) assume that config is done first and then fetch
and updates the state file accordingly. This should be accommodated since we can. Therefore the feature will be
called dirty config instead.

177

http://gallery.munin-monitoring.org/
http://munin-monitoring.org/wiki/PluginGallery
http://munin-monitoring.org/wiki/ProposedExtensions
http://munin-monitoring.org/wiki/munin-relay
http://munin-monitoring.org/wiki/RestApi
http://munin-monitoring.org/wiki/api-stream
http://munin-monitoring.org/wiki/Tags
http://munin-monitoring.org/wiki/PluginFramework

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

Today, for each plugin, on every run, munin-update first does config $plugin and then a fetch $plugin.

Some plugins do a lot of work to gather their numbers. Quite a few of these need to do the same amount of work
for the value fetching and printing as for the config output.

We could halve the execution time if munin-update detects that config $plugin produces .value and from
that deducts that the fetch $plugin is superfluous. If so the fetch will not be executed thus halving the
total execution time. A config with fetch-time output in would be called a dirty config since it not only
contains config-time output. If the config was not dirty a old fashioned fetch must be executed.

So: Versions of munin-update that understands a dirty config emits cap dirtyconfig to the node, if
the node understands the capability it will set the environment variable MUNIN_CAP_DIRTYCONFIG before
executing plugins.

A plugin that understands MUNIN_CAP_DIRTYCONFIG can simply do something like (very pseudo code) if
(is_dirtyconfig()) then do_fetch(); endif; at the end of the do_config() procedure.
Plugin.sh and Plugin.pm needs to implement a is_dirtyconfig - or similarly named - procedure to let
plugins test this easily.

Plugins that do dirty config to a master that does not understand it should still work OK: old munin-updates
would do a good deal of error logging during the config, but since they do not understand the point of all this
config in the fetch they would also do config and everything would work as before.

Plugins that want to be polite could check the masters capabilities before executing a dirty config as explained
above.

After 2.0 has been published with this change in plugins would be simpler and combined with some other exten-
sions it would greatly reduce the need for many plugin state files and such complexity. Should make plugin author
lives much easier all together.

178 Chapter 10. Other docs

CHAPTER 11

Indices and Tables

• genindex

179

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

180 Chapter 11. Indices and Tables

Index

Symbols
–always-send <severity list>

munin-limits command line option, 122
–base <value>

command line option, 143
–cleanup

munin-async command line option, 114
–cleanupandexit

munin-async command line option, 114
–config <configfile>

munin-node command line option, 126
munin-run command line option, 127

–config <file>
command line option, 123
munin-cron command line option, 118
munin-graph command line option, 119
munin-html command line option, 121
munin-limits command line option, 122

–config_file <file>
munin-update command line option, 128

–contact <contact>
munin-limits command line option, 122

–cron
munin-graph command line option, 119

–day
munin-graph command line option, 120

–debug
command line option, 123
munin-graph command line option, 119
munin-html command line option, 121
munin-limits command line option, 122
munin-node command line option, 126
munin-run command line option, 127
munin-update command line option, 128

–exitnoterror
command line option, 124

–families <family,...>
command line option, 124

–fix-permissions | -f
munin-check command line option, 116

–force
munin-graph command line option, 119
munin-limits command line option, 122

–force-run-as-root
munin-limits command line option, 122

–fork
munin-asyncd command line option, 115
munin-graph command line option, 119
munin-update command line option, 128

–help
command line option, 123
munin-graph command line option, 119
munin-html command line option, 121
munin-limits command line option, 122
munin-node command line option, 126
munin-run command line option, 127
munin-update command line option, 129

–help | -h
munin-async command line option, 115
munin-asyncd command line option, 115
munin-check command line option, 116

–host <host>
munin-cron command line option, 118
munin-graph command line option, 119
munin-html command line option, 121
munin-limits command line option, 122
munin-update command line option, 128

