
Mink Documentation
Release 1.6

Konstantin Kudryashov (everzet)

Jun 24, 2018

Contents

1 Installation 3

2 Guides 5

3 Testing Tools Integration 23

i

ii

Mink Documentation, Release 1.6

One of the most important parts in the web is a browser. A browser is the window through which web users interact
with web applications and other users. Users are always talking with web applications through browsers.

So, in order to test that our web application behaves correctly, we need a way to simulate this interaction between the
browser and the web application in our tests. We need Mink.

Mink is an open source browser controller/emulator for web applications, written in PHP 5.3.

Read Mink at a Glance to learn more about Mink and why you need it.

Contents 1

Mink Documentation, Release 1.6

2 Contents

CHAPTER 1

Installation

Mink is a php 5.3 library that you’ll use inside your test suites or project. Before you begin, ensure that you have at
least PHP 5.3.1 installed.

The recommended way to install Mink with all its dependencies is through Composer:

$ composer require --dev behat/mink

Note: For local installations of composer you must call it like this: $ php composer.phar require --dev
behat/mink . In this case you must use the different call php composer.phar everywhere instead of the simple
command composer.

Everything will be installed inside the vendor folder. Finally, include the Composer autoloading script to your
project:

require_once 'vendor/autoload.php';

Note: By default, Mink will be installed with no drivers. In order to be able to use additional drivers, you should
install them (through composer). Require the appropriate dependencies:

• GoutteDriver - behat/mink-goutte-driver

• Selenium2Driver - behat/mink-selenium2-driver

• BrowserKitDriver - behat/mink-browserkit-driver

• ChromeDriver - dmore/chrome-mink-driver

• ZombieDriver - behat/mink-zombie-driver

• SeleniumDriver - behat/mink-selenium-driver

• SahiDriver - behat/mink-sahi-driver

• WUnitDriver - behat/mink-wunit-driver

3

https://getcomposer.org

Mink Documentation, Release 1.6

If you’re a newcomer or just don’t know what to choose, you should probably start with the GoutteDriver and the
Selenium2Driver (you will be able to tune it up later):

4 Chapter 1. Installation

CHAPTER 2

Guides

Learn Mink with the topical guides:

2.1 Mink at a Glance

There’s a huge number of browser emulators out there, like Goutte, Selenium, Sahi and others. They all do the same
job, but do it very differently. They behave differently and have very different API’s. But, what’s more important,
there are actually 2 completely different types of browser emulators out there:

• Headless browser emulators

• Browser controllers

The first type of browser emulators are simple pure HTTP specification implementations, like Goutte. Those browser
emulators send real HTTP requests against an application and parse the response content. They are very simple
to run and configure, because this type of emulator can be written in any available programming language and can
be run through the console on servers without a GUI. Headless emulators have both advantages and disadvantages.
Advantages are simplicity, speed and ability to run without the need of a real browser. But this type of browser
emulator has one big disadvantage, it has no JS/AJAX support. So, you can’t test your rich GUI web applications with
headless browsers.

The second type of browser emulators are browser controllers. Those emulators aim to control the real browser. That’s
right, a program to control another program. Browser controllers simulate user interactions on the browser and are
able to retrieve actual information from the current browser page. Selenium and Sahi are the two most famous browser
controllers. The main advantage of using browser controllers is the support for JS/AJAX interactions on the page. The
disadvantage is that such browser emulators require an installed browser, extra configuration and are usually much
slower than headless counterparts.

So, the easy answer is to choose the best emulator for your project and use its API for testing. But as we’ve already
seen, both browser emulator types have advantages and disadvantages. If you choose a headless browser emulator,
you will not be able to test your JS/AJAX pages. And if you choose a browser controller, your overall test suite will
become very slow at some point. So, in the real world we should use both! And that’s why you need Mink.

Mink removes API differences between different browser emulators providing different drivers (read in Drivers chap-
ter) for every browser emulator and providing you with an easy way to control the browser (Controlling the Browser),

5

https://github.com/FriendsOfPHP/Goutte
http://seleniumhq.org/
http://sahi.co.in/w/
https://github.com/FriendsOfPHP/Goutte
http://seleniumhq.org/
http://sahi.co.in/w/

Mink Documentation, Release 1.6

traverse pages (Traversing Pages), manipulate page elements (Manipulating Pages) or interact with them (Interacting
with Pages).

