Kivy Documentation
Release 2.2.0

The Kivy Developers

May 20, 2023

]

Getting Started
1 Introduction

2 Installing Kivy

3 Afirst App

4 Properties

5 Kv Design Language
6 Events

7 Non-widget stuff
8 Layouts

9 Drawing

10 Packaging

11 Diving in

II Kivy Project
12 Philosophy

13 Contributing
14 FAQ

15 Contact Us

III Programming Guide
16 Kivy Basics

17 Controlling the environment
18 Configure Kivy

19 Architectural Overview

CONTENTS

15
17
19
21
23
25
27
29

31

33
35
37
53

59

61
63
69
75

77

20

21

22

23

24

25

26

27

Events and Properties

Input management

Widgets

Graphics

Kv language

Integrating with other Frameworks
Packaging your application

Package licensing

IV Tutorials

28
29

30

A%
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

Pong Game Tutorial
A Simple Paint App

Crash Course

API Reference
Kivy framework

Core Abstraction

Kivy module for binary dependencies.

Effects

Event Manager
Garden

Graphics

Input management
Kivy Language
External libraries
Modules
Network support
Storage

Tools

Widgets

81
91
99
119
121
133
137

155

159
161
175

185

187
189
307
349
351
357
361
365
461
487
511
515
527
533
539

541

ii

VI Appendix 811
46 License 813
Python Module Index 815

Index 817

1ii

iv

Welcome to Kivy’s documentation. Kivy is an open source software library for the rapid development
of applications equipped with novel user interfaces, such as multi-touch apps.

We recommend that you get started with Getting Started. Then head over to the Programming Guide. We
also have Create an application if you are impatient.

You are probably wondering why you should be interested in using Kivy. There is a document outlining
our Philosophy that we encourage you to read, and a detailed Architectural Overview.

If you want to contribute to Kivy, make sure to read Contributing. If your concern isn’t addressed in the
documentation, feel free to Contact Us.

Part |

GETTING STARTED

CHAPTER

ONE

INTRODUCTION

Start Developing Kivy Apps Right Away!

Creating Kivy apps is fun and rewarding. This guide should be the perfect starting point to get you
on the right track for app development. You will require a basic knowledge of Python to follow this
introduction.

If you need more background on the Python language, you might be interested in these tutorials:
¢ The Official Python Tutorial
¢ Learn Python in 10 minutes
¢ Learn Python the hard way
With Kivy, you can create apps that run on:
® Desktop computers: macOS, Linux, *BSD Unix, Windows.
¢ iOS devices: iPad, iPhone.

Android devices: tablets, phones.

Any other touch-enabled professional /homebrew devices supporting TUIO (Tangible User Inter-
face Objects).

Kivy empowers you with the freedom to write your code once and have it run as-is on different plat-
forms.

Follow this guide to get the tools you need, understand the major concepts and learn best practices. As
this is an introduction, pointers to more information will be provided at the end of each section.

As you proceed through the guide, you will, using Kivy:

¢ Learn: The basics of programming with the Kivy language.

http://docs.python.org/tutorial/
https://www.stavros.io/tutorials/python/
http://learnpythonthehardway.org/

¢ Explore: The Kivy framework.
¢ Create: A simple cross-platform app.
¢ Package: For your choice of platform.
Finally, you will learn how to Deploy on the device of your choice.

Each section of the guide introduces a new topic, trying to give you enough information to get started
and links to related articles for more in-depth explanations. When you are done with this guide, you'll
be able to develop Kivy apps and you will know where to look for information for the more challenging
stuff your innovative applications will require.

Enough introductions, let’s get down to business.

CHAPTER

TWO

INSTALLING KIVY

Installation for Kivy version 2.2.0. Read the changelog here. For other Kivy versions, select the docu-
mentation from the dropdown on the top left.

Kivy 2.2.0 officially supports Python versions 3.7 - 3.11.

Platform Installation Packaging
Py
Ay Windows pip PylInstaller
\ macOS pip, Kivy.app Kivy.app, Pylnstaller
{} Linux pip, PPA —
v
d *BSD (FreeBSD,..) | pip —
—‘ RPi pip —
l‘l
' Android python-for-android | python-for-android
i0OS kivy-ios kivy-ios
7
J ANACONDA Anaconda conda —

2.1 Using pip

The easiest way to install Kivy is with pip, which installs Kivy using either a pre-compiled wheel, if
available, otherwise from source (see below).

Kivy provides pre-compiled wheels for the supported Python versions on Windows, macOS, Linux, and
RPi.

If no wheels are available pip will build the package from sources (i.e. on *BSD).

Alternatively, installing from source is required for newer Python versions not listed above or if the
wheels do not work or fail to run properly.

On RPi, when using a 32 bit OS, wheels are provided for Python 3.7 (Raspberry Pi OS Buster) and
Python 3.9 (Raspberry Pi OS Bullseye), via the PiWheels project. For other Python versions, on 32 bit
OSes, you will need to install from source.

https://www.piwheels.org/

2.1.1 Setup terminal and pip

Before Kivy can be installed, Python and pip needs to be pre-installed. Then, start a new terminal that
has Python available. In the terminal, update pip and other installation dependencies so you have the
latest version as follows (for linux users you may have to substitute python3 instead of python and
also add a - -user flag in the subsequent commands outside the virtual environment):

python -m pip install --upgrade pip setuptools virtualenv

2.1.2 Create virtual environment

Create a new virtual environment for your Kivy project. A virtual environment will prevent possible in-
stallation conflicts with other Python versions and packages. It’s optional but strongly recommended:

1. Create the virtual environment named kivy_venv in your current directory:

python -m virtualenv kivy_venv

2. Activate the virtual environment. You will have to do this step from the current directory every
time you start a new terminal. This sets up the environment so the new kivy_venv Python is
used.

For Windows default CMD, in the command line do:

kivy_venv\Scripts\activate

If you are in a bash terminal on Windows, instead do:

source kivy_venv/Scripts/activate

If you are in linux or macOS, instead do:

source kivy_venv/bin/activate

Your terminal should now preface the path with something like (kivy_venv), indicating that the
kivy_venv environment is active. If it doesn’t say that, the virtual environment is not active and the
following won’t work.

2.1.3 Install Kivy

Finally, install Kivy using one of the following options:

Pre-compiled wheels

The simplest is to install the current stable version of kKivy and optionally kivy_examples from the
kivy-team provided PyPi wheels. Simply do:

python -m pip install "kivy[base]" kivy_examples

This also installs the minimum dependencies of Kivy. To additionally install Kivy with audio/video
support, install either kivy[base,media] or kivy[full]. See Kivy’s dependencies for the list of
selectors.

https://virtualenv.pypa.io/en/latest/

From source

If a wheel is not available or is not working, Kivy can be installed from source with some additional
steps. Installing from source means that Kivy will be installed from source code and compiled directly
on your system.

First install the additional system dependencies listed for each platform: Windows, macOS, Linux,
*BSD, RPi

Note: In past, for macOS, Linux and BSD Kivy required the installation of the SDL dependencies from
package managers (e.g. apt or brew). However, this is no longer officially supported as the version
of SDL provided by the package managers is often outdated and may not work with Kivy as we try to
keep up with the latest SDL versions in order to support the latest features and bugfixes.

You can still install the SDL dependencies from package managers if you wish, but we no longer
offer support for this.

Instead, we recommend installing the SDL dependencies from source. This is the same process our
CI uses to build the wheels. The SDL dependencies are built from source and installed into a specific
directory.

With all the build tools installed, you can now install the SDL dependencies from source for SDL sup-
port (this is not needed on Windows as we provide pre-built SDL dependencies for Windows)

In order to do so, we provide a script that will download and build the SDL dependencies from source.
This script is located in the tools directory of the Kivy repository.

Create a directory to store the self-built dependencies and change into it:

mkdir kivy-deps-build && cd kivy-deps-build

Then download the build tool script, according to your platform:

On macOS:

curl -0 https://raw.githubusercontent.com/kivy/kivy/master/tools/build_
~macos_dependencies.sh -o build_kivy_deps.sh

On Linux:

curl -0 https://raw.githubusercontent.com/kivy/kivy/master/tools/build_
~linux_dependencies.sh -o build_kivy_deps.sh

Make the script executable:

chmod +x build_kivy_deps.sh

Finally, run the script:

./build_kivy_deps.sh

The script will download and build the SDL dependencies from source. It will also install the depen-
dencies into a directory named kivy-dependencies. This directory will be used by Kivy to build and install
Kivy from source with SDL support.

Kivy will need to know where the SDL dependencies are installed. To do so, you must set the
KIVY_DEPS_ROOT environment variable to the path of the kivy-dependencies directory. For ex-
ample, if you are in the kivy-deps-build directory, you can set the environment variable with:

export KIVY_DEPS_ROOT=$(pwd)/kivy-dependencies

With the dependencies installed, and KIVY_DEPS_ROOT set you can now install Kivy into the virtual
environment.

To install the stable version of Kivy, from the terminal do:

python -m pip install "kivy[base]" kivy_examples --no-binary kivy

To install the latest cutting-edge Kivy from master, instead do:

python -m pip install "kivy[base] @ https://github.com/kivy/kivy/archive/
-master.zip"

If you want to install Kivy from a different branch, from your forked repository, or from a specific
commit (e.g. to test a fix from a user’s PR) replace the corresponding components of the url.

For example to install from the stable branch, the url becomes https://github.com/kivy/
kivy/archive/stable.zip. Or to try a specific commit hash, use e.g. https://github.com/
kivy/kivy/archive/3d3e45ddal46fef3f4758aea548dal99e10eb382.zip

Pre-release, pre-compiled wheels

To install a pre-compiled wheel of the last pre-release version of Kivy, instead of the current stable
version, add the - -pre flag to pip:

python -m pip install --pre "kivy[basel" kivy_examples

This will only install a development version of Kivy if one was released to PyPi. Instead, one can also
install the latest cutting-edge Nightly wheels from the Kivy server with:

python -m pip install kivy --pre --no-deps --index-url https://kivy.org/
~downloads/simple/

python -m pip install "kivy[base]" --pre --extra-index-url https://kivy.
~org/downloads/simple/

It is done in two steps, because otherwise pip may ignore the wheels on the server and install an older
pre-release version from PyPi.

Development install

If you want to edit Kivy before installing it, or if you want to try fixing some Kivy issue and submit
a pull request with the fix, you will need to first download the Kivy source code. The following steps
assumes git is pre-installed and available in the terminal.

The typical process is to clone Kivy locally with:

git clone https://github.com/kivy/kivy.git

This creates a kivy named folder in your current path. Next, follow the same steps of the Installing from
source above, but instead of installing Kivy via a distribution package or zip file, install it as an editable
install.

In order to do so, first change into the Kivy folder you just cloned:: and then install Kivy as an editable
install:

10

https://pypi.org/project/Kivy/#history
https://pip.pypa.io/en/stable/cli/pip_install/#editable-installs
https://pip.pypa.io/en/stable/cli/pip_install/#editable-installs

cd kivy
python -m pip install -e ".[dev,full]"

Now, you can use git to change branches, edit the code and submit a PR. Remember to compile Kivy
each time you change cython files as follows:

python setup.py build_ext --inplace

Or if using bash or on Linux, simply do:

make

to recompile.

To run the test suite, simply run:

pytest kivy/tests

or in bash or Linux:

make test

On *BSD Unix remember to use gmake (GNU) in place of make (BSD).

2.1.4 Checking the demo

Kivy should now be installed. You should be able to import kivy in Python or, if you installed the
Kivy examples, run the demo.

on Windows:

python kivy_venv\share\kivy-examples\demo\showcase\main.py

in bash, Linux and macOS:

python kivy_venv/share/kivy-examples/demo/showcase/main.py

on *BSD Unix:
python3 kivy_venv/share/kivy-examples/demo/showcase/main.py
The exact path to the Kivy examples directory is also stored in kKivy.kivy_examples_dir.

The 3d monkey demo under kivy-examples/3Drendering/main.py is also fun to see.

2.2 Installation using Conda

If you use Anaconda, you can install Kivy with its package manager Conda using:

conda install kivy -c conda-forge

Do not use pip to install kivy if you're using Anaconda, unless you're installing from source.

11

https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)
https://en.wikipedia.org/wiki/Conda_(package_manager)

2.3 Installing Kivy’s dependencies

Kivy supports one or more backends for its core providers. E.g. it supports glew, angle, and sdI2 for the
graphics backend on Windows. For each category (window, graphics, video, audio, etc.), at least one
backend must be installed to be able to use the category.

To facilitate easy installation, we provide extras_require groups that will install selected back-
ends to ensure a working Kivy installation. So one can install Kivy more simply with e.g.”*pip install
“kivy[base,media,tuio]”"*. The full list of selectors and the packages they install is listed in setup.py.
The exact packages in each selector may change in the future, but the overall goal of each selector will
remain as described below.

We offer the following selectors:

base: The minimum typical dependencies required for Kivy to run,
not including video/audio.

media: Only the video/audio dependencies required for Kivy to
be able to play media.

full: All the typical dependencies required for Kivy to run, including video/audio and
most optional dependencies.

dev: All the additional dependencies required to run Kivy in development mode
(i.e. it doesn’t include the base/media/full dependencies). E.g. any headers required
for compilation, and all dependencies required to run the tests and creating the docs.

tuio: The dependencies required to make TUIO work (primarily oscpy).

The following selectors install backends packaged as wheels by kivy under the Kivy_deps namespace.
They are typically released and versioned to match specific Kivy versions, so we provide selectors to
facilitate installation (i.e. instead of having to do pip install kivy kivy_deps.sdl2==x.y.z,
you can now do pip install "kivy[sdl2]" to automatically install the correct sd12 for the Kivy
version).

gstreamer: The gstreamer video/audio backend, if it's available
(currently only on Windows)

angle: A alternate OpenGL backend, if it’s available
(currently only on Windows)

sdI2: The window/image/audio backend, if it’s available (currently only on Windows,
on macOS, Linux and *BSD Unix is already included in the main Kivy wheel).

glew: A alternate OpenGL backend, if it’s available (currently only on Windows)
Following are the kivy_deps dependency wheels:

® gstreamer (optional)
kivy_deps.gstreamer is an optional dependency which is only needed for audio/video sup-
port. We only provide it on Windows, for other platforms it must be installed independently.
Alternatively, use ffpyplayer instead.

e olew and/or angle
kivy_deps.glewand kivy_deps.angle are for OpenGL. You can install both, that is no prob-
lem. It is only available on Windows. On other platforms it is not required externally.

One can select which of these to use for OpenGL using the KIVY_GL_BACKEND environment
variable: By setting it to glew (the default), angle_sd12, or sd12. Here, angle_sdl2 is a
substitute for glew but requires kivy_deps.sd12 be installed as well.

e sdl2

12

https://setuptools.readthedocs.io/en/latest/userguide/dependency_management.html#optional-dependencies
https://github.com/kivy/kivy/blob/master/setup.cfg
https://gstreamer.freedesktop.org
https://pypi.org/project/ffpyplayer/
http://glew.sourceforge.net/
https://github.com/Microsoft/angle
https://en.wikipedia.org/wiki/OpenGL
https://libsdl.org

kivy_deps.sdl2 is for window/images/audio and optionally OpenGL. It is only available on
Windows and is included in the main Kivy wheel for other platforms.

2.4 Python glossary

Here we explain how to install Python packages, how to use the command line and what wheels are.

2.4.1 Installing Python

Kivy is written in Python and as such, to use Kivy, you need an existing installation of Python. Multiple
versions of Python can be installed side by side, but Kivy needs to be installed as package under each
Python version that you want to use Kivy in.

To install Python, see the instructions for each platform: Windows, macOS, Linux, RPi, *BSD.

Once Python is installed, open the console and make sure Python is available by typing python
--version.

2.4.2 How to use the command line

To execute any of the pip or wheel commands given here, you need a command line (here also called
console, terminal, shell or bash, where the last two refer to Linux / *BSD Unix style command lines) and
Python must be on the PATH.

The default command line on Windows is the command prompt, short cmd. The quickest way to open
it is to press Win+R on your keyboard. In the window that opens, type cmd and then press enter.

Alternative Linux style command lines on Windows that we recommend are Git for Windows or Mysys.
Note, the default Windows command line can still be used, even if a bash terminal is installed.

To temporarily add your Python installation to the PATH, simply open your command line and then use
the cd command to change the current directory to where python is installed, e.g. cd C:\Python37.

If you have installed Python using the default options, then the path to Python will already be per-
manently on your PATH variable. There is an option in the installer which lets you do that, and it is
enabled by default.

If however Python is not on your PATH, follow the these instructions to add it:
¢ Instructions for the windows command line

e Instructions for bash command lines

2.4.3 What is pip and what are wheels

In Python, packages such as Kivy can be installed with the python package manager, named pip
(“python install package”).

When installing from source, some packages, such as Kivy, require additional steps, like compilation.

Contrary, wheels (files with a .whl extension) are pre-built distributions of a package that has already
been compiled. These wheels do not require additional steps when installing them.

When a wheel is available on pypi.org (“Python Package Index”) it can be installed with pip. For ex-
ample when you execute python -m pip install kivyinacommand line, this will automatically
find the appropriate wheel on PyPL

13

https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://www.python.org/downloads/windows/
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/PATH_(variable)
http://www.computerhope.com/issues/chusedos.htm
https://git-for-windows.github.io/
http://www.mingw.org/wiki/MSYS
http://www.computerhope.com/issues/ch000549.htm
http://stackoverflow.com/q/14637979
https://pip.pypa.io/en/stable/
https://pypi.python.org/pypi

When downloading and installing a wheel directly, use the command python -m pip install
<wheel_file_name>, for example:

python -m pip install C:\Kivy-1.9.1.dev-cp27-none-win_amd64.whl

2.4.4 What are nightly wheels

Every day we create a snapshot wheel of the current development version of Kivy (‘nightly wheel’).
You can find the development version in the master branch of the Kivy Github repository.

As opposed to the last stable release (which we discussed in the previous section), nightly wheels contain
all the latest changes to Kivy, including experimental fixes. For installation instructions, see Pre-release,
pre-compiled wheels.

Warning: Using the latest development version can be risky and you might encounter issues during
development. If you encounter any bugs, please report them.

14

https://github.com/kivy/kivy

CHAPTER

THREE

A FIRST APP

Immerse yourself in the world of Kivy with your first App.

Pong

The Pong Game Tutorial introduces the fundamental design patterns and the application development
process. As you follow the tutorial, you will create a simple app. You will also learn how to run the app
on your OS. The simple steps in the tutorial introduce elegant, useful concepts that you will use over
and over again in app development.

The Pong Game Tutorial is the most important article in the road map. It lays the foundation for the con-
cepts that you will learn more about later. Each of the other articles expands on one of those concepts.

15

16

CHAPTER

FOUR

PROPERTIES

Kivy introduces a new way of declaring properties within a class. Before:

class MyClass(object):
def _init (self):
super(MyClass, self). _init_ ()
self.numeric_var =1

After, using Kivy’s properties:

class MyClass(EventDispatcher):
numeric_var = NumericProperty(1)

These properties implement the Observer pattern. They help you to:

¢ Easily manipulate widgets defined in the Kv language

e Automatically observe any changes and dispatch functions/code accordingly

e Check and validate values

¢ Optimize memory management

To use them, you have to declare them at class level. That is, directly in the class, not in any method of
the class. A property is a class attribute that will automatically create instance attributes. Each property
by default provides an on_<propertyname> event that is called whenever the property’s state/value

changes.

Kivy provides the following properties:
NumericProperty, StringProperty, ListProperty, ObjectProperty,
BooleanProperty, BoundedNumericProperty, OptionProperty,

ReferencelListProperty, AliasProperty, DictProperty, VariableListProperty,

ConfigParserProperty, ColorProperty

For an in-depth explanation, take a look at Properties.

17

http://en.wikipedia.org/wiki/Observer_pattern

18

CHAPTER

FIVE

KV DESIGN LANGUAGE

Kivy provides a design language specifically geared towards easy and scalable GUI Design. The lan-
guage makes it simple to separate the interface design from the application logic, adhering to the sepa-
ration of concerns principle. For example:

0DiQ8 =~ B 2+ + BRSS9

Kivy

User Name:

Password:

In the above code :

<LoginScreen>: # every class in your app can be represented by a rule like
this in the kv file
: # this is how you add your widget/layout to the parent
(note the indentation).
: 2 # this how you set each property of your widget/layout

That’s it, that’s how simple it is to design your GUI in the Kv language. For a more in-depth under-
standing, please refer to the Kv lnnguage documentation.

