
Livepeer Documentation
Release 0.0.1

Doug Petkanics

Sep 07, 2018

Contents

1 Contributing 3

2 Index 5
2.1 Getting Started . 5
2.2 The Livepeer Node . 7
2.3 Broadcasting on Livepeer . 10
2.4 Bonding and Delegation . 12
2.5 Transcoding . 14
2.6 Developing on Livepeer . 15
2.7 License . 16
2.8 Need Help . 17

i

ii

Livepeer Documentation, Release 0.0.1

Livepeer is a decentralized video broadcasting platform powered by a crypto token on the Ethereum blockchain.
Livepeer is for:

• Developers who want to build applications that include live video.

• Users who want to stream video, gaming, coding, entertainment, educational courses, and other types of content..

• Broadcasters who currently have large audiences and high streaming bills or infrastructure costs can use the
Livepeer network to potentially reduce costs or infrastructure overhead.

Use this documentation to learn how to broadcast video through Livepeer, participate in the Livepeer protocol as a
transcoder or delegator, and build apps or DApps with video based features using Livepeer.

We suggest you start with Getting Started.

Contents 1

http://livepeer.org

Livepeer Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Contributing

The code for this documentation is open source and is available on Github. Updates and pull requests are much
appreciated.

3

http://github.com/livepeer/docs

Livepeer Documentation, Release 0.0.1

4 Chapter 1. Contributing

CHAPTER 2

Index

2.1 Getting Started

This guide will get you started with broadcasting your first livestream using the Livepeer tools in 5 minutes. Livepeer
is currently under active development, and it is accessed through the command line on OS X or Linux.

The first step in getting started with Livepeer is to try to run the Livepeer executables and to broadcast a simple
livestream.

For beginners, or for those who are not so familiar with command line interfaces (Terminal), here is a
simple step-by-step guide to getting started as a broadcaster https://github.com/livepeer/wiki/wiki/Blueprint:
-set-up-a-broadcasting-node-using-Livepeer-and-OBS).

2.1.1 Download Livepeer

Download livepeer and livepeer_cli from https://github.com/livepeer/go-livepeer/releases. Choose the _dar-
win version for OS X and the _linux versions for Linux, and then untar them:

$ tar -zxvf livepeer_darwin.tar.gz
$ mv ./livepeer_darwin/livepeer ./livepeer
$ mv ./livepeer_darwin/livepeer_cli ./livepeer_cli
$./livepeer

This will start a Livepeer node running on the Ethereum main network. It will ask you to set a password and use this
same password to unlock your ETH account.

2.1.2 Broadcast and Play Video

For instructions on broadcasting / playing videos, go to http://livepeer.readthedocs.io/en/latest/broadcasting.html.

5

https://github.com/livepeer/wiki/wiki/Blueprint:-set-up-a-broadcasting-node-using-Livepeer-and-OBS
https://github.com/livepeer/wiki/wiki/Blueprint:-set-up-a-broadcasting-node-using-Livepeer-and-OBS
https://github.com/livepeer/go-livepeer/releases
http://livepeer.readthedocs.io/en/latest/broadcasting.html

Livepeer Documentation, Release 0.0.1

2.1.3 Rinkeby Testnet

Livepeer also runs on the Ethereum Rinkeby testnet. If you want to try out Livepeer without spending real Ether /
Livepeer tokens, you can simply run Livepeer with livepeer -rinkeby. Note: Change the price you are willing
to pay to 200 to avoid being paired with a faulty transcoder. (15 - Set broadcast config)

2.1.4 Fund your account with test ETH

In a separate terminal window, run livepeer_cli:

$ livepeer_cli

Livepeer CLI will print out your account address, ETH balance, Livepeer token balance, and more info. Take note of
the ETH Account address that is printed out, and copy this to your clipboard so that you can use it to play your video
later.:

→˓---------------*
| ETH Account |
→˓0x5A4a992c26CbA8459Ec0d77f4c66216D2a8Fd18F |

→˓---------------*

It should present an array of options for interacting with Livepeer:

What would you like to do? (default = stats)

