
Mumble Protocol
Release 1.2.5-alpha

Nov 06, 2017

Contents

1 Contents 1
1.1 Introduction . 1
1.2 Overview . 1
1.3 Protocol stack (TCP) . 1
1.4 Establishing a connection . 3

1.4.1 Connect . 3
1.4.2 Version exchange . 5
1.4.3 Authenticate . 5
1.4.4 Crypto setup . 6
1.4.5 Channel states . 6
1.4.6 User states . 6
1.4.7 Server sync . 7
1.4.8 Ping . 7

1.5 Voice data . 7
1.5.1 Packet format . 8
1.5.2 Codecs . 10
1.5.3 Whispering . 11
1.5.4 UDP connectivity checks . 11
1.5.5 Tunneling audio over TCP . 11
1.5.6 Encryption . 11
1.5.7 Variable length integer encoding . 12

i

ii

CHAPTER 1

Contents

1.1 Introduction

This document is meant to be a reference for the Mumble VoIP 1.2.X server-client communication protocol. It reflects
the state of the protocol implemented in the Mumble 1.2.8 client and might be outdated by the time you are reading
this. Be sure to check for newer revisions of this document at http://mumble-protocol.readthedocs.org/.

This document is a constant work in progress.

1.2 Overview

Mumble is based on a standard server-client communication model. It utilizes two channels of communication, the
first one is a TCP connection which is used to reliably transfer control data between the client and the server. The
second one is a UDP connection which is used for unreliable, low latency transfer of voice data.

Both are protected by strong cryptography, this encryption is mandatory and cannot be disabled. The TCP control
channel uses TLSv1 AES256-SHA1 while the voice channel is encrypted with OCB-AES1282.

While the TCP connection is mandatory the UDP connection can be compensated by tunnelling the UDP packets
through the TCP connection as described in the protocol description later.

1.3 Protocol stack (TCP)

Mumble has a shallow and easy to understand stack. Basically it uses Google’s Protocol Buffers1 with simple prefixing
to distinguish the different kinds of packets sent through an TLSv1 encrypted connection. This makes the protocol
very easily expandable.

1 http://en.wikipedia.org/wiki/Transport_Layer_Security
2 http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-back.htm
1 https://github.com/google/protobuf

1

http://mumble-protocol.readthedocs.org/
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-back.htm
https://github.com/google/protobuf

Mumble Protocol, Release 1.2.5-alpha

Fig. 1.1: Mumble system overview

Fig. 1.2: Mumble crypto types

Fig. 1.3: Mumble packet

2 Chapter 1. Contents

Mumble Protocol, Release 1.2.5-alpha

The prefix consists out of the two bytes defining the type of the packet in the payload and 4 bytes stating the length of
the payload in bytes followed by the payload itself. The following packet types are available in the current protocol and
all but UDPTunnel are simple protobuf messages. If not mentioned otherwise all fields outside the protobuf encoding
are big-endian.

Table 1.1: Packet types

Type Payload
0 Version
1 UDPTunnel
2 Authenticate
3 Ping
4 Reject
5 ServerSync
6 ChannelRemove
7 ChannelState
8 UserRemove
9 UserState
10 BanList
11 TextMessage
12 PermissionDenied
13 ACL
14 QueryUsers
15 CryptSetup
16 ContextActionModify
17 ContextAction
18 UserList
19 VoiceTarget
20 PermissionQuery
21 CodecVersion
22 UserStats
23 RequestBlob
24 ServerConfig
25 SuggestConfig

For raw representation of each packet type see the attached Mumble.proto2 file.

1.4 Establishing a connection

This section describes the communication between the server and the client during connection establishing, note that
only the TCP connection needs to be established for the client to be connected. After this the client will be visible to
the other clients on the server and able to send other types of messages.

1.4.1 Connect

As the basis for the synchronization procedure the client has to first establish the TCP connection to the server and do a
common TLSv1 handshake. To be able to use the complete feature set of the Mumble protocol it is recommended that
the client provides a strong certificate to the server. This however is not mandatory as you can connect to the server
without providing a certificate. However the server must provide the client with its certificate and it is recommended
that the client checks this.

