
LightGBM
Release 4.3.0.99

Microsoft Corporation

May 10, 2024

CONTENTS:

1 Installation Guide 3

2 Quick Start 19

3 Python-package Introduction 21

4 Features 27

5 Experiments 35

6 Parameters 41

7 Parameters Tuning 65

8 C API 71

9 Python API 107

10 Distributed Learning Guide 227

11 LightGBM GPU Tutorial 237

12 Advanced Topics 241

13 LightGBM FAQ 245

14 Development Guide 253

15 GPU Tuning Guide and Performance Comparison 255

16 GPU SDK Correspondence and Device Targeting Table 259

17 GPU Windows Compilation 263

18 Recommendations When Using gcc 283

19 Documentation 285

20 Indices and Tables 287

Index 289

i

ii

LightGBM, Release 4.3.0.99

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed
and efficient with the following advantages:

• Faster training speed and higher efficiency.

• Lower memory usage.

• Better accuracy.

• Support of parallel, distributed, and GPU learning.

• Capable of handling large-scale data.

For more details, please refer to Features.

CONTENTS: 1

./Features.html

LightGBM, Release 4.3.0.99

2 CONTENTS:

CHAPTER

ONE

INSTALLATION GUIDE

This is a guide for building the LightGBM Command Line Interface (CLI). If you want to build the Python-package or
R-package please refer to Python-package and R-package folders respectively.

All instructions below are aimed at compiling the 64-bit version of LightGBM. It is worth compiling the 32-bit version
only in very rare special cases involving environmental limitations. The 32-bit version is slow and untested, so use it
at your own risk and don’t forget to adjust some of the commands below when installing.

If you need to build a static library instead of a shared one, you can add -DBUILD_STATIC_LIB=ON to CMake flags.

Users who want to perform benchmarking can make LightGBM output time costs for different internal routines by
adding -DUSE_TIMETAG=ON to CMake flags.

It is possible to build LightGBM in debug mode. In this mode all compiler optimizations are disabled and LightGBM
performs more checks internally. To enable debug mode you can add -DUSE_DEBUG=ON to CMake flags or choose
Debug_* configuration (e.g. Debug_DLL, Debug_mpi) in Visual Studio depending on how you are building LightGBM.

In addition to the debug mode, LightGBM can be built with compiler sanitizers. To enable them add
-DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak;undefined" to CMake flags. These values re-
fer to the following supported sanitizers:

• address - AddressSanitizer (ASan);

• leak - LeakSanitizer (LSan);

• undefined - UndefinedBehaviorSanitizer (UBSan);

• thread - ThreadSanitizer (TSan).

Please note, that ThreadSanitizer cannot be used together with other sanitizers. For more info and additional sanitizers’
parameters please refer to the following docs. It is very useful to build C++ unit tests with sanitizers.

You can also download the artifacts of the latest successful build on master branch (nightly builds) here: .

Contents

• Windows

• Linux

• macOS

• Docker

• Build Threadless Version (not Recommended)

• Build MPI Version

• Build GPU Version

3

https://github.com/microsoft/LightGBM/tree/master/python-package
https://github.com/microsoft/LightGBM/tree/master/R-package
https://github.com/google/sanitizers/wiki
https://lightgbm.readthedocs.io/en/latest/Installation-Guide.html

LightGBM, Release 4.3.0.99

• Build CUDA Version

• Build HDFS Version

• Build Java Wrapper

• Build C++ Unit Tests

1.1 Windows

On Windows LightGBM can be built using

• Visual Studio;

• CMake and VS Build Tools;

• CMake and MinGW.

1.1.1 Visual Studio (or VS Build Tools)

With GUI

1. Install Visual Studio (2015 or newer).

2. Navigate to one of the releases at https://github.com/microsoft/LightGBM/releases, download
LightGBM-complete_source_code_zip.zip, and unzip it.

3. Go to LightGBM-master/windows folder.

4. Open LightGBM.sln file with Visual Studio, choose Release configuration and click BUILD -> Build
Solution (Ctrl+Shift+B).

If you have errors about Platform Toolset, go to PROJECT -> Properties -> Configuration Properties
-> General and select the toolset installed on your machine.

The .exe file will be in LightGBM-master/windows/x64/Release folder.

From Command Line

1. Install Git for Windows, CMake and VS Build Tools (VS Build Tools is not needed if Visual Studio (2015 or
newer) is already installed).

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -A x64
cmake --build build --target ALL_BUILD --config Release

The .exe and .dll files will be in LightGBM/Release folder.

4 Chapter 1. Installation Guide

https://visualstudio.microsoft.com/downloads/
https://github.com/microsoft/LightGBM/releases
https://git-scm.com/download/win
https://cmake.org/
https://visualstudio.microsoft.com/downloads/

LightGBM, Release 4.3.0.99

1.1.2 MinGW-w64

1. Install Git for Windows, CMake and MinGW-w64.

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -G "MinGW Makefiles"
cmake --build build -j4

The .exe and .dll files will be in LightGBM/ folder.

Note: You may need to run the cmake -B build -S . -G "MinGW Makefiles" one more time if you encounter
the sh.exe was found in your PATH error.

It is recommended that you use Visual Studio since it has better multithreading efficiency in Windows for many-core
systems (see Question 4 and Question 8).

Also, you may want to read gcc Tips.

1.2 Linux

On Linux LightGBM can be built using CMake and gcc or Clang.

1. Install CMake.

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S .
cmake --build build -j4

Note: glibc >= 2.28 is required.

Note: In some rare cases you may need to install OpenMP runtime library separately (use your package manager and
search for lib[g|i]omp for doing this).

Also, you may want to read gcc Tips.

1.2.1 Using Ninja

On Linux, LightGBM can also be built with Ninja instead of make.

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -G 'Ninja'
cmake --build build -j2

1.2. Linux 5

https://git-scm.com/download/win
https://cmake.org/
https://www.mingw-w64.org/downloads/
./FAQ.html#i-am-using-windows-should-i-use-visual-studio-or-mingw-for-compiling-lightgbm
./FAQ.html#cpu-usage-is-low-like-10-in-windows-when-using-lightgbm-on-very-large-datasets-with-many-core-systems
./gcc-Tips.html
https://cmake.org/
./gcc-Tips.html
https://ninja-build.org/

LightGBM, Release 4.3.0.99

1.3 macOS

On macOS LightGBM can be installed using Homebrew, or can be built using CMake and Apple Clang or gcc.

1.3.1 Apple Clang

Only Apple Clang version 8.1 or higher is supported.

Install Using Homebrew

brew install lightgbm

Build from GitHub

1. Install CMake :

brew install cmake

2. Install OpenMP:

brew install libomp

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S .
cmake --build build -j4

1.3.2 gcc

1. Install CMake :

brew install cmake

2. Install gcc:

brew install gcc

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
export CXX=g++-7 CC=gcc-7 # replace "7" with version of gcc installed on your␣
→˓machine
cmake -B build -S .
cmake --build build -j4

Also, you may want to read gcc Tips.

6 Chapter 1. Installation Guide

https://cmake.org/
https://cmake.org/
./gcc-Tips.html

LightGBM, Release 4.3.0.99

1.4 Docker

Refer to Docker folder.

1.5 Build Threadless Version (not Recommended)

The default build version of LightGBM is based on OpenMP. You can build LightGBM without OpenMP support but
it is strongly not recommended.

1.5.1 Windows

On Windows a version of LightGBM without OpenMP support can be built using

• Visual Studio;

• CMake and VS Build Tools;

• CMake and MinGW.

Visual Studio (or VS Build Tools)

With GUI

1. Install Visual Studio (2015 or newer).

2. Navigate to one of the releases at https://github.com/microsoft/LightGBM/releases, download
LightGBM-complete_source_code_zip.zip, and unzip it.

3. Go to LightGBM-master/windows folder.

4. Open LightGBM.sln file with Visual Studio.

5. Go to PROJECT -> Properties -> Configuration Properties -> C/C++ -> Language and change the
OpenMP Support property to No (/openmp-).

6. Get back to the project’s main screen, then choose Release configuration and click BUILD -> Build Solution
(Ctrl+Shift+B).

If you have errors about Platform Toolset, go to PROJECT -> Properties -> Configuration Properties
-> General and select the toolset installed on your machine.

The .exe file will be in LightGBM-master/windows/x64/Release folder.

From Command Line

1. Install Git for Windows, CMake and VS Build Tools (VS Build Tools is not needed if Visual Studio (2015 or
newer) is already installed).

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -A x64 -DUSE_OPENMP=OFF
cmake --build build --target ALL_BUILD --config Release

1.4. Docker 7

https://github.com/microsoft/LightGBM/tree/master/docker
https://visualstudio.microsoft.com/downloads/
https://github.com/microsoft/LightGBM/releases
https://git-scm.com/download/win
https://cmake.org/
https://visualstudio.microsoft.com/downloads/

LightGBM, Release 4.3.0.99

The .exe and .dll files will be in LightGBM/Release folder.

MinGW-w64

1. Install Git for Windows, CMake and MinGW-w64.

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -G "MinGW Makefiles" -DUSE_OPENMP=OFF
cmake --build build -j4

The .exe and .dll files will be in LightGBM/ folder.

Note: You may need to run the cmake -B build -S . -G "MinGW Makefiles" -DUSE_OPENMP=OFF one more
time if you encounter the sh.exe was found in your PATH error.

1.5.2 Linux

On Linux a version of LightGBM without OpenMP support can be built using CMake and gcc or Clang.

1. Install CMake.

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_OPENMP=OFF
cmake --build build -j4

Note: glibc >= 2.14 is required.

1.5.3 macOS

On macOS a version of LightGBM without OpenMP support can be built using CMake and Apple Clang or gcc.

Apple Clang

Only Apple Clang version 8.1 or higher is supported.

1. Install CMake :

brew install cmake

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_OPENMP=OFF
cmake --build build -j4

8 Chapter 1. Installation Guide

https://git-scm.com/download/win
https://cmake.org/
https://www.mingw-w64.org/downloads/
https://cmake.org/
https://cmake.org/

LightGBM, Release 4.3.0.99

gcc

1. Install CMake :

brew install cmake

2. Install gcc:

brew install gcc

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
export CXX=g++-7 CC=gcc-7 # replace "7" with version of gcc installed on your␣
→˓machine
cmake -B build -S . -DUSE_OPENMP=OFF
cmake --build build -j4

1.6 Build MPI Version

The default build version of LightGBM is based on socket. LightGBM also supports MPI. MPI is a high performance
communication approach with RDMA support.

If you need to run a distributed learning application with high performance communication, you can build the Light-
GBM with MPI support.

1.6.1 Windows

On Windows an MPI version of LightGBM can be built using

• MS MPI and Visual Studio;

• MS MPI, CMake and VS Build Tools.

With GUI

1. You need to install MS MPI first. Both msmpisdk.msi and msmpisetup.exe are needed.

2. Install Visual Studio (2015 or newer).

3. Navigate to one of the releases at https://github.com/microsoft/LightGBM/releases, download
LightGBM-complete_source_code_zip.zip, and unzip it.

4. Go to LightGBM-master/windows folder.

5. Open LightGBM.sln file with Visual Studio, choose Release_mpi configuration and click BUILD -> Build
Solution (Ctrl+Shift+B).

If you have errors about Platform Toolset, go to PROJECT -> Properties -> Configuration Properties
-> General and select the toolset installed on your machine.

The .exe file will be in LightGBM-master/windows/x64/Release_mpi folder.

1.6. Build MPI Version 9

https://cmake.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi-release-notes
https://visualstudio.microsoft.com/downloads/
https://github.com/microsoft/LightGBM/releases

LightGBM, Release 4.3.0.99

From Command Line

1. You need to install MS MPI first. Both msmpisdk.msi and msmpisetup.exe are needed.

2. Install Git for Windows, CMake and VS Build Tools (VS Build Tools is not needed if Visual Studio (2015 or
newer) is already installed).

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -A x64 -DUSE_MPI=ON
cmake --build build --target ALL_BUILD --config Release

The .exe and .dll files will be in LightGBM/Release folder.

Note: Building MPI version by MinGW is not supported due to the miss of MPI library in it.

1.6.2 Linux

On Linux an MPI version of LightGBM can be built using Open MPI, CMake and gcc or Clang.

1. Install Open MPI.

2. Install CMake.

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_MPI=ON
cmake --build build -j4

Note: glibc >= 2.14 is required.

Note: In some rare cases you may need to install OpenMP runtime library separately (use your package manager and
search for lib[g|i]omp for doing this).

1.6.3 macOS

On macOS an MPI version of LightGBM can be built using Open MPI, CMake and Apple Clang or gcc.

Apple Clang

Only Apple Clang version 8.1 or higher is supported.

1. Install CMake :

brew install cmake

2. Install OpenMP:

brew install libomp

3. Install Open MPI:

10 Chapter 1. Installation Guide

https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi-release-notes
https://git-scm.com/download/win
https://cmake.org/
https://visualstudio.microsoft.com/downloads/
https://www.open-mpi.org/
https://cmake.org/
https://cmake.org/

LightGBM, Release 4.3.0.99

brew install open-mpi

4. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_MPI=ON
cmake --build build -j4

gcc

1. Install CMake :

brew install cmake

2. Install gcc:

brew install gcc

3. Install Open MPI:

brew install open-mpi

4. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
export CXX=g++-7 CC=gcc-7 # replace "7" with version of gcc installed on your␣
→˓machine
cmake -B build -S . -DUSE_MPI=ON
cmake --build build -j4

1.7 Build GPU Version

1.7.1 Linux

On Linux a GPU version of LightGBM (device_type=gpu) can be built using OpenCL, Boost, CMake and gcc or
Clang.

The following dependencies should be installed before compilation:

• OpenCL 1.2 headers and libraries, which is usually provided by GPU manufacture.

The generic OpenCL ICD packages (for example, Debian package ocl-icd-libopencl1 and
ocl-icd-opencl-dev) can also be used.

• libboost 1.56 or later (1.61 or later is recommended).

We use Boost.Compute as the interface to GPU, which is part of the Boost library since version 1.61. However,
since we include the source code of Boost.Compute as a submodule, we only require the host has Boost 1.56
or later installed. We also use Boost.Align for memory allocation. Boost.Compute requires Boost.System and
Boost.Filesystem to store offline kernel cache.

1.7. Build GPU Version 11

https://cmake.org/

LightGBM, Release 4.3.0.99

The following Debian packages should provide necessary Boost libraries: libboost-dev,
libboost-system-dev, libboost-filesystem-dev.

• CMake

To build LightGBM GPU version, run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_GPU=1
if you have installed NVIDIA CUDA to a customized location, you should specify paths␣
→˓to OpenCL headers and library like the following:
cmake -B build -S . -DUSE_GPU=1 -DOpenCL_LIBRARY=/usr/local/cuda/lib64/libOpenCL.so -
→˓DOpenCL_INCLUDE_DIR=/usr/local/cuda/include/
cmake --build build

Note: glibc >= 2.14 is required.

Note: In some rare cases you may need to install OpenMP runtime library separately (use your package manager and
search for lib[g|i]omp for doing this).

1.7.2 Windows

On Windows a GPU version of LightGBM (device_type=gpu) can be built using OpenCL, Boost, CMake and VS
Build Tools or MinGW.

If you use MinGW, the build procedure is similar to the build on Linux. Refer to GPU Windows Compilation to get
more details.

Following procedure is for the MSVC (Microsoft Visual C++) build.

1. Install Git for Windows, CMake and VS Build Tools (VS Build Tools is not needed if Visual Studio (2015 or
newer) is installed).

2. Install OpenCL for Windows. The installation depends on the brand (NVIDIA, AMD, Intel) of your GPU card.

• For running on Intel, get Intel SDK for OpenCL.

• For running on AMD, get AMD APP SDK.

• For running on NVIDIA, get CUDA Toolkit.

Further reading and correspondence table: GPU SDK Correspondence and Device Targeting Table.

3. Install Boost Binaries.

Note: Match your Visual C++ version:

Visual Studio 2015 -> msvc-14.0-64.exe,

Visual Studio 2017 -> msvc-14.1-64.exe,

Visual Studio 2019 -> msvc-14.2-64.exe,

Visual Studio 2022 -> msvc-14.3-64.exe.

4. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -A x64 -DUSE_GPU=1 -DBOOST_ROOT=C:/local/boost_1_63_0 -DBOOST_
→˓LIBRARYDIR=C:/local/boost_1_63_0/lib64-msvc-14.0

(continues on next page)

12 Chapter 1. Installation Guide

./GPU-Windows.html
https://git-scm.com/download/win
https://cmake.org/
https://visualstudio.microsoft.com/downloads/
https://software.intel.com/en-us/articles/opencl-drivers
https://developer.nvidia.com/cuda-downloads
./GPU-Targets.html
https://sourceforge.net/projects/boost/files/boost-binaries/

LightGBM, Release 4.3.0.99

(continued from previous page)

if you have installed NVIDIA CUDA to a customized location, you should specify␣
→˓paths to OpenCL headers and library like the following:
cmake -B build -S . -A x64 -DUSE_GPU=1 -DBOOST_ROOT=C:/local/boost_1_63_0 -DBOOST_
→˓LIBRARYDIR=C:/local/boost_1_63_0/lib64-msvc-14.0 -DOpenCL_LIBRARY="C:/Program␣
→˓Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/OpenCL.lib" -DOpenCL_
→˓INCLUDE_DIR="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/include"
cmake --build build --target ALL_BUILD --config Release

Note: C:/local/boost_1_63_0 and C:/local/boost_1_63_0/lib64-msvc-14.0 are locations of your
Boost binaries (assuming you’ve downloaded 1.63.0 version for Visual Studio 2015).

1.7.3 Docker

Refer to GPU Docker folder.

1.8 Build CUDA Version

The original GPU build of LightGBM (device_type=gpu) is based on OpenCL.

The CUDA-based build (device_type=cuda) is a separate implementation. Use this version in Linux environments
with an NVIDIA GPU with compute capability 6.0 or higher.

1.8.1 Linux

On Linux a CUDA version of LightGBM can be built using CUDA, CMake and gcc or Clang.

The following dependencies should be installed before compilation:

• CUDA 11.0 or later libraries. Please refer to this detailed guide. Pay great attention to the minimum required
versions of host compilers listed in the table from that guide and use only recommended versions of compilers.

• CMake

To build LightGBM CUDA version, run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_CUDA=1
cmake --build build -j4

Note: glibc >= 2.14 is required.

Note: In some rare cases you may need to install OpenMP runtime library separately (use your package manager and
search for lib[g|i]omp for doing this).

1.8. Build CUDA Version 13

https://github.com/microsoft/LightGBM/tree/master/docker/gpu
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

LightGBM, Release 4.3.0.99

1.8.2 macOS

The CUDA version is not supported on macOS.

1.8.3 Windows

The CUDA version is not supported on Windows. Use the GPU version (device_type=gpu) for GPU acceleration on
Windows.

1.9 Build HDFS Version

Warning: HDFS support in LightGBM is deprecated, and will be removed in a future release. See https://github.
com/microsoft/LightGBM/issues/6436.

The HDFS version of LightGBM was tested on CDH-5.14.4 cluster.

1.9.1 Linux

On Linux a HDFS version of LightGBM can be built using CMake and gcc.

1. Install CMake.

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_HDFS=ON
if you have installed HDFS to a customized location, you should specify paths to␣
→˓HDFS headers (hdfs.h) and library (libhdfs.so) like the following:
cmake \
-DUSE_HDFS=ON \
-DHDFS_LIB="/opt/cloudera/parcels/CDH-5.14.4-1.cdh5.14.4.p0.3/lib64/libhdfs.so"␣
→˓\
-DHDFS_INCLUDE_DIR="/opt/cloudera/parcels/CDH-5.14.4-1.cdh5.14.4.p0.3/include/"␣
→˓\
..
cmake --build build -j4

Note: glibc >= 2.14 is required.

Note: In some rare cases you may need to install OpenMP runtime library separately (use your package manager and
search for lib[g|i]omp for doing this).

14 Chapter 1. Installation Guide

https://github.com/microsoft/LightGBM/issues/6436
https://github.com/microsoft/LightGBM/issues/6436
https://cmake.org/

LightGBM, Release 4.3.0.99

1.10 Build Java Wrapper

Using the following instructions you can generate a JAR file containing the LightGBM C API wrapped by SWIG.

1.10.1 Windows

On Windows a Java wrapper of LightGBM can be built using Java, SWIG, CMake and VS Build Tools or MinGW.

VS Build Tools

1. Install Git for Windows, CMake and VS Build Tools (VS Build Tools is not needed if Visual Studio (2015 or
newer) is already installed).

2. Install SWIG and Java (also make sure that JAVA_HOME is set properly).

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -A x64 -DUSE_SWIG=ON
cmake --build build --target ALL_BUILD --config Release

The .jar file will be in LightGBM/build folder and the .dll files will be in LightGBM/Release folder.

MinGW-w64

1. Install Git for Windows, CMake and MinGW-w64.

2. Install SWIG and Java (also make sure that JAVA_HOME is set properly).

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -G "MinGW Makefiles" -DUSE_SWIG=ON
cmake --build build -j4

The .jar file will be in LightGBM/build folder and the .dll files will be in LightGBM/ folder.

Note: You may need to run the cmake -B build -S . -G "MinGW Makefiles" -DUSE_SWIG=ON one more time
if you encounter the sh.exe was found in your PATH error.

It is recommended to use VS Build Tools (Visual Studio) since it has better multithreading efficiency in Windows for
many-core systems (see Question 4 and Question 8).

Also, you may want to read gcc Tips.

1.10. Build Java Wrapper 15

./Development-Guide.html#c-api
https://git-scm.com/download/win
https://cmake.org/
https://visualstudio.microsoft.com/downloads/
https://www.swig.org/download.html
https://git-scm.com/download/win
https://cmake.org/
https://www.mingw-w64.org/downloads/
https://www.swig.org/download.html
./FAQ.html#i-am-using-windows-should-i-use-visual-studio-or-mingw-for-compiling-lightgbm
./FAQ.html#cpu-usage-is-low-like-10-in-windows-when-using-lightgbm-on-very-large-datasets-with-many-core-systems
./gcc-Tips.html

LightGBM, Release 4.3.0.99

1.10.2 Linux

On Linux a Java wrapper of LightGBM can be built using Java, SWIG, CMake and gcc or Clang.

1. Install CMake, SWIG and Java (also make sure that JAVA_HOME is set properly).

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_SWIG=ON
cmake --build build -j4

Note: glibc >= 2.14 is required.

Note: In some rare cases you may need to install OpenMP runtime library separately (use your package manager and
search for lib[g|i]omp for doing this).

1.10.3 macOS

On macOS a Java wrapper of LightGBM can be built using Java, SWIG, CMake and Apple Clang or gcc.

First, install SWIG and Java (also make sure that JAVA_HOME is set properly). Then, either follow the Apple Clang or
gcc installation instructions below.

Apple Clang

Only Apple Clang version 8.1 or higher is supported.

1. Install CMake :

brew install cmake

2. Install OpenMP:

brew install libomp

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_SWIG=ON
cmake --build build -j4

gcc

1. Install CMake :

brew install cmake

2. Install gcc:

brew install gcc

3. Run the following commands:

16 Chapter 1. Installation Guide

https://cmake.org/
https://www.swig.org/download.html
https://www.swig.org/download.html
https://cmake.org/
https://cmake.org/

LightGBM, Release 4.3.0.99

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
export CXX=g++-7 CC=gcc-7 # replace "7" with version of gcc installed on your␣
→˓machine
cmake -B build -S . -DUSE_SWIG=ON
cmake --build build -j4

Also, you may want to read gcc Tips.

1.11 Build C++ Unit Tests

1.11.1 Windows

On Windows, C++ unit tests of LightGBM can be built using CMake and VS Build Tools.

1. Install Git for Windows, CMake and VS Build Tools (VS Build Tools is not needed if Visual Studio (2015 or
newer) is already installed).

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -A x64 -DBUILD_CPP_TEST=ON -DUSE_OPENMP=OFF
cmake --build build --target testlightgbm --config Debug

The .exe file will be in LightGBM/Debug folder.

1.11.2 Linux

On Linux a C++ unit tests of LightGBM can be built using CMake and gcc or Clang.

1. Install CMake.

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DBUILD_CPP_TEST=ON -DUSE_OPENMP=OFF
cmake --build build --target testlightgbm -j4

Note: glibc >= 2.14 is required.

1.11.3 macOS

On macOS a C++ unit tests of LightGBM can be built using CMake and Apple Clang or gcc.

1.11. Build C++ Unit Tests 17

./gcc-Tips.html
https://git-scm.com/download/win
https://cmake.org/
https://visualstudio.microsoft.com/downloads/
https://cmake.org/

LightGBM, Release 4.3.0.99

Apple Clang

Only Apple Clang version 8.1 or higher is supported.

1. Install CMake :

brew install cmake

2. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DBUILD_CPP_TEST=ON -DUSE_OPENMP=OFF
cmake --build build --target testlightgbm -j4

gcc

1. Install CMake :

brew install cmake

2. Install gcc:

brew install gcc

3. Run the following commands:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
export CXX=g++-7 CC=gcc-7 # replace "7" with version of gcc installed on your␣
→˓machine
cmake -B build -S . -DBUILD_CPP_TEST=ON -DUSE_OPENMP=OFF
cmake --build build --target testlightgbm -j4

18 Chapter 1. Installation Guide

https://cmake.org/
https://cmake.org/

CHAPTER

TWO

QUICK START

This is a quick start guide for LightGBM CLI version.

Follow the Installation Guide to install LightGBM first.

List of other helpful links

• Parameters

• Parameters Tuning

• Python-package Quick Start

• Python API

2.1 Training Data Format

LightGBM supports input data files with CSV, TSV and LibSVM (zero-based) formats.

Files could be both with and without headers.

Label column could be specified both by index and by name.

Some columns could be ignored.

2.1.1 Categorical Feature Support

LightGBM can use categorical features directly (without one-hot encoding). The experiment on Expo data shows about
8x speed-up compared with one-hot encoding.

For the setting details, please refer to the categorical_feature parameter.

2.1.2 Weight and Query/Group Data

LightGBM also supports weighted training, it needs an additional weight data. And it needs an additional query data
for ranking task.

Also, weight and query data could be specified as columns in training data in the same manner as label.

19

./Installation-Guide.html
./Parameters.html
./Parameters-Tuning.html
./Python-Intro.html
./Python-API.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
./Parameters.html#header
./Parameters.html#label_column
./Parameters.html#ignore_column
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
./Parameters.html#categorical_feature
./Parameters.html#weight-data
./Parameters.html#query-data
./Parameters.html#weight_column
./Parameters.html#group_column

LightGBM, Release 4.3.0.99

2.2 Parameters Quick Look

The parameters format is key1=value1 key2=value2

Parameters can be set both in config file and command line. If one parameter appears in both command line and config
file, LightGBM will use the parameter from the command line.

The most important parameters which new users should take a look at are located into Core Parameters and the top of
Learning Control Parameters sections of the full detailed list of LightGBM’s parameters.

2.3 Run LightGBM

lightgbm config=your_config_file other_args ...

Parameters can be set both in the config file and command line, and the parameters in command line have higher
priority than in the config file. For example, the following command line will keep num_trees=10 and ignore the
same parameter in the config file.

lightgbm config=train.conf num_trees=10

2.4 Examples

• Binary Classification

• Regression

• Lambdarank

• Distributed Learning

20 Chapter 2. Quick Start

./Parameters.html#core-parameters
./Parameters.html#learning-control-parameters
./Parameters.html
https://github.com/microsoft/LightGBM/tree/master/examples/binary_classification
https://github.com/microsoft/LightGBM/tree/master/examples/regression
https://github.com/microsoft/LightGBM/tree/master/examples/lambdarank
https://github.com/microsoft/LightGBM/tree/master/examples/parallel_learning

CHAPTER

THREE

PYTHON-PACKAGE INTRODUCTION

This document gives a basic walk-through of LightGBM Python-package.

List of other helpful links

• Python Examples

• Python API

• Parameters Tuning

3.1 Install

The preferred way to install LightGBM is via pip:

pip install lightgbm

Refer to Python-package folder for the detailed installation guide.

To verify your installation, try to import lightgbm in Python:

import lightgbm as lgb

3.2 Data Interface

The LightGBM Python module can load data from:

• LibSVM (zero-based) / TSV / CSV format text file

• NumPy 2D array(s), pandas DataFrame, H2O DataTable’s Frame, SciPy sparse matrix

• LightGBM binary file

• LightGBM Sequence object(s)

The data is stored in a Dataset object.

Many of the examples in this page use functionality from numpy. To run the examples, be sure to import numpy in your
session.

import numpy as np

To load a LibSVM (zero-based) text file or a LightGBM binary file into Dataset:

21

https://github.com/microsoft/LightGBM/tree/master/examples/python-guide
./Python-API.html
./Parameters-Tuning.html
https://github.com/microsoft/LightGBM/tree/master/python-package

LightGBM, Release 4.3.0.99

train_data = lgb.Dataset('train.svm.bin')

To load a numpy array into Dataset:

data = np.random.rand(500, 10) # 500 entities, each contains 10 features
label = np.random.randint(2, size=500) # binary target
train_data = lgb.Dataset(data, label=label)

To load a scipy.sparse.csr_matrix array into Dataset:

import scipy
csr = scipy.sparse.csr_matrix((dat, (row, col)))
train_data = lgb.Dataset(csr)

Load from Sequence objects:

We can implement Sequence interface to read binary files. The following example shows reading HDF5 file with
h5py.

import h5py

class HDFSequence(lgb.Sequence):
def __init__(self, hdf_dataset, batch_size):

self.data = hdf_dataset
self.batch_size = batch_size

def __getitem__(self, idx):
return self.data[idx]

def __len__(self):
return len(self.data)

f = h5py.File('train.hdf5', 'r')
train_data = lgb.Dataset(HDFSequence(f['X'], 8192), label=f['Y'][:])

Features of using Sequence interface:

• Data sampling uses random access, thus does not go through the whole dataset

• Reading data in batch, thus saves memory when constructing Dataset object

• Supports creating Dataset from multiple data files

Please refer to Sequence API doc.

dataset_from_multi_hdf5.py is a detailed example.

Saving Dataset into a LightGBM binary file will make loading faster:

train_data = lgb.Dataset('train.svm.txt')
train_data.save_binary('train.bin')

Create validation data:

validation_data = train_data.create_valid('validation.svm')

or

22 Chapter 3. Python-package Introduction

./Python-API.html#data-structure-api
https://github.com/microsoft/LightGBM/blob/master/examples/python-guide/dataset_from_multi_hdf5.py

LightGBM, Release 4.3.0.99

validation_data = lgb.Dataset('validation.svm', reference=train_data)

In LightGBM, the validation data should be aligned with training data.

Specific feature names and categorical features:

train_data = lgb.Dataset(data, label=label, feature_name=['c1', 'c2', 'c3'], categorical_
→˓feature=['c3'])

LightGBM can use categorical features as input directly. It doesn’t need to convert to one-hot encoding, and is much
faster than one-hot encoding (about 8x speed-up).

Note: You should convert your categorical features to int type before you construct Dataset.

Weights can be set when needed:

w = np.random.rand(500,)
train_data = lgb.Dataset(data, label=label, weight=w)

or

train_data = lgb.Dataset(data, label=label)
w = np.random.rand(500,)
train_data.set_weight(w)

And you can use Dataset.set_init_score() to set initial score, and Dataset.set_group() to set group/query
data for ranking tasks.

Memory efficient usage:

The Dataset object in LightGBM is very memory-efficient, it only needs to save discrete bins. However,
Numpy/Array/Pandas object is memory expensive. If you are concerned about your memory consumption, you can
save memory by:

1. Set free_raw_data=True (default is True) when constructing the Dataset

2. Explicitly set raw_data=None after the Dataset has been constructed

3. Call gc

3.3 Setting Parameters

LightGBM can use a dictionary to set Parameters. For instance:

• Booster parameters:

param = {'num_leaves': 31, 'objective': 'binary'}
param['metric'] = 'auc'

• You can also specify multiple eval metrics:

param['metric'] = ['auc', 'binary_logloss']

3.3. Setting Parameters 23

./Parameters.html

LightGBM, Release 4.3.0.99

3.4 Training

Training a model requires a parameter list and data set:

num_round = 10
bst = lgb.train(param, train_data, num_round, valid_sets=[validation_data])

After training, the model can be saved:

bst.save_model('model.txt')

The trained model can also be dumped to JSON format:

json_model = bst.dump_model()

A saved model can be loaded:

bst = lgb.Booster(model_file='model.txt') # init model

3.5 CV

Training with 5-fold CV:

lgb.cv(param, train_data, num_round, nfold=5)

3.6 Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds. Early stopping
requires at least one set in valid_sets. If there is more than one, it will use all of them except the training data:

bst = lgb.train(param, train_data, num_round, valid_sets=valid_sets, callbacks=[lgb.
→˓early_stopping(stopping_rounds=5)])
bst.save_model('model.txt', num_iteration=bst.best_iteration)

The model will train until the validation score stops improving. Validation score needs to improve at least every
stopping_rounds to continue training.

The index of iteration that has the best performance will be saved in the best_iteration field if early stopping logic
is enabled by setting early_stopping callback. Note that train() will return a model from the best iteration.

This works with both metrics to minimize (L2, log loss, etc.) and to maximize (NDCG, AUC, etc.). Note that if you
specify more than one evaluation metric, all of them will be used for early stopping. However, you can change this
behavior and make LightGBM check only the first metric for early stopping by passing first_metric_only=True
in early_stopping callback constructor.

24 Chapter 3. Python-package Introduction

LightGBM, Release 4.3.0.99

3.7 Prediction

A model that has been trained or loaded can perform predictions on datasets:

7 entities, each contains 10 features
data = np.random.rand(7, 10)
ypred = bst.predict(data)

If early stopping is enabled during training, you can get predictions from the best iteration with bst.best_iteration:

ypred = bst.predict(data, num_iteration=bst.best_iteration)

3.7. Prediction 25

LightGBM, Release 4.3.0.99

26 Chapter 3. Python-package Introduction

CHAPTER

FOUR

FEATURES

This is a conceptual overview of how LightGBM works[1]. We assume familiarity with decision tree boosting algo-
rithms to focus instead on aspects of LightGBM that may differ from other boosting packages. For detailed algorithms,
please refer to the citations or source code.

4.1 Optimization in Speed and Memory Usage

Many boosting tools use pre-sort-based algorithms[2, 3] (e.g. default algorithm in xgboost) for decision tree learning.
It is a simple solution, but not easy to optimize.

LightGBM uses histogram-based algorithms[4, 5, 6], which bucket continuous feature (attribute) values into discrete
bins. This speeds up training and reduces memory usage. Advantages of histogram-based algorithms include the
following:

• Reduced cost of calculating the gain for each split

– Pre-sort-based algorithms have time complexity O(#data)

– Computing the histogram has time complexity O(#data), but this involves only a fast sum-up operation.
Once the histogram is constructed, a histogram-based algorithm has time complexity O(#bins), and #bins
is far smaller than #data.

• Use histogram subtraction for further speedup

– To get one leaf’s histograms in a binary tree, use the histogram subtraction of its parent and its neighbor

– So it needs to construct histograms for only one leaf (with smaller #data than its neighbor). It then can get
histograms of its neighbor by histogram subtraction with small cost (O(#bins))

• Reduce memory usage

– Replaces continuous values with discrete bins. If #bins is small, can use small data type, e.g. uint8_t, to
store training data

– No need to store additional information for pre-sorting feature values

• Reduce communication cost for distributed learning

27

LightGBM, Release 4.3.0.99

4.2 Sparse Optimization

• Need only O(2 * #non_zero_data) to construct histogram for sparse features

4.3 Optimization in Accuracy

4.3.1 Leaf-wise (Best-first) Tree Growth

Most decision tree learning algorithms grow trees by level (depth)-wise, like the following image:

LightGBM grows trees leaf-wise (best-first)[7]. It will choose the leaf with max delta loss to grow. Holding #leaf
fixed, leaf-wise algorithms tend to achieve lower loss than level-wise algorithms.

Leaf-wise may cause over-fitting when #data is small, so LightGBM includes the max_depth parameter to limit tree
depth. However, trees still grow leaf-wise even when max_depth is specified.

28 Chapter 4. Features

LightGBM, Release 4.3.0.99

4.3.2 Optimal Split for Categorical Features

It is common to represent categorical features with one-hot encoding, but this approach is suboptimal for tree learners.
Particularly for high-cardinality categorical features, a tree built on one-hot features tends to be unbalanced and needs
to grow very deep to achieve good accuracy.

Instead of one-hot encoding, the optimal solution is to split on a categorical feature by partitioning its categories into
2 subsets. If the feature has k categories, there are 2^(k-1) - 1 possible partitions. But there is an efficient solution
for regression trees[8]. It needs about O(k * log(k)) to find the optimal partition.

The basic idea is to sort the categories according to the training objective at each split. More specifically, LightGBM
sorts the histogram (for a categorical feature) according to its accumulated values (sum_gradient / sum_hessian)
and then finds the best split on the sorted histogram.

4.4 Optimization in Network Communication

It only needs to use some collective communication algorithms, like “All reduce”, “All gather” and “Reduce scatter”,
in distributed learning of LightGBM. LightGBM implements state-of-the-art algorithms[9]. These collective commu-
nication algorithms can provide much better performance than point-to-point communication.

4.5 Optimization in Distributed Learning

LightGBM provides the following distributed learning algorithms.

4.5.1 Feature Parallel

Traditional Algorithm

Feature parallel aims to parallelize the “Find Best Split” in the decision tree. The procedure of traditional feature
parallel is:

1. Partition data vertically (different machines have different feature set).

2. Workers find local best split point {feature, threshold} on local feature set.

3. Communicate local best splits with each other and get the best one.

4. Worker with best split to perform split, then send the split result of data to other workers.

5. Other workers split data according to received data.

The shortcomings of traditional feature parallel:

• Has computation overhead, since it cannot speed up “split”, whose time complexity is O(#data). Thus, feature
parallel cannot speed up well when #data is large.

• Need communication of split result, which costs about O(#data / 8) (one bit for one data).

4.4. Optimization in Network Communication 29

LightGBM, Release 4.3.0.99

Feature Parallel in LightGBM

Since feature parallel cannot speed up well when #data is large, we make a little change: instead of partitioning data
vertically, every worker holds the full data. Thus, LightGBM doesn’t need to communicate for split result of data since
every worker knows how to split data. And #data won’t be larger, so it is reasonable to hold the full data in every
machine.

The procedure of feature parallel in LightGBM:

1. Workers find local best split point {feature, threshold} on local feature set.

2. Communicate local best splits with each other and get the best one.

3. Perform best split.

However, this feature parallel algorithm still suffers from computation overhead for “split” when #data is large. So it
will be better to use data parallel when #data is large.

4.5.2 Data Parallel

Traditional Algorithm

Data parallel aims to parallelize the whole decision learning. The procedure of data parallel is:

1. Partition data horizontally.

2. Workers use local data to construct local histograms.

3. Merge global histograms from all local histograms.

4. Find best split from merged global histograms, then perform splits.

The shortcomings of traditional data parallel:

• High communication cost. If using point-to-point communication algorithm, communication cost for one ma-
chine is about O(#machine * #feature * #bin). If using collective communication algorithm (e.g. “All
Reduce”), communication cost is about O(2 * #feature * #bin) (check cost of “All Reduce” in chapter 4.5
at [9]).

Data Parallel in LightGBM

We reduce communication cost of data parallel in LightGBM:

1. Instead of “Merge global histograms from all local histograms”, LightGBM uses “Reduce Scatter” to merge
histograms of different (non-overlapping) features for different workers. Then workers find the local best split on
local merged histograms and sync up the global best split.

2. As aforementioned, LightGBM uses histogram subtraction to speed up training. Based on this, we can commu-
nicate histograms only for one leaf, and get its neighbor’s histograms by subtraction as well.

All things considered, data parallel in LightGBM has time complexity O(0.5 * #feature * #bin).

30 Chapter 4. Features

LightGBM, Release 4.3.0.99

4.5.3 Voting Parallel

Voting parallel further reduces the communication cost in Data Parallel to constant cost. It uses two-stage voting to
reduce the communication cost of feature histograms[10].

4.6 GPU Support

Thanks @huanzhang12 for contributing this feature. Please read [11] to get more details.

• GPU Installation

• GPU Tutorial

4.7 Applications and Metrics

LightGBM supports the following applications:

• regression, the objective function is L2 loss

• binary classification, the objective function is logloss

• multi classification

• cross-entropy, the objective function is logloss and supports training on non-binary labels

• LambdaRank, the objective function is LambdaRank with NDCG

LightGBM supports the following metrics:

• L1 loss

• L2 loss

• Log loss

• Classification error rate

• AUC

• NDCG

• MAP

• Multi-class log loss

• Multi-class error rate

• AUC-mu (new in v3.0.0)

• Average precision (new in v3.1.0)

• Fair

• Huber

• Poisson

• Quantile

• MAPE

• Kullback-Leibler

• Gamma

4.6. GPU Support 31

https://github.com/huanzhang12
./Installation-Guide.html#build-gpu-version
./GPU-Tutorial.html

LightGBM, Release 4.3.0.99

• Tweedie

For more details, please refer to Parameters.

4.8 Other Features

• Limit max_depth of tree while grows tree leaf-wise

• DART

• L1/L2 regularization

• Bagging

• Column (feature) sub-sample

• Continued train with input GBDT model

• Continued train with the input score file

• Weighted training

• Validation metric output during training

• Multiple validation data

• Multiple metrics

• Early stopping (both training and prediction)

• Prediction for leaf index

For more details, please refer to Parameters.

4.9 References

[1] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu. “LightGBM:
A Highly Efficient Gradient Boosting Decision Tree.” Advances in Neural Information Processing Systems 30 (NIPS
2017), pp. 3149-3157.

[2] Mehta, Manish, Rakesh Agrawal, and Jorma Rissanen. “SLIQ: A fast scalable classifier for data mining.” Interna-
tional Conference on Extending Database Technology. Springer Berlin Heidelberg, 1996.

[3] Shafer, John, Rakesh Agrawal, and Manish Mehta. “SPRINT: A scalable parallel classifier for data mining.” Proc.
1996 Int. Conf. Very Large Data Bases. 1996.

[4] Ranka, Sanjay, and V. Singh. “CLOUDS: A decision tree classifier for large datasets.” Proceedings of the 4th
Knowledge Discovery and Data Mining Conference. 1998.

[5] Machado, F. P. “Communication and memory efficient parallel decision tree construction.” (2003).

[6] Li, Ping, Qiang Wu, and Christopher J. Burges. “Mcrank: Learning to rank using multiple classification and
gradient boosting.” Advances in Neural Information Processing Systems 20 (NIPS 2007).

[7] Shi, Haijian. “Best-first decision tree learning.” Diss. The University of Waikato, 2007.

[8] Walter D. Fisher. “On Grouping for Maximum Homogeneity.” Journal of the American Statistical Association.
Vol. 53, No. 284 (Dec., 1958), pp. 789-798.

[9] Thakur, Rajeev, Rolf Rabenseifner, and William Gropp. “Optimization of collective communication operations in
MPICH.” International Journal of High Performance Computing Applications 19.1 (2005), pp. 49-66.

32 Chapter 4. Features

./Parameters.html#metric-parameters
https://arxiv.org/abs/1505.01866
./Parameters.html
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
https://web.cels.anl.gov/~thakur/papers/ijhpca-coll.pdf
https://web.cels.anl.gov/~thakur/papers/ijhpca-coll.pdf

LightGBM, Release 4.3.0.99

[10] Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Tie-Yan Liu. “A Communication-
Efficient Parallel Algorithm for Decision Tree.” Advances in Neural Information Processing Systems 29 (NIPS 2016),
pp. 1279-1287.

[11] Huan Zhang, Si Si and Cho-Jui Hsieh. “GPU Acceleration for Large-scale Tree Boosting.” SysML Conference,
2018.

4.9. References 33

http://papers.nips.cc/paper/6381-a-communication-efficient-parallel-algorithm-for-decision-tree
http://papers.nips.cc/paper/6381-a-communication-efficient-parallel-algorithm-for-decision-tree
https://arxiv.org/abs/1706.08359

LightGBM, Release 4.3.0.99

34 Chapter 4. Features

CHAPTER

FIVE

EXPERIMENTS

5.1 Comparison Experiment

For the detailed experiment scripts and output logs, please refer to this repo.

5.1.1 History

08 Mar, 2020: update according to the latest master branch (1b97eaf for XGBoost, bcad692 for LightGBM).
(xgboost_exact is not updated for it is too slow.)

27 Feb, 2017: first version.

5.1.2 Data

We used 5 datasets to conduct our comparison experiments. Details of data are listed in the following table:

Data Task Link #Train_Set #Fea-
ture

Comments

Higgs Binary classifica-
tion

link 10,500,000 28 last 500,000 samples were used as test set

Yahoo
LTR

Learning to rank link 473,134 700 set1.train as train, set1.test as test

MS LTR Learning to rank link 2,270,296 137 {S1,S2,S3} as train set, {S5} as test set
Expo Binary classifica-

tion
link 11,000,000 700 last 1,000,000 samples were used as test set

Allstate Binary classifica-
tion

link 13,184,290 4228 last 1,000,000 samples were used as test set

5.1.3 Environment

We ran all experiments on a single Linux server (Azure ND24s) with the following specifications:

OS CPU Memory
Ubuntu 16.04 LTS 2 * E5-2690 v4 448GB

35

https://github.com/guolinke/boosting_tree_benchmarks
https://github.com/dmlc/xgboost/commit/1b97eaf7a74315bfa2c132d59f937a35408bcfd1
https://github.com/microsoft/LightGBM/commit/bcad692e263e0317cab11032dd017c78f9e58e5f
https://archive.ics.uci.edu/dataset/280/higgs
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
https://www.microsoft.com/en-us/research/project/mslr/
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
https://www.kaggle.com/c/ClaimPredictionChallenge

LightGBM, Release 4.3.0.99

5.1.4 Baseline

We used xgboost as a baseline.

Both xgboost and LightGBM were built with OpenMP support.