19

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Separation_of_concerns

20

CHAPTER

SIX

EVENTS

Kivy is mostly event-based, meaning the flow of the program is determined by events.

Clock events

&

The Clock object allows you to schedule a function call in the future as a one-time event with
schedule_once(), or as a repetitive event with schedule_interval().

You can also create Triggered events with create_trigger (). Triggers have the advantage of being
called only once per frame, even if you have scheduled multiple triggers for the same callback.

Input events

All the mouse click, touch and scroll wheel events are part of the MotionEvent, extended by Input
Postprocessing and dispatched through the on_motion event in the Window class. This event then
generates the on_touch_down (), on_touch_move() and on_touch_up() events in the Widget.

For an in-depth explanation, have a look at [nput management.

Class events

O
A

Our base class EventDispatcher, used by Widget, uses the power of our Properties for dispatching
changes. This means when a widget changes its position or size, the corresponding event is automati-
cally fired.

In addition, you have the ability to create your own events using register_event_type(), as the
on_press and on_release events in the Button widget demonstrate.

Another thing to note is that if you override an event, you become responsible for implementing all its
behaviour previously handled by the base class. The easiest way to do this is to call super():

def on_touch _down(self, touch):
if super().on_touch_down(touch):
return True
if not self.collide_point(touch.x, touch.y):
return False

(continues on next page)

21

http://en.wikipedia.org/wiki/Event-driven_programming

(continued from previous page)

print('you touched me!")
return True

Get more familiar with events by reading the Events and Properties documentation.

22

CHAPTER

SEVEN

NON-WIDGET STUFF

Animation is used to change a widget's prop-
erties (size/pos/center etc.) to a target value
within a target time. Various transition func-
tions are provided. You can use them to animate
widgets and build very smooth Ul behaviours.

Atlas is a class for managing texture maps,
i.e. packing multiple textures into one image.
This allows you to reduce the number of images
loaded and thus speed up the application start.

Clock provides you with a convenient way to
schedule jobs at set time intervals and is pre-
ferred over sleep(), which would block the kivy
event loop. These intervals can be set relative to
the OpenGL drawing instructions, before or after.
The Clock also provides you with a way to cre-
ate triggered cvents that are grouped together and
called only once before the next frame.

schedule_once()
schedule_interval()
unschedule()
create_trigger()

UrlRequest is useful for asynchronous re-
quests that do not block the event loop. You can
use it to manage the progress of URL requests via
callbacks.

23

24

CHAPTER

EIGHT

LAYOUTS

Layouts are containers used to arrange widgets in a particular manner.

AnchorLayout:
Widgets can be anchored to the ‘top’, ‘bottom’, ‘left’, ‘right” or ‘center’.

BoxLayout:
Widgets are arranged sequentially, in either a ‘vertical’ or a ‘horizontal” orientation.

FloatLayout:
Widgets are essentially unrestricted.

RelativelLayout:
Child widgets are positioned relative to the layout.

GridLayout:
Widgets are arranged in a grid defined by the rows and cols properties.

PagelLayout:
Used to create simple multi-page layouts, in a way that allows easy flipping from one
page to another using borders.

ScatterLayout:
Widgets are positioned similarly to a RelativeLayout, but they can be translated, ro-
tated and scaled.

StackLayout:
Widgets are stacked in a Ir-tb (left to right then top to bottom) or tb-Ir order.

When you add a widget to a layout, the following properties are used to determine the widget’s size
and position, depending on the type of layout:

size_hint: defines the size of a widget as a fraction of the parents size. Values are restricted
to the range 0.0 - 1.0 i.e. 0.01 = 1/100th of the parent size (1%) and 1. = same size (100%).

pos_hint: is used to place the widget relative to the parent.

The size_hint and pos_hint are used to calculate a widget’s size and position only if the value(s) are
not set to None. If you set these values to None, the layout will not position/size the widget and you
can specify the values (x, y, width, height) directly in screen coordinates.

25

26

CHAPTER

NINE

DRAWING

Each widget has a canvas, i.e. a place to draw on. The canvas is a group of drawing instructions that
should be executed whenever there is a change to the widget’s graphical representation.

You can add two types of instructions to the canvas: context instructions and vertex instructions. You
can add instructions either from Python code or from the kv file (the preferred way). If you add them
via the kv file, the advantage is that they are automatically updated when any property they depend
on changes. In Python, you need to do this yourself.

W00 = LN B L R

=
o= W0 00 = LN S L B e

(Y=l Rl =R R L R WU N)

In both cases, the canvas of MyWidget is re-drawn whenever the position or the size of the widget
changes.

You can use the canvas.before or canvas.after groups to separate your instructions based on
when you want them to be executed.

For an in-depth look at how Kivy’s graphics are handled, look here.

27

28

CHAPTER

TEN

PACKAGING

¢ Create a package for Windows

— Requirements

— Pylnstaller default hook
e Creating packages for macOS

- Using Buildozer

— Using Pylnstaller and Homebrew
¢ Create a package for Android

— Packaging with python-for-android

- Packaging your application for the Kivy Launcher
¢ Create a package for iOS

— Compile the distribution

Create an Xcode project

Customize the Xcode project
Known issues

- FAQ

29

30

CHAPTER

ELEVEN

DIVING IN

To get straight into kivy, take a look at Welcome to Kivy.

Kivy comes with a set of examples (Gallery of Examples) in the kivy_installation/examples
directory. You should try modifying/improving/adapting them to your needs.

Browse our wiki for info on related projects, tutorials and snippets.

Understand the basics about Graphics.

Take a look at the built-in Widgets.

Follow the Programming Guide to get even more familiar with kivy.

See how to use different Modules in the modules section, such as the [nspector for live inspection.
Learn how to handle custom [nput management.

Familiarize yourself with the Kivy Framework.

Kivy is open source, so you can contribute. Take a look at the Contributing section for guidelines.

31

../examples/gallery.html
https://github.com/kivy/kivy/wiki

32

Part I1

KIVY PROJECT

This part of the documentation explains the basic ideas behind Kivy’s design and why you’d want to
use it.

33

34

CHAPTER

TWELVE

PHILOSOPHY

In case you are wondering what Kivy is all about and what sets it apart from other solutions, this
document is for you.

12.1 Why bother?

Why would you want to use Kivy? After all, there are many great toolkits (or frameworks, or platforms)
available out there — for free. You have Qt and Flash, to name just two good choices for application
development. Many of these numerous solutions already support Multi-Touch, so what is it that makes
Kivy special and worth using?

12.1.1 Fresh

Kivy is made for today and tomorrow. Novel input methods such as Multi-Touch have become increas-
ingly important. We created Kivy from scratch, specifically for this kind of interaction. That means we
were able to rethink many things in terms of human computer interaction, whereas older (not to mean
‘outdated’, rather ‘well-established’) toolkits carry their legacy, which is often a burden. We're not try-
ing to force this new approach to using a computer into the corset of existing models (say single-pointer
mouse interaction). We want to let it flourish and let you explore the possibilities. This is what really
sets Kivy apart.

12.1.2 Fast

Kivy is fast. This applies to both application development and application execution speeds. We have op-
timized Kivy in many ways. We implement time-critical functionality on the C level to leverage the
power of existing compilers. More importantly, we also use intelligent algorithms to minimize costly
operations. We also use the GPU wherever it makes sense in our context. The computational power
of today’s graphics cards surpasses that of today’s CPUs by far for some tasks and algorithms, espe-
cially drawing. That’s why we try to let the GPU do as much of the work as possible, thus increasing
performance considerably.

35

12.1.3 Flexible

Kivy is flexible. This means it can be run on a variety of different devices, including iOS and Android pow-
ered smartphones and tablets. We support all major operating systems (Windows, Linux, macOS, BSD).
Being flexible also means that Kivy’s fast-paced development allows it to *adapt to new technologies quickly. More
than once have we added support for new external devices and software protocols, sometimes even be-
fore they were released. Lastly, Kivy is also flexible in that it is possible to use it in combination with a
great number of different third-party solutions. For example, on Windows we support WM_TOUCH,
which means that any device that has Windows 7 Pen & Touch drivers will just work with Kivy. On ma-
cOS you can use Apple’s Multi-Touch capable devices, such as trackpads and mice. On Linux and *BSD,
you can use HID kernel input events. In addition to that, we support TUIO (Tangible User Interface
Objects) and a number of other input sources.

12.1.4 Focused

Kivy is focused. You can write a simple application with a few lines of code. Kivy programs are created
using the Python programming language, which is incredibly versatile and powerful, yet easy to use. In
addition, we created our own description language, the Kivy Language, for creating sophisticated user
interfaces. This language allows you to set up, connect and arrange your application elements quickly.
We feel that allowing you to focus on the essence of your application is more important than forcing
you to fiddle with compiler settings. We took that burden off your shoulders.

12.1.5 Funded
Kivy is actively developed by professionals in their field. Kivy is a community-influenced, profession-

ally developed and commercially backed solution. Some of our core developers develop Kivy for a
living. Kivy is here to stay. It’s not a small, vanishing student project.

12.1.6 Free

Kivy is free to use. You don’t have to pay for it. You don’t even have to pay for it if you're making
money out of selling an application that uses Kivy.

36

CHAPTER

THIRTEEN

CONTRIBUTING

There are many ways in which you can contribute to Kivy. Code patches are just one thing amongst
others that you can submit to help the project. We also welcome feedback, bug reports, feature requests,
documentation improvements, advertisement & advocating, testing, graphics contributions and many
other ideas. Just talk to us if you want to help, and we will help you help us.

13.1 Discussions

Discussions around Kivy development happens on Github’s issues and pull requests for specific things.
For things that don't fit in either, discussions happen on the #dev Discord channel, and on the kivy-dev
google group. Please come ask for guidance if you are unsure about how to contribute, or you want
confirmation about your ideas fitting in the project before working on them. If you want to ask for —
or contribute — support, you can join the #support Discord channel, and the kivy-users google group.

13.2 Code of Conduct

In the interest of fostering an open and welcoming community, we as contributors and maintainers need
to ensure participation in our project and our sister projects is a harassment-free and positive experience
for everyone.

As such, it is vital that all interaction is conducted in a manner conveying respect, open-mindedness
and gratitude. For a more comprehensive discussion of these guidelines, please refer to the Contributor
Covenant. This document provides an accurate description of what is expected of you, both as a core
developer or a first time contributor.

13.3 Feedback

This is by far the easiest way to contribute something. If you're using Kivy for your own project,
don’t hesitate sharing. It doesn’t have to be a high-class enterprise app, obviously. It’s just incredibly
motivating to know that people use the things you develop and what it enables them to do. If you have
something that you would like to tell us, please don’t hesitate. Screenshots and videos are also very
welcome! We're also interested in the problems you had when getting started. Please feel encouraged to
report any obstacles you encountered such as missing documentation, misleading directions or similar.
We are perfectionists, so even if it’s just a typo, let us know.

37

https://chat.kivy.org/
https://groups.google.com/forum/#!forum/kivy-dev
https://groups.google.com/forum/#!forum/kivy-dev
https://chat.kivy.org/
https://groups.google.com/forum/#!forum/kivy-users
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

13.4 Reporting an Issue

If you found anything wrong, a crash, segfault, missing documentation, invalid spelling or just weird
examples, please take 2 minutes to report the issue.

1. Move your logging level to debug by editing <user_directory>/.kivy/config.ini:

[kivy]
log_level = debug

2. Execute your code again, and copy/paste the complete output to http://gist.github.com/, in-
cluding the log from Kivy and the python backtrace.

3. Open https:/ /github.com/kivy/kivy/issues/
4. Set the title of your issue

5. Explain exactly what to do to reproduce the issue and paste the link of the output posted on
http:/ / gist.github.com/

6. Validate the issue and you're done!

If you are feeling up to it, you can also try to resolve the bug, and contribute by sending us the patch :)
Read the next section to find out how to do this.

13.5 Code Contributions

Code contributions (patches, new features) are the most obvious way to help with the project’s devel-
opment. Since this is so common we ask you to follow our workflow to most efficiently work with us.
Adhering to our workflow ensures that your contribution won'’t be forgotten or lost. Also, your name
will always be associated with the change you made, which basically means eternal fame in our code
history (you can opt-out if you don’t want that).

13.5.1 Coding style

¢ If you haven’t done it yet, read the PEPS about coding style in python.

* Activate the pep8 and other basic checks on git commits like this:

make hook

This will pass the code added to the git staging zone (about to be committed) through a checker program
when you do a commit, and ensure that you didn’t introduce style errors. If you did, the commit will
be rejected: please correct the errors and try again.

The checker used is pre-commit. If you need to skip a particular check see documentation, TLDR being
that putting SKIP=hookname in front of git commit will skip that hook, the name of the offending hook is
shown when it fails.

38

http://gist.github.com/
https://github.com/kivy/kivy/issues/
http://gist.github.com/
http://www.python.org/dev/peps/pep-0008/
https://pre-commit.com/
https://pre-commit.com/#temporarily-disabling-hooks

13.5.2 Performance

e take care of performance issues: read Python performance tips

¢ cpu intensive parts of Kivy are written in cython: if you are doing a lot of computation, consider
using it too.

13.5.3 Git & GitHub

We use git as our version control system for our code base. If you have never used git or a similar
DVCS (or even any VCS) before, we strongly suggest you take a look at the great documentation that
is available for git online. The Git Community Book or the Git Videos are both great ways to learn git.
Trust us when we say that git is a great tool. It may seem daunting at first, but after a while you'll
(hopefully) love it as much as we do. Teaching you git, however, is well beyond the scope of this
document.

Also, we use GitHub to host our code. In the following we will assume that you have a (free) GitHub
account. While this part is optional, it allows for a tight integration between your patches and our
upstream code base. If you don’t want to use GitHub, we assume you know what you are doing

anyway.

13.5.4 Code Workflow

So here is the initial setup to begin with our workflow (you only need to do this once to install Kivy).
Basically you follow the installation instructions from Development install, but you don’t clone our repos-
itory, you fork it. Here are the steps:

1. Log in to GitHub
2. Create a fork of the Kivy repository by clicking the fork button.

3. Clone your fork of our repository to your computer. Your fork will have the git remote name
‘origin’ and you will be on branch ‘master”:

git clone https://github.com/username/kivy.git

4. Compile and set up PYTHONPATH or install (see Development install).

5. Install our pre-commit hook that ensures your code doesn’t violate our styleguide by executing
make hook from the root directory of your clone. This will run our styleguide check whenever
you do a commit, and if there are violations in the parts that you changed, your commit will be
aborted. Fix & retry.

6. Add the kivy repo as a remote source:

git remote add kivy https://github.com/kivy/kivy.git

Now, whenever you want to create a patch, you follow the following steps:

1. See if there is a ticket in our bug tracker for the fix or feature and announce that you’ll
be working on it if it doesn’t yet have an assignee.

2. Create a new, appropriately named branch in your local repository for that specific
feature or bugfix. (Keeping a new branch per feature makes sure we can easily pull in
your changes without pulling any other stuff that is not supposed to be pulled.):

git checkout -b new_feature

3. Modify the code to do what you want (e.g. fix it).

39

http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://book.git-scm.com/
https://git-scm.com/videos
http://github.com
https://github.com/kivy/kivy

4. Test the code. Try to do this even for small fixes. You never know whether you have
introduced some weird bug without testing.

5. Do one or more minimal, atomic commits per fix or per feature. Minimal/Atomic
means keep the commit clean. Don’t commit other stuff that doesn’t logically belong to
this fix or feature. This is not about creating one commit per line changed. Use git
add -p if necessary.

6. Give each commit an appropriate commit message, so that others who are not familiar
with the matter get a good idea of what you changed.

7. Once you are satisfied with your changes, pull our upstream repository and merge it
with you local repository. We can pull your stuff, but since you know exactly what’s
changed, you should do the merge:

git pull kivy master

8. Push your local branch into your remote repository on GitHub:

git push origin new_feature

9. Send a Pull Request with a description of what you changed via the button in the GitHub
interface of your repository. (This is why we forked initially. Your repository is linked
against ours.)

Warning: If you change parts of the code base that require compilation, you will have
to recompile in order for your changes to take effect. The make command will do that
for you (see the Makefile if you want to know what it does). If you need to clean your
current directory from compiled files, execute make clean. If you want to get rid of all
files that are not under version control, run make distclean (Caution: If your changes
are not under version control, this command will delete them!)

Now we will receive your pull request. We will check whether your changes are clean and make sense
(if you talked to us before doing all of this we will have told you whether it makes sense or not). If so,
we will pull them and you will get instant karma. Congratulations, you're a hero!

13.6 Documentation Contributions

Documentation contributions generally follow the same workflow as code contributions, but are just a
bit more lax.

1. Following the instructions above,
1. Fork the repository.
2. Clone your fork to your computer.
3. Setup kivy repo as a remote source.
2. Install python-sphinx. (See docs/README for assistance.)
3. Use ReStructuredText_Markup to make changes to the HTML documentation in docs/sources.
To submit a documentation update, use the following steps:

1. Create a new, appropriately named branch in your local repository:

git checkout -b my_docs_update

40

http://docutils.sourceforge.net/rst.html

Modify the documentation with your correction or improvement.

Re-generate the HTML pages, and review your update:

make html

Give each commit an appropriate commit message, so that others who are not familiar with the
matter get a good idea of what you changed.

Keep each commit focused on a single related theme. Don’t commit other stuff that doesn’t logi-
cally belong to this update.

Push to your remote repository on GitHub:

git push

Send a Pull Request with a description of what you changed via the button in the GitHub interface
of your repository.

We don’t ask you to go through all the hassle just to correct a single typo, but for more complex contri-
butions, please follow the suggested workflow.

13.6.1 Docstrings

Every module/class/method/function needs a docstring, so use the following keywords when rele-
vant:

. versionadded: : to mark the version in which the feature was added.
. versionchanged:: to mark the version in which the behaviour of the feature was changed.
note: : to add additional info about how to use the feature or related feature.

. warning:: to indicate a potential issue the user might run into using the feature.

Examples:

def

my_new_feature(self, arg):
New feature is awesome
versionadded:: 1.1.4

note:: This new feature will likely blow your mind

warning:: Please take a seat before trying this feature

Will

result in:

def my_new_feature(self, arg):
New feature is awesome

New in version 1.1.4.

Note: This new feature will likely blow your mind

Warning: Please take a seat before trying this feature

41

When referring to other parts of the api use:
e :mod: ~kivy.module" to refer to a module
e :class: ~kivy.module.Class' to refer to a class
e :meth: ~kivy.module.Class.method" to refer to a method

e :doc: api-kivy.module" to refer to the documentation of a module (same for a class and a
method)

‘7

Obviously replacing module Class and method with their real name, and using using *." to separate
modules referring to imbricated modules, e.g:

:mod: " ~kivy.uix.floatlayout"

:class: ~kivy.uix.floatlayout.FloatLayout"

:meth: ~kivy.core.window.WindowBase.toggle_fullscreen’
:doc: /api-kivy.core.window’

Will result in:
floatlayout FloatLayout toggle_fullscreen() Window

:doc: and :mod: are essentially the same, except for an anchor in the url which makes :doc: preferred for
the cleaner url.

To build your documentation, run:

make html

If you updated your kivy install, and have some trouble compiling docs, run:

make clean force html

The docs will be generated in docs/build/html. For more information on docstring formatting,
please refer to the official Sphinx Documentation.

13.7 Unit tests contributions

For the testing team, we have the document Linif fests that explains how Kivy unit tests work and how
you can create your own. Use the same approach as the Code Workflow to submit new tests.

13.7.1 Unit tests

Tests are located in the kivy/tests folder. If you find a bug in Kivy, a good thing to do can be to write a
minimal case showing the issue and to ask core devs if the behaviour shown is intended or a real bug.
If you write your code as a unittest , it will prevent the bug from coming back unnoticed in the future,
and will make Kivy a better, stronger project. Writing a unittest may be a really good way to get familiar
with Kivy while doing something useful.