2.2 Controlling the Browser

In Mink, the entry point to the browser is called the session. Think about it as being your browser window (some
drivers even let you switch tabs!).

First, start your session (it’s like opening your browser tab). Nothing can be done with it before starting it.

// Choose a Mink driver. More about it in later chapters.
$driver = new \Behat\Mink\Driver\GoutteDriver();

$session = new \Behat\Mink\Session($driver);

// start the session
$session->start();

Note: The first argument to the session constructor is a driver object. Drivers are the way the Mink abstraction layer
works. You will discover more about the available drivers in a later chapter.

Caution: Although Mink does its best to remove differences between the different drivers, each driver has unique
features and shortcomings. See the Driver Feature Support to see which features are supported by each driver.

2.2.1 Basic Browser Interaction

Now that your session is started, you’ll want to open a page with it. Just after starting, the session is not on any page
(in a real browser, you would be on the about:blank page), and calling any other action is likely to fail.

$session->visit('http://my_project.dev/some_page.php');

Note: Mink is primarily designed to be used for testing websites. To allow you to browse and test error pages, the
Session::visit method does not consider error status codes as invalid. It will not throw an exception in this case.
You will need to check the status code (or certain text on the page) to know if the response was successful or not.

2.2.2 Interacting with the Page

The session gives you access to the page through the Session::getPage method. This allows you to traverse the
page, manipulate page elements and interact with them. The next chapters cover the page API in depth. Most of what
you’ll do with Mink will use this object, but you can continue reading to learn more about the Session.

2.2.3 Using the Browser History

The session gives you access to the browser history:

6 Chapter 2. Guides

Mink Documentation, Release 1.6

// get the current page URL:
echo $session->getCurrentUrl();

// use history controls:
$session->reload();
$session->back();
$session->forward();

2.2.4 Cookie Management

The session can manipulate cookies available in the browser.

// set cookie:
$session->setCookie('cookie name', 'value');

// get cookie:
echo $session->getCookie('cookie name');

// delete cookie:
$session->setCookie('cookie name', null);

Note: With drivers that use JavaScript to control the browser - like Sahi - you may be restricted to accessing/setting
all, but HttpOnly cookies .

2.2.5 Status Code Retrieval

The session lets you retrieve the HTTP status code of the response:

echo $session->getStatusCode();

2.2.6 Headers Management

The session lets you manipulate request headers and access response headers:

// setting browser language:
$session->setRequestHeader('Accept-Language', 'fr');

// retrieving response headers:
print_r($session->getResponseHeaders());

Note: Headers handling is only supported in headless drivers (e.g. Goutte). Browser controllers (e.g. Selenium2)
cannot access that information.

2.2.7 HTTP Authentication

The session has a special method to perform HTTP Basic authentication:

2.2. Controlling the Browser 7

http://en.wikipedia.org/wiki/HTTP_cookie#HttpOnly_cookie

Mink Documentation, Release 1.6

$session->setBasicAuth($user, $password);

The method can also be used to reset a previous authentication:

$session->setBasicAuth(false);

Note: Automatic HTTP authentication is only supported in headless drivers. Because HTTP authentication in the
browser requires manual user action, that can’t be done remotely for browser controllers.

2.2.8 Javascript Evaluation

The session allows you to execute or evaluate Javascript.

// Execute JS
$session->executeScript('document.body.firstChild.innerHTML = "";');

// evaluate JS expression:
echo $session->evaluateScript(

"return 'something from browser';"
);

Note: The difference between these methods is that Session::evaluateScript returns the result of the ex-
pression. When you don’t need to get a return value, using Session::executeScript is better.

You can also wait until a given JS expression returns a truthy value or the timeout is reached:

// wait for n milliseconds or
// till JS expression becomes truthy:
$session->wait(

5000,
"$('.suggestions-results').children().length"

);

Note: The Session::wait method returns true when the evaluation becomes truthy. It will return false when
the timeout is reached.

2.2.9 Resetting the Session

The primary aim for Mink is to provide a single consistent web browsing API for acceptance tests. But a very important
part in testing is isolation.