2 https://raw.github.com/mumble-voip/mumble/master/src/Mumble.proto

1.4. Establishing a connection 3

https://raw.github.com/mumble-voip/mumble/master/src/Mumble.proto

Mumble Protocol, Release 1.2.5-alpha

Fig. 1.4: Mumble connection setup

4 Chapter 1. Contents

Mumble Protocol, Release 1.2.5-alpha

1.4.2 Version exchange

Once the TLS handshake is completed both sides should transmit their version information using the Version message.
The message structure is described below.

Table 1.2: Version mes-
sage

Version
version uint32
release string
os string
os_version string

The version field is a combination of major, minor and patch version numbers (e.g. 1.2.0) so that major number takes
two bytes and minor and patch numbers take one byte each. The structure is shown in figure ref{fig:versionEncoding}.
The release, os and os_version fields are common strings containing additional information.

Table 1.3: Version field en-
coding (uint32)

Major Minor Patch
2 bytes 1 byte 1 byte

The version information may be used as part of the SuggestConfig checks, which usually refer to the standard client
versions. The major changes between these versions are listed in table below. The release, os and os_version informa-
tion is not interpreted in any way at the moment.

Table 1.4: Mumble version differences

Version Major changes
1.2.0 CELT 0.7.0 codec support
1.2.2 CELT 0.7.1 codec support
1.2.3 CELT 0.11.0 codec
1.2.4 Opus codec support, SuggestConfig message

1.4.3 Authenticate

Once the client has sent the version it should follow this with the Authenticate message. The message structure is
described in the figure below. This message may be sent immediately after sending the version message. The client
does not need to wait for the server version message.

Table 1.5:
Authenticate mes-
sage

Authenticate
username string
password string
tokens string

The username and password are UTF-8 encoded strings. While the client is free to accept any username from the
user the server is allowed to impose further restrictions. Furthermore if the client certificate has been registered with

1.4. Establishing a connection 5

Mumble Protocol, Release 1.2.5-alpha

the server the client is primarily known with the username they had when the certificate was registered. For more
information see the server documentation.

The password must only be provided if the server is passworded, the client provided no certificate but wants to authen-
ticate to an account which has a password set, or to access the SuperUser account.

The third field contains a list of zero or more token strings which act as passwords that may give the client access to
certain ACL groups without actually being a registered member in them, again see the server documentation for more
information.

1.4.4 Crypto setup

Once the Version packets are exchanged the server will send a CryptSetup packet to the client. It contains the necessary
cryptographic information for the OCB-AES128 encryption used in the UDP Voice channel. The packet is described
in figure below. The encryption itself is described in a later section.

Table 1.6: CryptSetup
message

CryptSetup
key bytes
client_nonce bytes
server_nonce bytes

1.4.5 Channel states

After the client has successfully authenticated the server starts listing the channels by transmitting partial ChannelState
message for every channel on this server. These messages lack the channel link information as the client does not yet
have full picture of all the channels. Once the initial ChannelState has been transmitted for all channels the server
updates the linked channels by sending new packets for these. The full structure of these ChanneLState messages is
shown below:

Table 1.7: ChannelState message

ChannelState
channel_id uint32
parent uint32
name string
links repeated uint32
description string
links_add repeated uint32
links_remove repeated uint32
temporary optional bool
position optional int32

The server must send a ChannelState for the root channel identified with ID 0.

1.4.6 User states

After the channels have been synchronized the server continues by listing the connected users. This is done by sending
a UserState message for each user currently on the server, including the user that is currently connecting.

6 Chapter 1. Contents

Mumble Protocol, Release 1.2.5-alpha

Table 1.8: UserState mes-
sage

UserState
session uint32
actor uint32
name string
user_id uint32
channel_id uint32
mute bool
deaf bool
suppress bool
self_mute bool
self_deaf bool
texture bytes
plugin_context bytes
plugin_identity string
comment string
hash string
comment_hash bytes
texture_hash bytes
priority_speaker bool
recording bool

1.4.7 Server sync

The client has now received a copy of the parts of the server state he needs to know about. To complete the syn-
chronization the server transmits a ServerSync message containing the session id of the clients session, the maximum
bandwidth allowed on this server, the servers welcome text as well as the permissions the client has in the channel he
ended up.

