
mirai Documentation
Release 0.1

Daniel Duckworth

June 22, 2014

Contents

1 Welcome to mirai 1

2 Documentation 3
2.1 Why mirai? . 3
2.2 Tutorial . 6
2.3 API . 9
2.4 Caveats . 18

Python Module Index 21

Python Module Index 23

i

ii

CHAPTER 1

Welcome to mirai

mirai is a multithreading library for Python that makes asynchronous computation a breeze. Built on
concurrent.futures and modeled after Twitter Futures, mirai helps you write modular, easy-to-read asyn-
chronous workflows without falling into callback hell.

What can mirai do for you? Here’s a demo for fetching the weather forecast for San Francisco with a 10 second
timeout,

from mirai import Promise
from pprint import pprint
import json
import requests

url = "http://api.openweathermap.org/data/2.5/forecast"
query = {"q": "San Francisco", "units": "imperial"}
result = (

Promise.call(lambda: requests.get(url, params=query))
.onsuccess(lambda response: pprint("Success!"))
.map(lambda response: json.loads(response.text))
.map(lambda weather: {
"status": "success",
"forecast": sorted([

{
"time" : f[’dt_txt’],
"weather" : f[’weather’][0][’description’],
"temp" : f[’main’][’temp’],

} for f in weather[’list’]
])

})
.within(10.0)
.handle(lambda e: {"status": "failure", "reason": unicode(e) })
.get()

)

pprint(result)

You can install the library with,

$ pip install mirai

1

http://twitter.github.io/scala_school/finagle.html#Future

mirai Documentation, Release 0.1

2 Chapter 1. Welcome to mirai

CHAPTER 2

Documentation

2.1 Why mirai?

Above all, mirai aims to make asynchronous code modular. The result of this is code that looks not unlike syn-
chronous code – perhaps even cleaner. I’ll illustrate with a simple example.

A common use case for multithreading is when your code is IO-bound. For example, the following code fetches a set
of webpages within a timeout, then ranks them according to fetch time.

1 import time
2

3 from mirai import Promise
4 import requests
5

6

7 def fetch(url):
8 start = time.time()
9 response = requests.get(url)

10 response.raise_for_status()
11 return (time.time() - start, url)
12

13

14 def fetch_within(url, timeout):
15 return (
16 Promise.call(fetch, url)
17 .within(timeout)
18 .handle(lambda e: (float(’inf’), url))
19)
20

21

22 def fetch_times(urls, timeout):
23 promises = [fetch_within(url, timeout) for url in urls]
24 return sorted(Promise.collect(promises).get())

In total, we have 24 lines. Notice that exception handling is done independent of time calculation, and that there’s no
need to think about locking or queues.

2.1.1 Why not threading?

threading is Python’s low-level library for multithreaded code. It’s extremely scant in its offering and requires
significant attention to locking, timing, and racing threads, obscuring the program’s actual intent. The following 48(!)
lines implement equivalent logic, employing a Queue to pass information between threads,

3

mirai Documentation, Release 0.1

1 from Queue import Queue
2 from threading import Thread, Timer, Lock
3 import time
4

5 import requests
6

7

8 class FetchThread(Thread):
9

10 def __init__(self, url, queue, timeout):
11 super(FetchThread, self).__init__()
12 self.url = url
13 self.queue = queue
14 self.timeout = timeout
15 self.lock = Lock()
16 self.submitted = False
17

18 def run(self):
19 timer = Timer(self.timeout, self._submit, args=(float(’inf’),))
20 timer.start()
21

22 start = time.time()
23 try:
24 response = requests.get(self.url)
25 response.raise_for_status()
26 self._submit(time.time() - start)
27 except Exception as e:
28 self._submit(float(’inf’))
29

30 def _submit(self, elapsed):
31 with self.lock:
32 if not self.submitted:
33 self.submitted = True
34 self.queue.put((elapsed, self.url))
35

36

37 def fetch_async(url, queue, timeout):
38 thread = FetchThread(url, queue, timeout)
39 thread.start()
40 return thread
41

42

43 def fetch_times(urls, timeout):
44 queue = Queue()
45 threads = [fetch_async(url, queue, timeout=timeout) for url in urls]
46 [thread.join() for thread in threads]
47

48 return sorted([queue.get() for url in urls])