Unit tests are separated into two cases:
* Non graphical unit tests: these are standard unit tests that can run in a console
® Graphical unit tests: these need a GL context, and if requested, work via image comparison

To be able to run unit tests, you need to install pytest (https://pytest.org/), and coverage (http://
nedbatchelder.com/code/coverage/). You can use pip for that:

42

http://sphinx-doc.org/
http://docs.python.org/2/library/unittest.html
https://pytest.org/
http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/

sudo pip install pytest coverage

Then, in the kivy directory:

make test

How it works

All the tests are located in kivy/tests, and the filename starts with test_<name>.py. Pytest will automati-
cally gather all the files and classes inside this folder, and use them to generate test cases.

To write a test, create a file that respects the previous naming, then start with this template:

import unittest
class XXXTestCase(unittest.TestCase):

def setUp(self):
import class and prepare everything here.
pass

def test YYY(self):
place your test case here
a=1
self.assertEqual(a, 1)

Replace XXX with an appropriate name that covers your tests cases, then replace ‘YYY’ with the name
of your test. If you have any doubts, check how the other tests have been written.

Then, to execute them, just run:

make test

If you want to execute that file only, you can run:

pytest kivy/tests/test_yourtestcase.py

or include this simple unittest.main() call at the end of the file and run the test with python
test_yourtestcase.py:

if __name__ == '__main__"':
unittest.main()

Graphical unit tests

While simple unit tests are fine and useful to keep things granular, in certain cases we need to test Kivy
after the GL Window is created to interact with the graphics, widgets and to test more advanced stuff
such as widget, modules, various cases of input and interaction with everything that becomes available
only after the Window is created and Kivy properly initialized.

These tests are executed the same way like the ordinary unit tests i.e. either with pytest or via
unittest.main().

Here are two similar examples with different approaches of running the app. In the first one you are
setting up the required stuff manually and the tearDown() of the GraphicUnitTest may only attempt to
clean it after you:

43

from kivy.tests.common import GraphicUnitTest

class MyTestCase(GraphicUnitTest):

def test runtouchapp(self):

non-integrated approach
from kivy.app import runTouchApp
from kivy.uix.button import Button

button = Button()
runTouchApp(button)

get your Window instance safely
from kivy.base import EventLoop
EventLoop.ensure_window()

window = EventLoop.window

your asserts

self.assertEqual(window.children[0], button)

self.assertEqual(
window.children[0].height,
window.height

)

In the second test case both setUp() and tearDown() work together with GraphicUnitTest.render(). This is
the basic setup it does automatically:

Window is sized to 320 x 240 px

the default Config is wused during the
KIVY_USE_DEFAULTCONFIG environment variable

test, it’s restricted with the

Any input (mouse/touch/...) is removed and if you need to test it, either mock it or manually add

Window’s canvas is cleared before displaying any widget tree

Warning: Do NOT use absolute numbers in your tests to preserve the functionality across the all
resolutions. Instead, use e.g. relative position or size and multiply it by the Window.size in your test.

from kivy.tests.common import GraphicUnitTest, UnitTestTouch

class MyTestCase(GraphicUnitTest):

def test_render(self):

from kivy.uix.button import Button

with GraphicUnitTest.render() you basically do this:
runTouchApp(Button()) + some setup before

button = Button()
self.render(button)

get your Window instance safely
from kivy.base import EventLoop

(continues on next page)

44

(continued from previous page)

EventLoop.ensure_window()
window = EventLoop.window

touch = UnitTestTouch(
x[s / 2.0 for s in window.size]

)

bind something to test the touch with
button.bind(
on_release=lambda instance: setattr(
instance, 'test_released',6 True
)
)

then let's touch the Window's center
touch.touch_down()

touch.touch_up()
self.assertTrue(button.test_released)

if __name__ == '__main__"':
import unittest
unittest.main()

Note: Make sure you check the source of kivy.tests.common before writing comprehensive test cases.

GL unit tests

GL unit test are more difficult. You must know that even if OpenGL is a standard, the output/rendering
is not. It depends on your GPU and the driver used. For these tests, the goal is to save the output of the
rendering at frame X, and compare it to a reference image.

Currently, images are generated at 320x240 pixels, in png format.

Note: Currently, image comparison is done per-pixel. This means the reference image that you generate
will only be correct for your GPU/driver. If somebody can implement image comparison with “delta”
support, patches are welcome :)

To execute GL unit tests, you need to create a directory:

mkdir kivy/tests/results
KIVY_UNITTEST_SCREENSHOTS=1 make test

The results directory will contain all the reference images and the generated images. After the first
execution, if the results directory is empty, no comparison will be done. It will use the generated images
as reference. After the second execution, all the images will be compared to the reference images.

A html file is available to show the comparison before/after the test, and a snippet of the associated
unit test. It will be generated at:

kivy /tests/build /index.html

45

Note: The build directory is cleaned after each call to make test. If you don’t want that, just use pytest
command.

Writing GL Unit tests

The idea is to create a root widget, as you would doin build(),orin kivy.base.runTouchApp().
You'll give that root widget to a rendering function which will capture the output in X frames.

Here is an example:

from kivy.tests.common import GraphicUnitTest
class VertexInstructionTestCase(GraphicUnitTest):

def test_ellipse(self):
from kivy.uix.widget import Widget
from kivy.graphics import Ellipse, Color
r = self.render

create a root widget
wid = Widget()

put some graphics instruction on it
with wid.canvas:
Color(1, 1, 1)
self.e = Ellipse(pos=(100, 100), size=(200, 100))

render, and capture it directly
r(wid)

as alternative, you can capture in 2 frames:
r(wid, 2)

or in 10 frames
r(wid, 10)

Each call to self.render (or r in our example) will generate an image named as follows:

<classname>_<funcname>-<r-call-count>.png

r-call-count represents the number of times that self.render is called inside the test function.

The reference images are named:

ref_<classname>_<funcname>-<r-call-count>.png

You can easily replace the reference image with a new one if you wish.

46

Coverage reports

Coverage is based on the execution of previous tests. Statistics on code coverage are automatically
calculated during execution. You can generate an html report of the coverage with the command:

make cover

Then, open kivy/htmicov/index.html with your favorite web browser.

13.8 GSOC

13.8.1 Google Summer of Code - 2017

Introduction
Kivy is a cross-platform, business friendly, GPU accelerated open source Python library for rapid de-
velopment of applications that make use of innovative user interfaces, such as multi-touch apps.
The Kivy Organization oversees several major projects:

® The Kivy GUI Library

e The Python-For-Android compilation tool.

* The Kivy-iOS compilation tool.

¢ The PyJNIus library for interfacing with Java from Python.

® The PyOBJus library for interfacing with Objective-C from Python.

¢ The Plyer platform-independent Python wrapper for platform dependent APIs.

e Buildozer - A generic Python packager for Android, iOS, and desktop.

¢ KivEnt - A 2d Game Engine that provides optimized methods of handling large amounts of dy-
namic visual data.

e Kivy Designer - A graphical GUI designer for Kivy built in Kivy.

Altogether, these projects allow the user to create applications for every major operating system that
make use of any native APIs present. Our goal is to enable development of Python applications that
run everywhere off the same codebase and make use of platform dependent APIs and features that
users of specific operating systems have come to expect.

Depending on which project you choose you may need to know Cython, OpenGL ES2, Java, Objective-
C, or C in addition to Python. We make heavy use of Cython and OpenGL for computational and
graphics performance where it matters, and the other languages are typically involved in accessing OS
or provider level APIs.

We are hoping to participate in Google Summer of Code 2017. This page showcases some ideas for
GSoC projects and corresponding guidelines for students contributing to the Kivy Framework.

47

https://github.com/kivy/kivy
https://github.com/kivy/python-for-android
https://github.com/kivy/kivy-ios
https://github.com/kivy/pyjnius
https://github.com/kivy/pyobjus
https://github.com/kivy/plyer
https://github.com/kivy/buildozer
https://github.com/kivy/kivent
https://github.com/kivy/kivy-designer

Requirements

It is assumed that the incoming student meets some basic requirements as highlighted here:
¢ Intermediate level familiarity with Python.

¢ Comfortable with git and github (Kivy and its sister projects are all managed on github) If you
have never used github before you may be interested in this tutorial.

e Comfortable with event driven programming.

¢ Has suitable tools/environment for Kivy or the sister project you are going to work on. For ex-
ample to be able to work on PyOBJus you would need access to an iOS device, OS X with Xcode
and a developer license, to work on PyJNIus you would need an Android device, and to work on
plyer you would need access to hardware for both platforms.

Additional desired skills may be listed with specific projects.

Familiarize yourself with the contribution guide We can help you get up to speed, however students
demonstrating ability in advance will be given preference.

How to get started

For Kivy, the easiest way is to follow the installation instructions for the development version for your
specific platform:

http:/ /kivy.org/docs/installation/installation.html#development-version

For the rest it’s usually sufficient to install the relevant project from git and add it to your PYTHON-
PATH.

e.g. for PyJNlus:

git clone http://github.com/kivy/pyjnius
export PYTHONPATH=/path/to/pyjnius:$PYTHONPATH

Project Ideas

Here are some prospective ideas sourced from the Kivy development team, if none of these projects
interest you come talk to us in #kivy-dev about a project idea of your own.

Beginner Projects

These projects should be suitable for anyone with a college level familiarity with Python and require
little knowledge of platform specifics.

Intermediate Projects

These projects may involve cursory level knowledge of several OS level details, some OpenGL interac-
tion, or other topics that may be a bit out of the wheelhouse of the average Pythonista.

Plyer:

Description:
Plyer is a platform-independent Python API to use features commonly found on the
desktop and mobile platforms supported by Kivy. The idea is to provide a stable API
to the user for accessing features of their desktop or mobile device.

48

https://guides.github.com/activities/hello-world/
http://kivy.org/docs/contribute.html
http://kivy.org/docs/installation/installation.html#development-version

The student would replace some .java code currently in the p4a project to a more ap-
propriate place in Plyer. In addition, the student would work on improving access to
platform specific features through Plyer, including accessibility, Bluetooth Low Energy,
accessing and editing contacts, sharing, NFC, in-app browser, Wi-Fi (enable, disable,
access to Wi-Fi services (Wi-Fi direct, network accessibility, current IP info on network
etc.), Camera capture (video), camera display, Google Play integration, launch phone
call interface, sms interface, geolocation, interaction with notifications, international-
ization (I18N), and all the missing platform implementations from existing features.

Under the hood you’ll use Py]JNIus on Android, PyOBJus on OS X and iOS, ctypes
on Windows, and native APIs on Linux. This probably would also include improving
PyOBJus and PyJNlus to handle interfaces that they can’t right now.

References:

¢ https://github.com/kivy/plyer

e https://github.com/kivy/pyjnius

¢ https://github.com/kivy/pyobjus

¢ https://github.com/kivy/python-for-android
¢ https://github.com/kivy/kivy-ios

Expected outcome:

A successful outcome would include moving the Java/PyOBJus code from p4a/kivy-
ios to plyer and implementing some or all of the new facades to be decided with the
student.

Mentors: Akshay Arora
Requirements: Access to Linux, Windows, OS X, iOS device, Android device.
Task level: Intermediate

Desired Skills: Familiarity with PyJNIus, PyOB]Jus.

Font Reshaping and Font Fallback Support

Description:

Currently Kivy does not support reshaping for alphabets such as Arabic, Persian, Thai,
or Devanagari. The solution is to integrate a text shaping and layout engine (Pango
and Harfbuzz). You would need to ensure that Pango and Harfbuzz can be compiled
on every platform, and integrate it as a core text provider.

The second part of the same project would involve font fallback support. If a particular
character/glyph is missing, currently we show a [] box. The solution for this would
involve either using an OS API if available or maintaining a hashtable for the default
fonts on each OS which can be used for glyph fallback.

References:

¢ http://www.pango.org
e https://www.freedesktop.org/wiki/Software/HarfBuzz/

¢ https://github.com/kivy/kivy/tree/master/kivy/core/text

Expected outcome:

Font fallback and text reshaping support in Kivy, compilation recipes for Python-For-
Android and packaging on desktop platforms.

Mentors: Akshay Arora, Jacob Kovac, Matthew Einhorn

Requirements: Access to a desktop OS and ideally at least one mobile platform

49

https://github.com/kivy/plyer
https://github.com/kivy/pyjnius
https://github.com/kivy/pyobjus
https://github.com/kivy/python-for-android
https://github.com/kivy/kivy-ios
http://www.pango.org
https://www.freedesktop.org/wiki/Software/HarfBuzz/
https://github.com/kivy/kivy/tree/master/kivy/core/text

e Task level: Intermediate

* Desired Skills: Familiarity with text rendering, Pango, HarfBuzz and Kivy’s provider
abstraction.

Advanced Projects

These projects may involve very in-depth knowledge of Kivy’s existing internals, the hairy details of
cross-platform compilation, or other fairly advanced topics. If you are comfortable with the internals
of Python, working with C code, and using Cython to build your own C extensions these projects may
appeal to you.

Kivent: Chipmunk 7 Integration

Description:
KivEnt is a modular entity-component based game engine built on top of Kivy. KivEnt
provides a highly performant approach to building games in Python that avoids some
of the worst overhead of Python using specialized Cython constructs.

At the moment, KivEnt internally makes use of the cymunk library (https://github.
com/tito/cymunk) for physics simulation and collision detection. Cymunk is based
on Chipmunk2d 6.x, recently Chipmunk 7 has released and brought many previously
premium features into the core library. In addition to the API changes present in the
newest Chipmunk, the KivEnt - Cymunk bridging does not make most efficient use of
the KivEnt API for handling C level objects and data. The student will be responsible
for creating a new wrapper over Chipmunk2d 7 that better matches KivEnt’s approach
to handling game data.

References:
¢ http://chipmunk-physics.net/
¢ https://github.com/kivy/kivent

Expected Outcome:
A successful outcome involves a new kivent_tiled module being released for the KivEnt
game engine.

e Mentors: Jacob Kovac

* Requirements: Access to at least one Kivy platform.

¢ Task level: Advanced

* Desired Skills: Familiarity with Cython, Python, and game dev related math concepts.
KV Compiler: A compiler for the KV language

Description:

The KV language is a fundamental component of Kivy. The KV language allows one to
describe a GUI, from the creation of a Widget tree to the actions that should be taken in
response value changes and events. In effect it is a concise way to create rule bindings
using the Kivy properties and events. Internally, python code that reflects these rules
are created and bound to the properties and events. Currently, these bindings are not
at all optimized because upon each widget creation all of these rules are re-evaluated
and bound. This process can be significantly optimized by pre-compiling the kv code,
especially the bindings. A compiler would also allow us to update and fix some of the
long-standing kv language issues.

Work on a kv-compiler has already progressed quite far, in fact a PR in the pre-alpha
stage, is currently open. However, it is out of sync with the current codebase due to
some unrelated kv changes in the meantime. Also, that PR would require a significant

50

https://github.com/tito/cymunk
https://github.com/tito/cymunk
http://chipmunk-physics.net/
https://github.com/kivy/kivent

re-write to make things more modular, self-contained, and extensible. So there is much
work still to be done on it.

Theming has also been a prepatual issue in Kivy, a KV compiler may help implement
bindings that facilitate theming.

References:

https:/ /kivy.org/docs/guide/lang.html
https:/ / github.com /kivy/kivy/pull /3456

https:/ / github.com /kivy/kivy /wiki/KEP0O1:-Instantiate-things-other-than-widgets-from-kv

https://github.com /kivy/kivy/issues/691
¢ https://github.com/kivy/kivy/issues/2727

Expected Outcome:
A successful outcome would be a compiler which compiles kv code into python code.
The compiler should be modular and extensible so that we can continue to improve
the kv language. The compiler should have the common debug/optimization options.
The compiled code should also be human readable so issues could be traced back to
the original kv code. The compiler should also be a drop in replacement for the current
KV runtime compiler, and would require extensive testing.

e Mentors: Matthew Einhorn
* Requirements: Access to at least one Kivy platform.
¢ Task level: Advanced

* Desired Skills: Familiarity with Cython, Python, and Kivy. Familiarity with typical
computer science concepts and data structures is also desired.

How to Contact devs
All communication must happen via public channels, private emails and Discord private messages are
discouraged.

Ask your questions on the Kivy Users forum https://groups.google.com/group/kivy-users or send a
mail at kivy-users@googlegroups.com

Make sure to join the kivy-dev user group too: https://groups.google.com/forum/#!forum/kivy-dev.

You can also try to contact us on Discord, to get the Discord handles of the devs mentioned above visit
https:/ /kivy.org/#aboutus.

Make sure to read the Discord rules before connecting. Connect to Discord.

Most of our developers are located in Europe, India, and North America so keep in mind typical waking
hours for these areas.

How to be a good student

If you want to participate as a student and want to maximize your chances of being accepted, start
talking to us today and try fixing some smaller problems to get used to our workflow. If we know you
can work well with us, you will have much better chances of being selected.

Here’s a checklist:
* Make sure to read through the website and at least skim the documentation.

e Look at the source code.

51

https://kivy.org/docs/guide/lang.html
https://github.com/kivy/kivy/pull/3456
https://github.com/kivy/kivy/wiki/KEP001:-Instantiate-things-other-than-widgets-from-kv
https://github.com/kivy/kivy/issues/691
https://github.com/kivy/kivy/issues/2727
https://groups.google.com/group/kivy-users
mailto:kivy-users@googlegroups.com
https://groups.google.com/forum/#!forum/kivy-dev
https://kivy.org/#aboutus
https://kivy.org/docs/contact.html
https://chat.kivy.org

Read our contribution guidelines.

Make a contribution! Kivy would like to see how you engage with the development process. Take
a look at the issue tracker for a Kivy project that interests you and submit a Pull Request. It can
be a simple bug or a documentation change. We are looking to get a feel for how you work, not
evaluating your capabilities. Don’t worry about trying to pick something to impress us.

Pick an idea that you think is interesting from the ideas list or come up with your own idea.

Do some research yourself. GSoC is about give and take, not just one sided interaction. It is about
you trying to achieve agreed upon goals with our support. The main driving force in this should
be, obviously, yourself. Many students pop up and ask what they should do. You should base that
decision on your interests and your skills. Show us you're serious about it and take the initiative.

Write a draft proposal about what you want to do. Include what you understand the current state
of the project to be, what you would like to improve, how, etc.

Discuss that proposal with us in a timely manner. Get feedback.

Be patient! Especially on Discord. We will try to get to you if we're available. If not, send an
email and just wait. Most questions are already answered in the docs or somewhere else and can
be found with some research. Your questions should reflect that you've actually thought through
what you're asking and done some rudimentary research.

Most of all don’t forget to have fun and interact with the community. The community is as big a
part of Open Source as the code itself.

What to expect if you are chosen

All students should join the #support and the #dev Discord channels daily, this is how the devel-
opment team communicates both internally and with the users.

You and your mentors will agree on two week milestones for the duration of the summer.

Development will occur in your fork of the master branch of Kivy, we expect you to submit at
least one PR a week from your branch into a branch reserved for you in the primary repo. This
will be your forum for reporting progress as well as documenting any struggles you may have
encountered.

Missing 2 weekly PR or 2 milestones will result in your failure unless there have been extenuating
circumstances. If something comes up, please inform your mentors as soon as possible. If a
milestone seems out of reach we will work with you to reevaluate the goals.

Your changes will be merged into master once the project has been completed and we have thor-
oughly tested on every platform that is relevant.

52

https://wiki.python.org/moin/SummerOfCode/ApplicationTemplate2016

CHAPTER

FOURTEEN

FAQ

There are a number of questions that repeatedly need to be answered. The following document tries to
answer some of them.

14.1 Technical FAQ

14.1.1 Unable to get a Window, abort.

If Kivy cannot instantiate a Window core provider (mostly SDL2), you'll see this. The underlying issue
depends on many things:

Check your installation. Twice.
Check that your graphics driver support OpenGL 2.1 at the minimum. Otherwise, Kivy can’t run.

If you use windows and ANGLE (KIVY_GL_BACKEND=angle_sd1l2), check that you have Di-
rectX 9 support.

If your platform doesn’t supports OpenGL, SDL2 cannot initialize OpenGL.
Don’t mix the architecture of the dependencies (e.g. Python 64-bit and 32-bit extensions/SDL2)

Don’t mix python installation: e.g. if you have Python and Anaconda installed, the Python actu-
ally run may be different than you think. Similarly, if you have multiple Python versions available
on the PATH, they may clash.