–host <hostname:port>
munin-asyncd command line option, 115

–hostname <hostname>
munin-async command line option, 114

–interval <seconds>
munin-asyncd command line option, 115

–lazy
munin-graph command line option, 119

–libdir <dir>
command line option, 123

–list-images
munin-graph command line option, 120

–log-file | -l
munin-graph command line option, 120

–logarithmic
command line option, 143

–lower-limit <value>
command line option, 143

–lower_limit <lim>
munin-graph command line option, 120

181

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

–month
munin-graph command line option, 120

–n <processes>
munin-graph command line option, 119

–newer <version>
command line option, 124

–nocleanup
munin-asyncd command line option, 115

–nofork
munin-html command line option, 121

–only-fqn <FQN>
munin-graph command line option, 119

–output-file | -o
munin-graph command line option, 120

–paranoia
munin-node command line option, 126
munin-run command line option, 127

–pidebug
command line option, 123
munin-node command line option, 126
munin-run command line option, 128

–pinpoint <start,stop>
munin-graph command line option, 120

–remove-also
command line option, 124

–retain <count>
munin-asyncd command line option, 115

–rigid
command line option, 144

–sconfdir <dir>
command line option, 123
munin-run command line option, 127

–sconffile <file>
munin-run command line option, 127

–screen
munin-graph command line option, 119
munin-html command line option, 121
munin-limits command line option, 122
munin-update command line option, 128

–service <service>
munin-cron command line option, 118
munin-html command line option, 121
munin-limits command line option, 122
munin-update command line option, 128

–servicedir <dir>
command line option, 123
munin-run command line option, 127

–shell
command line option, 124

–size_x <pixels>
munin-graph command line option, 120

–size_y <pixels>
munin-graph command line option, 120

–snmp <host|cidr,...>
command line option, 124

–snmpauthpass <password>
command line option, 125

–snmpauthproto <protocol>

command line option, 125
–snmpcommunity <string>

command line option, 124
–snmpdomain <domain>

command line option, 124
–snmpport <port>

command line option, 124
–snmpprivpass <password>

command line option, 125
–snmpprivproto <protocol>

command line option, 125
–snmpusername <name>

command line option, 125
–snmpversion <ver>

command line option, 124
–spool | -s <spooldir>

munin-asyncd command line option, 115
–spooldir | -s <spooldir>

munin-async command line option, 114
–spoolfetch

munin-async command line option, 114
–suggest

command line option, 124
–sumweek

munin-graph command line option, 120
–sumyear

munin-graph command line option, 120
–timeout <seconds>

munin-update command line option, 128
–units-exponent <value>

command line option, 143
–upper-limit <value>

command line option, 143
–upper_limit <lim>

munin-graph command line option, 120
–vectorfetch

munin-async command line option, 114
–verbose | -v

munin-async command line option, 115
munin-asyncd command line option, 115

–version
command line option, 123
munin-graph command line option, 119
munin-html command line option, 121
munin-run command line option, 128
munin-update command line option, 129

–week
munin-graph command line option, 120

–year
munin-graph command line option, 120

A
address <value>

munin.conf command line option, 133
aggregate

plugin, 144, 148, 151
Aggregating munin plugins, 144, 148, 151
allow

182 Index

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

command line option, 136
apache configuration

example, munin-cgi, 139
example, munin-cron, 139
example, munin-httpd, 140

auto
magic marker family, 63

autoconf
magic marker capability, 63

B
background

command line option, 136

C
cap

protocol command, 38
capabilities

magic marker, 63
capability

autoconf, magic marker, 63
dirtyconfig, 51
multigraph, 50
suggest, magic marker, 63

cdef, 153
field, 151

CGI_DEBUG, 117
cgitmpdir <path>

munin.conf command line option, 130
cgiurl_graph /munin-cgi/munin-cgi-graph

munin.conf command line option, 130
cidr_allow

command line option, 136
cidr_deny

command line option, 136
command

cap, protocol, 38
config, protocol, 38
fetch, protocol, 38
list, protocol, 38
nodes, protocol, 38
quit, protocol, 38
version, protocol, 38

command line option
–base <value>, 143
–config <file>, 123
–debug, 123
–exitnoterror, 124
–families <family,...>, 124
–help, 123
–libdir <dir>, 123
–logarithmic, 143
–lower-limit <value>, 143
–newer <version>, 124
–pidebug, 123
–remove-also, 124
–rigid, 144
–sconfdir <dir>, 123