2.1.2 Why not concurrent.futures?

concurrent.futures is the new asynchronous computation library added to Python’s standard library in version
3.2. While the library offers the same core benefits of mirai, it lacks the method-chaining additions that make working
with futures a breeze. The following 27 lines of code illustrate the same logic,

4 Chapter 2. Documentation

mirai Documentation, Release 0.1

1 from concurrent.futures import ThreadPoolExecutor, wait
2 import time
3

4 import requests
5

6

7 EXECUTOR = ThreadPoolExecutor(max_workers=10)
8

9 def fetch_sync(url):
10 start = time.time()
11 try:
12 response = requests.get(url)
13 response.raise_for_status()
14 return (time.time() - start, url)
15 except Exception as e:
16 return (float(’inf’), url)
17

18

19 def fetch_times(urls, timeout):
20 threads = [EXECUTOR.submit(fetch_sync, url) for url in urls]
21 complete, incomplete = wait(threads, timeout=timeout)
22 results = [future.result() for future in complete]
23 result_urls = set(r[1] for r in results)
24 for url in urls:
25 if url not in result_urls:
26 results.append((float(’inf’), url))
27 return sorted(results)

2.1.3 Why not multiprocessing?

multiprocessing and mirai actually achieve different things and actually have very little overlap. Whereas mirai
is designed to speed up IO-bound code, whereas multiprocessing is designed to speed up CPU-bound code. If the
latter sounds more like what you’re looking for, mirai cannot help you! as it still bound by the GIL. Instead, you
should take a look at multiprocessing, celery, or joblib.

2.1.4 Why not gevent?

gevent replaces Python’s default threads with “greenlets” managed by libev. The value in using gevent is that one
can generate thousands of greenlets and still maintain a performant asynchronous system. Used directly, gevent is not
dissimilar from concurrent.futures, but does require more work to compose results. The following 28 lines of code
illustrate.

1 from gevent.monkey import patch_all; patch_all()
2

3 import gevent
4 import time
5

6 import requests
7

8

9 def fetch_sync(url):
10 start = time.time()
11 try:
12 response = requests.get(url)
13 response.raise_for_status()

2.1. Why mirai? 5

http://42bits.wordpress.com/2010/10/24/python-global-interpreter-lock-gil-explained-pycon-tech-talk/
http://www.celeryproject.org/
http://pythonhosted.org//joblib/

mirai Documentation, Release 0.1

14 return (time.time() - start, url)
15 except Exception as e:
16 return (float(’inf’), url)
17

18

19 def fetch_times(urls, timeout):
20 threads = [gevent.spawn(fetch_sync, url) for url in urls]
21 gevent.joinall(threads, timeout=timeout)
22 results = []
23 for (url, thread) in zip(urls, threads):
24 try:
25 results.append(thread.get(timeout=0))
26 except gevent.Timeout:
27 results.append((float(’inf’), url))
28 return sorted(results)

“But gevent uses libev, which is way more scalable than any of the other alternatives, including mirai!” you might
say, but fear not – mirai (and threading and concurrent.futures) can use greenlets by monkey patching the standard
library at the start of your code. Simply put the following line at the top of your main script, before any other import
statements,

from gevent.monkey import patch_all; patch_all()

Now mirai has all the performance benefits of greenlets!

2.2 Tutorial

The primary benefit of working with mirai is the ability to write asynchronous code much the same way you already
write synchronous code. We’ll illustrate this by writing a simple web scraper, step-by-step, with and without mirai.

2.2.1 Fetching a Page

We begin with the most basic task for any web scraper – fetching a single web page. Rather than directly returning the
page’s contents, we’ll return a Success container indicating that our request went through successfully. Similarly,
we’ll return an Error container if the request failed.