5.1.5 Settings

We set up total 3 settings for experiments. The parameters of these settings are:

1. xgboost:

eta = 0.1
max_depth = 8
num_round = 500
nthread = 16
tree_method = exact
min_child_weight = 100

2. xgboost_hist (using histogram based algorithm):

eta = 0.1
num_round = 500
nthread = 16
min_child_weight = 100
tree_method = hist
grow_policy = lossguide
max_depth = 0
max_leaves = 255

3. LightGBM:

learning_rate = 0.1
num_leaves = 255
num_trees = 500
num_threads = 16
min_data_in_leaf = 0
min_sum_hessian_in_leaf = 100

xgboost grows trees depth-wise and controls model complexity by max_depth. LightGBM uses a leaf-wise algorithm
instead and controls model complexity by num_leaves. So we cannot compare them in the exact same model setting.
For the tradeoff, we use xgboost with max_depth=8, which will have max number leaves to 255, to compare with
LightGBM with num_leaves=255.

Other parameters are default values.

36 Chapter 5. Experiments

https://github.com/dmlc/xgboost

LightGBM, Release 4.3.0.99

5.1.6 Result

Speed

We compared speed using only the training task without any test or metric output. We didn’t count the time for
IO. For the ranking tasks, since XGBoost and LightGBM implement different ranking objective functions, we used
regression objective for speed benchmark, for the fair comparison.

The following table is the comparison of time cost:

Data xgboost xgboost_hist LightGBM
Higgs 3794.34 s 165.575 s 130.094 s
Yahoo LTR 674.322 s 131.462 s 76.229 s
MS LTR 1251.27 s 98.386 s 70.417 s
Expo 1607.35 s 137.65 s 62.607 s
Allstate 2867.22 s 315.256 s 148.231 s

LightGBM ran faster than xgboost on all experiment data sets.

Accuracy

We computed all accuracy metrics only on the test data set.

Data Metric xgboost xgboost_hist LightGBM
Higgs AUC 0.839593 0.845314 0.845724
Yahoo LTR NDCG1 0.719748 0.720049 0.732981

NDCG3 0.717813 0.722573 0.735689
NDCG5 0.737849 0.740899 0.75352
NDCG10 0.78089 0.782957 0.793498

MS LTR NDCG1 0.483956 0.485115 0.517767
NDCG3 0.467951 0.47313 0.501063
NDCG5 0.472476 0.476375 0.504648
NDCG10 0.492429 0.496553 0.524252

Expo AUC 0.756713 0.776224 0.776935
Allstate AUC 0.607201 0.609465 0.609072

Memory Consumption

We monitored RES while running training task. And we set two_round=true (this will increase data-loading time
and reduce peak memory usage but not affect training speed or accuracy) in LightGBM to reduce peak memory usage.

Data xgboost xgboost_hist LightGBM (col-wise) LightGBM (row-wise)
Higgs 4.853GB 7.335GB 0.897GB 1.401GB
Yahoo LTR 1.907GB 4.023GB 1.741GB 2.161GB
MS LTR 5.469GB 7.491GB 0.940GB 1.296GB
Expo 1.553GB 2.606GB 0.555GB 0.711GB
Allstate 6.237GB 12.090GB 1.116GB 1.755GB

5.1. Comparison Experiment 37

LightGBM, Release 4.3.0.99

5.2 Parallel Experiment

5.2.1 History

27 Feb, 2017: first version.

5.2.2 Data

We used a terabyte click log dataset to conduct parallel experiments. Details are listed in following table:

Data Task Link #Data #Feature
Criteo Binary classification link 1,700,000,000 67

This data contains 13 integer features and 26 categorical features for 24 days of click logs. We statisticized the click-
through rate (CTR) and count for these 26 categorical features from the first ten days. Then we used next ten days’ data,
after replacing the categorical features by the corresponding CTR and count, as training data. The processed training
data have a total of 1.7 billions records and 67 features.

5.2.3 Environment

We ran our experiments on 16 Windows servers with the following specifications:

OS CPU Memory Network Adapter
Windows Server
2012

2 * E5-2670
v2

DDR3 1600Mhz,
256GB

Mellanox ConnectX-3, 54Gbps, RDMA sup-
port

5.2.4 Settings

learning_rate = 0.1
num_leaves = 255
num_trees = 100
num_thread = 16
tree_learner = data

We used data parallel here because this data is large in #data but small in #feature. Other parameters were default
values.

5.2.5 Results

#Machine Time per Tree Memory Usage(per Machine)
1 627.8 s 176GB
2 311 s 87GB
4 156 s 43GB
8 80 s 22GB
16 42 s 11GB

38 Chapter 5. Experiments

http://labs.criteo.com/2013/12/download-terabyte-click-logs/

LightGBM, Release 4.3.0.99

The results show that LightGBM achieves a linear speedup with distributed learning.

5.3 GPU Experiments

Refer to GPU Performance.

5.3. GPU Experiments 39

./GPU-Performance.html

LightGBM, Release 4.3.0.99

40 Chapter 5. Experiments

CHAPTER

SIX

PARAMETERS

This page contains descriptions of all parameters in LightGBM.

List of other helpful links

• Python API

• Parameters Tuning

6.1 Parameters Format

The parameters format is key1=value1 key2=value2 Parameters can be set both in config file and command
line. By using command line, parameters should not have spaces before and after =. By using config files, one line can
only contain one parameter. You can use # to comment.

If one parameter appears in both command line and config file, LightGBM will use the parameter from the command
line.

For the Python and R packages, any parameters that accept a list of values (usually they have multi-xxx type,
e.g. multi-int or multi-double) can be specified in those languages’ default array types. For example,
monotone_constraints can be specified as follows.

Python

params = {
"monotone_constraints": [-1, 0, 1]

}

R

params <- list(
monotone_constraints = c(-1, 0, 1)

)

41

./Python-API.html
./Parameters-Tuning.html

LightGBM, Release 4.3.0.99

6.2 Core Parameters

• config , default = "", type = string, aliases: config_file

– path of config file

– Note: can be used only in CLI version

• task , default = train, type = enum, options: train, predict, convert_model, refit, aliases: task_type

– train, for training, aliases: training

– predict, for prediction, aliases: prediction, test

– convert_model, for converting model file into if-else format, see more information in Convert Parameters

– refit, for refitting existing models with new data, aliases: refit_tree

– save_binary, load train (and validation) data then save dataset to binary file. Typical usage:
save_binary first, then run multiple train tasks in parallel using the saved binary file

– Note: can be used only in CLI version; for language-specific packages you can use the correspondent
functions

• objective , default = regression, type = enum, options: regression, regression_l1, huber, fair,
poisson, quantile, mape, gamma, tweedie, binary, multiclass, multiclassova, cross_entropy,
cross_entropy_lambda, lambdarank, rank_xendcg, aliases: objective_type, app, application, loss

– regression application

∗ regression, L2 loss, aliases: regression_l2, l2, mean_squared_error, mse, l2_root,
root_mean_squared_error, rmse

∗ regression_l1, L1 loss, aliases: l1, mean_absolute_error, mae

∗ huber, Huber loss

∗ fair, Fair loss

∗ poisson, Poisson regression

∗ quantile, Quantile regression

∗ mape, MAPE loss, aliases: mean_absolute_percentage_error

∗ gamma, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims sever-
ity, or for any target that might be gamma-distributed

∗ tweedie, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insur-
ance, or for any target that might be tweedie-distributed

– binary classification application

∗ binary, binary log loss classification (or logistic regression)

∗ requires labels in {0, 1}; see cross-entropy application for general probability labels in [0, 1]

– multi-class classification application

∗ multiclass, softmax objective function, aliases: softmax

∗ multiclassova, One-vs-All binary objective function, aliases: multiclass_ova, ova, ovr

∗ num_class should be set as well

– cross-entropy application

42 Chapter 6. Parameters

https://en.wikipedia.org/wiki/Huber_loss
https://www.kaggle.com/c/allstate-claims-severity/discussion/24520
https://en.wikipedia.org/wiki/Poisson_regression
https://en.wikipedia.org/wiki/Quantile_regression
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Gamma_distribution#Occurrence_and_applications
https://en.wikipedia.org/wiki/Tweedie_distribution#Occurrence_and_applications
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest

LightGBM, Release 4.3.0.99

∗ cross_entropy, objective function for cross-entropy (with optional linear weights), aliases:
xentropy

∗ cross_entropy_lambda, alternative parameterization of cross-entropy, aliases: xentlambda

∗ label is anything in interval [0, 1]

– ranking application

∗ lambdarank, lambdarank objective. label_gain can be used to set the gain (weight) of int label and
all values in label must be smaller than number of elements in label_gain

∗ rank_xendcg, XE_NDCG_MART ranking objective function, aliases: xendcg, xe_ndcg,
xe_ndcg_mart, xendcg_mart

∗ rank_xendcg is faster than and achieves the similar performance as lambdarank

∗ label should be int type, and larger number represents the higher relevance (e.g. 0:bad, 1:fair, 2:good,
3:perfect)

– custom objective function (gradients and hessians not computed directly by LightGBM)

∗ custom

∗ Note: Not supported in CLI version

∗ must be passed through parameters explicitly in the C API

• boosting , default = gbdt, type = enum, options: gbdt, rf, dart, aliases: boosting_type, boost

– gbdt, traditional Gradient Boosting Decision Tree, aliases: gbrt

– rf, Random Forest, aliases: random_forest

– dart, Dropouts meet Multiple Additive Regression Trees

∗ Note: internally, LightGBM uses gbdt mode for the first 1 / learning_rate iterations

• data_sample_strategy , default = bagging, type = enum, options: bagging, goss

– bagging, Randomly Bagging Sampling

∗ Note: bagging is only effective when bagging_freq > 0 and bagging_fraction < 1.0

– goss, Gradient-based One-Side Sampling

– New in 4.0.0

• data , default = "", type = string, aliases: train, train_data, train_data_file, data_filename

– path of training data, LightGBM will train from this data

– Note: can be used only in CLI version

• valid , default = "", type = string, aliases: test, valid_data, valid_data_file, test_data,
test_data_file, valid_filenames

– path(s) of validation/test data, LightGBM will output metrics for these data

– support multiple validation data, separated by ,

– Note: can be used only in CLI version

• num_iterations , default = 100, type = int, aliases: num_iteration, n_iter, num_tree, num_trees,
num_round, num_rounds, nrounds, num_boost_round, n_estimators, max_iter, constraints:
num_iterations >= 0

– number of boosting iterations

6.2. Core Parameters 43

https://proceedings.neurips.cc/paper_files/paper/2006/file/af44c4c56f385c43f2529f9b1b018f6a-Paper.pdf
https://arxiv.org/abs/1911.09798
https://arxiv.org/abs/1505.01866

LightGBM, Release 4.3.0.99

– Note: internally, LightGBM constructs num_class * num_iterations trees for multi-class classifica-
tion problems

• learning_rate , default = 0.1, type = double, aliases: shrinkage_rate, eta, constraints: learning_rate
> 0.0

– shrinkage rate

– in dart, it also affects on normalization weights of dropped trees

• num_leaves , default = 31, type = int, aliases: num_leaf, max_leaves, max_leaf, max_leaf_nodes, con-
straints: 1 < num_leaves <= 131072

– max number of leaves in one tree

• tree_learner , default = serial, type = enum, options: serial, feature, data, voting, aliases: tree,
tree_type, tree_learner_type

– serial, single machine tree learner

– feature, feature parallel tree learner, aliases: feature_parallel

– data, data parallel tree learner, aliases: data_parallel

– voting, voting parallel tree learner, aliases: voting_parallel

– refer to Distributed Learning Guide to get more details

• num_threads , default = 0, type = int, aliases: num_thread, nthread, nthreads, n_jobs

– used only in train, prediction and refit tasks or in correspondent functions of language-specific
packages

– number of threads for LightGBM

– 0 means default number of threads in OpenMP

– for the best speed, set this to the number of real CPU cores, not the number of threads (most CPUs use
hyper-threading to generate 2 threads per CPU core)

– do not set it too large if your dataset is small (for instance, do not use 64 threads for a dataset with 10,000
rows)

– be aware a task manager or any similar CPU monitoring tool might report that cores not being fully utilized.
This is normal

– for distributed learning, do not use all CPU cores because this will cause poor performance for the network
communication

– Note: please don’t change this during training, especially when running multiple jobs simultaneously by
external packages, otherwise it may cause undesirable errors

• device_type , default = cpu, type = enum, options: cpu, gpu, cuda, aliases: device

– device for the tree learning

– cpu supports all LightGBM functionality and is portable across the widest range of operating systems and
hardware

– cuda offers faster training than gpu or cpu, but only works on GPUs supporting CUDA

– gpu can be faster than cpu and works on a wider range of GPUs than CUDA

– Note: it is recommended to use the smaller max_bin (e.g. 63) to get the better speed up

44 Chapter 6. Parameters

./Parallel-Learning-Guide.html
https://en.wikipedia.org/wiki/Hyper-threading

LightGBM, Release 4.3.0.99

– Note: for the faster speed, GPU uses 32-bit float point to sum up by default, so this may affect the accuracy
for some tasks. You can set gpu_use_dp=true to enable 64-bit float point, but it will slow down the
training

– Note: refer to Installation Guide to build LightGBM with GPU support

• seed , default = None, type = int, aliases: random_seed, random_state

– this seed is used to generate other seeds, e.g. data_random_seed, feature_fraction_seed, etc.

– by default, this seed is unused in favor of default values of other seeds

– this seed has lower priority in comparison with other seeds, which means that it will be overridden, if you
set other seeds explicitly

• deterministic , default = false, type = bool

– used only with cpu device type

– setting this to true should ensure the stable results when using the same data and the same parameters (and
different num_threads)

– when you use the different seeds, different LightGBM versions, the binaries compiled by different compil-
ers, or in different systems, the results are expected to be different

– you can raise issues in LightGBM GitHub repo when you meet the unstable results

– Note: setting this to true may slow down the training

– Note: to avoid potential instability due to numerical issues, please set force_col_wise=true or
force_row_wise=true when setting deterministic=true

6.3 Learning Control Parameters

• force_col_wise , default = false, type = bool

– used only with cpu device type

– set this to true to force col-wise histogram building

– enabling this is recommended when:

∗ the number of columns is large, or the total number of bins is large

∗ num_threads is large, e.g. > 20

∗ you want to reduce memory cost

– Note: when both force_col_wise and force_row_wise are false, LightGBM will firstly try them
both, and then use the faster one. To remove the overhead of testing set the faster one to true manually

– Note: this parameter cannot be used at the same time with force_row_wise, choose only one of them

• force_row_wise , default = false, type = bool

– used only with cpu device type

– set this to true to force row-wise histogram building

– enabling this is recommended when:

∗ the number of data points is large, and the total number of bins is relatively small

∗ num_threads is relatively small, e.g. <= 16

∗ you want to use small bagging_fraction or goss sample strategy to speed up

6.3. Learning Control Parameters 45

./Installation-Guide.html#build-gpu-version
https://github.com/microsoft/LightGBM/issues

LightGBM, Release 4.3.0.99

– Note: setting this to true will double the memory cost for Dataset object. If you have not enough memory,
you can try setting force_col_wise=true

– Note: when both force_col_wise and force_row_wise are false, LightGBM will firstly try them
both, and then use the faster one. To remove the overhead of testing set the faster one to true manually

– Note: this parameter cannot be used at the same time with force_col_wise, choose only one of them

• histogram_pool_size , default = -1.0, type = double, aliases: hist_pool_size

– max cache size in MB for historical histogram

– < 0 means no limit

• max_depth , default = -1, type = int

– limit the max depth for tree model. This is used to deal with over-fitting when #data is small. Tree still
grows leaf-wise

– <= 0 means no limit

• min_data_in_leaf , default = 20, type = int, aliases: min_data_per_leaf, min_data,
min_child_samples, min_samples_leaf, constraints: min_data_in_leaf >= 0

– minimal number of data in one leaf. Can be used to deal with over-fitting

– Note: this is an approximation based on the Hessian, so occasionally you may observe splits which produce
leaf nodes that have less than this many observations

• min_sum_hessian_in_leaf , default = 1e-3, type = double, aliases: min_sum_hessian_per_leaf,
min_sum_hessian, min_hessian, min_child_weight, constraints: min_sum_hessian_in_leaf >= 0.0

– minimal sum hessian in one leaf. Like min_data_in_leaf, it can be used to deal with over-fitting

• bagging_fraction , default = 1.0, type = double, aliases: sub_row, subsample, bagging, constraints: 0.0
< bagging_fraction <= 1.0

– like feature_fraction, but this will randomly select part of data without resampling

– can be used to speed up training

– can be used to deal with over-fitting

– Note: to enable bagging, bagging_freq should be set to a non zero value as well

• pos_bagging_fraction , default = 1.0, type = double, aliases: pos_sub_row, pos_subsample,
pos_bagging, constraints: 0.0 < pos_bagging_fraction <= 1.0

– used only in binary application

– used for imbalanced binary classification problem, will randomly sample #pos_samples *
pos_bagging_fraction positive samples in bagging

– should be used together with neg_bagging_fraction

– set this to 1.0 to disable

– Note: to enable this, you need to set bagging_freq and neg_bagging_fraction as well

– Note: if both pos_bagging_fraction and neg_bagging_fraction are set to 1.0, balanced bagging is
disabled

– Note: if balanced bagging is enabled, bagging_fraction will be ignored

• neg_bagging_fraction , default = 1.0, type = double, aliases: neg_sub_row, neg_subsample,
neg_bagging, constraints: 0.0 < neg_bagging_fraction <= 1.0

– used only in binary application

46 Chapter 6. Parameters

LightGBM, Release 4.3.0.99

– used for imbalanced binary classification problem, will randomly sample #neg_samples *
neg_bagging_fraction negative samples in bagging

– should be used together with pos_bagging_fraction

– set this to 1.0 to disable

– Note: to enable this, you need to set bagging_freq and pos_bagging_fraction as well

– Note: if both pos_bagging_fraction and neg_bagging_fraction are set to 1.0, balanced bagging is
disabled

– Note: if balanced bagging is enabled, bagging_fraction will be ignored

• bagging_freq , default = 0, type = int, aliases: subsample_freq

– frequency for bagging

– 0 means disable bagging; k means perform bagging at every k iteration. Every k-th iteration, LightGBM
will randomly select bagging_fraction * 100 % of the data to use for the next k iterations

– Note: bagging is only effective when 0.0 < bagging_fraction < 1.0

• bagging_seed , default = 3, type = int, aliases: bagging_fraction_seed

– random seed for bagging

• feature_fraction , default = 1.0, type = double, aliases: sub_feature, colsample_bytree, constraints:
0.0 < feature_fraction <= 1.0

– LightGBM will randomly select a subset of features on each iteration (tree) if feature_fraction is
smaller than 1.0. For example, if you set it to 0.8, LightGBM will select 80% of features before training
each tree

– can be used to speed up training

– can be used to deal with over-fitting

• feature_fraction_bynode , default = 1.0, type = double, aliases: sub_feature_bynode,
colsample_bynode, constraints: 0.0 < feature_fraction_bynode <= 1.0

– LightGBM will randomly select a subset of features on each tree node if feature_fraction_bynode is
smaller than 1.0. For example, if you set it to 0.8, LightGBM will select 80% of features at each tree node

– can be used to deal with over-fitting

– Note: unlike feature_fraction, this cannot speed up training

– Note: if both feature_fraction and feature_fraction_bynode are smaller than 1.0, the final frac-
tion of each node is feature_fraction * feature_fraction_bynode

• feature_fraction_seed , default = 2, type = int

– random seed for feature_fraction

• extra_trees , default = false, type = bool, aliases: extra_tree

– use extremely randomized trees

– if set to true, when evaluating node splits LightGBM will check only one randomly-chosen threshold for
each feature

– can be used to speed up training

– can be used to deal with over-fitting

• extra_seed , default = 6, type = int

6.3. Learning Control Parameters 47

LightGBM, Release 4.3.0.99

– random seed for selecting thresholds when extra_trees is true

• early_stopping_round , default = 0, type = int, aliases: early_stopping_rounds, early_stopping,
n_iter_no_change

– will stop training if one metric of one validation data doesn’t improve in last early_stopping_round
rounds

– <= 0 means disable

– can be used to speed up training

• early_stopping_min_delta , default = 0.0, type = double, constraints: early_stopping_min_delta >=
0.0

– when early stopping is used (i.e. early_stopping_round > 0), require the early stopping metric to
improve by at least this delta to be considered an improvement

• first_metric_only , default = false, type = bool

– LightGBM allows you to provide multiple evaluation metrics. Set this to true, if you want to use only the
first metric for early stopping

• max_delta_step , default = 0.0, type = double, aliases: max_tree_output, max_leaf_output

– used to limit the max output of tree leaves

– <= 0 means no constraint

– the final max output of leaves is learning_rate * max_delta_step

• lambda_l1 , default = 0.0, type = double, aliases: reg_alpha, l1_regularization, constraints: lambda_l1
>= 0.0

– L1 regularization

• lambda_l2 , default = 0.0, type = double, aliases: reg_lambda, lambda, l2_regularization, constraints:
lambda_l2 >= 0.0

– L2 regularization

• linear_lambda , default = 0.0, type = double, constraints: linear_lambda >= 0.0

– linear tree regularization, corresponds to the parameter lambda in Eq. 3 of Gradient Boosting with Piece-
Wise Linear Regression Trees

• min_gain_to_split , default = 0.0, type = double, aliases: min_split_gain, constraints:
min_gain_to_split >= 0.0

– the minimal gain to perform split

– can be used to speed up training

• drop_rate , default = 0.1, type = double, aliases: rate_drop, constraints: 0.0 <= drop_rate <= 1.0

– used only in dart

– dropout rate: a fraction of previous trees to drop during the dropout

• max_drop , default = 50, type = int

– used only in dart

– max number of dropped trees during one boosting iteration

– <=0 means no limit

• skip_drop , default = 0.5, type = double, constraints: 0.0 <= skip_drop <= 1.0

48 Chapter 6. Parameters

https://arxiv.org/pdf/1802.05640.pdf
https://arxiv.org/pdf/1802.05640.pdf

LightGBM, Release 4.3.0.99

– used only in dart

– probability of skipping the dropout procedure during a boosting iteration

• xgboost_dart_mode , default = false, type = bool

– used only in dart

– set this to true, if you want to use xgboost dart mode

• uniform_drop , default = false, type = bool

– used only in dart

– set this to true, if you want to use uniform drop

• drop_seed , default = 4, type = int

– used only in dart

– random seed to choose dropping models

• top_rate , default = 0.2, type = double, constraints: 0.0 <= top_rate <= 1.0

– used only in goss

– the retain ratio of large gradient data

• other_rate , default = 0.1, type = double, constraints: 0.0 <= other_rate <= 1.0

– used only in goss

– the retain ratio of small gradient data

• min_data_per_group , default = 100, type = int, constraints: min_data_per_group > 0

– minimal number of data per categorical group

• max_cat_threshold , default = 32, type = int, constraints: max_cat_threshold > 0

– used for the categorical features

– limit number of split points considered for categorical features. See the documentation on how LightGBM
finds optimal splits for categorical features for more details

– can be used to speed up training

• cat_l2 , default = 10.0, type = double, constraints: cat_l2 >= 0.0

– used for the categorical features

– L2 regularization in categorical split

• cat_smooth , default = 10.0, type = double, constraints: cat_smooth >= 0.0

– used for the categorical features

– this can reduce the effect of noises in categorical features, especially for categories with few data

• max_cat_to_onehot , default = 4, type = int, constraints: max_cat_to_onehot > 0

– when number of categories of one feature smaller than or equal to max_cat_to_onehot, one-vs-other split
algorithm will be used

• top_k , default = 20, type = int, aliases: topk, constraints: top_k > 0

– used only in voting tree learner, refer to Voting parallel

– set this to larger value for more accurate result, but it will slow down the training speed

6.3. Learning Control Parameters 49

./Features.html#optimal-split-for-categorical-features
./Features.html#optimal-split-for-categorical-features
./Parallel-Learning-Guide.html#choose-appropriate-parallel-algorithm

LightGBM, Release 4.3.0.99

• monotone_constraints , default = None, type = multi-int, aliases: mc, monotone_constraint,
monotonic_cst

– used for constraints of monotonic features

– 1 means increasing, -1 means decreasing, 0 means non-constraint

– you need to specify all features in order. For example, mc=-1,0,1 means decreasing for 1st feature, non-
constraint for 2nd feature and increasing for the 3rd feature

• monotone_constraints_method , default = basic, type = enum, options: basic, intermediate,
advanced, aliases: monotone_constraining_method, mc_method

– used only if monotone_constraints is set

– monotone constraints method

∗ basic, the most basic monotone constraints method. It does not slow the library at all, but over-
constrains the predictions

∗ intermediate, a more advanced method, which may slow the library very slightly. However, this
method is much less constraining than the basic method and should significantly improve the results

∗ advanced, an even more advanced method, which may slow the library. However, this method is even
less constraining than the intermediate method and should again significantly improve the results

• monotone_penalty , default = 0.0, type = double, aliases: monotone_splits_penalty, ms_penalty,
mc_penalty, constraints: monotone_penalty >= 0.0

– used only if monotone_constraints is set

– monotone penalty: a penalization parameter X forbids any monotone splits on the first X (rounded down)
level(s) of the tree. The penalty applied to monotone splits on a given depth is a continuous, increasing
function the penalization parameter

– if 0.0 (the default), no penalization is applied

• feature_contri , default = None, type = multi-double, aliases: feature_contrib, fc, fp,
feature_penalty

– used to control feature’s split gain, will use gain[i] = max(0, feature_contri[i]) * gain[i] to
replace the split gain of i-th feature

– you need to specify all features in order

• forcedsplits_filename , default = "", type = string, aliases: fs, forced_splits_filename,
forced_splits_file, forced_splits

– path to a .json file that specifies splits to force at the top of every decision tree before best-first learning
commences

– .json file can be arbitrarily nested, and each split contains feature, threshold fields, as well as left
and right fields representing subsplits

– categorical splits are forced in a one-hot fashion, with left representing the split containing the feature
value and right representing other values

– Note: the forced split logic will be ignored, if the split makes gain worse

– see this file as an example

• refit_decay_rate , default = 0.9, type = double, constraints: 0.0 <= refit_decay_rate <= 1.0

– decay rate of refit task, will use leaf_output = refit_decay_rate * old_leaf_output + (1.0
- refit_decay_rate) * new_leaf_output to refit trees

50 Chapter 6. Parameters

https://hal.science/hal-02862802/document
https://hal.science/hal-02862802/document
https://hal.science/hal-02862802/document
https://github.com/microsoft/LightGBM/blob/master/examples/binary_classification/forced_splits.json

LightGBM, Release 4.3.0.99

– used only in refit task in CLI version or as argument in refit function in language-specific package

• cegb_tradeoff , default = 1.0, type = double, constraints: cegb_tradeoff >= 0.0

– cost-effective gradient boosting multiplier for all penalties

• cegb_penalty_split , default = 0.0, type = double, constraints: cegb_penalty_split >= 0.0

– cost-effective gradient-boosting penalty for splitting a node

• cegb_penalty_feature_lazy , default = 0,0,...,0, type = multi-double

– cost-effective gradient boosting penalty for using a feature

– applied per data point

• cegb_penalty_feature_coupled , default = 0,0,...,0, type = multi-double

– cost-effective gradient boosting penalty for using a feature

– applied once per forest

• path_smooth , default = 0, type = double, constraints: path_smooth >= 0.0

– controls smoothing applied to tree nodes

– helps prevent overfitting on leaves with few samples

– if set to zero, no smoothing is applied

– if path_smooth > 0 then min_data_in_leaf must be at least 2

– larger values give stronger regularization

∗ the weight of each node is w * (n / path_smooth) / (n / path_smooth + 1) + w_p / (n
/ path_smooth + 1), where n is the number of samples in the node, w is the optimal node weight
to minimise the loss (approximately -sum_gradients / sum_hessians), and w_p is the weight of
the parent node

∗ note that the parent output w_p itself has smoothing applied, unless it is the root node, so that the
smoothing effect accumulates with the tree depth

• interaction_constraints , default = "", type = string

– controls which features can appear in the same branch

– by default interaction constraints are disabled, to enable them you can specify

∗ for CLI, lists separated by commas, e.g. [0,1,2],[2,3]

∗ for Python-package, list of lists, e.g. [[0, 1, 2], [2, 3]]

∗ for R-package, list of character or numeric vectors, e.g. list(c("var1", "var2", "var3"),
c("var3", "var4")) or list(c(1L, 2L, 3L), c(3L, 4L)). Numeric vectors should use 1-
based indexing, where 1L is the first feature, 2L is the second feature, etc

– any two features can only appear in the same branch only if there exists a constraint containing both features

• verbosity , default = 1, type = int, aliases: verbose

– controls the level of LightGBM’s verbosity

– < 0: Fatal, = 0: Error (Warning), = 1: Info, > 1: Debug

• input_model , default = "", type = string, aliases: model_input, model_in

– filename of input model

– for prediction task, this model will be applied to prediction data

6.3. Learning Control Parameters 51

LightGBM, Release 4.3.0.99

– for train task, training will be continued from this model

– Note: can be used only in CLI version

• output_model , default = LightGBM_model.txt, type = string, aliases: model_output, model_out

– filename of output model in training

– Note: can be used only in CLI version

• saved_feature_importance_type , default = 0, type = int

– the feature importance type in the saved model file

– 0: count-based feature importance (numbers of splits are counted); 1: gain-based feature importance (val-
ues of gain are counted)

– Note: can be used only in CLI version

• snapshot_freq , default = -1, type = int, aliases: save_period

– frequency of saving model file snapshot

– set this to positive value to enable this function. For example, the model file will be snapshotted at each
iteration if snapshot_freq=1

– Note: can be used only in CLI version

• use_quantized_grad , default = false, type = bool

– whether to use gradient quantization when training

– enabling this will discretize (quantize) the gradients and hessians into bins of num_grad_quant_bins

– with quantized training, most arithmetics in the training process will be integer operations

– gradient quantization can accelerate training, with little accuracy drop in most cases

– Note: can be used only with device_type = cpu

– New in version 4.0.0

• num_grad_quant_bins , default = 4, type = int

– number of bins to quantization gradients and hessians

– with more bins, the quantized training will be closer to full precision training

– Note: can be used only with device_type = cpu

– New in 4.0.0

• quant_train_renew_leaf , default = false, type = bool

– whether to renew the leaf values with original gradients when quantized training

– renewing is very helpful for good quantized training accuracy for ranking objectives

– Note: can be used only with device_type = cpu

– New in 4.0.0

• stochastic_rounding , default = true, type = bool

– whether to use stochastic rounding in gradient quantization

– New in 4.0.0

52 Chapter 6. Parameters

LightGBM, Release 4.3.0.99

6.4 IO Parameters

6.4.1 Dataset Parameters

• linear_tree , default = false, type = bool, aliases: linear_trees

– fit piecewise linear gradient boosting tree

∗ tree splits are chosen in the usual way, but the model at each leaf is linear instead of constant

∗ the linear model at each leaf includes all the numerical features in that leaf’s branch

∗ the first tree has constant leaf values

∗ categorical features are used for splits as normal but are not used in the linear models

∗ missing values should not be encoded as 0. Use np.nan for Python, NA for the CLI, and NA, NA_real_,
or NA_integer_ for R

∗ it is recommended to rescale data before training so that features have similar mean and standard
deviation

∗ Note: only works with CPU and serial tree learner

∗ Note: regression_l1 objective is not supported with linear tree boosting

∗ Note: setting linear_tree=true significantly increases the memory use of LightGBM

∗ Note: if you specify monotone_constraints, constraints will be enforced when choosing the split
points, but not when fitting the linear models on leaves

• max_bin , default = 255, type = int, aliases: max_bins, constraints: max_bin > 1

– max number of bins that feature values will be bucketed in

– small number of bins may reduce training accuracy but may increase general power (deal with over-fitting)

– LightGBM will auto compress memory according to max_bin. For example, LightGBM will use uint8_t
for feature value if max_bin=255

• max_bin_by_feature , default = None, type = multi-int

– max number of bins for each feature

– if not specified, will use max_bin for all features

• min_data_in_bin , default = 3, type = int, constraints: min_data_in_bin > 0

– minimal number of data inside one bin

– use this to avoid one-data-one-bin (potential over-fitting)

• bin_construct_sample_cnt , default = 200000, type = int, aliases: subsample_for_bin, constraints:
bin_construct_sample_cnt > 0

– number of data that sampled to construct feature discrete bins

– setting this to larger value will give better training result, but may increase data loading time

– set this to larger value if data is very sparse

– Note: don’t set this to small values, otherwise, you may encounter unexpected errors and poor accuracy

• data_random_seed , default = 1, type = int, aliases: data_seed

– random seed for sampling data to construct histogram bins

6.4. IO Parameters 53

LightGBM, Release 4.3.0.99

• is_enable_sparse , default = true, type = bool, aliases: is_sparse, enable_sparse, sparse

– used to enable/disable sparse optimization

• enable_bundle , default = true, type = bool, aliases: is_enable_bundle, bundle

– set this to false to disable Exclusive Feature Bundling (EFB), which is described in LightGBM: A Highly
Efficient Gradient Boosting Decision Tree

– Note: disabling this may cause the slow training speed for sparse datasets

• use_missing , default = true, type = bool

– set this to false to disable the special handle of missing value

• zero_as_missing , default = false, type = bool

– set this to true to treat all zero as missing values (including the unshown values in LibSVM / sparse
matrices)

– set this to false to use na for representing missing values

• feature_pre_filter , default = true, type = bool

– set this to true (the default) to tell LightGBM to ignore the features that are unsplittable based on
min_data_in_leaf

– as dataset object is initialized only once and cannot be changed after that, you may need to set
this to false when searching parameters with min_data_in_leaf, otherwise features are filtered by
min_data_in_leaf firstly if you don’t reconstruct dataset object

– Note: setting this to false may slow down the training

• pre_partition , default = false, type = bool, aliases: is_pre_partition

– used for distributed learning (excluding the feature_parallel mode)

– true if training data are pre-partitioned, and different machines use different partitions

• two_round , default = false, type = bool, aliases: two_round_loading, use_two_round_loading

– set this to true if data file is too big to fit in memory

– by default, LightGBM will map data file to memory and load features from memory. This will provide
faster data loading speed, but may cause run out of memory error when the data file is very big

– Note: works only in case of loading data directly from text file

• header , default = false, type = bool, aliases: has_header

– set this to true if input data has header

– Note: works only in case of loading data directly from text file

• label_column , default = "", type = int or string, aliases: label

– used to specify the label column

– use number for index, e.g. label=0 means column_0 is the label

– add a prefix name: for column name, e.g. label=name:is_click

– if omitted, the first column in the training data is used as the label

– Note: works only in case of loading data directly from text file

• weight_column , default = "", type = int or string, aliases: weight

– used to specify the weight column

54 Chapter 6. Parameters

https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

LightGBM, Release 4.3.0.99

– use number for index, e.g. weight=0 means column_0 is the weight

– add a prefix name: for column name, e.g. weight=name:weight

– Note: works only in case of loading data directly from text file

– Note: index starts from 0 and it doesn’t count the label column when passing type is int, e.g. when label
is column_0, and weight is column_1, the correct parameter is weight=0

– Note: weights should be non-negative

• group_column , default = "", type = int or string, aliases: group, group_id, query_column, query,
query_id

– used to specify the query/group id column

– use number for index, e.g. query=0 means column_0 is the query id

– add a prefix name: for column name, e.g. query=name:query_id

– Note: works only in case of loading data directly from text file

– Note: data should be grouped by query_id, for more information, see Query Data

– Note: index starts from 0 and it doesn’t count the label column when passing type is int, e.g. when label
is column_0 and query_id is column_1, the correct parameter is query=0

• ignore_column , default = "", type = multi-int or string, aliases: ignore_feature, blacklist

– used to specify some ignoring columns in training

– use number for index, e.g. ignore_column=0,1,2 means column_0, column_1 and column_2 will be
ignored

– add a prefix name: for column name, e.g. ignore_column=name:c1,c2,c3 means c1, c2 and c3 will be
ignored

– Note: works only in case of loading data directly from text file

– Note: index starts from 0 and it doesn’t count the label column when passing type is int

– Note: despite the fact that specified columns will be completely ignored during the training, they still should
have a valid format allowing LightGBM to load file successfully

• categorical_feature , default = "", type = multi-int or string, aliases: cat_feature,
categorical_column, cat_column, categorical_features

– used to specify categorical features

– use number for index, e.g. categorical_feature=0,1,2 means column_0, column_1 and column_2
are categorical features

– add a prefix name: for column name, e.g. categorical_feature=name:c1,c2,c3 means c1, c2 and c3
are categorical features

– Note: all values will be cast to int32 (integer codes will be extracted from pandas categoricals in the
Python-package)

– Note: index starts from 0 and it doesn’t count the label column when passing type is int

– Note: all values should be less than Int32.MaxValue (2147483647)

– Note: using large values could be memory consuming. Tree decision rule works best when categorical
features are presented by consecutive integers starting from zero

– Note: all negative values will be treated as missing values

– Note: the output cannot be monotonically constrained with respect to a categorical feature

6.4. IO Parameters 55

LightGBM, Release 4.3.0.99

– Note: floating point numbers in categorical features will be rounded towards 0

• forcedbins_filename , default = "", type = string

– path to a .json file that specifies bin upper bounds for some or all features

– .json file should contain an array of objects, each containing the word feature (integer feature index)
and bin_upper_bound (array of thresholds for binning)

– see this file as an example

• save_binary , default = false, type = bool, aliases: is_save_binary, is_save_binary_file

– if true, LightGBM will save the dataset (including validation data) to a binary file. This speed ups the
data loading for the next time

– Note: init_score is not saved in binary file

– Note: can be used only in CLI version; for language-specific packages you can use the correspondent
function

• precise_float_parser , default = false, type = bool

– use precise floating point number parsing for text parser (e.g. CSV, TSV, LibSVM input)

– Note: setting this to true may lead to much slower text parsing

• parser_config_file , default = "", type = string

– path to a .json file that specifies customized parser initialized configuration

– see lightgbm-transform for usage examples

– Note: lightgbm-transform is not maintained by LightGBM’s maintainers. Bug reports or feature re-
quests should go to issues page

– New in 4.0.0

6.4.2 Predict Parameters

• start_iteration_predict , default = 0, type = int

– used only in prediction task

– used to specify from which iteration to start the prediction

– <= 0 means from the first iteration

• num_iteration_predict , default = -1, type = int

– used only in prediction task

– used to specify how many trained iterations will be used in prediction

– <= 0 means no limit

• predict_raw_score , default = false, type = bool, aliases: is_predict_raw_score, predict_rawscore,
raw_score

– used only in prediction task

– set this to true to predict only the raw scores

– set this to false to predict transformed scores

• predict_leaf_index , default = false, type = bool, aliases: is_predict_leaf_index, leaf_index

– used only in prediction task

56 Chapter 6. Parameters

https://github.com/microsoft/LightGBM/blob/master/examples/regression/forced_bins.json
https://github.com/microsoft/lightgbm-transform
https://github.com/microsoft/lightgbm-transform/issues

LightGBM, Release 4.3.0.99

– set this to true to predict with leaf index of all trees

• predict_contrib , default = false, type = bool, aliases: is_predict_contrib, contrib

– used only in prediction task

– set this to true to estimate SHAP values, which represent how each feature contributes to each prediction

– produces #features + 1 values where the last value is the expected value of the model output over the
training data

– Note: if you want to get more explanation for your model’s predictions using SHAP values like SHAP
interaction values, you can install shap package

– Note: unlike the shap package, with predict_contrib we return a matrix with an extra column, where
the last column is the expected value

– Note: this feature is not implemented for linear trees

• predict_disable_shape_check , default = false, type = bool

– used only in prediction task

– control whether or not LightGBM raises an error when you try to predict on data with a different number
of features than the training data

– if false (the default), a fatal error will be raised if the number of features in the dataset you predict on
differs from the number seen during training

– if true, LightGBM will attempt to predict on whatever data you provide. This is dangerous because you
might get incorrect predictions, but you could use it in situations where it is difficult or expensive to generate
some features and you are very confident that they were never chosen for splits in the model

– Note: be very careful setting this parameter to true

• pred_early_stop , default = false, type = bool

– used only in prediction task

– used only in classification and ranking applications

– used only for predicting normal or raw scores

– if true, will use early-stopping to speed up the prediction. May affect the accuracy

– Note: cannot be used with rf boosting type or custom objective function

• pred_early_stop_freq , default = 10, type = int

– used only in prediction task

– the frequency of checking early-stopping prediction

• pred_early_stop_margin , default = 10.0, type = double

– used only in prediction task

– the threshold of margin in early-stopping prediction

• output_result , default = LightGBM_predict_result.txt, type = string, aliases: predict_result,
prediction_result, predict_name, prediction_name, pred_name, name_pred

– used only in prediction task

– filename of prediction result

– Note: can be used only in CLI version

6.4. IO Parameters 57

https://arxiv.org/abs/1706.06060
https://github.com/shap

LightGBM, Release 4.3.0.99

6.4.3 Convert Parameters

• convert_model_language , default = "", type = string

– used only in convert_model task

– only cpp is supported yet; for conversion model to other languages consider using m2cgen utility

– if convert_model_language is set and task=train, the model will be also converted

– Note: can be used only in CLI version

• convert_model , default = gbdt_prediction.cpp, type = string, aliases: convert_model_file

– used only in convert_model task

– output filename of converted model

– Note: can be used only in CLI version

6.5 Objective Parameters

• objective_seed , default = 5, type = int

– used only in rank_xendcg objective

– random seed for objectives, if random process is needed

• num_class , default = 1, type = int, aliases: num_classes, constraints: num_class > 0

– used only in multi-class classification application

• is_unbalance , default = false, type = bool, aliases: unbalance, unbalanced_sets

– used only in binary and multiclassova applications

– set this to true if training data are unbalanced

– Note: while enabling this should increase the overall performance metric of your model, it will also result
in poor estimates of the individual class probabilities

– Note: this parameter cannot be used at the same time with scale_pos_weight, choose only one of them

• scale_pos_weight , default = 1.0, type = double, constraints: scale_pos_weight > 0.0

– used only in binary and multiclassova applications

– weight of labels with positive class

– Note: while enabling this should increase the overall performance metric of your model, it will also result
in poor estimates of the individual class probabilities

– Note: this parameter cannot be used at the same time with is_unbalance, choose only one of them

• sigmoid , default = 1.0, type = double, constraints: sigmoid > 0.0

– used only in binary and multiclassova classification and in lambdarank applications

– parameter for the sigmoid function

• boost_from_average , default = true, type = bool

– used only in regression, binary, multiclassova and cross-entropy applications

– adjusts initial score to the mean of labels for faster convergence

• reg_sqrt , default = false, type = bool

58 Chapter 6. Parameters

https://github.com/BayesWitnesses/m2cgen

LightGBM, Release 4.3.0.99

– used only in regression application

– used to fit sqrt(label) instead of original values and prediction result will be also automatically converted
to prediction^2

– might be useful in case of large-range labels

• alpha , default = 0.9, type = double, constraints: alpha > 0.0

– used only in huber and quantile regression applications

– parameter for Huber loss and Quantile regression

• fair_c , default = 1.0, type = double, constraints: fair_c > 0.0

– used only in fair regression application

– parameter for Fair loss

• poisson_max_delta_step , default = 0.7, type = double, constraints: poisson_max_delta_step > 0.0

– used only in poisson regression application

– parameter for Poisson regression to safeguard optimization

• tweedie_variance_power , default = 1.5, type = double, constraints: 1.0 <= tweedie_variance_power
< 2.0

– used only in tweedie regression application

– used to control the variance of the tweedie distribution

– set this closer to 2 to shift towards a Gamma distribution

– set this closer to 1 to shift towards a Poisson distribution

• lambdarank_truncation_level , default = 30, type = int, constraints: lambdarank_truncation_level >
0

– used only in lambdarank application

– controls the number of top-results to focus on during training, refer to “truncation level” in the Sec. 3 of
LambdaMART paper

– this parameter is closely related to the desirable cutoff k in the metric NDCG@k that we aim at optimizing
the ranker for. The optimal setting for this parameter is likely to be slightly higher than k (e.g., k + 3) to
include more pairs of documents to train on, but perhaps not too high to avoid deviating too much from the
desired target metric NDCG@k

• lambdarank_norm , default = true, type = bool

– used only in lambdarank application

– set this to true to normalize the lambdas for different queries, and improve the performance for unbalanced
data

– set this to false to enforce the original lambdarank algorithm

• label_gain , default = 0,1,3,7,15,31,63,...,2^30-1, type = multi-double

– used only in lambdarank application

– relevant gain for labels. For example, the gain of label 2 is 3 in case of default label gains

– separate by ,

• lambdarank_position_bias_regularization , default = 0.0, type = double, constraints:
lambdarank_position_bias_regularization >= 0.0

6.5. Objective Parameters 59

https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Quantile_regression
https://www.kaggle.com/c/allstate-claims-severity/discussion/24520
https://en.wikipedia.org/wiki/Poisson_regression
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf

LightGBM, Release 4.3.0.99

– used only in lambdarank application when positional information is provided and position bias is modeled.
Larger values reduce the inferred position bias factors.

