
machinist Documentation
Release 0.1.0

Jean-Paul Calderone

June 12, 2014

Contents

1 The State Machine Construction Toolkit 3

2 Benefits of Explicit State Machines 5
2.1 States . 5
2.2 Inputs and Outputs . 5
2.3 Transitions . 6

3 Basic Usage 7
3.1 Inputs, Outputs, States . 7
3.2 Transitions . 7
3.3 Output Executors . 8
3.4 Construction . 9
3.5 Receiving Inputs . 9

4 Examples 11
4.1 Model a Turnstile . 11

5 Indices and tables 13

i

ii

machinist Documentation, Release 0.1.0

Contents:

Contents 1

machinist Documentation, Release 0.1.0

2 Contents

CHAPTER 1

The State Machine Construction Toolkit

Machinist’s aim is to make it easy to structure your code as an explicit state machine.

State machines are defined by supplying Machinist with four things:

1. A set of states.

2. A set of inputs.

3. A set of outputs.

4. A set of transitions.

State machines are represented by an object with a receive method which accepts an input object. The input object
is either an object from the set of inputs or an object related to one of those objects in a certain way (more on that
later). When an input is received by the state machine, its state is updated and outputs are generated according to the
defined transitions.

If this sounds great to you then you might want to jump ahead to the Basic Usage documentation. Otherwise, read on.

3

machinist Documentation, Release 0.1.0

4 Chapter 1. The State Machine Construction Toolkit

CHAPTER 2

Benefits of Explicit State Machines

All software is an implementation of a state machine. The memory associated with a running program represents its
current state. The executable code defines what transitions are possible. Myriad inputs and outputs exist in the form
of:

• data read from file descriptors.

• signals or GUI events such as button clicks.

• data which is rendered onto displays.

• sound which is created by speakers.

The difference between an explicit state machine and software written without a state machine (let’s call this implicit
state machine software or ism software) mostly comes down to what it is easy to learn about the state machine being
represented.

2.1 States

In the explicit state machine all of the states have been enumerated and can be learned at a glance. In ISM (implicit
state machine) software it is impractical to enumerate the states: imagine a program with just one piece of memory,
a 16 bit integer. There are 216 (65536) states in this program. Without reading all the program that manipulates this
state it’s impossible to know which of them are important or how they might interact. Extend your imagination to any
real piece of software which might operate on dozens, hundreds, or thousands of megabytes of memory. Consider the
number of states this amount of memory implies. It’s not just difficult to make sense of this collection of states, it is
practically impossible.

Contrast this with an explicit state machine where each state is given a name and put in a list. The explicit state
machine version of that program with a 16 bit integer will make it obvious that only three of the values (states) it can
take on are used.

2.2 Inputs and Outputs

In the explicit state machine all of the inputs and outputs are also completely enumerated. In ISM software these are
usually only defined by the implementation accepting or producing them. This means there is just one way to determine
what inputs are accepted and what outputs are produced: read the implementation. If you’re lucky, someone will have
done this already and produced some API documentation. If you’re doubly lucky, the implementation won’t have
changed since they did this.

Contrast this with an explicit state machine where the implementation is derived from the explicit list of inputs and
outputs. The implementation cannot diverge because it is a function of the declaration.

5

machinist Documentation, Release 0.1.0

2.3 Transitions

Once again, transitions are completely enumerated in the definition of an explicit state machine. A single transition
specifies that when a specific input is received while the state machine is in a specific state a specific output is produced
and the state machine changes to a specific new state. A collection of transitions completely specifies how the state
machine reacts to inputs and how its future behavior is changed by those inputs. In ISM software it is conventional to
define a constellation of flags to track the state of the program. It is left up to the programmer to build and remember
the cartesian product of these flags in their head. There are also usually illegal flag combinations which the program
is never supposed to encounter. These are either left as traps to future programmers or the implementer must take
the tedious steps of building guards against them arising. All of this results in greater complexity to handle scenarios
which are never even supposed to be encountered.

