
mosquittoChat Documentation
Release 1.1.0

Anirban Roy Das

Sep 27, 2017

Contents

1 Details 3

2 Documentation: 5
2.1 Overview . 5
2.2 Features . 5
2.3 Installation . 6
2.4 CI Setup . 8
2.5 Usage . 9
2.6 API . 11
2.7 Testing . 18

3 Indices and tables 21

Python Module Index 23

i

ii

mosquittoChat Documentation, Release 1.1.0

An MQTT protocol based Chat-Server/Chat-System using Mosquitto Broker, tornado as web server, sockjs in
client(browser) side javascript library, sockjs-tornado as sockjs implementation on server side and paho-mqtt (mqtt
python client).

Home Page : https://pypi.python.org/pypi/mosquittoChat

Contents 1

https://pypi.python.org/pypi/mosquittoChat

mosquittoChat Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Details

Author Anirban Roy Das

Email anirban.nick@gmail.com

Copyright(C) 2017, Anirban Roy Das <anirban.nick@gmail.com>

Check mosquittoChat/LICENSE file for full Copyright notice.

3

mailto:anirban.nick@gmail.com
mailto:anirban.nick@gmail.com

mosquittoChat Documentation, Release 1.1.0

4 Chapter 1. Details

CHAPTER 2

Documentation:

Overview

mosquittochat is an MQTT protocol based simple Chat Server which can be set up locally to chat in your LAN. It
supports both Public Chat among all participants connected simultaneously at a particular time and also Private
Chat betweent those individual participants.

It uses the MQTT protocol to implement the real time message passing system. MQTT is implemented in many
languages and in many softwares, one of such is Mosquitto , which is a message broker implementing the MQTT
protocol.

The connection is created using the sockjs protocol. SockJS is implemented in many languages, primarily in Javascript
to talk to the servers in real time, which tries to create a duplex bi-directional connection between the Client(browser)
and the Server. Ther server should also implement the sockjs protocol. Thus using the sockjs-tornado library which
exposes the sockjs protocol in Tornado server.

It first tries to create a Websocket connection, and if it fails then it fallbacks to other transport mechanisms, such
as Ajax, long polling, etc. After the connection is established, the tornado server**(sockjs-tornado)** connects to
Mosquitto via MQTT protocol using the MQTT Python Client Library, paho-mqtt.

Thus the connection is web-browser to tornado to mosquitto and vice versa.

Features

Technical Specs

sockjs-client Advanced Websocket Javascript Client

Tornado Async Python Web Library + Web Server

sockjs-tornado SockJS websocket server implementation for Tornado

MQTT Machine-to-Machine (M2M)/”Internet of Things” connectivity protocol

5

https://www.mqtt.org/
https://www.mosquitto.org/
https://www.mqtt.org/
https://github.com/sockjs/sockjs-client
https://github.com/MrJoes/sockjs-tornado
http://www.tornadoweb.org/
https://en.wikipedia.org/wiki/WebSocket
https://pypi.python.org/pypi/paho-mqtt/

mosquittoChat Documentation, Release 1.1.0

paho-mqtt MQTT Python Client Library

Mosquitto A Message Broker implementing MQTT in C

pytest Python testing library and test runner with awesome test discobery

pytest-flask Pytest plugin for flask apps, to test fask apps using pytest library.

Uber’s Test-Double Test Double library for python, a good alternative to the mock library

Jenkins (Optional) A Self-hosted CI server

Travis-CI (Optional) A hosted CI server free for open-source projecs

Docker A containerization tool for better devops

Feature Specs

• Public chat

• Shows who joined and who left

• Shows list of users online/offline

• Show last seen of offline features

• Shows who is typing and who is not - typing indicator

• Shows number of people online in public chat

• Join/Leave chat room features

• Microservice

• Testing using Docker and Docker Compose

• CI servers like Jenkins, Travis-CI

Installation

There are two types of Installation. One using mosquittoChat as a binary by installaing from pip and running the
application in the local machine directly. Another method is running the application from Docker. Hence another set
of installation steps for the Docker use case.

[Docker Method] Prerequisite (Optional)

To safegurad secret and confidential data leakage via your git commits to public github repo, check git-secrets.

This git secrets project helps in preventing secrete leakage by mistake.