Check your PATH to ensure that other programs in it don’t provide the same dlls as Kivy/Python,
or bad stuff can happen.

This commonly happens if some other program that uses similar dependencies as Kivy adds
itself to the PATH so that Kivy’s dependencies clash with theirs.

Please read this and this for more details on PATH.

The best tool to troubleshoot this is with Dependency Walker explained here and here.

But ensure that you're launching it from the identical environment that you start Python.
Ensure you have all dependencies installed (like kivy_deps.sdl2).

Maybe your drivers have some missing OpenGL symbols? Try to switch to another graphics
backend with KIVY_GL_BACKEND.

Maybe your Pycharm configuration is incorrect.

53

https://superuser.com/questions/284342/what-are-path-and-other-environment-variables-and-how-can-i-set-or-use-them
https://www.digitalcitizen.life/simple-questions-what-are-environment-variables
http://www.dependencywalker.com/
https://www.thewindowsclub.com/dependency-walker-download
https://kb.froglogic.com/display/KB/Analyzing+dependencies+with+Dependency+Walker
https://stackoverflow.com/questions/49466785/kivy-error-python-2-7-sdl2-import-error

14.1.2 Fatal Python error: (pygame parachute) Segmentation Fault
Most of time, this issue is due to the usage of old graphics drivers. Install the latest graphics driver
available for your graphics card, and it should be ok.

If not, this means you have probably triggered some OpenGL code without an available OpenGL con-
text. If you are loading images, atlases, using graphics instructions, you must spawn a Window first:

method 1 (preferred)
from kivy.base import EventLoop
EventLoop.ensure_window()

method 2
from kivy.core.window import Window

If not, please report a detailed issue on github by following the instructions in the Reporting an Issue
section of the Contributing documentation. This is very important for us because that kind of error can
be very hard to debug. Give us all the information you can give about your environment and execution.

14.1.3 undefined symbol: glGenerateMipmap

You graphics card or its drivers might be too old. Update your graphics drivers to the latest available
version and retry.

14.1.4 ImportError: No module named event

If you use Kivy from our development version, you must compile it before using it. In the kivy directory,
do:

make force

14.2 Android FAQ

14.2.1 Crash on touch interaction on Android 2.3.x
There have been reports of crashes on Adreno 200/205 based devices. Apps otherwise run fine but
crash when interacted with/through the screen.

These reports also mentioned the issue being resolved when moving to an ICS or higher ROM.

14.2.2 Is it possible to have a kiosk app on android 3.0 ?

Thomas Hansen have wrote a detailed answer on the kivy-users mailing list:
https:/ /groups.google.com/d/msg/kivy-users/QKoCekAR1c0/yV-85Y_iAwo]

Basically, you need to root the device, remove the SystemUI package, add some lines to the xml config-
uration, and you're done.

54

https://groups.google.com/d/msg/kivy-users/QKoCekAR1c0/yV-85Y_iAwoJ

14.2.3 What's the difference between python-for-android from Kivy and SL4A?

Despite having the same name, Kivy’s python-for-android is not related to the python-for-android
project from SL4A, Py4A, or android-python27. They are distinctly different projects with different
goals. You may be able to use Py4A with Kivy, but no code or effort has been made to do so. The
Kivy team feels that our python-for-android is the best solution for us going forward, and attempts to
integrate with and support Py4A is not a good use of our time.

14.3 Project FAQ

14.3.1 Why do you use Python? Isn’t it slow?

Let us try to give a thorough answer; please bear with us.

Python is a very agile language that allows you to do many things in a (by comparison) short time.
For many development scenarios, we strongly prefer writing our application quickly in a high-level
language such as Python, testing it, then optionally optimizing it.

But what about speed? If you compare execution speeds of implementations for a certain set of algo-
rithms (esp. number crunching) you will find that Python is a lot slower than say, C++. Now you may
be even more convinced that it’s not a good idea in our case to use Python. Drawing sophisticated
graphics (and we are not talking about your grandmother’s OpenGL here) is computationally quite ex-
pensive and given that we often want to do that for rich user experiences, that would be a fair argument.
But, in virtually every case your application ends up spending most of the time (by far) executing the
same part of the code. In Kivy, for example, these parts are event dispatching and graphics drawing.
Now Python allows you to do something to make these parts much faster.

By using Cython, you can compile your code down to the C level, and from there your usual C com-
piler optimizes things. This is a pretty pain free process and if you add some hints to your code, the
result becomes even faster. We are talking about a speed up in performance by a factor of anything
between 1x and up to more than 1000x (greatly depends on your code). In Kivy, we did this for you and
implemented the portions of our code, where efficiency really is critical, on the C level.

For graphics drawing, we also leverage today’s GPUs which are, for some tasks such as graphics raster-
ization, much more efficient than a CPU. Kivy does as much as is reasonable on the GPU to maximize
performance. If you use our Canvas API to do the drawing, there is even a compiler that we invented
which optimizes your drawing code automatically. If you keep your drawing mostly on the GPU, much
of your program’s execution speed is not determined by the programming language used, but by the
graphics hardware you throw at it.

We believe that these (and other) optimizations that Kivy does for you already make most applications
fast enough by far. Often you will even want to limit the speed of the application in order not to waste
resources. But even if this is not sufficient, you still have the option of using Cython for your own code
to greatly speed it up.

Trust us when we say that we have given this very careful thought. We have performed many different
benchmarks and come up with some clever optimizations to make your application run smoothly.

55

14.3.2 Does Kivy support Python 3.x?

Yes! Kivy 2.2.0 officially supports Python versions 3.7 - 3.11.

As of version 2.0.0 Kivy dropped support for Python 2. You can still use older versions with Python 2
support.

Python 3 is also supported by python-for-android and kivy-ios.

14.3.3 How is Kivy related to PyMT?

Our developers are professionals and are pretty savvy in their area of expertise. However, before Kivy
came around there was (and still is) a project named PyMT that was led by our core developers. We
learned a great deal from that project during the time that we developed it. In the more than two
years of research and development we found many interesting ways to improve the design of our
framework. We have performed numerous benchmarks and as it turns out, to achieve the great speed
and flexibility that Kivy has, we had to rewrite quite a big portion of the codebase, making this a
backwards-incompatible but future-proof decision. Most notable are the performance increases, which
are just incredible. Kivy starts and operates just so much faster, due to these heavy optimizations. We
also had the opportunity to work with businesses and associations using PyMT. We were able to test
our product on a large diversity of setups and made PyMT work on all of them. Writing a system such
as Kivy or PyMT is one thing. Making it work under all these different conditions is another. We have
a good background here, and brought our knowledge to Kivy.

Furthermore, since some of our core developers decided to drop their full-time jobs and turn to this
project completely, it was decided that a more professional foundation had to be laid. Kivy is that
foundation. It is supposed to be a stable and professional product. Technically, Kivy is not really
a successor to PyMT because there is no easy migration path between them. However, the goal is
the same: Producing high-quality applications for novel user interfaces. This is why we encourage
everyone to base new projects on Kivy instead of PyMT. Active development of PyMT has stalled.
Maintenance patches are still accepted.

14.3.4 Do you accept patches?

Yes, we love patches. In order to ensure a smooth integration of your precious changes however, please
make sure to read our contribution guidelines. Obviously we don’t accept every patch. Your patch has
to be consistent with our styleguide and, more importantly, make sense. It does make sense to talk to
us before you come up with bigger changes, especially new features.

14.3.5 Does the Kivy project participate in Google’s Summer of Code ?

Potential students ask whether we participate in GSoC. The clear answer is: Indeed. :-)

If you want to participate as a student and want to maximize your chances of being accepted, start
talking to us today and try fixing some smaller (or larger, if you can ;-) problems to get used to our
workflow. If we know you can work well with us, that’d be a big plus.

Here’s a checklist:
* Make sure to read through the website and at least skim the documentation.
* Look at the source code.
® Read our contribution guidelines.

¢ Pick an idea that you think is interesting from the ideas list (see link above) or come up with your
own idea.

56

Do some research yourself. GSoC is not about us teaching you something and you getting paid
for that. It is about you trying to achieve agreed upon goals by yourself with our support. The
main driving force in this should be, obviously, yourself. Many students come up and ask what
they should do. Well, we don’t know because we know neither your interests nor your skills.
Show us you're serious about it and take initiative.

Write a draft proposal about what you want to do. Include what you understand the current state
is (very roughly), what you would like to improve and how, etc.

Discuss that proposal with us in a timely manner. Get feedback.

Be patient! Especially on Discord. We will try to get to you if we're available. If not, send an
email and just wait. Most questions are already answered in the docs or somewhere else and can
be found with some research. If your questions don’t reflect that you've actually thought through
what you're asking, it might not be well received.

Good luck! :-)

57

58

CHAPTER

FIFTEEN

CONTACT US

You can contact us in several different ways:

15.1 Issue Tracker

If you have found an issue with the code or have a feature request, please see our issue tracker. If there
is no issue yet that matches your inquiry, feel free to create a new one. Please make sure you receive the
mails that github sends if we comment on the issue in case we need more information. For bugs, please
provide all the information necessary, like the operating system you're using, the full error message or
any other logs, a description of what you did to trigger the bug and what the actual bug was, as well
as anything else that might be of interest. Obviously, we can only help if you tell us precisely what the
actual problem is.

15.2 Mail

For users of our framework, there is a mailing list for support inquiries on the kivy-users Google Group.
Use this list if you have issues with your Kivy-based app. We also have a mailing list for matters that
deal with development of the actual Kivy framework code on the kivy-dev Google Group.

15.3 Discord

Kivy on Discord at https://chat.kivy.org

Discord is great for real-time communication, but please make sure to wait after you asked your ques-
tion. If you justjoin, ask and quit we have no way of knowing who you were and where we’re supposed
to send our answer. Also, keep in mind we’re mostly based in Europe, so take into account any timezone
issues. If you're unlucky more than once, try the mailing list.

If you don’t have the Discord app, you can also use Discord’s web client, but please, don’t leave too
soon. Just make sure to ask on the support channels.

Please read our Community Guidelines before asking for help on the mailing list or Discord channel.

59

https://github.com/kivy/kivy/issues
https://groups.google.com/group/kivy-users
https://groups.google.com/group/kivy-dev
https://chat.kivy.org
https://github.com/kivy/kivy/wiki/Community-Guidelines/

60

Part III

PROGRAMMING GUIDE

61

62

CHAPTER

SIXTEEN

KIVY BASICS

16.1 Installation of the Kivy environment

Kivy depends on many libraries, such as SDL2, gstreamer, PIL, Cairo, and more. They are not all
required, but depending on the platform you're working on, they can be a pain to install. To ease your
development process, we provide pre-packaged binaries for Windows, macOS and Linux.

Have a look at one of these pages for detailed installation instructions:
¢ jnstallation_windows
¢ installation_osx
e installation_linux
e installation_bsd
e installation_rpi
Alternatively, instructions for the development version can be found here:

® Development install

16.2 Create an application

Creating a kivy application is as simple as:
* sub-classing the App class
e implementing its bui [d() method so it returns a Widget instance (the root of your widget tree)
* instantiating this class, and calling its 7un () method.

Here is an example of a minimal application:

import kivy
kivy.require('2.1.0') # replace with your current kivy version !

from kivy.app import App
from kivy.uix.label import Label
class MyApp(App):

def build(self):
return Label(text='Hello world"')

(continues on next page)

63

(continued from previous page)

if __name__ == '__main__"':
MyApp () .run()

You can save this to a text file, main.py for example, and run it.

16.3 Kivy App Life Cycle

First off, let’s get familiar with the Kivy app life cycle.

App brought to foreground after Kivy Bootstrap for
process is killed{Androidfios) |77 - android/ios

\

Python start, run()

Resurne is not guaranteed

¥ :
en_stopl] return False
......

[Kivy Window Destroyed] * return True

External app/os or internal function S|
....... Save your work here.
pauses app

As you can see above, for all intents and purposes, our entry point into our App is the run() method,
and in our case that is “MyApp().run()”. We will get back to this, but let’s start from the line:

from kivy.app import App

It's required that the base Class of your App inherits from the App class. It's present in the
kivy_installation_dir/kivy/app.py.

Note: Go ahead and open up that file if you want to delve deeper into what the Kivy App class does.
We encourage you to open the code and read through it. Kivy is based on Python and uses Sphinx for
documentation, so the documentation for each class is in the actual file.

64

Similarly on line 5:

from kivy.uix.label import Label

One important thing to note here is the way packages/classes are laid out. The vix module is the
section that holds the user interface elements like layouts and widgets.

Moving on to line &:

class MyApp(App):

This is where we are defining the Base Class of our Kivy App. You should only ever need to change the
name of your app MyApp in this line.

Further on to line 10:

def build(self):

As highlighted by the image above, show casing the Kivy App Life Cycle, this is the function where you
should initialize and return your Root Widget. This is what we do on line 11:

return Label(text='Hello world"')

Here we initialize a Label with text ‘Hello World” and return its instance. This Label will be the Root
Widget of this App.

Note: Python uses indentation to denote code blocks, therefore take note that in the code provided
above, at line 11 the class and function definition ends.

Now on to the portion that will make our app run at line 14 and 15:

if __name__ == '__main__"':
MyApp() . run()

Here the class MyApp is initialized and its run() method called. This initializes and starts our Kivy
application.

16.4 Running the application

To run the application, follow the instructions for your operating system:

For Windows, Linux, macOS, or the RPi. From the terminal where you installed Kivy simply run:

python main.py

For Android or iOS, your application needs some complementary files to be able to run. See Create n
package for Android or See Create a package for iOS for further reference.

A window should open, showing a single Label (with the Text ‘Hello World’) that covers the entire
window’s area. That’s all there is to it.

65

Hello world

16.5 Customize the application

Lets extend this application a bit, say a simple UserName /Password page.

from kivy.app import App

from kivy.uix.gridlayout import GridLayout
from kivy.uix.label import Label

from kivy.uix.textinput import TextInput

class LoginScreen(GridLayout):

def init__(self, *xxkwargs):
super(LoginScreen, self). init _(*xxkwargs)
self.cols = 2
self.add_widget(Label(text='User Name'))
self.username = TextInput(multiline=False)
self.add_widget(self.username)
self.add_widget(Label(text="'password'))
self.password = TextInput(password=True, multiline=False)
self.add_widget(self.password)

class MyApp(App):

def build(self):
return LoginScreen()

if __name__ == '__main__"':
MyApp () .run()

At line 2 we import a Gridlayout:

66

from kivy.uix.gridlayout import GridLayout

This class is used as a Base for our Root Widget (LoginScreen) defined at line 7:

class LoginScreen(GridLayout):

At line 9 in the class LoginScreen, we override the method __init__() so as to add widgets and to
define their behavior:

def init__(self, *xxkwargs):
super(LoginScreen, self).__init__ (*xkwargs)

One should not forget to call super in order to implement the functionality of the original class being
overloaded. Also note that it is good practice not to omit the **kwargs while calling super, as they are
sometimes used internally.

Moving on to Line 11 and beyond:

self.cols = 2

self.add_widget(Label(text='User Name'))

self.username = TextInput(multiline=False)
self.add_widget(self.username)
self.add_widget(Label(text="'password'))

self.password = TextInput(password=True, multiline=False)
self.add_widget(self.password)

We ask the GridLayout to manage its children in two columns and add a Label and a TextInput for
the username and password.

Running the above code will give you a window that should look like this:

User Name

password

Try re-sizing the window and you will see that the widgets on screen adjust themselves according to
the size of the window without you having to do anything. This is because widgets use size hinting by
default.

The code above doesn’t handle the input from the user, does no validation or anything else. We will
delve deeper into this and Widget size and positioning in the coming sections.

67

68

CHAPTER

SEVENTEEN

CONTROLLING THE ENVIRONMENT

Many environment variables are available to control the initialization and behavior of Kivy.

For example, in order to restrict text rendering to the PIL implementation:

$ KIVY_TEXT=pil python main.py

Environment variables should be set before importing kivy:

import os
os.environ['KIVY_TEXT'] = 'pil’
import kivy

17.1 Path control

New in version 1.0.7.
You can control the default directories where config files, modules and kivy data are located.

KIVY_DATA_DIR
Location of the Kivy data, defaults to <kivy path>/data

KIVY_MODULES_DIR
Location of the Kivy modules, defaults to <kivy path>/modules

KIVY_HOME
Location of the Kivy home. This directory is used for local configuration, and must be in a writable
location.

Defaults to:
® Desktop: <user home>/.kivy
* Android: <android app path>/.kivy
e i0S: <user home>/Documents/.kivy
New in version 1.9.0.

KIVY_SDL2 PATH
If set, the SDL2 libraries and headers from this path are used when compiling kivy instead of the
ones installed system-wide. To use the same libraries while running a kivy app, this path must be
added at the start of the PATH environment variable.

New in version 1.9.0.

69

Warning: This path is required for the compilation of Kivy. It is not required for program
execution.

KIVY_SDL2 FRAMEWORKS_SEARCH_PATH
If set, the SDL2 frameworks from this path are used when compiling kivy instead of the ones
installed system-wide.

That path is used only on macOS, and must contain the SDL2.framework, SDL_image.framework,
SDL_mixer.framework and SDL._ttf.framework.

New in version 2.1.0.

Warning: This path is required for the compilation of Kivy. It is not required for program
execution.

KIVY_DEPS_ROOT
If set, during build, Kivy will use this directory as the root one to search
for (only SDL ATM) dependencies. Please note that if KIVY_SDL2 PATH or
KIVY_SDL2_FRAMEWORKS_SEARCH_PATH are set, they will be used instead.

New in version 2.2.0.

Warning: This path is required for the compilation of Kivy. It is not required for program
execution.

17.2 Configuration

KIVY_USE_DEFAULTCONFIG
If this name is found in environ, Kivy will not read the user config file.

KIVY_NO_CONFIG
If set, no configuration file will be read or written to. This also applies to the user configuration
directory.

KIVY_NO_FILELOG
If set, logs will be not print to a file

KIVY_NO_CONSOLELOG
If set, logs will be not print to the console

KIVY_NO_ARGS
If set to one of (‘true’, '1’, “yes’), the argument passed in command line will not be parsed and used
by Kivy. Ie, you can safely make a script or an app with your own arguments without requiring
the — delimiter:

import os
os.environ["KIVY_NO_ARGS"] = "1"
import kivy

New in version 1.9.0.

KCFG_section_key
If a such format environment name is detected, it will be mapped to the Config object.

They are loaded only once when kivy is imported. The behavior can be disabled using
KIVY_NO_ENV_CONFIG.

70

import os

import kivy
during import it will map it to:

os.environ["KCFG_KIVY_LOG_LEVEL"] = "warning"

Config.set("kivy", "log_level", "warning")

New in version 1.11.0.

KIVY_NO_ENV_CONFIG

If set, no environment key will be mapped to configuration object.

KCFG_section_key=value will be mapped to Config.

New in version 1.11.0.

17.3 Restrict core to specific implementation

If unset, any

kivy.core try to select the best implementation available for your platform. For testing or custom

installation, you might want to restrict the selector to a specific implementation.

KIVY_WINDOW
Implementation to use for creating the Window

Values: sdI2, pygame, x11, egl_rpi

KIVY_TEXT
Implementation to use for rendering text

Values: sdl2, pil, pygame, sdlttf

KIVY_VIDEO
Implementation to use for rendering video

Values: gstplayer, ffpyplayer, ffmpeg, null

KIVY_AUDIO
Implementation to use for playing audio

Values: sd12, gstplayer, ffpyplayer, pygame, avplayer

KIVY_IMAGE
Implementation to use for reading image

Values: sd12, pil, pygame, imageio, tex, dds
Changed in version 2.0.0.
Removed GPL gif implementation

KIVY_CAMERA
Implementation to use for reading camera

Values: avfoundation, android, opencv

KIVY_SPELLING
Implementation to use for spelling

Values: enchant, osxappkit

KIVY_CLIPBOARD
Implementation to use for clipboard management

Values: sdI2, pygame, dummy, android

71

17.4 Metrics

KIVY_DPI
If set, the value will be used for Metrics.dpi.

New in version 1.4.0.

KIVY_METRICS_DENSITY
If set, the value will be used for Metrics.density.

New in version 1.5.0.
KIVY_METRICS_FONTSCALE
If set, the value will be used for Metrics.fontscale.