Contrast this with an explicit state machine where those flags are replaced by the state of the state machine. The valid
states are completely enumerated and there is no need to look at a handful of flags to determine how the program will
behave. Instead of adding complexity to handle impossible cases, those cases are excluded simply by not defining an
explicit state to represent them.

6 Chapter 2. Benefits of Explicit State Machines

CHAPTER 3

Basic Usage

State machines are constructed using machinist.constructFiniteStateMachine.

3.1 Inputs, Outputs, States

Before a machine can be constructed its inputs, outputs, and states must be defined. These are all defined using
twisted.python.constants.

from twisted.python.constants import Names, NamedConstant

class Input(Names):
FARE_PAID = NamedConstant()
ARM_UNLOCKED = NamedConstant()
ARM_TURNED = NamedConstant()
ARM_LOCKED = NamedConstant()

class Output(Names):
ENGAGE_LOCK = NamedConstant()
DISENGAGE_LOCK = NamedConstant()

class State(Names):
LOCKED = NamedConstant()
UNLOCKED = NamedConstant()
ACTIVE = NamedConstant()

3.2 Transitions

Also required is a transition table. The transition table is defined using machinist.TransitionTable.
TransitionTable instances are immutable and have several methods for creating new tables including more
transitions.

from machinist import TransitionTable

table = TransitionTable()

First, define how the FARE_PAID input is handled in the LOCKED state: output DISENGAGE_LOCK and change the
state to the ACTIVE.

7

machinist Documentation, Release 0.1.0

table = table.addTransition(
State.LOCKED, Input.FARE_PAID, [Output.DISENGAGE_LOCK], State.ACTIVE)

Next, define how the ARM_TURNED input is handled in the UNLOCKED state: output ENGAGE_LOCK and change the
state to ACTIVE.

table = table.addTransition(
State.UNLOCKED, Input.ARM_TURNED, [Output.ENGAGE_LOCK], State.ACTIVE)

Last, define two transitions at once for getting out of the ACTIVE state (in this model DISENGAGE_LOCK and
ENGAGE_LOCK activate a physical device to change the lock state; the state machine then waits for an input indicating
the physical device has completed the desired operation).

addTransitions is a convenient way to define more than one transition at once. It is equivalent to several
addTransition calls.

table = table.addTransitions(
State.ACTIVE, {

Input.ARM_UNLOCKED: ([], State.UNLOCKED),
Input.ARM_LOCKED: ([], State.LOCKED),
})

One thing to note here is that the outputs are lists of symbols from the output set. The output of any transition in
Machinist is always a list. This simplifies the definition of output symbols in many cases and grants more flexibility
in how a machine can react to an input. You can see one way in which this is useful already: the transitions out of the
ACTIVE state have no useful outputs and so use an empty list. The handling of these lists of outputs is discussed
in more detail in the next section, Output Executors.

3.3 Output Executors

The last thing that must be defined in order to create any state machine using Machinist is an output executor. In the
previous sections we saw how the outputs of a state machine must be defined and how transitions must specify the
outputs of each transition. The outputs that have been defined so far are only symbols: they can’t have any impact on
the world. This makes them somewhat useless until they are combined with code that knows how to turn an output
symbol into an actual output. This is the output executor’s job. Machinist provides a helper for writing classes that
turn output symbols into side-effects:

from machinist import MethodSuffixOutputer

class Outputer(object):
def output_ENGAGE_LOCK(self, engage):

print("Engaging the lock.")

def output_DISENGAGE_LOCK(self, disengage):
print("Disengaging the lock.")

outputer = MethodSuffixOutputer(Outputer())

When used as the output executor for a state machine, the methods of this instance will be called according to the
names of the outputs that are produced. That is, when a transition is executed which has Output.ENGAGE_LOCK as
an output, output_ENGAGE_LOCK will be called. This lets the application define arbitrary side-effects to associate
with outputs. In this well-defined way the otherwise rigid, structured, explicit state machine can interact with the
messy world.