[Docker Method] Dependencies

1. Docker

2. Make (Makefile)

See, there are so many technologies used mentioned in the tech specs and yet the dependencies are just two. This is
the power of Docker.

6 Chapter 2. Documentation:

https://github.com/testing-cabal/mock
https://github.com/awslabs/git-secrets

mosquittoChat Documentation, Release 1.1.0

[Docker Method] Install

• Step 1 - Install Docker

Follow my another github project, where everything related to DevOps and scripts are mentioned along with
setting up a development environemt to use Docker is mentioned.

– Project: https://github.com/anirbanroydas/DevOps

– Go to setup directory and follow the setup instructions for your own platform, linux/macos

• Step 2 - Install Make

(Mac Os)
$ brew install automake

(Ubuntu)
$ sudo apt-get update
$ sudo apt-get install make

• Step 3 - Install Dependencies

Install the following dependencies on your local development machine which will be used in various scripts.

1. openssl

2. ssh-keygen

3. openssh

[Standalone Binary Method] Prerequisites

1. python 2.7+

2. tornado

3. sockjs-tornado

4. sockjs-client

5. paho-mqtt

6. mosquitto

[Standalone Binary Method] Install

$ pip install mosquittoChat

If above dependencies do not get installed by the above command, then use the below steps to install them one by one.

Step 1 - Install pip

Follow the below methods for installing pip. One of them may help you to install pip in your system.

• Method 1 - https://pip.pypa.io/en/stable/installing/

• Method 2 - http://ask.xmodulo.com/install-pip-linux.html

• Method 3 - If you installed python on MAC OS X via brew install python, then pip is
already installed along with python.

Step 2 - Install tornado

2.3. Installation 7

https://github.com/anirbanroydas/DevOps
https://pip.pypa.io/en/stable/installing/
http://ask.xmodulo.com/install-pip-linux.html

mosquittoChat Documentation, Release 1.1.0

$ pip install tornado

Step 3 - Install sockjs-tornado

$ pip install sockjs-tornado

Step 4 - Install paho-mqtt

$ pip install paho-mqtt

Step 5 - Install Mosquitto

• For Mac Users

1. Brew Install Mosquitto

$ brew install mosquitto

2. Configure mosquitto, by modifying the file at /usr/local/etc/mosquitto/
mosquitto.conf.

• For Ubuntu/Linux Users

1. Enable mosquitto repository (optional)

First Try directly, if it doesn’t work, then follow this step and continue after this.:

$ sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa

2. Update the sources with our new addition from above

$ apt-get update

3. And finally, download and install Mosquitto

$ sudo apt-get install mosquitto

4. Configure mosquitto, by modifying the file at /usr/local/etc/mosquitto/
mosquitto.conf.

CI Setup

If you are using the project in a CI setup (like travis, jenkins), then, on every push to github, you can set up your travis
build or jenkins pipeline. Travis will use the .travis.yml file and Jenknis will use the Jenkinsfile to do their
jobs. Now, in case you are using Travis, then run the Travis specific setup commands and for Jenkins run the Jenkins
specific setup commands first. You can also use both to compare between there performance.

The setup keys read the values from a .env file which has all the environment variables exported. But you will notice
an example env file and not a .env file. Make sure to copy the env file to .env and change/modify the actual
variables with your real values.

The .env files are not commited to git since they are mentioned in the .gitignore file to prevent any leakage of
confidential data.

After you run the setup commands, you will be presented with a number of secure keys. Copy those to your config
files before proceeding.

8 Chapter 2. Documentation:

mosquittoChat Documentation, Release 1.1.0

NOTE: This is a one time setup. NOTE: Check the setup scripts inside the scripts/ directory to understand what
are the environment variables whose encrypted keys are provided. NOTE: Don’t forget to Copy the secure keys to
your .travis.yml or Jenkinsfile

NOTE: If you don’t want to do the copy of env to .env file and change the variable values in .env with your real
values then you can just edit the travis-setup.sh or jenknis-setup.sh script and update the values their
directly. The scripts are in the scripts/ project level directory.

IMPORTANT: You have to run the travis-setup.sh script or the jenkins-setup.sh script in your local
machine before deploying to remote server.

Travis Setup

These steps will encrypt your environment variables to secure your confidential data like api keys, docker based keys,
deploy specific keys.

