
MozDef Documentation
Release 0.0.1

Jeff Bryner, Anthony Verez

April 11, 2014

Contents

1 Overview 1
1.1 Why? . 1
1.2 Goals . 1
1.3 Architecture . 2
1.4 Status . 2
1.5 Roadmap . 2

2 Introduction 5
2.1 Concept of operations . 5

3 Installation 7
3.1 Docker . 7
3.2 Elasticsearch nodes . 8
3.3 Web and Workers nodes . 8

4 Usage 13
4.1 Web Interface . 13
4.2 Sending logs to MozDef . 13
4.3 JSON format . 14

5 Advanced Settings 19

6 Public API 21

7 Code 23

8 Benchmarking 25
8.1 Elasticsearch . 25

9 Contributors 27

10 Indices and tables 29

11 License 31

12 Contact 33

i

ii

CHAPTER 1

Overview

1.1 Why?

The inspiration for MozDef comes from the large arsenal of tools available to attackers. Suites like metasploit, ar-
mitage, lair, dradis and others are readily available to help attackers coordinate, share intelligence and finely tune their
attacks in real time. Defenders are usually limited to wikis, ticketing systems and manual tracking databases attached
to the end of a Security Information Event Management (SIEM) system.

The Mozilla Defense Platform (MozDef) seeks to automate the security incident handling process and facilitate the
real-time activities of incident handlers.

1.2 Goals

1.2.1 High level

• Provide a platform for use by defenders to rapidly discover and respond to security incidents.

• Automate interfaces to other systems like bunker, banhammer, mig

• Provide metrics for security events and incidents

• Facilitate real-time collaboration amongst incident handlers

• Facilitate repeatable, predictable processes for incident handling

• Go beyond traditional SIEM systems in automating incident handling, information sharing, workflow, metrics
and response automation

1.2.2 Technical

• Replace a SIEM

• Scalable, should be able to handle thousands of events/s, provide fast searching, alerting and correlations and
handle interactions between teams of incident handlers.

MozDef aims to provide traditional SIEM functionality including:

• Accepts events/logs from your systems

• Stores the events/logs

• Facilitate searches

1

MozDef Documentation, Release 0.0.1

• Facilitate alerting

• Facilitate log management (archiving,restoration)

It is non-traditional in that it:

• Accepts only JSON input

• Provides you open access to your data

• Integrates with a variety of log shippers including heka, logstash, beaver, nxlog and any shipper that can send
JSON to either rabbit-mq or an HTTP endpoint.

• Provides easy python plugins to manipulate your data in transit

• Provides realtime access to teams of incident responders to allow each other to see their work simultaneously

1.3 Architecture

MozDef is based on open source technologies including:

• Nginx (http(s) based log input)

• Rabbit-MQ (message queue)

• UWSGI (supervisory control of python-based workers)

• bottle.py (simple python interface for web request handling)

• Elastic Search (scalable indexing and searching of JSON documents)

• Meteor (responsive framework for Node.js enabling real-time data sharing)

• Mongo DB (scalable data store, tightly integrated to Meteor)

• VERIS from verizon (open source taxonomy of security incident categorizations)

• d3 (javascript library for data driven documents)

• three.js (javascript library for 3d visualizations)

• Firefox (a snappy little web browser)

1.4 Status

MozDef is in early proof of concept phases at Mozilla where we are using it to replace our current SIEM.

1.5 Roadmap

Near term:

• Replace base SIEM functionality including log input, event management, search, alerts, basic correlations.