For more information pease refer to the Mumble.proto file1.

1.4.8 Ping

If the client wishes to maintain the connection to the server it is required to ping the server. If the server does not
receive a ping for 30 seconds it will disconnect the client.

1.5 Voice data

Mumble audio channel is used to transmit the actual audio packets over the network. Unlike the TCP control channel,
the audio channel uses a custom encoding for the audio packets. The audio channel is transport independent and
features such as encryption are implemented by the transport layer. Integers above 8-bits are encoded using the
Variable length integer encoding.

1 https://raw.github.com/mumble-voip/mumble/master/src/Mumble.proto

1.5. Voice data 7

https://raw.github.com/mumble-voip/mumble/master/src/Mumble.proto

Mumble Protocol, Release 1.2.5-alpha

1.5.1 Packet format

The mumble audio channel packets are variable length packets that begin with an 8-bit header field which describes the
packet type and target. The most significant 3 bits define the packet type while the remaining 5 bits define the target.
The header is followed by the packet payload. The maximum size for the whole audio data packet is 1020 bytes. This
allows applications to use 1024 byte buffers for receiving UDP datagrams with the 4-byte encryption header overhead.

Table 1.9: Audio packet structure

Audio packet structure
7 6 5 4 3 2 1 0
type target
Payload...

type The audio packet type. The packets transmitted over the audio channel are either ping packets used to diagnose
the transport layer connectivity or audio packets encoded with different codecs. Different types are listed in
Audio packet types table.

Table 1.10: Audio packet types

Type Bitfield Description
0 000xxxxx CELT Alpha encoded voice data
1 001xxxxx Ping packet
2 010xxxxx Speex encoded voice data
3 011xxxxx CELT Beta encoded voice data
4 100xxxxx OPUS encoded voice data
5-7 Unused

target The target portion defines the recipient for the audio data. The two constant targets are Normal talking (0) and
Server Loopback (31). The range 1-30 is reserved for whisper targets. These targets are specified separately in
the control channel using the VoiceTarget packets. The targets are listed in Audio targets table.

When a client registers a VoiceTarget on the server, it gives the target an ID. This voice target ID can be used
as a target in the voice packets to send audio to specific users or channels. When receiving whisper-audio the
server uses target 1 to specify the audio results from a whisper to a channel and target 2 to specify that the audio
results from a direct whisper to the user.

Table 1.11: Audio targets

Target Description
0 Normal talking
1-30 Whisper target

• VoiceTarget ID when sending whisper from
client.

• 1 when receiving whisper to channel.
• 2 when receiving direct whisper to user.

31 Server loopback

Ping packet

Audio channel ping packets are used as part of the connectivity checks on the audio transport layer. These packets
contain only varint encoded timestamp as data. See UDP connectivity checks section below for the logic involved in
the connectivity checks.

8 Chapter 1. Contents

Mumble Protocol, Release 1.2.5-alpha

Table 1.12: Audio transport ping packet

Field Type Description
Header byte 00100000b (0x20)
Data varint Timestamp

Header Common audio packet header. For ping packets this should have the value of 0x20.

Data Timestamp. The packet should be echoed back so the timestamp format can be decided by the original sender -
the only limitation is that it must fit in a 64-bit integer for the varint encoding.

Encoded audio data packet

Encoded audio packets contain the actual user audio data for the voice communication. Incoming audio data packets
contain the common header byte followed by varint encoded session ID of the source user and varint encoded sequence
number of the packet. Outgoing audio data packets contain only the header byte and the sequence number of the packet.
The server matches these to the correct session using the transport layer information.

The remainder of the packet is made up of multiple encoded audio segments and optional positional audio information.
The audio segment format depends on the codec of the whole audio packets. The audio segments contain codec
implementation specific information on where the audio segments end so the possible positional audio data can be
read from the end.