Mink provides two very useful methods to isolate tests, which can be used in your test’s teardown methods:

// soft-reset:
$session->reset();

// hard-reset:
$session->stop();

(continues on next page)

8 Chapter 2. Guides

Mink Documentation, Release 1.6

(continued from previous page)

// or if you want to start again at the same time
$session->restart();

Stopping the session is the best way to reset the session to its initial state. It will close the browser entirely. To use the
session again, you need to start the session before any other action. The Session::restart shortcut allows you
to do these 2 steps in a single call.

The drawback of closing the browser and starting it again is that it takes time. In many cases, a lower level of isolation
is enough in favor of a faster resetting. The Session::reset method covers this use case. It will try to clear the
cookies and reset the request headers and the browser history to the limit of the driver possibilities.

Taking all this into account, it is recommended to use Session::reset() by default and to call
Session::stop() when you need really full isolation.

2.3 Traversing Pages

Most usages of Mink will involve working with the page opened in your browser. This is done thanks to the powerful
Element API. This API allows to traverse the page (similar to the DOM in Javascript), manipulate page elements and
to interact with them, which will be covered in the next chapters.

2.3.1 DocumentElement and NodeElement

The Element API consists of 2 main classes. The DocumentElement instance represents the page being displayed
in the browser, while the NodeElement class is used to represent any element inside the page. Both classes share a
common set of methods to traverse the page (defined in TraversableElement).

The DocumentElement instance is accessible through the Session::getPage method:

$page = $session->getPage();

// You can now manipulate the page.

Note: The DocumentElement instance represents the <html> node in the DOM. It is equivalent to document.
documentElement in the Javascript DOM API.

2.3.2 Traversal Methods

Elements have 2 main traversal methods: ElementInterface::findAll returns an array of NodeElement
instances matching the provided selector inside the current element while ElementInterface::find returns the
first match or null when there is none.

The TraversableElement class also provides a bunch of shortcut methods on top of find() to make it easier
to achieve many common use cases:

ElementInterface::has Checks whether a child element matches the given selector but without returning it.

TraversableElement::findById Looks for a child element with the given id.

TraversableElement::findLink Looks for a link with the given text, title, id or alt attribute (for images
used inside links).

2.3. Traversing Pages 9

Mink Documentation, Release 1.6

TraversableElement::findButton Looks for a button with the given text, title, id, name attribute or alt
attribute (for images used inside links).

TraversableElement::findField Looks for a field (input, textarea or select) with the given label,
placeholder, id or name attribute.

Note: These shortcuts return a single element. If you need to find all matches, you will need to use findAll with
the named selector.

Nested Traversing

Every find*() method will return a Behat\Mink\Element\NodeElement instance and findAll() will
return an array of such instances. The fun part is that you can use the same methods of traversing on such elements as
well:

$registerForm = $page->find('css', 'form.register');

if (null === $registerForm) {
throw new \Exception('The element is not found');

}

// find some field INSIDE form with class="register"
$field = $registerForm->findField('Email');

2.3.3 Selectors

The ElementInterface::find and ElementInterface::findAll methods support several kinds of se-
lectors to find elements.

CSS Selector

The css selector type lets you use CSS expressions to search for elements on the page:

$title = $page->find('css', 'h1');

$buttonIcon = $page->find('css', '.btn > .icon');

XPath Selector

The xpath selector type lets you use XPath queries to search for elements on the page:

$anchorsWithoutUrl = $page->findAll('xpath', '//a[not(@href)]');

Caution: This selector searches for an element inside the current node (which is <html> for the page object).
This means that trying to pass it the XPath of an element retrieved with ElementInterface::getXpath
will not work (this query includes the query for the root node). To check whether an element object still exists on
the browser page, use ElementInterface::isValid instead.

10 Chapter 2. Guides

Mink Documentation, Release 1.6

Named Selectors

Named selectors provide a set of reusable queries for common needs. For conditions based on the content of ele-
ments, the named selector will try to find an exact match first. It will then fallback to partial matching if there is no
result for the exact match. The named_exact selector type can be used to force using only exact matching. The
named_partial selector type can be used to apply partial matching without preferring exact matches.