New in version 1.5.0.

17.5 Graphics

KIVY_GL_BACKEND
The OpenGL backend to use. See cg L.

KIVY_GL_DEBUG
Whether to log OpenGL calls. See cg L.

KIVY_GRAPHICS
Whether to use OpenGL ES2. See cg .

KIVY_GLES_LIMITS
Whether the GLES2 restrictions are enforced (the default, or if set to 1). If set to false, Kivy will
not be truly GLES2 compatible.

Following is a list of the potential incompatibilities that result when set to true.

Mesh If true, the number of indices in a mesh is limited to 65535
in-
dices
Tex- | When blitting to a texture, the data (color and buffer) format must be the same format as the
ture | one used at the texture creation. On desktop, the conversion of different color is correctly
blit | handled by the driver, while on Android, most of devices fail to do it. Ref: https://github.
com/kivy/kivy/issues/1600

New in version 1.8.1.

KIVY_BCM_DISPMANX_ID
Change the default Raspberry Pi display to use when using the egl_rpi window provider. The list
of available value is accessible in vc_dispmanx_types.h. Default value is 0:

e 0: DISPMANX_ID_MAIN_LCD

e 1: DISPMANX_ID_AUX_LCD

2: DISPMANX_ID_HDMI

3: DISPMANX_ID_SDTV

4: DISPMANX_ID_FORCE_LCD

5: DISPMANX_ID_FORCE_TV

6: DISPMANX_ID_FORCE_OTHER

72

https://github.com/kivy/kivy/issues/1600
https://github.com/kivy/kivy/issues/1600

KIVY_BCM_DISPMANX_LAYER
Change the default Raspberry Pi dispmanx layer when using the egl_rpi window provider. De-

fault value is 0.

New in version 1.10.1.

17.6 Event Loop

KIVY_EVENTLOOP
Which async library should be used when the app is run in an asynchronous manner. See kKivy.

app for example usage.

'asyncio’': When the app is run in an asynchronous manner and the standard
library asyncio package should be used. The default if not set.

'trio': When the app is run in an asynchronous manner and the trio
package should be used.

New in version 2.0.0.

73

74

CHAPTER

EIGHTEEN

CONFIGURE KIVY

The configuration file for kivy is named config.ini, and adheres to the standard INI format.

18.1 Locating the configuration file

The location of the configuration file is controlled by the environment variable KIVY_HOME:

<KIVY_HOME>/config.ini

On desktop, this defaults to:

<HOME_DIRECTORY>/.kivy/config.ini

Therefore, if your user is named “tito”, the file will be here:
e Windows: C:\Users\tito\.kivy\config.ini
¢ macOS: /Users/tito/.kivy/config.ini
¢ Linux: /home/tito/.kivy/config.ini

On Android, this defaults to:

<ANDROID_APP_PATH>/.kivy/config.ini

If your app is named “org.kivy.launcher”, the file will be here:

/data/data/org.kivy.launcher/files/.kivy/config.ini

On iOS, this defaults to:

<HOME_DIRECTORY>/Documents/.kivy/config.ini

18.2 Local configuration

Sometimes it’s desired to change configuration only for certain applications or during testing of a sep-
arate part of Kivy for example input providers. To create a separate configuration file you can simply
use these commands:

from kivy.config import Config

Config.read(<file>)

(continues on next page)

75

http://en.wikipedia.org/wiki/INI_file

(continued from previous page)

set config
Config.write()

When a local configuration of single .1ini file isn’t enough, e.g. when you want to have separate
environment for garden, kivy logs and other things, you'll need to change the KIVY_HOME environment
variable in your application to get desired result:

import os
os.environ['KIVY_HOME'] = <folder>

or before each run of the application change it manually in the console:

1. Windows:

set KIVY_HOME=<folder>

2. Linux & OSX:

export KIVY_HOME=<folder>

After the change of KIVY_HOME, the folder will behave exactly the same as the default . kivy/ folder
mentioned above.

18.3 Understanding config tokens

All the configuration tokens are explained in the kivy. config module.

76

CHAPTER

NINETEEN

ARCHITECTURAL OVERVIEW

We would like to take a moment to explain how we designed Kivy from a software engineering point of
view. This is key to understanding how everything works together. If you just look at the code, chances
are you will get a rough idea already, but since this approach certainly is daunting for most users, this
section explains the basic ideas of the implementation in more detail. You can skip this section and refer
to it later, but we suggest at least skimming it for a rough overview.

Kivy consists of several building blocks that we will explain shortly. Here is a graphical summary of
the architecture:

o
=
g
=
B0
I

Low level
-~

g Kivy Architecture

Widget Kv language
Cache || Clock || Gesture ||Eventloop || Properties
Core providers Graphics Inputs
Window Vertex Buffer Motion Event
Text Frame Buffer Post processing
Image Texture (double tap,
Video Shader dejitter...)
Audio Instructions
Pygame PIL GStreamer| | GLES API GLEW Mouse TUIO
FFMpeg SDL Cairo WM_Touch| |Mac Touch
MTDev HIDInput

77

19.1 Core Providers and Input Providers

One idea that is key to understanding Kivy’s internals is that of modularity and abstraction. We try
to abstract basic tasks such as opening a window, displaying images and text, playing audio, getting
images from a camera, spelling correction and so on. We call these core tasks. This makes the API
both easy to use and easy to extend. Most importantly, it allows us to use — what we call — specific
providers for the respective scenarios in which your app is being run. For example, on macOS, Linux,
BSD Unix and Windows, there are different native APIs for the different core tasks. A piece of code that uses one
of these specific APIs to talk to the operating system on one side and to Kivy on the other (acting as an intermediate
communication layer) is what we call a *core provider. The advantage of using specialized core providers for
each platform is that we can fully leverage the functionality exposed by the operating system and act as
efficiently as possible. It also gives users a choice. Furthermore, by using libraries that are shipped with
any one platform, we effectively reduce the size of the Kivy distribution and make packaging easier.
This also makes it easier to port Kivy to other platforms. The Android port benefited greatly from this.

We follow the same concept with input handling. An input provider is a piece of code that adds support
for a specific input device, such as Apple’s trackpads, TUIO or a mouse emulator. If you need to add
support for a new input device, you can simply provide a new class that reads your input data from
your device and transforms them into Kivy basic events.

19.2 Graphics

Kivy’s graphics API is our abstraction of OpenGL. On the lowest level, Kivy issues hardware-
accelerated drawing commands using OpenGL. Writing OpenGL code however can be a bit confusing,
especially to newcomers. That's why we provide the graphics API that lets you draw things using
simple metaphors that do not exist as such in OpenGL (e.g. Canvas, Rectangle, etc.).

All of our widgets themselves use this graphics API, which is implemented on the C level for perfor-
mance reasons.

Another advantage of the graphics API is its ability to automatically optimize the drawing commands
that your code issues. This is especially helpful if you're not an expert at tuning OpenGL. This makes
your drawing code more efficient in many cases.

You can, of course, still use raw OpenGL commands if you prefer. The version we target is OpenGL 2.0
ES (GLES2) on all devices, so if you want to stay cross-platform compatible, we advise you to only use
the GLES2 functions.

19.3 Core

The code in the core package provides commonly used features, such as:

Clock
You can use the clock to schedule timer events. Both one-shot timers and periodic
timers are supported.

Cache
If you need to cache something that you use often, you can use our class for that instead
of writing your own.

Gesture Detection
We ship a simple gesture recognizer that you can use to detect various kinds of strokes,
such as circles or rectangles. You can train it to detect your own strokes.

Kivy Language
The kivy language is used to easily and efficiently describe user interfaces.

78

Properties
These are not the normal properties that you may know from python. They are our
own property classes that link your widget code with the user interface description.

19.4 UIX (Widgets & Layouts)

The UIX module contains commonly used widgets and layouts that you can reuse to quickly create a
user interface.

Widgets
Widgets are user interface elements that you add to your program to provide some kind
of functionality. They may or may not be visible. Examples would be a file browser,
buttons, sliders, lists and so on. Widgets receive MotionEvents.

Layouts
You use layouts to arrange widgets. It is of course possible to calculate your widgets’
positions yourself, but often it is more convenient to use one of our ready made layouts.
Examples would be Grid Layouts or Box Layouts. You can also nest layouts.

19.5 Modules

If you've ever used a modern web browser and customized it with some add-ons then you already
know the basic idea behind our module classes. Modules can be used to inject functionality into Kivy
programs, even if the original author did not include it.

An example would be a module that always shows the FPS of the current application and some graph
depicting the FPS over time.

You can also write your own modules.

19.6 Input Events (Touches)

Kivy abstracts different input types and sources such as touches, mice, TUIO or similar. What all of
these input types have in common is that you can associate a 2D onscreen-position with any individual
input event. (There are other input devices such as accelerometers where you cannot easily find a 2D
position for e.g. a tilt of your device. This kind of input is handled separately. In the following we
describe the former types.)

All of these input types are represented by instances of the Touch() class. (Note that this does not only
refer to finger touches, but all the other input types as well. We just called it Touch for the sake of
simplicity. Think of it of something that fouches the user interface or your screen.) A touch instance, or
object, can be in one of three states. When a touch enters one of these states, your program is informed
that the event occurred. The three states a touch can be in are:

Down
A touch is down only once, at the very moment where it first appears.

Move
A touch can be in this state for a potentially unlimited time. A touch does not have to
be in this state during its lifetime. A ‘Move’ happens whenever the 2D position of a
touch changes.

Up
A touch goes up at most once, or never. In practice you will almost always receive an
up event because nobody is going to hold a finger on the screen for all eternity, but it is

79

not guaranteed. If you know the input sources your users will be using, you will know
whether or not you can rely on this state being entered.

19.7 Widgets and Event Dispatching

The term widget is often used in GUI programming contexts to describe some part of the program that
the user interacts with. In Kivy, a widget is an object that receives input events. It does not necessarily
have to have a visible representation on the screen. All widgets are arranged in a widget tree (which is a
tree data structure as known from computer science classes): One widget can have any number of child
widgets or none. There is exactly one root widget at the top of the tree that has no parent widget, and all
other widgets are directly or indirectly children of this widget (which is why it’s called the root).

When new input data is available, Kivy sends out one event per touch. The root widget of the widget
tree first receives the event. Depending on the state of the touch, the on_touch_down, on_touch_move
or on_touch_up event is dispatched (with the touch as the argument) to the root widget, which results
in the root widget’s corresponding on_touch_down, on_touch_move or on_touch_up event handler
being called.

Each widget (this includes the root widget) in the tree can choose to either digest or pass the event on.
If an event handler returns True, it means that the event has been digested and handled properly. No
further processing will happen with that event. Otherwise, the event handler passes the widget on to
its own children by calling its superclass’s implementation of the respective event handler. This goes
all the way up to the base Widget class, which — in its touch event handlers — does nothing but pass the
touches to its children:

This is analogous for move/up:
def on_touch_down(self, touch):
for child in self.children[:]:
if child.dispatch('on_touch_down', touch):
return True

This really is much easier than it first seems. An example of how this can be used to create nice appli-
cations quickly will be given in the following section.

Often times you will want to restrict the area on the screen that a widget watches for touches. You can
use a widget’s collide_point() method to achieve this. You simply pass it the touch’s position and it
returns True if the touch is within the ‘watched area’ or False otherwise. By default, this checks the
rectangular region on the screen that’s described by the widget’s pos (for position; x & y) and size
(width & height), but you can override this behaviour in your own class.

80

CHAPTER

TWENTY

EVENTS AND PROPERTIES

Events are an important part of Kivy programming. That may not be surprising to those with GUI
development experience, but it’s an important concept for newcomers. Once you understand how
events work and how to bind to them, you will see them everywhere in Kivy. They make it easy to

build whatever behavior you want into Kivy.

The following illustration shows how events are handled in the Kivy framework.

Kivy's Main Thread

Input T I SELISLIII 3 Non GUI Operations that
o : L i o Ispatch Inpu © .. canbe deferred to a
: Event Dispatcher | i Events el different thread.
ey 7ty tptnplttpiod -
Ve \ ¥ : | _CustomEvents _|: ;
| s EhEee e e e e -
[: -4 _Property Events_ = 1:
SN z .
\/g\ 0 : I
- : : - -
3 : 1o | | File System |
i POODDD0000S . L |
P ! 1 Input Processing i [
e oo TTTTT 7 S i
7" Post Processing 1 © [Network !
-1 1 (double tap, swipe etc...) ! N (N T 5
- .
| & T
o eiEnnEns i© |1 Process !
. t . 1
ol I | O O F
- GUI L
B A SRR 1
S s S , Other '
T ST AN [.
"~ I > I \ ")
Main Kivy Loop Clock Events
Loop

81

20.1 Introduction to the Event Dispatcher

One of the most important base classes of the framework is the EventDispatcher class. This class
allows you to register event types, and to dispatch them to interested parties (usually other event dis-
patchers). The Widget, Animation and Clock classes are examples of event dispatchers.

EventDispatcher objects depend on the main loop to generate and handle events.

20.2 Main loop

As outlined in the illustration above, Kivy has a main loop. This loop is running during all of the appli-
cation’s lifetime and only quits when exiting the application.

Inside the loop, at every iteration, events are generated from user input, hardware sensors or a couple
of other sources, and frames are rendered to the display.

Your application will specify callbacks (more on this later), which are called by the main loop. If a call-
back takes too long or doesn’t quit at all, the main loop is broken and your app doesn’t work properly
anymore.

In Kivy applications, you have to avoid long/infinite loops or sleeping. For example the following code
does both:

while True:
animate_something()
time.sleep(.10)

When you run this, the program will never exit your loop, preventing Kivy from doing all of the other
things that need doing. As a result, all you'll see is a black window which you won’t be able to interact
with. Instead, you need to “schedule” your animate_something() function to be called repeatedly.

20.2.1 Scheduling a repetitive event

You can call a function or a method every X times per second using schedule_interval(). Here is
an example of calling a function named my_callback 30 times per second:

def my_callback(dt):
print('My callback is called',6 dt)
event = Clock.schedule_interval(my_callback, 1 / 30.)

You have multiple ways of unscheduling a previously scheduled event. One, is to use cancel () or
unschedule():

event.cancel()

or:

Clock.unschedule(event)

Alternatively, you can return False in your callback, and your event will be automatically unscheduled:

count = 0

def my_callback(dt):
global count
count += 1

(continues on next page)

82

(continued from previous page)

if count == 10:
print('Last call of my callback, bye bye !')
return False
print('My callback is called')
Clock.schedule_interval(my_callback, 1 / 30.)

20.2.2 Scheduling a one-time event

Using schedule_once(), you can call a function “later”, like in the next frame, or in X seconds:

def my_callback(dt):
print('My callback is called !")
Clock.schedule_once(my_callback, 1)

This will call my_callback in one second. The second argument is the amount of time to wait before
calling the function, in seconds. However, you can achieve some other results with special values for
the second argument:

e If X is greater than 0, the callback will be called in X seconds
e If X is 0, the callback will be called after the next frame
e If Xis -1, the callback will be called before the next frame

The -1 is mostly used when you are already in a scheduled event, and if you want to schedule a call
BEFORE the next frame is happening.

A second method for repeating a function call is to first schedule a callback once with
schedule_once(), and a second call to this function inside the callback itself:

def my callback(dt):
print('My callback is called !'")
Clock.schedule_once(my_callback, 1)
Clock.schedule_once(my_callback, 1)

Warning: While the main loop will try to keep to the schedule as requested, there is some uncer-
tainty as to when exactly a scheduled callback will be called. Sometimes another callback or some
other task in the application will take longer than anticipated and thus the timing can be a little off.

In the latter solution to the repetitive callback problem, the next iteration will be called at least one
second after the last iteration ends. With schedule_interval() however, the callback is called every
second.

20.2.3 Trigger events

Sometimes you may want to schedule a function to be called only once for the next frame, preventing
duplicate calls. You might be tempted to achieve that like so:

First, schedule once.
event = Clock.schedule_once(my_callback, 0)

Then, in another place you will have to unschedule first
to avoid duplicate call. Then you can schedule again.

(continues on next page)

83

(continued from previous page)

Clock.unschedule(event)
event = Clock.schedule_once(my_callback, 0)

This way of programming a trigger is expensive, since you’'ll always call unschedule, even if the event
has already completed. In addition, a new event is created every time. Use a trigger instead:

trigger = Clock.create_trigger(my_callback)
later
trigger()

Each time you call trigger(), it will schedule a single call of your callback. If it was already scheduled, it
will not be rescheduled.

20.3 Widget events

A widget has 2 default types of events:
¢ Property event: if your widget changes its position or size, an event is fired.
¢ Widget-defined event: e.g. an event will be fired for a Button when it’s pressed or released.

For a discussion on how widget touch events are managed and propagated, please refer to the Widget
touch event bubbling section.

20.4 Creating custom events

To create an event dispatcher with custom events, you need to register the name of the event in the class
and then create a method of the same name.

See the following example:

class MyEventDispatcher(EventDispatcher):
def __init _(self, *xxkwargs):
self.register_event_type('on_test')
super(MyEventDispatcher, self). _init _(xxkwargs)

def do_something(self, value):
when do_something is called, the 'on_test' event will be
dispatched with the value
self.dispatch('on_test', value)

def on_test(self, =*args):
print("I am dispatched", args)

84

20.5 Attaching callbacks

To use events, you have to bind callbacks to them. When the event is dispatched, your callbacks will be
called with the parameters relevant to that specific event.

A callback can be any python callable, but you need to ensure it accepts the arguments that the event
emits. For this, it’s usually safest to accept the *args argument, which will catch all arguments in the
args list.

Example:

def my callback(value, xargs):
print("Hello, I got an event!", args)

ev = MyEventDispatcher()
ev.bind(on_test=my_callback)
ev.do_something('test')

Pleases refer to the kivy.event.EventDispatcher.bind() method documentation for more ex-
amples on how to attach callbacks.

20.6 Introduction to Properties

Properties are an awesome way to define events and bind to them. Essentially, they produce events
such that when an attribute of your object changes, all properties that reference that attribute are auto-
matically updated.

There are different kinds of properties to describe the type of data you want to handle.
e StringProperty
e NumericProperty
e BoundedNumericProperty
e ObjectProperty
e DictProperty
e ListProperty
e OptionProperty
e AliasProperty
e BooleanProperty

e ReferencelListProperty

85

20.7 Declaration of a Property

To declare properties, you must declare them at the class level. The class will then do the work to
instantiate the real attributes when your object is created. These properties are not attributes: they are
mechanisms for creating events based on your attributes:

class MyWidget(Widget):

text = StringProperty('"')

When overriding __init__, always accept **kwargs and use super() to call the parent’s __init__ method,
passing in your class instance:

def init (self, *xkwargs):
super(MyWidget, self)._ _init_ _(xxkwargs)

20.8 Dispatching a Property event

Kivy properties, by default, provide an on_<property_name> event. This event is called when the value
of the property is changed.

Note: If the new value for the property is equal to the current value, then the on_<property_name> event
will not be called.

For example, consider the following code:

class CustomBtn(Widget):
pressed = ListProperty([0, 0])

def on_touch_down(self, touch):
if self.collide_point(*touch.pos):
self.pressed = touch.pos
return True
return super(CustomBtn, self).on_touch_down(touch)

def on_pressed(self, instance, pos):
print('pressed at {pos}'.format(pos=pos))

In the code above at line 3:

pressed = ListProperty ([0, 0])

We define the pressed Property of type ListProperty, giving it a default value of [0, 0]. From this
point forward, the on_pressed event will be called whenever the value of this property is changed.

At Line 5:

def on_touch down(self, touch):
if self.collide_point(xtouch.pos):
self.pressed = touch.pos
return True
return super(CustomBtn, self).on_touch_down(touch)

86

We override the on_touch_down () method of the Widget class. Here, we check for collision of the
touch with our widget.

If the touch falls inside of our widget, we change the value of pressed to touch.pos and return True,
indicating that we have consumed the touch and don’t want it to propagate any further.

Finally, if the touch falls outside our widget, we call the original event using super(...) and return the
result. This allows the touch event propagation to continue as it would normally have occurred.

Finally on line 11:

def on_pressed(self, instance, pos):
print('pressed at {pos}'.format(pos=pos))

We define an on_pressed function that will be called by the property whenever the property value is
changed.