$ make travis-setup

Jenkins Setup

These steps will encrypt your environment variables to secure your confidential data like api keys, docker based keys,
deploy specific keys.

$ make jenkins-setup

Usage

There are two types of Usage. One using mosquittoChat as a binary by installaing from pip and running the application
in the local machine directly. Another method is running the application from Docker. Hence another set of usage
steps for the Docker use case.

[Docker Method]

After having installed the above dependencies, and ran the Optional (If not using any CI Server) or Required (If using
any CI Server) CI Setup Step, then just run the following commands to use it:

You can run and test the app in your local development machine or you can run and test directly in a remote machine.
You can also run and test in a production environment.

[Docker Method] Run

The below commands will start everythin in development environment. To start in a production environment, suffix
-prod to every make command.

For example, if the normal command is make start, then for production environment, use make start-prod.
Do this modification to each command you want to run in production environment.

Exceptions: You cannot use the above method for test commands, test commands are same for every environment.
Also the make system-prune command is standalone with no production specific variation (Remains same in all
environments).

2.5. Usage 9

mosquittoChat Documentation, Release 1.1.0

• Start Applcation

$ make clean
$ make build
$ make start

OR

$ docker-compose up -d

• Stop Application

$ make stop

OR

$ docker-compose stop

• Remove and Clean Application

$ make clean

OR

$ docker-compose rm --force -v
$ echo "y" | docker system prune

• Clean System

$ make system-prune

OR

$ echo "y" | docker system prune

[Docker Method] Logging

• To check the whole application Logs

$ make check-logs

OR

$ docker-compose logs --follow --tail=10

• To check just the python app’s logs

$ make check-logs-app

OR

$ docker-compose logs --follow --tail=10 identidock

[Standalone Binary Method] Run

After having installed mosquittoChat, just run the following commands to use it:

10 Chapter 2. Documentation:

mosquittoChat Documentation, Release 1.1.0

Mosquitto Server

1. For Mac Users

start normally
$ mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf

If you want to run in background
$ mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf -d

start using brew services (doesn't work with tmux, athough there is a fix,
→˓mentioned in one of the pull requests and issues)
$ brew services start mosquitto

2. For Ubuntu/LInux Users

start normally
$ mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf

If you want to run in background
$ mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf -d

To start using service
$ sudo service mosquitto start

To stop using service
$ sudo service mosquitto stop

To restart using service
$ sudo service mosquitto restart

To check the status
$ service mosquitto status

mosquittoChat Application

1. Start Server

$ mosquittoChat [options]

2. Options

–port Port number where the chat server will start

• Example

$ mosquittoChat --port=9191

3. Stop mosquittoChat Server

Click Ctrl+C to stop the server.

API

This contains all the modules and classes used to make the app. You can go through each of them for better under-
standing of the project.

2.6. API 11

mosquittoChat Documentation, Release 1.1.0

Main View

This is the main view module which manages main tornado connections. This module provides request handlers for
managing simple HTTP requests as well as Websocket requests.

Although the websocket requests are actually sockJs requests which follows the sockjs protcol, thus it provide interface
to sockjs connection handlers behind the scene.

IndexHandler

class mosquittoChat.apps.main.views.IndexHandler(application, request, **kwargs)
This handler is a basic regular HTTP handler to serve the chatroom page.

get()
This method is called when a client does a simple GET request, all other HTTP requests like POST, PUT,
DELETE, etc are ignored.

Returns Returns the rendered main requested page, in this case its the chat page, index.html

__module__ = ‘mosquittoChat.apps.main.views’

ChatWebsocketHandler

class mosquittoChat.apps.main.views.ChatWebsocketHandler(session)
Websocket Handler implementing the sockjs Connection Class which will handle the websocket/sockjs connec-
tions.

on_open(info)
This method is called when a websocket/sockjs connection is opened for the first time.

Parameters

• self – The object

• info – The information

Returns It returns the websocket object

on_message(message)
This method is called when a message is received via the websocket/sockjs connection created initially.

Parameters

• self – The object

• message (json string) – The message received via the connection.

on_close()
This method is called when a websocket/sockjs connection is closed.

Parameters self – The object

Returns Doesn’t return anything, except a confirmation of closed connection back to web app.