For the named selector type, the second argument of the find() method is an array with 2 elements: the name of the
query to use and the value to search with this query:

$topLink = $page->find('named', array('link', $escapedValue));

The following queries are supported by the named selector:

id Searches for an element by its id.

id_or_name Searches for an element by its id or name.

link Searches for a link by its id, title, img alt, rel or text.

button Searches for a button by its name, id, text, img alt or title.

link_or_button Searches for both links and buttons.

content Searches for a specific page content (text).

field Searches for a form field by its id, name, label or placeholder.

select Searches for a select field by its id, name or label.

checkbox Searches for a checkbox by its id, name, or label.

radio Searches for a radio button by its id, name, or label.

file Searches for a file input by its id, name, or label.

optgroup Searches for an optgroup by its label.

option Searches for an option by its content or value.

fieldset Searches for a fieldset by its id or legend.

table Searches for a table by its id or caption.

Custom Selector

Mink lets you register your own selector types through implementing the
Behat\Mink\Selector\SelectorInterface. It should then be registered in the SelectorsHandler
which is the registry of available selectors.

The recommended way to register a custom selector is to do it when building your Session:

$selector = new \App\MySelector();

$handler = new \Behat\Mink\Selector\SelectorsHandler();
$handler->registerSelector('mine', $selector);

$driver = // ...

$session = new \Behat\Mink\Session($driver, $handler);

2.3. Traversing Pages 11

Mink Documentation, Release 1.6

2.4 Manipulating Pages

Once you get a page element, you will want to manipulate it. You can also interact with the page, which is covered in
the next chapter.

2.4.1 Getting the tag name

The NodeElement::getTagName method allows you to get the tag name of the element. This tag name is always
returned lowercased.

$el = $page->find('css', '.something');

// get tag name:
echo $el->getTagName(); // displays 'a'

2.4.2 Accessing HTML attributes

The NodeElement class gives you access to HTML attributes of the element.

NodeElement::hasAttribute Checks whether the element has a given attribute.

NodeElement::getAttribute Gets the value of an attribute.

NodeElement::hasClass Checks whether the element has the given class (convenience wrapper around
getAttribute('class')).

$el = $page->find('css', '.something');

if ($el->hasAttribute('href')) {
echo $el->getAttribute('href');

} else {
echo 'This anchor is not a link. It does not have an href.';

}

2.4.3 Element Content and Text

The Element class provides access to the content of elements.

Element::getHtml Gets the inner HTML of the element, i.e. all children of the element.

Element::getOuterHtml Gets the outer HTML of the element, i.e. including the element itself.

Element::getText Gets the text of the element.

Note: getText() will strip tags and unprinted characters out of the response, including newlines. So it’ll basically
return the text that the user sees on the page.

2.4.4 Checking Element Visibility

The NodeElement::isVisible method checks whether the element is visible.

12 Chapter 2. Guides

Mink Documentation, Release 1.6

2.4.5 Accessing Form State

The NodeElement class allows access to the state of form elements:

NodeElement::getValue Gets the value of the element. See Interacting with Forms.

NodeElement::isChecked Checks whether the checkbox or radio button is checked.

NodeElement::isSelected Checks whether the <option> element is selected.

Shortcut methods

The TraversableElement class provides a few shortcut methods that allow finding a child element in the page
and checking the state of it immediately:

TraversableElement::hasCheckedField Looks for a checkbox (see findField) and checks whether it is
checked.

TraversableElement::hasUncheckedField Looks for a checkbox (see findField) and checks whether it
is not checked.

2.5 Interacting with Pages

Most usages of Mink will involve working with the page opened in your browser. The Mink Element API lets you
interact with elements of the page.

2.5.1 Interacting with Links and Buttons

The NodeElement::click and NodeElement::press methods let you click the links and press the buttons
on the page.

Note: These methods are actually equivalent internally (pressing a button involves clicking on it). Having both
methods allows the code to be more readable.

2.5.2 Interacting with Forms

The NodeElement class has a set of methods allowing interaction with forms:

NodeElement::getValue gets the value of a form field. The value depends on the type of field:

• the value of the selected option for single select boxes (or null when none are selected);

• an array of selected option values for multiple select boxes;

• the value of the checkbox field when checked, or null when not checked;

• the value of the selected radio button in the radio group for radio buttons;

• the value of the field for textual fields and textareas;

• an undefined value for file fields (because of browser limitations).