1. Get node status

2. View protocol parameters

3. List registered transcoders

4. Print latest jobs

5. Invoke “initialize round”

6. Invoke “bond”

7. Invoke “unbond”

8. Invoke “withdraw stake” (LPT)

9. Invoke “withdraw fees” (ETH)

10. Invoke “claim” (for rewards and fees)

11. Invoke “transfer” (LPT)

12. Invoke “deposit” (ETH)

13. Invoke “withdraw deposit” (ETH)

14. Set broadcast config

15. Set Eth gas price

16. Get test LPT

17. Get test ETH

• Before you can broadcast on Livepeer, you need Ethereum’s token: ETH. The best way to get test ETH from
the Rinkeby network is using the Rinkeby faucet:https://faucet.rinkeby.io/ , Make sure to post your Eth account
address somewhere through google+/tweet/facebook, and provide correspond URI to Rinkeby faucet.

6 Chapter 2. Index

Livepeer Documentation, Release 0.0.1

• You can check that the request is successful by going to livepeer_cli and selecting Get node status. You
should see a positive Eth balance.

• Choose the Deposit (ETH) in livepeer_cli. It will ask you how much ETH you would like to deposit.
Any amount should be fine. Type 100000 to start.

2.1.5 What’s Next?

You just demonstrated sending video around the Livepeer network on Rinkeby. Time to learn how to use more
convenient tools to broadcast and consume the streams. The next sections will teach you how to run a node on the
blockchain, use Livepeer to broadcast to a large audience, how to build an app with video functionality using Livepeer,
and how to participate in the Livepeer protocol as a delegator or transcoder.

2.2 The Livepeer Node

The Livepeer node is a command line executable called livepeer that connects to other nodes on the Livepeer
network and speaks the Livepeer protocol. It comes with an accompanying command line interface (CLI) called
livepeer_cli which makes it easy to take a number of actions on the network.

The below instructions are comprehensive for a number of scenarios, but generally running a single Livepeer node and
joining the test network consists of simply running the command:

$ livepeer --rinkeby

2.2.1 Installation

You can download precompiled binaries, or you can build the latest version from source.

Download Executables

Follow the instructions on Getting Started to download the binaries for your platform and set their permissions.

Building from Source

The latest instructions for building the go-livepeer project can be found on Github.

2.2.2 Running a node

Once you have installed the executable, you can invoke it by running:

$ livepeer

Note: by default Livepeer listens to the local interface. This means if you are running Livepeer on a cloud-hosted
instance, you need to set the --rtmpAddr 0.0.0.0:1935 flag. However, there is no security built into the
RTMP listener, so use with caution.

There are two other options that control the use of Livepeer services. The first is the API for the CLI interface. The
CLI is meant to be a control interface towards the node: it can bond and transfer LPT, deposit and withdraw ETH,
initialize rounds, manage broadcast and transcoding configurations, and so forth. Hence, it is strongly recommended
to keep the CLI internal-only: the default setting is `--cliAddr 127.0.0.1:7935. Only change the listening

2.2. The Livepeer Node 7

https://github.com/livepeer/go-livepeer
https://github.com/livepeer/go-livepeer#option-2-build-from-source

Livepeer Documentation, Release 0.0.1

IP if you need to remotely configure your node, and you are absolutely certain that the listening interface is secure
from the outside world.

The second option is the RPC/HTTP port. Broadcasters and transcoders use RPC messaging to interact and users can
view streams via HTTP. The RPC and HTTP functions share the same port, and are configured with the same option.
For the broadcaster, the default is -httpAddr 127.0.0.1:8935 . For transcoders, the default is -httpAddr
0.0.0.0:8935.

In offchain mode

Using offchain mode does not require syncing with the Ethereum blockchain. Start a node in offchain mode with the
command:

$ livepeer --offchain

You are now running a node, and can use it to develop and test Livepeer locally, or even use it as the basis to begin
forming a private network.

Running a Livepeer node on the Ethereum Rinkeby Testnet

The Livepeer testnet is a set of nodes that are running on Ethereum’s Rinkeby testnet blockchain.