__module__ = ‘mosquittoChat.apps.main.views’

12 Chapter 2. Documentation:

mosquittoChat Documentation, Release 1.1.0

PubSub Module

The pubsub module provides interface for the mosquitto client.

It provides classes to create mqtt clients vai paho-mqtt library to connect to mosquitto broker server, interact with
and publish/subscribe to mosquitto via creating topics, methods to publish, subscribe/consume, stop consuming, start
publishing, start connection, stop connection, acknowledge delivery by publisher, acknowledge receiving of messages
by consumers and also add callbacks for various other events.

MosquittoClient

class mosquittoChat.apps.mosquitto.pubsub.MosquittoClient(participants=1,
name=’user’,
clientid=None,
clean_session=True,
userdata=None,
host=’localhost’,
port=1883, keepalive=60,
bind_address=’‘, user-
name=’guest’, pass-
word=’guest’)

This is a Mosquitto Client class that will create an interface to connect to mosquitto by creating mqtt clients.

It provides methods for connecting, diconnecting, publishing, subscribing, unsubscribing and also callbacks
related to many different events like on_connect, on_message, on_publish, on_subscribe, on_unsubcribe,
on_disconnect.

__init__(participants=1, name=’user’, clientid=None, clean_session=True, userdata=None,
host=’localhost’, port=1883, keepalive=60, bind_address=’‘, username=’guest’, pass-
word=’guest’)

Create a new instance of the MosquittoClient class, passing in the client informaation, host, port, keepalive
parameters.

Parameters

• participants (int) – number of participants available presently

• name (string) – name of client trying to connect to msoquitto

• clientid (string) – unique client id for a client-broker connection

• clean_session (bool) – whether to keep persistant connecion or not

• userdata (user defined data (can be int, string, or any
object)) – user defined data of any type that is passed as the userdata parameter
to callbacks. It may be updated at a later point with the user_data_set() function.

• host (string) – the hostname or IP address of the remote broker

• port (int) – the network port of the server host to connect to. Defaults to 1883. Note
that the default port for MQTT over SSL/TLS is 8883 so if you are using tls_set() the port
may need providing manually

• keepalive (int) – maximum period in seconds allowed between communications with
the broker. If no other messages are being exchanged, this controls the rate at which the
client will send ping messages to the broker

• bind_address (string) – the IP address of a local network interface to bind this
client to, assuming multiple interfaces exist

• username (string) – username for authentication

2.6. API 13

mosquittoChat Documentation, Release 1.1.0

• password (string) – password for authentication

_genid()
Method that generates unique clientids by calling base64.urlsafe_b64encode(os.urandom(32)).replace(‘=’,
‘e’).

Returns Returns a unique urlsafe id

Return type string

start()
Method to start the mosquitto client by initiating a connection to mosquitto broker by using the connect
method and staring the network loop.

setup_connection()
Method to setup the extra options like username,password, will set, tls_set etc before starting the connec-
tion.

create_client()
Method to create the paho-mqtt Client object which will be used to connect to mosquitto.

Returns Returns a mosquitto mqtt client object

Return type paho.mqtt.client.Client

setup_callbacks()
Method to setup all callbacks related to the connection, like on_connect, on_disconnect, on_publish,
on_subscribe, on_unsubcribe etc.

connect()
This method connects to Mosquitto via returning the connection return code.

When the connection is established, the on_connect callback will be invoked by paho-mqtt.

Returns Returns a mosquitto mqtt connection return code, success, failure, error, etc

Return type int

on_connect(client, userdata, flags, rc)
This is a Callback method and is called when the broker responds to our connection request.

Parameters

• client – the client instance for this callback

• userdata – the private user data as set in Client() or userdata_set()

• flags (dict) – response flags sent by the broker

• rc (int) – the connection result

flags is a dict that contains response flags from the broker:

flags[’session present’] - this flag is useful for clients that are using clean session set to 0 only. If a client
with clean session=0, that reconnects to a broker that it has previously connected to, this flag indicates
whether the broker still has the session information for the client. If 1, the session still exists.

The value of rc indicates success or not:

0: Connection successful 1: Connection refused - incorrect protocol version 2: Connection refused -
invalid client identifier 3: Connection refused - server unavailable 4: Connection refused - bad username
or password 5: Connection refused - not authorised 6-255: Currently unused.

start_ioloop()
Method to start ioloop for paho-mqtt mosquitto clients so that it can process read/write events for the
sockets.