Note: This on_<prop_name> event is called within the class where the property is defined. To moni-
tor/observe any change to a property outside of the class where it’s defined, you should bind to the
property as shown below.

Binding to the property

How to monitor changes to a property when all you have access to is a widget instance? You bind to the
property:

your_widget_instance.bind(property_name=function_name)

For example, consider the following code:

class RootWidget(BoxLayout):

def __init _(self, *xxkwargs):
super(RootWidget, self)._ _init__ (xxkwargs)
self.add_widget(Button(text="'btn 1'))
cb = CustomBtn()
cb.bind(pressed=self.btn_pressed)
self.add_widget(cb)
self.add_widget(Button(text="'btn 2'))

def btn_pressed(self, instance, pos):
print('pos: printed from root widget: {pos}'.format(pos=.pos))

If you run the code as is, you will notice two print statements in the console. One from the on_pressed
event that is called inside the CustomBtn class and another from the btn_pressed function that we bind to
the property change.

The reason that both functions are called is simple. Binding doesn’t mean overriding. Having both
of these functions is redundant and you should generally only use one of the methods of listen-
ing/reacting to property changes.

You should also take note of the parameters that are passed to the on_<property_name> event or the
function bound to the property.

def btn_pressed(self, instance, pos):

The first parameter is self, which is the instance of the class where this function is defined. You can use
an in-line function as follows:

87

N G e W N =

cb =

CustomBtn()

def _local func(instance, pos):

cb.b
self

print('pos: printed from root widget: {pos}'.format(pos=pos))

ind(pressed=_local_func)
.add_widget(cb)

The first parameter would be the instance of the class the property is defined.

The second parameter would be the value, which is the new value of the property.

Here is the complete example, derived from the snippets above, that you can use to copy and paste into

an editor to experiment.

from
from
from
from
from

clas

clas

kivy.app import App

kivy.uix.widget import Widget
kivy.uix.button import Button
kivy.uix.boxlayout import BoxLayout
kivy.properties import ListProperty

s RootWidget(BoxLayout):

def __init _(self, *xxkwargs):
super(RootWidget, self). init _(xxkwargs)
self.add_widget(Button(text="btn 1"))
cb = CustomBtn()
cb.bind(pressed=self.btn_pressed)
self.add_widget(cb)
self.add_widget(Button(text="'btn 2'))

def btn _pressed(self, instance, pos):
print('pos: printed from root widget: {pos}'.format(pos=pos))

s CustomBtn(Widget):
pressed = ListProperty([0, 0])

def on_touch_down(self, touch):
if self.collide_point(xtouch.pos):
self.pressed = touch.pos
we consumed the touch. return False here to propagate
the touch further to the children.
return True
return super(CustomBtn, self).on_touch_down(touch)

def on_pressed(self, instance, pos):
print('pressed at {pos}'.format(pos=pos))

class TestApp(App):

def build(self):
return RootWidget()

(continues on next page)

88

41

42

(continued from previous page)

if __name__ == '__main__"':
TestApp().run()

Running the code above will give you the following output:

Our CustomBtn has no visual representation and thus appears black. You can touch/click on the black
area to see the output on your console.

20.9 Compound Properties

When defining an AliasProperty, you normally define a getter and a setter function yourself. Here,
it falls on to you to define when the getter and the setter functions are called using the bind argument.

Consider the following code.

cursor_pos = AliasProperty(_get_cursor_pos, None,
bind=('cursor', 'padding', 'pos', 'size',
'focus', 'scroll_x', 'scroll_y',
'line_height', 'line_spacing'),
cache=True)
""'Current position of the cursor, in (x, y).

:attr: cursor_pos’ 1is an :class: ~kivy.properties.AliasProperty’,
read-only.

Here cursor_pos is a AliasProperty which uses the getter _get_cursor_pos with the setter part set to
None, implying this is a read only Property.

The bind argument at the end defines that on_cursor_pos event is dispatched when any of the properties
used in the bind= argument change.

89

90

CHAPTER

TWENTYONE

INPUT MANAGEMENT

21.1 Input architecture

Kivy is able to handle most types of input: mouse, touchscreen, accelerometer, gyroscope, etc. It handles
the native multitouch protocols on the following platforms: Tuio, WM_Touch, MacMultitouchSupport,
MT Protocol A/B and Android.

The global architecture can be viewed as:

Input providers -> Motion event -> Post processing -> Dispatch to Window

The class of all input events is the MotionEvent. It generates 2 kinds of events:

¢ Touch events: a motion event that contains at least an X and Y position. All the touch events are
dispatched across the Widget tree.

* No-touch events: all the rest. For example, the accelerometer is a continuous event, without
position. It never starts or stops. These events are not dispatched across the Widget tree.

A Motion event is generated by an Input Provider. An Input Provider is responsible for reading
the input event from the operating system, the network or even from another application. Several input
providers exist, such as:

e TuioMotionEventProvider: create a UDP server and listen for TUIO/OSC messages.

* WM_MotionEventProvider: use the windows API for reading multitouch information and
sending it to Kivy.

e ProbeSysfsHardwareProbe: In Linux, iterate over all the hardware connected to the computer,
and attaches a multitouch input provider for each multitouch device found.

¢ and much more!

When you write an application, you don’t need to create an input provider. Kivy tries to automati-
cally detect available hardware. However, if you want to support custom hardware, you will need to
configure kivy to make it work.

Before the newly-created Motion Event is passed to the user, Kivy applies post-processing to the in-
put. Every motion event is analyzed to detect and correct faulty input, as well as make meaningful
interpretations like:

* Double/triple-tap detection, according to a distance and time threshold
* Making events more accurate when the hardware is not accurate

* Reducing the amount of generated events if the native touch hardware is sending events with
nearly the same position

After processing, the motion event is dispatched to the Window. As explained previously, not all events
are dispatched to the whole widget tree: the window filters them. For a given event:

91

e if it’s only a motion event, it will be dispatched to on_motion()

e if it’s a touch event, the (x,y) position of the touch (0-1 range) will be scaled to the Window size
(width/height), and dispatched to:

- on_touch_down()
— on_touch_move()

— on_touch_up()

21.2 Motion event profiles

Depending on your hardware and the input providers used, more information may be made available
to you. For example, a touch input has an (x,y) position, but might also have pressure information, blob
size, an acceleration vector, etc.

A profile is a string that indicates what features are available inside the motion event. Let’s imagine
that you are in an on_touch_move method:

def on_touch_move(self, touch):
print(touch.profile)
return super(..., self).on_touch_move(touch)

The print could output:

['pos', 'angle'l]

Warning: Many people mix up the profile’s name and the name of the corresponding property. Just
because 'angle’ is in the available profile doesn’t mean that the touch event object will have an
angle property.

For the 'pos' profile, the properties pos, X, and y will be available. With the 'angle' profile, the
property a will be available. As we said, for touch events 'pos' is a mandatory profile, but not
‘angle’. You can extend your interaction by checking if the 'angle’ profile exists:

def on_touch_move(self, touch):
print('The touch is at position', touch.pos)
if 'angle' in touch.profile:
print('The touch angle is', touch.a)

You can find a list of available profiles in the motionevent documentation.

21.3 Touch events

A touch event is a specialized MotionEvent where the property 1s_touch evaluates to True. For all
touch events, you automatically have the X and Y positions available, scaled to the Window width and
height. In other words, all touch events have the 'pos' profile.

92

21.3.1 Touch event basics

By default, touch events are dispatched to all currently displayed widgets. This means widgets receive
the touch event whether it occurs within their physical area or not.

This can be counter intuitive if you have experience with other GUI toolkits. These typically divide the
screen into geometric areas and only dispatch touch or mouse events to the widget if the coordinate lies
within the widgets area.

This requirement becomes very restrictive when working with touch input. Swipes, pinches and long
presses may well originate from outside of the widget that wants to know about them and react to them.

In order to provide the maximum flexibility, Kivy dispatches the events to all the widgets and lets them
decide how to react to them. If you only want to respond to touch events inside the widget, you simply
check:

def on_touch_down(self, touch):
if self.collide_point(*xtouch.pos):
The touch has occurred inside the widgets area. Do stuff!
pass

21.3.2 Coordinates

You must take care of matrix transformation in your touch as soon as you use a widget with matrix
transformation. Some widgets such as Scatter have their own matrix transformation, meaning the
touch must be multiplied by the scatter matrix to be able to correctly dispatch touch positions to the
Scatter’s children.

* Get coordinate from parent space to local space: to_local()

* Get coordinate from local space to parent space: to_parent()

¢ Get coordinate from local space to window space: to_window()
* Get coordinate from window space to local space: to_widget()

You must use one of them to scale coordinates correctly to the context. Let’s look the scatter implemen-
tation:

def on_touch_down(self, touch):
push the current coordinate, to be able to restore it later
touch.push()

transform the touch coordinate to local space
touch.apply_transform_2d(self.to_local)

dispatch the touch as usual to children
the coordinate in the touch is now in local space
ret = super(..., self).on_touch_down(touch)

whatever the result, don't forget to pop your transformation
after the call, so the coordinate will be back in parent space
touch.pop()

return the result (depending what you want.)
return ret

93

21.3.3 Touch shapes

If the touch has a shape, it will be reflected in the ‘shape’ property. Right now, only a ShapeRect can
be exposed:

from kivy.input.shape import ShapeRect

def on_touch_move(self, touch):
if isinstance(touch.shape, ShapeRect):
print('My touch have a rectangle shape of size',
(touch.shape.width, touch.shape.height))

21.3.4 Double tap

A double tap is the action of tapping twice within a time and a distance. It’s calculated by the doubletap
post-processing module. You can test if the current touch is one of a double tap or not:

def on_touch_down(self, touch):
if touch.is_double_tap:
print('Touch is a double tap !')
print(' - interval is', touch.double_tap_time)
print(' - distance between previous is', touch.double_tap_distance)

21.3.5 Triple tap

A triple tap is the action of tapping thrice within a time and a distance. It’s calculated by the tripletap
post-processing module. You can test if the current touch is one of a triple tap or not:

def on_touch down(self, touch):
if touch.is_triple_tap:
print('Touch is a triple tap !')
print(' - interval is', touch.triple_tap_time)
print(' - distance between previous is', touch.triple_tap_distance)

21.3.6 Grabbing touch events

It's possible for the parent widget to dispatch a touch event to a child widget from within
on_touch_down, but not from on_touch_move or on_touch_up. This can happen in certain sce-
narios, like when a touch movement is outside the bounding box of the parent, so the parent decides
not to notify its children of the movement.

But you might want to do something in on_touch_up. Say you started something in the
on_touch_down event, like playing a sound, and you’d like to finish things on the on_touch_up
event. Grabbing is what you need.

When you grab a touch, you will always receive the move and up event. But there are some limitations
to grabbing:

* You will receive the event at least twice: one time from your parent (the normal event), and one
time from the window (grab).

94

* You might receive an event with a grabbed touch, but not from you: it can be because the parent
has sent the touch to its children while it was in the grabbed state.

Here is an example of how to use grabbing:

def on_touch_down(self, touch):
if self.collide_point(*touch.pos):

if the touch collides with our widget, let's grab it
touch.grab(self)

and accept the touch.
return True

def on_touch up(self, touch):
here, you don't check if the touch collides or things like that.
you just need to check if it's a grabbed touch event
if touch.grab_current is self:

ok, the current touch is dispatched for us.
do something interesting here
print('Hello world!"')

don't forget to ungrab ourself, or you might have side effects
touch.ungrab(self)

and accept the last up
return True

21.3.7 Touch Event Management

In order to see how touch events are controlled and propagated between widgets, please refer to the
Widget touch event bubbling section.

21.4 Joystick events

Ajoystick input represents raw values received directly from physical or virtual controllers through the
SDL2 provider via these events:

e SDL_JOYAXISMOTION
SDL_JOYHATMOTION
SDL_JOYBALLMOTION
SDL_JOYBUTTONDOWN
SDL_JOYBUTTONUP

Every motion event has a minimum, maximum and default value which can reach:

Event Minimum Maximum | Default
on_joy_axis | -32767 32767 0
on_joy_hat | (-1,-1) 1,1) 0,0)
on_joy_ball | Unknown | Unknown | Unknown

95

Button events, on the other hand represent basically only a state of each button i.e. up and down, there-
fore no such values are present.

* on_joy_button_up

* on_joy_button_down

21.4.1 Joystick event basics

Unlike touch events, joystick events are dispatched directly to the Window, which means there’s only
a single value passed for e.g. a specified axis, not multiple ones. This makes things harder if you want
to separate input to different widgets, yet not impossible. You can use Multiple dropfile example as an
inspiration.

To get a joystick event, you first need to bind some function to the Window joystick event like this:

Window.bind(on_joy_axis=self.on_joy_axis)

Then you need to fetch the parameters specified in Window for each event you use, for example:

def on_joy_axis(self, win, stickid, axisid, value):
print(win, stickid, axisid, value)

A variable stickid is an id of a controller that sent the value, axisid is an id of an axis to which the value
belongs.

21.4.2 Joystick input

Kivy should be able to fetch input from any device specified as gamepad, joystick or basically any other
type of game controller recognized by the SDL2 provider. To make things easier, here are layouts of
some common controllers together with ids for each part.

96

https://github.com/kivy/kivy/blob/master/examples/miscellaneous/multiple_dropfile.py

Xbox 360

1D # 1D

1 axis 1 2 axis 0

3 hatY 4 hat X

5 axis 4 6 axis 3

7 axis 2 8 axis 5

9 button 4 10 button 5
X button 2 Y button 3
A button 0 B button 1
back button 6 start | button 7
center | button 10

21.4.3 Joystick debugging

Mostly you'd want to debug your application with multiple controllers, or test it against _other_ types
of controllers (e.g. different brands). As an alternative you might want to use some of the available

controller emulators, such as vjoy.

97

http://vjoystick.sourceforge.net

98

CHAPTER

TWENTYTWO

WIDGETS

22.1 Introduction to Widget

A Widget is the base building block of GUI interfaces in Kivy. It provides a Canvas that can be used
to draw on screen. It receives events and reacts to them. For a in-depth explanation about the Widget
class, look at the module documentation.

22.2 Manipulating the Widget tree

Widgets in Kivy are organized in trees. Your application has a root widget, which usually has children
that can have children of their own. Children of a widget are represented as the chi ldren attribute,
aKivy ListProperty.

The widget tree can be manipulated with the following methods:
e add_widget(): add a widget as a child
e remove_widget(): remove a widget from the children list
e clear_widgets(): remove all children from a widget

For example, if you want to add a button inside a BoxLayout, you can do:

layout = BoxLayout(padding=10)
button = Button(text='My first button')
layout.add_widget(button)

The button is added to layout: the button’s parent property will be set to layout; the layout will have
the button added to its children list. To remove the button from the layout:

layout.remove_widget(button)

With removal, the button’s parent property will be set to None, and the layout will have button removed
from its children list.

If you want to clear all the children inside a widget, use c lear_widgets() method:

layout.clear_widgets()

Warning: Never manipulate the children list yourself, unless you really know what you are do-
ing. The widget tree is associated with a graphic tree. For example, if you add a widget into the

99

children list without adding its canvas to the graphics tree, the widget will be a child, yes, but noth-
ing will be drawn on the screen. Moreover, you might have issues on further calls of add_widget,
remove_widget and clear_widgets.

22.3 Traversing the Tree

The Widget class instance’s children list property contains all the children. You can easily traverse
the tree by doing:

root = BoxLayout()

... add widgets to root ...
for child in root.children:
print(child)

However, this must be used carefully. If you intend to modify the children list with one of the methods
shown in the previous section, you must use a copy of the list like this:

for child in root.children[:]:
manipulate the tree. For example here, remove all widgets that have a
width < 100
if child.width < 100:
root.remove_widget(child)

Widgets don’t influence the size/pos of their children by default. The pos attribute is the absolute
position in screen co-ordinates (unless, you use the relativelayout. More on that later) and size,
is an absolute size.

22.4 Widgets Z Index

The order of widget drawing is based on the widget’s position in the widget tree. The add_widget
method takes an index parameter which can be used to specify its position in the widget tree:

root.add_widget(widget, index)

The lower indexed widgets will be drawn above those with a higher index. Keep in mind that the
default for index is 0, so widgets added later are drawn on top of the others unless specified otherwise.

22.5 Organize with Layouts

Layout is a special kind of widget that controls the size and position of its children. There are dif-
ferent kinds of layouts, allowing for different automatic organization of their children. Layouts use
size_hint and pos_hint properties to determine the size and pos of their children.

100

Box Layout

vertical

vertical

Grid Layout

cols =3 cols =3 cols =3
cols =3 cols =3 cols =3
cols =3 cols =3 cols =3

cols =3 tols=3

Stack Layout

bt-rl

bt-rl

bt-rl

bt-rl

bt-rl

101

Anchor Layout

anchor_x = right
anchor_y = bottom

no restri
what so

no restrictions

what soever— |

BoxLayout: Arranges widgets in an adjacent manner (either vertically or horizontally) manner, to fill
all the space. The size_hint property of children can be used to change proportions allowed to each
child, or set fixed size for some of them.

GridLayout: Arranges widgets in a grid. You must specify at least one dimension of the grid so kivy
can compute the size of the elements and how to arrange them.

StackLayout: Arranges widgets adjacent to one another, but with a set size in one of the dimensions,
without trying to make them fit within the entire space. This is useful to display children of the same
predefined size.

AnchorLayout: A simple layout only caring about children positions. It allows putting the children at
a position relative to a border of the layout. size_hint is not honored.

FloatLayout: Allows placing children with arbitrary locations and size, either absolute or relative to
the layout size. Default size_hint (1, 1) will make every child the same size as the whole layout, so you
probably want to change this value if you have more than one child. You can set size_hint to (None,
None) to use absolute size with size. This widget honors pos_hint also, which as a dict setting position
relative to layout position.

102

RelativeLayout: Behaves just like FloatLayout, except children positions are relative to layout position,
not the screen.

Examine the documentation of the individual layouts for a more in-depth understanding.
size_hint and pos_hint:

e floatlayout

e boxlayout

e gridlayout

e stacklayout

e relativelayout

e anchorlayout

size_hint isaReferencelListProperty of size_hint_x and size_hint_y. It accepts values
from 0 to 1 or None and defaults to (1, 1). This signifies that if the widget is in a layout, the layout will
allocate it as much place as possible in both directions (relative to the layouts size).

Setting size_hint to (0.5, 0.8), for example, will make the widget 50% the width and 80% the height
of available size for the Widget inside a Layout.

Consider the following example:

BoxLayout:
Button:
'Button 1'
default size_hint is 1, 1, we don't need to specify it explicitly
however it's provided here to make things clear
1, 1

Now load kivy catalog by typing the following, but replacing $KIVYDIR with the directory of your
installation (discoverable via 0s .path.dirname(kivy.__file__)):

cd $KIVYDIR/examples/demo/kivycatalog
python main.py

A new window will appear. Click in the area below the ‘Welcome’ Spinner on the left and replace the
text there with your kv code from above.

103

Welcome Auto Reload Render Now

BoxLayout:
Button:
text: ‘Button 1°
| gize hint: 1, 1

[“IH utton 1

As you can see from the image above, the Button takes up 100% of the layout size.

Changing the size _hint_x/size_hint_y to .5 will make the Widget take 50% of the layout
width/height.

104

Mito Relosd L ¢

BoxLayout:
Button:
text: "Button 1’

gize_hint: 8.5, 8.5

Button 1

You can see here that, although we specify size_hint_x and size_hint_y both to be .5, only
size_hint_y seems to be honored. That is because boxlayout controls the size _hint_y when
orientation is vertical and size hint_x when orientation is ‘horizontal’. The controlled di-
mension’s size is calculated depending upon the total no. of children in the boxlayout. In this
example, one child has size_hint_y controlled (.5/.5 = 1). Thus, the widget takes 100% of the parent
layout’s height.

Let’s add another Button to the layout and see what happens.

105

Welcome Auto Reload Render Now

BoxLayout:
Button:
text: "Button 1’
Button:
text: "Button 2°

Button 1 Button 2

boxlayout by its very nature divides the available space between its chi Ldren equally. In our exam-
ple, the proportion is 50-50, because we have two children. Let’s use size_hint on one of the children
and see the results.