– New in version 4.1.0

6.6 Metric Parameters

• metric , default = "", type = multi-enum, aliases: metrics, metric_types

– metric(s) to be evaluated on the evaluation set(s)

∗ "" (empty string or not specified) means that metric corresponding to specified objective will be
used (this is possible only for pre-defined objective functions, otherwise no evaluation metric will be
added)

∗ "None" (string, not a None value) means that no metric will be registered, aliases: na, null, custom

∗ l1, absolute loss, aliases: mean_absolute_error, mae, regression_l1

∗ l2, square loss, aliases: mean_squared_error, mse, regression_l2, regression

∗ rmse, root square loss, aliases: root_mean_squared_error, l2_root

∗ quantile, Quantile regression

∗ mape, MAPE loss, aliases: mean_absolute_percentage_error

∗ huber, Huber loss

∗ fair, Fair loss

∗ poisson, negative log-likelihood for Poisson regression

∗ gamma, negative log-likelihood for Gamma regression

∗ gamma_deviance, residual deviance for Gamma regression

∗ tweedie, negative log-likelihood for Tweedie regression

∗ ndcg, NDCG, aliases: lambdarank, rank_xendcg, xendcg, xe_ndcg, xe_ndcg_mart,
xendcg_mart

∗ map, MAP, aliases: mean_average_precision

∗ auc, AUC

∗ average_precision, average precision score

∗ binary_logloss, log loss, aliases: binary

∗ binary_error, for one sample: 0 for correct classification, 1 for error classification

∗ auc_mu, AUC-mu

∗ multi_logloss, log loss for multi-class classification, aliases: multiclass, softmax,
multiclassova, multiclass_ova, ova, ovr

∗ multi_error, error rate for multi-class classification

∗ cross_entropy, cross-entropy (with optional linear weights), aliases: xentropy

∗ cross_entropy_lambda, “intensity-weighted” cross-entropy, aliases: xentlambda

∗ kullback_leibler, Kullback-Leibler divergence, aliases: kldiv

– support multiple metrics, separated by ,

60 Chapter 6. Parameters

https://en.wikipedia.org/wiki/Quantile_regression
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Huber_loss
https://www.kaggle.com/c/allstate-claims-severity/discussion/24520
https://en.wikipedia.org/wiki/Poisson_regression
https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG
https://makarandtapaswi.wordpress.com/2012/07/02/intuition-behind-average-precision-and-map/
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://en.wikipedia.org/wiki/Cross_entropy
http://proceedings.mlr.press/v97/kleiman19a/kleiman19a.pdf
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

LightGBM, Release 4.3.0.99

• metric_freq , default = 1, type = int, aliases: output_freq, constraints: metric_freq > 0

– frequency for metric output

– Note: can be used only in CLI version

• is_provide_training_metric , default = false, type = bool, aliases: training_metric,
is_training_metric, train_metric

– set this to true to output metric result over training dataset

– Note: can be used only in CLI version

• eval_at , default = 1,2,3,4,5, type = multi-int, aliases: ndcg_eval_at, ndcg_at, map_eval_at, map_at

– used only with ndcg and map metrics

– NDCG and MAP evaluation positions, separated by ,

• multi_error_top_k , default = 1, type = int, constraints: multi_error_top_k > 0

– used only with multi_error metric

– threshold for top-k multi-error metric

– the error on each sample is 0 if the true class is among the top multi_error_top_k predictions, and 1
otherwise

∗ more precisely, the error on a sample is 0 if there are at least num_classes - multi_error_top_k
predictions strictly less than the prediction on the true class

– when multi_error_top_k=1 this is equivalent to the usual multi-error metric

• auc_mu_weights , default = None, type = multi-double

– used only with auc_mu metric

– list representing flattened matrix (in row-major order) giving loss weights for classification errors

– list should have n * n elements, where n is the number of classes

– the matrix co-ordinate [i, j] should correspond to the i * n + j-th element of the list

– if not specified, will use equal weights for all classes

6.7 Network Parameters

• num_machines , default = 1, type = int, aliases: num_machine, constraints: num_machines > 0

– the number of machines for distributed learning application

– this parameter is needed to be set in both socket and mpi versions

• local_listen_port , default = 12400 (random for Dask-package), type = int, aliases: local_port,
port, constraints: local_listen_port > 0

– TCP listen port for local machines

– Note: don’t forget to allow this port in firewall settings before training

• time_out , default = 120, type = int, constraints: time_out > 0

– socket time-out in minutes

• machine_list_filename , default = "", type = string, aliases: machine_list_file, machine_list, mlist

– path of file that lists machines for this distributed learning application

6.7. Network Parameters 61

https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG
https://makarandtapaswi.wordpress.com/2012/07/02/intuition-behind-average-precision-and-map/

LightGBM, Release 4.3.0.99

– each line contains one IP and one port for one machine. The format is ip port (space as a separator)

– Note: can be used only in CLI version

• machines , default = "", type = string, aliases: workers, nodes

– list of machines in the following format: ip1:port1,ip2:port2

6.8 GPU Parameters

• gpu_platform_id , default = -1, type = int

– OpenCL platform ID. Usually each GPU vendor exposes one OpenCL platform

– -1 means the system-wide default platform

– Note: refer to GPU Targets for more details

• gpu_device_id , default = -1, type = int

– OpenCL device ID in the specified platform. Each GPU in the selected platform has a unique device ID

– -1 means the default device in the selected platform

– Note: refer to GPU Targets for more details

• gpu_use_dp , default = false, type = bool

– set this to true to use double precision math on GPU (by default single precision is used)

– Note: can be used only in OpenCL implementation, in CUDA implementation only double precision is
currently supported

• num_gpu , default = 1, type = int, constraints: num_gpu > 0

– number of GPUs

– Note: can be used only in CUDA implementation

6.9 Others

6.9.1 Continued Training with Input Score

LightGBM supports continued training with initial scores. It uses an additional file to store these initial scores, like the
following:

0.5
-0.1
0.9
...

It means the initial score of the first data row is 0.5, second is -0.1, and so on. The initial score file corresponds with
data file line by line, and has per score per line.

And if the name of data file is train.txt, the initial score file should be named as train.txt.init and placed in
the same folder as the data file. In this case, LightGBM will auto load initial score file if it exists.

If binary data files exist for raw data file train.txt, for example in the name train.txt.bin, then the initial score
file should be named as train.txt.bin.init.

62 Chapter 6. Parameters

./GPU-Targets.html#query-opencl-devices-in-your-system
./GPU-Targets.html#query-opencl-devices-in-your-system

LightGBM, Release 4.3.0.99

6.9.2 Weight Data

LightGBM supports weighted training. It uses an additional file to store weight data, like the following:

1.0
0.5
0.8
...

It means the weight of the first data row is 1.0, second is 0.5, and so on. Weights should be non-negative.

The weight file corresponds with data file line by line, and has per weight per line.

And if the name of data file is train.txt, the weight file should be named as train.txt.weight and placed in the
same folder as the data file. In this case, LightGBM will load the weight file automatically if it exists.

Also, you can include weight column in your data file. Please refer to the weight_column parameter in above.

6.9.3 Query Data

For learning to rank, it needs query information for training data.

LightGBM uses an additional file to store query data, like the following:

27
18
67
...

For wrapper libraries like in Python and R, this information can also be provided as an array-like via the Dataset
parameter group.

[27, 18, 67, ...]

For example, if you have a 112-document dataset with group = [27, 18, 67], that means that you have 3 groups,
where the first 27 records are in the first group, records 28-45 are in the second group, and records 46-112 are in the
third group.

Note: data should be ordered by the query.

If the name of data file is train.txt, the query file should be named as train.txt.query and placed in the same
folder as the data file. In this case, LightGBM will load the query file automatically if it exists.

Also, you can include query/group id column in your data file. Please refer to the group_column parameter in above.

6.9. Others 63

LightGBM, Release 4.3.0.99

64 Chapter 6. Parameters

CHAPTER

SEVEN

PARAMETERS TUNING

This page contains parameters tuning guides for different scenarios.

List of other helpful links

• Parameters

• Python API

• FLAML for automated hyperparameter tuning

• Optuna for automated hyperparameter tuning

7.1 Tune Parameters for the Leaf-wise (Best-first) Tree

LightGBM uses the leaf-wise tree growth algorithm, while many other popular tools use depth-wise tree growth. Com-
pared with depth-wise growth, the leaf-wise algorithm can converge much faster. However, the leaf-wise growth may
be over-fitting if not used with the appropriate parameters.

To get good results using a leaf-wise tree, these are some important parameters:

1. num_leaves. This is the main parameter to control the complexity of the tree model. Theoretically, we can
set num_leaves = 2^(max_depth) to obtain the same number of leaves as depth-wise tree. However, this
simple conversion is not good in practice. The reason is that a leaf-wise tree is typically much deeper than a
depth-wise tree for a fixed number of leaves. Unconstrained depth can induce over-fitting. Thus, when trying to
tune the num_leaves, we should let it be smaller than 2^(max_depth). For example, when the max_depth=7
the depth-wise tree can get good accuracy, but setting num_leaves to 127 may cause over-fitting, and setting it
to 70 or 80 may get better accuracy than depth-wise.

2. min_data_in_leaf. This is a very important parameter to prevent over-fitting in a leaf-wise tree. Its optimal
value depends on the number of training samples and num_leaves. Setting it to a large value can avoid growing
too deep a tree, but may cause under-fitting. In practice, setting it to hundreds or thousands is enough for a large
dataset.

3. max_depth. You also can use max_depth to limit the tree depth explicitly.

65

./Parameters.html
./Python-API.html
https://github.com/microsoft/FLAML
https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258
./Features.html#leaf-wise-best-first-tree-growth

LightGBM, Release 4.3.0.99

7.2 For Faster Speed

7.2.1 Add More Computational Resources

On systems where it is available, LightGBM uses OpenMP to parallelize many operations. The maximum number
of threads used by LightGBM is controlled by the parameter num_threads. By default, this will defer to the default
behavior of OpenMP (one thread per real CPU core or the value in environment variable OMP_NUM_THREADS, if it is
set). For best performance, set this to the number of real CPU cores available.

You might be able to achieve faster training by moving to a machine with more available CPU cores.

Using distributed (multi-machine) training might also reduce training time. See the Distributed Learning Guide for
details.

7.2.2 Use a GPU-enabled version of LightGBM

You might find that training is faster using a GPU-enabled build of LightGBM. See the GPU Tutorial for details.

7.2.3 Grow Shallower Trees

The total training time for LightGBM increases with the total number of tree nodes added. LightGBM comes with
several parameters that can be used to control the number of nodes per tree.

The suggestions below will speed up training, but might hurt training accuracy.

Decrease max_depth

This parameter is an integer that controls the maximum distance between the root node of each tree and a leaf node.
Decrease max_depth to reduce training time.

Decrease num_leaves

LightGBM adds nodes to trees based on the gain from adding that node, regardless of depth. This figure from the
feature documentation illustrates the process.

Because of this growth strategy, it isn’t straightforward to use max_depth alone to limit the complexity of trees. The
num_leaves parameter sets the maximum number of nodes per tree. Decrease num_leaves to reduce training time.

66 Chapter 7. Parameters Tuning

./Parallel-Learning-Guide.html
./GPU-Tutorial.html
./Features.html#leaf-wise-best-first-tree-growth
./Features.html#leaf-wise-best-first-tree-growth

LightGBM, Release 4.3.0.99

Increase min_gain_to_split

When adding a new tree node, LightGBM chooses the split point that has the largest gain. Gain is basically the re-
duction in training loss that results from adding a split point. By default, LightGBM sets min_gain_to_split to
0.0, which means “there is no improvement that is too small”. However, in practice you might find that very small
improvements in the training loss don’t have a meaningful impact on the generalization error of the model. Increase
min_gain_to_split to reduce training time.

Increase min_data_in_leaf and min_sum_hessian_in_leaf

Depending on the size of the training data and the distribution of features, it’s possible for LightGBM to add tree nodes
that only describe a small number of observations. In the most extreme case, consider the addition of a tree node that
only a single observation from the training data falls into. This is very unlikely to generalize well, and probably is a
sign of overfitting.

This can be prevented indirectly with parameters like max_depth and num_leaves, but LightGBM also offers param-
eters to help you directly avoid adding these overly-specific tree nodes.

• min_data_in_leaf: Minimum number of observations that must fall into a tree node for it to be added.

• min_sum_hessian_in_leaf: Minimum sum of the Hessian (second derivative of the objective function eval-
uated for each observation) for observations in a leaf. For some regression objectives, this is just the minimum
number of records that have to fall into each node. For classification objectives, it represents a sum over a distri-
bution of probabilities. See this Stack Overflow answer for a good description of how to reason about values of
this parameter.

7.2.4 Grow Less Trees

Decrease num_iterations

The num_iterations parameter controls the number of boosting rounds that will be performed. Since LightGBM
uses decision trees as the learners, this can also be thought of as “number of trees”.

If you try changing num_iterations, change the learning_rate as well. learning_rate will not have any impact
on training time, but it will impact the training accuracy. As a general rule, if you reduce num_iterations, you should
increase learning_rate.

Choosing the right value of num_iterations and learning_rate is highly dependent on the data and objective, so
these parameters are often chosen from a set of possible values through hyperparameter tuning.

Decrease num_iterations to reduce training time.

Use Early Stopping

If early stopping is enabled, after each boosting round the model’s training accuracy is evaluated against a validation
set that contains data not available to the training process. That accuracy is then compared to the accuracy as of the
previous boosting round. If the model’s accuracy fails to improve for some number of consecutive rounds, LightGBM
stops the training process.

That “number of consecutive rounds” is controlled by the parameter early_stopping_round. For example,
early_stopping_round=1 says “the first time accuracy on the validation set does not improve, stop training”.

Set early_stopping_round and provide a validation set to possibly reduce training time.

7.2. For Faster Speed 67

https://stats.stackexchange.com/questions/317073/explanation-of-min-child-weight-in-xgboost-algorithm

LightGBM, Release 4.3.0.99

7.2.5 Consider Fewer Splits

The parameters described in previous sections control how many trees are constructed and how many nodes are con-
structed per tree. Training time can be further reduced by reducing the amount of time needed to add a tree node to the
model.

The suggestions below will speed up training, but might hurt training accuracy.

Enable Feature Pre-Filtering When Creating Dataset

By default, when a LightGBM Dataset object is constructed, some features will be filtered out based on the value of
min_data_in_leaf.

For a simple example, consider a 1000-observation dataset with a feature called feature_1. feature_1 takes on only
two values: 25.0 (995 observations) and 50.0 (5 observations). If min_data_in_leaf = 10, there is no split for this
feature which will result in a valid split at least one of the leaf nodes will only have 5 observations.

Instead of reconsidering this feature and then ignoring it every iteration, LightGBM filters this feature out at before
training, when the Dataset is constructed.

If this default behavior has been overridden by setting feature_pre_filter=False, set
feature_pre_filter=True to reduce training time.

Decrease max_bin or max_bin_by_featureWhen Creating Dataset

LightGBM training buckets continuous features into discrete bins to improve training speed and reduce memory re-
quirements for training. This binning is done one time during Dataset construction. The number of splits considered
when adding a node is O(#feature * #bin), so reducing the number of bins per feature can reduce the number of
splits that need to be evaluated.

max_bin is controls the maximum number of bins that features will bucketed into. It is also possible to set this maxi-
mum feature-by-feature, by passing max_bin_by_feature.

Reduce max_bin or max_bin_by_feature to reduce training time.

Increase min_data_in_binWhen Creating Dataset

Some bins might contain a small number of observations, which might mean that the effort of evaluating that bin’s
boundaries as possible split points isn’t likely to change the final model very much. You can control the granularity of
the bins by setting min_data_in_bin.

Increase min_data_in_bin to reduce training time.

Decrease feature_fraction

By default, LightGBM considers all features in a Dataset during the training process. This behavior can be changed
by setting feature_fraction to a value > 0 and <= 1.0. Setting feature_fraction to 0.5, for example, tells
LightGBM to randomly select 50% of features at the beginning of constructing each tree. This reduces the total number
of splits that have to be evaluated to add each tree node.

Decrease feature_fraction to reduce training time.

68 Chapter 7. Parameters Tuning

./Features.html#optimization-in-speed-and-memory-usage

LightGBM, Release 4.3.0.99

Decrease max_cat_threshold

LightGBM uses a custom approach for finding optimal splits for categorical features. In this process, LightGBM
explores splits that break a categorical feature into two groups. These are sometimes called “k-vs.-rest” splits. Higher
max_cat_threshold values correspond to more split points and larger possible group sizes to search.

Decrease max_cat_threshold to reduce training time.

7.2.6 Use Less Data

Use Bagging

By default, LightGBM uses all observations in the training data for each iteration. It is possible to instead tell LightGBM
to randomly sample the training data. This process of training over multiple random samples without replacement is
called “bagging”.

Set bagging_freq to an integer greater than 0 to control how often a new sample is drawn. Set bagging_fraction
to a value > 0.0 and < 1.0 to control the size of the sample. For example, {"bagging_freq": 5,
"bagging_fraction": 0.75} tells LightGBM “re-sample without replacement every 5 iterations, and draw sam-
ples of 75% of the training data”.

Decrease bagging_fraction to reduce training time.

7.2.7 Save Constructed Datasets with save_binary

This only applies to the LightGBM CLI. If you pass parameter save_binary, the training dataset and all validations
sets will be saved in a binary format understood by LightGBM. This can speed up training next time, because binning
and other work done when constructing a Dataset does not have to be re-done.

7.3 For Better Accuracy

• Use large max_bin (may be slower)

• Use small learning_rate with large num_iterations

• Use large num_leaves (may cause over-fitting)

• Use bigger training data

• Try dart

7.4 Deal with Over-fitting

• Use small max_bin

• Use small num_leaves

• Use min_data_in_leaf and min_sum_hessian_in_leaf

• Use bagging by set bagging_fraction and bagging_freq

• Use feature sub-sampling by set feature_fraction

• Use bigger training data

7.3. For Better Accuracy 69

./Advanced-Topics.html#categorical-feature-support

LightGBM, Release 4.3.0.99

• Try lambda_l1, lambda_l2 and min_gain_to_split for regularization

• Try max_depth to avoid growing deep tree

• Try extra_trees

• Try increasing path_smooth

70 Chapter 7. Parameters Tuning

CHAPTER

EIGHT

C API

Copyright
Copyright (c) 2016 Microsoft Corporation. All rights reserved. Licensed under the MIT License. See LICENSE
file in the project root for license information.

Note: To avoid type conversion on large data, the most of our exposed interface supports both float32 and float64,
except the following:

1. gradient and Hessian;

2. current score for training and validation data.

The reason is that they are called frequently, and the type conversion on them may be time-cost.

Defines

C_API_DTYPE_FLOAT32 (0)
float32 (single precision float).

C_API_DTYPE_FLOAT64 (1)
float64 (double precision float).

C_API_DTYPE_INT32 (2)
int32.

C_API_DTYPE_INT64 (3)
int64.

C_API_FEATURE_IMPORTANCE_GAIN (1)
Gain type of feature importance.

C_API_FEATURE_IMPORTANCE_SPLIT (0)
Split type of feature importance.

71

LightGBM, Release 4.3.0.99

C_API_MATRIX_TYPE_CSC (1)
CSC sparse matrix type.

C_API_MATRIX_TYPE_CSR (0)
CSR sparse matrix type.

C_API_PREDICT_CONTRIB (3)
Predict feature contributions (SHAP values).

C_API_PREDICT_LEAF_INDEX (2)
Predict leaf index.

C_API_PREDICT_NORMAL (0)
Normal prediction, with transform (if needed).

C_API_PREDICT_RAW_SCORE (1)
Predict raw score.

INLINE_FUNCTION inline
Inline specifier.

THREAD_LOCAL thread_local
Thread local specifier.

Typedefs

typedef void *BoosterHandle
Handle of booster.

typedef void *ByteBufferHandle
Handle of ByteBuffer.

typedef void *DatasetHandle
Handle of dataset.

typedef void *FastConfigHandle
Handle of FastConfig.

72 Chapter 8. C API

LightGBM, Release 4.3.0.99

Functions

static char *LastErrorMsg()
Handle of error message.

Returns
Error message

LIGHTGBM_C_EXPORT int LGBM_BoosterAddValidData(BoosterHandle handle, const DatasetHandle
valid_data)

Add new validation data to booster.

Parameters

• handle – Handle of booster

• valid_data – Validation dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterCalcNumPredict(BoosterHandle handle, int num_row, int
predict_type, int start_iteration, int num_iteration,
int64_t *out_len)

Get number of predictions.

Parameters

• handle – Handle of booster

• num_row – Number of rows

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

• out_len – [out] Length of prediction

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterCreate(const DatasetHandle train_data, const char *parameters,
BoosterHandle *out)

Create a new boosting learner.

Parameters

• train_data – Training dataset

• parameters – Parameters in format ‘key1=value1 key2=value2’

• out – [out] Handle of created booster

Returns
0 when succeed, -1 when failure happens

73

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterCreateFromModelfile(const char *filename, int
*out_num_iterations, BoosterHandle *out)

Load an existing booster from model file.

Parameters

• filename – Filename of model

• out_num_iterations – [out] Number of iterations of this booster

• out – [out] Handle of created booster

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterDumpModel(BoosterHandle handle, int start_iteration, int
num_iteration, int feature_importance_type, int64_t
buffer_len, int64_t *out_len, char *out_str)

Dump model to JSON.

Parameters

• handle – Handle of booster

• start_iteration – Start index of the iteration that should be dumped

• num_iteration – Index of the iteration that should be dumped, <= 0 means dump all

• feature_importance_type – Type of feature importance, can be
C_API_FEATURE_IMPORTANCE_SPLIT or C_API_FEATURE_IMPORTANCE_GAIN

• buffer_len – String buffer length, if buffer_len < out_len, you should re-allocate
buffer

• out_len – [out] Actual output length

• out_str – [out] JSON format string of model, should pre-allocate memory

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterFeatureImportance(BoosterHandle handle, int num_iteration, int
importance_type, double *out_results)

Get model feature importance.

Parameters

• handle – Handle of booster

• num_iteration – Number of iterations for which feature importance is calculated, <= 0
means use all

• importance_type – Method of importance calculation:

– C_API_FEATURE_IMPORTANCE_SPLIT: result contains numbers of times the feature is
used in a model;

– C_API_FEATURE_IMPORTANCE_GAIN: result contains total gains of splits which use the
feature

• out_results – [out] Result array with feature importance

Returns
0 when succeed, -1 when failure happens

74 Chapter 8. C API

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterFree(BoosterHandle handle)
Free space for booster.

Parameters

• handle – Handle of booster to be freed

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterFreePredictSparse(void *indptr, int32_t *indices, void *data, int
indptr_type, int data_type)

Method corresponding to LGBM_BoosterPredictSparseOutput to free the allocated data.

Parameters

• indptr – Pointer to output row headers or column headers to be deallocated

• indices – Pointer to sparse indices to be deallocated

• data – Pointer to sparse data space to be deallocated

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetCurrentIteration(BoosterHandle handle, int *out_iteration)
Get index of the current boosting iteration.

Parameters

• handle – Handle of booster

• out_iteration – [out] Index of the current boosting iteration

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetEval(BoosterHandle handle, int data_idx, int *out_len, double
*out_results)

Get evaluation for training data and validation data.

Note:

a. You should call LGBM_BoosterGetEvalNames first to get the names of evaluation metrics.

b. You should pre-allocate memory for out_results, you can get its length by
LGBM_BoosterGetEvalCounts.

Parameters

• handle – Handle of booster

• data_idx – Index of data, 0: training data, 1: 1st validation data, 2: 2nd validation data and
so on

• out_len – [out] Length of output result

• out_results – [out] Array with evaluation results

75

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetEvalCounts(BoosterHandle handle, int *out_len)
Get number of evaluation metrics.

Parameters

• handle – Handle of booster

• out_len – [out] Total number of evaluation metrics

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetEvalNames(BoosterHandle handle, const int len, int *out_len,
const size_t buffer_len, size_t *out_buffer_len, char
**out_strs)

Get names of evaluation metrics.

Parameters

• handle – Handle of booster

• len – Number of char* pointers stored at out_strs. If smaller than the max size, only this
many strings are copied

• out_len – [out] Total number of evaluation metrics

• buffer_len – Size of pre-allocated strings. Content is copied up to buffer_len - 1 and
null-terminated

• out_buffer_len – [out] String sizes required to do the full string copies

• out_strs – [out] Names of evaluation metrics, should pre-allocate memory

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetFeatureNames(BoosterHandle handle, const int len, int *out_len,
const size_t buffer_len, size_t *out_buffer_len,
char **out_strs)

Get names of features.

Parameters

• handle – Handle of booster

• len – Number of char* pointers stored at out_strs. If smaller than the max size, only this
many strings are copied

• out_len – [out] Total number of features

• buffer_len – Size of pre-allocated strings. Content is copied up to buffer_len - 1 and
null-terminated

• out_buffer_len – [out] String sizes required to do the full string copies

• out_strs – [out] Names of features, should pre-allocate memory

Returns
0 when succeed, -1 when failure happens

76 Chapter 8. C API

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterGetLeafValue(BoosterHandle handle, int tree_idx, int leaf_idx,
double *out_val)

Get leaf value.

Parameters

• handle – Handle of booster

• tree_idx – Index of tree

• leaf_idx – Index of leaf

• out_val – [out] Output result from the specified leaf

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetLinear(BoosterHandle handle, int *out)
Get int representing whether booster is fitting linear trees.

Parameters

• handle – Handle of booster

• out – [out] The address to hold linear trees indicator

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetLoadedParam(BoosterHandle handle, int64_t buffer_len, int64_t
*out_len, char *out_str)

Get parameters as JSON string.

Parameters

• handle – Handle of booster

• buffer_len – Allocated space for string

• out_len – [out] Actual size of string

• out_str – [out] JSON string containing parameters

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetLowerBoundValue(BoosterHandle handle, double *out_results)
Get model lower bound value.

Parameters

• handle – Handle of booster

• out_results – [out] Result pointing to min value

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetNumClasses(BoosterHandle handle, int *out_len)
Get number of classes.

Parameters

• handle – Handle of booster

• out_len – [out] Number of classes

77

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetNumFeature(BoosterHandle handle, int *out_len)
Get number of features.

Parameters

• handle – Handle of booster

• out_len – [out] Total number of features

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetNumPredict(BoosterHandle handle, int data_idx, int64_t
*out_len)

Get number of predictions for training data and validation data (this can be used to support customized evaluation
functions).

Parameters

• handle – Handle of booster

• data_idx – Index of data, 0: training data, 1: 1st validation data, 2: 2nd validation data and
so on

• out_len – [out] Number of predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetPredict(BoosterHandle handle, int data_idx, int64_t *out_len,
double *out_result)

Get prediction for training data and validation data.

Note: You should pre-allocate memory for out_result, its length is equal to num_class * num_data.

Parameters

• handle – Handle of booster

• data_idx – Index of data, 0: training data, 1: 1st validation data, 2: 2nd validation data and
so on

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterGetUpperBoundValue(BoosterHandle handle, double *out_results)
Get model upper bound value.

Parameters

• handle – Handle of booster

• out_results – [out] Result pointing to max value

78 Chapter 8. C API

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterLoadModelFromString(const char *model_str, int
*out_num_iterations, BoosterHandle *out)

Load an existing booster from string.

Parameters

• model_str – Model string

• out_num_iterations – [out] Number of iterations of this booster

• out – [out] Handle of created booster

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterMerge(BoosterHandle handle, BoosterHandle other_handle)
Merge model from other_handle into handle.

Parameters

• handle – Handle of booster, will merge another booster into this one

• other_handle – Other handle of booster

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterNumberOfTotalModel(BoosterHandle handle, int *out_models)
Get number of weak sub-models.

Parameters

• handle – Handle of booster

• out_models – [out] Number of weak sub-models

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterNumModelPerIteration(BoosterHandle handle, int
*out_tree_per_iteration)

Get number of trees per iteration.

Parameters

• handle – Handle of booster

• out_tree_per_iteration – [out] Number of trees per iteration

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForArrow(BoosterHandle handle, int64_t n_chunks, const
ArrowArray *chunks, const ArrowSchema
*schema, int predict_type, int start_iteration, int
num_iteration, const char *parameter, int64_t
*out_len, double *out_result)

Make prediction for a new dataset.

Note: You should pre-allocate memory for out_result:

79

LightGBM, Release 4.3.0.99

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• n_chunks – The number of Arrow arrays passed to this function

• chunks – Pointer to the list of Arrow arrays

• schema – Pointer to the schema of all Arrow arrays

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iteration for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSC(BoosterHandle handle, const void *col_ptr, int
col_ptr_type, const int32_t *indices, const void
*data, int data_type, int64_t ncol_ptr, int64_t nelem,
int64_t num_row, int predict_type, int
start_iteration, int num_iteration, const char
*parameter, int64_t *out_len, double *out_result)

Make prediction for a new dataset in CSC format.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• col_ptr – Pointer to column headers

• col_ptr_type – Type of col_ptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

80 Chapter 8. C API

LightGBM, Release 4.3.0.99

• indices – Pointer to row indices

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• ncol_ptr – Number of columns in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• num_row – Number of rows

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iteration for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSR(BoosterHandle handle, const void *indptr, int
indptr_type, const int32_t *indices, const void
*data, int data_type, int64_t nindptr, int64_t nelem,
int64_t num_col, int predict_type, int
start_iteration, int num_iteration, const char
*parameter, int64_t *out_len, double *out_result)

Make prediction for a new dataset in CSR format.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• indptr – Pointer to row headers

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices

• data – Pointer to the data space

81

LightGBM, Release 4.3.0.99

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nindptr – Number of rows in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• num_col – Number of columns

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSRSingleRow(BoosterHandle handle, const void
*indptr, int indptr_type, const int32_t
*indices, const void *data, int data_type,
int64_t nindptr, int64_t nelem, int64_t
num_col, int predict_type, int
start_iteration, int num_iteration, const
char *parameter, int64_t *out_len,
double *out_result)

Make prediction for a new dataset in CSR format. This method re-uses the internal predictor structure from
previous calls and is optimized for single row invocation.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• indptr – Pointer to row headers

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices

• data – Pointer to the data space

82 Chapter 8. C API

LightGBM, Release 4.3.0.99

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nindptr – Number of rows in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• num_col – Number of columns

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSRSingleRowFast(FastConfigHandle
fastConfig_handle, const void
*indptr, const int indptr_type,
const int32_t *indices, const void
*data, const int64_t nindptr, const
int64_t nelem, int64_t *out_len,
double *out_result)

Faster variant of LGBM_BoosterPredictForCSRSingleRow.

Score single rows after setup with LGBM_BoosterPredictForCSRSingleRowFastInit.

By removing the setup steps from this call extra optimizations can be made like initializing the config only once,
instead of once per call.

Note: Setting up the number of threads is only done once at
LGBM_BoosterPredictForCSRSingleRowFastInit instead of at each prediction. If you use a differ-
ent number of threads in other calls, you need to start the setup process over, or that number of threads will be
used for these calls as well.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

83

LightGBM, Release 4.3.0.99

• fastConfig_handle – FastConfig object handle returned by
LGBM_BoosterPredictForCSRSingleRowFastInit

• indptr – Pointer to row headers

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices

• data – Pointer to the data space

• nindptr – Number of rows in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSRSingleRowFastInit(BoosterHandle handle, const
int predict_type, const int
start_iteration, const int
num_iteration, const int
data_type, const int64_t
num_col, const char
*parameter,
FastConfigHandle
*out_fastConfig)

Initialize and return a FastConfigHandle for use with LGBM_BoosterPredictForCSRSingleRowFast.

Release the FastConfig by passing its handle to LGBM_FastConfigFree when no longer needed.

Parameters

• handle – Booster handle

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• num_col – Number of columns

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_fastConfig – [out] FastConfig object with which you can call
LGBM_BoosterPredictForCSRSingleRowFast

Returns
0 when it succeeds, -1 when failure happens

84 Chapter 8. C API

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForFile(BoosterHandle handle, const char *data_filename,
int data_has_header, int predict_type, int
start_iteration, int num_iteration, const char
*parameter, const char *result_filename)

Make prediction for file.

Parameters

• handle – Handle of booster

• data_filename – Filename of file with data

• data_has_header – Whether file has header or not

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• result_filename – Filename of result file in which predictions will be written

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMat(BoosterHandle handle, const void *data, int
data_type, int32_t nrow, int32_t ncol, int
is_row_major, int predict_type, int start_iteration,
int num_iteration, const char *parameter, int64_t
*out_len, double *out_result)

Make prediction for a new dataset.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nrow – Number of rows

• ncol – Number of columns

• is_row_major – 1 for row-major, 0 for column-major

85

LightGBM, Release 4.3.0.99

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iteration for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMats(BoosterHandle handle, const void **data, int
data_type, int32_t nrow, int32_t ncol, int
predict_type, int start_iteration, int num_iteration,
const char *parameter, int64_t *out_len, double
*out_result)

Make prediction for a new dataset presented in a form of array of pointers to rows.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nrow – Number of rows

• ncol – Number columns

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iteration for prediction, <= 0 means no limit

86 Chapter 8. C API

LightGBM, Release 4.3.0.99

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMatSingleRow(BoosterHandle handle, const void *data,
int data_type, int ncol, int is_row_major,
int predict_type, int start_iteration, int
num_iteration, const char *parameter,
int64_t *out_len, double *out_result)

Make prediction for a new dataset. This method re-uses the internal predictor structure from previous calls and
is optimized for single row invocation.

Note: You should pre-allocate memory for out_result:

• for normal and raw score, its length is equal to num_class * num_data;

• for leaf index, its length is equal to num_class * num_data * num_iteration;

• for feature contributions, its length is equal to num_class * num_data * (num_feature + 1).

Parameters

• handle – Handle of booster

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• ncol – Number columns

• is_row_major – 1 for row-major, 0 for column-major

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iteration for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when succeed, -1 when failure happens

87

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMatSingleRowFast(FastConfigHandle
fastConfig_handle, const void
*data, int64_t *out_len, double
*out_result)

Faster variant of LGBM_BoosterPredictForMatSingleRow.

Score a single row after setup with LGBM_BoosterPredictForMatSingleRowFastInit.

By removing the setup steps from this call extra optimizations can be made like initializing the config only once,
instead of once per call.

Note: Setting up the number of threads is only done once at
LGBM_BoosterPredictForMatSingleRowFastInit instead of at each prediction. If you use a differ-
ent number of threads in other calls, you need to start the setup process over, or that number of threads will be
used for these calls as well.

Parameters

• fastConfig_handle – FastConfig object handle returned by
LGBM_BoosterPredictForMatSingleRowFastInit

• data – Single-row array data (no other way than row-major form).

• out_len – [out] Length of output result

• out_result – [out] Pointer to array with predictions

Returns
0 when it succeeds, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMatSingleRowFastInit(BoosterHandle handle, const
int predict_type, const int
start_iteration, const int
num_iteration, const int
data_type, const int32_t ncol,
const char *parameter,
FastConfigHandle
*out_fastConfig)

Initialize and return a FastConfigHandle for use with LGBM_BoosterPredictForMatSingleRowFast.

Release the FastConfig by passing its handle to LGBM_FastConfigFree when no longer needed.

Parameters

• handle – Booster handle

• predict_type – What should be predicted

– C_API_PREDICT_NORMAL: normal prediction, with transform (if needed);

– C_API_PREDICT_RAW_SCORE: raw score;

– C_API_PREDICT_LEAF_INDEX: leaf index;

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

88 Chapter 8. C API

LightGBM, Release 4.3.0.99

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• ncol – Number of columns

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• out_fastConfig – [out] FastConfig object with which you can call
LGBM_BoosterPredictForMatSingleRowFast

Returns
0 when it succeeds, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterPredictSparseOutput(BoosterHandle handle, const void *indptr,
int indptr_type, const int32_t *indices, const
void *data, int data_type, int64_t nindptr,
int64_t nelem, int64_t num_col_or_row, int
predict_type, int start_iteration, int
num_iteration, const char *parameter, int
matrix_type, int64_t *out_len, void
**out_indptr, int32_t **out_indices, void
**out_data)

Make sparse prediction for a new dataset in CSR or CSC format. Currently only used for feature contributions.

Note: The outputs are pre-allocated, as they can vary for each invocation, but the shape should be the same:

• for feature contributions, the shape of sparse matrix will be num_class * num_data * (num_feature
+ 1). The output indptr_type for the sparse matrix will be the same as the given input indptr_type. Call
LGBM_BoosterFreePredictSparse to deallocate resources.

Parameters

• handle – Handle of booster

• indptr – Pointer to row headers for CSR or column headers for CSC

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices for CSR or row indices for CSC

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nindptr – Number of entries in indptr

• nelem – Number of nonzero elements in the matrix

• num_col_or_row – Number of columns for CSR or number of rows for CSC

• predict_type – What should be predicted, only feature contributions supported currently

– C_API_PREDICT_CONTRIB: feature contributions (SHAP values)

• start_iteration – Start index of the iteration to predict

• num_iteration – Number of iterations for prediction, <= 0 means no limit

• parameter – Other parameters for prediction, e.g. early stopping for prediction

• matrix_type – Type of matrix input and output, can be C_API_MATRIX_TYPE_CSR or
C_API_MATRIX_TYPE_CSC

89

LightGBM, Release 4.3.0.99

• out_len – [out] Length of output data and output indptr (pointer to an array with two entries
where to write them)

• out_indptr – [out] Pointer to output row headers for CSR or column headers for CSC

• out_indices – [out] Pointer to sparse column indices for CSR or row indices for CSC

• out_data – [out] Pointer to sparse data space

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterRefit(BoosterHandle handle, const int32_t *leaf_preds, int32_t
nrow, int32_t ncol)

Refit the tree model using the new data (online learning).

Parameters

• handle – Handle of booster

• leaf_preds – Pointer to predicted leaf indices

• nrow – Number of rows of leaf_preds

• ncol – Number of columns of leaf_preds

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterResetParameter(BoosterHandle handle, const char *parameters)
Reset config for booster.

Parameters

• handle – Handle of booster

• parameters – Parameters in format ‘key1=value1 key2=value2’

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterResetTrainingData(BoosterHandle handle, const DatasetHandle
train_data)

Reset training data for booster.

Parameters

• handle – Handle of booster

• train_data – Training dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterRollbackOneIter(BoosterHandle handle)
Rollback one iteration.

Parameters

• handle – Handle of booster

Returns
0 when succeed, -1 when failure happens

90 Chapter 8. C API

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterSaveModel(BoosterHandle handle, int start_iteration, int
num_iteration, int feature_importance_type, const char
*filename)

Save model into file.

Parameters

• handle – Handle of booster

• start_iteration – Start index of the iteration that should be saved

• num_iteration – Index of the iteration that should be saved, <= 0 means save all

• feature_importance_type – Type of feature importance, can be
C_API_FEATURE_IMPORTANCE_SPLIT or C_API_FEATURE_IMPORTANCE_GAIN

• filename – The name of the file

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterSaveModelToString(BoosterHandle handle, int start_iteration, int
num_iteration, int feature_importance_type,
int64_t buffer_len, int64_t *out_len, char
*out_str)

Save model to string.

Parameters

• handle – Handle of booster

• start_iteration – Start index of the iteration that should be saved

• num_iteration – Index of the iteration that should be saved, <= 0 means save all

• feature_importance_type – Type of feature importance, can be
C_API_FEATURE_IMPORTANCE_SPLIT or C_API_FEATURE_IMPORTANCE_GAIN

• buffer_len – String buffer length, if buffer_len < out_len, you should re-allocate
buffer

• out_len – [out] Actual output length

• out_str – [out] String of model, should pre-allocate memory

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterSetLeafValue(BoosterHandle handle, int tree_idx, int leaf_idx,
double val)

Set leaf value.

Parameters

• handle – Handle of booster

• tree_idx – Index of tree

• leaf_idx – Index of leaf

• val – Leaf value

Returns
0 when succeed, -1 when failure happens

91

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_BoosterShuffleModels(BoosterHandle handle, int start_iter, int end_iter)
Shuffle models.

Parameters

• handle – Handle of booster

• start_iter – The first iteration that will be shuffled

• end_iter – The last iteration that will be shuffled

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterUpdateOneIter(BoosterHandle handle, int *is_finished)
Update the model for one iteration.

Parameters

• handle – Handle of booster

• is_finished – [out] 1 means the update was successfully finished (cannot split any more),
0 indicates failure

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterUpdateOneIterCustom(BoosterHandle handle, const float *grad,
const float *hess, int *is_finished)

Update the model by specifying gradient and Hessian directly (this can be used to support customized loss
functions).

Note: The length of the arrays referenced by grad and hessmust be equal to num_class * num_train_data,
this is not verified by the library, the caller must ensure this.

Parameters

• handle – Handle of booster

• grad – The first order derivative (gradient) statistics

• hess – The second order derivative (Hessian) statistics

• is_finished – [out] 1 means the update was successfully finished (cannot split any more),
0 indicates failure

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_BoosterValidateFeatureNames(BoosterHandle handle, const char
**data_names, int data_num_features)

Check that the feature names of the data match the ones used to train the booster.

Parameters

• handle – Handle of booster

• data_names – Array with the feature names in the data

• data_num_features – Number of features in the data

92 Chapter 8. C API

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_ByteBufferFree(ByteBufferHandle handle)
Free space for byte buffer.

Parameters

• handle – Handle of byte buffer to be freed

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_ByteBufferGetAt(ByteBufferHandle handle, int32_t index, uint8_t *out_val)
Get a ByteBuffer value at an index.

Parameters

• handle – Handle of byte buffer to be read

• index – Index of value to return

• out_val – [out] Byte value at index to return

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetAddFeaturesFrom(DatasetHandle target, DatasetHandle source)
Add features from source to target.

Parameters

• target – The handle of the dataset to add features to

• source – The handle of the dataset to take features from

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateByReference(const DatasetHandle reference, int64_t
num_total_row, DatasetHandle *out)

Allocate the space for dataset and bucket feature bins according to reference dataset.

Parameters

• reference – Used to align bin mapper with other dataset

• num_total_row – Number of total rows

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromArrow(int64_t n_chunks, const ArrowArray *chunks,
const ArrowSchema *schema, const char
*parameters, const DatasetHandle reference,
DatasetHandle *out)

Create dataset from Arrow.

Parameters

• n_chunks – The number of Arrow arrays passed to this function

• chunks – Pointer to the list of Arrow arrays

93

LightGBM, Release 4.3.0.99

• schema – Pointer to the schema of all Arrow arrays

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromCSC(const void *col_ptr, int col_ptr_type, const int32_t
*indices, const void *data, int data_type, int64_t
ncol_ptr, int64_t nelem, int64_t num_row, const
char *parameters, const DatasetHandle reference,
DatasetHandle *out)

Create a dataset from CSC format.

Parameters

• col_ptr – Pointer to column headers

• col_ptr_type – Type of col_ptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to row indices

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• ncol_ptr – Number of columns in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• num_row – Number of rows

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromCSR(const void *indptr, int indptr_type, const int32_t
*indices, const void *data, int data_type, int64_t
nindptr, int64_t nelem, int64_t num_col, const char
*parameters, const DatasetHandle reference,
DatasetHandle *out)

Create a dataset from CSR format.

Parameters

• indptr – Pointer to row headers

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

94 Chapter 8. C API

LightGBM, Release 4.3.0.99

• nindptr – Number of rows in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• num_col – Number of columns

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromCSRFunc(void *get_row_funptr, int num_rows, int64_t
num_col, const char *parameters, const
DatasetHandle reference, DatasetHandle
*out)

Create a dataset from CSR format through callbacks.

Parameters

• get_row_funptr – Pointer to std::function<void(int idx,
std::vector<std::pair<int, double>>& ret)> (called for every row and ex-
pected to clear and fill ret)

• num_rows – Number of rows

• num_col – Number of columns

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromFile(const char *filename, const char *parameters, const
DatasetHandle reference, DatasetHandle *out)

Load dataset from file (like LightGBM CLI version does).

Parameters

• filename – The name of the file

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] A loaded dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromMat(const void *data, int data_type, int32_t nrow,
int32_t ncol, int is_row_major, const char
*parameters, const DatasetHandle reference,
DatasetHandle *out)

Create dataset from dense matrix.

Parameters

95

LightGBM, Release 4.3.0.99

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nrow – Number of rows

• ncol – Number of columns

• is_row_major – 1 for row-major, 0 for column-major

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromMats(int32_t nmat, const void **data, int data_type,
int32_t *nrow, int32_t ncol, int is_row_major,
const char *parameters, const DatasetHandle
reference, DatasetHandle *out)

Create dataset from array of dense matrices.

Parameters

• nmat – Number of dense matrices

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nrow – Number of rows

• ncol – Number of columns

• is_row_major – 1 for row-major, 0 for column-major

• parameters – Additional parameters

• reference – Used to align bin mapper with other dataset, nullptr means isn’t used

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromSampledColumn(double **sample_data, int
**sample_indices, int32_t ncol, const
int *num_per_col, int32_t
num_sample_row, int32_t
num_local_row, int64_t num_dist_row,
const char *parameters,
DatasetHandle *out)

Allocate the space for dataset and bucket feature bins according to sampled data.

Parameters

• sample_data – Sampled data, grouped by the column

• sample_indices – Indices of sampled data

• ncol – Number of columns

96 Chapter 8. C API

LightGBM, Release 4.3.0.99

• num_per_col – Size of each sampling column

• num_sample_row – Number of sampled rows

• num_local_row – Total number of rows local to machine

• num_dist_row – Number of total distributed rows

• parameters – Additional parameters

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromSerializedReference(const void *ref_buffer, int32_t
ref_buffer_size, int64_t
num_row, int32_t
num_classes, const char
*parameters, DatasetHandle
*out)

Allocate the space for dataset and bucket feature bins according to serialized reference dataset.

Parameters

• ref_buffer – A binary representation of the dataset schema (feature groups, bins, etc.)

• ref_buffer_size – The size of the reference array in bytes

• num_row – Number of total rows the dataset will contain

• num_classes – Number of classes (will be used only in case of multiclass and specifying
initial scores)

• parameters – Additional parameters

• out – [out] Created dataset

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetDumpText(DatasetHandle handle, const char *filename)
Save dataset to text file, intended for debugging use only.

Parameters

• handle – Handle of dataset

• filename – The name of the file

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetFree(DatasetHandle handle)
Free space for dataset.

Parameters

• handle – Handle of dataset to be freed

Returns
0 when succeed, -1 when failure happens

97

LightGBM, Release 4.3.0.99

LIGHTGBM_C_EXPORT int LGBM_DatasetGetFeatureNames(DatasetHandle handle, const int len, int
*num_feature_names, const size_t buffer_len,
size_t *out_buffer_len, char **feature_names)

Get feature names of dataset.

Parameters

• handle – Handle of dataset

• len – Number of char* pointers stored at out_strs. If smaller than the max size, only this
many strings are copied

• num_feature_names – [out] Number of feature names

• buffer_len – Size of pre-allocated strings. Content is copied up to buffer_len - 1 and
null-terminated

• out_buffer_len – [out] String sizes required to do the full string copies

• feature_names – [out] Feature names, should pre-allocate memory

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetGetFeatureNumBin(DatasetHandle handle, int feature, int *out)
Get number of bins for feature.