14 Chapter 2. Documentation:

mosquittoChat Documentation, Release 1.1.0

Using tornado’s ioloop, since if we use any of the loop*() function provided by phao-mqtt library, it will
either block the entire tornado thread, or it will keep on creating separate thread for each client if we use
loop_start() fucntion.

We don’t want to block thread or to create so many threads unnecessarily given python GIL.

Since the separate threads calls the loop() function indefinitely, and since its doing network io, its possible it
may release GIL, but I haven’t checked that yet, if that is the case, we can very well use loop_start().Pattern

But for now we will add handlers to tornado’s ioloop().

stop_ioloop()
Method to stop ioloop for paho-mqtt mosquitto clients so that it cannot process any more read/write events
for the sockets.

Actually the paho-mqtt mosquitto socket has been closed, so bascially this method removed the tornaod
ioloop handler for this socket.

_events_handler(fd, events)
Handle IO/Event loop events, processing them.

Parameters

• fd (int) – The file descriptor for the events

• events (int) – Events from the IO/Event loop

start_schedular()
This method calls Tornado’s PeriodicCallback to schedule a callback every few seconds, which calls paho
mqtt client’s loop_misc() function which keeps the connection open by checking for keepalive value and
by keep sending pingreq and pingresp to moqsuitto broker.

stop_schedular()
This method calls stops the tornado’s periodicCallback Schedular loop.

disconnect()
Method to disconnect the mqqt connection with mosquitto broker.

on_disconnect callback is called as a result of this method call.

on_disconnect(client, userdata, rc)
This is a Callback method and is called when the client disconnects from the broker.

subscribe(topic_list=None)
This method sets up the mqtt client to start subscribing to topics by accepting a list of tuples of topic and
qos pairs.

The on_subscribe method is called as a callback if subscribing is succesfull or if it unsuccessfull, the broker
returng the suback frame.

:param :topic_list: a tuple of (topic, qos), or, a list of tuple of format (topic, qos). :type :topic_list: list or
tuple

on_subscribe(client, userdata, mid, granted_qos)
This is a Callback method and is called when the broker responds to a subscribe request.

The mid variable matches the mid variable returned from the corresponding subscribe() call. The
granted_qos variable is a list of integers that give the QoS level the broker has granted for each of the
different subscription requests.

Parameters

• client – the client which subscribed which triggered this callback

• userdata – the userdata associated with the client during its creation

2.6. API 15

mosquittoChat Documentation, Release 1.1.0

• mid (int) – the message id value returned by the broker

• granted_qos (list) – list of integers that give the QoS level the broker has granted
for each of the different subscription requests

addNewMqttMosquittoClient()
Method called after new mqtt connection is established and the client has started subsribing to atleast some
topics, called by on_subscribe callback.

sendMsgToWebsocket(msg)
Method to send message to associated websocket.

Parameters msg (string, unicode or json encoded string or a dict) –
the message to be sent to the websocket

unsubscribe(topic_list=None)
This method sets up the mqtt client to unsubscribe to topics by accepting topics as string or list.

The on_unsubscribe method is called as a callback if unsubscribing is succesfull or if it unsuccessfull.

Parameters topic_list (list of strings(topics)) – The topics to be unsub-
scribed from

on_unsubscribe(client, userdata, mid)
This is a Callback method and is called when the broker responds to an unsubscribe request. The mid
variable matches the mid variable returned from t he corresponding unsubscribe() call.

Parameters

• client – the client which initiated unsubscribed

• userdata – the userdata associated with the client

• mid (int) – the message id value sent by the broker of the unsubscribe call.

publish(topic, msg=None, qos=2, retain=False)
If the class is not stopping, publish a message to MosquittoClient.

on_publish callback is called after broker confirms the published message.

Parameters

• topic (string) – The topic the message is to published to

• msg (string) – Message to be published to broker

• qos (int (0, 1 or 2)) – the qos of publishing message

• retain (bool) – Should the message be retained or not

on_publish(client, userdata, mid)
This is a Callback method and is called when a message that was to be sent using the publish() call
has completed transmission to the broker. For messages with QoS levels 1 and 2, this means that the
appropriate handshakes have completed.