NodeElement::setValue sets the value of a form field

• for a file field, it should be the absolute path to the file;

2.5. Interacting with Pages 13

Mink Documentation, Release 1.6

• for a checkbox, it should be a boolean indicating whether it is checked;

• for other fields, it should match the behavior of getValue.

NodeElement::isChecked reports whether a radio button or a checkbox is checked.

NodeElement::isSelected reports whether an <option> element is selected.

NodeElement::check checks a checkbox field.

NodeElement::uncheck unchecks a checkbox field.

NodeElement::selectOption select an option in a select box or in a radio group.

NodeElement::attachFile attaches a file in a file input.

NodeElement::submit submits the form.

2.5.3 Interacting with the Mouse

The NodeElement class offers a set of methods allowing interaction with the mouse:

NodeElement::click performs a click on the element.

NodeElement::doubleClick performs a double click on the element.

NodeElement::rightClick performs a right click on the element.

NodeElement::mouseOver moves the mouse over the element.

2.5.4 Interacting with the Keyboard

Mink lets you interact with the keyboard thanks to the NodeElement::keyDown, NodeElement::keyPress
and NodeElement::keyUp methods.

2.5.5 Manipulating the Focus

The NodeElement class lets you give and remove focus on the element thanks to the NodeElement::focus
and NodeElement::blur methods.

2.5.6 Drag’n’Drop

Mink supports drag’n’drop of one element onto another:

$dragged = $page->find(...);
$target = $page->find(...);

$dragged->dragTo($target);

2.5.7 Shortcut Methods

The TraversableElement class provides a few shortcut methods that allow finding a child element on the page
and performing an action on it immediately:

TraversableElement::clickLink Looks for a link (see findLink) and clicks on it.

TraversableElement::pressButton Looks for a button (see findButton) and presses on it.

14 Chapter 2. Guides

Mink Documentation, Release 1.6

TraversableElement::fillField Looks for a field (see findField) and sets a value in it.

TraversableElement::checkField Looks for a checkbox (see findField) and checks it.

TraversableElement::uncheckField Looks for a checkbox (see findField) and unchecks it.

TraversableElement::selectFieldOption Looks for a select or radio group (see findField) and selects a
choice in it.

TraversableElement::attachFileToField Looks for a file field (see findField) and attaches a file to it.

Note: All these shortcut methods throw an ElementNotFoundException if the child element cannot be found.

2.6 Drivers

How does Mink provide a consistent API for very different browser library types, often written in different languages?
Through drivers! A Mink driver is a simple class, that implements Behat\Mink\Driver\DriverInterface.
This interface describes bridge methods between Mink and real browser emulators. Mink always talks with browser
emulators through its driver. It doesn’t know anything about how to start/stop or traverse pages in that particular
browser emulator. It only knows what driver method it should call in order to do this.

Mink comes with six drivers out of the box:

2.6.1 GoutteDriver

GoutteDriver provides a bridge for the Goutte headless browser. Goutte is a classical pure-php headless browser,
written by the creator of the Symfony framework Fabien Potencier.

Note: The GoutteDriver extends the BrowserKitDriver to fix a small edge case in the Goutte implementation of
BrowserKit. It is also able to instantiate the Goutte client automatically.

Installation

GoutteDriver is a pure PHP library available through Composer:

$ composer require behat/mink-goutte-driver

Note: GoutteDriver is compatible with both Goutte 1.x which relies on Guzzle 3 and Goutte 2.x which relies on
Guzzle 4+ for the underlying HTTP implementation.

Composer will probably select Goutte 2.x by default.

Usage

In order to talk with Goutte, you should instantiate a Behat\Mink\Driver\GoutteDriver:

$driver = new \Behat\Mink\Driver\GoutteDriver();

Also, if you want to configure Goutte more precisely, you could do the full setup by hand:

2.6. Drivers 15

https://github.com/FriendsOfPHP/Goutte
http://guzzle3.readthedocs.org/en/latest/
http://docs.guzzlephp.org/en/latest/

Mink Documentation, Release 1.6

$client = new \Goutte\Client();
// Do more configuration for the Goutte client

$driver = new \Behat\Mink\Driver\GoutteDriver($client);

2.6.2 BrowserKitDriver

BrowserKitDriver provides a bridge for the Symfony BrowserKit component. BrowserKit is a browser emulator
provided by the Symfony project.