Run Livepeer

Make sure that you have gone through the installation steps for both Livepeer, and its dependencies ffmpeg and. Now
you can start Livepeer:

$ livepeer --rinkeby

In a separate terminal window, run livepeer_cli:

$ livepeer_cli

Livepeer CLI will print out your account address, ETH balance, Livepeer token balance, and more info. It should
present an array of options for interacting with Livepeer:

What would you like to do? (default = stats)
1. Get node status
2. View protocol parameters
3. List registered transcoders
4. Print latest jobs
5. Invoke "initialize round"
6. Invoke "bond"
7. Invoke "unbond"
8. Invoke "rebond"
9. Invoke "withdraw stake" (LPT)
10. Invoke "withdraw fees" (ETH)
11. Invoke "claim" (for rewards and fees)
12. Invoke "transfer" (LPT)
13. Invoke "deposit" (ETH)
14. Invoke "withdraw deposit" (ETH)
15. Set broadcast config
16. Set Eth gas price

(continues on next page)

8 Chapter 2. Index

Livepeer Documentation, Release 0.0.1

(continued from previous page)

17. Get test LPT
18. Get test ETH

The testnet contains faucets for providing you with test ETH and test Livepeer Token (LPT), which you will need to
take other actions in Livepeer. The options for the faucets are present only when running with the --rinkeby flag
enabled.

• Get some test eth from the eth faucet from https://faucet.rinkeby.io/. Make sure to use the Eth account address
printed out above in livepeer_cli. Remember to add 0x as a prefix to address, if not present.

– You can check that the request is successful by going to livepeer_cli and selecting Get node status.
You should see a positive Eth balance.

• Now get some test Livepeer tokens. Pick Get test Livepeer Token.

– You can check that the request is successful by going to livepeer_cli and selecting Get node status.
You should see your Token balance go up.

Now that you have Livepeer token and ETH you can use them broadcast, bond and delegate, or even become a
transcoding node:

• Broadcasting on Livepeer

• Bonding and Delegation

• Transcoding

Install and start Geth

Geth is the Ethereum client, and you can run your own Geth instances instead of using the Livepeer testnet Geth
instances. The instructions for installing geth are available on the Ethereum installation guide. Generally this is just
downloading a binary file for your platform.

The “connect yourself” tab on the Testnet Homepage provides instructions for how to initialize Geth and launch it. It
can be summarized as:

• Create a geth data directory. For example:

$ mkdir ~/.lpGeth

We recommend creating a new directory even if you already have one, so the Livepeer testing data will be stored
separately.

• Download the genesis json rinkeby.json. It can be saved anywhere. It’ll just be used once for the next step

• Initialize your local geth node with testnet genesis block. For example:

$ geth --datadir ~/.lpGeth init lptestnet.json

Note: Depending on your geth version, you may see a complaint about ‘genesis.number’ related to your .json file. To
fix the issue, delete the “number” field in the json.

• Create a new geth account and provide a password:

$ geth --datadir ~/.lpGeth account new

2.2. The Livepeer Node 9

https://faucet.rinkeby.io/
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://www.rinkeby.io/#stats
https://www.rinkeby.io/rinkeby.json

Livepeer Documentation, Release 0.0.1

• Copy this account address down somewhere and remember the password, as you’ll need them when you start
the Livepeer node.

• Start geth with the network id 858585 and the Livepeer testnet bootnode. For example:

$ geth --datadir ~/.lpGeth --networkid 858585 --bootnodes "enode://
→˓2975123a0b613588a52a4cc80981a1d101ce4dc0176e62757b771237073bccbf4066b03b5c647d36fcbdd7422fda434029563641bd6e4d2afdb96d73f574fd90@18.
→˓216.122.204:30303"

Now the geth node should be running, and it should soon start downloading blocks.

Running a node on a private network

You can also create your own private network without connecting to the public test network. To do so you’ll initialize
a private ethereum chain using Geth.

Instructions for creating a private ethereum chain are on the geth README.

Start Livepeer:

$ livepeer --v 4 --devenv --ethAcctAddr <ethereum address> --ethPassword <eth account
→˓pw>

If you are on the same machine, specify new ports for rtmpAddr, httpAddr and cliAddr. In this example, we
added 1 to each of the default ports which are in use by the first node Consider creating a second ethereum account
address in the new data directory:

$ livepeer --v 4 --devenv --rtmpAddr 127.0.0.1:1936 --httpAddr 127.0.0.1:8936 --
→˓cliAddr 127.0.0.1:7936 --datadir <new datadir eg. ~/.livepeer2> --ethAcctAddr
→˓<ethereum address> --ethPassword <eth account pw>

The second node should start. You’re now running a private network where the nodes can play different roles such as
broadcaster and transcoder. Note that if you become an transcoder within a private network, the --serviceAddr
option might need to be set in order to match the on-chain Service URI (which you will set when registering the
transcoder).