–servicedir <dir>, 123
–shell, 124
–snmp <host|cidr,...>, 124
–snmpauthpass <password>, 125
–snmpauthproto <protocol>, 125
–snmpcommunity <string>, 124
–snmpdomain <domain>, 124
–snmpport <port>, 124
–snmpprivpass <password>, 125
–snmpprivproto <protocol>, 125
–snmpusername <name>, 125
–snmpversion <ver>, 124
–suggest, 124
–units-exponent <value>, 143
–upper-limit <value>, 143
–version, 123
allow, 136
background, 136
cidr_allow, 136
cidr_deny, 136
global_timeout, 136
group, 136
host, 136
host_name, 135
ignore_file, 135
log_file, 136
log_level, 136
paranoia, 135
pid_file, 136
port, 137
setsid, 136
timeout, 136
user, 136

config
protocol command, 38

configuration
example plugin, 54
plugin, 53

contact.your_contact_name.command <command>
munin.conf command line option, 131

contact.your_contact_name.max_messages <number>
munin.conf command line option, 131

contact.your_contact_name.text <text>
munin.conf command line option, 131

contacts <no|your_contact_name1
your_contact_name2 ...>

munin.conf command line option, 132
contrib

magic marker family, 63
munin, 85

contribute
plugin, 103

contributing
munin documentation, 7
munin; documentation, 87
plugin; best current practices, 96

contribution
plugin, 107

Index 183

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

critical <value>
munin.conf command line option, 134

custom_palette rrggbb rrggbb ...
munin.conf command line option, 130

D
data source

fqn, 113
loan, 144, 148, 151, 153

dbdir <path>
munin.conf command line option, 129

development
munin, 78
plugin, 85, 103, 107
plugin; concise, 99

dirtyconfig
capability, 51
protocol extension, 51

documentation
contributing munin, 7
plugin, 103

domain_order <group1> <group2> ..
munin.conf command line option, 132

ds
fqn, 113

E
environment

plugin, 45
environment variable

CGI_DEBUG, 116, 117
HTTP_CACHE_CONTROL, 116
HTTP_IF_MODIFIED_SINCE, 117
MUNIN_DEBUG, 126, 128
PATH_INFO, 116, 117
QUERY_STRING, 116

example
graph_args, 143
lighttpd configuration munin-httpd, 140
magic marker family, 63
munin-cgi apache configuration, 139
munin-cron apache configuration, 139
munin-cron nginx configuration, 141
munin-httpd apache configuration, 140
munin-httpd nginx configuration, 141
munin-node.conf, 126
munin.conf, 134
plugin configuration, 54
ssh transport munin.conf, 158

executing
plugin, 169

extension
dirtyconfig, protocol, 51
multigraph, protocol, 50

F
family

auto, magic marker, 63

contrib, magic marker, 63
example, magic marker, 63
magic marker, 63
manual, magic marker, 63
snmpauto, magic marker, 63
test, magic marker, 63

fetch
protocol command, 38

field
cdef, 151
sum, 151

fields
plugin, 161

fork <yes|no>
munin.conf command line option, 130

fqn, 111
data source, 113
ds, 113
group, 112
node, 112
plugin, 112
service, 112

fully qualified name, 111

G
gallery

plugin, 103
global_timeout

command line option, 136
graph

percentage distribution, 153
stacked, 148

graph_args, 143
example, 143

graph_category, 170
graph_data_size

master configuration;, rrd, 74
graph_data_size <normal|huge|custom>

munin.conf command line option, 131
graph_height <value>

munin.conf command line option, 133
graph_period <second>

munin.conf command line option, 130
graph_strategy <cgi|cron>

munin.conf command line option, 131
graph_width <value>

munin.conf command line option, 133
group

command line option, 136
fqn, 112

H
host

command line option, 136
host_name

command line option, 135
html_dynamic_images 1

munin.conf command line option, 130

184 Index

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

html_strategy <cgi|cron>
munin.conf command line option, 131

htmldir <path>
munin.conf command line option, 129

I
ignore_file

command line option, 135
ignore_unknown <yes|no>

munin.conf command line option, 133
includedir <path>

munin.conf command line option, 130
installing

plugin, 53

L
lighttpd configuration

munin-httpd, example, 140
list

protocol command, 38
loan

data source, 144, 148, 151, 153
local_address <address>

munin.conf command line option, 130
log_file

command line option, 136
log_level

command line option, 136
logdir <path>

munin.conf command line option, 129

M
magic marker

capabilities, 63
capability autoconf, 63
capability suggest, 63
family, 63
family auto, 63
family contrib, 63
family example, 63
family manual, 63
family snmpauto, 63
family test, 63
plugin, 63