Parameters

• handle – Handle of dataset

• feature – Index of the feature

• out – [out] The address to hold number of bins

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetGetField(DatasetHandle handle, const char *field_name, int
*out_len, const void **out_ptr, int *out_type)

Get info vector from dataset.

Parameters

• handle – Handle of dataset

• field_name – Field name

• out_len – [out] Used to set result length

• out_ptr – [out] Pointer to the result

• out_type – [out] Type of result pointer, can be C_API_DTYPE_INT32,
C_API_DTYPE_FLOAT32 or C_API_DTYPE_FLOAT64

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetGetNumData(DatasetHandle handle, int *out)
Get number of data points.

Parameters

• handle – Handle of dataset

• out – [out] The address to hold number of data points

98 Chapter 8. C API

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetGetNumFeature(DatasetHandle handle, int *out)
Get number of features.

Parameters

• handle – Handle of dataset

• out – [out] The address to hold number of features

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetGetSubset(const DatasetHandle handle, const int32_t
*used_row_indices, int32_t num_used_row_indices,
const char *parameters, DatasetHandle *out)

Create subset of a data.

Parameters

• handle – Handle of full dataset

• used_row_indices – Indices used in subset

• num_used_row_indices – Length of used_row_indices

• parameters – Additional parameters

• out – [out] Subset of data

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetInitStreaming(DatasetHandle dataset, int32_t has_weights, int32_t
has_init_scores, int32_t has_queries, int32_t
nclasses, int32_t nthreads, int32_t
omp_max_threads)

Initialize the Dataset for streaming.

Parameters

• dataset – Handle of dataset

• has_weights – Whether the dataset has Metadata weights

• has_init_scores – Whether the dataset has Metadata initial scores

• has_queries – Whether the dataset has Metadata queries/groups

• nclasses – Number of initial score classes

• nthreads – Number of external threads that will use the PushRows APIs

• omp_max_threads – Maximum number of OpenMP threads (-1 for default)

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetMarkFinished(DatasetHandle dataset)
Mark the Dataset as complete by calling dataset->FinishLoad.

Parameters

• dataset – Handle of dataset

99

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetPushRows(DatasetHandle dataset, const void *data, int data_type,
int32_t nrow, int32_t ncol, int32_t start_row)

Push data to existing dataset, if nrow + start_row == num_total_row, will call dataset->FinishLoad.

Parameters

• dataset – Handle of dataset

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nrow – Number of rows

• ncol – Number of columns

• start_row – Row start index

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetPushRowsByCSR(DatasetHandle dataset, const void *indptr, int
indptr_type, const int32_t *indices, const void
*data, int data_type, int64_t nindptr, int64_t nelem,
int64_t num_col, int64_t start_row)

Push data to existing dataset, if nrow + start_row == num_total_row, will call dataset->FinishLoad.

Parameters

• dataset – Handle of dataset

• indptr – Pointer to row headers

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nindptr – Number of rows in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• num_col – Number of columns

• start_row – Row start index

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetPushRowsByCSRWithMetadata(DatasetHandle dataset, const void
*indptr, int indptr_type, const
int32_t *indices, const void *data,
int data_type, int64_t nindptr,
int64_t nelem, int64_t start_row,
const float *label, const float
*weight, const double *init_score,
const int32_t *query, int32_t tid)

100 Chapter 8. C API

LightGBM, Release 4.3.0.99

Push CSR data to existing dataset. (See LGBM_DatasetPushRowsWithMetadata for more details.)

Parameters

• dataset – Handle of dataset

• indptr – Pointer to row headers

• indptr_type – Type of indptr, can be C_API_DTYPE_INT32 or C_API_DTYPE_INT64

• indices – Pointer to column indices

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nindptr – Number of rows in the matrix + 1

• nelem – Number of nonzero elements in the matrix

• start_row – Row start index

• label – Pointer to array with nindptr-1 labels

• weight – Optional pointer to array with nindptr-1 weights

• init_score – Optional pointer to array with (nindptr-1)*nclasses initial scores, in column
format

• query – Optional pointer to array with nindptr-1 query values

• tid – The id of the calling thread, from 0. . .N-1 threads

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetPushRowsWithMetadata(DatasetHandle dataset, const void *data,
int data_type, int32_t nrow, int32_t ncol,
int32_t start_row, const float *label, const
float *weight, const double *init_score,
const int32_t *query, int32_t tid)

Push data to existing dataset. The general flow for a streaming scenario is:

a. create Dataset “schema” (e.g. LGBM_DatasetCreateFromSampledColumn)

b. init them for thread-safe streaming (LGBM_DatasetInitStreaming)

c. push data (LGBM_DatasetPushRowsWithMetadata or LGBM_DatasetPushRowsByCSRWithMetadata)

d. call LGBM_DatasetMarkFinished

Parameters

• dataset – Handle of dataset

• data – Pointer to the data space

• data_type – Type of data pointer, can be C_API_DTYPE_FLOAT32 or
C_API_DTYPE_FLOAT64

• nrow – Number of rows

• ncol – Number of feature columns

101

LightGBM, Release 4.3.0.99

• start_row – Row start index, i.e., the index at which to start inserting data

• label – Pointer to array with nrow labels

• weight – Optional pointer to array with nrow weights

• init_score – Optional pointer to array with nrow*nclasses initial scores, in column format

• query – Optional pointer to array with nrow query values

• tid – The id of the calling thread, from 0. . .N-1 threads

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetSaveBinary(DatasetHandle handle, const char *filename)
Save dataset to binary file.

Parameters

• handle – Handle of dataset

• filename – The name of the file

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetSerializeReferenceToBinary(DatasetHandle handle,
ByteBufferHandle *out, int32_t
*out_len)

Create a dataset schema representation as a binary byte array (excluding data).

Parameters

• handle – Handle of dataset

• out – [out] The output byte array

• out_len – [out] The length of the output byte array (returned for convenience)

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetSetFeatureNames(DatasetHandle handle, const char
**feature_names, int num_feature_names)

Save feature names to dataset.

Parameters

• handle – Handle of dataset

• feature_names – Feature names

• num_feature_names – Number of feature names

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetSetField(DatasetHandle handle, const char *field_name, const void
*field_data, int num_element, int type)

Set vector to a content in info.

Note:

102 Chapter 8. C API

LightGBM, Release 4.3.0.99

• group only works for C_API_DTYPE_INT32;

• label and weight only work for C_API_DTYPE_FLOAT32;

• init_score only works for C_API_DTYPE_FLOAT64.

Parameters

• handle – Handle of dataset

• field_name – Field name, can be label, weight, init_score, group

• field_data – Pointer to data vector

• num_element – Number of elements in field_data

• type – Type of field_data pointer, can be C_API_DTYPE_INT32,
C_API_DTYPE_FLOAT32 or C_API_DTYPE_FLOAT64

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetSetFieldFromArrow(DatasetHandle handle, const char *field_name,
int64_t n_chunks, const ArrowArray *chunks,
const ArrowSchema *schema)

Set vector to a content in info.

Note:

• group converts input datatype into int32;

• label and weight convert input datatype into float32;

• init_score converts input datatype into float64.

Parameters

• handle – Handle of dataset

• field_name – Field name, can be label, weight, init_score, group

• n_chunks – The number of Arrow arrays passed to this function

• chunks – Pointer to the list of Arrow arrays

• schema – Pointer to the schema of all Arrow arrays

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetSetWaitForManualFinish(DatasetHandle dataset, int wait)
Set whether or not the Dataset waits for a manual MarkFinished call or calls FinishLoad on itself automatically.
Set to 1 for streaming scenario, and use LGBM_DatasetMarkFinished to manually finish the Dataset.

Parameters

• dataset – Handle of dataset

• wait – Whether to wait or not (1 or 0)

103

LightGBM, Release 4.3.0.99

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DatasetUpdateParamChecking(const char *old_parameters, const char
*new_parameters)

Raise errors for attempts to update dataset parameters.

Parameters

• old_parameters – Current dataset parameters

• new_parameters – New dataset parameters

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_DumpParamAliases(int64_t buffer_len, int64_t *out_len, char *out_str)
Dump all parameter names with their aliases to JSON.

Parameters

• buffer_len – String buffer length, if buffer_len < out_len, you should re-allocate
buffer

• out_len – [out] Actual output length

• out_str – [out] JSON format string of parameters, should pre-allocate memory

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_FastConfigFree(FastConfigHandle fastConfig)
Release FastConfig object.

Parameters

• fastConfig – Handle to the FastConfig object acquired with a *FastInit() method.

Returns
0 when it succeeds, -1 when failure happens

LIGHTGBM_C_EXPORT const char *LGBM_GetLastError()
Get string message of the last error.

Returns
Error information

LIGHTGBM_C_EXPORT int LGBM_GetMaxThreads(int *out)
Get current maximum number of threads used by LightGBM routines in this process.

Parameters

• out – [out] current maximum number of threads used by LightGBM. -1 means defaulting
to omp_get_num_threads().

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_GetSampleCount(int32_t num_total_row, const char *parameters, int *out)
Get number of samples based on parameters and total number of rows of data.

Parameters

• num_total_row – Number of total rows

104 Chapter 8. C API

LightGBM, Release 4.3.0.99

• parameters – Additional parameters, namely, bin_construct_sample_cnt is used to
calculate returned value

• out – [out] Number of samples. This value is used to pre-allocate memory to hold sample
indices when calling LGBM_SampleIndices

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_NetworkFree()
Finalize the network.

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_NetworkInit(const char *machines, int local_listen_port, int listen_time_out,
int num_machines)

Initialize the network.

Parameters

• machines – List of machines in format ‘ip1:port1,ip2:port2’

• local_listen_port – TCP listen port for local machines

• listen_time_out – Socket time-out in minutes

• num_machines – Total number of machines

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_NetworkInitWithFunctions(int num_machines, int rank, void
*reduce_scatter_ext_fun, void
*allgather_ext_fun)

Initialize the network with external collective functions.

Parameters

• num_machines – Total number of machines

• rank – Rank of local machine

• reduce_scatter_ext_fun – The external reduce-scatter function

• allgather_ext_fun – The external allgather function

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_RegisterLogCallback(void (*callback)(const char*))
Register a callback function for log redirecting.

Parameters

• callback – The callback function to register

Returns
0 when succeed, -1 when failure happens

LIGHTGBM_C_EXPORT int LGBM_SampleIndices(int32_t num_total_row, const char *parameters, void *out,
int32_t *out_len)

Create sample indices for total number of rows.

105

LightGBM, Release 4.3.0.99

Note: You should pre-allocate memory for out, you can get its length by LGBM_GetSampleCount.

Parameters

• num_total_row – Number of total rows

• parameters – Additional parameters, namely, bin_construct_sample_cnt and
data_random_seed are used to produce the output

• out – [out] Created indices, type is int32_t

• out_len – [out] Number of indices

Returns
0 when succeed, -1 when failure happens

inline void LGBM_SetLastError(const char *msg)
Set string message of the last error.

Note: This will call unsafe sprintf when compiled using C standards before C99.

Parameters

• msg – Error message

LIGHTGBM_C_EXPORT int LGBM_SetMaxThreads(int num_threads)
Set maximum number of threads used by LightGBM routines in this process.

Parameters

• num_threads – maximum number of threads used by LightGBM. -1 means defaulting to
omp_get_num_threads().

Returns
0 when succeed, -1 when failure happens

106 Chapter 8. C API

CHAPTER

NINE

PYTHON API

9.1 Data Structure API

Dataset(data[, label, reference, weight, ...]) Dataset in LightGBM.
Booster([params, train_set, model_file, ...]) Booster in LightGBM.
CVBooster([model_file]) CVBooster in LightGBM.
Sequence() Generic data access interface.

9.1.1 lightgbm.Dataset

class lightgbm.Dataset(data, label=None, reference=None, weight=None, group=None, init_score=None,
feature_name='auto', categorical_feature='auto', params=None, free_raw_data=True,
position=None)

Bases: object

Dataset in LightGBM.

__init__(data, label=None, reference=None, weight=None, group=None, init_score=None,
feature_name='auto', categorical_feature='auto', params=None, free_raw_data=True,
position=None)

Initialize Dataset.

Parameters

• data (str, pathlib.Path, numpy array, pandas DataFrame, H2O
DataTable's Frame, scipy.sparse, Sequence, list of Sequence, list
of numpy array or pyarrow Table) – Data source of Dataset. If str or pathlib.Path,
it represents the path to a text file (CSV, TSV, or LibSVM) or a LightGBM Dataset binary
file.

• label (list, numpy 1-D array, pandas Series / one-column
DataFrame, pyarrow Array, pyarrow ChunkedArray or None, optional
(default=None)) – Label of the data.

• reference (Dataset or None, optional (default=None)) – If this is Dataset for
validation, training data should be used as reference.

• weight (list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow
ChunkedArray or None, optional (default=None)) – Weight for each instance.
Weights should be non-negative.

107

LightGBM, Release 4.3.0.99

• group (list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow
ChunkedArray or None, optional (default=None)) – Group/query data. Only
used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a
100-document dataset with group = [10, 20, 40, 10, 10, 10], that means that
you have 6 groups, where the first 10 records are in the first group, records 11-30 are in
the second group, records 31-70 are in the third group, etc.

• init_score (list, list of lists (for multi-class task), numpy array,
pandas Series, pandas DataFrame (for multi-class task), pyarrow
Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task)
or None, optional (default=None)) – Init score for Dataset.

• feature_name (list of str, or 'auto', optional (default="auto")) – Fea-
ture names. If ‘auto’ and data is pandas DataFrame or pyarrow Table, data columns names
are used.

• categorical_feature (list of str or int, or 'auto', optional
(default="auto")) – Categorical features. If list of int, interpreted as indices. If
list of str, interpreted as feature names (need to specify feature_name as well). If ‘auto’
and data is pandas DataFrame, pandas unordered categorical columns are used. All values
in categorical features will be cast to int32 and thus should be less than int32 max value
(2147483647). Large values could be memory consuming. Consider using consecutive
integers starting from zero. All negative values in categorical features will be treated
as missing values. The output cannot be monotonically constrained with respect to a
categorical feature. Floating point numbers in categorical features will be rounded towards
0.

• params (dict or None, optional (default=None)) – Other parameters for
Dataset.

• free_raw_data (bool, optional (default=True)) – If True, raw data is freed after
constructing inner Dataset.

• position (numpy 1-D array, pandas Series or None, optional
(default=None)) – Position of items used in unbiased learning-to-rank task.

108 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Methods

__init__(data[, label, reference, weight, ...]) Initialize Dataset.
add_features_from(other) Add features from other Dataset to the current

Dataset.
construct() Lazy init.
create_valid(data[, label, weight, group, ...]) Create validation data align with current Dataset.
feature_num_bin(feature) Get the number of bins for a feature.
get_data() Get the raw data of the Dataset.
get_feature_name() Get the names of columns (features) in the Dataset.
get_field(field_name) Get property from the Dataset.
get_group() Get the group of the Dataset.
get_init_score() Get the initial score of the Dataset.
get_label() Get the label of the Dataset.
get_params() Get the used parameters in the Dataset.
get_position() Get the position of the Dataset.
get_ref_chain([ref_limit]) Get a chain of Dataset objects.
get_weight() Get the weight of the Dataset.
num_data() Get the number of rows in the Dataset.
num_feature() Get the number of columns (features) in the Dataset.
save_binary(filename) Save Dataset to a binary file.
set_categorical_feature(categorical_feature) Set categorical features.
set_feature_name(feature_name) Set feature name.
set_field(field_name, data) Set property into the Dataset.
set_group(group) Set group size of Dataset (used for ranking).
set_init_score(init_score) Set init score of Booster to start from.
set_label(label) Set label of Dataset.
set_position(position) Set position of Dataset (used for ranking).
set_reference(reference) Set reference Dataset.
set_weight(weight) Set weight of each instance.
subset(used_indices[, params]) Get subset of current Dataset.

add_features_from(other)
Add features from other Dataset to the current Dataset.

Both Datasets must be constructed before calling this method.

Parameters
other (Dataset) – The Dataset to take features from.

Returns
self – Dataset with the new features added.

Return type
Dataset

construct()

Lazy init.

Returns
self – Constructed Dataset object.

Return type
Dataset

9.1. Data Structure API 109

LightGBM, Release 4.3.0.99

create_valid(data, label=None, weight=None, group=None, init_score=None, params=None,
position=None)

Create validation data align with current Dataset.

Parameters

• data (str, pathlib.Path, numpy array, pandas DataFrame, H2O
DataTable's Frame, scipy.sparse, Sequence, list of Sequence or list
of numpy array) – Data source of Dataset. If str or pathlib.Path, it represents the path
to a text file (CSV, TSV, or LibSVM) or a LightGBM Dataset binary file.

• label (list, numpy 1-D array, pandas Series / one-column
DataFrame, pyarrow Array, pyarrow ChunkedArray or None, optional
(default=None)) – Label of the data.

• weight (list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow
ChunkedArray or None, optional (default=None)) – Weight for each instance.
Weights should be non-negative.

• group (list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow
ChunkedArray or None, optional (default=None)) – Group/query data. Only
used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a
100-document dataset with group = [10, 20, 40, 10, 10, 10], that means that
you have 6 groups, where the first 10 records are in the first group, records 11-30 are in
the second group, records 31-70 are in the third group, etc.

• init_score (list, list of lists (for multi-class task), numpy array,
pandas Series, pandas DataFrame (for multi-class task), pyarrow
Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task)
or None, optional (default=None)) – Init score for Dataset.

• params (dict or None, optional (default=None)) – Other parameters for valida-
tion Dataset.

• position (numpy 1-D array, pandas Series or None, optional
(default=None)) – Position of items used in unbiased learning-to-rank task.

Returns
valid – Validation Dataset with reference to self.

Return type
Dataset

feature_num_bin(feature)
Get the number of bins for a feature.

New in version 4.0.0.

Parameters
feature (int or str) – Index or name of the feature.

Returns
number_of_bins – The number of constructed bins for the feature in the Dataset.

Return type
int

get_data()

Get the raw data of the Dataset.

Returns
data – Raw data used in the Dataset construction.

110 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Return type
str, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable’s Frame, scipy.sparse, Se-
quence, list of Sequence or list of numpy array or None

get_feature_name()

Get the names of columns (features) in the Dataset.

Returns
feature_names – The names of columns (features) in the Dataset.

Return type
list of str

get_field(field_name)
Get property from the Dataset.

Can only be run on a constructed Dataset.

Unlike get_group(), get_init_score(), get_label(), get_position(), and get_weight(), this
method ignores any raw data passed into lgb.Dataset() on the Python side, and will only read data from
the constructed C++ Dataset object.

Parameters
field_name (str) – The field name of the information.

Returns
info – A numpy array with information from the Dataset.

Return type
numpy array or None

get_group()

Get the group of the Dataset.

Returns
group – Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples.
For example, if you have a 100-document dataset with group = [10, 20, 40, 10, 10,
10], that means that you have 6 groups, where the first 10 records are in the first group, records
11-30 are in the second group, records 31-70 are in the third group, etc. For a constructed
Dataset, this will only return None or a numpy array.

Return type
list, numpy 1-D array, pandas Series or None

get_init_score()

Get the initial score of the Dataset.

Returns
init_score – Init score of Booster. For a constructed Dataset, this will only return None or
a numpy array.

Return type
list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for
multi-class task), or None

get_label()

Get the label of the Dataset.

Returns
label – The label information from the Dataset. For a constructed Dataset, this will only
return a numpy array.

9.1. Data Structure API 111

LightGBM, Release 4.3.0.99

Return type
list, numpy 1-D array, pandas Series / one-column DataFrame or None

get_params()

Get the used parameters in the Dataset.

Returns
params – The used parameters in this Dataset object.

Return type
dict

get_position()

Get the position of the Dataset.

Returns
position – Position of items used in unbiased learning-to-rank task. For a constructed
Dataset, this will only return None or a numpy array.

Return type
numpy 1-D array, pandas Series or None

get_ref_chain(ref_limit=100)
Get a chain of Dataset objects.

Starts with r, then goes to r.reference (if exists), then to r.reference.reference, etc. until we hit ref_limit
or a reference loop.

Parameters
ref_limit (int, optional (default=100)) – The limit number of references.

Returns
ref_chain – Chain of references of the Datasets.

Return type
set of Dataset

get_weight()

Get the weight of the Dataset.

Returns
weight – Weight for each data point from the Dataset. Weights should be non-negative. For
a constructed Dataset, this will only return None or a numpy array.

Return type
list, numpy 1-D array, pandas Series or None

num_data()

Get the number of rows in the Dataset.

Returns
number_of_rows – The number of rows in the Dataset.

Return type
int

num_feature()

Get the number of columns (features) in the Dataset.

Returns
number_of_columns – The number of columns (features) in the Dataset.

112 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Return type
int

save_binary(filename)
Save Dataset to a binary file.

Note: Please note that init_score is not saved in binary file. If you need it, please set it again after loading
Dataset.

Parameters
filename (str or pathlib.Path) – Name of the output file.

Returns
self – Returns self.

Return type
Dataset

set_categorical_feature(categorical_feature)
Set categorical features.

Parameters
categorical_feature (list of str or int, or 'auto') – Names or indices of cate-
gorical features.

Returns
self – Dataset with set categorical features.

Return type
Dataset

set_feature_name(feature_name)
Set feature name.

Parameters
feature_name (list of str) – Feature names.

Returns
self – Dataset with set feature name.

Return type
Dataset

set_field(field_name, data)
Set property into the Dataset.

Parameters

• field_name (str) – The field name of the information.

• data (list, list of lists (for multi-class task), numpy array,
pandas Series, pandas DataFrame (for multi-class task), pyarrow
Array, pyarrow ChunkedArray or None) – The data to be set.

Returns
self – Dataset with set property.

Return type
Dataset

9.1. Data Structure API 113

LightGBM, Release 4.3.0.99

set_group(group)
Set group size of Dataset (used for ranking).

Parameters
group (list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow
ChunkedArray or None) – Group/query data. Only used in the learning-to-rank task.
sum(group) = n_samples. For example, if you have a 100-document dataset with group
= [10, 20, 40, 10, 10, 10], that means that you have 6 groups, where the first 10
records are in the first group, records 11-30 are in the second group, records 31-70 are in the
third group, etc.

Returns
self – Dataset with set group.

Return type
Dataset

set_init_score(init_score)
Set init score of Booster to start from.

Parameters
init_score (list, list of lists (for multi-class task), numpy array,
pandas Series, pandas DataFrame (for multi-class task), pyarrow
Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task)
or None) – Init score for Booster.

Returns
self – Dataset with set init score.

Return type
Dataset

set_label(label)
Set label of Dataset.

Parameters
label (list, numpy 1-D array, pandas Series / one-column DataFrame,
pyarrow Array, pyarrow ChunkedArray or None) – The label information to be set
into Dataset.

Returns
self – Dataset with set label.

Return type
Dataset

set_position(position)
Set position of Dataset (used for ranking).

Parameters
position (numpy 1-D array, pandas Series or None, optional
(default=None)) – Position of items used in unbiased learning-to-rank task.

Returns
self – Dataset with set position.

Return type
Dataset

set_reference(reference)
Set reference Dataset.

114 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Parameters
reference (Dataset) – Reference that is used as a template to construct the current Dataset.

Returns
self – Dataset with set reference.

Return type
Dataset

set_weight(weight)
Set weight of each instance.

Parameters
weight (list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow
ChunkedArray or None) – Weight to be set for each data point. Weights should be
non-negative.

Returns
self – Dataset with set weight.

Return type
Dataset

subset(used_indices, params=None)
Get subset of current Dataset.

Parameters

• used_indices (list of int) – Indices used to create the subset.

• params (dict or None, optional (default=None)) – These parameters will be
passed to Dataset constructor.

Returns
subset – Subset of the current Dataset.

Return type
Dataset

9.1.2 lightgbm.Booster

class lightgbm.Booster(params=None, train_set=None, model_file=None, model_str=None)
Bases: object

Booster in LightGBM.

__init__(params=None, train_set=None, model_file=None, model_str=None)
Initialize the Booster.

Parameters

• params (dict or None, optional (default=None)) – Parameters for Booster.

• train_set (Dataset or None, optional (default=None)) – Training dataset.

• model_file (str, pathlib.Path or None, optional (default=None)) – Path
to the model file.

• model_str (str or None, optional (default=None)) – Model will be loaded
from this string.

9.1. Data Structure API 115

LightGBM, Release 4.3.0.99

Methods

__init__([params, train_set, model_file, ...]) Initialize the Booster.
add_valid(data, name) Add validation data.
current_iteration() Get the index of the current iteration.
dump_model([num_iteration, start_iteration, ...]) Dump Booster to JSON format.
eval(data, name[, feval]) Evaluate for data.
eval_train([feval]) Evaluate for training data.
eval_valid([feval]) Evaluate for validation data.
feature_importance([importance_type, itera-
tion])

Get feature importances.

feature_name() Get names of features.
free_dataset() Free Booster's Datasets.
free_network() Free Booster's network.
get_leaf_output(tree_id, leaf_id) Get the output of a leaf.
get_split_value_histogram(feature[, bins, ...]) Get split value histogram for the specified feature.
lower_bound() Get lower bound value of a model.
model_from_string(model_str) Load Booster from a string.
model_to_string([num_iteration, ...]) Save Booster to string.
num_feature() Get number of features.
num_model_per_iteration() Get number of models per iteration.
num_trees() Get number of weak sub-models.
predict(data[, start_iteration, ...]) Make a prediction.
refit(data, label[, decay_rate, reference, ...]) Refit the existing Booster by new data.
reset_parameter(params) Reset parameters of Booster.
rollback_one_iter() Rollback one iteration.
save_model(filename[, num_iteration, ...]) Save Booster to file.
set_leaf_output(tree_id, leaf_id, value) Set the output of a leaf.
set_network(machines[, local_listen_port, ...]) Set the network configuration.
set_train_data_name(name) Set the name to the training Dataset.
shuffle_models([start_iteration, end_iteration]) Shuffle models.
trees_to_dataframe() Parse the fitted model and return in an easy-to-read

pandas DataFrame.
update([train_set, fobj]) Update Booster for one iteration.
upper_bound() Get upper bound value of a model.

add_valid(data, name)
Add validation data.

Parameters

• data (Dataset) – Validation data.

• name (str) – Name of validation data.

Returns
self – Booster with set validation data.

Return type
Booster

current_iteration()

Get the index of the current iteration.

Returns
cur_iter – The index of the current iteration.

116 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Return type
int

dump_model(num_iteration=None, start_iteration=0, importance_type='split', object_hook=None)
Dump Booster to JSON format.

Parameters

• num_iteration (int or None, optional (default=None)) – Index of the iteration
that should be dumped. If None, if the best iteration exists, it is dumped; otherwise, all
iterations are dumped. If <= 0, all iterations are dumped.

• start_iteration (int, optional (default=0)) – Start index of the iteration that
should be dumped.

• importance_type (str, optional (default="split")) – What type of feature im-
portance should be dumped. If “split”, result contains numbers of times the feature is used
in a model. If “gain”, result contains total gains of splits which use the feature.

• object_hook (callable or None, optional (default=None)) – If not None,
object_hook is a function called while parsing the json string returned by the C API.
It may be used to alter the json, to store specific values while building the json structure. It
avoids walking through the structure again. It saves a significant amount of time if the num-
ber of trees is huge. Signature is def object_hook(node: dict) -> dict. None is
equivalent to lambda node: node. See documentation of json.loads() for further
details.

Returns
json_repr – JSON format of Booster.

Return type
dict

eval(data, name, feval=None)
Evaluate for data.

Parameters

• data (Dataset) – Data for the evaluating.

• name (str) – Name of the data.

• feval (callable, list of callable, or None, optional (default=None))
– Customized evaluation function. Each evaluation function should accept two parame-
ters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such
tuples.

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted values.
For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes].
If custom objective function is used, predicted values are returned before any trans-
formation, e.g. they are raw margin instead of probability of positive class for binary
task in this case.

eval_data
[Dataset] A Dataset to evaluate.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

9.1. Data Structure API 117

LightGBM, Release 4.3.0.99

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

Returns
result – List with (dataset_name, eval_name, eval_result, is_higher_better) tuples.

Return type
list

eval_train(feval=None)
Evaluate for training data.

Parameters
feval (callable, list of callable, or None, optional (default=None))
– Customized evaluation function. Each evaluation function should accept two parame-
ters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such
tuples.

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted
values. For multi-class task, preds are numpy 2-D array of shape = [n_samples,
n_classes]. If custom objective function is used, predicted values are returned
before any transformation, e.g. they are raw margin instead of probability of
positive class for binary task in this case.

eval_data
[Dataset] The training dataset.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

Returns
result – List with (train_dataset_name, eval_name, eval_result, is_higher_better) tuples.

Return type
list

eval_valid(feval=None)
Evaluate for validation data.

Parameters
feval (callable, list of callable, or None, optional (default=None))
– Customized evaluation function. Each evaluation function should accept two parame-
ters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such
tuples.

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted
values. For multi-class task, preds are numpy 2-D array of shape = [n_samples,
n_classes]. If custom objective function is used, predicted values are returned
before any transformation, e.g. they are raw margin instead of probability of
positive class for binary task in this case.

eval_data
[Dataset] The validation dataset.

118 Chapter 9. Python API

LightGBM, Release 4.3.0.99

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

Returns
result – List with (validation_dataset_name, eval_name, eval_result, is_higher_better) tu-
ples.

Return type
list

feature_importance(importance_type='split', iteration=None)
Get feature importances.

Parameters

• importance_type (str, optional (default="split")) – How the importance
is calculated. If “split”, result contains numbers of times the feature is used in a model.
If “gain”, result contains total gains of splits which use the feature.

• iteration (int or None, optional (default=None)) – Limit number of iter-
ations in the feature importance calculation. If None, if the best iteration exists, it is
used; otherwise, all trees are used. If <= 0, all trees are used (no limits).

Returns
result – Array with feature importances.

Return type
numpy array

feature_name()

Get names of features.

Returns
result – List with names of features.

Return type
list of str

free_dataset()

Free Booster’s Datasets.

Returns
self – Booster without Datasets.

Return type
Booster

free_network()

Free Booster’s network.

Returns
self – Booster with freed network.

Return type
Booster

9.1. Data Structure API 119

LightGBM, Release 4.3.0.99

get_leaf_output(tree_id, leaf_id)
Get the output of a leaf.

Parameters

• tree_id (int) – The index of the tree.

• leaf_id (int) – The index of the leaf in the tree.

Returns
result – The output of the leaf.

Return type
float

get_split_value_histogram(feature, bins=None, xgboost_style=False)
Get split value histogram for the specified feature.

Parameters

• feature (int or str) – The feature name or index the histogram is calculated for.
If int, interpreted as index. If str, interpreted as name.

Warning: Categorical features are not supported.

• bins (int, str or None, optional (default=None)) – The maximum num-
ber of bins. If None, or int and > number of unique split values and
xgboost_style=True, the number of bins equals number of unique split values. If
str, it should be one from the list of the supported values by numpy.histogram()
function.

• xgboost_style (bool, optional (default=False)) – Whether the returned
result should be in the same form as it is in XGBoost. If False, the returned value
is tuple of 2 numpy arrays as it is in numpy.histogram() function. If True, the re-
turned value is matrix, in which the first column is the right edges of non-empty bins
and the second one is the histogram values.

Returns

• result_tuple (tuple of 2 numpy arrays) – If xgboost_style=False, the values of the
histogram of used splitting values for the specified feature and the bin edges.

• result_array_like (numpy array or pandas DataFrame (if pandas is installed)) – If
xgboost_style=True, the histogram of used splitting values for the specified feature.

lower_bound()

Get lower bound value of a model.

Returns
lower_bound – Lower bound value of the model.

Return type
float

model_from_string(model_str)
Load Booster from a string.

Parameters
model_str (str) – Model will be loaded from this string.

120 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Returns
self – Loaded Booster object.

Return type
Booster

model_to_string(num_iteration=None, start_iteration=0, importance_type='split')
Save Booster to string.

Parameters

• num_iteration (int or None, optional (default=None)) – Index of the it-
eration that should be saved. If None, if the best iteration exists, it is saved; otherwise,
all iterations are saved. If <= 0, all iterations are saved.

• start_iteration (int, optional (default=0)) – Start index of the iteration
that should be saved.

• importance_type (str, optional (default="split")) – What type of feature
importance should be saved. If “split”, result contains numbers of times the feature is
used in a model. If “gain”, result contains total gains of splits which use the feature.

Returns
str_repr – String representation of Booster.

Return type
str

num_feature()

Get number of features.

Returns
num_feature – The number of features.

Return type
int

num_model_per_iteration()

Get number of models per iteration.

Returns
model_per_iter – The number of models per iteration.

Return type
int

num_trees()

Get number of weak sub-models.

Returns
num_trees – The number of weak sub-models.

Return type
int

predict(data, start_iteration=0, num_iteration=None, raw_score=False, pred_leaf=False,
pred_contrib=False, data_has_header=False, validate_features=False, **kwargs)

Make a prediction.

Parameters

9.1. Data Structure API 121

LightGBM, Release 4.3.0.99

• data (str, pathlib.Path, numpy array, pandas DataFrame, pyarrow
Table, H2O DataTable's Frame or scipy.sparse) – Data source for pre-
diction. If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or
LibSVM).

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.
com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• data_has_header (bool, optional (default=False)) – Whether the data has
header. Used only if data is str.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns
result – Prediction result. Can be sparse or a list of sparse objects (each element represents
predictions for one class) for feature contributions (when pred_contrib=True).

Return type
numpy array, scipy.sparse or list of scipy.sparse

refit(data, label, decay_rate=0.9, reference=None, weight=None, group=None, init_score=None,
feature_name='auto', categorical_feature='auto', dataset_params=None, free_raw_data=True,
validate_features=False, **kwargs)

Refit the existing Booster by new data.

Parameters

• data (str, pathlib.Path, numpy array, pandas DataFrame, H2O
DataTable's Frame, scipy.sparse, Sequence, list of Sequence or
list of numpy array) – Data source for refit. If str or pathlib.Path, it represents
the path to a text file (CSV, TSV, or LibSVM).

• label (list, numpy 1-D array, pandas Series / one-column
DataFrame, pyarrow Array or pyarrow ChunkedArray) – Label for re-
fit.

122 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

• decay_rate (float, optional (default=0.9)) – Decay rate of refit, will use
leaf_output = decay_rate * old_leaf_output + (1.0 - decay_rate)
* new_leaf_output to refit trees.

• reference (Dataset or None, optional (default=None)) – Reference for
data.

New in version 4.0.0.

• weight (list, numpy 1-D array, pandas Series, pyarrow Array,
pyarrow ChunkedArray or None, optional (default=None)) – Weight for
each data instance. Weights should be non-negative.

New in version 4.0.0.

• group (list, numpy 1-D array, pandas Series, pyarrow Array,
pyarrow ChunkedArray or None, optional (default=None)) –
Group/query size for data. Only used in the learning-to-rank task. sum(group) =
n_samples. For example, if you have a 100-document dataset with group = [10,
20, 40, 10, 10, 10], that means that you have 6 groups, where the first 10
records are in the first group, records 11-30 are in the second group, records 31-70
are in the third group, etc.

New in version 4.0.0.

• init_score (list, list of lists (for multi-class task), numpy
array, pandas Series, pandas DataFrame (for multi-class task),
pyarrow Array, pyarrow ChunkedArray, pyarrow Table (for
multi-class task) or None, optional (default=None)) – Init score
for data.

New in version 4.0.0.

• feature_name (list of str, or 'auto', optional (default="auto")) –
Feature names for data. If ‘auto’ and data is pandas DataFrame, data columns names
are used.

New in version 4.0.0.

• categorical_feature (list of str or int, or 'auto', optional
(default="auto")) – Categorical features for data. If list of int, interpreted
as indices. If list of str, interpreted as feature names (need to specify feature_name
as well). If ‘auto’ and data is pandas DataFrame, pandas unordered categorical
columns are used. All values in categorical features will be cast to int32 and thus
should be less than int32 max value (2147483647). Large values could be memory
consuming. Consider using consecutive integers starting from zero. All negative
values in categorical features will be treated as missing values. The output cannot
be monotonically constrained with respect to a categorical feature. Floating point
numbers in categorical features will be rounded towards 0.

New in version 4.0.0.

• dataset_params (dict or None, optional (default=None)) – Other param-
eters for Dataset data.

New in version 4.0.0.

• free_raw_data (bool, optional (default=True)) – If True, raw data is freed
after constructing inner Dataset for data.

New in version 4.0.0.

9.1. Data Structure API 123

LightGBM, Release 4.3.0.99

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to refit the model match the original ones. Used only if data is pandas
DataFrame.

New in version 4.0.0.

• **kwargs – Other parameters for refit. These parameters will be passed to predict
method.

Returns
result – Refitted Booster.

Return type
Booster

reset_parameter(params)
Reset parameters of Booster.

Parameters
params (dict) – New parameters for Booster.

Returns
self – Booster with new parameters.

Return type
Booster

rollback_one_iter()

Rollback one iteration.

Returns
self – Booster with rolled back one iteration.

Return type
Booster

save_model(filename, num_iteration=None, start_iteration=0, importance_type='split')
Save Booster to file.

Parameters

• filename (str or pathlib.Path) – Filename to save Booster.

• num_iteration (int or None, optional (default=None)) – Index of the it-
eration that should be saved. If None, if the best iteration exists, it is saved; otherwise,
all iterations are saved. If <= 0, all iterations are saved.

• start_iteration (int, optional (default=0)) – Start index of the iteration
that should be saved.

• importance_type (str, optional (default="split")) – What type of feature
importance should be saved. If “split”, result contains numbers of times the feature is
used in a model. If “gain”, result contains total gains of splits which use the feature.

Returns
self – Returns self.

Return type
Booster

set_leaf_output(tree_id, leaf_id, value)
Set the output of a leaf.

New in version 4.0.0.

124 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Parameters

• tree_id (int) – The index of the tree.

• leaf_id (int) – The index of the leaf in the tree.

• value (float) – Value to set as the output of the leaf.

Returns
self – Booster with the leaf output set.

Return type
Booster

set_network(machines, local_listen_port=12400, listen_time_out=120, num_machines=1)
Set the network configuration.

Parameters

• machines (list, set or str) – Names of machines.

• local_listen_port (int, optional (default=12400)) – TCP listen port for
local machines.

• listen_time_out (int, optional (default=120)) – Socket time-out in min-
utes.

• num_machines (int, optional (default=1)) – The number of machines for dis-
tributed learning application.

Returns
self – Booster with set network.

Return type
Booster

set_train_data_name(name)
Set the name to the training Dataset.

Parameters
name (str) – Name for the training Dataset.

Returns
self – Booster with set training Dataset name.

Return type
Booster

shuffle_models(start_iteration=0, end_iteration=-1)
Shuffle models.

Parameters

• start_iteration (int, optional (default=0)) – The first iteration that will
be shuffled.

• end_iteration (int, optional (default=-1)) – The last iteration that will be
shuffled. If <= 0, means the last available iteration.

Returns
self – Booster with shuffled models.

Return type
Booster

9.1. Data Structure API 125

LightGBM, Release 4.3.0.99

trees_to_dataframe()

Parse the fitted model and return in an easy-to-read pandas DataFrame.

The returned DataFrame has the following columns.

• tree_index : int64, which tree a node belongs to. 0-based, so a value of 6, for example, means
“this node is in the 7th tree”.

• node_depth : int64, how far a node is from the root of the tree. The root node has a value of 1, its
direct children are 2, etc.

• node_index : str, unique identifier for a node.

• left_child : str, node_index of the child node to the left of a split. None for leaf nodes.

• right_child : str, node_index of the child node to the right of a split. None for leaf nodes.

• parent_index : str, node_index of this node’s parent. None for the root node.

• split_feature : str, name of the feature used for splitting. None for leaf nodes.

• split_gain : float64, gain from adding this split to the tree. NaN for leaf nodes.

• threshold : float64, value of the feature used to decide which side of the split a record will go
down. NaN for leaf nodes.

• decision_type : str, logical operator describing how to compare a value to threshold. For ex-
ample, split_feature = "Column_10", threshold = 15, decision_type = "<="means
that records where Column_10 <= 15 follow the left side of the split, otherwise follows the right
side of the split. None for leaf nodes.

• missing_direction : str, split direction that missing values should go to. None for leaf nodes.

• missing_type : str, describes what types of values are treated as missing.

• value : float64, predicted value for this leaf node, multiplied by the learning rate.

• weight : float64 or int64, sum of Hessian (second-order derivative of objective), summed over
observations that fall in this node.

• count : int64, number of records in the training data that fall into this node.

Returns
result – Returns a pandas DataFrame of the parsed model.

Return type
pandas DataFrame

update(train_set=None, fobj=None)
Update Booster for one iteration.

Parameters

• train_set (Dataset or None, optional (default=None)) – Training data.
If None, last training data is used.

• fobj (callable or None, optional (default=None)) – Customized objec-
tive function. Should accept two parameters: preds, train_data, and return (grad, hess).

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted
values. Predicted values are returned before any transformation, e.g. they are
raw margin instead of probability of positive class for binary task.

126 Chapter 9. Python API

LightGBM, Release 4.3.0.99

train_data
[Dataset] The training dataset.

grad
[numpy 1-D array or numpy 2-D array (for multi-class task)] The value of the
first order derivative (gradient) of the loss with respect to the elements of preds
for each sample point.

hess
[numpy 1-D array or numpy 2-D array (for multi-class task)] The value of the
second order derivative (Hessian) of the loss with respect to the elements of
preds for each sample point.

For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes],
and grad and hess should be returned in the same format.

Returns
is_finished – Whether the update was successfully finished.

Return type
bool

upper_bound()

Get upper bound value of a model.

Returns
upper_bound – Upper bound value of the model.

Return type
float

9.1.3 lightgbm.CVBooster

class lightgbm.CVBooster(model_file=None)
Bases: object

CVBooster in LightGBM.

Auxiliary data structure to hold and redirect all boosters of cv() function. This class has the same methods as
Booster class. All method calls, except for the following methods, are actually performed for underlying Boosters
and then all returned results are returned in a list.

• model_from_string()

• model_to_string()

• save_model()

boosters

The list of underlying fitted models.

Type
list of Booster

best_iteration

The best iteration of fitted model.

Type
int

9.1. Data Structure API 127

LightGBM, Release 4.3.0.99

__init__(model_file=None)
Initialize the CVBooster.

Parameters
model_file (str, pathlib.Path or None, optional (default=None)) – Path
to the CVBooster model file.

Methods

__init__([model_file]) Initialize the CVBooster.
model_from_string(model_str) Load CVBooster from a string.
model_to_string([num_iteration, ...]) Save CVBooster to JSON string.
save_model(filename[, num_iteration, ...]) Save CVBooster to a file as JSON text.

model_from_string(model_str)
Load CVBooster from a string.

Parameters
model_str (str) – Model will be loaded from this string.

Returns
self – Loaded CVBooster object.

Return type
CVBooster

model_to_string(num_iteration=None, start_iteration=0, importance_type='split')
Save CVBooster to JSON string.

Parameters

• num_iteration (int or None, optional (default=None)) – Index of the it-
eration that should be saved. If None, if the best iteration exists, it is saved; otherwise,
all iterations are saved. If <= 0, all iterations are saved.

• start_iteration (int, optional (default=0)) – Start index of the iteration
that should be saved.

• importance_type (str, optional (default="split")) – What type of feature
importance should be saved. If “split”, result contains numbers of times the feature is
used in a model. If “gain”, result contains total gains of splits which use the feature.

Returns
str_repr – JSON string representation of CVBooster.

Return type
str

save_model(filename, num_iteration=None, start_iteration=0, importance_type='split')
Save CVBooster to a file as JSON text.

Parameters

• filename (str or pathlib.Path) – Filename to save CVBooster.

• num_iteration (int or None, optional (default=None)) – Index of the it-
eration that should be saved. If None, if the best iteration exists, it is saved; otherwise,
all iterations are saved. If <= 0, all iterations are saved.

128 Chapter 9. Python API

LightGBM, Release 4.3.0.99

• start_iteration (int, optional (default=0)) – Start index of the iteration
that should be saved.

• importance_type (str, optional (default="split")) – What type of feature
importance should be saved. If “split”, result contains numbers of times the feature is
used in a model. If “gain”, result contains total gains of splits which use the feature.

Returns
self – Returns self.

Return type
CVBooster

9.1.4 lightgbm.Sequence

class lightgbm.Sequence

Bases: ABC

Generic data access interface.

Object should support the following operations:

Get total row number.
>>> len(seq)
Random access by row index. Used for data sampling.
>>> seq[10]
Range data access. Used to read data in batch when constructing Dataset.
>>> seq[0:100]
Optionally specify batch_size to control range data read size.
>>> seq.batch_size

• With random access, data sampling does not need to go through all data.

• With range data access, there’s no need to read all data into memory thus reduce memory usage.

New in version 3.3.0.

batch_size

Default size of a batch.

Type
int

__init__()

Methods

__init__()

9.1. Data Structure API 129

LightGBM, Release 4.3.0.99

Attributes

batch_size

9.2 Training API

train(params, train_set[, num_boost_round, ...]) Perform the training with given parameters.
cv(params, train_set[, num_boost_round, ...]) Perform the cross-validation with given parameters.

9.2.1 lightgbm.train

lightgbm.train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, feval=None,
init_model=None, feature_name='auto', categorical_feature='auto',
keep_training_booster=False, callbacks=None)

Perform the training with given parameters.

Parameters

• params (dict) – Parameters for training. Values passed through params take precedence
over those supplied via arguments.

• train_set (Dataset) – Data to be trained on.

• num_boost_round (int, optional (default=100)) – Number of boosting itera-
tions.

• valid_sets (list of Dataset, or None, optional (default=None)) – List
of data to be evaluated on during training.

• valid_names (list of str, or None, optional (default=None)) – Names of
valid_sets.

• feval (callable, list of callable, or None, optional (default=None))
– Customized evaluation function. Each evaluation function should accept two parame-
ters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such
tuples.

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted
values. For multi-class task, preds are numpy 2-D array of shape = [n_samples,
n_classes]. If custom objective function is used, predicted values are returned
before any transformation, e.g. they are raw margin instead of probability of
positive class for binary task in this case.

eval_data
[Dataset] A Dataset to evaluate.

eval_name
[str] The name of evaluation function (without whitespaces).

eval_result
[float] The eval result.