• Enhance the incident workflow UI to enable realtime collaboration

• Enable basic plug-ins to the event input stream for meta data, additional parsing, categorization and basic ma-
chine learning

• Support as many common event/log shippers as possible with repeatable recipies

2 Chapter 1. Overview

MozDef Documentation, Release 0.0.1

Mid term:

• Repeatable installation guides

• Ready-made AMIs/downloadable ISOs

• Correlation through machine learning, AI

• 3D visualizations of threat actors

• Base integration into Mozilla’s defense mechanisms for automation

Long term:

• Integration into common defense mechanisms used outside Mozilla

• Enhanced visualizations and interactions including alternative interfaces (myo,omnidirectional treadmills, ocu-
lus rift)

1.5. Roadmap 3

MozDef Documentation, Release 0.0.1

4 Chapter 1. Overview

CHAPTER 2

Introduction

2.1 Concept of operations

2.1.1 Event Management

From an event management point of view MozDef relies on Elastic Search for:

• event storage

• event archiving

• event indexing

• event searching

This means if you use MozDef for your log management you can use the features of Elastic Search to store millions
of events, archive them to Amazon if needed, index the fields of your events, and search them using highly capable
interfaces like Kibana.

Mozdef differs from other log management solutions that use Elastic Search in that it does not allow your log shippers
direct contact with Elastic Search itself. In order to provide advanced functionality like event correlation, aggregation
and machine learning, MozDef inserts itself as a shim between your log shippers (rsyslog, syslog-ng, beaver, nxlog,
heka, logstash) and Elastic Search. This means your log shippers interact with MozDef directly and MozDef handles
translating their events as they make they’re way to Elastic Search.

2.1.2 Event Pipeline

The logical flow of events is:

+-----------+ +--------------+
| MozDef +--------------+ |

+----------+ | FrontEnd | Elastic |
| shipper +-------+-----------+ | Search |
++++++++++++ | cluster |
++++++++++++ | |
| shipper +-------+-----------+ | |
+----------+ | MozDef ++-------------+ |

| FrontEnd+ | |
+-----------+ | |

+--------------+

5

MozDef Documentation, Release 0.0.1

Choose a shipper (logstash, nxlog, beaver, heka, rsyslog, etc) that can send JSON over http(s). MozDef uses nginx
to provide http(s) endpoints that accept JSON posted over http. Each front end contains a Rabbit-MQ message queue
server that accepts the event and sends it for further processing.

You can have as many front ends, shippers and cluster members as you with in any geographic organization that makes
sense for your topology. Each front end runs a series of python workers hosted by uwsgi that perform:

• event normalization (i.e. translating between shippers to a common taxonomy of event data types and fields)

• event enrichment

• simple regex-based alerting

• machine learning on the real-time event stream

2.1.3 Event Enrichment

To facilitate event correlation, MozDef allows you to write plugins to populate your event data with consistent meta-
data customized for your environment. Through simple python plug-ins this allows you to accomplish a variety of
event-related tasks like:

• tag all events involving key staff

• tag all events involving previous attackers or hits on a watchlist

• correct fields not properly handled by log shippers

• tap into your event stream for ancilary systems

• geoIP tag your events

• maintain ‘last-seen’ lists for assets, employees, attackers

2.1.4 Event Correlation/Alerting

Correlation/Alerting is currently handled as a series of queries run periodically against the Elastic Search engine.
This allows MozDef to make full use of the lucene query engine to group events together into summary alerts and to
correlate across any data source accessible to python.

2.1.5 Incident Handling

From an incident handling point of view MozDef offers the realtime responsiveness of Meteor in a web interface. This
allows teams of incident responders the ability to see each others actions in realtime, no matter their physical location.

6 Chapter 2. Introduction

CHAPTER 3

Installation

For the Mozilla setup, please have a look at the MozDef Mana page.

The installation process has been tested on CentOS 6 and RHEL 6.

3.1 Docker

You can quickly install MozDef with an automated build generation using docker.