For QoS 0, this simply means that the message has left the client. The mid variable matches the mid
variable returned from the corresponding publish() call, to allow outgoing messages to be tracked.

This callback is important because even if the publish() call returns success, it does not always mean that
the message has been sent.

Parameters

• client – the client who initiated the publish method

• userdata – the userdata associated with the client during its creation

16 Chapter 2. Documentation:

mosquittoChat Documentation, Release 1.1.0

• mid (int) – the message id sent by the broker

on_private_message(client, userdata, msg)
This is a Callback method and is called when a message has been received on a topic [private/cientid/msgs]
that the client subscribes to.

Parameters

• client – the client who initiated the publish method

• userdata – the userdata associated with the client during its creation

• msg – the message sent by the broker

on_private_status(client, userdata, msg)
This is a Callback method and is called when a message has been received on a topic [private/cientid/status]
that the client subscribes to.

Parameters

• client – the client who initiated the publish method

• userdata – the userdata associated with the client during its creation

• msg – the message sent by the broker

on_public_message(client, userdata, msg)
This is a Callback method and is called when a message has been received on a topic [public/msgs] that
the client subscribes to.

Parameters

• client – the client who initiated the publish method

• userdata – the userdata associated with the client during its creation

• msg – the message sent by the broker

send_offline_status()
Method is called when the mqtt client’s corresponding websocket is closed. This method will send the
subcribing clients to its private status an offline status message.

delMqttMosquittoClient()
Method called after an mqtt clinet unsubsribes to atleast some topics, called by on_subscribe callback.

Returns Returns update mqqt clients active

Return type dict with update count

stop()
Cleanly shutdown the connection to Mosquitto by disconnecting the mqtt client.

When mosquitto confirms disconection, on_disconnect callback will be called.

__dict__ = dict_proxy({‘__module__’: ‘mosquittoChat.apps.mosquitto.pubsub’, ‘create_client’: <function create_client>, ‘setup_connection’: <function setup_connection>, ‘on_publish’: <function on_publish>, ‘stop’: <function stop>, ‘stop_ioloop’: <function stop_ioloop>, ‘on_subscribe’: <function on_subscribe>, ‘subscribe’: <function subscribe>, ‘unsubscribe’: <function unsubscribe>, ‘connect’: <function connect>, ‘__dict__’: <attribute ‘__dict__’ of ‘MosquittoClient’ objects>, ‘__weakref__’: <attribute ‘__weakref__’ of ‘MosquittoClient’ objects>, ‘__init__’: <function __init__>, ‘addNewMqttMosquittoClient’: <function addNewMqttMosquittoClient>, ‘sendMsgToWebsocket’: <function sendMsgToWebsocket>, ‘on_disconnect’: <function on_disconnect>, ‘send_offline_status’: <function send_offline_status>, ‘disconnect’: <function disconnect>, ‘setup_callbacks’: <function setup_callbacks>, ‘stop_schedular’: <function stop_schedular>, ‘start’: <function start>, ‘on_public_message’: <function on_public_message>, ‘on_private_message’: <function on_private_message>, ‘on_connect’: <function on_connect>, ‘__doc__’: ‘\n This is a Mosquitto Client class that will create an interface to connect to mosquitto\n by creating mqtt clients.\n\n It provides methods for connecting, diconnecting, publishing, subscribing, unsubscribing and \n also callbacks related to many different events like on_connect, on_message, on_publish, on_subscribe,\n on_unsubcribe, on_disconnect.\n\n ‘, ‘_genid’: <function _genid>, ‘start_ioloop’: <function start_ioloop>, ‘delMqttMosquittoClient’: <function delMqttMosquittoClient>, ‘on_unsubscribe’: <function on_unsubscribe>, ‘start_schedular’: <function start_schedular>, ‘_events_handler’: <function _events_handler>, ‘on_private_status’: <function on_private_status>, ‘publish’: <function publish>})

__module__ = ‘mosquittoChat.apps.mosquitto.pubsub’

__weakref__
list of weak references to the object (if defined)

2.6. API 17

mosquittoChat Documentation, Release 1.1.0

Testing

NOTE: Testing is only done using the Docker Method. anyway, it should not matter whether you run your application
using the Docker Method or the Standalone Method. Testing is independent of it.