130 Chapter 9. Python API

LightGBM, Release 4.3.0.99

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

To ignore the default metric corresponding to the used objective, set the metric parameter
to the string "None" in params.

• init_model (str, pathlib.Path, Booster or None, optional
(default=None)) – Filename of LightGBM model or Booster instance used for
continue training.

• feature_name (list of str, or 'auto', optional (default="auto")) – Fea-
ture names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default="auto")) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features will be
treated as missing values. The output cannot be monotonically constrained with respect
to a categorical feature. Floating point numbers in categorical features will be rounded
towards 0.

• keep_training_booster (bool, optional (default=False)) – Whether the re-
turned Booster will be used to keep training. If False, the returned value will be con-
verted into _InnerPredictor before returning. This means you won’t be able to use eval,
eval_train or eval_valid methods of the returned Booster. When your model is very
large and cause the memory error, you can try to set this param to True to avoid the
model conversion performed during the internal call of model_to_string. You can still
use _InnerPredictor as init_model for future continue training.

• callbacks (list of callable, or None, optional (default=None)) – List
of callback functions that are applied at each iteration. See Callbacks in Python API for
more information.

Note: A custom objective function can be provided for the objective parameter. It should accept two param-
eters: preds, train_data and return (grad, hess).

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted values. Predicted
values are returned before any transformation, e.g. they are raw margin instead of probability
of positive class for binary task.

train_data
[Dataset] The training dataset.

grad
[numpy 1-D array or numpy 2-D array (for multi-class task)] The value of the first order deriva-
tive (gradient) of the loss with respect to the elements of preds for each sample point.

hess
[numpy 1-D array or numpy 2-D array (for multi-class task)] The value of the second order
derivative (Hessian) of the loss with respect to the elements of preds for each sample point.

For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes], and grad and hess should be
returned in the same format.

9.2. Training API 131

LightGBM, Release 4.3.0.99

Returns
booster – The trained Booster model.

Return type
Booster

9.2.2 lightgbm.cv

lightgbm.cv(params, train_set, num_boost_round=100, folds=None, nfold=5, stratified=True, shuffle=True,
metrics=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto',
fpreproc=None, seed=0, callbacks=None, eval_train_metric=False, return_cvbooster=False)

Perform the cross-validation with given parameters.

Parameters

• params (dict) – Parameters for training. Values passed through params take precedence
over those supplied via arguments.

• train_set (Dataset) – Data to be trained on.

• num_boost_round (int, optional (default=100)) – Number of boosting itera-
tions.

• folds (generator or iterator of (train_idx, test_idx) tuples,
scikit-learn splitter object or None, optional (default=None))
– If generator or iterator, it should yield the train and test indices for each
fold. If object, it should be one of the scikit-learn splitter classes (https:
//scikit-learn.org/stable/modules/classes.html#splitter-classes) and have split method.
This argument has highest priority over other data split arguments.

• nfold (int, optional (default=5)) – Number of folds in CV.

• stratified (bool, optional (default=True)) – Whether to perform stratified
sampling.

• shuffle (bool, optional (default=True)) – Whether to shuffle before splitting
data.

• metrics (str, list of str, or None, optional (default=None)) – Evalua-
tion metrics to be monitored while CV. If not None, the metric in params will be overrid-
den.

• feval (callable, list of callable, or None, optional (default=None))
– Customized evaluation function. Each evaluation function should accept two parame-
ters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such
tuples.

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted
values. For multi-class task, preds are numpy 2-D array of shape = [n_samples,
n_classes]. If custom objective function is used, predicted values are returned
before any transformation, e.g. they are raw margin instead of probability of
positive class for binary task in this case.

eval_data
[Dataset] A Dataset to evaluate.

eval_name
[str] The name of evaluation function (without whitespace).

132 Chapter 9. Python API

https://scikit-learn.org/stable/modules/classes.html#splitter-classes
https://scikit-learn.org/stable/modules/classes.html#splitter-classes

LightGBM, Release 4.3.0.99

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

To ignore the default metric corresponding to the used objective, set metrics to the string
"None".

• init_model (str, pathlib.Path, Booster or None, optional
(default=None)) – Filename of LightGBM model or Booster instance used for
continue training.

• feature_name (list of str, or 'auto', optional (default="auto")) – Fea-
ture names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default="auto")) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features will be
treated as missing values. The output cannot be monotonically constrained with respect
to a categorical feature. Floating point numbers in categorical features will be rounded
towards 0.

• fpreproc (callable or None, optional (default=None)) – Preprocessing
function that takes (dtrain, dtest, params) and returns transformed versions of those.

• seed (int, optional (default=0)) – Seed used to generate the folds (passed to
numpy.random.seed).

• callbacks (list of callable, or None, optional (default=None)) – List
of callback functions that are applied at each iteration. See Callbacks in Python API for
more information.

• eval_train_metric (bool, optional (default=False)) – Whether to display the
train metric in progress. The score of the metric is calculated again after each training step,
so there is some impact on performance.

• return_cvbooster (bool, optional (default=False)) – Whether to return
Booster models trained on each fold through CVBooster.

Note: A custom objective function can be provided for the objective parameter. It should accept two param-
eters: preds, train_data and return (grad, hess).

preds
[numpy 1-D array or numpy 2-D array (for multi-class task)] The predicted values. Predicted
values are returned before any transformation, e.g. they are raw margin instead of probability
of positive class for binary task.

train_data
[Dataset] The training dataset.

grad
[numpy 1-D array or numpy 2-D array (for multi-class task)] The value of the first order deriva-
tive (gradient) of the loss with respect to the elements of preds for each sample point.

9.2. Training API 133

LightGBM, Release 4.3.0.99

hess
[numpy 1-D array or numpy 2-D array (for multi-class task)] The value of the second order
derivative (Hessian) of the loss with respect to the elements of preds for each sample point.

For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes], and grad and hess should be
returned in the same format.

Returns
eval_results – History of evaluation results of each metric. The dictionary has the fol-
lowing format: {‘valid metric1-mean’: [values], ‘valid metric1-stdv’: [values], ‘valid
metric2-mean’: [values], ‘valid metric2-stdv’: [values], . . . }. If return_cvbooster=True,
also returns trained boosters wrapped in a CVBooster object via cvbooster key. If
eval_train_metric=True, also returns the train metric history. In this case, the dictionary
has the following format: {‘train metric1-mean’: [values], ‘valid metric1-mean’: [values],
‘train metric2-mean’: [values], ‘valid metric2-mean’: [values], . . . }.

Return type
dict

9.3 Scikit-learn API

LGBMModel([boosting_type, num_leaves, ...]) Implementation of the scikit-learn API for LightGBM.
LGBMClassifier([boosting_type, num_leaves, ...]) LightGBM classifier.
LGBMRegressor([boosting_type, num_leaves, ...]) LightGBM regressor.
LGBMRanker([boosting_type, num_leaves, ...]) LightGBM ranker.

9.3.1 lightgbm.LGBMModel

class lightgbm.LGBMModel(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1,
n_estimators=100, subsample_for_bin=200000, objective=None,
class_weight=None, min_split_gain=0.0, min_child_weight=0.001,
min_child_samples=20, subsample=1.0, subsample_freq=0, colsample_bytree=1.0,
reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', **kwargs)

Bases: BaseEstimator

Implementation of the scikit-learn API for LightGBM.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

134 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator

LightGBM, Release 4.3.0.99

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this
parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied
with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed

9.3. Scikit-learn API 135

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

136 Chapter 9. Python API

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
set_fit_request(*[, callbacks, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

property best_score_

The best score of fitted model.

Type
dict

9.3. Scikit-learn API 137

LightGBM, Release 4.3.0.99

property booster_

The underlying Booster of this model.

Type
Booster

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_class_weight=None, eval_init_score=None, eval_group=None,
eval_metric=None, feature_name='auto', categorical_feature='auto', callbacks=None,
init_model=None)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input feature matrix.

• y (numpy array, pandas DataFrame, pandas Series, list of int or
float of shape = [n_samples]) – The target values (class labels in classifica-
tion, real numbers in regression).

• sample_weight (numpy array, pandas Series, list of int or float
of shape = [n_samples] or None, optional (default=None)) – Weights
of training data. Weights should be non-negative.

• init_score (numpy array, pandas DataFrame, pandas Series,
list of int or float of shape = [n_samples] or shape =
[n_samples * n_classes] (for multi-class task) or shape =
[n_samples, n_classes] (for multi-class task) or None, optional
(default=None)) – Init score of training data.

• group (numpy array, pandas Series, list of int or float, or None,
optional (default=None)) – Group/query data. Only used in the learning-to-rank
task. sum(group) = n_samples. For example, if you have a 100-document dataset with
group = [10, 20, 40, 10, 10, 10], that means that you have 6 groups, where

138 Chapter 9. Python API

LightGBM, Release 4.3.0.99

the first 10 records are in the first group, records 11-30 are in the second group, records
31-70 are in the third group, etc.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of array (same types as sample_weight supports), or
None, optional (default=None)) – Weights of eval data. Weights should be non-
negative.

• eval_class_weight (list or None, optional (default=None)) – Class
weights of eval data.

• eval_init_score (list of array (same types as init_score supports), or None, op-
tional (default=None)) – Init score of eval data.

• eval_group (list of array (same types as group supports), or None, optional (de-
fault=None)) – Group data of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained
with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• callbacks (list of callable, or None, optional (default=None)) –
List of callback functions that are applied at each iteration. See Callbacks in Python
API for more information.

• init_model (str, pathlib.Path, Booster, LGBMModel or None,
optional (default=None)) – Filename of LightGBM model, Booster instance or
LGBMModel instance used for continue training.

Returns
self – Returns self.

Return type
LGBMModel

Note: Custom eval function expects a callable with following signatures: func(y_true,

9.3. Scikit-learn API 139

LightGBM, Release 4.3.0.99

y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,
predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

140 Chapter 9. Python API

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

New in version 4.0.0.

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.

9.3. Scikit-learn API 141

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (array-like of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees
* n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each sample.

• X_SHAP_values (array-like of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or list with n_classes length of such ob-
jects) – If pred_contrib=True, the feature contributions for each sample.

set_fit_request(*, callbacks='$UNCHANGED$', categorical_feature='$UNCHANGED$',
eval_class_weight='$UNCHANGED$', eval_group='$UNCHANGED$',
eval_init_score='$UNCHANGED$', eval_metric='$UNCHANGED$',
eval_names='$UNCHANGED$', eval_sample_weight='$UNCHANGED$',
eval_set='$UNCHANGED$', feature_name='$UNCHANGED$',
group='$UNCHANGED$', init_model='$UNCHANGED$',
init_score='$UNCHANGED$', sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• callbacks (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for callbacks parameter in
fit.

142 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• categorical_feature (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
categorical_feature parameter in fit.

• eval_class_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_class_weight parameter in fit.

• eval_group (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_group parameter in
fit.

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• feature_name (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for feature_name parameter
in fit.

• group (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for group parameter in
fit.

• init_model (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_model parameter in
fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

9.3. Scikit-learn API 143

LightGBM, Release 4.3.0.99

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

144 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

Return type
object

9.3.2 lightgbm.LGBMClassifier

class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1,
n_estimators=100, subsample_for_bin=200000, objective=None,
class_weight=None, min_split_gain=0.0, min_child_weight=0.001,
min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0,
random_state=None, n_jobs=None, importance_type='split', **kwargs)

Bases: ClassifierMixin, LGBMModel

LightGBM classifier.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this

9.3. Scikit-learn API 145

https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html#sklearn.base.ClassifierMixin

LightGBM, Release 4.3.0.99

parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied
with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed
the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

146 Chapter 9. Python API

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

9.3. Scikit-learn API 147

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
predict_proba(X[, raw_score, ...]) Return the predicted probability for each class for

each sample.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_fit_request(*[, callbacks, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_proba_request(*[, ...]) Request metadata passed to the predict_proba

method.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.
set_score_request(*[, sample_weight]) Request metadata passed to the score method.

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
classes_ The class label array.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_classes_ The number of classes.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

property best_score_

The best score of fitted model.

Type
dict

property booster_

The underlying Booster of this model.

148 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Type
Booster

property classes_

The class label array.

Type
array of shape = [n_classes]

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_class_weight=None, eval_init_score=None, eval_metric=None,
feature_name='auto', categorical_feature='auto', callbacks=None, init_model=None)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input feature matrix.

• y (numpy array, pandas DataFrame, pandas Series, list of int or
float of shape = [n_samples]) – The target values (class labels in classifica-
tion, real numbers in regression).

• sample_weight (numpy array, pandas Series, list of int or float
of shape = [n_samples] or None, optional (default=None)) – Weights
of training data. Weights should be non-negative.

• init_score (numpy array, pandas DataFrame, pandas Series,
list of int or float of shape = [n_samples] or shape =
[n_samples * n_classes] (for multi-class task) or shape =
[n_samples, n_classes] (for multi-class task) or None, optional
(default=None)) – Init score of training data.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

9.3. Scikit-learn API 149

LightGBM, Release 4.3.0.99

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of array (same types as sample_weight supports), or
None, optional (default=None)) – Weights of eval data. Weights should be non-
negative.

• eval_class_weight (list or None, optional (default=None)) – Class
weights of eval data.

• eval_init_score (list of array (same types as init_score supports), or None, op-
tional (default=None)) – Init score of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained
with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• callbacks (list of callable, or None, optional (default=None)) –
List of callback functions that are applied at each iteration. See Callbacks in Python
API for more information.

• init_model (str, pathlib.Path, Booster, LGBMModel or None,
optional (default=None)) – Filename of LightGBM model, Booster instance or
LGBMModel instance used for continue training.

Returns
self – Returns self.

Return type
LGBMClassifier

Note: Custom eval function expects a callable with following signatures: func(y_true,
y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,

150 Chapter 9. Python API

LightGBM, Release 4.3.0.99

predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_classes_

The number of classes.

Type
int

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

9.3. Scikit-learn API 151

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.

152 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (array-like of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees
* n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each sample.

• X_SHAP_values (array-like of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or list with n_classes length of such ob-
jects) – If pred_contrib=True, the feature contributions for each sample.

predict_proba(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False,
pred_contrib=False, validate_features=False, **kwargs)

Return the predicted probability for each class for each sample.

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.
com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

9.3. Scikit-learn API 153

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

• predicted_probability (array-like of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees
* n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each sample.

• X_SHAP_values (array-like of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or list with n_classes length of such ob-
jects) – If pred_contrib=True, the feature contributions for each sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
True labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) –
Sample weights.

Returns
score – Mean accuracy of self.predict(X) w.r.t. y.

Return type
float

set_fit_request(*, callbacks='$UNCHANGED$', categorical_feature='$UNCHANGED$',
eval_class_weight='$UNCHANGED$', eval_init_score='$UNCHANGED$',
eval_metric='$UNCHANGED$', eval_names='$UNCHANGED$',
eval_sample_weight='$UNCHANGED$', eval_set='$UNCHANGED$',
feature_name='$UNCHANGED$', init_model='$UNCHANGED$',
init_score='$UNCHANGED$', sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

154 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• callbacks (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for callbacks parameter in
fit.

• categorical_feature (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
categorical_feature parameter in fit.

• eval_class_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_class_weight parameter in fit.

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• feature_name (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for feature_name parameter
in fit.

• init_model (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_model parameter in
fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

9.3. Scikit-learn API 155

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

set_params(**params)
Set the parameters of this estimator.

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

Return type
object

set_predict_proba_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict_proba method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict_proba if provided. The request is ignored if
metadata is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict_proba.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict_proba.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict_proba.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict_proba.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict_proba.

156 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict_proba.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict_proba.

Returns
self – The updated object.

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

9.3. Scikit-learn API 157

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

Return type
object

set_score_request(*, sample_weight='$UNCHANGED$')
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

158 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

9.3.3 lightgbm.LGBMRegressor

class lightgbm.LGBMRegressor(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1,
n_estimators=100, subsample_for_bin=200000, objective=None,
class_weight=None, min_split_gain=0.0, min_child_weight=0.001,
min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None,
n_jobs=None, importance_type='split', **kwargs)

Bases: RegressorMixin, LGBMModel

LightGBM regressor.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this
parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied
with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

9.3. Scikit-learn API 159

https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html#sklearn.base.RegressorMixin
https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed
the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

160 Chapter 9. Python API

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_fit_request(*[, callbacks, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.
set_score_request(*[, sample_weight]) Request metadata passed to the score method.

9.3. Scikit-learn API 161

LightGBM, Release 4.3.0.99

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

property best_score_

The best score of fitted model.

Type
dict

property booster_

The underlying Booster of this model.

Type
Booster

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

162 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_init_score=None, eval_metric=None, feature_name='auto',
categorical_feature='auto', callbacks=None, init_model=None)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input feature matrix.

• y (numpy array, pandas DataFrame, pandas Series, list of int or
float of shape = [n_samples]) – The target values (class labels in classifica-
tion, real numbers in regression).

• sample_weight (numpy array, pandas Series, list of int or float
of shape = [n_samples] or None, optional (default=None)) – Weights
of training data. Weights should be non-negative.

• init_score (numpy array, pandas DataFrame, pandas Series,
list of int or float of shape = [n_samples] or shape =
[n_samples * n_classes] (for multi-class task) or shape =
[n_samples, n_classes] (for multi-class task) or None, optional
(default=None)) – Init score of training data.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of array (same types as sample_weight supports), or
None, optional (default=None)) – Weights of eval data. Weights should be non-
negative.

• eval_init_score (list of array (same types as init_score supports), or None, op-
tional (default=None)) – Init score of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained

9.3. Scikit-learn API 163

LightGBM, Release 4.3.0.99

with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• callbacks (list of callable, or None, optional (default=None)) –
List of callback functions that are applied at each iteration. See Callbacks in Python
API for more information.

• init_model (str, pathlib.Path, Booster, LGBMModel or None,
optional (default=None)) – Filename of LightGBM model, Booster instance or
LGBMModel instance used for continue training.

Returns
self – Returns self.

Return type
LGBMRegressor

Note: Custom eval function expects a callable with following signatures: func(y_true,
y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,
predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

164 Chapter 9. Python API

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input features matrix.

9.3. Scikit-learn API 165

LightGBM, Release 4.3.0.99

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.
com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (array-like of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees
* n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each sample.

• X_SHAP_values (array-like of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or list with n_classes length of such ob-
jects) – If pred_contrib=True, the feature contributions for each sample.

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination𝑅2 is defined as (1− 𝑢
𝑣), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples. For
some estimators this may be a precomputed kernel matrix or a list of generic objects in-
stead with shape (n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
True values for X.

• sample_weight (array-like of shape (n_samples,), default=None) –
Sample weights.

166 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_fit_request(*, callbacks='$UNCHANGED$', categorical_feature='$UNCHANGED$',
eval_init_score='$UNCHANGED$', eval_metric='$UNCHANGED$',
eval_names='$UNCHANGED$', eval_sample_weight='$UNCHANGED$',
eval_set='$UNCHANGED$', feature_name='$UNCHANGED$',
init_model='$UNCHANGED$', init_score='$UNCHANGED$',
sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• callbacks (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for callbacks parameter in
fit.

• categorical_feature (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
categorical_feature parameter in fit.

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

9.3. Scikit-learn API 167

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• feature_name (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for feature_name parameter
in fit.

• init_model (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_model parameter in
fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

168 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

Return type
object

set_score_request(*, sample_weight='$UNCHANGED$')
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

9.3. Scikit-learn API 169

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

9.3.4 lightgbm.LGBMRanker

class lightgbm.LGBMRanker(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1,
n_estimators=100, subsample_for_bin=200000, objective=None,
class_weight=None, min_split_gain=0.0, min_child_weight=0.001,
min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None,
n_jobs=None, importance_type='split', **kwargs)

Bases: LGBMModel

LightGBM ranker.

Warning: scikit-learn doesn’t support ranking applications yet, therefore this class is not really compatible
with the sklearn ecosystem. Please use this class mainly for training and applying ranking models in common
sklearnish way.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

170 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this
parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied
with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed

9.3. Scikit-learn API 171

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

172 Chapter 9. Python API

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
set_fit_request(*[, callbacks, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

property best_score_

The best score of fitted model.

Type
dict

9.3. Scikit-learn API 173

LightGBM, Release 4.3.0.99

property booster_

The underlying Booster of this model.

Type
Booster

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric=None, eval_at=(1, 2,
3, 4, 5), feature_name='auto', categorical_feature='auto', callbacks=None, init_model=None)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input feature matrix.

• y (numpy array, pandas DataFrame, pandas Series, list of int or
float of shape = [n_samples]) – The target values (class labels in classifica-
tion, real numbers in regression).

• sample_weight (numpy array, pandas Series, list of int or float
of shape = [n_samples] or None, optional (default=None)) – Weights
of training data. Weights should be non-negative.

• init_score (numpy array, pandas DataFrame, pandas Series,
list of int or float of shape = [n_samples] or shape =
[n_samples * n_classes] (for multi-class task) or shape =
[n_samples, n_classes] (for multi-class task) or None, optional
(default=None)) – Init score of training data.

• group (numpy array, pandas Series, list of int or float, or None,
optional (default=None)) – Group/query data. Only used in the learning-to-rank
task. sum(group) = n_samples. For example, if you have a 100-document dataset with
group = [10, 20, 40, 10, 10, 10], that means that you have 6 groups, where

174 Chapter 9. Python API

LightGBM, Release 4.3.0.99

the first 10 records are in the first group, records 11-30 are in the second group, records
31-70 are in the third group, etc.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of array (same types as sample_weight supports), or
None, optional (default=None)) – Weights of eval data. Weights should be non-
negative.

• eval_init_score (list of array (same types as init_score supports), or None, op-
tional (default=None)) – Init score of eval data.

• eval_group (list of array (same types as group supports), or None, optional (de-
fault=None)) – Group data of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• eval_at (list or tuple of int, optional (default=(1, 2, 3, 4,
5))) – The evaluation positions of the specified metric.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained
with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• callbacks (list of callable, or None, optional (default=None)) –
List of callback functions that are applied at each iteration. See Callbacks in Python
API for more information.

• init_model (str, pathlib.Path, Booster, LGBMModel or None,
optional (default=None)) – Filename of LightGBM model, Booster instance or
LGBMModel instance used for continue training.

Returns
self – Returns self.

Return type
LGBMRanker

Note: Custom eval function expects a callable with following signatures: func(y_true,

9.3. Scikit-learn API 175

LightGBM, Release 4.3.0.99

y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,
predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

176 Chapter 9. Python API

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

New in version 4.0.0.

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (numpy array, pandas DataFrame, H2O DataTable's Frame , scipy.
sparse, list of lists of int or float of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.

9.3. Scikit-learn API 177

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (array-like of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees
* n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each sample.

• X_SHAP_values (array-like of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or list with n_classes length of such ob-
jects) – If pred_contrib=True, the feature contributions for each sample.

set_fit_request(*, callbacks='$UNCHANGED$', categorical_feature='$UNCHANGED$',
eval_at='$UNCHANGED$', eval_group='$UNCHANGED$',
eval_init_score='$UNCHANGED$', eval_metric='$UNCHANGED$',
eval_names='$UNCHANGED$', eval_sample_weight='$UNCHANGED$',
eval_set='$UNCHANGED$', feature_name='$UNCHANGED$',
group='$UNCHANGED$', init_model='$UNCHANGED$',
init_score='$UNCHANGED$', sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• callbacks (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for callbacks parameter in
fit.

178 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• categorical_feature (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
categorical_feature parameter in fit.

• eval_at (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_at parameter
in fit.

• eval_group (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_group parameter in
fit.

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• feature_name (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for feature_name parameter
in fit.

• group (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for group parameter in
fit.

• init_model (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_model parameter in
fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

9.3. Scikit-learn API 179

LightGBM, Release 4.3.0.99

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

180 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

Return type
object

9.4 Dask API

New in version 3.2.0.

DaskLGBMClassifier([boosting_type, ...]) Distributed version of lightgbm.LGBMClassifier.
DaskLGBMRegressor([boosting_type, ...]) Distributed version of lightgbm.LGBMRegressor.
DaskLGBMRanker([boosting_type, num_leaves, ...]) Distributed version of lightgbm.LGBMRanker.

9.4.1 lightgbm.DaskLGBMClassifier

class lightgbm.DaskLGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1,
learning_rate=0.1, n_estimators=100, subsample_for_bin=200000,
objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0,
subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0,
reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', client=None, **kwargs)

Bases: LGBMClassifier, _DaskLGBMModel

Distributed version of lightgbm.LGBMClassifier.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', client=None, **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

9.4. Dask API 181

LightGBM, Release 4.3.0.99

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this
parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied
with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed
the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

182 Chapter 9. Python API

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

• client (dask.distributed.Client or None, optional (default=None))
– Dask client. If None, distributed.default_client() will be used at runtime.
The Dask client used by this class will not be saved if the model object is pickled.

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

9.4. Dask API 183

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
predict_proba(X[, raw_score, ...]) Return the predicted probability for each class for

each sample.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_fit_request(*[, eval_class_weight, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_proba_request(*[, ...]) Request metadata passed to the predict_proba

method.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.
set_score_request(*[, sample_weight]) Request metadata passed to the score method.
to_local() Create regular version of lightgbm.LGBMClassifier

from the distributed version.

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
classes_ The class label array.
client_ Dask client.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_classes_ The number of classes.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

184 Chapter 9. Python API

LightGBM, Release 4.3.0.99

property best_score_

The best score of fitted model.

Type
dict

property booster_

The underlying Booster of this model.

Type
Booster

property classes_

The class label array.

Type
array of shape = [n_classes]

property client_

Dask client.

This property can be passed in the constructor or updated with model.set_params(client=client).

Type
dask.distributed.Client

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_class_weight=None, eval_init_score=None, eval_metric=None,
**kwargs)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input feature matrix.

9.4. Dask API 185

LightGBM, Release 4.3.0.99

• y (Dask Array, Dask DataFrame or Dask Series of shape =
[n_samples]) – The target values (class labels in classification, real numbers
in regression).

• sample_weight (Dask Array or Dask Series of shape = [n_samples]
or None, optional (default=None)) – Weights of training data. Weights
should be non-negative.

• init_score (Dask Array or Dask Series of shape = [n_samples] or
shape = [n_samples * n_classes] (for multi-class task), or Dask
Array or Dask DataFrame of shape = [n_samples, n_classes] (for
multi-class task), or None, optional (default=None)) – Init score of
training data.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of Dask Array or Dask Series, or None,
optional (default=None)) – Weights of eval data. Weights should be non-
negative.

• eval_class_weight (list or None, optional (default=None)) – Class
weights of eval data.

• eval_init_score (list of Dask Array, Dask Series or Dask
DataFrame (for multi-class task), or None, optional
(default=None)) – Init score of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained
with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• **kwargs – Other parameters passed through to LGBMClassifier.fit().

Returns
self – Returns self.

Return type
lightgbm.DaskLGBMClassifier

186 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Note: Custom eval function expects a callable with following signatures: func(y_true,
y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,
predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_classes_

The number of classes.

9.4. Dask API 187

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

Type
int

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

188 Chapter 9. Python API

LightGBM, Release 4.3.0.99

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.
com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (Dask Array of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (Dask Array of shape = [n_samples, n_trees] or shape = [n_samples,
n_trees * n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each
sample.

• X_SHAP_values (Dask Array of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or (if multi-class and using sparse in-
puts) a list of n_classes Dask Arrays of shape = [n_samples, n_features + 1]) –
If pred_contrib=True, the feature contributions for each sample.

predict_proba(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False,
pred_contrib=False, validate_features=False, **kwargs)

Return the predicted probability for each class for each sample.

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.

9.4. Dask API 189

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_probability (Dask Array of shape = [n_samples] or shape = [n_samples,
n_classes]) – The predicted values.

• X_leaves (Dask Array of shape = [n_samples, n_trees] or shape = [n_samples,
n_trees * n_classes]) – If pred_leaf=True, the predicted leaf of every tree for each
sample.

• X_SHAP_values (Dask Array of shape = [n_samples, n_features + 1] or shape =
[n_samples, (n_features + 1) * n_classes] or (if multi-class and using sparse in-
puts) a list of n_classes Dask Arrays of shape = [n_samples, n_features + 1]) –
If pred_contrib=True, the feature contributions for each sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
True labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) –
Sample weights.

Returns
score – Mean accuracy of self.predict(X) w.r.t. y.

Return type
float

set_fit_request(*, eval_class_weight='$UNCHANGED$', eval_init_score='$UNCHANGED$',
eval_metric='$UNCHANGED$', eval_names='$UNCHANGED$',
eval_sample_weight='$UNCHANGED$', eval_set='$UNCHANGED$',
init_score='$UNCHANGED$', sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

190 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• eval_class_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_class_weight parameter in fit.

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

9.4. Dask API 191

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

Return type
object

set_predict_proba_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict_proba method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict_proba if provided. The request is ignored if
metadata is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict_proba.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict_proba.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict_proba.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict_proba.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict_proba.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict_proba.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict_proba.

Returns
self – The updated object.

192 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

9.4. Dask API 193

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

Return type
object

set_score_request(*, sample_weight='$UNCHANGED$')
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

to_local()

Create regular version of lightgbm.LGBMClassifier from the distributed version.

Returns
model – Local underlying model.

Return type
lightgbm.LGBMClassifier

194 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

9.4.2 lightgbm.DaskLGBMRegressor

class lightgbm.DaskLGBMRegressor(boosting_type='gbdt', num_leaves=31, max_depth=-1,
learning_rate=0.1, n_estimators=100, subsample_for_bin=200000,
objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0,
subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0,
reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', client=None, **kwargs)

Bases: LGBMRegressor, _DaskLGBMModel

Distributed version of lightgbm.LGBMRegressor.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', client=None, **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this
parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied

9.4. Dask API 195

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed
the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

• client (dask.distributed.Client or None, optional (default=None))
– Dask client. If None, distributed.default_client() will be used at runtime.
The Dask client used by this class will not be saved if the model object is pickled.

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

196 Chapter 9. Python API

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

9.4. Dask API 197

LightGBM, Release 4.3.0.99

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_fit_request(*[, eval_init_score, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.
set_score_request(*[, sample_weight]) Request metadata passed to the score method.
to_local() Create regular version of lightgbm.LGBMRegressor

from the distributed version.

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
client_ Dask client.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

property best_score_

The best score of fitted model.

Type
dict

property booster_

The underlying Booster of this model.

Type
Booster

198 Chapter 9. Python API

LightGBM, Release 4.3.0.99

property client_

Dask client.

This property can be passed in the constructor or updated with model.set_params(client=client).

Type
dask.distributed.Client

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_init_score=None, eval_metric=None, **kwargs)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input feature matrix.

• y (Dask Array, Dask DataFrame or Dask Series of shape =
[n_samples]) – The target values (class labels in classification, real numbers
in regression).

• sample_weight (Dask Array or Dask Series of shape = [n_samples]
or None, optional (default=None)) – Weights of training data. Weights
should be non-negative.

• init_score (Dask Array or Dask Series of shape = [n_samples] or
None, optional (default=None)) – Init score of training data.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of Dask Array or Dask Series, or None,
optional (default=None)) – Weights of eval data. Weights should be non-
negative.

9.4. Dask API 199

LightGBM, Release 4.3.0.99

• eval_init_score (list of Dask Array or Dask Series, or None,
optional (default=None)) – Init score of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained
with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• **kwargs – Other parameters passed through to LGBMRegressor.fit().

Returns
self – Returns self.

Return type
lightgbm.DaskLGBMRegressor

Note: Custom eval function expects a callable with following signatures: func(y_true,
y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,
predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

200 Chapter 9. Python API

LightGBM, Release 4.3.0.99

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

9.4. Dask API 201

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.
com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (Dask Array of shape = [n_samples]) – The predicted values.

• X_leaves (Dask Array of shape = [n_samples, n_trees]) – If pred_leaf=True, the
predicted leaf of every tree for each sample.

• X_SHAP_values (Dask Array of shape = [n_samples, n_features + 1]) – If
pred_contrib=True, the feature contributions for each sample.

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination𝑅2 is defined as (1− 𝑢
𝑣), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).

202 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples. For
some estimators this may be a precomputed kernel matrix or a list of generic objects in-
stead with shape (n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
True values for X.

• sample_weight (array-like of shape (n_samples,), default=None) –
Sample weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_fit_request(*, eval_init_score='$UNCHANGED$', eval_metric='$UNCHANGED$',
eval_names='$UNCHANGED$', eval_sample_weight='$UNCHANGED$',
eval_set='$UNCHANGED$', init_score='$UNCHANGED$',
sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

9.4. Dask API 203

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

204 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

Return type
object

set_score_request(*, sample_weight='$UNCHANGED$')
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

9.4. Dask API 205

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

to_local()

Create regular version of lightgbm.LGBMRegressor from the distributed version.

Returns
model – Local underlying model.

Return type
lightgbm.LGBMRegressor

9.4.3 lightgbm.DaskLGBMRanker

class lightgbm.DaskLGBMRanker(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1,
n_estimators=100, subsample_for_bin=200000, objective=None,
class_weight=None, min_split_gain=0.0, min_child_weight=0.001,
min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0,
random_state=None, n_jobs=None, importance_type='split', client=None,
**kwargs)

Bases: LGBMRanker, _DaskLGBMModel

Distributed version of lightgbm.LGBMRanker.

__init__(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100,
subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0,
colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None,
importance_type='split', client=None, **kwargs)

Construct a gradient boosting model.

Parameters

• boosting_type (str, optional (default='gbdt')) – ‘gbdt’, traditional Gradi-
ent Boosting Decision Tree. ‘dart’, Dropouts meet Multiple Additive Regression
Trees. ‘rf’, Random Forest.

• num_leaves (int, optional (default=31)) – Maximum tree leaves for base
learners.

206 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• max_depth (int, optional (default=-1)) – Maximum tree depth for base
learners, <=0 means no limit.

• learning_rate (float, optional (default=0.1)) – Boosting learning rate.
You can use callbacks parameter of fit method to shrink/adapt learning rate
in training using reset_parameter callback. Note, that this will ignore the
learning_rate argument in training.

• n_estimators (int, optional (default=100)) – Number of boosted trees to
fit.

• subsample_for_bin (int, optional (default=200000)) – Number of sam-
ples for constructing bins.

• objective (str, callable or None, optional (default=None)) – Specify
the learning task and the corresponding learning objective or a custom objective func-
tion to be used (see note below). Default: ‘regression’ for LGBMRegressor, ‘binary’
or ‘multiclass’ for LGBMClassifier, ‘lambdarank’ for LGBMRanker.

• class_weight (dict, 'balanced' or None, optional (default=None)) –
Weights associated with classes in the form {class_label: weight}. Use this
parameter only for multi-class classification task; for binary classification task you
may use is_unbalance or scale_pos_weight parameters. Note, that the usage of
all these parameters will result in poor estimates of the individual class probabilities.
You may want to consider performing probability calibration (https://scikit-learn.org/
stable/modules/calibration.html) of your model. The ‘balanced’ mode uses the val-
ues of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n_samples / (n_classes * np.bincount(y)). If None, all
classes are supposed to have weight one. Note, that these weights will be multiplied
with sample_weight (passed through the fit method) if sample_weight is speci-
fied.

• min_split_gain (float, optional (default=0.)) – Minimum loss reduction
required to make a further partition on a leaf node of the tree.

• min_child_weight (float, optional (default=1e-3)) – Minimum sum of
instance weight (Hessian) needed in a child (leaf).

• min_child_samples (int, optional (default=20)) – Minimum number of
data needed in a child (leaf).

• subsample (float, optional (default=1.)) – Subsample ratio of the training
instance.

• subsample_freq (int, optional (default=0)) – Frequency of subsample, <=0
means no enable.

• colsample_bytree (float, optional (default=1.)) – Subsample ratio of
columns when constructing each tree.

• reg_alpha (float, optional (default=0.)) – L1 regularization term on
weights.

• reg_lambda (float, optional (default=0.)) – L2 regularization term on
weights.

• random_state (int, RandomState object or None, optional
(default=None)) – Random number seed. If int, this number is used to seed
the C++ code. If RandomState or Generator object (numpy), a random integer is
picked based on its state to seed the C++ code. If None, default seeds in C++ code
are used.

9.4. Dask API 207

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

LightGBM, Release 4.3.0.99

• n_jobs (int or None, optional (default=None)) – Number of parallel
threads to use for training (can be changed at prediction time by passing it as an extra
keyword argument).

For better performance, it is recommended to set this to the number of physical cores
in the CPU.

Negative integers are interpreted as following joblib’s formula (n_cpus + 1 + n_jobs),
just like scikit-learn (so e.g. -1 means using all threads). A value of zero corresponds
the default number of threads configured for OpenMP in the system. A value of None
(the default) corresponds to using the number of physical cores in the system (its cor-
rect detection requires either the joblib or the psutil util libraries to be installed).

Changed in version 4.0.0.

• importance_type (str, optional (default='split')) – The type of feature
importance to be filled into feature_importances_. If ‘split’, result contains num-
bers of times the feature is used in a model. If ‘gain’, result contains total gains of
splits which use the feature.

• client (dask.distributed.Client or None, optional (default=None))
– Dask client. If None, distributed.default_client() will be used at runtime.
The Dask client used by this class will not be saved if the model object is pickled.

• **kwargs – Other parameters for the model. Check http://lightgbm.readthedocs.io/
en/latest/Parameters.html for more parameters.

Warning: **kwargs is not supported in sklearn, it may cause unexpected issues.

Note: A custom objective function can be provided for the objective parameter. In this case, it should
have the signature objective(y_true, y_pred) -> grad, hess, objective(y_true, y_pred,
weight) -> grad, hess or objective(y_true, y_pred, weight, group) -> grad, hess:

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. Predicted values are returned before
any transformation, e.g. they are raw margin instead of probability of positive class for
binary task.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

grad
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the first order derivative (gradient) of the
loss with respect to the elements of y_pred for each sample point.

208 Chapter 9. Python API

http://lightgbm.readthedocs.io/en/latest/Parameters.html
http://lightgbm.readthedocs.io/en/latest/Parameters.html

LightGBM, Release 4.3.0.99

hess
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The value of the second order derivative (Hessian) of the
loss with respect to the elements of y_pred for each sample point.

For multi-class task, y_pred is a numpy 2-D array of shape = [n_samples, n_classes], and grad and hess
should be returned in the same format.

Methods

__init__([boosting_type, num_leaves, ...]) Construct a gradient boosting model.
fit(X, y[, sample_weight, init_score, ...]) Build a gradient boosting model from the training set

(X, y).
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
predict(X[, raw_score, start_iteration, ...]) Return the predicted value for each sample.
set_fit_request(*[, eval_at, eval_group, ...]) Request metadata passed to the fit method.
set_params(**params) Set the parameters of this estimator.
set_predict_request(*[, num_iteration, ...]) Request metadata passed to the predict method.
to_local() Create regular version of lightgbm.LGBMRanker

from the distributed version.

Attributes

best_iteration_ The best iteration of fitted model if
early_stopping() callback has been specified.

best_score_ The best score of fitted model.
booster_ The underlying Booster of this model.
client_ Dask client.
evals_result_ The evaluation results if validation sets have been

specified.
feature_importances_ The feature importances (the higher, the more impor-

tant).
feature_name_ The names of features.
n_estimators_ True number of boosting iterations performed.
n_features_ The number of features of fitted model.
n_features_in_ The number of features of fitted model.
n_iter_ True number of boosting iterations performed.
objective_ The concrete objective used while fitting this model.

property best_iteration_

The best iteration of fitted model if early_stopping() callback has been specified.

Type
int

property best_score_

The best score of fitted model.

9.4. Dask API 209

LightGBM, Release 4.3.0.99

Type
dict

property booster_

The underlying Booster of this model.

Type
Booster

property client_

Dask client.

This property can be passed in the constructor or updated with model.set_params(client=client).

Type
dask.distributed.Client

property evals_result_

The evaluation results if validation sets have been specified.

Type
dict

property feature_importances_

The feature importances (the higher, the more important).

Note: importance_type attribute is passed to the function to configure the type of importance values
to be extracted.

Type
array of shape = [n_features]

property feature_name_

The names of features.

Type
list of shape = [n_features]

fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None,
eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric=None, eval_at=(1, 2,
3, 4, 5), **kwargs)
Build a gradient boosting model from the training set (X, y).

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input feature matrix.

• y (Dask Array, Dask DataFrame or Dask Series of shape =
[n_samples]) – The target values (class labels in classification, real numbers
in regression).

• sample_weight (Dask Array or Dask Series of shape = [n_samples]
or None, optional (default=None)) – Weights of training data. Weights
should be non-negative.

• init_score (Dask Array or Dask Series of shape = [n_samples] or
None, optional (default=None)) – Init score of training data.

210 Chapter 9. Python API

LightGBM, Release 4.3.0.99

• group (Dask Array or Dask Series or None, optional
(default=None)) – Group/query data. Only used in the learning-to-rank task.
sum(group) = n_samples. For example, if you have a 100-document dataset with
group = [10, 20, 40, 10, 10, 10], that means that you have 6 groups, where
the first 10 records are in the first group, records 11-30 are in the second group,
records 31-70 are in the third group, etc.

• eval_set (list or None, optional (default=None)) – A list of (X, y) tuple
pairs to use as validation sets.

• eval_names (list of str, or None, optional (default=None)) – Names
of eval_set.

• eval_sample_weight (list of Dask Array or Dask Series, or None,
optional (default=None)) – Weights of eval data. Weights should be non-
negative.

• eval_init_score (list of Dask Array or Dask Series, or None,
optional (default=None)) – Init score of eval data.

• eval_group (list of Dask Array or Dask Series, or None, optional
(default=None)) – Group data of eval data.

• eval_metric (str, callable, list or None, optional
(default=None)) – If str, it should be a built-in evaluation metric to use. If
callable, it should be a custom evaluation metric, see note below for more details. If
list, it can be a list of built-in metrics, a list of custom evaluation metrics, or a mix
of both. In either case, the metric from the model parameters will be evaluated and
used as well. Default: ‘l2’ for LGBMRegressor, ‘logloss’ for LGBMClassifier, ‘ndcg’
for LGBMRanker.

• eval_at (list or tuple of int, optional (default=(1, 2, 3, 4,
5))) – The evaluation positions of the specified metric.

• feature_name (list of str, or 'auto', optional (default='auto')) –
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

• categorical_feature (list of str or int, or 'auto', optional
(default='auto')) – Categorical features. If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify feature_name as well). If
‘auto’ and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32
max value (2147483647). Large values could be memory consuming. Consider using
consecutive integers starting from zero. All negative values in categorical features
will be treated as missing values. The output cannot be monotonically constrained
with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

• **kwargs – Other parameters passed through to LGBMRanker.fit().

Returns
self – Returns self.

Return type
lightgbm.DaskLGBMRanker

Note: Custom eval function expects a callable with following signatures: func(y_true,
y_pred), func(y_true, y_pred, weight) or func(y_true, y_pred, weight, group) and re-
turns (eval_name, eval_result, is_higher_better) or list of (eval_name, eval_result, is_higher_better):

9.4. Dask API 211

LightGBM, Release 4.3.0.99

y_true
[numpy 1-D array of shape = [n_samples]] The target values.

y_pred
[numpy 1-D array of shape = [n_samples] or numpy 2-D array of shape = [n_samples,
n_classes] (for multi-class task)] The predicted values. In case of custom objective,
predicted values are returned before any transformation, e.g. they are raw margin instead
of probability of positive class for binary task in this case.

weight
[numpy 1-D array of shape = [n_samples]] The weight of samples. Weights should be
non-negative.

group
[numpy 1-D array] Group/query data. Only used in the learning-to-rank task. sum(group)
= n_samples. For example, if you have a 100-document dataset with group = [10, 20,
40, 10, 10, 10], that means that you have 6 groups, where the first 10 records are in
the first group, records 11-30 are in the second group, records 31-70 are in the third group,
etc.

eval_name
[str] The name of evaluation function (without whitespace).

eval_result
[float] The eval result.

is_higher_better
[bool] Is eval result higher better, e.g. AUC is is_higher_better.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, optional (default=True)) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_estimators_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

212 Chapter 9. Python API

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

LightGBM, Release 4.3.0.99

Type
int

property n_features_

The number of features of fitted model.

Type
int

property n_features_in_

The number of features of fitted model.

Type
int

property n_iter_

True number of boosting iterations performed.

This might be less than parameter n_estimators if early stopping was enabled or if boosting stopped
early due to limits on complexity like min_gain_to_split.

New in version 4.0.0.

Type
int

property objective_

The concrete objective used while fitting this model.

Type
str or callable

predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False,
validate_features=False, **kwargs)

Return the predicted value for each sample.

Parameters

• X (Dask Array or Dask DataFrame of shape = [n_samples,
n_features]) – Input features matrix.

• raw_score (bool, optional (default=False)) – Whether to predict raw
scores.

• start_iteration (int, optional (default=0)) – Start index of the iteration
to predict. If <= 0, starts from the first iteration.

• num_iteration (int or None, optional (default=None)) – Total number of
iterations used in the prediction. If None, if the best iteration exists and start_iteration
<= 0, the best iteration is used; otherwise, all iterations from start_iteration are
used (no limits). If <= 0, all iterations from start_iteration are used (no limits).

• pred_leaf (bool, optional (default=False)) – Whether to predict leaf index.

• pred_contrib (bool, optional (default=False)) – Whether to predict fea-
ture contributions.

Note: If you want to get more explanations for your model’s predictions using SHAP
values, like SHAP interaction values, you can install the shap package (https://github.

9.4. Dask API 213

https://github.com/slundberg/shap
https://github.com/slundberg/shap

LightGBM, Release 4.3.0.99

com/slundberg/shap). Note that unlike the shap package, with pred_contrib we
return a matrix with an extra column, where the last column is the expected value.

• validate_features (bool, optional (default=False)) – If True, ensure that
the features used to predict match the ones used to train. Used only if data is pandas
DataFrame.

• **kwargs – Other parameters for the prediction.

Returns

• predicted_result (Dask Array of shape = [n_samples]) – The predicted values.