Installation

BrowserKitDriver is a pure PHP library available through Composer:

$ composer require behat/mink-browserkit-driver

Note: The BrowserKit component only provides an abstract implementation. The actual implementation is provided
by other projects, like Goutte or the Symfony HttpKernel component.

If you are using Goutte, you should use the special GoutteDriver which ensures full compatibility for Goutte due to
an edge case in Goutte.

Usage

In order to talk with BrowserKit, you should instantiate a Behat\Mink\Driver\BrowserKitDriver:

$browserkitClient = // ...

$driver = new \Behat\Mink\Driver\BrowserKitDriver($browserkitClient);

2.6.3 Selenium2Driver

Selenium2Driver provides a bridge for the Selenium2 (webdriver) tool. If you just love Selenium2, you can now use
it right out of the box too.

Installation

Selenium2Driver is available through Composer:

$ composer require behat/mink-selenium2-driver

In order to talk with selenium server, you should install and configure it first:

1. Download the Selenium Server from the project website.

2. Run the server with the following command (update the version number to the one you downloaded):

$ java -jar selenium-server-standalone-2.44.0.jar

16 Chapter 2. Guides

http://symfony.com/components/BrowserKit
http://symfony.com
https://github.com/FriendsOfPHP/Goutte
http://symfony.com/components/HttpKernel
http://seleniumhq.org/
http://seleniumhq.org/download/

Mink Documentation, Release 1.6

Tip: The Selenium2Driver actually relies on the WebDriver protocol defined by Selenium2. This means that it is
possible to use it with other implementations of the protocol. Note however that other implementations may have
some bugs.

The testsuite of the driver is run against the Phantom.js implementation but it still triggers some failures because of
bugs in their implementation.

Usage

That’s it, now you can use Selenium2Driver:

$driver = new \Behat\Mink\Driver\Selenium2Driver('firefox');

2.6.4 ChromeDriver

ChromeDriver allows Mink to control Chrome without the overhead of Selenium.

It communicates directly with chrome over HTTP and WebSockets, which allows it to work at least twice as fast as
Chrome with Selenium.

For Chrome 59+ it supports headless mode, eliminating the need to install a display server, and the overhead that
comes with it.

Installation

ChromeDriver is available through Composer:

$ composer require dmore/chrome-mink-driver

Usage

Run Chromium or Google Chrome with remote debugging enabled:

$ google-chrome-stable --remote-debugging-address=0.0.0.0 --remote-debugging-
→˓port=9222

or headless (59+):

$ google-chrome-stable --disable-gpu --headless --remote-debugging-address=0.
→˓0.0.0 --remote-debugging-port=9222

Configure Mink to use ChromeDriver:

use Behat\Mink\Mink;
use Behat\Mink\Session;
use DMore\ChromeDriver\ChromeDriver;

$mink = new Mink(array(
'browser' => new Session(new ChromeDriver('http://localhost:9222', null, 'http://

→˓www.google.com'))
));

2.6. Drivers 17

http://phantomjs.org/

Mink Documentation, Release 1.6

That’s it!

For more details, see the official documentation

2.6.5 ZombieDriver

ZombieDriver provides a bridge for the Zombie.js browser emulator. Zombie.js is a headless browser emulator, written
in node.js. It supports all JS interactions that Selenium and Sahi do and works almost as fast as Goutte does. It is the
best of both worlds actually, but still limited to only one browser type (Webkit). Also it is still slower than Goutte and
requires node.js and npm to be installed on the system.

Installation

ZombieDriver is available through Composer:

$ composer require behat/mink-zombie-driver

In order to talk with a zombie.js server, you need to install and configure zombie.js first:

1. Install node.js by following instructions from the official site: http://nodejs.org/.

2. Install npm (node package manager) by following the instructions from http://npmjs.org/.

3. Install zombie.js with npm:

$ npm install -g zombie

After installing npm and zombie.js, you’ll need to add npm libs to your NODE_PATH. The easiest way to do this is to
add:

export NODE_PATH="/PATH/TO/NPM/node_modules"

into your .bashrc.