2.3 Broadcasting on Livepeer

Broadcasting to Livepeer using existing broadcasting tools is easy. After a Livepeer node is running, it exposes an
RTMP interface on port 1935. You can broadcast into Livepeer using this port.

2.3.1 Install Livepeer and Have the Node Running

The following instructions assume that you have followed the installation instructions

and have the node running.

Note: make sure you have deposited ETH if you would like to broadcast.

2.3.2 Broadcasting Using OBS

Start by reading our step by step guide

10 Chapter 2. Index

https://github.com/ethereum/go-ethereum#operating-a-private-network
http://livepeer.readthedocs.io/en/latest/node.html#installation
node.html
https://github.com/livepeer/wiki/wiki/Blueprint:-set-up-a-broadcasting-node-using-Livepeer-and-OBS

Livepeer Documentation, Release 0.0.1

It is far more convenient to broadcast using existing tools that have features for screen capture, composites, overlays,
multiple video and audio sources, etc. One such tool is OBS. To use OBS you have to change two settings:

• Settings -> Stream -> URL. Set it as rtmp://localhost:1935/movie

• Settings -> Output -> Output Mode. Set it to Advanced. Ensure the following settings are enabled:

– Encoder: x264

– Rate Control: CBR

– Keyframe Interval: 4

• Start streaming as usual.

The tricky part is that OBS is not aware of the Livepeer Manifest IDs. You can find the manifestID in the console
output of the Livepeer node. Or you can request it from the Livepeer node through curl:

$ curl http://localhost:7935/manifestID

Now that you have the manifestID you can share it or play the stream as described above using the web player or
ffplay.

2.3.3 Playing the Stream

You can request your stream in a number of ways.

• Request the stream using your channel through the per-broadcaster web player. Use the Eth address that is
printed out in the Livepeer CLI or the node output.

• Request the stream using the manifest ID through the web player.

• Request the stream using ffplay

$ ffplay http://localhost:8935/stream/{streamID}.m3u8

Note that the default playback port, 8935, is different than the internal API port, 7935, which is used for diagnostics
such as /manifestID.

When you’re finished broadcasting you can type q to stop the stream.

2.3.4 Broadcasting Using FFMPEG

To broadcast using ffmpeg you can try the following command:

For Mac:

ffmpeg -f avfoundation -framerate 30 -pixel_format uyvy422 -i "0:0" -vcodec libx264 -
→˓tune zerolatency -b 1000k -x264-params keyint=60:min-keyint=60 -acodec aac -ac 1 -
→˓b:a 96k -f flv rtmp://localhost:1935/movie

For Linux:

ffmpeg -f dshow -framerate 30 -pixel_format uyvy422 -i "0:0" -vcodec libx264 -tune
→˓zerolatency -b 1000k -x264-params keyint=60:min-keyint=60 -acodec aac -ac 1 -b:a
→˓96k -f flv rtmp://localhost:1935/movie

As described above, you can now find the manifestID and share it to play.

2.3. Broadcasting on Livepeer 11

https://obsproject.com/
http://media.livepeer.org
http://media.livepeer.org/player.html

Livepeer Documentation, Release 0.0.1

2.3.5 Broadcasting from Mobile

There is not currently a natively Livepeer aware mobile app, but much like using OBS, as described above, you can
use any existing mobile broadcasting tool such as ManyCam on iOS or RTMPCamera on Android to broadcast into
Livepeer.

Instead of setting the rtmp output to localhost:1935, you’ll want to set it to a remote Livepeer node that you are
running on a server. Replace localhost with the IP address of the server.

The tricky part will be finding the manifestID since the app won’t be aware.

A good solution to this would be for someone to fork one of the open source mobile broadcasting apps to make
it Livepeer aware, by fetching the manifestID from the server and displaying it when the user starts broadcasting.
Another solution we’re working on is making web and mobile native Livepeer clients, so there’s no need to connect to
a remote node.

2.3.6 Reaching Many Viewers at Scale

Any user on the Livepeer network who has the ID for your stream should be able to request and access it. The current
relay-based solution for delivering the video works in a p2p fashion, but may be susceptible to user churn or low
bandwidth connections. Future versions of the software promise resilience against this by implementing more robust
p2p protocols.