Using a function urlget(), which returns a response if a request succeeds and raises an exception if a request fails,
we can start with the following two fetch functions,

from commons import *

def fetch_sync(url):
try:
response = urlget(url)
return Success(url, response)

except Exception as e:
return Error(url, e)

def fetch_async(url):
return (
Promise
.call (urlget, url)
.map (lambda response : Success(url, response))

6 Chapter 2. Documentation

mirai Documentation, Release 0.1

.handle(lambda error : Error (url, error))
)

2.2.2 Retrying on Failure

Sometimes, an fetch failure is simply transient; that is to say, if we simply retry we may be able to fetch the page.
Using recursion, let’s add an optional retries argument to our fetch functions,

from commons import *

def fetch_sync(url, retries=3):
try:
response = urlget(url)
return Success(url, response)

except Exception as e:
if retries > 0:

return fetch_sync(url, retries-1)
else:
return Error(url, e)

def fetch_async(url, retries=3):
return (
Promise
.call (urlget, url)
.map (lambda response : Success(url, response))
.rescue (lambda error :
fetch_async(url, retries-1)
if retries > 0
else Promise.value(Error(url, error))

)
)

2.2.3 Handling Timeouts

Another common concern is time – if a page takes too long to fetch, we may rather consider it a loss rather than wait
for it to finish downloading. Let’s construct a new container called Timeout that will indicate that a page took too
long to retrieve. We’ll give fetch a finish_by argument specifying when, in time, we want the function to return by.

You’ll notice that rather than telling the fetch functions how much time they have, we give them a deadline by which
they must finish. This is because relative durations become easily muddled in asynchronous code when functions are
called with a delay.

from commons import *

def fetch_sync(url, finish_by, retries=3):
remaining = finish_by - time.time()

if remaining <= 0:
return Timeout(url, None)

try:
response = urlget(url, finish_by)

2.2. Tutorial 7

mirai Documentation, Release 0.1

return Success(url, response)
except Exception as e:
if retries > 0:

return fetch_sync(url, finish_by, retries-1)
else:
if isinstance(e, requests.exceptions.Timeout):

return Timeout(url, e)
else:
return Error(url, e)

def fetch_async(url, finish_by, retries=3):
remaining = finish_by - time.time()

if remaining < 0:
return Promise.value(Timeout(url, None))

return (
Promise
.call (urlget, url, finish_by)
.map (lambda response : Success(url, response))
.rescue (lambda error :
fetch_async(url, finish_by, retries-1)
if retries > 0
else Promise.value(Timeout(url, error))

if isinstance(error, requests.exceptions.Timeout)
else Promise.value(Error(url, error))

)
)

2.2.4 Scraping Links

Finally, let’s complete our scraper by following each page’s links. To keep our code from running forever, we’ll only
follow links up to a fixed maximum depth. Moreover, we’ll add a finish_by to limit the amount of time until the
function returns.

This is where mirai‘s asynchronous nature really shines. While the synchronous version must fetch each page one
at a time, mirai makes it easy to fetch pages in parallel with minimal change to the source,

from commons import *
from tutorial04 import fetch_sync, fetch_async

def scrape_sync(url, finish_by, retries=3, maxdepth=0):
remaining = finish_by - time.time()
if remaining <= 0:
return [Timeout(url, None)]

elif maxdepth == 0:
return [fetch_sync(url, finish_by, retries)]

elif maxdepth < 0:
return []

else:
status = fetch_sync(url, finish_by, retries)
if isinstance(status, Success):

linkset = links(url, status.response.text)
children = [

scrape_sync(link, finish_by, retries, maxdepth-1)

8 Chapter 2. Documentation

mirai Documentation, Release 0.1

for link in linkset
]
return fu.cat([[status]] + children)

else:
return [status]

def scrape_async(url, finish_by, retries=3, maxdepth=0):
remaining = finish_by - time.time()
if remaining <= 0:
return Promise.value([Timeout(url, None)])

elif maxdepth == 0:
return (
fetch_async(url, finish_by, retries)
.map(lambda status: [status])

)
elif maxdepth < 0:
return Promise.value([])

else:
status = fetch_async(url, finish_by, retries)

children = (
status
.map(lambda status: \
links(url, status.response.text)
if isinstance(status, Success)
else []

)
.map(lambda linkset: [
scrape_async(link, finish_by, retries, maxdepth-1)
for link in linkset

])
.flatmap(Promise.collect)

)

return (
status.join_(children)
.map(lambda (status, children): [[status]] + children)
.map(fu.cat)

)

2.2.5 Wrapping Up

We now have a fully functional web scraper, capable of handling timeouts and retry-
ing on failure. To try this scraper out for yourself, download the code in the [tutorial
folder](https://github.com/duckworthd/mirai/tree/develop/docs/_tutorial) and see for yourself how mirai can
make your life easier!

2.3 API

This part of the documentation shows the full API reference of all public classes and functions.