Table 1.13: Incoming encoded audio packet

Field Type Description
Header byte Codec type/Audio target
Session ID varint Session ID of the source user.
Sequence Number varint Sequence number of the first audio data segment.
Payload byte[] Audio payload
Position Info float[3] Positional audio information

Table 1.14: Outgoing encoded audio packet

Field Type Description
Header byte Codec type/Audio target
Sequence Number varint Sequence number of the first audio data segment.
Payload byte[] Audio payload
Position Info float[3] Positional audio information

Header The common audio packet header

Session ID Session ID of the user to whom the audio packet belongs.

Sequence Number Audio data sequence number. The sequence number is used to maintain the packet order when
the audio data is transported over unreliable transports such as UDP.

The sequence number might increase by more than one between subsequent audio packets in case the audio
packets contain multiple audio segments. This allows the packet loss concealment algorithms to figure out how
many audio frames were lost between two received packets.

Payload Audio payload. Format depends on the audio codec defined in the Header. The payload must be self-
delimiting to determine whether the position info exists at the end of the packet.

Position Info The XYZ coordinates of the audio source. In addition to sending the position information, the user must
be using a positional plugin defined in the UserState message. The plugins might define different contexts
which prevent voice communication between users in other contexts.

1.5. Voice data 9

Mumble Protocol, Release 1.2.5-alpha

Speex and CELT audio frames

Encoded Speex and CELT audio is transported as individual encoded frames. Each frame is prefixed with a single byte
length and terminator header.

Table 1.15: CELT encoded audio data

Field Type Description
Header byte length/continuation header
Data byte[] Encoded voice frame

Header The length of the Data field. The most significant bit (0x80) acts as the continuation bit and is set for all but
the last frame in the payload. The remaining 7 bits of the header contain the actual length of the Data frame.

Note the length may be zero, which is used to signal the end of a voice transmission. In this case the audio data
is a single zero-byte which can be interpreted normally as length of 0 with no continuation bit set.

Data Single encoded audio frame. The encoding depends on the codec type header of the whole audio packet

Opus audio frames

Encoded Opus audio is transported as a single Opus audio frame. The frame is prefixed with a variable byte header.

Table 1.16: Opus encoded audio data

Field Type Description
Header varint length/terminator header
Data byte[] Encoded voice frame

Header The length of the Data field. 16-bit variable length integer encoded length and terminator bit value. The
varint encoding is the same as with 64-bit values, but only 16-bit unencoded values are allowed.

The maximum voice frame size is 8191 (0x1FFF) bytes requiring the 13 least significant bits of the header.
The 14th bit (mask: 0x2000) is the terminator bit which signals whether the packet is the last one in the voice
transmission.

Note: In CELT the “continuation bit” in the header defines whether there are more audio frames in the current
packet. Opus always contains only one frame in the packet. In CELT the voice transmission end is signaled with
a zero-byte CELT packet while in Opus we have a dedicated termination bit in the header.

Data The encoded Opus data.

1.5.2 Codecs

Mumble supports three distinct codecs; Older Mumble versions use Speex for low bitrate audio and CELT for higher
quality audio while new Mumble versions prefer Opus for all audio. When multiple clients with different capabilities
communicate together the server is responsible for resolving the codec to use. The clients should respect the server
resolution if they are capable.

If the server resolves a codec a client doesn’t support, that client is free to use any codec it prefers. Usually this means
the client will not be able to decode incoming audio, but it can still send encoded audio out.

The CELT bitstream was never frozen which makes most CELT versions incompatible with each other. The two CELT
bitstreams supported by Mumble are: CELT 0.7.0 (CELT Alpha) and CELT 0.11.0 (CELT Beta). While CELT 0.7.0
should technically be supported by most Mumble implementations, some servers might be configured to force Opus

10 Chapter 1. Contents

Mumble Protocol, Release 1.2.5-alpha

codec for the users. Mumble has had Opus support since 1.2.4 (June 2013) so it should be safe to assume most clients
in use support this now.