Now, testing is the main deal of the project. You can test in many ways, namely, using make commands as mentioned
in the below commands, which automates everything and you don’t have to know anything else, like what test library
or framework is being used, how the tests are happening, either directly or via docker containers, or may be different
virtual environments using tox. Nothing is required to be known.

On the other hand if you want fine control over the tests, then you can run them directly, either by using pytest
commands, or via tox commands to run them in different python environments or by using docker-compose
commands to run differetn tests.

But running the make commands is lawasy the go to strategy and reccomended approach for this project.

NOTE: Tox can be used directly, where docker containers will not be used. Although we can try to run tox inside
our test contianers that we are using for running the tests using the make commands, but then we would have to
change the Dockerfile and install all the python dependencies like python2.7, python3.x and then run
tox commands from inside the docker containers which then run the pytest commands which we run now to
perform our tests inside the current test containers.

CAVEAT: The only caveat of using the make commands directly and not using tox is we are only testing the project
in a single python environment, nameley python 3.6.

• To Test everything

$ make test

Any Other method without using make will involve writing a lot of commands. So use the make command
preferrably

• To perform Unit Tests

$ make test-unit

• To perform Component Tests

$ make test-component

• To perform Contract Tests

$ make test-contract

• To perform Integration Tests

$ make test-integration

• To perform End To End (e2e) or System or UI Acceptance or Functional Tests

$ make test-e2e

OR

$ make test-system

OR

$ make test-ui-acceptance

18 Chapter 2. Documentation:

mosquittoChat Documentation, Release 1.1.0

OR

$ make test-functional

2.7. Testing 19

mosquittoChat Documentation, Release 1.1.0

20 Chapter 2. Documentation:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

21

mosquittoChat Documentation, Release 1.1.0

22 Chapter 3. Indices and tables

Python Module Index

m
mosquittoChat.apps.main.views, 12
mosquittoChat.apps.mosquitto.pubsub, 13

23

mosquittoChat Documentation, Release 1.1.0

24 Python Module Index

Index

Symbols
__dict__ (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient

attribute), 17
__init__() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient

method), 13
__module__ (mosquittoChat.apps.main.views.ChatWebsocketHandler

attribute), 12
__module__ (mosquittoChat.apps.main.views.IndexHandler

attribute), 12
__module__ (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient

attribute), 17
__weakref__ (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
attribute), 17

_events_handler() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

_genid() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

A
addNewMqttMosquittoClient() (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
method), 16

C
ChatWebsocketHandler (class in mosquit-

toChat.apps.main.views), 12
connect() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient

method), 14
create_client() (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

D
delMqttMosquittoClient() (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
method), 17

disconnect() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

G
get() (mosquittoChat.apps.main.views.IndexHandler

method), 12

I
IndexHandler (class in mosquittoChat.apps.main.views),

12

M
mosquittoChat.apps.main.views (module), 12
mosquittoChat.apps.mosquitto.pubsub (module), 13
MosquittoClient (class in mosquit-

toChat.apps.mosquitto.pubsub), 13

O
on_close() (mosquittoChat.apps.main.views.ChatWebsocketHandler

method), 12
on_connect() (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

on_disconnect() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

on_message() (mosquit-
toChat.apps.main.views.ChatWebsocketHandler
method), 12

on_open() (mosquittoChat.apps.main.views.ChatWebsocketHandler
method), 12

on_private_message() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 17

on_private_status() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 17

on_public_message() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 17

25

mosquittoChat Documentation, Release 1.1.0

on_publish() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient
method), 16

on_subscribe() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

on_unsubscribe() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 16

P
publish() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient

method), 16

S
send_offline_status() (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
method), 17

sendMsgToWebsocket() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 16

setup_callbacks() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

setup_connection() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

start() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

start_ioloop() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 14

start_schedular() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

stop() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient
method), 17

stop_ioloop() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

stop_schedular() (mosquit-
toChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

subscribe() (mosquittoChat.apps.mosquitto.pubsub.MosquittoClient
method), 15

U
unsubscribe() (mosquit-

toChat.apps.mosquitto.pubsub.MosquittoClient
method), 16

26 Index

	Details
	Documentation:
	Overview
	Features
	Installation
	CI Setup
	Usage
	API
	Testing

	Indices and tables
	Python Module Index