Usage

After that, you’ll be able to just use ZombieDriver without manual server setup. The driver will do all that for you
automatically:

$driver = new \Behat\Mink\Driver\ZombieDriver(
new \Behat\Mink\Driver\NodeJS\Server\ZombieServer()

);

If you want more control during driver initialization, like for example if you want to configure the driver to init the
server on a specific port, use the more verbose version:

$driver = new \Behat\Mink\Driver\ZombieDriver(
new \Behat\Mink\Driver\Zombie\Server($host, $port, $nodeBin, $script)

);

Note: $host simply defines the host on which zombie.js will be started. It’s 127.0.0.1 by default.

$port defines a zombie.js port. Default one is 8124.

$nodeBin defines full path to node.js binary. Default one is just node.

18 Chapter 2. Guides

https://gitlab.com/DMore/chrome-mink-driver/blob/master/README.md
http://zombie.labnotes.org/
http://nodejs.org/
http://npmjs.org/

Mink Documentation, Release 1.6

$script defines a node.js script to start zombie.js server. If you pass a null the default script will be used. Use
this option carefully!

2.6.6 SahiDriver

SahiDriver provides a bridge for the Sahi browser controller. Sahi is a new JS browser controller, that fast replaced
the old Selenium testing suite. It’s both easier to setup and to use than classical Selenium. It has a GUI installer for
each popular operating system out there and is able to control every systems browser through a special bundled proxy
server.

Installation

SahiDriver is available through Composer:

$ composer require behat/mink-sahi-driver

In order to talk with a real browser through Sahi, you should install and configure Sahi first:

1. Download and run the Sahi jar from the Sahi project website and run it. It will run the installer, which will guide
you through the installation process.

2. Run Sahi proxy before your test suites (you can start this proxy during system startup):

cd $YOUR_PATH_TO_SAHI/bin
./sahi.sh

Usage

After installing Sahi and running the Sahi proxy server, you will be able to control it with
Behat\Mink\Driver\SahiDriver:

$driver = new \Behat\Mink\Driver\SahiDriver('firefox');

Note: Notice, that the first argument of SahiDriver is always a browser name, supported by Sahi.

If you want more control during the driver initialization, like for example if you want to configure the driver to talk
with a proxy on another machine, use the more verbose version with a second client argument:

$driver = new \Behat\Mink\Driver\SahiDriver(
'firefox',
new \Behat\SahiClient\Client(

new \Behat\SahiClient\Connection($sid, $host, $port)
)

);

Note: $sid is a Sahi session ID. It’s a unique string, used by the driver and the Sahi proxy in order to be able to
talk with each other. You should fill this with null if you want Sahi to start your browser automatically or with some
unique string if you want to control an already started browser.

$host simply defines the host on which Sahi is started. It is localhost by default.

2.6. Drivers 19

http://sahi.co.in/w/
http://sourceforge.net/projects/sahi/files/
http://sahi.co.in/w/browser-types-xml

Mink Documentation, Release 1.6

$port defines a Sahi proxy port. The default one is 9999.

2.6.7 SeleniumDriver

SeleniumDriver provides a bridge for the famous Selenium tool. If you need legacy Selenium, you can use it right out
of the box in your Mink test suites.

Caution: The SeleniumRC protocol used by this driver is deprecated and does not support all Mink features. For
this reason, the SeleniumDriver is deprecated in favor of the Selenium2Driver, which is based on the new protocol
and is more powerful.

Installation

SeleniumDriver is available through Composer:

$ composer require behat/mink-selenium-driver

In order to talk with the selenium server, you should install and configure it first:

1. Download the Selenium Server from the project website.

2. Run the server with the following command (update the version number to the one you downloaded):

$ java -jar selenium-server-standalone-2.44.0.jar

Usage

That’s it, now you can use SeleniumDriver:

$client = new \Selenium\Client($host, $port);
$driver = new \Behat\Mink\Driver\SeleniumDriver(

'firefox', 'base_url', $client
);

2.6.8 Driver Feature Support

Although Mink does its best to remove browser differences between different browser emulators, it can’t
do much in some cases. For example, BrowserKitDriver cannot evaluate JavaScript and Selenium2Driver
cannot get the response status code. In such cases, the driver will always throw a meaningful
Behat\Mink\Exception\UnsupportedDriverActionException.