3.1.1 Dockerfile

After installing docker, use this to build a new image:

cd docker && sudo make build

Running the container:

sudo make run

You’re done! Now go to:

• http://127.0.0.1:3000 < meteor (main web interface)

• http://127.0.0.1:9090 < kibana

• http://127.0.0.1:9200 < elasticsearch

• http://127.0.0.1:9200/_plugin/marvel < marvel (monitoring for elasticsearch)

• http://127.0.0.1:8080 < loginput

• http://127.0.0.1:8081 < rest api

3.1.2 Known issues

• Marvel doesn’t display node info: ‘ Oops! FacetPhaseExecutionException[Facet [fs.total.available_in_bytes]:
failed to find mapping for fs.total.available_in_bytes]‘

Marvel uses techniques to gather system info that are not compatible with docker. See
https://groups.google.com/forum/#!topic/elasticsearch/dhpxaOuoZWI

Despite this issue, marvel runs fine.

7

https://www.docker.io/
https://www.docker.io/
http://127.0.0.1:3000
http://127.0.0.1:9090
http://127.0.0.1:9200
http://127.0.0.1:9200/_plugin/marvel
http://127.0.0.1:8080
http://127.0.0.1:8081
https://groups.google.com/forum/#!topic/elasticsearch/dhpxaOuoZWI

MozDef Documentation, Release 0.0.1

• I don’t see any data or dashboards in Kibana

We need to create some sample data, it’s in our roadmap ;)

3.2 Elasticsearch nodes

This section explains the manual installation process for Elasticsearch nodes (search and storage).

3.2.1 ElasticSearch

Installation instructions are available on Elasticsearch website. You should prefer packages over archives if one is
available for your distribution.

3.2.2 Marvel plugin

Marvel is a monitoring plugin developed by Elasticsearch (the company).

WARNING: this plugin is NOT open source. At the time of writing, Marvel is free for development but you have to
get a license for production.

To install Marvel, on each of your elasticsearch node, from the Elasticsearch home directory:

bin/plugin -i elasticsearch/marvel/latest
sudo service elasticsearch restart

You should now be able to access to Marvel at http://any-server-in-cluster:9200/_plugin/marvel

3.3 Web and Workers nodes

This section explains the manual installation process for Web and Workers nodes.

3.3.1 Python

We need to install a python2.7 virtualenv:

sudo yum install make zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel pcre-devel gcc gcc-c++
cd
wget http://python.org/ftp/python/2.7.6/Python-2.7.6.tgz
tar xvzf http://python.org/ftp/python/2.7.6/Python-2.7.6.tgz
./configure --prefix=/home/mozdef/python2.7 --enable-shared
make
make install

wget https://raw.github.com/pypa/pip/master/contrib/get-pip.py
export LD_LIBRARY_PATH=/home/netantho/python2.7/lib/
./python2.7/bin/python get-pip.py
./python2.7/bin/pip install virtualenv
mkdir ~/envs
cd ~/envs
~/python2.7/bin/virtualenv mozdef
source mozdef/bin/activate
pip install -r MozDef/requirements.txt

8 Chapter 3. Installation

http://www.elasticsearch.org/overview/elkdownloads/
http://www.elasticsearch.org/overview/marvel/
http://any-server-in-cluster:9200/_plugin/marvel

MozDef Documentation, Release 0.0.1

At this point when you launch python, It should tell you that you’re using Python 2.7.6.

Whenever you launch a python script from now on, you should have your mozdef virtualenv actived and your
LD_LIBRARY_PATH env variable should include /home/mozdef/python2.7/lib/

3.3.2 RabbitMQ

RabbitMQ is used on workers to have queues of events waiting to be inserted into the Elasticsearch cluster (storage).

To install it, first make sure you enabled EPEL repos. Then you need to install an Erlang environment:

yum install erlang

You can then install the rabbitmq server:

rpm --import http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
yum install rabbitmq-server-3.2.4-1.noarch.rpm

To start rabbitmq at startup:

chkconfig rabbitmq-server on

3.3.3 Meteor

Meteor is a javascript framework used for the realtime aspect of the web interface.