2.3. API 9

https://github.com/duckworthd/mirai/tree/develop/docs/_tutorial

mirai Documentation, Release 0.1

2.3.1 Creating Promises

classmethod Promise.value(val)
Construct a Promise that is already resolved successfully to a value.

Parameters val : anything

Value to resolve new Promise to.

Returns result : Future

Future containing val as its value.

classmethod Promise.exception(exc)
Construct a Promise that has already failed with a given exception.

Parameters exc : Exception

Exception to fail new Promise with

Returns result : Future

New Promise that has already failed with the given exception.

classmethod Promise.call(fn, *args, **kwargs)
Call a function asynchronously and return a Promise with its result. If an exception is thrown inside fn, a new
exception type will be constructed inheriting both from MiraiError and the exception’s original type. The new
exception is the same the original, except that it also contains a context attribute detailing the stack at the time
the exception was thrown.

Parameters fn : function

Function to be called

*args : arguments

**kwargs : keyword arguments

Returns result : Future

Future containing the result of fn(*args, **kwargs) as its value or the exception thrown
as its exception.

classmethod Promise.wait(duration)
Construct a Promise that succeeds in duration seconds with value None.

Parameters duration : number

Number of seconds to wait before resolving a TimeoutError

Returns result : Future

Promise that will resolve in duration seconds with value None.

classmethod Promise.eval(fn, *args, **kwargs)
Call a function (synchronously) and return a Promise with its result. If an exception is thrown inside fn, a new
exception type will be constructed inheriting both from MiraiError and the exception’s original type. The new
exception is the same the original, except that it also contains a context string detailing the stack at the time the
exception was thrown.

Parameters fn : function

Function to be called

*args : arguments

**kwargs : keyword arguments

10 Chapter 2. Documentation

mirai Documentation, Release 0.1

Returns result : Future

Future containing the result of fn(*args, **kwargs) as its value or the exception thrown
as its exception.

2.3.2 Using Promises

class mirai.Promise(future=None)
A Promise encapsulates the result of an asynchronous computation. Think of it as a single-use mailbox – you
receive a promise which will later contain a message.:

import requests
from mirai import Promise

def async_request(method, url, *args, **kwargs):
"fetch a url asynchronously using ‘requests‘"

construct a promise to fill later
promise = Promise()

def sync_request():
"fetches synchronously & propagates exceptions"
try:

response = requests.request(method, url, *args, **kwargs)
promise.setvalue(response)

except Exception as e:
promise.setexception(e)

start asynchronous computation
Promise.call(sync_request)

return read-only version of promise
return promise.future()

Parameters future : concurrent.futures.Future

Future this promise wraps.

Methods

andthen(fn)
Apply a function with a single argument: the value this Promise resolves to. The function must return
another future. If this Promise fails, fn will not be called. Same as as Promise.flatmap.

Parameters fn : (value,) -> Promise

Function to apply. Takes 1 positional argument. Must return a Promise.

Returns result : Future

Promise fn will return.

ensure(fn)
Ensure that no-argument function fn is called when this Promise resolves, regardless of whether or not it
completes successfuly.

Parameters fn : (,) -> None

function to apply upon Promise completion. takes no arguments. Return value ignored.

2.3. API 11

mirai Documentation, Release 0.1

Returns self : Future

filter(fn)
Construct a new Promise that fails if fn doesn’t evaluate truthily when given self.get() as its only argument.
If fn evaluates falsily, then the resulting Promise fails with a MiraiError.

Parameters fn : (value,) -> bool

function used to check self.get(). Must return a boolean-like value.

Returns result : Future

Future whose contents are the contents of this Promise if fn evaluates truth on this
Promise’s contents.

flatmap(fn)
Apply a function with a single argument: the value this Promise resolves to. The function must return
another future. If this Promise fails, fn will not be called.

Parameters fn : (value,) -> Promise

Function to apply. Takes 1 positional argument. Must return a Promise.

Returns result : Future

Future containing return result of fn.

foreach(fn)
Apply a function if this Promise resolves successfully. The function receives the contents of this Promise
as its only argument.

Parameters fn : (value,) -> None

Function to apply to this Promise’s contents. Return value ignored.

Returns self : Promise

future()
Retrieve a Future encapsulating this promise. A Future is a read-only version of the exact same thing.