106

Welcome Auto Reload Render Now

BoxLayout:

Button:
text: 'Button 1’
size_hint: 6.5, 1

Button:
text: "Button 2°

Button 1 Button 2

If a child specifies size_hint, this specifies how much space the Widget will take out of the size
given to it by the boxlayout. In our example, the first Button specifies .5 for size_hint_x. The
space for the widget is calculated like so:

first child's size_hint divided by
first child's size_hint + second child's size_hint + ...n(no of children)

.5/(.5+1) = .333...

The rest of the BoxLayout’s width is divided among the rest of the children. In our example, this
means the second Button takes up 66.66% of the Layout width.

Experiment with size_hint to get comfortable with it.

If you want to control the absolute size of a Widget, you can set size_hint_x/size_hint_y or
both to None so that the widget’s width and or height attributes will be honored.

pos_hint is a dict, which defaults to empty. As for size_hint, layouts honor pos_hint differently,
but generally you can add values to any of the pos attributes (x, y, right, top, center_x, center_y)
to have the Widget positioned relative to its parent.

Let’s experiment with the following code in kivycatalog to understand pos_hint visually:

FloatLayout:
Button:
text: "We Will"
pos: 100, 100
size_hint: .2, .4
Button:

(continues on next page)

107

(continued from previous page)

"Wee Wiill"
200, 200
: .4, .2

Button:
"ROCK You!!"
s {'x': .3, 'y': .6}
: .5, .2

This gives us:

Float Layout ' 2| oad o

FloatLayout:
Button:
text: “"We Will"
: 188, 184
size_hint: .2, .4
Button: b
text: "Wee Wiill®
L ROCK YOU!
ize 4 .7
size_hint: .4, .2
Button:
t: “ROCK YOUrt~
TeEael b s et i S e
ize hint: .5, .2

Wee Wiill

ERTH

As with size _hint, you should experiment with pos_hint to understand the effect it has on the
widget positions.

22.6 Adding a Background to a Layout

One of the frequently asked questions about layouts is::

"How to add a background image/color/video/... to a Layout"

Layouts by their nature have no visual representation: they have no canvas instructions by default.
However you can add canvas instructions to a layout instance easily, as with adding a colored back-
ground:

In Python:

108

from kivy.graphics import Color, Rectangle

with layout_instance.canvas.before:
Color(0, 1, 0, 1) # green; colors range from 0-1 instead of 0-255
self.rect = Rectangle(size=layout_instance.size,
pos=layout_instance.pos)

Unfortunately, this will only draw a rectangle at the layout’s initial position and size. To make sure the
rect is drawn inside the layout, when the layout size/pos changes, we need to listen to any changes and
update the rectangles size and pos. We can do that as follows:

with layout_instance.canvas.before:
Color(0, 1, 0, 1) # green; colors range from 0-1 instead of 0-255
self.rect = Rectangle(size=layout_instance.size,
pos=layout_instance.pos)

def update rect(instance, value):
instance.rect.pos = instance.pos
instance.rect.size = instance.size

listen to size and position changes
layout_instance.bind(pos=update_rect, size=update_rect)

In kv:

FloatLayout:
canvas.before:
Color:
10, 1, 0, 1
Rectangle:
self here refers to the widget i.e FloatLayout
self.pos
self.size

The kv declaration sets an implicit binding: the last two kv lines ensure that the pos and size values
of the rectangle will update when the pos of the float layout changes.

Now we put the snippets above into the shell of Kivy App.
Pure Python way:

from kivy.app import App

from kivy.graphics import Color, Rectangle
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.button import Button

class RootWidget(FloatLayout):

def __init _(self, *xxkwargs):
make sure we aren't overriding any important functionality
super(RootWidget, self)._ _init__ (xxkwargs)

let's add a Widget to this layout
self.add_widget(
Button(

(continues on next page)

109

(continued from previous page)

text="Hello World",
size_hint=(.5, .5),
pos_hint={'center_x': .5, 'center_y': .5}))

class MainApp(App):

def build(self):
self.root = root = RootWidget()
root.bind(size=self._update_rect, pos=self._update_rect)

with root.canvas.before:
Color(e0, 1, 0, 1) # green; colors range from 0-1 not 0-255
self.rect = Rectangle(size=root.size, pos=root.pos)

return root

def _update_rect(self, instance, value):
self.rect.pos = instance.pos
self.rect.size = instance.size

if __name__ == '__main__"':
MainApp().run()

Using the kv Language:

from kivy.app import App
from kivy.lang import Builder

root = Builder.load_string("'""'
FloatLayout:
canvas.before:
Color:
rgba: 0, 1, 0, 1
Rectangle:
self here refers to the widget i.e FloatLayout
pos: self.pos
size: self.size
Button:
text: 'Hello World!!'
size_hint: .5, .5
pos_hint: {'center_x':.5, 'center_y': .5}

III)
class MainApp(App):

def build(self):
return root

if __name__ == '__main__"':
MainApp().run()

Both of the Apps should look something like this:

110

22.6.1 Add a color to the background of a custom layouts rule/class

The way we add background to the layout’s instance can quickly become cumbersome if we need to
use multiple layouts. To help with this, you can subclass the Layout and create your own layout that
adds a background.

Using Python:

from kivy.app import App

from kivy.graphics import Color, Rectangle
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.floatlayout import FloatlLayout
from kivy.uix.image import AsyncImage

class RootWidget(BoxLayout):
pass

class CustomLayout(FloatLayout):
def __init _(self, *xxkwargs):

make sure we aren't overriding any important functionality
super(CustomLayout, self). _init _(xxkwargs)

(continues on next page)

111

(continued from previous page)

with self.canvas.before:
Color(0, 1, 0, 1) # green; colors range from 0-1 instead of 0-
~255
self.rect = Rectangle(size=self.size, pos=self.pos)

self.bind(size=self._update_rect, pos=self._update_rect)

def _update_rect(self, instance, value):
self.rect.pos = instance.pos
self.rect.size = instance.size

class MainApp(App):

def build(self):
root = RootWidget()
¢ = CustomLayout()
root.add_widget(c)
c.add_widget(
AsyncImage(
source="http://www.everythingzoomer.com/wp-content/uploads/
~2013/01/Monday- joke-289x277.jpg",
size_hint= (1, .5),
pos_hint={'center_x':.5, 'center_y':.5}))
root.add_widget(AsyncImage(source="http://www.stuffistumbledupon.
~com/wp-content/uploads/2012/05/Have-you-seen-this-dog-because-its-
—~awesome-meme-puppy-doggy.jpg'))
¢ = CustomLayout()
c.add_widget(
AsyncImage(
source="http://www.stuffistumbledupon.com/wp-content/
~uploads/2012/04/Get-a-Girlfriend-Meme-empty-wallet.jpg",
size_hint= (1, .5),
pos_hint={'center_x':.5, 'center_y':.5}))
root.add_widget(c)
return root

if __name__ == '__main__"':
MainApp().run()

Using the kv Language:

from kivy.app import App

from kivy.uix.floatlayout import FloatLayout
from kivy.uix.boxlayout import BoxlLayout
from kivy.lang import Builder

Builder.load_string("'""'
<CustomLayout>
canvas.before:
Color:
rgba: 0, 1, 0, 1

(continues on next page)

112

(continued from previous page)

Rectangle:
pos: self.pos
size: self.size

<RootWidget>
CustomLayout:

AsyncImage:
source: 'http://www.everythingzoomer.com/wp-content/uploads/

~2013/01/Monday-joke-289x277.jpg"
size_hint: 1, .5
pos_hint: {'center_x':.5, 'center_y': .5}

AsyncImage:
source: 'http://www.stuffistumbledupon.com/wp-content/uploads/2012/

~05/Have-you-seen-this-dog-because-its-awesome-meme-puppy-doggy.jpg’
CustomLayout

AsyncImage:
source: 'http://www.stuffistumbledupon.com/wp-content/uploads/

~2012/04/Get-a-Girlfriend-Meme-empty-wallet.jpg’
size_hint: 1, .5
pos_hint: {'center_x':.5, 'center_y': .5}

)

class RootWidget(BoxLayout):
pass

class CustomLayout(FloatLayout):
pass

class MainApp(App):

def build(self):
return RootWidget()

if __name__ == '__main__"':
MainApp().run()

Both of the Apps should look something like this:

113

Gasoline Self Serve

9
. ARM g

.l-:\'!f.\.eul:- L E G 1_u

M | B eccauseirs

Defining the background in the custom layout class, assures that it will be used in every instance of
CustomLayout.

Now, to add an image or color to the background of a built-in Kivy layout, globally, we need to override
the kv rule for the layout in question. Consider GridLayout:

<GridLayout>
canvas.before:
Color:
rgba: 0, 1, 0, 1
BorderImage:
source: '../examples/widgets/sequenced_images/data/images/

~button_white.png'
pos: self.pos
size: self.size

Then, when we put this snippet into a Kivy app:

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.lang import Builder

Builder.load_string('""'
<GridLayout>
canvas.before:
BorderImage:
BorderImage behaves like the CSS BorderImage

(continues on next page)

114

(continued from previous page)

border: 10, 10, 10, 10

source: '../examples/widgets/sequenced_images/data/images/
~button_white.png'

pos: self.pos

size: self.size

<RootWidget>
GridLayout:
size_hint: .9, .9
pos_hint: {'center_x': .5, 'center_y': .5}
rows:1
Label:
text: "I don't suffer from insanity, I enjoy every minute of it

text_size: self.width-20, self.height-20
valign: 'top'
Label:

text: "When I was born I was so surprised; I didn't speak for_
~a year and a half."

text_size: self.width-20, self.height-20

valign: 'middle’

halign: 'center'

Label:
text: "A consultant is someone who takes a subject you_

~understand and makes it sound confusing"
text_size: self.width-20, self.height-20
valign: 'bottom'
halign: 'justify'

)

class RootWidget(FloatLayout):
pass

class MainApp(App):

def build(self):
return RootWidget()

if __name__ == '__main__"':
MainApp().run()

The result should look something like this:

115

When I was born I was so

surprised; I didn't speak for a
year and a half.

A consultant is someone who
takes a su yOou un d
and makes it sound confu

As we are overriding the rule of the class GridLayout, any use of this class in our app will display that
image.

How about an Animated background?

You can set the drawing instructions like Rectangle/BorderImage/Ellipse/... to use a particular tex-
ture:

Rectangle:
texture: reference to a texture

We use this to display an animated background:

from kivy.app import App

from kivy.uix.floatlayout import FloatlLayout
from kivy.uix.gridlayout import GridLayout
from kivy.uix.image import Image

from kivy.properties import ObjectProperty
from kivy.lang import Builder

Builder.load_string('""'
<CustomLayout>
canvas.before:
BorderImage:
BorderImage behaves like the CSS BorderImage
border: 10, 10, 10, 10

(continues on next page)

116

(continued from previous page)

texture: self.background_image.texture
pos: self.pos
size: self.size

<RootWidget>
CustomLayout:
size_hint: .9, .9
pos_hint: {'center_x': .5, 'center_y': .5}
rows:1
Label:
text: "I don't suffer from insanity, I enjoy every minute of it

text_size: self.width-20, self.height-20
valign: 'top'
Label:

text: "When I was born I was so surprised; I didn't speak for,
~a year and a half."

text_size: self.width-20, self.height-20

valign: 'middle’

halign: 'center'

Label:
text: "A consultant is someone who takes a subject you_

~understand and makes it sound confusing"
text_size: self.width-20, self.height-20
valign: 'bottom'
halign: 'justify'

)

class CustomLayout(GridLayout):

background_image = ObjectProperty(
Image(
source="'../examples/widgets/sequenced_images/data/images/
~button_white_animated.zip',
anim_delay=.1))

class RootWidget(FloatLayout):
pass

class MainApp(App):

def build(self):
return RootWidget()

if __name__ == '__main__"':
MainApp().run()

To try to understand what is happening here, start from line 13:

117

texture: self.background_image.texture

This specifies that the texture property of BorderImage will be updated whenever the texture property of
background_image updates. We define the background_image property at line 40:

background_image = ObjectProperty(...

This sets up background_image as an ObjectProperty in which we add an Image widget. An image
widget has a texture property; where you see self.background_image.texture, this sets a reference, texture,
to this property. The Image widget supports animation: the texture of the image is updated whenever
the animation changes, and the texture of BorderImage instruction is updated in the process.

You can also just blit custom data to the texture. For details, look at the documentation of Texture.

22.7 Nesting Layouts

Yes! It is quite fun to see how extensible the process can be.

22.8 Size and position metrics

Kivy’s default unit for length is the pixel, all sizes and positions are expressed in it by default. You
can express them in other units, which is useful to achieve better consistency across devices (they get
converted to the size in pixels automatically).

Available units are pt, mm, cm, inch, dp and sp. You can learn about their usage in the metrics
documentation.

You can also experiment with the screen usage to simulate various devices screens for your applica-
tion.

22.9 Screen Separation with Screen Manager

If your application is composed of various screens, you likely want an easy way to navigate from one
Screen to another. Fortunately, there is the ScreenManager class, that allows you to define screens
separately, and to set the TransitionBase from one to another.

118

CHAPTER

TWENTYTHREE

GRAPHICS

23.1 Introduction to Canvas

A Widgets graphical representation is rendered using a canvas, which you can see as both an unlimited
drawing board or as a set of drawing instructions. There are numerous instructions you can apply (add)
to your canvas, but there are two main variations:

* context instructions
* vertex instructions
Context instructions don’t draw anything, but they change the results of the vertex instructions.

Canvasses can contain two subsets of instructions. They are the canvas. before and the canvas.
after instruction groups. The instructions in these groups will be executed before and after the
canvas group respectively. This means that they will appear under (be executed before) and above
(be executed after) them. Those groups are not created until the user accesses them.

To add a canvas instruction to a widget, you use the canvas context:

class MyWidget(Widget):
def __init _(self, *xxkwargs):
super(MyWidget, self). _init_ _(*xxkwargs)
with self.canvas:
add your instruction for main canvas here

with self.canvas.before:
you can use this to add instructions rendered before

with self.canvas.after:
you can use this to add instructions rendered after

23.2 Context instructions

Context instructions manipulate the opengl context. You can rotate, translate, and scale your canvas.
You can also attach a texture or change the drawing color. This one is the most commonly used, but
others are really useful too:

with self.canvas.before:
Color(1l, 0, .4, mode='rgbh')

119

23.3 Drawing instructions

Drawing instructions range from very simple ones, like drawing a line or a polygon, to more complex
ones, like meshes or bezier curves:

with self.canvas:
draw a line using the default color
Line(points=(x1, yl, x2, y2, x3, y3))

lets draw a semi-transparent red square
Color(1, 0, 0, .5, mode='rgba')
Rectangle(pos=self.pos, size=self.size)

23.4 Manipulating instructions

Sometimes you want to update or remove the instructions you have added to a canvas. This can be
done in various ways depending on your needs:

You can keep a reference to your instructions and update them:

class MyWidget(Widget):
def __init _(self, *xxkwargs):
super(MyWidget, self)._ _init__ (xxkwargs)
with self.canvas:
self.rect = Rectangle(pos=self.pos, size=self.size)

self.bind(pos=self.update_rect)
self.bind(size=self.update_rect)

def update_rect(self, =xargs):
self.rect.pos = self.pos
self.rect.size = self.size

Or you can clean your canvas and start fresh:

class MyWidget(Widget):
def __init _(self, *xxkwargs):
super(MyWidget, self). _init_ _(*xxkwargs)
self.draw_my_stuff()

self.bind(pos=self.draw_my_stuff)
self.bind(size=self.draw_my_stuff)

def draw my stuff(self, *xargs):
self.canvas.clear()

with self.canvas:
self.rect = Rectangle(pos=self.pos, size=self.size)

Note that updating the instructions is considered the best practice as it involves less overhead and
avoids creating new instructions.

120

CHAPTER

TWENTYFOUR

KV LANGUAGE

24.1 Concept behind the language

As your application grows more complex, it’'s common that the construction of widget trees and explicit
declaration of bindings becomes verbose and hard to maintain. The KV Language is an attempt to
overcome these shortcomings.

The KV language, sometimes called kvlang or the kivy language, allows you to create your widget tree
in a declarative way and to bind widget properties to each other or to callbacks in a natural manner. It
allows for very fast prototypes and agile changes to your UL It also facilitates separating the logic of
your application and its User Interface.

24.2 How to load KV

There are two ways to load Kv code into your application:
¢ By name convention:

Kivy looks for a Kv file with the same name as your App class in lowercase, minus “App” if it
ends with ‘App’ e.g:

MyApp -> my.kv

If this file defines a Root Widget it will be attached to the App’s root attribute and used as the base
of the application widget tree.

e Builder: You can tell Kivy to directly load a string or a file. If this string or file defines a root
widget, it will be returned by the method:

Builder.load_file('path/to/file.kv')

or:

Builder.load_string(kv_string)

121

24.3 Rule context

A Kv source constitutes of rules which are used to describe the content of a Widget. You can have one
root rule, and any number of class or template rules.

The root rule is declared by declaring the class of your root widget, without any indentation, followed
by : and will be set as the root attribute of the App instance:

Widget:

A class rule, declared by the name of a widget class between < > and followed by :, defines the appear-
ance and behavior of any instance of that class:

<MyWidget>:

Rules use indentation for delimitation, like Python. Indentation should be four spaces per level, like
the Python style guide recommends.

There are three keywords specific to the Kv language:
* app: always refers to the instance of your application.
¢ root: refers to the base widget/template in the current rule

e self: always refer to the current widget

24.4 Special syntax

There is a special syntax to define values for the whole Kv context.

To access Python modules and classes from kv, use #: import

#:import name x.y.z
#:import isdir os.path.isdir
#:import np numpy

is equivalent to:

from x.y import z as name
from os.path import isdir
import numpy as np

in Python.

To set a global value, use #:set

#:set name value

is equivalent to:

name = value

in Python.

122

https://www.python.org/dev/peps/pep-0008/#indentation

24.5 Instantiate children

To declare a widget instance of some class as a child widget, just declare that child inside the rule:

MyRootWidget:
BoxLayout:
Button:
Button:

The example above defines that our root widget, an instance of MyRootWidget, has a child that is an
instance of the BoxLayout, and that BoxLayout further has two children, instances of the Button
class.

The Python equivalent of this code might be:

root = MyRootWidget()
box = BoxLayout()
box.add_widget(Button())
box.add_widget (Button())
root.add_widget(box)

Which you may find less nice, both to read and to write.

Of course, in Python, you can pass keyword arguments to your widgets at creation to specify their
behaviour. For example, to set the number of columns of a gridlayout, we would do:

grid = GridLayout(cols=3)

To do the same thing in kv, you can set properties of the child widget directly in the rule:

GridLayout:
: 3

The value is evaluated as a Python expression, and all the properties used in the expression will be
observed, that means that if you had something like this in Python (this assume self is a widget with a
data ListProperty):

grid = GridLayout(cols=len(self.data))
self.bind(data=grid.setter('cols'))

To have your display updated when your data change, you can now have just:

GridLayout:
: len(root.data)

Note: Widget names should start with upper case letters while property names should start with lower
case ones. Following the PEP8 Naming Conventions is encouraged.

123

https://www.python.org/dev/peps/pep-0008/#naming-conventions

24.6 Event Bindings

“.y

You can bind to events in Kv using the “:” syntax, that is, associating a callback to an event:

Widget:
: my_callback()

You can pass the values dispatched by the signal using the args keyword:

TextInput:
: app.search(args[1])

More complex expressions can be used, like:

self.center_x - self.texture_size[0] / 2., self.center_y - self.
~texture_size[l] / 2.

This expression listens for a change in center_x, center_y, and texture_size. If one of them
changes, the expression will be re-evaluated to update the pos field.

You can also handle on_ events inside your kv language. For example the TextInput class has a focus
property whose auto-generated on_focus event can be accessed inside the kv language like so:

TextInput:
print(args)

24.7 Extend canvas

Kv lang can be used to define the canvas instructions of your widget like this:

MywWidget:
canvas:
Color:
1, .3, .8, .5
Line:
zip(self.data.x, self.data.y)

And they get updated when properties values change.

Of course you can use canvas.before and canvas.after.