• X_leaves (Dask Array of shape = [n_samples, n_trees]) – If pred_leaf=True, the
predicted leaf of every tree for each sample.

• X_SHAP_values (Dask Array of shape = [n_samples, n_features + 1]) – If
pred_contrib=True, the feature contributions for each sample.

set_fit_request(*, eval_at='$UNCHANGED$', eval_group='$UNCHANGED$',
eval_init_score='$UNCHANGED$', eval_metric='$UNCHANGED$',
eval_names='$UNCHANGED$', eval_sample_weight='$UNCHANGED$',
eval_set='$UNCHANGED$', group='$UNCHANGED$', init_score='$UNCHANGED$',
sample_weight='$UNCHANGED$')

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• eval_at (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_at parameter
in fit.

• eval_group (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_group parameter in
fit.

214 Chapter 9. Python API

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

• eval_init_score (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_init_score parameter in fit.

• eval_metric (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_metric parameter
in fit.

• eval_names (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_names parameter in
fit.

• eval_sample_weight (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_sample_weight parameter in fit.

• eval_set (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for eval_set parameter
in fit.

• group (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for group parameter in
fit.

• init_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for init_score parameter in
fit.

• sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight
parameter in fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

Parameters
**params – Parameter names with their new values.

Returns
self – Returns self.

Return type
object

set_predict_request(*, num_iteration='$UNCHANGED$', pred_contrib='$UNCHANGED$',
pred_leaf='$UNCHANGED$', raw_score='$UNCHANGED$',
start_iteration='$UNCHANGED$', validate_features='$UNCHANGED$')

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

9.4. Dask API 215

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

LightGBM, Release 4.3.0.99

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

• num_iteration (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for num_iteration
parameter in predict.

• pred_contrib (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_contrib parameter
in predict.

• pred_leaf (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for pred_leaf parameter in
predict.

• raw_score (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for raw_score parameter in
predict.

• start_iteration (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
start_iteration parameter in predict.

• validate_features (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
validate_features parameter in predict.

Returns
self – The updated object.

Return type
object

to_local()

Create regular version of lightgbm.LGBMRanker from the distributed version.

Returns
model – Local underlying model.

Return type
lightgbm.LGBMRanker

216 Chapter 9. Python API

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

LightGBM, Release 4.3.0.99

9.5 Callbacks

early_stopping(stopping_rounds[, ...]) Create a callback that activates early stopping.
log_evaluation([period, show_stdv]) Create a callback that logs the evaluation results.
record_evaluation(eval_result) Create a callback that records the evaluation history into

eval_result.
reset_parameter(**kwargs) Create a callback that resets the parameter after the first

iteration.

9.5.1 lightgbm.early_stopping

lightgbm.early_stopping(stopping_rounds, first_metric_only=False, verbose=True, min_delta=0.0)
Create a callback that activates early stopping.

Activates early stopping. The model will train until the validation score doesn’t improve by at least min_delta.
Validation score needs to improve at least every stopping_rounds round(s) to continue training. Requires at
least one validation data and one metric. If there’s more than one, will check all of them. But the training data
is ignored anyway. To check only the first metric set first_metric_only to True. The index of iteration that
has the best performance will be saved in the best_iteration attribute of a model.

Parameters

• stopping_rounds (int) – The possible number of rounds without the trend occurrence.

• first_metric_only (bool, optional (default=False)) – Whether to use only
the first metric for early stopping.

• verbose (bool, optional (default=True)) – Whether to log message with
early stopping information. By default, standard output resource is used. Use
register_logger() function to register a custom logger.

• min_delta (float or list of float, optional (default=0.0)) – Minimum
improvement in score to keep training. If float, this single value is used for all metrics. If
list, its length should match the total number of metrics.

New in version 4.0.0.

Returns
callback – The callback that activates early stopping.

Return type
_EarlyStoppingCallback

9.5.2 lightgbm.log_evaluation

lightgbm.log_evaluation(period=1, show_stdv=True)
Create a callback that logs the evaluation results.

By default, standard output resource is used. Use register_logger() function to register a custom logger.

Note: Requires at least one validation data.

Parameters

9.5. Callbacks 217

LightGBM, Release 4.3.0.99

• period (int, optional (default=1)) – The period to log the evaluation results. The
last boosting stage or the boosting stage found by using early_stopping callback is also
logged.

• show_stdv (bool, optional (default=True)) – Whether to log stdv (if provided).

Returns
callback – The callback that logs the evaluation results every period boosting iteration(s).

Return type
_LogEvaluationCallback

9.5.3 lightgbm.record_evaluation

lightgbm.record_evaluation(eval_result)
Create a callback that records the evaluation history into eval_result.

Parameters
eval_result (dict) – Dictionary used to store all evaluation results of all validation sets.
This should be initialized outside of your call to record_evaluation() and should be empty.
Any initial contents of the dictionary will be deleted.

Example

With two validation sets named ‘eval’ and ‘train’, and one evaluation metric named ‘logloss’
this dictionary after finishing a model training process will have the following structure:

{
'train':

{
'logloss': [0.48253, 0.35953, ...]
},

'eval':
{
'logloss': [0.480385, 0.357756, ...]
}

}

Returns
callback – The callback that records the evaluation history into the passed dictionary.

Return type
_RecordEvaluationCallback

9.5.4 lightgbm.reset_parameter

lightgbm.reset_parameter(**kwargs)
Create a callback that resets the parameter after the first iteration.

Note: The initial parameter will still take in-effect on first iteration.

218 Chapter 9. Python API

LightGBM, Release 4.3.0.99

Parameters
**kwargs (value should be list or callable) – List of parameters for each boosting
round or a callable that calculates the parameter in terms of current number of round (e.g.
yields learning rate decay). If list lst, parameter = lst[current_round]. If callable func, param-
eter = func(current_round).

Returns
callback – The callback that resets the parameter after the first iteration.

Return type
_ResetParameterCallback

9.6 Plotting

plot_importance(booster[, ax, height, xlim, ...]) Plot model's feature importances.
plot_split_value_histogram(booster, feature) Plot split value histogram for the specified feature of the

model.
plot_metric(booster[, metric, ...]) Plot one metric during training.
plot_tree(booster[, ax, tree_index, ...]) Plot specified tree.
create_tree_digraph (booster[, tree_index, ...]) Create a digraph representation of specified tree.

9.6.1 lightgbm.plot_importance

lightgbm.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance',
xlabel='Feature importance', ylabel='Features', importance_type='auto',
max_num_features=None, ignore_zero=True, figsize=None, dpi=None, grid=True,
precision=3, **kwargs)

Plot model’s feature importances.

Parameters

• booster (Booster or LGBMModel) – Booster or LGBMModel instance which feature
importance should be plotted.

• ax (matplotlib.axes.Axes or None, optional (default=None)) – Target axes
instance. If None, new figure and axes will be created.

• height (float, optional (default=0.2)) – Bar height, passed to ax.barh().

• xlim (tuple of 2 elements or None, optional (default=None)) – Tuple
passed to ax.xlim().

• ylim (tuple of 2 elements or None, optional (default=None)) – Tuple
passed to ax.ylim().

• title (str or None, optional (default="Feature importance")) – Axes ti-
tle. If None, title is disabled.

• xlabel (str or None, optional (default="Feature importance")) – X-axis
title label. If None, title is disabled. @importance_type@ placeholder can be used, and
it will be replaced with the value of importance_type parameter.

• ylabel (str or None, optional (default="Features")) – Y-axis title label. If
None, title is disabled.

9.6. Plotting 219

LightGBM, Release 4.3.0.99

• importance_type (str, optional (default="auto")) – How the importance
is calculated. If “auto”, if booster parameter is LGBMModel, booster.
importance_type attribute is used; “split” otherwise. If “split”, result contains numbers
of times the feature is used in a model. If “gain”, result contains total gains of splits which
use the feature.

• max_num_features (int or None, optional (default=None)) – Max number of
top features displayed on plot. If None or <1, all features will be displayed.

• ignore_zero (bool, optional (default=True)) – Whether to ignore features with
zero importance.

• figsize (tuple of 2 elements or None, optional (default=None)) – Fig-
ure size.

• dpi (int or None, optional (default=None)) – Resolution of the figure.

• grid (bool, optional (default=True)) – Whether to add a grid for axes.

• precision (int or None, optional (default=3)) – Used to restrict the display
of floating point values to a certain precision.

• **kwargs – Other parameters passed to ax.barh().

Returns
ax – The plot with model’s feature importances.

Return type
matplotlib.axes.Axes

9.6.2 lightgbm.plot_split_value_histogram

lightgbm.plot_split_value_histogram(booster, feature, bins=None, ax=None, width_coef=0.8, xlim=None,
ylim=None, title='Split value histogram for feature with
@index/name@ @feature@', xlabel='Feature split value',
ylabel='Count', figsize=None, dpi=None, grid=True, **kwargs)

Plot split value histogram for the specified feature of the model.

Parameters

• booster (Booster or LGBMModel) – Booster or LGBMModel instance of which fea-
ture split value histogram should be plotted.

• feature (int or str) – The feature name or index the histogram is plotted for. If int,
interpreted as index. If str, interpreted as name.

• bins (int, str or None, optional (default=None)) – The maximum number
of bins. If None, the number of bins equals number of unique split values. If str, it should
be one from the list of the supported values by numpy.histogram() function.

• ax (matplotlib.axes.Axes or None, optional (default=None)) – Target axes
instance. If None, new figure and axes will be created.

• width_coef (float, optional (default=0.8)) – Coefficient for histogram bar
width.

• xlim (tuple of 2 elements or None, optional (default=None)) – Tuple
passed to ax.xlim().

• ylim (tuple of 2 elements or None, optional (default=None)) – Tuple
passed to ax.ylim().

220 Chapter 9. Python API

LightGBM, Release 4.3.0.99

• title (str or None, optional (default="Split value histogram for
feature with @index/name@ @feature@")) – Axes title. If None, title is disabled.
@feature@ placeholder can be used, and it will be replaced with the value of feature
parameter. @index/name@ placeholder can be used, and it will be replaced with index
word in case of int type feature parameter or name word in case of str type feature
parameter.

• xlabel (str or None, optional (default="Feature split value")) – X-
axis title label. If None, title is disabled.

• ylabel (str or None, optional (default="Count")) – Y-axis title label. If
None, title is disabled.

• figsize (tuple of 2 elements or None, optional (default=None)) – Fig-
ure size.

• dpi (int or None, optional (default=None)) – Resolution of the figure.

• grid (bool, optional (default=True)) – Whether to add a grid for axes.

• **kwargs – Other parameters passed to ax.bar().

Returns
ax – The plot with specified model’s feature split value histogram.

Return type
matplotlib.axes.Axes

9.6.3 lightgbm.plot_metric

lightgbm.plot_metric(booster, metric=None, dataset_names=None, ax=None, xlim=None, ylim=None,
title='Metric during training', xlabel='Iterations', ylabel='@metric@', figsize=None,
dpi=None, grid=True)

Plot one metric during training.

Parameters

• booster (dict or LGBMModel) – Dictionary returned from lightgbm.train() or
LGBMModel instance.

• metric (str or None, optional (default=None)) – The metric name to plot.
Only one metric supported because different metrics have various scales. If None, first
metric picked from dictionary (according to hashcode).

• dataset_names (list of str, or None, optional (default=None)) – List of
the dataset names which are used to calculate metric to plot. If None, all datasets are used.

• ax (matplotlib.axes.Axes or None, optional (default=None)) – Target axes
instance. If None, new figure and axes will be created.

• xlim (tuple of 2 elements or None, optional (default=None)) – Tuple
passed to ax.xlim().

• ylim (tuple of 2 elements or None, optional (default=None)) – Tuple
passed to ax.ylim().

• title (str or None, optional (default="Metric during training")) –
Axes title. If None, title is disabled.

• xlabel (str or None, optional (default="Iterations")) – X-axis title label.
If None, title is disabled.

9.6. Plotting 221

LightGBM, Release 4.3.0.99

• ylabel (str or None, optional (default="@metric@")) – Y-axis title label. If
‘auto’, metric name is used. If None, title is disabled. @metric@ placeholder can be used,
and it will be replaced with metric name.

• figsize (tuple of 2 elements or None, optional (default=None)) – Fig-
ure size.

• dpi (int or None, optional (default=None)) – Resolution of the figure.

• grid (bool, optional (default=True)) – Whether to add a grid for axes.

Returns
ax – The plot with metric’s history over the training.

Return type
matplotlib.axes.Axes

9.6.4 lightgbm.plot_tree

lightgbm.plot_tree(booster, ax=None, tree_index=0, figsize=None, dpi=None, show_info=None, precision=3,
orientation='horizontal', example_case=None, **kwargs)

Plot specified tree.

Each node in the graph represents a node in the tree.

Non-leaf nodes have labels like Column_10 <= 875.9, which means “this node splits on the feature named
“Column_10”, with threshold 875.9”.

Leaf nodes have labels like leaf 2: 0.422, which means “this node is a leaf node, and the predicted value
for records that fall into this node is 0.422”. The number (2) is an internal unique identifier and doesn’t have any
special meaning.

Note: It is preferable to use create_tree_digraph() because of its lossless quality and returned objects can
be also rendered and displayed directly inside a Jupyter notebook.

Parameters

• booster (Booster or LGBMModel) – Booster or LGBMModel instance to be plotted.

• ax (matplotlib.axes.Axes or None, optional (default=None)) – Target axes
instance. If None, new figure and axes will be created.

• tree_index (int, optional (default=0)) – The index of a target tree to plot.

• figsize (tuple of 2 elements or None, optional (default=None)) – Fig-
ure size.

• dpi (int or None, optional (default=None)) – Resolution of the figure.

• show_info (list of str, or None, optional (default=None)) – What infor-
mation should be shown in nodes.

– 'split_gain' : gain from adding this split to the model

– 'internal_value' : raw predicted value that would be produced by this node if it
was a leaf node

– 'internal_count' : number of records from the training data that fall into this
non-leaf node

222 Chapter 9. Python API

LightGBM, Release 4.3.0.99

– 'internal_weight' : total weight of all nodes that fall into this non-leaf node

– 'leaf_count' : number of records from the training data that fall into this leaf node

– 'leaf_weight' : total weight (sum of Hessian) of all observations that fall into this
leaf node

– 'data_percentage' : percentage of training data that fall into this node

• precision (int or None, optional (default=3)) – Used to restrict the display
of floating point values to a certain precision.

• orientation (str, optional (default='horizontal')) – Orientation of the tree.
Can be ‘horizontal’ or ‘vertical’.

• example_case (numpy 2-D array, pandas DataFrame or None, optional
(default=None)) – Single row with the same structure as the training data. If not None,
the plot will highlight the path that sample takes through the tree.

New in version 4.0.0.

• **kwargs – Other parameters passed to Digraph constructor. Check https://graphviz.
readthedocs.io/en/stable/api.html#digraph for the full list of supported parameters.

Returns
ax – The plot with single tree.

Return type
matplotlib.axes.Axes

9.6.5 lightgbm.create_tree_digraph

lightgbm.create_tree_digraph(booster, tree_index=0, show_info=None, precision=3,
orientation='horizontal', example_case=None, max_category_values=10,
**kwargs)

Create a digraph representation of specified tree.

Each node in the graph represents a node in the tree.

Non-leaf nodes have labels like Column_10 <= 875.9, which means “this node splits on the feature named
“Column_10”, with threshold 875.9”.

Leaf nodes have labels like leaf 2: 0.422, which means “this node is a leaf node, and the predicted value
for records that fall into this node is 0.422”. The number (2) is an internal unique identifier and doesn’t have any
special meaning.

Note: For more information please visit https://graphviz.readthedocs.io/en/stable/api.html#digraph.

Parameters

• booster (Booster or LGBMModel) – Booster or LGBMModel instance to be con-
verted.

• tree_index (int, optional (default=0)) – The index of a target tree to convert.

• show_info (list of str, or None, optional (default=None)) – What infor-
mation should be shown in nodes.

– 'split_gain' : gain from adding this split to the model

9.6. Plotting 223

https://graphviz.readthedocs.io/en/stable/api.html#digraph
https://graphviz.readthedocs.io/en/stable/api.html#digraph
https://graphviz.readthedocs.io/en/stable/api.html#digraph

LightGBM, Release 4.3.0.99

– 'internal_value' : raw predicted value that would be produced by this node if it
was a leaf node

– 'internal_count' : number of records from the training data that fall into this
non-leaf node

– 'internal_weight' : total weight of all nodes that fall into this non-leaf node

– 'leaf_count' : number of records from the training data that fall into this leaf node

– 'leaf_weight' : total weight (sum of Hessian) of all observations that fall into this
leaf node

– 'data_percentage' : percentage of training data that fall into this node

• precision (int or None, optional (default=3)) – Used to restrict the display
of floating point values to a certain precision.

• orientation (str, optional (default='horizontal')) – Orientation of the tree.
Can be ‘horizontal’ or ‘vertical’.

• example_case (numpy 2-D array, pandas DataFrame or None, optional
(default=None)) – Single row with the same structure as the training data. If not None,
the plot will highlight the path that sample takes through the tree.

New in version 4.0.0.

• max_category_values (int, optional (default=10)) – The maximum number
of category values to display in tree nodes, if the number of thresholds is greater than this
value, thresholds will be collapsed and displayed on the label tooltip instead.

Warning: Consider wrapping the SVG string of the tree graph with IPython.
display.HTML when running on JupyterLab to get the tooltip working right.

Example:

from IPython.display import HTML

graph = lgb.create_tree_digraph(clf, max_category_values=5)
HTML(graph._repr_image_svg_xml())

New in version 4.0.0.

• **kwargs – Other parameters passed to Digraph constructor. Check https://graphviz.
readthedocs.io/en/stable/api.html#digraph for the full list of supported parameters.

Returns
graph – The digraph representation of specified tree.

Return type
graphviz.Digraph

224 Chapter 9. Python API

https://graphviz.org/docs/attrs/tooltip
https://graphviz.readthedocs.io/en/stable/api.html#digraph
https://graphviz.readthedocs.io/en/stable/api.html#digraph

LightGBM, Release 4.3.0.99

9.7 Utilities

register_logger(logger[, info_method_name, ...]) Register custom logger.

9.7.1 lightgbm.register_logger

lightgbm.register_logger(logger, info_method_name='info', warning_method_name='warning')
Register custom logger.

Parameters

• logger (Any) – Custom logger.

• info_method_name (str, optional (default="info")) – Method used to log info
messages.

• warning_method_name (str, optional (default="warning")) – Method used to
log warning messages.

9.7. Utilities 225

LightGBM, Release 4.3.0.99

226 Chapter 9. Python API

CHAPTER

TEN

DISTRIBUTED LEARNING GUIDE

This guide describes distributed learning in LightGBM. Distributed learning allows the use of multiple machines to
produce a single model.

Follow the Quick Start to know how to use LightGBM first.

10.1 How Distributed LightGBM Works

This section describes how distributed learning in LightGBM works. To learn how to do this in various programming
languages and frameworks, please see Integrations.

10.1.1 Choose Appropriate Parallel Algorithm

LightGBM provides 3 distributed learning algorithms now.

Parallel Algorithm How to Use
Data parallel tree_learner=data
Feature parallel tree_learner=feature
Voting parallel tree_learner=voting

These algorithms are suited for different scenarios, which is listed in the following table:

#data is small #data is large
#feature is small Feature Parallel Data Parallel
#feature is large Feature Parallel Voting Parallel

More details about these parallel algorithms can be found in optimization in distributed learning.

227

./Quick-Start.html
./Features.html#optimization-in-distributed-learning

LightGBM, Release 4.3.0.99

10.2 Integrations

This section describes how to run distributed LightGBM training in various programming languages and frameworks.
To learn how distributed learning in LightGBM works generally, please see How Distributed LightGBM Works.

10.2.1 Apache Spark

Apache Spark users can use SynapseML for machine learning workflows with LightGBM. This project is not main-
tained by LightGBM’s maintainers.

See this SynapseML example for additional information on using LightGBM on Spark.

Note: SynapseML is not maintained by LightGBM’s maintainers. Bug reports or feature requests should be directed
to https://github.com/microsoft/SynapseML/issues.

10.2.2 Dask

New in version 3.2.0.

LightGBM’s Python package supports distributed learning via Dask. This integration is maintained by LightGBM’s
maintainers.

Warning: Dask integration is only tested on Linux.

Dask Examples

For sample code using lightgbm.dask, see these Dask examples.

Training with Dask

This section contains detailed information on performing LightGBM distributed training using Dask.

Configuring the Dask Cluster

Allocating Threads

When setting up a Dask cluster for training, give each Dask worker process at least two threads. If you do not do this,
training might be substantially slower because communication work and training work will block each other.

If you do not have other significant processes competing with Dask for resources, just accept the default nthreads
from your chosen dask.distributed cluster.

from distributed import Client, LocalCluster

cluster = LocalCluster(n_workers=3)
client = Client(cluster)

228 Chapter 10. Distributed Learning Guide

https://aka.ms/spark
https://github.com/microsoft/SynapseML/tree/master/docs/Explore%20Algorithms/LightGBM
https://github.com/microsoft/SynapseML/issues
https://docs.dask.org/en/latest/
https://github.com/microsoft/lightgbm/tree/master/examples/python-guide/dask

LightGBM, Release 4.3.0.99

Managing Memory

Use the Dask diagnostic dashboard or your preferred monitoring tool to monitor Dask workers’ memory consumption
during training. As described in the Dask worker documentation, Dask workers will automatically start spilling data to
disk if memory consumption gets too high. This can substantially slow down computations, since disk I/O is usually
much slower than reading the same data from memory.

At 60% of memory load, [Dask will] spill least recently used data to disk

To reduce the risk of hitting memory limits, consider restarting each worker process before running any data loading
or training code.

client.restart()

Setting Up Training Data

The estimators in lightgbm.dask expect that matrix-like or array-like data are provided in Dask DataFrame, Dask Ar-
ray, or (in some cases) Dask Series format. See the Dask DataFrame documentation and the Dask Array documentation
for more information on how to create such data structures.

While setting up for training, lightgbm will concatenate all of the partitions on a worker into a single dataset. Dis-
tributed training then proceeds with one LightGBM worker process per Dask worker.

When setting up data partitioning for LightGBM training with Dask, try to follow these suggestions:

• ensure that each worker in the cluster has some of the training data

• try to give each worker roughly the same amount of data, especially if your dataset is small

• if you plan to train multiple models (for example, to tune hyperparameters) on the same data, use client.
persist() before training to materialize the data one time

Using a Specific Dask Client

In most situations, you should not need to tell lightgbm.dask to use a specific Dask client. By default, the client
returned by distributed.default_client() will be used.

However, you might want to explicitly control the Dask client used by LightGBM if you have multiple active clients
in the same session. This is useful in more complex workflows like running multiple training jobs on different Dask
clusters.

LightGBM’s Dask estimators support setting an attribute client to control the client that is used.

import lightgbm as lgb
from distributed import Client, LocalCluster

cluster = LocalCluster()
client = Client(cluster)

option 1: keyword argument in constructor
dask_model = lgb.DaskLGBMClassifier(client=client)

option 2: set_params() after construction
(continues on next page)

10.2. Integrations 229

https://distributed.dask.org/en/stable/worker-memory.html
https://docs.dask.org/en/latest/dataframe.html
https://docs.dask.org/en/latest/array.html
./_static/images/dask-initial-setup.svg
./_static/images/dask-concat.svg

LightGBM, Release 4.3.0.99

(continued from previous page)

dask_model = lgb.DaskLGBMClassifier()
dask_model.set_params(client=client)

Using Specific Ports

At the beginning of training, lightgbm.dask sets up a LightGBM network where each Dask worker runs one long-
running task that acts as a LightGBM worker. During training, LightGBM workers communicate with each other over
TCP sockets. By default, random open ports are used when creating these sockets.

If the communication between Dask workers in the cluster used for training is restricted by firewall rules, you must tell
LightGBM exactly what ports to use.

Option 1: provide a specific list of addresses and ports

LightGBM supports a parameter machines, a comma-delimited string where each entry refers to one worker (host
name or IP) and a port that that worker will accept connections on. If you provide this parameter to the estimators in
lightgbm.dask, LightGBM will not search randomly for ports.

For example, consider the case where you are running one Dask worker process on each of the following IP addresses:

10.0.1.0
10.0.2.0
10.0.3.0

You could edit your firewall rules to allow traffic on one additional port on each of these hosts, then provide machines
directly.

import lightgbm as lgb

machines = "10.0.1.0:12401,10.0.2.0:12402,10.0.3.0:15000"
dask_model = lgb.DaskLGBMRegressor(machines=machines)

If you are running multiple Dask worker processes on physical host in the cluster, be sure that there are multiple entries
for that IP address, with different ports. For example, if you were running a cluster with nprocs=2 (2 Dask worker
processes per machine), you might open two additional ports on each of these hosts, then provide machines as follows.

import lightgbm as lgb

machines = ",".join([
"10.0.1.0:16000",
"10.0.1.0:16001",
"10.0.2.0:16000",
"10.0.2.0:16001",

])
dask_model = lgb.DaskLGBMRegressor(machines=machines)

Warning: Providing machines gives you complete control over the networking details of training, but it also
makes the training process fragile. Training will fail if you use machines and any of the following are true:

• any of the ports mentioned in machines are not open when training begins

• some partitions of the training data are held by machines that that are not present in machines

• some machines mentioned in machines do not hold any of the training data

230 Chapter 10. Distributed Learning Guide

LightGBM, Release 4.3.0.99

Option 2: specify one port to use on every worker

If you are only running one Dask worker process on each host, and if you can reliably identify a port that is open on
every host, using machines is unnecessarily complicated. If local_listen_port is given and machines is not,
LightGBM will not search for ports randomly, but it will limit the list of addresses in the LightGBM network to those
Dask workers that have a piece of the training data.

For example, consider the case where you are running one Dask worker process on each of the following IP addresses:

10.0.1.0
10.0.2.0
10.0.3.0

You could edit your firewall rules to allow communication between any of the workers over one port, then provide that
port via parameter local_listen_port.

import lightgbm as lgb

dask_model = lgb.DaskLGBMRegressor(local_listen_port=12400)

Warning: Providing local_listen_port is slightly less fragile than machines because LightGBM will auto-
matically figure out which workers have pieces of the training data. However, using this method, training can fail
if any of the following are true:

• the port local_listen_port is not open on any of the worker hosts

• any machine has multiple Dask worker processes running on it

Using Custom Objective Functions with Dask

New in version 4.0.0.

It is possible to customize the boosting process by providing a custom objective function written in Python. See the
Dask API’s documentation for details on how to implement such functions.

Warning: Custom objective functions used with lightgbm.dask will be called by each worker process on only
that worker’s local data.

Follow the example below to use a custom implementation of the regression_l2 objective.

import dask.array as da
import lightgbm as lgb
import numpy as np
from distributed import Client, LocalCluster

cluster = LocalCluster(n_workers=2)
client = Client(cluster)

X = da.random.random((1000, 10), (500, 10))
y = da.random.random((1000,), (500,))

def custom_l2_obj(y_true, y_pred):
(continues on next page)

10.2. Integrations 231

LightGBM, Release 4.3.0.99

(continued from previous page)

grad = y_pred - y_true
hess = np.ones(len(y_true))
return grad, hess

dask_model = lgb.DaskLGBMRegressor(
objective=custom_l2_obj

)
dask_model.fit(X, y)

Prediction with Dask

The estimators from lightgbm.dask can be used to create predictions based on data stored in Dask collections. In
that interface, .predict() expects a Dask Array or Dask DataFrame, and returns a Dask Array of predictions.

See the Dask prediction example for some sample code that shows how to perform Dask-based prediction.

For model evaluation, consider using the metrics functions from dask-ml. Those functions are intended to provide the
same API as equivalent functions in sklearn.metrics, but they use distributed computation powered by Dask to
compute metrics without all of the input data ever needing to be on a single machine.

Saving Dask Models

After training with Dask, you have several options for saving a fitted model.

Option 1: pickle the Dask estimator

LightGBM’s Dask estimators can be pickled directly with cloudpickle, joblib, or pickle.

import dask.array as da
import pickle
import lightgbm as lgb
from distributed import Client, LocalCluster

cluster = LocalCluster(n_workers=2)
client = Client(cluster)

X = da.random.random((1000, 10), (500, 10))
y = da.random.random((1000,), (500,))

dask_model = lgb.DaskLGBMRegressor()
dask_model.fit(X, y)

with open("dask-model.pkl", "wb") as f:
pickle.dump(dask_model, f)

A model saved this way can then later be loaded with whichever serialization library you used to save it.

import pickle
with open("dask-model.pkl", "rb") as f:

dask_model = pickle.load(f)

232 Chapter 10. Distributed Learning Guide

https://github.com/microsoft/LightGBM/blob/master/examples/python-guide/dask/prediction.py
https://ml.dask.org/modules/api.html#dask-ml-metrics-metrics

LightGBM, Release 4.3.0.99

Note: If you explicitly set a Dask client (see Using a Specific Dask Client), it will not be saved when pickling the
estimator. When loading a Dask estimator from disk, if you need to use a specific client you can add it after loading
with dask_model.set_params(client=client).

Option 2: pickle the sklearn estimator

The estimators available from lightgbm.dask can be converted to an instance of the equivalent class from lightgbm.
sklearn. Choosing this option allows you to use Dask for training but avoid depending on any Dask libraries at scoring
time.

import dask.array as da
import joblib
import lightgbm as lgb
from distributed import Client, LocalCluster

cluster = LocalCluster(n_workers=2)
client = Client(cluster)

X = da.random.random((1000, 10), (500, 10))
y = da.random.random((1000,), (500,))

dask_model = lgb.DaskLGBMRegressor()
dask_model.fit(X, y)

convert to sklearn equivalent
sklearn_model = dask_model.to_local()

print(type(sklearn_model))
#> lightgbm.sklearn.LGBMRegressor

joblib.dump(sklearn_model, "sklearn-model.joblib")

A model saved this way can then later be loaded with whichever serialization library you used to save it.

import joblib

sklearn_model = joblib.load("sklearn-model.joblib")

Option 3: save the LightGBM Booster

The lowest-level model object in LightGBM is the lightgbm.Booster. After training, you can extract a Booster from
the Dask estimator.

import dask.array as da
import lightgbm as lgb
from distributed import Client, LocalCluster

cluster = LocalCluster(n_workers=2)
client = Client(cluster)

X = da.random.random((1000, 10), (500, 10))
y = da.random.random((1000,), (500,))

(continues on next page)

10.2. Integrations 233

LightGBM, Release 4.3.0.99

(continued from previous page)

dask_model = lgb.DaskLGBMRegressor()
dask_model.fit(X, y)

get underlying Booster object
bst = dask_model.booster_

From the point forward, you can use any of the following methods to save the Booster:

• serialize with cloudpickle, joblib, or pickle

• bst.dump_model(): dump the model to a dictionary which could be written out as JSON

• bst.model_to_string(): dump the model to a string in memory

• bst.save_model(): write the output of bst.model_to_string() to a text file

10.2.3 Kubeflow

Kubeflow users can also use the Kubeflow XGBoost Operator for machine learning workflows with LightGBM. You
can see this example for more details.

Kubeflow integrations for LightGBM are not maintained by LightGBM’s maintainers.

Note: The Kubeflow integrations for LightGBM are not maintained by LightGBM’s maintainers. Bug reports
or feature requests should be directed to https://github.com/kubeflow/fairing/issues or https://github.com/kubeflow/
xgboost-operator/issues.

10.2.4 LightGBM CLI

Preparation

By default, distributed learning with LightGBM uses socket-based communication.

If you need to build distributed version with MPI support, please refer to Installation Guide.

Socket Version

It needs to collect IP of all machines that want to run distributed learning in and allocate one TCP port (assume 12345
here) for all machines, and change firewall rules to allow income of this port (12345). Then write these IP and ports in
one file (assume mlist.txt), like following:

machine1_ip 12345
machine2_ip 12345

234 Chapter 10. Distributed Learning Guide

https://github.com/kubeflow/xgboost-operator
https://github.com/kubeflow/xgboost-operator/tree/master/config/samples/lightgbm-dist
https://github.com/kubeflow/fairing/issues
https://github.com/kubeflow/xgboost-operator/issues
https://github.com/kubeflow/xgboost-operator/issues
./Installation-Guide.html#build-mpi-version

LightGBM, Release 4.3.0.99

MPI Version

It needs to collect IP (or hostname) of all machines that want to run distributed learning in. Then write these IP in one
file (assume mlist.txt) like following:

machine1_ip
machine2_ip

Note: For Windows users, need to start “smpd” to start MPI service. More details can be found here.

Run Distributed Learning

Socket Version

1. Edit following parameters in config file:

tree_learner=your_parallel_algorithm, edit your_parallel_algorithm (e.g. feature/data) here.

num_machines=your_num_machines, edit your_num_machines (e.g. 4) here.

machine_list_file=mlist.txt, mlist.txt is created in Preparation section.

local_listen_port=12345, 12345 is allocated in Preparation section.

2. Copy data file, executable file, config file and mlist.txt to all machines.

3. Run following command on all machines, you need to change your_config_file to real config file.

For Windows: lightgbm.exe config=your_config_file

For Linux: ./lightgbm config=your_config_file

MPI Version

1. Edit following parameters in config file:

tree_learner=your_parallel_algorithm, edit your_parallel_algorithm (e.g. feature/data) here.

num_machines=your_num_machines, edit your_num_machines (e.g. 4) here.

2. Copy data file, executable file, config file and mlist.txt to all machines.

Note: MPI needs to be run in the same path on all machines.

3. Run following command on one machine (not need to run on all machines), need to change your_config_file
to real config file.

For Windows:

mpiexec.exe /machinefile mlist.txt lightgbm.exe config=your_config_file

For Linux:

mpiexec --machinefile mlist.txt ./lightgbm config=your_config_file

10.2. Integrations 235

https://www.youtube.com/watch?v=iqzXhp5TxUY

LightGBM, Release 4.3.0.99

Example

• A simple distributed learning example

10.2.5 Ray

Ray is a Python-based framework for distributed computing. The lightgbm_ray project, maintained within the official
Ray GitHub organization, can be used to perform distributed LightGBM training using ray.

See the lightgbm_ray documentation for usage examples.

Note: lightgbm_ray is not maintained by LightGBM’s maintainers. Bug reports or feature requests should be
directed to https://github.com/ray-project/lightgbm_ray/issues.

10.2.6 Mars

Mars is a tensor-based framework for large-scale data computation. LightGBM integration, maintained within the Mars
GitHub repository, can be used to perform distributed LightGBM training using pymars.

See the mars documentation for usage examples.

Note: Mars is not maintained by LightGBM’s maintainers. Bug reports or feature requests should be directed to
https://github.com/mars-project/mars/issues.

236 Chapter 10. Distributed Learning Guide

https://github.com/microsoft/lightgbm/tree/master/examples/parallel_learning
https://www.ray.io/
https://github.com/ray-project/lightgbm_ray
https://docs.ray.io/en/latest/tune/api_docs/integration.html#lightgbm-tune-integration-lightgbm
https://github.com/ray-project/lightgbm_ray/issues
https://mars-project.readthedocs.io/en/latest/
https://mars-project.readthedocs.io/en/latest/user_guide/learn/lightgbm.html
https://github.com/mars-project/mars/issues

CHAPTER

ELEVEN

LIGHTGBM GPU TUTORIAL

The purpose of this document is to give you a quick step-by-step tutorial on GPU training.

For Windows, please see GPU Windows Tutorial.

We will use the GPU instance on Microsoft Azure cloud computing platform for demonstration, but you can use any
machine with modern AMD or NVIDIA GPUs.

11.1 GPU Setup

You need to launch a NV type instance on Azure (available in East US, North Central US, South Central US, West
Europe and Southeast Asia zones) and select Ubuntu 16.04 LTS as the operating system.

For testing, the smallest NV6 type virtual machine is sufficient, which includes 1/2 M60 GPU, with 8 GB memory, 180
GB/s memory bandwidth and 4,825 GFLOPS peak computation power. Don’t use the NC type instance as the GPUs
(K80) are based on an older architecture (Kepler).

First we need to install minimal NVIDIA drivers and OpenCL development environment:

sudo apt-get update
sudo apt-get install --no-install-recommends nvidia-375
sudo apt-get install --no-install-recommends nvidia-opencl-icd-375 nvidia-opencl-dev␣
→˓opencl-headers

After installing the drivers you need to restart the server.

sudo init 6

After about 30 seconds, the server should be up again.

If you are using an AMD GPU, you should download and install the AMDGPU-Pro driver and also install packages
ocl-icd-libopencl1 and ocl-icd-opencl-dev.

237

./GPU-Windows.html
https://azure.microsoft.com/
https://www.amd.com/en/support

LightGBM, Release 4.3.0.99

11.2 Build LightGBM

Now install necessary building tools and dependencies:

sudo apt-get install --no-install-recommends git cmake build-essential libboost-dev␣
→˓libboost-system-dev libboost-filesystem-dev

The NV6 GPU instance has a 320 GB ultra-fast SSD mounted at /mnt. Let’s use it as our workspace (skip this if you
are using your own machine):

sudo mkdir -p /mnt/workspace
sudo chown $(whoami):$(whoami) /mnt/workspace
cd /mnt/workspace

Now we are ready to checkout LightGBM and compile it with GPU support:

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
cmake -B build -S . -DUSE_GPU=1
if you have installed NVIDIA CUDA to a customized location, you should specify paths␣
→˓to OpenCL headers and library like the following:
cmake -B build -S . -DUSE_GPU=1 -DOpenCL_LIBRARY=/usr/local/cuda/lib64/libOpenCL.so -
→˓DOpenCL_INCLUDE_DIR=/usr/local/cuda/include/
cmake --build build -j$(nproc)

You will see two binaries are generated, lightgbm and lib_lightgbm.so.

If you are building on macOS, you probably need to remove macro BOOST_COMPUTE_USE_OFFLINE_CACHE in src/
treelearner/gpu_tree_learner.h to avoid a known crash bug in Boost.Compute.

11.3 Install Python Interface (optional)

If you want to use the Python interface of LightGBM, you can install it now (along with some necessary Python-package
dependencies):

sudo apt-get -y install python-pip
sudo -H pip install setuptools numpy scipy scikit-learn -U
sudo sh ./build-python.sh install --precompile

You need to set an additional parameter "device" : "gpu" (along with your other options like learning_rate,
num_leaves, etc) to use GPU in Python.

You can read our Python-package Examples for more information on how to use the Python interface.

238 Chapter 11. LightGBM GPU Tutorial

https://github.com/microsoft/LightGBM/tree/master/examples/python-guide

LightGBM, Release 4.3.0.99

11.4 Dataset Preparation

Using the following commands to prepare the Higgs dataset:

git clone https://github.com/guolinke/boosting_tree_benchmarks.git
cd boosting_tree_benchmarks/data
wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz"
gunzip HIGGS.csv.gz
python higgs2libsvm.py
cd ../..
ln -s boosting_tree_benchmarks/data/higgs.train
ln -s boosting_tree_benchmarks/data/higgs.test

Now we create a configuration file for LightGBM by running the following commands (please copy the entire block
and run it as a whole):

cat > lightgbm_gpu.conf <<EOF
max_bin = 63
num_leaves = 255
num_iterations = 50
learning_rate = 0.1
tree_learner = serial
task = train
is_training_metric = false
min_data_in_leaf = 1
min_sum_hessian_in_leaf = 100
ndcg_eval_at = 1,3,5,10
device = gpu
gpu_platform_id = 0
gpu_device_id = 0
EOF
echo "num_threads=$(nproc)" >> lightgbm_gpu.conf

GPU is enabled in the configuration file we just created by setting device=gpu. In this configuration we use
the first GPU installed on the system (gpu_platform_id=0 and gpu_device_id=0). If gpu_platform_id or
gpu_device_id is not set, the default platform and GPU will be selected. You might have multiple platforms
(AMD/Intel/NVIDIA) or GPUs. You can use the clinfo utility to identify the GPUs on each platform. On Ubuntu, you
can install clinfo by executing sudo apt-get install clinfo. If you have a discrete GPU by AMD/NVIDIA
and an integrated GPU by Intel, make sure to select the correct gpu_platform_id to use the discrete GPU.

11.5 Run Your First Learning Task on GPU

Now we are ready to start GPU training!

First we want to verify the GPU works correctly. Run the following command to train on GPU, and take a note of the
AUC after 50 iterations:

./lightgbm config=lightgbm_gpu.conf data=higgs.train valid=higgs.test objective=binary␣
→˓metric=auc

Now train the same dataset on CPU using the following command. You should observe a similar AUC:

11.4. Dataset Preparation 239

https://github.com/Oblomov/clinfo

LightGBM, Release 4.3.0.99

./lightgbm config=lightgbm_gpu.conf data=higgs.train valid=higgs.test objective=binary␣
→˓metric=auc device=cpu

Now we can make a speed test on GPU without calculating AUC after each iteration.

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=binary metric=auc

Speed test on CPU:

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=binary metric=auc␣
→˓device=cpu

You should observe over three times speedup on this GPU.

The GPU acceleration can be used on other tasks/metrics (regression, multi-class classification, ranking, etc) as well.
For example, we can train the Higgs dataset on GPU as a regression task:

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=regression_l2 metric=l2

Also, you can compare the training speed with CPU:

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=regression_l2 metric=l2␣
→˓device=cpu

11.6 Further Reading

• GPU Tuning Guide and Performance Comparison

• GPU SDK Correspondence and Device Targeting Table

• GPU Windows Tutorial

11.7 Reference

Please kindly cite the following article in your publications if you find the GPU acceleration useful:

Huan Zhang, Si Si and Cho-Jui Hsieh. “GPU Acceleration for Large-scale Tree Boosting.” SysML Conference, 2018.

240 Chapter 11. LightGBM GPU Tutorial

./GPU-Performance.html
./GPU-Targets.html
./GPU-Windows.html
https://arxiv.org/abs/1706.08359

CHAPTER

TWELVE

ADVANCED TOPICS

12.1 Missing Value Handle

• LightGBM enables the missing value handle by default. Disable it by setting use_missing=false.

• LightGBM uses NA (NaN) to represent missing values by default. Change it to use zero by setting
zero_as_missing=true.

• When zero_as_missing=false (default), the unrecorded values in sparse matrices (and LightSVM) are treated
as zeros.

• When zero_as_missing=true, NA and zeros (including unrecorded values in sparse matrices (and
LightSVM)) are treated as missing.

12.2 Categorical Feature Support

• LightGBM offers good accuracy with integer-encoded categorical features. LightGBM applies Fisher (1958) to
find the optimal split over categories as described here. This often performs better than one-hot encoding.

• Use categorical_feature to specify the categorical features. Refer to the parameter categorical_feature
in Parameters.

• Categorical features will be cast to int32 (integer codes will be extracted from pandas categoricals in the Python-
package) so they must be encoded as non-negative integers (negative values will be treated as missing) less than
Int32.MaxValue (2147483647). It is best to use a contiguous range of integers started from zero. Floating
point numbers in categorical features will be rounded towards 0.

• Use min_data_per_group, cat_smooth to deal with over-fitting (when #data is small or #category is large).

• For a categorical feature with high cardinality (#category is large), it often works best to treat the feature as
numeric, either by simply ignoring the categorical interpretation of the integers or by embedding the categories
in a low-dimensional numeric space.

241

https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
./Features.html#optimal-split-for-categorical-features
./Parameters.html#categorical_feature

LightGBM, Release 4.3.0.99

12.3 LambdaRank

• The label should be of type int, such that larger numbers correspond to higher relevance (e.g. 0:bad, 1:fair,
2:good, 3:perfect).

• Use label_gain to set the gain(weight) of int label.

• Use lambdarank_truncation_level to truncate the max DCG.

12.4 Cost Efficient Gradient Boosting

Cost Efficient Gradient Boosting (CEGB) makes it possible to penalise boosting based on the cost of obtaining feature
values. CEGB penalises learning in the following ways:

• Each time a tree is split, a penalty of cegb_penalty_split is applied.

• When a feature is used for the first time, cegb_penalty_feature_coupled is applied. This penalty can be
different for each feature and should be specified as one double per feature.

• When a feature is used for the first time for a data row, cegb_penalty_feature_lazy is applied. Like
cegb_penalty_feature_coupled, this penalty is specified as one double per feature.

Each of the penalties above is scaled by cegb_tradeoff. Using this parameter, it is possible to change the overall
strength of the CEGB penalties by changing only one parameter.

12.5 Parameters Tuning

• Refer to Parameters Tuning.

12.6 Distributed Learning

• Refer to Distributed Learning Guide.

12.7 GPU Support

• Refer to GPU Tutorial and GPU Targets.

12.8 Recommendations for gcc Users (MinGW, *nix)

• Refer to gcc Tips.

242 Chapter 12. Advanced Topics

https://papers.nips.cc/paper/6753-cost-efficient-gradient-boosting.pdf
./Parameters-Tuning.html
./Parallel-Learning-Guide.html
./GPU-Tutorial.html
./GPU-Targets.html
./gcc-Tips.html

LightGBM, Release 4.3.0.99

12.9 Support for Position Bias Treatment

Often the relevance labels provided in Learning-to-Rank tasks might be derived from implicit user feedback (e.g.,
clicks) and therefore might be biased due to their position/location on the screen when having been presented to a user.
LightGBM can make use of positional data.

For example, consider the case where you expect that the first 3 results from a search engine will be visible in users’
browsers without scrolling, and all other results for a query would require scrolling.

LightGBM could be told to account for the position bias from results being “above the fold” by providing a positions
array encoded as follows:

0
0
0
1
1
0
0
0
1
...

Where 0 = "above the fold" and 1 = "requires scrolling". The specific values are not important, as long
as they are consistent across all observations in the training data. An encoding like 100 = "above the fold" and
17 = "requires scrolling" would result in exactly the same trained model.

In that way, positions in LightGBM’s API are similar to a categorical feature. Just as with non-ordinal categorical
features, an integer representation is just used for memory and computational efficiency. . . LightGBM does not care
about the absolute or relative magnitude of the values.

Unlike a categorical feature, however, positions are used to adjust the target to reduce the bias in predictions made
by the trained model.