In the meantime however, if you would like to take your output video and make it available via a conventional CDN,
then you have the option to do so.

• Run a Livepeer node on a server, and expose ports 8935 and 1935.

• Boot up the livepeer node with the –rtmpAddr 0.0.0.0 and -httpAddr 0.0.0.0 flags

• Configure your CDN to cache video content running at http://hostname:8935/stream/
{streamID}.m3u8

Now any requests that come into your site or DApp for video streaming through Livepeer will pull the video from the
network, but will be served off of a CDN. In the future, we would like to replace this option with the p2p network that
Livepeer forms around a stream.

2.3.7 FAQ

Check out our Broadcasting Forum for [frequently asked questions] (https://forum.livepeer.org/c/using-livepeer-for-
broadcasting)

If you have any questions, reach out to Chris Hobcroft on our [community chat] (https://discord.gg/RR4kFAh)

2.4 Bonding and Delegation

Bonding is how most users participate in the Livepeer protocol and add value to the network long term by vetting
and electing the best nodes to provide transcoding and video services to the network. See the Delegator Wikipage
which describes what bonding and delegation is, how to do it, as well as tutorials on how to weigh various Transcoder
statistics

The protocol mints new token every round and rewards participation in the network as a Delegator or Transcoder

12 Chapter 2. Index

transcoding.html
https://github.com/livepeer/wiki/wiki/Delegating

Livepeer Documentation, Release 0.0.1

2.4.1 Delegating using Explorer

Explorer is a tool we built to interface with livepeer cli in a less technical way

• How to Delegate

2.4.2 Assessing Transcoders

Assess transcoders based on performance, statistics and social campaigns

• Social Campaigns can be found in the Forum

• Stats can be viewed on Explorer

• Definitions and examples are on the Delegator Wiki

2.4.3 Delegating using the Terminal

In order to bond your Livepeer Token (LPT) you use livepeer_cli.

$ livepeer_cli

Make sure you have ETH and LPT and are running a Livepeer node as described in Getting Started.

The CLI presents options to

• Bond

• Unbond

• Withdraw Bond

When you choose to bond, it will present you with a table of transcoders to choose from in order to bond towards.
You should select a transcoder based upon many factors including the fees that they’re charging and sharing back to
you, their statistics on past performance, and the social data that they’ve shared through forum posts or other Livepeer
related resources. In the end, you’re making a decision about whom you think will add the most value to the Livepeer
network.

Keep in mind that if you delegate towards a high performing, honest transcoder you will earn a portion of the fees that
they receive. If you delegate towards a transcoder who cheats or doesn’t reliably do work in the network, you will lose
out on the economic opportunity of fees and inflationary token issuance. Select wisely!

• Choose the option to Bond when you’d like to bond.

2.4.4 Unbonding

A Guide to Unbonding and Claiming Fees can be found on our Delegator Wiki

• Choose the option to Unbond when you’d like to withdraw your bond from a particular transcoder.

You will not yet be able to access your token while it’s unbonding for the length of the UnbondingPeriod. You
can rebond during this period to the same or a different transcoder.

• At the end of the UnbondingPeriod you can choose the option to Withdraw which will now give you
access to your unbonded token.

2.4. Bonding and Delegation 13

https://github.com/livepeer/wiki/wiki/Delegating#how-to-delegate
https://forum.livepeer.org/c/transcoders
https://explorer.livepeer.org/
https://github.com/livepeer/wiki/wiki/Delegating#applying-these-methods-examples
getting_started.html
https://github.com/livepeer/wiki/wiki/Delegating#getting-your-tokens-and-rewards

Livepeer Documentation, Release 0.0.1

2.5 Transcoding

Transcoding is the process of taking an input video in one format and bitrate, and converting it into many formats and
bitrates to make it playable on the majority of devices on the planet at any connection speed.

In The Livepeer network, nodes who play the role of transcoder, perform this very important function, and as a result
it’s important that they have high bandwidth connections, sufficient hardware, and reliable devOps practices. These
nodes are delegated towards and elected to perform this role, and they are rewarded with the ability to earn fees from
the network.