man pages, 113
manual

magic marker family, 63
master configuration;

rrd graph_data_size, 74
max_graph_jobs 6

munin.conf command line option, 130
max_processes 16

munin.conf command line option, 131
max_size_x 4000

munin.conf command line option, 130
max_size_y 4000

munin.conf command line option, 131
multigraph

capability, 50
protocol extension, 50

munin
contrib, 85
development, 78
documentation, contributing, 7
project, 78

Munin Exchange, 176
munin-async command line option

–cleanup, 114
–cleanupandexit, 114
–help | -h, 115
–hostname <hostname>, 114
–spooldir | -s <spooldir>, 114
–spoolfetch, 114
–vectorfetch, 114
–verbose | -v, 115

munin-asyncd command line option
–fork, 115
–help | -h, 115
–host <hostname:port>, 115
–interval <seconds>, 115
–nocleanup, 115
–retain <count>, 115
–spool | -s <spooldir>, 115
–verbose | -v, 115

munin-cgi
apache configuration example, 139

munin-check command line option
–fix-permissions | -f, 116
–help | -h, 116

munin-cron
apache configuration example, 139
nginx configuration example, 141

munin-cron command line option
–config <file>, 118
–host <host>, 118
–service <service>, 118

munin-graph command line option
–config <file>, 119
–cron, 119
–day, 120
–debug, 119
–force, 119
–fork, 119
–help, 119
–host <host>, 119
–lazy, 119
–list-images, 120
–log-file | -l, 120
–lower_limit <lim>, 120
–month, 120
–n <processes>, 119
–only-fqn <FQN>, 119
–output-file | -o, 120
–pinpoint <start,stop>, 120
–screen, 119
–size_x <pixels>, 120

Index 185

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

–size_y <pixels>, 120
–sumweek, 120
–sumyear, 120
–upper_limit <lim>, 120
–version, 119
–week, 120
–year, 120

munin-html command line option
–config <file>, 121
–debug, 121
–help, 121
–host <host>, 121
–nofork, 121
–screen, 121
–service <service>, 121
–version, 121

munin-httpd
apache configuration example, 140
example lighttpd configuration, 140
nginx configuration, example, 141

munin-limits command line option
–always-send <severity list>, 122
–config <file>, 122
–contact <contact>, 122
–debug, 122
–force, 122
–force-run-as-root, 122
–help, 122
–host <host>, 122
–screen, 122
–service <service>, 122

munin-node command line option
–config <configfile>, 126
–debug, 126
–help, 126
–paranoia, 126
–pidebug, 126

munin-node.conf
example, 126

munin-run command line option
–config <configfile>, 127
–debug, 127
–help, 127
–paranoia, 127
–pidebug, 128
–sconfdir <dir>, 127
–sconffile <file>, 127
–servicedir <dir>, 127
–version, 128

munin-update command line option
–config_file <file>, 128
–debug, 128
–fork, 128
–help, 129
–host <host>, 128
–screen, 128
–service <service>, 128
–timeout <seconds>, 128

–version, 129
munin.conf

example, 134
example, ssh transport, 158

munin.conf command line option
address <value>, 133
cgitmpdir <path>, 130
cgiurl_graph /munin-cgi/munin-cgi-graph, 130
contact.your_contact_name.command <com-

mand>, 131
contact.your_contact_name.max_messages <num-

ber>, 131
contact.your_contact_name.text <text>, 131
contacts <no|your_contact_name1

your_contact_name2 ...>, 132
critical <value>, 134
custom_palette rrggbb rrggbb ..., 130
dbdir <path>, 129
domain_order <group1> <group2> .., 132
fork <yes|no>, 130
graph_data_size <normal|huge|custom>, 131
graph_height <value>, 133
graph_period <second>, 130
graph_strategy <cgi|cron>, 131
graph_width <value>, 133
html_dynamic_images 1, 130
html_strategy <cgi|cron>, 131
htmldir <path>, 129
ignore_unknown <yes|no>, 133
includedir <path>, 130
local_address <address>, 130
logdir <path>, 129
max_graph_jobs 6, 130
max_processes 16, 131
max_size_x 4000, 130
max_size_y 4000, 131
munin_cgi_graph_jobs 6, 130
node_order <node1> <node2> .., 132
notify_alias <node name>, 133
palette <default|old>, 130
port <port number>, 133
rrdcached_socket /var/run/rrdcached.sock, 131
rundir <path>, 129
ssh_command <command>, 131
ssh_options <options>, 131
staticdir <path>, 129
timeout <seconds>, 130
tmpldir <path>, 129
update <yes|no>, 133
use_node_name <yes|no>, 133
warning <value>, 133