We first need to install Mongodb since it’s the DB used by Meteor. In /etc/yum.repo.d/mongo, add:

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1

Then you can install mongodb:

sudo yum install mongodb

For meteor, in a terminal:

curl https://install.meteor.com/ | sh

wget http://nodejs.org/dist/v0.10.26/node-v0.10.26.tar.gz
tar xvzf node-v0.10.26.tar.gz
cd node-v0.10.26
./configure
make
make install

Make sure you have meteorite/mrt:

npm install -g meteorite

Then from the meteor subdirectory of this git repository run:

mrt add iron-router
mrt add accounts-persona

You may want to edit the app/lib/settings.js file to properly point to your elastic search server:

3.3. Web and Workers nodes 9

https://www.rabbitmq.com/
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse
https://www.meteor.com/
https://www.mongodb.org/

MozDef Documentation, Release 0.0.1

elasticsearch={
address:"http://servername:9200/",
healthurl:"_cluster/health",
docstatsurl:"_stats/docs"

}

Then start meteor with:

meteor

3.3.4 Nginx

We use nginx webserver.

You need to install nginx:

sudo yum install nginx

If you don’t have this package in your repos, before installing create /etc/yum.repos.d/nginx.repo with the following
content:

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/6/$basearch/
gpgcheck=0
enabled=1

3.3.5 UWSGI

We use uwsgi to interface python and nginx:

wget http://projects.unbit.it/downloads/uwsgi-2.0.2.tar.gz
~/python2.7/bin/python uwsgiconfig.py --build
~/python2.7/bin/python uwsgiconfig.py --plugin plugins/python core
cp python_plugin.so ~/envs/mozdef/bin/
cp uwsgi ~/envs/mozdef/bin/

cd rest
modify uwsgi.ini
vim uwsgi.ini
uwsgi --ini uwsgi.ini

cd ../loginput
modify uwsgi.ini
vim uwsgi.ini
uwsgi --ini uwsgi.ini

sudo cp nginx.conf /etc/nginx
modify /etc/nginx/nginx.conf
sudo vim /etc/nginx/nginx.conf
sudo service nginx restart

3.3.6 Kibana

Kibana is a webapp to visualize and search your Elasticsearch cluster data:

10 Chapter 3. Installation

http://nginx.org/
http://projects.unbit.it/uwsgi/
http://www.elasticsearch.org/overview/kibana

MozDef Documentation, Release 0.0.1

wget https://download.elasticsearch.org/kibana/kibana/kibana-3.0.0milestone5.tar.gz
tar xvzf kibana-3.0.0milestone5.tar.gz
mv kibana-3.0.0milestone5 kibana
configure /etc/nginx/nginx.conf to target this folder
sudo service nginx reload

Import dashboards from MozDef/kibana/dashboards into the kibana webUI

3.3. Web and Workers nodes 11

MozDef Documentation, Release 0.0.1

12 Chapter 3. Installation

CHAPTER 4

Usage

4.1 Web Interface

MozDef uses the Meteor framework for the web interface and bottle.py for the REST API. For authentication, MozDef
ships with native support for Persona. Meteor (the underlying UI framework) also supports many authentication
options including google, github, twitter, facebook, oath, native accounts, etc.

4.1.1 Events visualizations

Since the backend of MozDef is Elastic Search, you get all the goodness of Kibana with little configuration. The
MozDef UI is focused on incident handling and adding security-specific visualizations of SIEM data to help you weed
through the noise.

4.1.2 Alerts

Alerts are generally implemented as Elastic Search searches, or realtime examination of the incoming message queues.
MozDef provides a plugin interface to allow open access to event data for enrichment, hooks into other systems, etc.