Quicklinks:

Transcoder Megathread on Forum

Transcoder Election Dashboard (currently Rinkeby testnet)

Transcoder campaign thread

Livepeer Whitepaper

Transcoder chat

2.5.1 Becoming a Transcoder

We’ll walk through the steps of becoming a transcoder on the test network. Start livepeer with the --transcoder
flag:

$ livepeer --rinkeby --transcoder

Run livepeer_cli, and make sure you have test ETH and test LPT as described in Getting Started.

$ livepeer_cli

You should see the Transcoder Status as “Not Registered”.

Pick “Become a transcoder” in the wizard. Make sure to choose “bond to yourself”.

At this point the interface will ask you to set 3 values if you have not set them already:

• PricePerSegment - How many base unit Livepeer Token (LPT) will you charge to transcode a 4 second
segment of video? Keep in mind that 1 LPT == 10^18 base unit LPT. Example 1000.

• FeeShare - You will collect fees from broadcasters based upon the above price that you charge and how
many segments you transcode. What % of fees would you to keep? The remaining fees will be passed to your
delegators. Example 98%.

• BlockRewardCut - All delegators are entitled to their share of newly minted inflationary Livepeer Token.
Set the cut as a percentage that you will take from delegators who delegate towards you in exchange for doing
the work of performing this valuable service of transcoding reliably. Example: 3%.

• Public IP:Port - Transcoders must be publicly accessible at the IP:port in order to receive streams from
broadcasters.

If Successful, you should see the Transcoder Status change to “Registered”

Wait for the next round to start, and your transcoder will become active. At this point, the Livepeer node should handle
everything for you. The important thing is that you keep the node running.

14 Chapter 2. Index

https://forum.livepeer.org/t/transcoder-megathread-start-here-to-learn-about-playing-the-role-of-transcoder-on-livepeer/190
https://explorer.livepeer.org/transcoders
https://forum.livepeer.org/c/transcoders/transcoder-campaign
https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md
https://discord.gg/cBfD23u
getting_started.html
bonding_and_delegation.html
bonding_and_delegation.html

Livepeer Documentation, Release 0.0.1

2.5.2 FAQ

After running the transcoder for a while, I get an error that says “too many open files”.

• This means you have to increase the default file limit. This is a requirement for running an IPFS node. Since
Livepeer transcoders run an internal IPFS node, we also have that requirement. The default file limit is 1024,
increasing it to something like 4096 should be good. See this forum post for more details.

I get a lot of error messages saying things like “Error with x:EOF”. And a lot of times, the transcoder doesn’t
do anything when it’s suppose to take some action (like call reward, do transcoding jobs, etc).

• This is most likely because the connection between the Livepeer node and the Ethereum network is flaky. It is
recommended to run a local Geth or Parity node when running a Livepeer transcoder. If you have a local
Geth or Parity running, you can use the --ethIpcPath flag to specify the local IPC file location, which
is a much more stable way to connect to the Ethereum network.

I get an error that looks something like “failed to estimate gas needed: gas required exceeds allowance or always
failing transaction”.

• This is because the gas estimator is giving incorrect estimates. To fix it, you can manually pass in a gas limit
using -gasLimit. For example, $ livepeer -transcoder -gasLimit 400000.

What does being ‘publicly accessible’ mean? Can I run a transcoder from home?

• The transcoder should be reachable by broadcasters via the public IP and port that is set during transcoder
configuration. Transcoders will not be able to serve the Livepeer network if they are behind a NAT (eg, a home
router). If this is the case, special accommodations must be made for the transcoder, such as port forwarding or
putting the the transcoder in the DMZ. The only port that is required to be public is the one that was set during
the transcoder registration step (default 8935). Be aware that there are many risks to running a public server.
Only set up a transcoder if you are comfortable with managing these risks.

What is the Service URI? Does this need to be an IP?

The Service Registry acts as a discovery mechanism to allow broadcasters to look up the addresses of transcoders
on the network. Transcoders register their Service URI at configuration time; this is submitted to the blockchain as
a standalone transaction. While the configuration tool only asks for your IP:port, the URI stored on the blockchain
in the form of https://IP:port. Transcoders are expected to provide a consistent and reliable service, so IPs
here should remain static. However, a host (DNS) name is also allowed for the service URI to give transcoders some
flexibility.