The position file corresponds with training data file line by line, and has one position per line. And if the name of
training data file is train.txt, the position file should be named as train.txt.position and placed in the same
folder as the data file. In this case, LightGBM will load the position file automatically if it exists. The positions can also
be specified through the Dataset constructor when using Python API. If the positions are specified in both approaches,
the .position file will be ignored.

Currently, implemented is an approach to model position bias by using an idea of Generalized Additive Models (GAM)
to linearly decompose the document score s into the sum of a relevance component f and a positional component g:
s(x, pos) = f(x) + g(pos) where the former component depends on the original query-document features and
the latter depends on the position of an item. During the training, the compound scoring function s(x, pos) is fit
with a standard ranking algorithm (e.g., LambdaMART) which boils down to jointly learning the relevance component
f(x) (it is later returned as an unbiased model) and the position factors g(pos) that help better explain the observed
(biased) labels. Similar score decomposition ideas have previously been applied for classification & pointwise ranking
tasks with assumptions of binary labels and binary relevance (a.k.a. “two-tower” models, refer to the papers: Towards
Disentangling Relevance and Bias in Unbiased Learning to Rank, PAL: a position-bias aware learning framework for
CTR prediction in live recommender systems, A General Framework for Debiasing in CTR Prediction). In LightGBM,
we adapt this idea to general pairwise Lerarning-to-Rank with arbitrary ordinal relevance labels. Besides, GAMs
have been used in the context of explainable ML (Accurate Intelligible Models with Pairwise Interactions) to linearly
decompose the contribution of each feature (and possibly their pairwise interactions) to the overall score, for subsequent
analysis and interpretation of their effects in the trained models.

12.9. Support for Position Bias Treatment 243

https://en.wikipedia.org/wiki/Generalized_additive_model
https://arxiv.org/abs/2212.13937
https://arxiv.org/abs/2212.13937
https://dl.acm.org/doi/10.1145/3298689.3347033
https://dl.acm.org/doi/10.1145/3298689.3347033
https://arxiv.org/abs/2112.02767
https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf

LightGBM, Release 4.3.0.99

244 Chapter 12. Advanced Topics

CHAPTER

THIRTEEN

LIGHTGBM FAQ

LightGBM Frequently Asked Questions

• General LightGBM Questions

• R-package

• Python-package

Please post questions, feature requests, and bug reports at https://github.com/microsoft/LightGBM/issues.

This project is mostly maintained by volunteers, so please be patient. If your request is time-sensitive or more than a
month goes by without a response, please tag the maintainers below for help.

• @guolinke Guolin Ke

• @shiyu1994 Yu Shi

• @jameslamb James Lamb

• @jmoralez José Morales

13.1 General LightGBM Questions

• 1. Where do I find more details about LightGBM parameters?

• 2. On datasets with millions of features, training does not start (or starts after a very long time).

• 3. When running LightGBM on a large dataset, my computer runs out of RAM.

• 4. I am using Windows. Should I use Visual Studio or MinGW for compiling LightGBM?

• 5. When using LightGBM GPU, I cannot reproduce results over several runs.

• 6. Bagging is not reproducible when changing the number of threads.

• 7. I tried to use Random Forest mode, and LightGBM crashes!

• 8. CPU usage is low (like 10%) in Windows when using LightGBM on very large datasets with many-core
systems.

245

https://github.com/microsoft/LightGBM/issues
https://github.com/guolinke
https://github.com/shiyu1994
https://github.com/jameslamb
https://github.com/jmoralez

LightGBM, Release 4.3.0.99

• 9. When I’m trying to specify a categorical column with the categorical_feature parameter, I get the
following sequence of warnings, but there are no negative values in the column.

• 10. LightGBM crashes randomly with the error like: Initializing libiomp5.dylib, but found
libomp.dylib already initialized.

• 11. LightGBM hangs when multithreading (OpenMP) and using forking in Linux at the same time.

• 12. Why is early stopping not enabled by default in LightGBM?

• 13. Does LightGBM support direct loading data from zero-based or one-based LibSVM format file?

• 14. Why CMake cannot find the compiler when compiling LightGBM with MinGW?

• 15. Where can I find LightGBM’s logo to use it in my presentation?

• 16. LightGBM crashes randomly or operating system hangs during or after running LightGBM.

13.1.1 1. Where do I find more details about LightGBM parameters?

Take a look at Parameters.

13.1.2 2. On datasets with millions of features, training does not start (or starts
after a very long time).

Use a smaller value for bin_construct_sample_cnt and a larger value for min_data.

13.1.3 3. When running LightGBM on a large dataset, my computer runs out of
RAM.

Multiple Solutions: set the histogram_pool_size parameter to the MB you want to use for LightGBM (his-
togram_pool_size + dataset size = approximately RAM used), lower num_leaves or lower max_bin (see Mi-
crosoft/LightGBM#562).

13.1.4 4. I am using Windows. Should I use Visual Studio or MinGW for compiling
LightGBM?

Visual Studio performs best for LightGBM.

13.1.5 5. When using LightGBM GPU, I cannot reproduce results over several runs.

This is normal and expected behaviour, but you may try to use gpu_use_dp = true for reproducibility (see Mi-
crosoft/LightGBM#560). You may also use the CPU version.

246 Chapter 13. LightGBM FAQ

./Parameters.html
https://github.com/microsoft/LightGBM/issues/562
https://github.com/microsoft/LightGBM/issues/562
https://github.com/microsoft/LightGBM/issues/542
https://github.com/microsoft/LightGBM/pull/560#issuecomment-304561654
https://github.com/microsoft/LightGBM/pull/560#issuecomment-304561654

LightGBM, Release 4.3.0.99

13.1.6 6. Bagging is not reproducible when changing the number of threads.

LightGBM bagging is multithreaded, so its output depends on the number of threads used. There is no workaround
currently.

Starting from #2804 bagging result doesn’t depend on the number of threads. So this issue should be solved in the
latest version.

13.1.7 7. I tried to use Random Forest mode, and LightGBM crashes!

This is expected behaviour for arbitrary parameters. To enable Random Forest, you must use bagging_fraction and
feature_fraction different from 1, along with a bagging_freq. This thread includes an example.

13.1.8 8. CPU usage is low (like 10%) in Windows when using LightGBM on very
large datasets with many-core systems.

Please use Visual Studio as it may be 10x faster than MinGW especially for very large trees.

13.1.9 9. When I’m trying to specify a categorical column with the
categorical_feature parameter, I get the following sequence of warnings,
but there are no negative values in the column.

[LightGBM] [Warning] Met negative value in categorical features, will convert it to NaN
[LightGBM] [Warning] There are no meaningful features, as all feature values are␣
→˓constant.

The column you’re trying to pass via categorical_feature likely contains very large values. Categorical features in
LightGBM are limited by int32 range, so you cannot pass values that are greater than Int32.MaxValue (2147483647)
as categorical features (see Microsoft/LightGBM#1359). You should convert them to integers ranging from zero to the
number of categories first.

13.1.10 10. LightGBM crashes randomly with the error like: Initializing
libiomp5.dylib, but found libomp.dylib already initialized.

OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already initialized.
OMP: Hint: This means that multiple copies of the OpenMP runtime have been linked into␣
→˓the program. That is dangerous, since it can degrade performance or cause incorrect␣
→˓results. The best thing to do is to ensure that only a single OpenMP runtime is linked␣
→˓into the process, e.g. by avoiding static linking of the OpenMP runtime in any library.
→˓ As an unsafe, unsupported, undocumented workaround you can set the environment␣
→˓variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but␣
→˓that may cause crashes or silently produce incorrect results. For more information,␣
→˓please see http://www.intel.com/software/products/support/.

Possible Cause: This error means that you have multiple OpenMP libraries installed on your machine and they conflict
with each other. (File extensions in the error message may differ depending on the operating system).

If you are using Python distributed by Conda, then it is highly likely that the error is caused by the numpy package
from Conda which includes the mkl package which in turn conflicts with the system-wide library. In this case you can

13.1. General LightGBM Questions 247

https://github.com/microsoft/LightGBM/issues/632
https://github.com/microsoft/LightGBM/issues/632
https://github.com/microsoft/LightGBM/pull/2804
https://github.com/microsoft/LightGBM/issues/691
https://visualstudio.microsoft.com/downloads/
https://github.com/microsoft/LightGBM/issues/749
https://github.com/microsoft/LightGBM/issues/1359

LightGBM, Release 4.3.0.99

update the numpy package in Conda or replace the Conda’s OpenMP library instance with system-wide one by creating
a symlink to it in Conda environment folder $CONDA_PREFIX/lib.

Solution: Assuming you are using macOS with Homebrew, the command which overwrites OpenMP library files in
the current active Conda environment with symlinks to the system-wide library ones installed by Homebrew:

ln -sf `ls -d "$(brew --cellar libomp)"/*/lib`/* $CONDA_PREFIX/lib

The described above fix worked fine before the release of OpenMP 8.0.0 version. Starting from 8.0.0 version, Home-
brew formula for OpenMP includes -DLIBOMP_INSTALL_ALIASES=OFF option which leads to that the fix doesn’t work
anymore. However, you can create symlinks to library aliases manually:

for LIBOMP_ALIAS in libgomp.dylib libiomp5.dylib libomp.dylib; do sudo ln -sf "$(brew --
→˓cellar libomp)"/*/lib/libomp.dylib $CONDA_PREFIX/lib/$LIBOMP_ALIAS; done

Another workaround would be removing MKL optimizations from Conda’s packages completely:

conda install nomkl

If this is not your case, then you should find conflicting OpenMP library installations on your own and leave only one
of them.

13.1.11 11. LightGBM hangs when multithreading (OpenMP) and using forking in
Linux at the same time.

Use nthreads=1 to disable multithreading of LightGBM. There is a bug with OpenMP which hangs forked sessions
with multithreading activated. A more expensive solution is to use new processes instead of using fork, however,
keep in mind it is creating new processes where you have to copy memory and load libraries (example: if you want
to fork 16 times your current process, then you will require to make 16 copies of your dataset in memory) (see Mi-
crosoft/LightGBM#1789).

An alternative, if multithreading is really necessary inside the forked sessions, would be to compile LightGBM with
Intel toolchain. Intel compilers are unaffected by this bug.

For C/C++ users, any OpenMP feature cannot be used before the fork happens. If an OpenMP feature is used before the
fork happens (example: using OpenMP for forking), OpenMP will hang inside the forked sessions. Use new processes
instead and copy memory as required by creating new processes instead of forking (or, use Intel compilers).

Cloud platform container services may cause LightGBM to hang, if they use Linux fork to run multiple containers on a
single instance. For example, LightGBM hangs in AWS Batch array jobs, which use the ECS agent to manage multiple
running jobs. Setting nthreads=1 mitigates the issue.

13.1.12 12. Why is early stopping not enabled by default in LightGBM?

Early stopping involves choosing a validation set, a special type of holdout which is used to evaluate the current state
of the model after each iteration to see if training can stop.

In LightGBM, we have decided to require that users specify this set directly. Many options exist for splitting training
data into training, test, and validation sets.

The appropriate splitting strategy depends on the task and domain of the data, information that a modeler has but which
LightGBM as a general-purpose tool does not.

248 Chapter 13. LightGBM FAQ

https://github.com/microsoft/LightGBM/issues/1789#issuecomment-433713383
https://github.com/microsoft/LightGBM/issues/1789#issuecomment-433713383
https://aws.amazon.com/batch/faqs/#Features
./Parameters.html#valid

LightGBM, Release 4.3.0.99

13.1.13 13. Does LightGBM support direct loading data from zero-based or one-
based LibSVM format file?

LightGBM supports loading data from zero-based LibSVM format file directly.

13.1.14 14. Why CMake cannot find the compiler when compiling LightGBM with
MinGW?

CMake Error: CMAKE_C_COMPILER not set, after EnableLanguage
CMake Error: CMAKE_CXX_COMPILER not set, after EnableLanguage

This is a known issue of CMake when using MinGW. The easiest solution is to run again your cmake command to
bypass the one time stopper from CMake. Or you can upgrade your version of CMake to at least version 3.17.0.

See Microsoft/LightGBM#3060 for more details.

13.1.15 15. Where can I find LightGBM’s logo to use it in my presentation?

You can find LightGBM’s logo in different file formats and resolutions here.

13.1.16 16. LightGBM crashes randomly or operating system hangs during or after
running LightGBM.

Possible Cause: This behavior may indicate that you have multiple OpenMP libraries installed on your machine and
they conflict with each other, similarly to the FAQ #10.

If you are using any Python package that depends on threadpoolctl, you also may see the following warning in your
logs in this case:

/root/miniconda/envs/test-env/lib/python3.8/site-packages/threadpoolctl.py:546:␣
→˓RuntimeWarning:
Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at
the same time. Both libraries are known to be incompatible and this
can cause random crashes or deadlocks on Linux when loaded in the
same Python program.
Using threadpoolctl may cause crashes or deadlocks. For more
information and possible workarounds, please see

https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md

Detailed description of conflicts between multiple OpenMP instances is provided in the following document.

Solution: Assuming you are using LightGBM Python-package and conda as a package manager, we strongly rec-
ommend using conda-forge channel as the only source of all your Python package installations because it contains
built-in patches to workaround OpenMP conflicts. Some other workarounds are listed here.

If this is not your case, then you should find conflicting OpenMP library installations on your own and leave only one
of them.

13.1. General LightGBM Questions 249

https://github.com/microsoft/LightGBM/issues/3060#issuecomment-626338538
https://github.com/microsoft/LightGBM/tree/master/docs/logo
https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md
https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md#user-content-workarounds-for-intel-openmp-and-llvm-openmp-case

LightGBM, Release 4.3.0.99

13.2 R-package

• 1. Any training command using LightGBM does not work after an error occurred during the training of a
previous LightGBM model.

• 2. I used setinfo(), tried to print my lgb.Dataset, and now the R console froze!

• 3. error in data.table::data.table()...argument 2 is NULL

13.2.1 1. Any training command using LightGBM does not work after an error oc-
curred during the training of a previous LightGBM model.

In older versions of the R package (prior to v3.3.0), this could happen occasionally and the solution was to run lgb.
unloader(wipe = TRUE) to remove all LightGBM-related objects. Some conversation about this could be found in
Microsoft/LightGBM#698.

That is no longer necessary as of v3.3.0, and function lgb.unloader() has since been removed from the R package.

13.2.2 2. I used setinfo(), tried to print my lgb.Dataset, and now the R console
froze!

As of at least LightGBM v3.3.0, this issue has been resolved and printing a Dataset object does not cause the console
to freeze.

In older versions, avoid printing the Dataset after calling setinfo().

As of LightGBM v4.0.0, setinfo() has been replaced by a new method, set_field().

13.2.3 3. error in data.table::data.table()...argument 2 is NULL

If you are experiencing this error when running lightgbm, you may be facing the same issue reported in #2715 and
later in #2989. We have seen that in some situations, using data.table 1.11.x results in this error. To get around this,
you can upgrade your version of data.table to at least version 1.12.0.

4. package ‘Matrix’ is not available

In April 2024, Matrix==1.7-0 was published to CRAN. That version had a floor of R (>=4.4.0). {Matrix}
is a hard runtime dependency of {lightgbm}, so on any version of R older than 4.4.0, running install.
packages("lightgbm") results in something like the following.

package ‘Matrix’ is not available for this version of R

To fix that without upgrading to R 4.4.0 or greater, manually install an older version of {Matrix}.

install.packages('https://cran.r-project.org/src/contrib/Archive/Matrix/Matrix_1.6-5.tar.
→˓gz', repos = NULL)

250 Chapter 13. LightGBM FAQ

https://github.com/microsoft/LightGBM/issues/698
https://github.com/microsoft/LightGBM/issues/2715
https://github.com/microsoft/LightGBM/pull/2989#issuecomment-614374151

LightGBM, Release 4.3.0.99

13.3 Python-package

• 1. Error: setup script specifies an absolute path when installing from GitHub using python
setup.py install.

• 2. Error messages: Cannot ... before construct dataset.

• 3. I encounter segmentation faults (segfaults) randomly after installing LightGBM from PyPI using pip
install lightgbm.

• 4. I would like to install LightGBM from conda. What channel should I choose?

13.3.1 1. Error: setup script specifies an absolute path when installing from
GitHub using python setup.py install.

Note: As of v4.0.0, lightgbm does not support directly invoking setup.py. This answer refers only to versions of
lightgbm prior to v4.0.0.

error: Error: setup script specifies an absolute path:
/Users/Microsoft/LightGBM/python-package/lightgbm/../../lib_lightgbm.so
setup() arguments must *always* be /-separated paths relative to the setup.py directory,␣
→˓*never* absolute paths.

This error should be solved in latest version. If you still meet this error, try to remove lightgbm.egg-info folder in
your Python-package and reinstall, or check this thread on stackoverflow.

13.3.2 2. Error messages: Cannot ... before construct dataset.

I see error messages like. . .

Cannot get/set label/weight/init_score/group/num_data/num_feature before construct␣
→˓dataset

but I’ve already constructed a dataset by some code like:

train = lightgbm.Dataset(X_train, y_train)

or error messages like

Cannot set predictor/reference/categorical feature after freed raw data, set free_raw_
→˓data=False when construct Dataset to avoid this.

Solution: Because LightGBM constructs bin mappers to build trees, and train and valid Datasets within one Booster
share the same bin mappers, categorical features and feature names etc., the Dataset objects are constructed when
constructing a Booster. If you set free_raw_data=True (default), the raw data (with Python data struct) will be
freed. So, if you want to:

• get label (or weight/init_score/group/data) before constructing a dataset, it’s same as get self.label;

• set label (or weight/init_score/group) before constructing a dataset, it’s same as self.
label=some_label_array;

13.3. Python-package 251

https://stackoverflow.com/questions/18085571/pip-install-error-setup-script-specifies-an-absolute-path

LightGBM, Release 4.3.0.99

• get num_data (or num_feature) before constructing a dataset, you can get data with self.data. Then, if your
data is numpy.ndarray, use some code like self.data.shape. But do not do this after subsetting the Dataset,
because you’ll get always None;

• set predictor (or reference/categorical feature) after constructing a dataset, you should set
free_raw_data=False or init a Dataset object with the same raw data.

13.3.3 3. I encounter segmentation faults (segfaults) randomly after installing Light-
GBM from PyPI using pip install lightgbm.

We are doing our best to provide universal wheels which have high running speed and are compatible with any hardware,
OS, compiler, etc. at the same time. However, sometimes it’s just impossible to guarantee the possibility of usage of
LightGBM in any specific environment (see Microsoft/LightGBM#1743).

Therefore, the first thing you should try in case of segfaults is compiling from the source using pip install
--no-binary lightgbm lightgbm. For the OS-specific prerequisites see this guide.

Also, feel free to post a new issue in our GitHub repository. We always look at each case individually and try to find a
root cause.

13.3.4 4. I would like to install LightGBM from conda. What channel should I
choose?

We strongly recommend installation from the conda-forge channel and not from the default one due to many
reasons. The main ones are less time delay for new releases, greater number of supported architectures and better
handling of dependency conflicts, especially workaround for OpenMP is crucial for LightGBM. More details can be
found in this comment.

252 Chapter 13. LightGBM FAQ

https://github.com/microsoft/LightGBM/issues/1743
https://github.com/microsoft/LightGBM/blob/master/python-package/README.rst#user-content-build-from-sources
https://github.com/microsoft/LightGBM/issues/4948#issuecomment-1013766397

CHAPTER

FOURTEEN

DEVELOPMENT GUIDE

14.1 Algorithms

Refer to Features for understanding of important algorithms used in LightGBM.

14.2 Classes and Code Structure

14.2.1 Important Classes

Class Description
Application The entrance of application, including training and prediction logic
Bin Data structure used for storing feature discrete values (converted from float values)
Boosting Boosting interface (GBDT, DART, etc.)
Config Stores parameters and configurations
Dataset Stores information of dataset
DatasetLoader Used to construct dataset
FeatureGroup Stores the data of feature, could be multiple features
Metric Evaluation metrics
Network Network interfaces and communication algorithms
ObjectiveFunction Objective functions used to train
Tree Stores information of tree model
TreeLearner Used to learn trees

253

./Features.html

LightGBM, Release 4.3.0.99

14.2.2 Code Structure

Path Description
./include Header files
./include/utils Some common functions
./src/application Implementations of training and prediction logic
./src/boosting Implementations of Boosting
./src/io Implementations of IO related classes, including Bin, Config, Dataset, DatasetLoader,

Feature and Tree
./src/metric Implementations of metrics
./src/network Implementations of network functions
./src/objective Implementations of objective functions
./src/treelearner Implementations of tree learners

14.3 Documents API

Refer to docs README.

14.4 C API

Refer to C API or the comments in c_api.h file, from which the documentation is generated.

14.5 Tests

C++ unit tests are located in the ./tests/cpp_tests folder and written with the help of Google Test framework. To
run tests locally first refer to the Installation Guide for how to build tests and then simply run compiled executable file.
It is highly recommended to build tests with sanitizers.

14.6 High Level Language Package

See the implementations at Python-package and R-package.

14.7 Questions

Refer to FAQ.

Also feel free to open issues if you met problems.

254 Chapter 14. Development Guide

./README.html
./C-API.html
https://github.com/microsoft/LightGBM/blob/master/include/LightGBM/c_api.h
./Installation-Guide.html#build-c-unit-tests
./Installation-Guide.html#sanitizers
https://github.com/microsoft/LightGBM/tree/master/python-package
https://github.com/microsoft/LightGBM/tree/master/R-package
./FAQ.html
https://github.com/microsoft/LightGBM/issues

CHAPTER

FIFTEEN

GPU TUNING GUIDE AND PERFORMANCE COMPARISON

15.1 How It Works?

In LightGBM, the main computation cost during training is building the feature histograms. We use an efficient al-
gorithm on GPU to accelerate this process. The implementation is highly modular, and works for all learning tasks
(classification, ranking, regression, etc). GPU acceleration also works in distributed learning settings. GPU algorithm
implementation is based on OpenCL and can work with a wide range of GPUs.

15.2 Supported Hardware

We target AMD Graphics Core Next (GCN) architecture and NVIDIA Maxwell and Pascal architectures. Most AMD
GPUs released after 2012 and NVIDIA GPUs released after 2014 should be supported. We have tested the GPU
implementation on the following GPUs:

• AMD RX 480 with AMDGPU-pro driver 16.60 on Ubuntu 16.10

• AMD R9 280X (aka Radeon HD 7970) with fglrx driver 15.302.2301 on Ubuntu 16.10

• NVIDIA GTX 1080 with driver 375.39 and CUDA 8.0 on Ubuntu 16.10

• NVIDIA Titan X (Pascal) with driver 367.48 and CUDA 8.0 on Ubuntu 16.04

• NVIDIA Tesla M40 with driver 375.39 and CUDA 7.5 on Ubuntu 16.04

Using the following hardware is discouraged:

• NVIDIA Kepler (K80, K40, K20, most GeForce GTX 700 series GPUs) or earlier NVIDIA GPUs. They don’t
support hardware atomic operations in local memory space and thus histogram construction will be slow.

• AMD VLIW4-based GPUs, including Radeon HD 6xxx series and earlier GPUs. These GPUs have been dis-
continued for years and are rarely seen nowadays.

15.3 How to Achieve Good Speedup on GPU

1. You want to run a few datasets that we have verified with good speedup (including Higgs, epsilon, Bosch,
etc) to ensure your setup is correct. If you have multiple GPUs, make sure to set gpu_platform_id and
gpu_device_id to use the desired GPU. Also make sure your system is idle (especially when using a shared
computer) to get accuracy performance measurements.

2. GPU works best on large scale and dense datasets. If dataset is too small, computing it on GPU is inefficient as
the data transfer overhead can be significant. If you have categorical features, use the categorical_column
option and input them into LightGBM directly; do not convert them into one-hot variables.

255

LightGBM, Release 4.3.0.99

3. To get good speedup with GPU, it is suggested to use a smaller number of bins. Setting max_bin=63 is rec-
ommended, as it usually does not noticeably affect training accuracy on large datasets, but GPU training can
be significantly faster than using the default bin size of 255. For some dataset, even using 15 bins is enough
(max_bin=15); using 15 bins will maximize GPU performance. Make sure to check the run log and verify that
the desired number of bins is used.

4. Try to use single precision training (gpu_use_dp=false) when possible, because most GPUs (especially
NVIDIA consumer GPUs) have poor double-precision performance.

15.4 Performance Comparison

We evaluate the training performance of GPU acceleration on the following datasets:

Data Task Link #Exam-
ples

#Fea-
tures

Comments

Higgs Binary classification link1 10,500,000 28 use last 500,000 samples as test set
Epsilon Binary classification link2 400,000 2,000 use the provided test set
Bosch Binary classification link3 1,000,000 968 use the provided test set
Yahoo
LTR

Learning to rank link4 473,134 700 set1.train as train, set1.test as test

MS LTR Learning to rank link5 2,270,296 137 {S1,S2,S3} as train set, {S5} as
test set

Expo Binary classification (Cate-
gorical)

link6 11,000,000 700 use last 1,000,000 as test set

We used the following hardware to evaluate the performance of LightGBM GPU training. Our CPU reference is a high-
end dual socket Haswell-EP Xeon server with 28 cores; GPUs include a budget GPU (RX 480) and a mainstream
(GTX 1080) GPU installed on the same server. It is worth mentioning that the GPUs used are not the best GPUs in
the market; if you are using a better GPU (like AMD RX 580, NVIDIA GTX 1080 Ti, Titan X Pascal, Titan Xp, Tesla
P100, etc), you are likely to get a better speedup.

Hardware Peak FLOPS Peak Memory BW Cost (MSRP)
AMD Radeon RX 480 5,161 GFLOPS 256 GB/s $199
NVIDIA GTX 1080 8,228 GFLOPS 320 GB/s $499
2x Xeon E5-2683v3 (28 cores) 1,792 GFLOPS 133 GB/s $3,692

During benchmarking on CPU we used only 28 physical cores of the CPU, and did not use hyper-threading cores,
because we found that using too many threads actually makes performance worse. The following shows the training
configuration we used:

max_bin = 63
num_leaves = 255
num_iterations = 500
learning_rate = 0.1
tree_learner = serial
task = train
is_training_metric = false
min_data_in_leaf = 1
min_sum_hessian_in_leaf = 100

(continues on next page)

256 Chapter 15. GPU Tuning Guide and Performance Comparison

https://archive.ics.uci.edu/dataset/280/higgs
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.kaggle.com/c/bosch-production-line-performance/data
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
https://www.microsoft.com/en-us/research/project/mslr/
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009

LightGBM, Release 4.3.0.99

(continued from previous page)

ndcg_eval_at = 1,3,5,10
device = gpu
gpu_platform_id = 0
gpu_device_id = 0
num_thread = 28

We use the configuration shown above, except for the Bosch dataset, we use a smaller learning_rate=0.015 and set
min_sum_hessian_in_leaf=5. For all GPU training we vary the max number of bins (255, 63 and 15). The GPU
implementation is from commit 0bb4a82 of LightGBM, when the GPU support was just merged in.

The following table lists the accuracy on test set that CPU and GPU learner can achieve after 500 iterations. GPU
with the same number of bins can achieve a similar level of accuracy as on the CPU, despite using single precision
arithmetic. For most datasets, using 63 bins is sufficient.

CPU 255
bins

CPU 63
bins

CPU 15
bins

GPU 255
bins

GPU 63
bins

GPU 15
bins

Higgs AUC 0.845612 0.845239 0.841066 0.845612 0.845209 0.840748
Epsilon AUC 0.950243 0.949952 0.948365 0.950057 0.949876 0.948365
Yahoo-LTR
NDCG1

0.730824 0.730165 0.729647 0.730936 0.732257 0.73114

Yahoo-LTR
NDCG3

0.738687 0.737243 0.736445 0.73698 0.739474 0.735868

Yahoo-LTR
NDCG5

0.756609 0.755729 0.754607 0.756206 0.757007 0.754203

Yahoo-LTR
NDCG10

0.79655 0.795827 0.795273 0.795894 0.797302 0.795584

Expo AUC 0.776217 0.771566 0.743329 0.776285 0.77098 0.744078
MS-LTR NDCG1 0.521265 0.521392 0.518653 0.521789 0.522163 0.516388
MS-LTR NDCG3 0.503153 0.505753 0.501697 0.503886 0.504089 0.501691
MS-LTR NDCG5 0.509236 0.510391 0.507193 0.509861 0.510095 0.50663
MS-LTR NDCG10 0.527835 0.527304 0.524603 0.528009 0.527059 0.524722
Bosch AUC 0.718115 0.721791 0.716677 0.717184 0.724761 0.717005

We record the wall clock time after 500 iterations, as shown in the figure below:

When using a GPU, it is advisable to use a bin size of 63 rather than 255, because it can speed up training signifi-

15.4. Performance Comparison 257

https://github.com/microsoft/LightGBM/commit/0bb4a82
./_static/images/gpu-performance-comparison.png

LightGBM, Release 4.3.0.99

cantly without noticeably affecting accuracy. On CPU, using a smaller bin size only marginally improves performance,
sometimes even slows down training, like in Higgs (we can reproduce the same slowdown on two different machines,
with different GCC versions). We found that GPU can achieve impressive acceleration on large and dense datasets like
Higgs and Epsilon. Even on smaller and sparse datasets, a budget GPU can still compete and be faster than a 28-core
Haswell server.

15.5 Memory Usage

The next table shows GPU memory usage reported by nvidia-smi during training with 63 bins. We can see that
even the largest dataset just uses about 1 GB of GPU memory, indicating that our GPU implementation can scale to
huge datasets over 10x larger than Bosch or Epsilon. Also, we can observe that generally a larger dataset (using more
GPU memory, like Epsilon or Bosch) has better speedup, because the overhead of invoking GPU functions becomes
significant when the dataset is small.

Datasets Higgs Epsilon Bosch MS-LTR Expo Yahoo-LTR
GPU Memory Usage (MB) 611 901 1067 413 405 291

15.6 Further Reading

You can find more details about the GPU algorithm and benchmarks in the following article:

Huan Zhang, Si Si and Cho-Jui Hsieh. GPU Acceleration for Large-scale Tree Boosting. SysML Conference, 2018.

258 Chapter 15. GPU Tuning Guide and Performance Comparison

https://arxiv.org/abs/1706.08359

CHAPTER

SIXTEEN

GPU SDK CORRESPONDENCE AND DEVICE TARGETING TABLE

16.1 GPU Targets Table

OpenCL is a universal massively parallel programming framework that targets multiple backends (GPU, CPU, FPGA,
etc). Basically, to use a device from a vendor, you have to install drivers from that specific vendor. Intel’s and AMD’s
OpenCL runtime also include x86 CPU target support. NVIDIA’s OpenCL runtime only supports NVIDIA GPU (no
CPU support). In general, OpenCL CPU backends are quite slow, and should be used for testing and debugging only.

You can find below a table of correspondence:

SDK CPU Intel/AMD GPU Intel GPU AMD GPU NVIDIA
Intel SDK for OpenCL Supported Supported Not Supported Not Supported
AMD APP SDK * Supported Not Supported Supported Not Supported
PoCL Supported Not Supported Supported Not Supported
NVIDIA CUDA Toolkit Not Supported Not Supported Not Supported Supported

Legend:

* AMD APP SDK is deprecated. On Windows, OpenCL is included in AMD graphics driver. On Linux, newer
generation AMD cards are supported by the ROCm driver. You can download an archived copy of AMD APP SDK
from our GitHub repo (for Linux and for Windows).

16.2 Query OpenCL Devices in Your System

Your system might have multiple GPUs from different vendors (“platforms”) installed. Setting up LightGBM GPU de-
vice requires two parameters: OpenCL Platform ID (gpu_platform_id) and OpenCL Device ID (gpu_device_id).
Generally speaking, each vendor provides an OpenCL platform, and devices from the same vendor have different de-
vice IDs under that platform. For example, if your system has an Intel integrated GPU and two discrete GPUs from
AMD, you will have two OpenCL platforms (with gpu_platform_id=0 and gpu_platform_id=1). If the platform
0 is Intel, it has one device (gpu_device_id=0) representing the Intel GPU; if the platform 1 is AMD, it has two
devices (gpu_device_id=0, gpu_device_id=1) representing the two AMD GPUs. If you have a discrete GPU by
AMD/NVIDIA and an integrated GPU by Intel, make sure to select the correct gpu_platform_id to use the discrete
GPU as it usually provides better performance.

On Windows, OpenCL devices can be queried using GPUCapsViewer, under the OpenCL tab. Note that the platform
and device IDs reported by this utility start from 1. So you should minus the reported IDs by 1.

On Linux, OpenCL devices can be listed using the clinfo command. On Ubuntu, you can install clinfo by executing
sudo apt-get install clinfo.

259

https://software.intel.com/en-us/articles/opencl-drivers
http://portablecl.org/
https://developer.nvidia.com/cuda-downloads
https://rocmdocs.amd.com/en/latest/
https://github.com/microsoft/LightGBM/releases/download/v2.0.12/AMD-APP-SDKInstaller-v3.0.130.136-GA-linux64.tar.bz2
https://github.com/microsoft/LightGBM/releases/download/v2.0.12/AMD-APP-SDKInstaller-v3.0.130.135-GA-windows-F-x64.exe
./Parameters.html#gpu_platform_id
./Parameters.html#gpu_device_id
https://www.ozone3d.net/gpu_caps_viewer/

LightGBM, Release 4.3.0.99

16.3 Examples

We provide test R code below, but you can use the language of your choice with the examples of your choices:

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
train$data[, 1] <- 1:6513
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
valids <- list(test = dtest)

params <- list(objective = "regression",
metric = "rmse",
device = "gpu",
gpu_platform_id = 0,
gpu_device_id = 0,
nthread = 1,
boost_from_average = FALSE,
num_tree_per_iteration = 10,
max_bin = 32)

model <- lgb.train(params,
dtrain,
2,
valids,
min_data = 1,
learning_rate = 1,
early_stopping_rounds = 10)

Make sure you list the OpenCL devices in your system and set gpu_platform_id and gpu_device_id correctly. In
the following examples, our system has 1 GPU platform (gpu_platform_id = 0) from AMD APP SDK. The first
device gpu_device_id = 0 is a GPU device (AMD Oland), and the second device gpu_device_id = 1 is the x86
CPU backend.

Example of using GPU (gpu_platform_id = 0 and gpu_device_id = 0 in our system):

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 0,
+ gpu_device_id = 0,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,

(continues on next page)

260 Chapter 16. GPU SDK Correspondence and Device Targeting Table

LightGBM, Release 4.3.0.99

(continued from previous page)

+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
[LightGBM] [Info] GPU programs have been built
[LightGBM] [Info] Size of histogram bin entry: 12
[LightGBM] [Info] 40 dense feature groups (0.12 MB) transferred to GPU in 0.004211 secs.␣
→˓76 sparse feature groups.
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=16 and depth=8
[1]: test's rmse:1.10643e-17
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=7 and depth=5
[2]: test's rmse:0

Running on OpenCL CPU backend devices is in generally slow, and we observe crashes on some Windows and macOS
systems. Make sure you check the Using GPU Device line in the log and it is not using a CPU. The above log shows
that we are using Oland GPU from AMD and not CPU.

Example of using CPU (gpu_platform_id = 0, gpu_device_id = 1). The GPU device reported is Intel(R)
Core(TM) i7-4600U CPU, so it is using the CPU backend rather than a real GPU.

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 0,
+ gpu_device_id = 1,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,
+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using requested OpenCL platform 0 device 1
[LightGBM] [Info] Using GPU Device: Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, Vendor:␣
→˓GenuineIntel
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
[LightGBM] [Info] GPU programs have been built
[LightGBM] [Info] Size of histogram bin entry: 12
[LightGBM] [Info] 40 dense feature groups (0.12 MB) transferred to GPU in 0.004540 secs.␣
→˓76 sparse feature groups.
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=16 and depth=8

(continues on next page)

16.3. Examples 261

LightGBM, Release 4.3.0.99

(continued from previous page)

[1]: test's rmse:1.10643e-17
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=7 and depth=5
[2]: test's rmse:0

Known issues:

• Using a bad combination of gpu_platform_id and gpu_device_id can potentially lead to a crash due to
OpenCL driver issues on some machines (you will lose your entire session content). Beware of it.

• On some systems, if you have integrated graphics card (Intel HD Graphics) and a dedicated graphics card (AMD,
NVIDIA), the dedicated graphics card will automatically override the integrated graphics card. The workaround
is to disable your dedicated graphics card to be able to use your integrated graphics card.

262 Chapter 16. GPU SDK Correspondence and Device Targeting Table

CHAPTER

SEVENTEEN

GPU WINDOWS COMPILATION

This guide is for the MinGW build.

For the MSVC (Visual Studio) build with GPU, please refer to Installation Guide. (We recommend you to use this since
it is much easier).

17.1 Install LightGBM GPU version in Windows (CLI / R / Python), us-
ing MinGW/gcc

This is for a vanilla installation of Boost, including full compilation steps from source without precompiled libraries.

Installation steps (depends on what you are going to do):

• Install the appropriate OpenCL SDK

• Install MinGW

• Install Boost

• Install Git

• Install CMake

• Create LightGBM binaries

• Debugging LightGBM in CLI (if GPU is crashing or any other crash reason)

If you wish to use another compiler like Visual Studio C++ compiler, you need to adapt the steps to your needs.

For this compilation tutorial, we are using AMD SDK for our OpenCL steps. However, you are free to use any OpenCL
SDK you want, you just need to adjust the PATH correctly.

You will also need administrator rights. This will not work without them.

At the end, you can restore your original PATH.

263

./Installation-Guide.html#build-gpu-version

LightGBM, Release 4.3.0.99

17.1.1 Modifying PATH (for newbies)

To modify PATH, just follow the pictures after going to the Control Panel:

Then, go to Advanced > Environment Variables...:

Under System variables, the variable Path:

264 Chapter 17. GPU Windows Compilation

./_static/images/screenshot-system.png
./_static/images/screenshot-advanced-system-settings.png

LightGBM, Release 4.3.0.99

Antivirus Performance Impact

Does not apply to you if you do not use a third-party antivirus nor the default preinstalled antivirus on Windows.

Windows Defender or any other antivirus will have a significant impact on the speed you will be able to perform
the steps. It is recommended to turn them off temporarily until you finished with building and setting up everything,
then turn them back on, if you are using them.

17.1.2 OpenCL SDK Installation

Installing the appropriate OpenCL SDK requires you to download the correct vendor source SDK. You need to know
what you are going to use LightGBM!

• For running on Intel, get Intel SDK for OpenCL (NOT RECOMMENDED).

• For running on AMD, get AMD APP SDK (downloads for Linux and for Windows). You may want to replace
the OpenCL.dll from the GPU driver package with the one from the SDK, if the one shipped with the driver
lacks some functions.

• For running on NVIDIA, get CUDA Toolkit.

• Or you can try to use Khronos official OpenCL headers, the CMake module would automatically find the OpenCL
library used in your system, though the result may be not portable.

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 265

./_static/images/screenshot-environment-variables.png
https://software.intel.com/en-us/articles/opencl-drivers
https://github.com/microsoft/LightGBM/releases/download/v2.0.12/AMD-APP-SDKInstaller-v3.0.130.136-GA-linux64.tar.bz2
https://github.com/microsoft/LightGBM/releases/download/v2.0.12/AMD-APP-SDKInstaller-v3.0.130.135-GA-windows-F-x64.exe
https://developer.nvidia.com/cuda-downloads
https://github.com/KhronosGroup/OpenCL-Headers

LightGBM, Release 4.3.0.99

Further reading and correspondence table (especially if you intend to use cross-platform devices, like Intel CPU with
AMD APP SDK): GPU SDK Correspondence and Device Targeting Table.

Warning: using Intel OpenCL is not recommended and may crash your machine due to being non compliant to OpenCL
standards. If your objective is to use LightGBM + OpenCL on CPU, please use AMD APP SDK instead (it can run
also on Intel CPUs without any issues).

17.1.3 MinGW Correct Compiler Selection

If you are expecting to use LightGBM without R, you need to install MinGW. Installing MinGW is straightforward,
download this.

Make sure you are using the x86_64 architecture, and do not modify anything else. You may choose a version other
than the most recent one if you need a previous MinGW version.

Then, add to your PATH the following (to adjust to your MinGW version):

C:\Program Files\mingw-w64\x86_64-5.3.0-posix-seh-rt_v4-rev0\mingw64\bin

Warning: R users (even if you do not want LightGBM for R)

If you have RTools and MinGW installed, and wish to use LightGBM in R, get rid of MinGW from PATH (to keep:
c:\Rtools\bin;c:\Rtools\mingw_32\bin for 32-bit R installation, c:\Rtools\bin;c:\Rtools\mingw_64\
bin for 64-bit R installation).

You can check which MinGW version you are using by running the following in a command prompt: gcc -v:

266 Chapter 17. GPU Windows Compilation

./GPU-Targets.html
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe/download
./_static/images/screenshot-mingw-installation.png

LightGBM, Release 4.3.0.99

To check whether you need 32-bit or 64-bit MinGW for R, install LightGBM as usual and check for the following:

* installing *source* package 'lightgbm' ...
** libs
c:/Rtools/mingw_64/bin/g++

If it says mingw_64 then you need the 64-bit version (PATH with c:\Rtools\bin;c:\Rtools\mingw_64\bin),
otherwise you need the 32-bit version (c:\Rtools\bin;c:\Rtools\mingw_32\bin), the latter being a very rare
and untested case.

NOTE: If you are using Rtools 4.0 or later, the path will have mingw64 instead of mingw_64 (PATH with
C:rtools40mingw64bin), and mingw32 instead of mingw_32 (C:rtools40mingw32bin). The 32-bit version remains
an unsupported solution under Rtools 4.0.

17.1.4 Download the prebuilt Boost

Download Prebuilt Boost x86_64 or Prebuilt Boost i686 and unpack them with 7zip, alternatively you can build Boost
from source.

17.1.5 Boost Compilation

Installing Boost requires downloading Boost and installing it. It takes about 10 minutes to several hours depending on
your CPU speed and network speed.

We will assume an installation in C:\boost and a general installation (like in Unix variants: without versioning and
without type tags).

There is one mandatory step to check the compiler:

• Warning: if you want the R installation: If you have already MinGW in your PATH variable, get rid of it (you
will link to the wrong compiler otherwise).

• Warning: if you want the CLI installation: If you have already Rtools in your PATH variable, get rid of it (you
will link to the wrong compiler otherwise).

• R installation must have Rtools in PATH

• CLI / Python installation must have MinGW (not Rtools) in PATH

In addition, assuming you are going to use C:\boost for the folder path, you should add now already the following to
PATH: C:\boost\boost-build\bin, C:\boost\boost-build\include\boost. Adjust C:\boost if you install
it elsewhere.

We can now start downloading and compiling the required Boost libraries:

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 267

./_static/images/screenshot-r-mingw-used.png
https://www.rpmfind.net/linux/fedora/linux/releases/38/Everything/x86_64/os/Packages/m/mingw64-boost-static-1.78.0-4.fc38.noarch.rpm
https://www.rpmfind.net/linux/fedora/linux/releases/38/Everything/x86_64/os/Packages/m/mingw32-boost-static-1.78.0-4.fc38.noarch.rpm
https://www.7-zip.org/download.html

LightGBM, Release 4.3.0.99

• Download Boost (for example, the filename for 1.63.0 version is boost_1_63_0.zip)

• Extract the archive to C:\boost

• Open a command prompt, and run

cd C:\boost\boost_1_63_0\tools\build
bootstrap.bat gcc
b2 install --prefix="C:\boost\boost-build" toolset=gcc
cd C:\boost\boost_1_63_0

To build the Boost libraries, you have two choices for command prompt:

• If you have only one single core, you can use the default

b2 install --build_dir="C:\boost\boost-build" --prefix="C:\boost\boost-build"␣
→˓toolset=gcc --with=filesystem,system threading=multi --layout=system release

• If you want to do a multithreaded library building (faster), add -j N by replacing N by the number of cores/threads
you have. For instance, for 2 cores, you would do

b2 install --build_dir="C:\boost\boost-build" --prefix="C:\boost\boost-build"␣
→˓toolset=gcc --with=filesystem,system threading=multi --layout=system release -j 2

Ignore all the errors popping up, like Python, etc., they do not matter for us.

Your folder should look like this at the end (not fully detailed):

- C
|--- boost
|------ boost_1_63_0
|--------- some folders and files
|------ boost-build
|--------- bin
|--------- include
|------------ boost
|--------- lib
|--------- share

This is what you should (approximately) get at the end of Boost compilation:

If you are getting an error:

• Wipe your Boost directory

268 Chapter 17. GPU Windows Compilation

https://www.boost.org/users/history/
./_static/images/screenshot-boost-compiled.png

LightGBM, Release 4.3.0.99

• Close the command prompt

• Make sure you added C:\boost\boost-build\bin, C:\boost\boost-build\include\boost to your
PATH (adjust accordingly if you use another folder)

• Do the Boost compilation steps again (extract => command prompt => cd => bootstrap => b2 => cd => b2

17.1.6 Git Installation

Installing Git for Windows is straightforward, use the following link.

Now, we can fetch LightGBM repository for GitHub. Run Git Bash and the following command:

cd C:/
mkdir github_repos
cd github_repos
git clone --recursive https://github.com/microsoft/LightGBM

Your LightGBM repository copy should now be under C:\github_repos\LightGBM. You are free to use any folder
you want, but you have to adapt.

Keep Git Bash open.

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 269

https://git-scm.com/download/win
./_static/images/screenshot-git-for-windows.png

LightGBM, Release 4.3.0.99

17.1.7 CMake Installation, Configuration, Generation

CLI / Python users only

Installing CMake requires one download first and then a lot of configuration for LightGBM:

• Download CMake

• Install CMake

• Run cmake-gui

• Select the folder where you put LightGBM for Where is the source code, default using our steps would be
C:/github_repos/LightGBM

• Copy the folder name, and add /build for “Where to build the binaries”, default using our steps would be
C:/github_repos/LightGBM/build

• Click Configure

270 Chapter 17. GPU Windows Compilation

./_static/images/screenshot-downloading-cmake.png
https://cmake.org/download/
./_static/images/screenshot-create-directory.png

LightGBM, Release 4.3.0.99

• Lookup for USE_GPU and check the checkbox

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 271

./_static/images/screenshot-mingw-makefiles-to-use.png

LightGBM, Release 4.3.0.99

• Click Configure

You should get (approximately) the following after clicking Configure:

272 Chapter 17. GPU Windows Compilation

./_static/images/screenshot-use-gpu.png

LightGBM, Release 4.3.0.99

Looking for CL_VERSION_2_0
Looking for CL_VERSION_2_0 - found
Found OpenCL: C:/Windows/System32/OpenCL.dll (found version "2.0")
OpenCL include directory:C:/Program Files (x86)/AMD APP SDK/3.0/include
Boost version: 1.63.0
Found the following Boost libraries:
filesystem
system

Configuring done

• Click Generate to get the following message:

Generating done

This is straightforward, as CMake is providing a large help into locating the correct elements.