4.1.3 Incident handling

4.2 Sending logs to MozDef

Events/Logs are accepted as json over http(s) with the POST or PUT methods or over rabbit-mq. Most modern log
shippers support json output. MozDef is tested with support for:

• heka

• beaver

• nxlog

• logstash

• native python code

• AWS cloudtrail (via native python)

We have some configuration snippets

13

https://www.meteor.com/
https://login.persona.org/about
http://docs.meteor.com/#accounts_api
http://docs.meteor.com/#accounts_api
https://github.com/mozilla-services/heka
https://github.com/josegonzalez/beaver
http://nxlog-ce.sourceforge.net/
http://logstash.net/
https://github.com/gdestuynder/mozdef_lib
https://aws.amazon.com/cloudtrail/
https://github.com/jeffbryner/MozDef/tree/master/examples

MozDef Documentation, Release 0.0.1

4.2.1 What should I log?

If your program doesn’t log anything it doesn’t exist. If it logs everything that happens it becomes like the proverbial
boy who cried wolf. There is a fine line between logging too little and too much but here is some guidance on key
events that should be logged and in what detail.

Event Example Rationale
Authen-
tication
Events

Failed/Success logins Authentication is always an important event to log as it
establishes traceability for later events and allows correlation of
user actions across systems.

Autho-
rization
Events

Failed attempts to
insert/update/delete a record or
access a section of an
application.

Once a user is authenticated they usually obtain certain
permissions. Logging when a user’s permissions do not allow
them to perform a function helps troubleshooting and can also be
helpful when investigating security events.

Account
Lifecy-
cle

Account
creation/deletion/update

Adding, removing or changing accounts are often the first steps
an attacker performs when entering a system.

Pass-
word/Key
Events

Password changed, expired,
reset. Key expired, changed,
reset.

If your application takes on the responsibility of storing a user’s
password (instead of using centralized LDAP/persona) it is
important to note changes to a users credentials or crypto keys.

Account
Activa-
tions

Account lock, unlock, disable,
enable

If your application locks out users after failed login attempts or
allows for accounts to be inactivated, logging these events can
assist in troubleshooting access issues.

Applica-
tion
Excep-
tions

Invalid input, fatal errors, known
bad things

If your application catches errors like invalid input attempts on
web forms, failures of key components, etc creating a log record
when these events occur can help in troubleshooting and tracking
security patterns across applications. Full stack traces should be
avoided however as the signal to noise ratio is often
overwhelming.
It is also preferable to send a single event rather than a multitude
of events if it is possible for your application to correlate a
significant exception.
For example, some systems are notorious for sending a
connection event with source IP, then sending an authentication
event with a session ID then later sending an event for invalid
input that doesn’t include source IP or session ID or username.
Correctly correlating these events across time is much more
difficult than just logging all pieces of information if it is
available.

4.3 JSON format

This section describes the structure JSON objects to be sent to MozDef. Using this standard ensures developers,
admins, etc are configuring their application or system to be easily integrated into MozDef.

4.3.1 Background

Mozilla used CEF as a logging standard for compatibility with Arcsight and for standardization across systems. While
CEF is an admirable standard, MozDef prefers JSON logging for the following reasons:

• Every development language can create a JSON structure

• JSON is easily parsed by computers/programs which are the primary consumer of logs

14 Chapter 4. Usage

MozDef Documentation, Release 0.0.1

• CEF is primarily used by Arcsight and rarely seen outside that platform and doesn’t offer the extensibility of
JSON

• A wide variety of log shippers (heka, logstash, fluentd, nxlog, beaver) are readily available to meet almost any
need to transport logs as JSON.

• JSON is already the standard for cloud platforms like amazon’s cloudtrail logging

4.3.2 Description

As there is no common RFC-style standard for json logs, we prefer the following structure adapted from a combination
of the graylog GELF and logstash specifications.

Note all fields are lowercase to avoid one program sending sourceIP, another sending sourceIp, another sending Sour-
ceIPAddress, etc. Since the backend for MozDef is elasticsearch and fields are case-sensitive this will allow for easy
compatibility and reduce potential confusion for those attempting to use the data. MozDef will perform some transla-
tion of fields to a common schema but this is intended to allow the use of heka, nxlog, beaver and retain compatible
logs.