What does this error mean? “Service address https://127.0.0.1:4433 did not match discovered address
https://127.1.5.10:8935; set the correct address in livepeer_cli or use -serviceAddr”

• When starting up, the transcoder checks if the current public IP matches the IP that is stored on the blockchain. If
there is a mismatch, there is a possibility that your node is not publicly accessible. Override the locally inferred
IP address by setting -serviceAddr IP:port to what is on the blockchain. Ensure your node is actually
accessible at that address.

TODO: These documents could be expanded with far more information about the transactions that a Livepeer
Transcoder has to submit on a regular basis to avoid being penalized and to earn their rewards and fees.

2.6 Developing on Livepeer

2.6.1 Building Video Dapps

• Video-based Dapps (for example, livepeer.tv)

2.6. Developing on Livepeer 15

https://forum.livepeer.org/t/increase-file-limit-as-a-transcoder/170
http://livepeer.tv

Livepeer Documentation, Release 0.0.1

• Infrastructure tools and services for broadcasters or live streamers (for example, SAAS services on top of
Livepeer)

• Livepeer Player - A react component for playing live video - https://github.com/livepeer/livepeerjs/tree/master/
packages/chroma

2.6.2 Building Livepeer Protocol Dapps

• Dapps for the Livepeer ecosystem. (for example, livepeer protocol explorer or Supermax)

2.6.3 Building Tools for Livepeer

• SDKs for Livepeer (for example, livepeerjs-sdk or livepeerjs-graphql)

• Client implementation for Livepeer (for example, go-livepeer)

2.6.4 Open Projects

Livepeer also posts open problems for discussion, ideas, and collaboration on Github. Check out:

• Open Project Proposals

• Open Research Areas

2.6.5 Contributing to Livepeer

For developers who are looking for interesting to problems to work on related to decentralized tech, blockchain,
cryptocurrency, video engineering, and peer-to-peer networking, Livepeer may provide some interesting challenges.
The three technical areas that Livepeer focuses on today are:

• Protocol implementation (Smart Contract)

• Livepeer Node (Distributed Systems / Networking)

• Livepeer Media Server (Video Engineering)

For the protocol , you can follow the protocol repo. It requires some background in Solidity and the Livepeer Whitepa-
per.

For the livepeer node, check out the go-livepeer repo. It requires some understanding of Golang and Geth. Setting up
a development enviroment can be done by following ‘these instructions‘_.

For the livepeer media server implementation, take a look at the LPMS repo. It requires some video engineering
knowledge. The demuxed conf videos and the Apple Live streaming doc are good resources to start learning.

If you’re interested in the any of the above challenges, or are building video features into an application, jump into our
development chat room on Discord and join the conversation.

2.7 License

MIT License

Copyright (c) 2017 Livepeer, Inc.

16 Chapter 2. Index

https://github.com/livepeer/livepeerjs/tree/master/packages/chroma
https://github.com/livepeer/livepeerjs/tree/master/packages/chroma
https://explorer.livepeer.org/
https://www.supermax.cool/livepeer
https://github.com/livepeer/livepeerjs/tree/master/packages/sdk
https://github.com/livepeer/livepeerjs/tree/master/packages/graphql-sdk
https://github.com/livepeer/go-livepeer
https://github.com/livepeer/project-proposals/projects/1
https://github.com/livepeer/research/projects/1
https://github.com/livepeer/protocol
https://solidity.readthedocs.io/en/develop/
https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md
https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md
https://github.com/livepeer/go-livepeer
https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/livepeer/lpms
https://www.twitch.tv/demuxed/videos/all
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html
https://discord.gg/7wRSUGX

Livepeer Documentation, Release 0.0.1

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.7.1 Contact

Questions? Email contact@livepeer.org

2.8 Need Help

The Livepeer team and community are available to help with any additional questions. You can find them on:

• Discord chat room: https://discord.gg/7wRSUGX

• Forum: http://forum.livepeer.org

• Twitter: http://twitter.com/LivepeerOrg

• Reddit: http://reddit.com/r/livepeer

2.8. Need Help 17

mailto:contact@livepeer.org
https://discord.gg/7wRSUGX
http://forum.livepeer.org
http://twitter.com/LivepeerOrg
http://reddit.com/r/livepeer

	Contributing
	Index
	Getting Started
	The Livepeer Node
	Broadcasting on Livepeer
	Bonding and Delegation
	Transcoding
	Developing on Livepeer
	License
	Need Help