Returns future : Future

Future encapsulating this Promise.

get(timeout=None)
Retrieve value of Promise; block until it’s ready or timeout seconds have passed. If timeout seconds pass,
then a TimeoutError will be raised. If this Promise failed, the set exception will be raised.

Parameters timeout : number or None

Number of seconds to wait until raising a TimeoutError. If None, then wait indefinitely.

Returns result : anything

Contents of this future if it resolved successfully.

Raises Exception :

Set exception if this future failed.

getorelse(default, timeout=None)
Like Promise.get, but instead of raising an exception when this Promise fails, returns a default value.

Parameters default : anything

default value to return in case of timeout or exception.

timeout : None or float

12 Chapter 2. Documentation

mirai Documentation, Release 0.1

time to wait before returning default value if this promise is unresolved.

Returns result : anything

value this Promise resolves to, if it resolves successfully, else default.

handle(fn)
If this Promise fails, call fn on the ensuing exception to obtain a successful value.

Parameters fn : (exception,) -> anything

Function applied to recover from a failed exception. Its return value will be the value of
the resulting Promise.

Returns result : Future

Resulting Future returned by applying fn to the exception, then setting the return value
to result‘s value. If this Promise is already successful, its value is propagated onto result.

isdefined()
Return True if this Promise has already been resolved, successfully or unsuccessfully.

Returns result : bool

isfailure()
Return True if this Promise failed, False if it succeeded, and None if it’s not yet resolved.

Returns result : bool

issuccess()
Return True if this Promise succeeded, False if it failed, and None if it’s not yet resolved.

Returns result : bool

join_(*others)
Combine values of this Promise and 1 or more other Promises into a list. Results are in the same order
[self] + others is in.

Parameters others : 1 or more Promises

Promises to combine with this Promise.

Returns result : Future

Future resolving to a list of containing the values of this Promise and all other Promises.
If any Promise fails, result holds the exception in the one which fails soonest.

map(fn)
Transform this Promise by applying a function to its value. If this Promise contains an exception, fn is not
applied.

Parameters fn : (value,) -> anything

Function to apply to this Promise’s value on completion.

Returns result : Future

Future containing fn applied to this Promise’s value. If this Promise fails, the exception
is propagated.

onfailure(fn)
Apply a callback if this Promise fails. Callbacks can be added after this Promise has resolved. If fn throws
an exception, a warning is printed via logging.

Parameters fn : (exception,) -> None

2.3. API 13

mirai Documentation, Release 0.1

Function to call upon failure. Its only argument is the exception set to this Promise. If
this future succeeds, fn will not be called.

Returns self : Promise

onsuccess(fn)
Apply a callback if this Promise succeeds. Callbacks can be added after this Promise has resolved. If fn
throws an exception, a warning is printed via logging.

Parameters fn : (value,) -> None

Function to call upon success. Its only argument is the value set to this Promise. If this
future fails, fn will not be called.

Returns self : Promise

or_(*others)
Return the first Promise that finishes among this Promise and one or more other Promises.

Parameters others : one or more Promises

Other futures to consider.

Returns result : Future

First future that is resolved, successfully or otherwise.

proxyto(other)
Copy the state of this Promise to another.

Parameters other : Promise

Another Promise to copy the state of this Promise to, upon completion.

Returns self : Promise

Raises MiraiError :

if other isn’t a Promise instance

rescue(fn)
If this Promise fails, call fn on the ensuing exception to recover another (potentially successful) Promise.
Similar to Promise.handle, but must return a Promise (rather than a value).

Parameters fn : (exception,) -> Promise

Function applied to recover from a failed exception. Must return a Promise.

Returns result : Future

Resulting Future returned by apply fn to the exception this Promise contains. If this
Promise is successful, its value is propagated onto result.

respond(fn)
Apply a function to this Promise when it’s resolved. If fn raises an exception a warning will be printed via
logging, but no action will be taken.

Parameters fn : (future,) -> None

Function to apply to this Promise upon completion. Return value is ignored

Returns self : Promise

select_(*others)
Return the first Promise that finishes among this Promise and one or more other Promises.

Parameters others : one or more Promises

14 Chapter 2. Documentation

mirai Documentation, Release 0.1

Other futures to consider.