4.3.3 Mandatory Fields

Field Purpose Sample Value
cat-
e-
gory

General category/type of event matching the ‘what should I
log’ section below

Authentication, Authorization, Account
Creation, Shutdown, Startup, Account
Deletion, Account Unlock, brointel,
bronotice

de-
tails

Additional, event-specific fields that you would like
included with the event. Please completely spell out a field
rather an abbreviate: i.e. sourceipaddress instead of srcip.

“dn”: “john@example.com,o=com,
dc=example”, “facility”: “daemon”

host-
name

The fully qualified domain name of the host sending the
message

server1.example.com

pro-
ces-
sid

The PID of the process sending the log 1234

pro-
cess-
name

The name of the process sending the log myprogram.py

sever-
ity

RFC5424 severity level of the event in all caps: DEBUG,
INFO, NOTICE, WARNING, ERROR, CRITICAL,
ALERT, EMERGENCY

INFO

source Source of the event (file name, system name, component
name)

/var/log/syslog/2014.01.02.log

sum-
mary

Short human-readable version of the event suitable for
IRC, SMS, etc.

john login attempts over threshold, account
locked

tags An array or list of any tags you would like applied to the
event

vpn, audit
nsm,bro,intel

times-
tamp

Full date plus time timestamp of the event in ISO format
including the timezone offset

2014-01-30T19:24:43+00:00

4.3. JSON format 15

mailto:john@example.com

MozDef Documentation, Release 0.0.1

4.3.4 Details substructure (optional fields)

Field Purpose Used In Sample Value
desti-
nation-
ipad-
dress

Destination IP of a
network flow

NSM/Bro/Intel8.8.8.8

desti-
nation-
port

Destination port of a
network flow

NSM/Bro/Intel80

dn Distinguished Name in
LDAP, mean unique ID
in the ldap hierarchy

event/ldap john@example.org,o=org, dc=example

filedesc NSM/Bro/Intel
filemime-
type

NSM/Bro/Intel

fuid NSM/Bro/Intel
result Result of an event,

success or failure
event/ldap LDAP_SUCCESS

seenindi-
cator

Intel indicator that
matched as seen by our
system

NSM/Bro/Intelevil.com/setup.exe

seenindi-
ca-
tor_type

Type of intel indicator NSM/Bro/IntelHTTP::IN_URL

seen-
where

Where the intel indicator
matched (which
protocol, which field)

NSM/Bro/IntelIntel::URL

source Source of the connection event/ldap Mar 19 15:36:25 ldap1 slapd[31031]: conn=6633594 fd=49
ACCEPT from IP=10.54.70.109:23957 (IP=0.0.0.0:389)
Mar 19 15:36:25 ldap1 slapd[31031]: conn=6633594 op=0
BIND

sour-
ceipad-
dress

Source IP of a network
flow

NSM/Bro/Intel
event/ldap

8.8.8.8

source-
port

Source port of a network
flow

NSM/Bro/Intel42297

sources Source feed NSM/Bro/IntelCIF - need-to-know
success Auth success event/ldap True
uid Bro connection uid NSM/Bro/IntelCZqhEs40odso1tFNx3

4.3.5 Examples

{
"timestamp": "2014-02-14T11:48:19.035762739-05:00",
"hostname": "fedbox",
"processname": "/tmp/go-build278925522/command-line-arguments/_obj/exe/log_json",
"processid": 3380,
"severity": "INFO",
"summary": "joe login failed",
"category": "authentication",
"source": "",
"tags": [

16 Chapter 4. Usage

mailto:john@example.org

MozDef Documentation, Release 0.0.1

"MySystem",
"Authentication"

],
"details": {

"user": "joe",
"task": "access to admin page /admin_secret_radioactiv",
"result": "10 authentication failures in a row"