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 273

./_static/images/screenshot-configured-lightgbm.png

LightGBM, Release 4.3.0.99

17.1.8 LightGBM Compilation (CLI: final step)

Installation in CLI

CLI / Python users

Creating LightGBM libraries is very simple as all the important and hard steps were done before.

You can do everything in the Git Bash console you left open:

• If you closed Git Bash console previously, run this to get back to the build folder:

cd C:/github_repos/LightGBM/build

• If you did not close the Git Bash console previously, run this to get to the build folder:

cd LightGBM/build

• Setup MinGW as make using

alias make='mingw32-make'

otherwise, beware error and name clash!

• In Git Bash, run make and see LightGBM being installing!

If everything was done correctly, you now compiled CLI LightGBM with GPU support!

274 Chapter 17. GPU Windows Compilation

./_static/images/screenshot-lightgbm-with-gpu-support-compiled.png

LightGBM, Release 4.3.0.99

Testing in CLI

You can now test LightGBM directly in CLI in a command prompt (not Git Bash):

cd C:/github_repos/LightGBM/examples/binary_classification
"../../lightgbm.exe" config=train.conf data=binary.train valid=binary.test␣
→˓objective=binary device=gpu

Congratulations for reaching this stage!

To learn how to target a correct CPU or GPU for training, please see: GPU SDK Correspondence and Device Targeting
Table.

17.1.9 Debugging LightGBM Crashes in CLI

Now that you compiled LightGBM, you try it. . . and you always see a segmentation fault or an undocumented crash
with GPU support:

Please check if you are using the right device (Using GPU device: ...). You can find a list of your OpenCL devices
using GPUCapsViewer, and make sure you are using a discrete (AMD/NVIDIA) GPU if you have both integrated (Intel)
and discrete GPUs installed. Also, try to set gpu_device_id = 0 and gpu_platform_id = 0 or gpu_device_id
= -1 and gpu_platform_id = -1 to use the first platform and device or the default platform and device. If it still
does not work, then you should follow all the steps below.

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 275

./_static/images/screenshot-lightgbm-in-cli-with-gpu.png
./GPU-Targets.html
./GPU-Targets.html
./_static/images/screenshot-segmentation-fault.png
http://www.ozone3d.net/gpu_caps_viewer/

LightGBM, Release 4.3.0.99

You will have to redo the compilation steps for LightGBM to add debugging mode. This involves:

• Deleting C:/github_repos/LightGBM/build folder

• Deleting lightgbm.exe, lib_lightgbm.dll, and lib_lightgbm.dll.a files

Once you removed the file, go into CMake, and follow the usual steps. Before clicking “Generate”, click on “Add
Entry”:

276 Chapter 17. GPU Windows Compilation

./_static/images/screenshot-files-to-remove.png

LightGBM, Release 4.3.0.99

In addition, click on Configure and Generate:

And then, follow the regular LightGBM CLI installation from there.

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 277

./_static/images/screenshot-added-manual-entry-in-cmake.png
./_static/images/screenshot-configured-and-generated-cmake.png

LightGBM, Release 4.3.0.99

Once you have installed LightGBM CLI, assuming your LightGBM is in C:\github_repos\LightGBM, open a com-
mand prompt and run the following:

gdb --args "../../lightgbm.exe" config=train.conf data=binary.train valid=binary.test␣
→˓objective=binary device=gpu

Type run and press the Enter key.

You will probably get something similar to this:

[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 6143
[LightGBM] [Info] Number of data: 7000, number of used features: 28
[New Thread 105220.0x1a62c]
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 256 bins...

Program received signal SIGSEGV, Segmentation fault.
0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
(gdb)

There, write backtrace and press the Enter key as many times as gdb requests two choices:

Program received signal SIGSEGV, Segmentation fault.
0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
(gdb) backtrace
#0 0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
#1 0x000000000048bbe5 in std::char_traits<char>::length (__s=0x0)

at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/
→˓char_traits.h:267
#2 std::operator+<char, std::char_traits<char>, std::allocator<char> > (__rhs="\\", __
→˓lhs=0x0)

at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/
→˓basic_string.tcc:1157
#3 boost::compute::detail::appdata_path[abi:cxx11]() () at C:/boost/boost-build/include/
→˓boost/compute/detail/path.hpp:38
#4 0x000000000048eec3 in boost::compute::detail::program_binary_path (hash=
→˓"d27987d5bd61e2d28cd32b8d7a7916126354dc81", create=create@entry=false)

at C:/boost/boost-build/include/boost/compute/detail/path.hpp:46
#5 0x00000000004913de in boost::compute::program::load_program_binary (hash=
→˓"d27987d5bd61e2d28cd32b8d7a7916126354dc81", ctx=...)

at C:/boost/boost-build/include/boost/compute/program.hpp:605
#6 0x0000000000490ece in boost::compute::program::build_with_source (

source="\n#ifndef _HISTOGRAM_256_KERNEL_\n#define _HISTOGRAM_256_KERNEL_\n\n#pragma␣
(continues on next page)

278 Chapter 17. GPU Windows Compilation

./_static/images/screenshot-debug-run.png

LightGBM, Release 4.3.0.99

(continued from previous page)

→˓OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n#pragma OPENC
L EXTENSION cl_khr_global_int32_base_atomics : enable\n\n//"..., context=...,

options=" -D POWER_FEATURE_WORKGROUPS=5 -D USE_CONSTANT_BUF=0 -D USE_DP_FLOAT=0 -D␣
→˓CONST_HESSIAN=0 -cl-strict-aliasing -cl-mad-enable -cl-no-signed-zeros -c
l-fast-relaxed-math") at C:/boost/boost-build/include/boost/compute/program.hpp:549
#7 0x0000000000454339 in LightGBM::GPUTreeLearner::BuildGPUKernels () at C:\LightGBM\
→˓src\treelearner\gpu_tree_learner.cpp:583
#8 0x00000000636044f2 in libgomp-1!GOMP_parallel () from C:\Program Files\mingw-w64\x86_
→˓64-5.3.0-posix-seh-rt_v4-rev0\mingw64\bin\libgomp-1.dll
#9 0x0000000000455e7e in LightGBM::GPUTreeLearner::BuildGPUKernels␣
→˓(this=this@entry=0x3b9cac0)

at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:569
#10 0x0000000000457b49 in LightGBM::GPUTreeLearner::InitGPU (this=0x3b9cac0, platform_id=
→˓<optimized out>, device_id=<optimized out>)

at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:720
#11 0x0000000000410395 in LightGBM::GBDT::ResetTrainingData (this=0x1f26c90, config=
→˓<optimized out>, train_data=0x1f28180, objective_function=0x1f280e0,

training_metrics=std::vector of length 2, capacity 2 = {...}) at C:\LightGBM\src\
→˓boosting\gbdt.cpp:98
#12 0x0000000000402e93 in LightGBM::Application::InitTrain (this=this@entry=0x23f9d0) at␣
→˓C:\LightGBM\src\application\application.cpp:213
---Type <return> to continue, or q <return> to quit---
#13 0x00000000004f0b55 in LightGBM::Application::Run (this=0x23f9d0) at C:/LightGBM/
→˓include/LightGBM/application.h:84
#14 main (argc=6, argv=0x1f21e90) at C:\LightGBM\src\main.cpp:7

Right-click the command prompt, click “Mark”, and select all the text from the first line (with the command prompt
containing gdb) to the last line printed, containing all the log, such as:

C:\LightGBM\examples\binary_classification>gdb --args "../../lightgbm.exe" config=train.
→˓conf data=binary.train valid=binary.test objective=binary device=gpu
GNU gdb (GDB) 7.10.1
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-w64-mingw32".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ../../lightgbm.exe...done.
(gdb) run
Starting program: C:\LightGBM\lightgbm.exe "config=train.conf" "data=binary.train"
→˓"valid=binary.test" "objective=binary" "device=gpu"
[New Thread 105220.0x199b8]
[New Thread 105220.0x783c]
[Thread 105220.0x783c exited with code 0]

(continues on next page)

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 279

LightGBM, Release 4.3.0.99

(continued from previous page)

[LightGBM] [Info] Finished loading parameters
[New Thread 105220.0x19490]
[New Thread 105220.0x1a71c]
[New Thread 105220.0x19a24]
[New Thread 105220.0x4fb0]
[Thread 105220.0x4fb0 exited with code 0]
[LightGBM] [Info] Loading weights...
[New Thread 105220.0x19988]
[Thread 105220.0x19988 exited with code 0]
[New Thread 105220.0x1a8fc]
[Thread 105220.0x1a8fc exited with code 0]
[LightGBM] [Info] Loading weights...
[New Thread 105220.0x1a90c]
[Thread 105220.0x1a90c exited with code 0]
[LightGBM] [Info] Finished loading data in 1.011408 seconds
[LightGBM] [Info] Number of positive: 3716, number of negative: 3284
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 6143
[LightGBM] [Info] Number of data: 7000, number of used features: 28
[New Thread 105220.0x1a62c]
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 256 bins...

Program received signal SIGSEGV, Segmentation fault.
0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
(gdb) backtrace
#0 0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
#1 0x000000000048bbe5 in std::char_traits<char>::length (__s=0x0)

at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/
→˓char_traits.h:267
#2 std::operator+<char, std::char_traits<char>, std::allocator<char> > (__rhs="\\", __
→˓lhs=0x0)

at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/
→˓basic_string.tcc:1157
#3 boost::compute::detail::appdata_path[abi:cxx11]() () at C:/boost/boost-build/include/
→˓boost/compute/detail/path.hpp:38
#4 0x000000000048eec3 in boost::compute::detail::program_binary_path (hash=
→˓"d27987d5bd61e2d28cd32b8d7a7916126354dc81", create=create@entry=false)

at C:/boost/boost-build/include/boost/compute/detail/path.hpp:46
#5 0x00000000004913de in boost::compute::program::load_program_binary (hash=
→˓"d27987d5bd61e2d28cd32b8d7a7916126354dc81", ctx=...)

at C:/boost/boost-build/include/boost/compute/program.hpp:605
#6 0x0000000000490ece in boost::compute::program::build_with_source (

source="\n#ifndef _HISTOGRAM_256_KERNEL_\n#define _HISTOGRAM_256_KERNEL_\n\n#pragma␣
→˓OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n#pragma OPENCL EXTENSION cl_
→˓khr_global_int32_base_atomics : enable\n\n//"..., context=...,

options=" -D POWER_FEATURE_WORKGROUPS=5 -D USE_CONSTANT_BUF=0 -D USE_DP_FLOAT=0 -D␣
→˓CONST_HESSIAN=0 -cl-strict-aliasing -cl-mad-enable -cl-no-signed-zeros -cl-fast-
→˓relaxed-math") at C:/boost/boost-build/include/boost/compute/program.hpp:549
#7 0x0000000000454339 in LightGBM::GPUTreeLearner::BuildGPUKernels () at C:\LightGBM\
→˓src\treelearner\gpu_tree_learner.cpp:583
#8 0x00000000636044f2 in libgomp-1!GOMP_parallel () from C:\Program Files\mingw-w64\x86_

(continues on next page)

280 Chapter 17. GPU Windows Compilation

LightGBM, Release 4.3.0.99

(continued from previous page)

→˓64-5.3.0-posix-seh-rt_v4-rev0\mingw64\bin\libgomp-1.dll
#9 0x0000000000455e7e in LightGBM::GPUTreeLearner::BuildGPUKernels␣
→˓(this=this@entry=0x3b9cac0)

at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:569
#10 0x0000000000457b49 in LightGBM::GPUTreeLearner::InitGPU (this=0x3b9cac0, platform_id=
→˓<optimized out>, device_id=<optimized out>)

at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:720
#11 0x0000000000410395 in LightGBM::GBDT::ResetTrainingData (this=0x1f26c90, config=
→˓<optimized out>, train_data=0x1f28180, objective_function=0x1f280e0,

training_metrics=std::vector of length 2, capacity 2 = {...}) at C:\LightGBM\src\
→˓boosting\gbdt.cpp:98
#12 0x0000000000402e93 in LightGBM::Application::InitTrain (this=this@entry=0x23f9d0) at␣
→˓C:\LightGBM\src\application\application.cpp:213
---Type <return> to continue, or q <return> to quit---
#13 0x00000000004f0b55 in LightGBM::Application::Run (this=0x23f9d0) at C:/LightGBM/
→˓include/LightGBM/application.h:84
#14 main (argc=6, argv=0x1f21e90) at C:\LightGBM\src\main.cpp:7

And open an issue in GitHub here with that log.

17.1. Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc 281

https://github.com/microsoft/LightGBM/issues

LightGBM, Release 4.3.0.99

282 Chapter 17. GPU Windows Compilation

CHAPTER

EIGHTEEN

RECOMMENDATIONS WHEN USING GCC

It is recommended to use -O3 -mtune=native to achieve maximum speed during LightGBM training.

Using Intel Ivy Bridge CPU on 1M x 1K Bosch dataset, the performance increases as follow:

Compilation Flag Performance Index
-O2 -mtune=core2 100.00%
-O2 -mtune=native 100.90%
-O3 -mtune=native 102.78%
-O3 -ffast-math -mtune=native 100.64%

You can find more details on the experimentation below:

• Laurae++/Benchmarks

• Laurae2/gbt_benchmarks

• Laurae’s Benchmark Master Data (Interactive)

The image below compares the runtime for training with different compiler options to a baseline using LightGBM com-
piled with -O2 --mtune=core2. All three options are faster than that baseline. The best performance was achieved
with -O3 --mtune=native.

283

https://sites.google.com/view/lauraepp/benchmarks/xgb-vs-lgb-feb-2017
https://github.com/Laurae2/gbt_benchmarks
https://public.tableau.com/views/gbt_benchmarks/Master-Data?:showVizHome=no

LightGBM, Release 4.3.0.99

284 Chapter 18. Recommendations When Using gcc

./_static/images/gcc-comparison-2.png

CHAPTER

NINETEEN

DOCUMENTATION

Documentation for LightGBM is generated using Sphinx and Breathe, which works on top of Doxygen output.

List of parameters and their descriptions in Parameters.rst is generated automatically from comments in config file by
this script.

After each commit on master, documentation is updated and published to Read the Docs.

19.1 Build

It is not necessary to re-build this documentation while modifying LightGBM’s source code. The HTML files generated
using Sphinx are not checked into source control. However, you may want to build them locally during development
to test changes.

19.1.1 Docker

The most reliable way to build the documentation locally is with Docker, using the same images Read the Docs uses.

Run the following from the root of this repository to pull the relevant image and run a container locally.

docker run \
--rm \
--user=0 \
-v $(pwd):/opt/LightGBM \
--env C_API=true \
--env CONDA=/opt/miniforge \
--env READTHEDOCS=true \
--workdir=/opt/LightGBM/docs \
--entrypoint="" \
readthedocs/build:ubuntu-20.04-2021.09.23 \
/bin/bash build-docs.sh

When that code completes, open docs/_build/html/index.html in your browser.

Note: The navigation in these locally-built docs does not link to the local copy of the R documentation. To view the
local version of the R docs, open docs/_build/html/R/index.html in your browser.

285

https://www.sphinx-doc.org/
https://breathe.readthedocs.io/
https://www.doxygen.nl/index.html
./Parameters.html
https://github.com/microsoft/LightGBM/blob/master/include/LightGBM/config.h
https://github.com/microsoft/LightGBM/blob/master/helpers/parameter_generator.py
https://lightgbm.readthedocs.io/
https://hub.docker.com/r/readthedocs/build

LightGBM, Release 4.3.0.99

19.1.2 Without Docker

You can build the documentation locally without Docker. Just install Doxygen and run in docs folder

pip install breathe sphinx 'sphinx_rtd_theme>=0.5'
make html

Note that this will not build the R documentation. Consider using common R utilities for documentation generation, if
you need it. Or use the Docker-based approach described above to build the R documentation locally.

Optionally, you may also install scikit-learn and get richer documentation for the classes in Scikit-learn API.

If you faced any problems with Doxygen installation or you simply do not need documentation for C code, it is possible
to build the documentation without it:

pip install sphinx 'sphinx_rtd_theme>=0.5'
export C_API=NO || set C_API=NO
make html

286 Chapter 19. Documentation

CHAPTER

TWENTY

INDICES AND TABLES

• genindex

287

LightGBM, Release 4.3.0.99

288 Chapter 20. Indices and Tables

INDEX

Symbols
__init__() (lightgbm.Booster method), 115
__init__() (lightgbm.CVBooster method), 127
__init__() (lightgbm.DaskLGBMClassifier method),

181
__init__() (lightgbm.DaskLGBMRanker method), 206
__init__() (lightgbm.DaskLGBMRegressor method),

195
__init__() (lightgbm.Dataset method), 107
__init__() (lightgbm.LGBMClassifier method), 145
__init__() (lightgbm.LGBMModel method), 134
__init__() (lightgbm.LGBMRanker method), 170
__init__() (lightgbm.LGBMRegressor method), 159
__init__() (lightgbm.Sequence method), 129

A
add_features_from() (lightgbm.Dataset method), 109
add_valid() (lightgbm.Booster method), 116

B
batch_size (lightgbm.Sequence attribute), 129
best_iteration (lightgbm.CVBooster attribute), 127
best_iteration_ (lightgbm.DaskLGBMClassifier

property), 184
best_iteration_ (lightgbm.DaskLGBMRanker prop-

erty), 209
best_iteration_ (lightgbm.DaskLGBMRegressor

property), 198
best_iteration_ (lightgbm.LGBMClassifier property),

148
best_iteration_ (lightgbm.LGBMModel property),

137
best_iteration_ (lightgbm.LGBMRanker property),

173
best_iteration_ (lightgbm.LGBMRegressor prop-

erty), 162
best_score_ (lightgbm.DaskLGBMClassifier property),

184
best_score_ (lightgbm.DaskLGBMRanker property),

209
best_score_ (lightgbm.DaskLGBMRegressor prop-

erty), 198

best_score_ (lightgbm.LGBMClassifier property), 148
best_score_ (lightgbm.LGBMModel property), 137
best_score_ (lightgbm.LGBMRanker property), 173
best_score_ (lightgbm.LGBMRegressor property), 162
Booster (class in lightgbm), 115
booster_ (lightgbm.DaskLGBMClassifier property),

185
booster_ (lightgbm.DaskLGBMRanker property), 210
booster_ (lightgbm.DaskLGBMRegressor property),

198
booster_ (lightgbm.LGBMClassifier property), 148
booster_ (lightgbm.LGBMModel property), 137
booster_ (lightgbm.LGBMRanker property), 173
booster_ (lightgbm.LGBMRegressor property), 162
BoosterHandle (C type), 72
boosters (lightgbm.CVBooster attribute), 127
ByteBufferHandle (C type), 72

C
C_API_DTYPE_FLOAT32 (C macro), 71
C_API_DTYPE_FLOAT64 (C macro), 71
C_API_DTYPE_INT32 (C macro), 71
C_API_DTYPE_INT64 (C macro), 71
C_API_FEATURE_IMPORTANCE_GAIN (C macro), 71
C_API_FEATURE_IMPORTANCE_SPLIT (C macro), 71
C_API_MATRIX_TYPE_CSC (C macro), 71
C_API_MATRIX_TYPE_CSR (C macro), 72
C_API_PREDICT_CONTRIB (C macro), 72
C_API_PREDICT_LEAF_INDEX (C macro), 72
C_API_PREDICT_NORMAL (C macro), 72
C_API_PREDICT_RAW_SCORE (C macro), 72
classes_ (lightgbm.DaskLGBMClassifier property),

185
classes_ (lightgbm.LGBMClassifier property), 149
client_ (lightgbm.DaskLGBMClassifier property), 185
client_ (lightgbm.DaskLGBMRanker property), 210
client_ (lightgbm.DaskLGBMRegressor property), 198
construct() (lightgbm.Dataset method), 109
create_tree_digraph() (in module lightgbm), 223
create_valid() (lightgbm.Dataset method), 109
current_iteration() (lightgbm.Booster method), 116
cv() (in module lightgbm), 132

289

LightGBM, Release 4.3.0.99

CVBooster (class in lightgbm), 127

D
DaskLGBMClassifier (class in lightgbm), 181
DaskLGBMRanker (class in lightgbm), 206
DaskLGBMRegressor (class in lightgbm), 195
Dataset (class in lightgbm), 107
DatasetHandle (C type), 72
dump_model() (lightgbm.Booster method), 117

E
early_stopping() (in module lightgbm), 217
eval() (lightgbm.Booster method), 117
eval_train() (lightgbm.Booster method), 118
eval_valid() (lightgbm.Booster method), 118
evals_result_ (lightgbm.DaskLGBMClassifier prop-

erty), 185
evals_result_ (lightgbm.DaskLGBMRanker prop-

erty), 210
evals_result_ (lightgbm.DaskLGBMRegressor prop-

erty), 199
evals_result_ (lightgbm.LGBMClassifier property),

149
evals_result_ (lightgbm.LGBMModel property), 138
evals_result_ (lightgbm.LGBMRanker property), 174
evals_result_ (lightgbm.LGBMRegressor property),

162

F
FastConfigHandle (C type), 72
feature_importance() (lightgbm.Booster method),

119
feature_importances_ (light-

gbm.DaskLGBMClassifier property), 185
feature_importances_ (lightgbm.DaskLGBMRanker

property), 210
feature_importances_ (light-

gbm.DaskLGBMRegressor property), 199
feature_importances_ (lightgbm.LGBMClassifier

property), 149
feature_importances_ (lightgbm.LGBMModel prop-

erty), 138
feature_importances_ (lightgbm.LGBMRanker prop-

erty), 174
feature_importances_ (lightgbm.LGBMRegressor

property), 162
feature_name() (lightgbm.Booster method), 119
feature_name_ (lightgbm.DaskLGBMClassifier prop-

erty), 185
feature_name_ (lightgbm.DaskLGBMRanker prop-

erty), 210
feature_name_ (lightgbm.DaskLGBMRegressor prop-

erty), 199

feature_name_ (lightgbm.LGBMClassifier property),
149

feature_name_ (lightgbm.LGBMModel property), 138
feature_name_ (lightgbm.LGBMRanker property), 174
feature_name_ (lightgbm.LGBMRegressor property),

162
feature_num_bin() (lightgbm.Dataset method), 110
fit() (lightgbm.DaskLGBMClassifier method), 185
fit() (lightgbm.DaskLGBMRanker method), 210
fit() (lightgbm.DaskLGBMRegressor method), 199
fit() (lightgbm.LGBMClassifier method), 149
fit() (lightgbm.LGBMModel method), 138
fit() (lightgbm.LGBMRanker method), 174
fit() (lightgbm.LGBMRegressor method), 163
free_dataset() (lightgbm.Booster method), 119
free_network() (lightgbm.Booster method), 119

G
get_data() (lightgbm.Dataset method), 110
get_feature_name() (lightgbm.Dataset method), 111
get_field() (lightgbm.Dataset method), 111
get_group() (lightgbm.Dataset method), 111
get_init_score() (lightgbm.Dataset method), 111
get_label() (lightgbm.Dataset method), 111
get_leaf_output() (lightgbm.Booster method), 119
get_metadata_routing() (light-

gbm.DaskLGBMClassifier method), 187
get_metadata_routing() (light-

gbm.DaskLGBMRanker method), 212
get_metadata_routing() (light-

gbm.DaskLGBMRegressor method), 201
get_metadata_routing() (lightgbm.LGBMClassifier

method), 151
get_metadata_routing() (lightgbm.LGBMModel

method), 140
get_metadata_routing() (lightgbm.LGBMRanker

method), 176
get_metadata_routing() (lightgbm.LGBMRegressor

method), 164
get_params() (lightgbm.DaskLGBMClassifier method),

187
get_params() (lightgbm.DaskLGBMRanker method),

212
get_params() (lightgbm.DaskLGBMRegressor

method), 201
get_params() (lightgbm.Dataset method), 112
get_params() (lightgbm.LGBMClassifier method), 151
get_params() (lightgbm.LGBMModel method), 140
get_params() (lightgbm.LGBMRanker method), 176
get_params() (lightgbm.LGBMRegressor method), 165
get_position() (lightgbm.Dataset method), 112
get_ref_chain() (lightgbm.Dataset method), 112
get_split_value_histogram() (lightgbm.Booster

method), 120

290 Index

LightGBM, Release 4.3.0.99

get_weight() (lightgbm.Dataset method), 112

I
INLINE_FUNCTION (C macro), 72

L
LastErrorMsg (C function), 73
LGBM_BoosterAddValidData (C function), 73
LGBM_BoosterCalcNumPredict (C function), 73
LGBM_BoosterCreate (C function), 73
LGBM_BoosterCreateFromModelfile (C function), 73
LGBM_BoosterDumpModel (C function), 74
LGBM_BoosterFeatureImportance (C function), 74
LGBM_BoosterFree (C function), 74
LGBM_BoosterFreePredictSparse (C function), 75
LGBM_BoosterGetCurrentIteration (C function), 75
LGBM_BoosterGetEval (C function), 75
LGBM_BoosterGetEvalCounts (C function), 76
LGBM_BoosterGetEvalNames (C function), 76
LGBM_BoosterGetFeatureNames (C function), 76
LGBM_BoosterGetLeafValue (C function), 76
LGBM_BoosterGetLinear (C function), 77
LGBM_BoosterGetLoadedParam (C function), 77
LGBM_BoosterGetLowerBoundValue (C function), 77
LGBM_BoosterGetNumClasses (C function), 77
LGBM_BoosterGetNumFeature (C function), 78
LGBM_BoosterGetNumPredict (C function), 78
LGBM_BoosterGetPredict (C function), 78
LGBM_BoosterGetUpperBoundValue (C function), 78
LGBM_BoosterLoadModelFromString (C function), 79
LGBM_BoosterMerge (C function), 79
LGBM_BoosterNumberOfTotalModel (C function), 79
LGBM_BoosterNumModelPerIteration (C function),

79
LGBM_BoosterPredictForArrow (C function), 79
LGBM_BoosterPredictForCSC (C function), 80
LGBM_BoosterPredictForCSR (C function), 81
LGBM_BoosterPredictForCSRSingleRow (C func-

tion), 82
LGBM_BoosterPredictForCSRSingleRowFast (C

function), 83
LGBM_BoosterPredictForCSRSingleRowFastInit

(C function), 84
LGBM_BoosterPredictForFile (C function), 84
LGBM_BoosterPredictForMat (C function), 85
LGBM_BoosterPredictForMats (C function), 86
LGBM_BoosterPredictForMatSingleRow (C func-

tion), 87
LGBM_BoosterPredictForMatSingleRowFast (C

function), 87
LGBM_BoosterPredictForMatSingleRowFastInit

(C function), 88
LGBM_BoosterPredictSparseOutput (C function), 89
LGBM_BoosterRefit (C function), 90

LGBM_BoosterResetParameter (C function), 90
LGBM_BoosterResetTrainingData (C function), 90
LGBM_BoosterRollbackOneIter (C function), 90
LGBM_BoosterSaveModel (C function), 90
LGBM_BoosterSaveModelToString (C function), 91
LGBM_BoosterSetLeafValue (C function), 91
LGBM_BoosterShuffleModels (C function), 91
LGBM_BoosterUpdateOneIter (C function), 92
LGBM_BoosterUpdateOneIterCustom (C function), 92
LGBM_BoosterValidateFeatureNames (C function),

92
LGBM_ByteBufferFree (C function), 93
LGBM_ByteBufferGetAt (C function), 93
LGBM_DatasetAddFeaturesFrom (C function), 93
LGBM_DatasetCreateByReference (C function), 93
LGBM_DatasetCreateFromArrow (C function), 93
LGBM_DatasetCreateFromCSC (C function), 94
LGBM_DatasetCreateFromCSR (C function), 94
LGBM_DatasetCreateFromCSRFunc (C function), 95
LGBM_DatasetCreateFromFile (C function), 95
LGBM_DatasetCreateFromMat (C function), 95
LGBM_DatasetCreateFromMats (C function), 96
LGBM_DatasetCreateFromSampledColumn (C func-

tion), 96
LGBM_DatasetCreateFromSerializedReference (C

function), 97
LGBM_DatasetDumpText (C function), 97
LGBM_DatasetFree (C function), 97
LGBM_DatasetGetFeatureNames (C function), 97
LGBM_DatasetGetFeatureNumBin (C function), 98
LGBM_DatasetGetField (C function), 98
LGBM_DatasetGetNumData (C function), 98
LGBM_DatasetGetNumFeature (C function), 99
LGBM_DatasetGetSubset (C function), 99
LGBM_DatasetInitStreaming (C function), 99
LGBM_DatasetMarkFinished (C function), 99
LGBM_DatasetPushRows (C function), 100
LGBM_DatasetPushRowsByCSR (C function), 100
LGBM_DatasetPushRowsByCSRWithMetadata (C func-

tion), 100
LGBM_DatasetPushRowsWithMetadata (C function),

101
LGBM_DatasetSaveBinary (C function), 102
LGBM_DatasetSerializeReferenceToBinary (C

function), 102
LGBM_DatasetSetFeatureNames (C function), 102
LGBM_DatasetSetField (C function), 102
LGBM_DatasetSetFieldFromArrow (C function), 103
LGBM_DatasetSetWaitForManualFinish (C func-

tion), 103
LGBM_DatasetUpdateParamChecking (C function),

104
LGBM_DumpParamAliases (C function), 104
LGBM_FastConfigFree (C function), 104

Index 291

LightGBM, Release 4.3.0.99

LGBM_GetLastError (C function), 104
LGBM_GetMaxThreads (C function), 104
LGBM_GetSampleCount (C function), 104
LGBM_NetworkFree (C function), 105
LGBM_NetworkInit (C function), 105
LGBM_NetworkInitWithFunctions (C function), 105
LGBM_RegisterLogCallback (C function), 105
LGBM_SampleIndices (C function), 105
LGBM_SetLastError (C function), 106
LGBM_SetMaxThreads (C function), 106
LGBMClassifier (class in lightgbm), 145
LGBMModel (class in lightgbm), 134
LGBMRanker (class in lightgbm), 170
LGBMRegressor (class in lightgbm), 159
log_evaluation() (in module lightgbm), 217
lower_bound() (lightgbm.Booster method), 120

M
model_from_string() (lightgbm.Booster method), 120
model_from_string() (lightgbm.CVBooster method),

128
model_to_string() (lightgbm.Booster method), 121
model_to_string() (lightgbm.CVBooster method),

128

N
n_classes_ (lightgbm.DaskLGBMClassifier property),

187
n_classes_ (lightgbm.LGBMClassifier property), 151
n_estimators_ (lightgbm.DaskLGBMClassifier prop-

erty), 188
n_estimators_ (lightgbm.DaskLGBMRanker prop-

erty), 212
n_estimators_ (lightgbm.DaskLGBMRegressor prop-

erty), 201
n_estimators_ (lightgbm.LGBMClassifier property),

151
n_estimators_ (lightgbm.LGBMModel property), 140
n_estimators_ (lightgbm.LGBMRanker property), 176
n_estimators_ (lightgbm.LGBMRegressor property),

165
n_features_ (lightgbm.DaskLGBMClassifier property),

188
n_features_ (lightgbm.DaskLGBMRanker property),

213
n_features_ (lightgbm.DaskLGBMRegressor prop-

erty), 201
n_features_ (lightgbm.LGBMClassifier property), 152
n_features_ (lightgbm.LGBMModel property), 141
n_features_ (lightgbm.LGBMRanker property), 177
n_features_ (lightgbm.LGBMRegressor property), 165
n_features_in_ (lightgbm.DaskLGBMClassifier prop-

erty), 188

n_features_in_ (lightgbm.DaskLGBMRanker prop-
erty), 213

n_features_in_ (lightgbm.DaskLGBMRegressor prop-
erty), 201

n_features_in_ (lightgbm.LGBMClassifier property),
152

n_features_in_ (lightgbm.LGBMModel property), 141
n_features_in_ (lightgbm.LGBMRanker property),

177
n_features_in_ (lightgbm.LGBMRegressor property),

165
n_iter_ (lightgbm.DaskLGBMClassifier property), 188
n_iter_ (lightgbm.DaskLGBMRanker property), 213
n_iter_ (lightgbm.DaskLGBMRegressor property), 201
n_iter_ (lightgbm.LGBMClassifier property), 152
n_iter_ (lightgbm.LGBMModel property), 141
n_iter_ (lightgbm.LGBMRanker property), 177
n_iter_ (lightgbm.LGBMRegressor property), 165
num_data() (lightgbm.Dataset method), 112
num_feature() (lightgbm.Booster method), 121
num_feature() (lightgbm.Dataset method), 112
num_model_per_iteration() (lightgbm.Booster

method), 121
num_trees() (lightgbm.Booster method), 121

O
objective_ (lightgbm.DaskLGBMClassifier property),

188
objective_ (lightgbm.DaskLGBMRanker property),

213
objective_ (lightgbm.DaskLGBMRegressor property),

202
objective_ (lightgbm.LGBMClassifier property), 152
objective_ (lightgbm.LGBMModel property), 141
objective_ (lightgbm.LGBMRanker property), 177
objective_ (lightgbm.LGBMRegressor property), 165

P
plot_importance() (in module lightgbm), 219
plot_metric() (in module lightgbm), 221
plot_split_value_histogram() (in module light-

gbm), 220
plot_tree() (in module lightgbm), 222
predict() (lightgbm.Booster method), 121
predict() (lightgbm.DaskLGBMClassifier method),

188
predict() (lightgbm.DaskLGBMRanker method), 213
predict() (lightgbm.DaskLGBMRegressor method),

202
predict() (lightgbm.LGBMClassifier method), 152
predict() (lightgbm.LGBMModel method), 141
predict() (lightgbm.LGBMRanker method), 177
predict() (lightgbm.LGBMRegressor method), 165

292 Index

LightGBM, Release 4.3.0.99

predict_proba() (lightgbm.DaskLGBMClassifier
method), 189

predict_proba() (lightgbm.LGBMClassifier method),
153

R
record_evaluation() (in module lightgbm), 218
refit() (lightgbm.Booster method), 122
register_logger() (in module lightgbm), 225
reset_parameter() (in module lightgbm), 218
reset_parameter() (lightgbm.Booster method), 124
rollback_one_iter() (lightgbm.Booster method), 124

S
save_binary() (lightgbm.Dataset method), 113
save_model() (lightgbm.Booster method), 124
save_model() (lightgbm.CVBooster method), 128
score() (lightgbm.DaskLGBMClassifier method), 190
score() (lightgbm.DaskLGBMRegressor method), 202
score() (lightgbm.LGBMClassifier method), 154
score() (lightgbm.LGBMRegressor method), 166
Sequence (class in lightgbm), 129
set_categorical_feature() (lightgbm.Dataset

method), 113
set_feature_name() (lightgbm.Dataset method), 113
set_field() (lightgbm.Dataset method), 113
set_fit_request() (lightgbm.DaskLGBMClassifier

method), 190
set_fit_request() (lightgbm.DaskLGBMRanker

method), 214
set_fit_request() (lightgbm.DaskLGBMRegressor

method), 203
set_fit_request() (lightgbm.LGBMClassifier

method), 154
set_fit_request() (lightgbm.LGBMModel method),

142
set_fit_request() (lightgbm.LGBMRanker method),

178
set_fit_request() (lightgbm.LGBMRegressor

method), 167
set_group() (lightgbm.Dataset method), 113
set_init_score() (lightgbm.Dataset method), 114
set_label() (lightgbm.Dataset method), 114
set_leaf_output() (lightgbm.Booster method), 124
set_network() (lightgbm.Booster method), 125
set_params() (lightgbm.DaskLGBMClassifier method),

191
set_params() (lightgbm.DaskLGBMRanker method),

215
set_params() (lightgbm.DaskLGBMRegressor

method), 204
set_params() (lightgbm.LGBMClassifier method), 155
set_params() (lightgbm.LGBMModel method), 143
set_params() (lightgbm.LGBMRanker method), 179

set_params() (lightgbm.LGBMRegressor method), 168
set_position() (lightgbm.Dataset method), 114
set_predict_proba_request() (light-

gbm.DaskLGBMClassifier method), 192
set_predict_proba_request() (light-

gbm.LGBMClassifier method), 156
set_predict_request() (light-

gbm.DaskLGBMClassifier method), 193
set_predict_request() (light-

gbm.DaskLGBMRanker method), 215
set_predict_request() (light-

gbm.DaskLGBMRegressor method), 204
set_predict_request() (lightgbm.LGBMClassifier

method), 157
set_predict_request() (lightgbm.LGBMModel

method), 144
set_predict_request() (lightgbm.LGBMRanker

method), 180
set_predict_request() (lightgbm.LGBMRegressor

method), 168
set_reference() (lightgbm.Dataset method), 114
set_score_request() (lightgbm.DaskLGBMClassifier

method), 194
set_score_request() (light-

gbm.DaskLGBMRegressor method), 205
set_score_request() (lightgbm.LGBMClassifier

method), 158
set_score_request() (lightgbm.LGBMRegressor

method), 169
set_train_data_name() (lightgbm.Booster method),

125
set_weight() (lightgbm.Dataset method), 115
shuffle_models() (lightgbm.Booster method), 125
subset() (lightgbm.Dataset method), 115

T
THREAD_LOCAL (C macro), 72
to_local() (lightgbm.DaskLGBMClassifier method),

194
to_local() (lightgbm.DaskLGBMRanker method), 216
to_local() (lightgbm.DaskLGBMRegressor method),

206
train() (in module lightgbm), 130
trees_to_dataframe() (lightgbm.Booster method),

125

U
update() (lightgbm.Booster method), 126
upper_bound() (lightgbm.Booster method), 127

Index 293

	Installation Guide
	Windows
	Visual Studio (or VS Build Tools)
	With GUI
	From Command Line

	MinGW-w64

	Linux
	Using Ninja

	macOS
	Apple Clang
	Install Using Homebrew
	Build from GitHub

	gcc

	Docker
	Build Threadless Version (not Recommended)
	Windows
	Visual Studio (or VS Build Tools)
	With GUI
	From Command Line

	MinGW-w64

	Linux
	macOS
	Apple Clang
	gcc

	Build MPI Version
	Windows
	With GUI
	From Command Line

	Linux
	macOS
	Apple Clang
	gcc

	Build GPU Version
	Linux
	Windows
	Docker

	Build CUDA Version
	Linux
	macOS
	Windows

	Build HDFS Version
	Linux

	Build Java Wrapper
	Windows
	VS Build Tools
	MinGW-w64

	Linux
	macOS
	Apple Clang
	gcc

	Build C++ Unit Tests
	Windows
	Linux
	macOS
	Apple Clang
	gcc

	Quick Start
	Training Data Format
	Categorical Feature Support
	Weight and Query/Group Data

	Parameters Quick Look
	Run LightGBM
	Examples

	Python-package Introduction
	Install
	Data Interface
	Setting Parameters
	Training
	CV
	Early Stopping
	Prediction

	Features
	Optimization in Speed and Memory Usage
	Sparse Optimization
	Optimization in Accuracy
	Leaf-wise (Best-first) Tree Growth
	Optimal Split for Categorical Features

	Optimization in Network Communication
	Optimization in Distributed Learning
	Feature Parallel
	Traditional Algorithm
	Feature Parallel in LightGBM

	Data Parallel
	Traditional Algorithm
	Data Parallel in LightGBM

	Voting Parallel

	GPU Support
	Applications and Metrics
	Other Features
	References

	Experiments
	Comparison Experiment
	History
	Data
	Environment
	Baseline
	Settings
	Result
	Speed
	Accuracy
	Memory Consumption

	Parallel Experiment
	History
	Data
	Environment
	Settings
	Results

	GPU Experiments

	Parameters
	Parameters Format
	Core Parameters
	Learning Control Parameters
	IO Parameters
	Dataset Parameters
	Predict Parameters
	Convert Parameters

	Objective Parameters
	Metric Parameters
	Network Parameters
	GPU Parameters
	Others
	Continued Training with Input Score
	Weight Data
	Query Data

	Parameters Tuning
	Tune Parameters for the Leaf-wise (Best-first) Tree
	For Faster Speed
	Add More Computational Resources
	Use a GPU-enabled version of LightGBM
	Grow Shallower Trees
	Decrease max_depth
	Decrease num_leaves
	Increase min_gain_to_split
	Increase min_data_in_leaf and min_sum_hessian_in_leaf

	Grow Less Trees
	Decrease num_iterations
	Use Early Stopping

	Consider Fewer Splits
	Enable Feature Pre-Filtering When Creating Dataset
	Decrease max_bin or max_bin_by_feature When Creating Dataset
	Increase min_data_in_bin When Creating Dataset
	Decrease feature_fraction
	Decrease max_cat_threshold

	Use Less Data
	Use Bagging

	Save Constructed Datasets with save_binary

	For Better Accuracy
	Deal with Over-fitting

	C API
	Python API
	Data Structure API
	lightgbm.Dataset
	lightgbm.Booster
	lightgbm.CVBooster
	lightgbm.Sequence

	Training API
	lightgbm.train
	lightgbm.cv

	Scikit-learn API
	lightgbm.LGBMModel
	lightgbm.LGBMClassifier
	lightgbm.LGBMRegressor
	lightgbm.LGBMRanker

	Dask API
	lightgbm.DaskLGBMClassifier
	lightgbm.DaskLGBMRegressor
	lightgbm.DaskLGBMRanker

	Callbacks
	lightgbm.early_stopping
	lightgbm.log_evaluation
	lightgbm.record_evaluation
	lightgbm.reset_parameter

	Plotting
	lightgbm.plot_importance
	lightgbm.plot_split_value_histogram
	lightgbm.plot_metric
	lightgbm.plot_tree
	lightgbm.create_tree_digraph

	Utilities
	lightgbm.register_logger

	Distributed Learning Guide
	How Distributed LightGBM Works
	Choose Appropriate Parallel Algorithm

	Integrations
	Apache Spark
	Dask
	Dask Examples
	Training with Dask
	Configuring the Dask Cluster
	Setting Up Training Data
	Using a Specific Dask Client
	Using Specific Ports
	Using Custom Objective Functions with Dask

	Prediction with Dask
	Saving Dask Models

	Kubeflow
	LightGBM CLI
	Preparation
	Socket Version
	MPI Version

	Run Distributed Learning
	Socket Version
	MPI Version

	Example

	Ray
	Mars

	LightGBM GPU Tutorial
	GPU Setup
	Build LightGBM
	Install Python Interface (optional)
	Dataset Preparation
	Run Your First Learning Task on GPU
	Further Reading
	Reference

	Advanced Topics
	Missing Value Handle
	Categorical Feature Support
	LambdaRank
	Cost Efficient Gradient Boosting
	Parameters Tuning
	Distributed Learning
	GPU Support
	Recommendations for gcc Users (MinGW, *nix)
	Support for Position Bias Treatment

	LightGBM FAQ
	General LightGBM Questions
	1. Where do I find more details about LightGBM parameters?
	2. On datasets with millions of features, training does not start (or starts after a very long time).
	3. When running LightGBM on a large dataset, my computer runs out of RAM.
	4. I am using Windows. Should I use Visual Studio or MinGW for compiling LightGBM?
	5. When using LightGBM GPU, I cannot reproduce results over several runs.
	6. Bagging is not reproducible when changing the number of threads.
	7. I tried to use Random Forest mode, and LightGBM crashes!
	8. CPU usage is low (like 10%) in Windows when using LightGBM on very large datasets with many-core systems.
	9. When I’m trying to specify a categorical column with the categorical_feature parameter, I get the following sequence of warnings, but there are no negative values in the column.
	10. LightGBM crashes randomly with the error like: Initializing libiomp5.dylib, but found libomp.dylib already initialized.
	11. LightGBM hangs when multithreading (OpenMP) and using forking in Linux at the same time.
	12. Why is early stopping not enabled by default in LightGBM?
	13. Does LightGBM support direct loading data from zero-based or one-based LibSVM format file?
	14. Why CMake cannot find the compiler when compiling LightGBM with MinGW?
	15. Where can I find LightGBM’s logo to use it in my presentation?
	16. LightGBM crashes randomly or operating system hangs during or after running LightGBM.

	R-package
	1. Any training command using LightGBM does not work after an error occurred during the training of a previous LightGBM model.
	2. I used setinfo(), tried to print my lgb.Dataset, and now the R console froze!
	3. error in data.table::data.table()...argument 2 is NULL

	Python-package
	1. Error: setup script specifies an absolute path when installing from GitHub using python setup.py install.
	2. Error messages: Cannot ... before construct dataset.
	3. I encounter segmentation faults (segfaults) randomly after installing LightGBM from PyPI using pip install lightgbm.
	4. I would like to install LightGBM from conda. What channel should I choose?

	Development Guide
	Algorithms
	Classes and Code Structure
	Important Classes
	Code Structure

	Documents API
	C API
	Tests
	High Level Language Package
	Questions

	GPU Tuning Guide and Performance Comparison
	How It Works?
	Supported Hardware
	How to Achieve Good Speedup on GPU
	Performance Comparison
	Memory Usage
	Further Reading

	GPU SDK Correspondence and Device Targeting Table
	GPU Targets Table
	Query OpenCL Devices in Your System
	Examples

	GPU Windows Compilation
	Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc
	Modifying PATH (for newbies)
	Antivirus Performance Impact

	OpenCL SDK Installation
	MinGW Correct Compiler Selection
	Download the prebuilt Boost
	Boost Compilation
	Git Installation
	CMake Installation, Configuration, Generation
	LightGBM Compilation (CLI: final step)
	Installation in CLI
	Testing in CLI

	Debugging LightGBM Crashes in CLI

	Recommendations When Using gcc
	Documentation
	Build
	Docker
	Without Docker

	Indices and Tables
	Index