munin; documentation
contributing, 87

munin_cgi_graph_jobs 6
munin.conf command line option, 130

MUNIN_DEBUG, 126, 128

186 Index

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

N
nginx configuration

example munin-httpd, 141
example, munin-cron, 141

node
fqn, 112
virtual, 129, 144, 148, 151

node_order <node1> <node2> ..
munin.conf command line option, 132

nodes
protocol command, 38

notify_alias <node name>
munin.conf command line option, 133

P
palette <default|old>

munin.conf command line option, 130
paranoia

command line option, 135
PATH_INFO, 116
percentage distribution

graph, 153
pid_file

command line option, 136
plugin

aggregate, 144, 148, 151
configuration, 53
configuration, example, 54
contribute, 103
contribution, 107
development, 85, 103, 107
documentation, 103
environment, 45
executing, 169
fields, 161
fqn, 112
gallery, 103
installing, 53
magic marker, 63
testing, 55
virtual, 144, 148, 151, 153

plugin; best current practices
contributing, 96

plugin; concise
development, 99

port
command line option, 137

port <port number>
munin.conf command line option, 133

project
munin, 78

protocol
command cap, 38
command config, 38
command fetch, 38
command list, 38
command nodes, 38
command quit, 38

command version, 38
extension dirtyconfig, 51
extension multigraph, 50

Q
QUERY_STRING, 116
quit

protocol command, 38

R
RRD

spikes;, 77
rrd

graph_data_size master configuration;, 74
rrdcached_socket /var/run/rrdcached.sock

munin.conf command line option, 131
rundir <path>

munin.conf command line option, 129

S
service

fqn, 112
setsid

command line option, 136
snmpauto

magic marker family, 63
spikes;

RRD, 77
ssh transport

munin.conf example, 158
ssh_command <command>

munin.conf command line option, 131
ssh_options <options>

munin.conf command line option, 131
stacked

graph, 148
staticdir <path>

munin.conf command line option, 129
suggest

magic marker capability, 63
sum

field, 151

T
test

magic marker family, 63
testing

plugin, 55
timeout

command line option, 136
timeout <seconds>

munin.conf command line option, 130
tmpldir <path>

munin.conf command line option, 129
tuple: graph

category, 170
tuple: munin-node.conf

example, 137

Index 187

Munin Documentation, Release 2.999.9-_HEAD-2018-11-14-c365-g5a77f6b

tuple: plugin
graph_category, 170

U
update <yes|no>

munin.conf command line option, 133
use_node_name <yes|no>

munin.conf command line option, 133
user

command line option, 136

V
version

protocol command, 38
vetted plugin, 107
virtual

node, 129, 144, 148, 151
plugin, 144, 148, 151, 153

W
warning <value>

munin.conf command line option, 133

188 Index

	Preface
	What is Munin ?
	Conventions
	Further Information
	Bug Reporting Guidelines
	Documenting Munin

	Tutorial
	Getting Started
	Wildcard Plugins
	Using SNMP plugins
	Let Munin croak alarm
	Munin and Nagios
	Advanced Features
	Extraordinary Usage
	Monitoring the “unreachable” hosts
	Troubleshooting

	Munin’s Architecture
	Overview
	Components
	Protocols
	Syntax
	API

	Munin Installation
	Prerequisites
	Installing Munin
	Initial Configuration
	Webserver Configuration
	Upgrade Notes

	Munin Advanced
	TLS Setup
	Advanced Network
	Per plugin custom rrd sizing

	How-to Collection
	How to remove spikes

	Developing Munin
	Munin development environment
	Munin development tests
	Data Structures

	Developing Plugins
	How to write Munin Plugins
	How to write SNMP Plugins
	Best Current Practices for good plugin graphs
	The Concise guide to plugin authoring
	Plugin Gallery
	Advanced Topics for Plugin Development
	Requirements for ‘Vetted Plugins’

	Reference
	Nomenclature
	Man pages
	Examples and Templates
	Other reference material

	Other docs
	Contributing
	Developer Talk

	Indices and Tables