8 Chapter 3. Basic Usage

machinist Documentation, Release 0.1.0

3.4 Construction

Having defined these things, we can now use constructFiniteStateMachine to construct the finite state
machine.

from machinist import constructFiniteStateMachine

turnstile = constructFiniteStateMachine(
inputs=Input,
outputs=Output,
states=State,
table=table,
initial=State.LOCKED,
richInputs=[],
inputContext={},
world=outputer,

)

Apart from the inputs, outputs, states, transition table, and output executor, the only other argument to pay at-
tention to in this call right now is initial. This defines the state that the state machine is in immediately after
constructFiniteStateMachine returns.

3.5 Receiving Inputs

Having created a state machine, we can now deliver inputs to it. The simplest way to do this is to pass input symbols
to the receive method:

def cycle():
turnstile.receive(Input.FARE_PAID)
turnstile.receive(Input.ARM_UNLOCKED)
turnstile.receive(Input.ARM_TURNED)
turnstile.receive(Input.ARM_LOCKED)

If we combine all of these snippets and call cycle the result is a program that produces this result:

Disengaging the lock.
Engaging the lock.

3.4. Construction 9

machinist Documentation, Release 0.1.0

10 Chapter 3. Basic Usage

CHAPTER 4

Examples

4.1 Model a Turnstile

This example is marked up for piecewise inclusion in basics.rst. All code
relevant to machinist must fall between inclusion markers (so, for example,
__future__ imports may be outside such markers; also this is required by
Python syntax). If you damage the markers the documentation will silently
break. So try not to do that.

from __future__ import print_function

begin setup
from twisted.python.constants import Names, NamedConstant

class Input(Names):
FARE_PAID = NamedConstant()
ARM_UNLOCKED = NamedConstant()
ARM_TURNED = NamedConstant()
ARM_LOCKED = NamedConstant()

class Output(Names):
ENGAGE_LOCK = NamedConstant()
DISENGAGE_LOCK = NamedConstant()

class State(Names):
LOCKED = NamedConstant()
UNLOCKED = NamedConstant()
ACTIVE = NamedConstant()

end setup

begin table def
from machinist import TransitionTable

table = TransitionTable()
end table def

begin first transition
table = table.addTransition(

State.LOCKED, Input.FARE_PAID, [Output.DISENGAGE_LOCK], State.ACTIVE)
end first transition

begin second transition

11

machinist Documentation, Release 0.1.0

table = table.addTransition(
State.UNLOCKED, Input.ARM_TURNED, [Output.ENGAGE_LOCK], State.ACTIVE)

end second transition

begin last transitions
table = table.addTransitions(

State.ACTIVE, {
Input.ARM_UNLOCKED: ([], State.UNLOCKED),
Input.ARM_LOCKED: ([], State.LOCKED),
})

end last transitions

begin outputer
from machinist import MethodSuffixOutputer

class Outputer(object):
def output_ENGAGE_LOCK(self, engage):

print("Engaging the lock.")

def output_DISENGAGE_LOCK(self, disengage):
print("Disengaging the lock.")

outputer = MethodSuffixOutputer(Outputer())
end outputer

begin construct
from machinist import constructFiniteStateMachine

turnstile = constructFiniteStateMachine(
inputs=Input,
outputs=Output,
states=State,
table=table,
initial=State.LOCKED,
richInputs=[],
inputContext={},
world=outputer,

)
end construct

begin inputs
def cycle():

turnstile.receive(Input.FARE_PAID)
turnstile.receive(Input.ARM_UNLOCKED)
turnstile.receive(Input.ARM_TURNED)
turnstile.receive(Input.ARM_LOCKED)

end inputs

if __name__ == ’__main__’:
cycle()

12 Chapter 4. Examples

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

	The State Machine Construction Toolkit
	Benefits of Explicit State Machines
	States
	Inputs and Outputs
	Transitions

	Basic Usage
	Inputs, Outputs, States
	Transitions
	Output Executors
	Construction
	Receiving Inputs

	Examples
	Model a Turnstile

	Indices and tables