Returns result : Future

First future that is resolved, successfully or otherwise.

setexception(e)
Set the state of this Promise as failed with a given Exception. State can only be set once; once a Promise
is defined, it cannot be redefined. This operation is thread (but not process) safe.

Parameters e : Exception

Returns self : Promise

Raises AlreadyResolvedError :

if this Promise’s value is already set

setvalue(val)
Set the state of this Promise as successful with a given value. State can only be set once; once a Promise
is defined, it cannot be redefined. This operation is thread (but not process) safe.

Parameters val : value

Returns self : Promise

Raises AlreadyResolvedError :

if this Promise’s value is already set

transform(fn)
Apply a function with a single argument (this Promise) after resolving. The function must return another
future.

Parameters fn : (future,) -> Promise

Function to apply. Takes 1 positional argument. Must return a Promise.

Returns result : Future

Future containing return result of fn.

unit()
Convert this Promise to another that disregards its result.

Returns result : Future

Promise with a value of None if this Promise succeeds. If this Promise fails, the excep-
tion is propagated.

update(other)
Populate this Promise with the contents of another.

Parameters other : Promise

Promise to copy

Returns self : Promise

Raises MiraiError :

if other isn’t a Promise

updateifempty(other)
Like Promise.update, but update only if this Promise isn’t already defined.

Parameters other : Promise

2.3. API 15

mirai Documentation, Release 0.1

Promise to copy, if necessary.

Returns self : Promise

Raises MiraiError :

if other isn’t a Promise

within(duration)
Return a Promise whose state is guaranteed to be resolved within duration seconds. If this Promise com-
pletes before duration seconds expire, it will contain this Promise’s contents. If this Promise is not resolved
by then, the resulting Promise will fail with a TimeoutError.

Parameters duration : number

Number of seconds to wait before resolving a TimeoutError

Returns result : Promise

Promise guaranteed to resolve in duration seconds.

2.3.3 Combining Promises

classmethod Promise.collect(fs)
Convert a sequence of Promises into a Promise containing a sequence of values, one per Promise in fs. The
resulting Promise resolves once all Promises in fs resolve successsfully or upon the first failure. In the latter
case, the failing Promise’s exception is propagated.

Parameters fs : [Promise]

List of Promises to merge.

Returns result : Future

Future containing values of all Futures in fs. If any Future in fs fails, result fails with
the same exception.

classmethod Promise.join(fs)
Construct a Promise that resolves when all Promises in fs have resolved. If any Promise in fs fails, the error is
propagated into the resulting Promise.

Parameters fs : [Promise]

List of Promises to merge.

Returns result : Future

Future containing None if all Futures in fs succeed, or the exception of the first failing
Future in fs.

classmethod Promise.select(fs)
Return a Promise containing a tuple of 2 elements. The first is the first Promise in fs to resolve; the second is
all remaining Promises that may or may not be resolved yet. The resolved Promise is not guaranteed to have
completed successfully.

Parameters fs : [Promise]

List of Promises to merge.

Returns result : Future

Future containing the first Future in fs to finish and all remaining (potentially) unre-
solved Futures as a tuple of 2 elements for its value.

16 Chapter 2. Documentation

mirai Documentation, Release 0.1

2.3.4 Thread Management

classmethod Promise.executor(executor=None, wait=True)
Set/Get the EXECUTOR Promise uses. If setting, the current executor is first shut down.

Parameters executor : concurrent.futures.Executor or None

If None, retrieve the current executor, otherwise, shutdown the current Executor object
and replace it with this argument.

wait : bool, optional

Whether or not to block this thread until all workers are shut down cleanly.

Returns executor : Executor

Current executor

class mirai.UnboundedThreadPoolExecutor(max_workers=None)
A thread pool with an infinite number of threads.

This interface conforms to the typical concurrent.futures.Executor interface, but doesn’t limit the user to a finite
number of threads. In normal situations, this is undesirable – too many threads, and your program will spend
more time switching contexts than actually working!

On the other hand, if you patch the thread module with gevent, spawning tens of thousands of threads is totally
OK. This is where this executor comes in.

Parameters max_workers: None or int, optional :

Number of worker threads. If None, a new thread is created every time a new
task is submitted. If an integer, this executor acts exactly like a normal concur-
rent.futures.ThreadPoolExecutor.

Methods

shutdown(wait=True)
Shutdown this thread pool, preventing future tasks from being enqueued.