1.5.3 Whispering

Normal talking can be heard by the users of the current channel and all linked channels as long as the speaker has Talk
permission on these channels. If the speaker wishes to broadcast the voice to specific users or channels, he may use
whispering. This is achieved by registering a voice target using the VoiceTarget message and specifying the target ID
as the target in the first byte of the UDP packet.

1.5.4 UDP connectivity checks

Since UDP is a connectionless protocol, it is heavily affected by network topology such as NAT configuration. It
should not be used for audio transmission before the connectivity has been determined.

The client starts the connectivity checks by sending a Ping packet to the server. When the server receives this packet
it will respond by echoing it back to the address it received it from. Once the client receives the response from the
server it can start using the UDP transport for audio data. When the server receives incoming audio data over the UDP
transport it can switch the outgoing audio over to UDP transport as well.

If the client stops receiving replies to the UDP pings at some point, it should start tunneling the voice communication
through the TCP tunnel as described in the Tunneling audio over TCP below. When the server receives a tunneled
packet over the TCP connection it must also stop using the UDP for communication. The client should still continue
sending audio ping packets over the UDP transport in case the UDP connection is restored and the communication can
be switched back to it.

1.5.5 Tunneling audio over TCP

If the UDP channel isn’t available the voice packets can be transmitted through the TCP transport used for the control
channel. These messages use the normal TCP prefixing, as shown in figure Mumble packet: 16-bit message type
followed by 32-bit message length. However unlike other TCP messages, the audio packets are not encoded as protocol
buffer messages but instead the raw audio packet described in Packet format should be written to the TCP socket
verbatim.

When the packets are received it is safe to parse the type and length fields normally. If the type matches that of
the audio tunnel the rest of the message should be processed as an UDP packet without attempting a protocol buffer
decoding.

Implementation note

When implementing the protocol it is easier to ignore the UDP transfer layer at first and just tunnel the UDP data
through the TCP tunnel. The TCP layer must be implemented for authentication in any case. Making sure that the
voice transmission works before implementing the UDP protocol simplifies debugging greatly.

1.5.6 Encryption

All the packets are encrypted once during transfer. The actual encryption depends on the used transport layer. If the
packets are tunneled through TCP they are encrypted using the TLS that encrypts the whole control channel connection
and if they are sent directly using UDP they must be encrypted using the OCB-AES128 encryption.

1.5. Voice data 11

Mumble Protocol, Release 1.2.5-alpha

1.5.7 Variable length integer encoding

The variable length integer encoding (varint) is used to encode long, 64-bit, integers so that short values do not need
the full 8 bytes to be transferred. The basic idea behind the encoding is prefixing the value with a length prefix and
then removing the leading zeroes from the value. The positive numbers are always right justified. That is to say that
the least significant bit in the encoded presentation matches the least significant bit in the decoded presentation. The
varint prefixes table contains the definitions of the different length prefixes. The encoded x bits are part of the decoded
number while the _ signifies a unused bit. Encoding should be done by searching the first decoded description that
fits the number that should be decoded, truncating it to the required bytes and combining it with the defined encoding
prefix.

See the quint64 shift operators in https://github.com/mumble-voip/mumble/blob/master/src/PacketDataStream.h for a
reference implementation.

Table 1.17: Varint prefixes

Encoded Decoded
0xxxxxxx 7-bit positive number
10xxxxxx + 1 byte 14-bit positive number
110xxxxx + 2 bytes 21-bit positive number
1110xxxx + 3 bytes 28-bit positive number
111100__ + int (32-bit) 32-bit positive number
111101__ + long (64-bit) 64-bit number
111110__ + varint Negative recursive varint
111111xx Byte-inverted negative two bit number (~xx)

12 Chapter 1. Contents

https://github.com/mumble-voip/mumble/blob/master/src/PacketDataStream.h

	Contents
	Introduction
	Overview
	Protocol stack (TCP)
	Establishing a connection
	Connect
	Version exchange
	Authenticate
	Crypto setup
	Channel states
	User states
	Server sync
	Ping

	Voice data
	Packet format
	Codecs
	Whispering
	UDP connectivity checks
	Tunneling audio over TCP
	Encryption
	Variable length integer encoding