20 Chapter 2. Guides

http://seleniumhq.org/
http://seleniumhq.org/download/

Mink Documentation, Release 1.6

Feature BrowserKit/Goutte Selenium2 Chrome Zombie Selenium Sahi
Page traversing Yes Yes Yes Yes Yes Yes
Form manipulation Yes Yes Yes Yes Yes Yes
HTTP Basic auth Yes No Yes Yes No No
Windows management No Yes Yes No Yes Yes
iFrames management No Yes Yes No Yes No
Request headers access Yes No Yes Yes No No
Response headers Yes No Yes Yes No No
Cookie manipulation Yes Yes Yes Yes Yes Yes
Status code access Yes No Yes Yes No No
Mouse manipulation No Yes Yes Yes Yes Yes
Drag’n Drop No Yes Yes No Yes Yes
Keyboard actions No Yes Yes Yes Yes Yes
Element visibility No Yes Yes No Yes Yes
JS evaluation No Yes Yes Yes Yes Yes
Window resizing No Yes Yes No No No
Window maximizing No Yes Yes No Yes No

2.7 Managing Sessions

Although the session object is already usable enough, it’s not as easy to write multisession (multidriver/multibrowser)
code. Yep, you’ve heard right, with Mink you can manipulate multiple browser emulators simultaneously with a single
consistent API:

// init sessions
$session1 = new \Behat\Mink\Session($driver1);
$session2 = new \Behat\Mink\Session($driver2);

// start sessions
$session1->start();
$session2->start();

$session1->visit('http://my_project.dev/chat.php');
$session2->visit('http://my_project.dev/chat.php');

Caution: The state of a session is actually managed by the driver. This means that each session must use a
different driver instance.

Isn’t it cool? But Mink makes it even cooler:

$mink = new \Behat\Mink\Mink();
$mink->registerSession('goutte', $goutteSession);
$mink->registerSession('sahi', $sahiSession);
$mink->setDefaultSessionName('goutte');

With such configuration, you can talk with your sessions by name through one single container object:

$mink->getSession('goutte')->visit('http://my_project.dev/chat.php');
$mink->getSession('sahi')->visit('http://my_project.dev/chat.php');

2.7. Managing Sessions 21

Mink Documentation, Release 1.6

Note: Mink will even lazy-start your sessions when needed (on the first getSession() call). So, the browser will
not be started until you really need it!

Or you could even omit the session name in default cases:

$mink->getSession()->visit('http://my_project.dev/chat.php');

This call is possible thanks to $mink->setDefaultSessionName('goutte') setting previously. We’ve set
the default session, that would be returned on getSession() call without arguments.

Tip: The Behat\Mink\Mink class also provides an easy way to reset or restart your started sessions (and only
started ones):

// reset started sessions
$mink->resetSessions();

// restart started sessions
$mink->restartSessions();

2.8 Contributing

2.8.1 Reporting issues

If your issue affects only a single driver, it should be reported to the driver itself. Any other issues in the Mink
abstraction layer and feature requests should be reported to the main Mink repository.

2.8.2 Contributing features

Contributions should be sent using GitHub pull requests.

Any contribution should be covered by tests to be accepted. Changes impacting drivers should include tests in the
common driver testsuite to ensure consistency between implementations.

New features should always be contributed to the main Mink repository first. Features submitted only to a single driver
without being part of the Mink abstraction won’t be accepted.

22 Chapter 2. Guides

https://github.com/minkphp/Mink
https://github.com/minkphp/Mink

CHAPTER 3

Testing Tools Integration

Mink has integrations for several testing tools:

• Behat through the Behat MinkExtension

• PHPUnit through the phpunit-mink package

23

http://behat.org
https://github.com/Behat/MinkExtension
http://www.phpunit.de
https://github.com/minkphp/phpunit-mink

	Installation
	Guides
	Testing Tools Integration