Parameters wait : bool

Wait for all running threads to finish. Only used if this pool was initialized with a fixed
number of workers.

submit(fn, *args, **kwargs)
Submit a new task to be executed asynchronously.

If self.max_workers is an integer, then the behavior of this function will be identical to that of concur-
rent.futures.ThreadPoolExecutor. However, if it is None, then a new daemonized thread will be constructed
and started.

Parameters fn : function-like

function (or callable object) to execute asynchronously.

args : list

positional arguments to pass to fn.

kwargs: dict :

keyword arguments to pass to fn.

Returns future : concurrent.futures.Future

2.3. API 17

mirai Documentation, Release 0.1

Container for future result or exception

2.3.5 Exceptions

exception mirai.MiraiError
Base class for all exceptions raise by Promises

exception mirai.AlreadyResolvedError
Exception thrown when attempting to set the value or exception of a Promise that has already had its value or
exception set.

exception mirai.TimeoutError
The operation exceeded the given deadline.

2.4 Caveats

While mirai tries to make multithreading as painless as possible, there are a few small cases to be mindful of.

2.4.1 You only have so many threads...

While mirai does its best to hide thread management from you, the fact remains that there are a finite number of
worker threads (default: 10). If all of those worker threads are indefinitely busy on never-ending tasks, then all tasks
queued after that won’t execute!. For example,

from concurrent.futures import ThreadPoolExecutor
from mirai import Promise
import time

def forever():
while True:
time.sleep(1)

def work():
return "I’ll never run!"

only 5 workers available
Promise.executor(ThreadPoolExecutor(max_workers=5))

these threads take up all the executor’s workers
traffic_jam = [Promise.call(forever) for i in range(5)]

this will block forever, as all the workers are busy
real_work = Promise.call(work).get()

2.4.2 Waiting on other Promises

Under the hood, mirai executes all tasks registered with Promise.call() via a ThreadPoolExecutor with a
finite number of threads (this can be access with Promise.executor()). This is to ensure that there are never too
many threads active at once.

The one cardinal sin of mirai is waiting upon a promise with Promise.get()within a currently-running promise.
The reason is that the waiting thread has reserved one of mirai‘s finite number of worker threads, and if all such

18 Chapter 2. Documentation

http://www.jstorimer.com/blogs/workingwithcode/7970125-how-many-threads-is-too-many
http://www.jstorimer.com/blogs/workingwithcode/7970125-how-many-threads-is-too-many

mirai Documentation, Release 0.1

worker threads are waiting upon other promises, then there will be no workers for awaited upon promises. In other
words, all worker threads will wait forever. For example,

from concurrent.futures import ThreadPoolExecutor
from mirai import Promise
import time

def fanout(n):
secondaries = [Promise.call(time.sleep, 0.1 * i) for i in range(n)]
return Promise.collect(secondaries).get()

only 5 workers available
Promise.executor(ThreadPoolExecutor(max_workers=5))

start 5 "primary" threads. Each of these will wait on 5 "secondary" threads,
but due to the maximum worker limit, those secondary threads will never get
a chance to run. The primary threads are already taking up all the workers!
primaries = [Promise.call(fanout, 5) for i in range(5)]

this will never return...
Promise.collect(primaries).get()

The workaround for this is to use mirai.UnboundedThreadPoolExecutor, which doesn’t have an upper
bound on the number of active threads.

2.4.3 Zombie threads

Standard behavior on multithreaded applications is to allow every thread to exit cleanly unless killed explicitly. For
mirai, this means that even though all the threads you care about may be finished, there may still be other threads
running, and thus your process will not end, even if you use sys.exit().

If a thread is in an infinite loop for example, your code will never exit cleanly. The recourse for this is to
use mirai.UnboundedThreadPoolExecutor as your executor with max_workers set to None. Unlike
ThreadPoolExecutor, this executor will not wait for threads to finish cleanly when the process exits.

2.4. Caveats 19

mirai Documentation, Release 0.1

20 Chapter 2. Documentation

Python Module Index

m
mirai, 3

21

mirai Documentation, Release 0.1

22 Python Module Index

Python Module Index

m
mirai, 3

23

	Welcome to mirai
	Documentation
	Why mirai?
	Tutorial
	API
	Caveats

	Python Module Index
	Python Module Index