}
}

4.3. JSON format 17

MozDef Documentation, Release 0.0.1

18 Chapter 4. Usage

CHAPTER 5

Advanced Settings

19

MozDef Documentation, Release 0.0.1

20 Chapter 5. Advanced Settings

CHAPTER 6

Public API

21

MozDef Documentation, Release 0.0.1

22 Chapter 6. Public API

CHAPTER 7

Code

23

MozDef Documentation, Release 0.0.1

24 Chapter 7. Code

CHAPTER 8

Benchmarking

Performance is important for a SIEM because it’s where you want to see and analyze all your security events.

You probably want it to handle a lot of new messages per second, be able to have a fast reply when you search and have
fast correlation. Therefore, we provide some benchmarking scripts for MozDef to help you determine the performance
of your setup.

8.1 Elasticsearch

Elasticsearch is the main backend component of MozDef. We strongly recommend you to have a 3+ nodes cluster to
allow recovery and load balancing. During our tests, Elasticsearch recovered well after being hit too much.

The scripts for Elasticsearch benchmarking are in benchmarking/es/. They use nodejs to allow asynchronous HTTP
requests.

8.1.1 insert_simple.js

insert_simple.js sends indexing requests with 1 log/request.

Usage: node ./insert_simple.js <processes> <totalInserts> <host1> [host2] [host3] [...]

• processes: Number of processes to spawn

• totalInserts: Number of inserts to perform, please note after a certain number node will slow down. You want
to have a lower number if you are in this case.

• host1, host2, host3, etc: Elasticsearch hosts to which you want to send the HTTP requests

8.1.2 insert_bulk.js

insert_bulk.js sends bulk indexing requests (several logs/request).

Usage: node ./insert_bulk.js <processes> <insertsPerQuery> <totalInserts> <host1> [host2] [host3] [...]

• processes: Number of processes to spawn

• insertsPerQuery: Number of logs per request

• totalInserts: Number of inserts to perform, please note after a certain number node will slow down. You want
to have a lower number if you are in this case.

• host1, host2, host3, etc: Elasticsearch hosts to which you want to send the HTTP requests

25

http://nodejs.org/

MozDef Documentation, Release 0.0.1

8.1.3 search_all_fulltext.js

search_all_fulltext.js performs search on all indices, all fields in fulltext. It’s very stupid.

Usage: node ./search_all_fulltext.js <processes> <totalSearches> <host1> [host2] [host3] [...]

• processes: Number of processes to spawn

• totalSearches: Number of search requests to perform, please note after a certain number node will slow down.
You want to have a lower number if you are in this case.

• host1, host2, host3, etc: Elasticsearch hosts to which you want to send the HTTP requests

26 Chapter 8. Benchmarking

CHAPTER 9

Contributors

Here is the list of the awesome contributors helping us or that have helped us in the past:

• Yohann Lepage (@2xyo) yohann INSERTAT lepage INSERTPOINT info (docker configuration)

27

MozDef Documentation, Release 0.0.1

28 Chapter 9. Contributors

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

29

MozDef Documentation, Release 0.0.1

30 Chapter 10. Indices and tables

CHAPTER 11

License

license

31

MozDef Documentation, Release 0.0.1

32 Chapter 11. License

CHAPTER 12

Contact

• opsec INSERTAT mozilla.com

• Jeff Bryner, jbryner INSERTAT mozilla.com @0x7eff

• Anthony Verez, averez INSERTAT mozilla.com @netantho

33

	Overview
	Why?
	Goals
	Architecture
	Status
	Roadmap

	Introduction
	Concept of operations

	Installation
	Docker
	Elasticsearch nodes
	Web and Workers nodes

	Usage
	Web Interface
	Sending logs to MozDef
	JSON format

	Advanced Settings
	Public API
	Code
	Benchmarking
	Elasticsearch

	Contributors
	Indices and tables
	License
	Contact