24.8 Referencing Widgets

In a widget tree there is often a need to access/reference other widgets. The Kv Language provides a
way to do this using id’s. Think of them as class level variables that can only be used in the Kv language.
Consider the following:

<MyFirstWidget>:
Button:
f_but
TextInput:
f_but.state

(continues on next page)

124

(continued from previous page)

<MySecondWidget>:
Button:
s_but
TextInput:
s_but.state

An 1d is limited in scope to the rule it is declared in, so in the code above s_but can not be accessed
outside the <MySecondWidget> rule.

Warning: When assigning a value to id, remember that the value isn’t a string. There are no quotes:
good ->1id: value,bad->id: ‘'value'

An id is a weakref to the widget and not the widget itself. As a consequence, storing the id is not
sufficient to keep the widget from being garbage collected. To demonstrate:

<MyWidget>:
: label_widget
Button:
'Add Button'
root.add_widget(label_widget)
Button:
‘Remove Button'
root.remove_widget(label_widget)
Label:

: label_widget
'widget'

Although a reference to label_widget is stored in MyWidget, it is not sufficient to keep the object
alive once other references have been removed because it’s only a weakref. Therefore, after the re-
move button is clicked (which removes any direct reference to the widget) and the window is resized
(which calls the garbage collector resulting in the deletion of label_widget), when the add button is
clicked to add the widget back, a ReferenceError: weakly-referenced object no longer
exists will be thrown.

To keep the widget alive, a direct reference to the label_widget widget must be kept. This is achieved
using id.__self__ or label_widget.__self__ in this case. The correct way to do this would be:

<MyWidget>:
: label_widget.__self__

249 Accessing Widgets defined inside Kv lang in your Python code

Consider the code below in my.kv:

<MyFirstWidget>:
both these variables can be the same name and this doesn't lead to
an issue with uniqueness as the id is only accessible in kv.
: txt_inpt
Button:
f_but
TextInput:

(continues on next page)

125

(continued from previous page)

: txt_inpt
: f_but.state
root.check_status(f_but)

In myapp.py:

class MyFirstWidget(BoxLayout):
txt_inpt = ObjectProperty(None)
def check status(self, btn):

print('button state is: {state}'.format(state=btn.state))
print('text input text is: {txt}'.format(txt=self.txt_inpt))

txt_inpt is defined as a ObjectProperty initialized to None inside the Class.

txt_inpt = ObjectProperty(None)

At this point self.txt_inpt is None. In Kv lang this property is updated to hold the instance of the
TextInput referenced by the id txt_inpt.:

txt_inpt: txt_inpt

From this point onwards, self.txt_inpt holds a reference to the widget identified by the id txt_input and
can be used anywhere in the class, as in the function check_status. In contrast to this method you could
also just pass the id to the function that needs to use it, like in case of f_but in the code above.

There is a simpler way to access objects with id tags in Kv using the ids lookup object. You can do this
as follows:

<Marvel>
Label:
: loki
'loki: I AM YOUR GOD!'
Button:
: hulk
"press to smash loki"
root.hulk_smash()
In your Python code:

class Marvel(BoxLayout):

def hulk_smash(self):
self.ids.hulk.text = "hulk: puny god!"
self.ids["loki"].text = "loki: >_<!!I" # alternative syntax

When your kv file is parsed, kivy collects all the widgets tagged with id’s and places them in this self.ids
dictionary type property. That means you can also iterate over these widgets and access them dictionary
style:

for key, val in self.ids.items():
print("key={0}, val={1}".format(key, val))

126

Note: Although the self.ids method is very concise, it is generally regarded as ‘best practice” to use the
ObjectProperty. This creates a direct reference, provides faster access and is more explicit.

24.10 Dynamic Classes

Consider the code below:

<MyWidget>:

Button:
text: "Hello world, watch this text wrap inside the button"
text size: self.size
font size: '25sp’
markup: True

Button:
text: "Even absolute is relative to itself"
text size: self.size
font_size: '25sp'’
markups: True

Button:
text: "Repeating the same thing over and over in a comp = fail"
text _size: self.size
font_size: '25sp'
markup: True

Button:

Instead of having to repeat the same values for every button, we can just use a template instead, like so:

<MyBigButton@Button>:
text size: self.size
font_size: '25sp’
markup: True

<MyWidget>:
MyBigButton:
text: "Hello world, watch this text wrap inside the button"
MyBigButton:
text: "Even absolute is relative to itself"
MyBigButton:
text: "repeating the same thing over and over in a comp = fail"
MyBigButton:

This class, created just by the declaration of this rule, inherits from the Button class and allows us to
change default values and create bindings for all its instances without adding any new code on the
Python side.

127

24.11 Re-using styles in multiple widgets

Consider the code below in my.kv:

<MyFirstWidget>:
Button:
root.text(txt_inpt.text)
TextInput:
: txt_inpt
<MySecondWidget>:
Button:
root.text(txt_inpt.text)
TextInput:
: txt_inpt
In myapp.py:

class MyFirstWidget(BoxLayout):

def text(self, val):
print('text input text is: {txt}'.format(txt=val))

class MySecondWidget(BoxLayout):
writing = StringProperty('"')

def text(self, val):
self.writing = val

Because both classes share the same .kv style, this design can be simplified if we reuse that style for
both widgets. You can do this in .kv as follows. In my.kv:

<MyFirstWidget,MySecondWidget>:
Button:
root.text(txt_inpt.text)
TextInput:
: txt_inpt

By separating the class names with a comma, all the classes listed in the declaration will have the same
kv properties.

128

24.12 Designing with the Kivy Language

One of the aims of the Kivy language is to separate the concerns of presentation and logic. The presen-
tation (layout) side is addressed by your . kv file and the logic by your . py file.

24.12.1 The code goes in py files

Let’s start with a little example: a Python file named main.py:

import kivy
kivy.require('1.0.5")

from kivy.uix.floatlayout import FloatlLayout
from kivy.app import App
from kivy.properties import ObjectProperty, StringProperty

class Controller(FloatLayout):

"''Create a controller that receives a custom widget from the kv lang_
~file.

Add an action to be called from the kv lang file.

label_wid = ObjectProperty()
info = StringProperty()

def do_action(self):
self.label_wid.text = 'My label after button press'
self.info = 'New info text'

class ControllerApp(App):

def build(self):
return Controller(info='Hello world"')

if __name__ == '__main__"':
ControllerApp().run()

In this example, we are creating a Controller class with 2 properties:
¢ info for receiving some text
* label_wid for receiving the label widget

In addition, we are creating a do_action() method that will use both of these properties. It will
change the info text and change text in the label_wid widget.

129

https://en.wikipedia.org/wiki/Separation_of_concerns

24.12.2 The layout goes in controller.kv

Executing this application without a corresponding .kv file will work, but nothing will be shown on the
screen. This is expected, because the Controller class has no widgets in it, it’s just a FloatLayout.
We can create the Ul around the Controller class in a file named controller.kv, which will be loaded
when we run the ControllerApp. How this is done and what files are loaded is described in the
kivy.app.App. load kv() method.

#:kivy 1.0
<Controller>:
: my_custom_label
BoxLayout:
'vertical'
: 20
Button:
'My controller info is: ' + root.info
root.do_action()
Label:

: my_custom_label
'My label before button press'

One label and one button in a vertical BoxLayout. Seems very simple. There are 3 things going on
here:

1. Using data from the Controller. As soon as the info property is changed in the controller,
the expression text: 'My controller info is: ' + root.info will automatically
be re-evaluated, changing the text in the Button.

2. Giving data to the Controller. The expression id: my_custom_Llabel is assigning the
created Label the id of my_custom_label. Then, using my_custom_label in the ex-
pression label_wid: my_custom_label gives the instance of that Label widget to your
Controller.

3. Creating a custom callback in the Button using the Controller’s on_press method.

e root and self are reserved keywords, usable anywhere. root represents the top
widget in the rule and self represents the current widget.

* You can use any id declared in the rule the same as root and self. For example,
you could do this in the on_press():

Button:

root.do_action(); my_custom_label.font_size = 18

And that’s that. Now when we run main.py, controller.kv will be loaded so that the Button and Label
will show up and respond to our touch events.

130

24.13 More documentation

For a full description of the different components of the KV language, advanced usage and limitations,
see the documentation for Lang

131

132

CHAPTER

TWENTYFIVE

INTEGRATING WITH OTHER
FRAMEWORKS

New in version 1.0.8.

25.1 Using Twisted inside Kivy

Note: You can use the kivy.support.install_twisted_reactor function to install a twisted reactor that will
run inside the kivy event loop.

Any arguments or keyword arguments passed to this function will be passed on the threadedse-
lect reactors interleave function. These are the arguments one would usually pass to twisted’s reac-
tor.startRunning

Warning: Unlike the default twisted reactor, the installed reactor will not handle any signals unless
you set the ‘installSignalHandlers” keyword argument to 1 explicitly. This is done to allow kivy to
handle the signals as usual, unless you specifically want the twisted reactor to handle the signals
(e.g. SIGINT).

The kivy examples include a small example of a twisted server and client. The server app has a simple
twisted server running and logs any messages. The client app can send messages to the server and will
print its message and the response it got. The examples are based mostly on the simple Echo example
from the twisted docs, which you can find here:

¢ https://twistedmatrix.com/documents/current/core/examples/

To try the example, run echo_server_app.py first, and then launch echo_client_app.py. The server will
reply with simple echo messages to anything the client app sends when you hit enter after typing
something in the textbox.

133

https://twistedmatrix.com/documents/current/core/examples/

25.1.1 Server App

install_twisted _rector must be called before importing and using the_
~reactor
from kivy.support import install_twisted_reactor

install_twisted_reactor()

from twisted.internet import reactor
from twisted.internet import protocol

class EchoServer(protocol.Protocol):
def dataReceived(self, data):
response = self.factory.app.handle_message(data)
if response:
self.transport.write(response)

class EchoServerFactory(protocol.Factory):
protocol = EchoServer

def __init _(self, app):
self.app = app

from kivy.app import App
from kivy.uix.label import Label

class TwistedServerApp(App):
label = None

def build(self):
self.label = Label(text="server started\n")
reactor.listenTCP (8000, EchoServerFactory(self))
return self.label

def handle _message(self, msg):
msg = msg.decode('utf-8")
self.label.text = "received: {}\n".format(msg)

if msg == "ping":
msg = "Pong"
if msg == "plop":

msg = "Kivy Rocks!!!"
self.label.text += "responded: {}\n".format(msg)
return msg.encode('utf-8")

if __name__ == '__main__"':
TwistedServerApp().run()

134

25.1.2 Client App

install_twisted_rector must be called before importing the reactor
from __future__ import unicode_literals

from kivy.support import install_twisted_reactor
install_twisted_reactor()

A Simple Client that send messages to the Echo Server
from twisted.internet import reactor, protocol

class EchoClient(protocol.Protocol):
def connectionMade(self):
self.factory.app.on_connection(self.transport)

def dataReceived(self, data):
self.factory.app.print_message(data.decode('utf-8'))

class EchoClientFactory(protocol.ClientFactory):
protocol = EchoClient

def __init__(self, app):
self.app = app

def startedConnecting(self, connector):
self.app.print_message('Started to connect.')

def clientConnectionLost(self, connector, reason):
self.app.print_message('Lost connection.')

def clientConnectionFailed(self, connector, reason):
self.app.print_message('Connection failed.')

from kivy.app import App

from kivy.uix.label import Label

from kivy.uix.textinput import TextInput
from kivy.uix.boxlayout import BoxlLayout

A simple kivy App, with a textbox to enter messages, and
a large label to display all the messages received from
the server
class TwistedClientApp(App):

connection = None

textbox = None

label = None

def build(self):
root = self.setup_gui()
self.connect_to_server()

(continues on next page)

135

(continued from previous page)

return root

def setup_gui(self):
self.textbox = TextInput(size_hint_y=.1, multiline=False)
self.textbox.bind(on_text_validate=self.send_message)
self.label = Label(text='connecting...\n")
layout = BoxLayout(orientation='vertical')
layout.add _widget(self.label)
layout.add_widget(self.textbox)
return layout

def connect_to_server(self):
reactor.connectTCP('localhost', 8000, EchoClientFactory(self))

def on_connection(self, connection):
self.print_message("Connected successfully!")
self.connection = connection

def send message(self, xargs):
msg = self.textbox.text
if msg and self.connection:
self.connection.write(msg.encode('utf-8'))
self.textbox.text = ""

def print_message(self, msg):

self.label.text += "{}\n".format(msg)

if __name__ == '__main__"':
TwistedClientApp().run()

136

CHAPTER

TWENTYSIX

PACKAGING YOUR APPLICATION

26.1 Create a package for Windows

Note: This document only applies for kivy 1.9.1 and greater.

Packaging your application for the Windows platform can only be done inside the Windows OS. The
following process has been tested on Windows with the Kivy wheels installation, see at the end for
alternate installations.

The package will be either 32 or 64 bits depending on which version of Python you ran it with.

26.1.1 Requirements

¢ Latest Kivy (installed as described in installation_windows).

e Pylnstaller 3.1+ (pip install --upgrade pyinstaller).

26.1.2 Pylnstaller default hook

This section applies to PyInstaller (>= 3.1) that includes the kivy hooks. To overwrite the default hook
the following examples need to be slightly modified. See Overwriting the default hook.

26.1.3 Packaging a simple app

For this example, we'll package the touchtracer example project and embed a custom icon. The location
of the kivy examples is, when using the wheels, installed to python\\share\\kivy-examples and
when using the github source code installed as kivy\\examples. We'll just refer to the full path
leading to the examples as examples - path. The touchtracer example is in examples-path\\demo\
\touchtracer and the main file is named main. py.

1. Open your command line shell and ensure that python is on the path (i.e. python works).

2. Create a folder into which the packaged app will be created. For example create a TouchApp
folder and change to that directory with e.g. cd TouchApp. Then type:

python -m PyInstaller --name touchtracer examples-path\demo\
~touchtracer\main.py

You can also add an icon.ico file to the application folder in order to create an icon for the exe-
cutable. If you don’t have a .ico file available, you can convert your icon.png file to ico using the
web app ConvertICO. Save the icon.ico in the touchtracer directory and type:

137

http://www.computerhope.com/cdhlp.htm
http://www.convertico.com

python -m PyInstaller --name touchtracer --icon examples-path\demo\
.touchtracer\icon.ico examples-path\demo\touchtracer\main.py

For more options, please consult the PyInstaller Manual.

3. The spec file will be touchtracer.spec located in TouchApp. Now we need to edit the spec
file to add the dependencies hooks to correctly build the exe. Open the spec file with your favorite
editor and add these lines at the beginning of the spec (assuming sdl2 is used, the default now):

from kivy_deps import sdl2, glew

Then, find COLLECT () and add the data for touchtracer (touchtracer.kv, particle.png, ...): Change
the line to add a Tree() object, e.g. Tree('examples-path\\demo\\touchtracer\\").
This Tree will search and add every file found in the touchtracer directory to your final package.

To add the dependencies, before the first keyword argument in COLLECT add a Tree object
for every path of the dependencies. E.g. *x[Tree(p) for p in (sdl2.dep_bins + glew.
dep_bins)] soit'll look something like:

coll = COLLECT(exe, Tree('examples-path\\demo\\touchtracer\\'),
a.binaries,
a.zipfiles,
a.datas,
*[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins)],
strip=False,
upx=True,
name="'touchtracer')

4. Now we build the spec file in TouchApp with:

python -m PyInstaller touchtracer.spec

5. The compiled package will be in the TouchApp\dist\touchtracer directory.

26.1.4 Single File Application

Next, we will modify the example above to package the touchtracer example project as a single file
application. Following the same steps as above, instead issue the following command:

python -m PyInstaller --onefile --name touchtracer examples-path\demo\
~touchtracer\main.py

1. As before, this will generate touchtracer.spec, which we will edit to add the dependencies. In this
instance, edit the arguments to the EXE command so that it will look something like this:

exe = EXE(pyz, Tree('examples-path\\demo\\touchtracer\\'),
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
*[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins)],
upx=True,
name="'touchtracer"')

2. Now you can build the spec file as before with:

138

https://pyinstaller.readthedocs.io/en/stable/

python -m PyInstaller touchtracer.spec

3. The compiled package will be in the TouchApp\dist directory and will consist of a single executable
file.

26.1.5 Bundling Data Files

We will again modify the previous example to include bundled data files. PyInstaller allows inclusion
of outside data files (such as images, databases, etc) that the project needs to run. When running an app
on Windows, the executable extracts to a temporary folder which the Kivy project doesn’t know about,
so it can’t locate these data files. We can fix that with a few lines.

1. First, follow PylInstaller documentation on how to include data files in your application.

2. Modify your main python code to include the following imports (if it doesn’t have them already):

import os, sys
from kivy.resources import resource_add_path, resource_find

3. Modify your main python code to include the following (using the touchtracer app as an exam-
ple):

if __name__ == '__main__"':
if hasattr(sys, '_MEIPASS'):
resource_add_path(os.path.join(sys._MEIPASS))
TouchtracerApp().run()

4. Finally, follow the steps for bundling your application above.

26.1.6 Packaging a video app with gstreamer

Following we'll slightly modify the example above to package a app that uses gstreamer for video. We'll
use the videoplayer example found at examples-path\widgets\videoplayer.py. Create a
folder somewhere called VideoPlayer and on the command line change your current directory to
that folder and do:

python -m PyInstaller --name gstvideo examples-path\widgets\videoplayer.py

to create the gstvideo. spec file. Edit as above and this time include the gstreamer dependency as
well:

from kivy_deps import sdl12, glew, gstreamer

and add the Tree () to include the video files, e.g. Tree('examples-path\\widgets"') as well as
the gstreamer dependencies so it should look something like:

coll = COLLECT(exe, Tree('examples-path\\widgets'),

a.binaries,

a.zipfiles,

a.datas,

x[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins +_
~gstreamer.dep_bins)],

strip=False,

upx=True,

name="'gstvideo"')

139

Then build the spec file in VideoPlayer with:

python -m PyInstaller gstvideo.spec

and you should find gstvideo.exe in VideoPlayer\dist\gstvideo, which when run will play a
video.

Note: If you're using Pygame and need PyGame in your packaging app, you'll have to add the follow-
ing code to your spec file due to kivy issue #1638. After the imports add the following:

def getResource(identifier, =*xargs, *xkwargs):
if identifier == 'pygame_icon.tiff':
raise IOError()
return _original_getResource(identifier, *args, *xkwargs)

import pygame.pkgdata
_original_getResource = pygame.pkgdata.getResource
pygame.pkgdata.getResource = getResource

26.1.7 Overwriting the default hook

26.1.8 Including/excluding video and audio and reducing app size

PyInstaller includes a hook for kivy that by default adds all the core modules used by kivy, e.g. audio,
video, spelling etc (you still need to package the gstreamer dlls manually with Tree () - see the example
above) and their dependencies. If the hook is not installed or to reduce app size some of these modules
may be excluded, e.g. if no audio/video is used, with an alternative hook.

Kivy provides the alternate hook at hookspath (). In addition, if and only if PyInstaller doesn’t have
the default hooks runtime_hooks () must also be provided. When overwriting the hook, the latter
one typically is not required to be overwritten.

The alternate hookspath () hook does not include any of the kivy providers. To add them, they
have to be added with get_deps_minimal() or get_deps_all(). See their documentation and
pyinstaller_hooks for more details. But essentially, get_deps_all() add all the providers like
in the default hook while get_deps_minimal() only adds those that are loaded when the app is run.
Each method provides a list of hidden kivy imports and excluded imports that can be passed on to
Analysis.

One can also generate a alternate hook which literally lists every kivy provider module and those not
required can be commented out. See pyinstaller_hooks.

To use the the alternate hooks with the examples above modify as following to add the
hooks with hookspath() and runtime_hooks (if required) and **get_deps_minimal() or
xxget_deps_all() to specify the providers.

For example, add the import statement:

from kivy.tools.packaging.pyinstaller_hooks import get_deps_minimal, get_
~deps_all, hookspath, runtime_hooks

and then modify Analysis as follows:

a = Analysis(['examples-path\\demo\\touchtracer\\main.py'],

(continues on next page)

140

(continued from previous page)

hookspath=hookspath(),
runtime_hooks=runtime_hooks (),

+xget_deps_all())

to include everything like the default hook. Or:

a = Analysis(['examples-path\\demo\\touchtracer\\main.py'],

hookspath=hookspath(),
runtime_hooks=runtime_hooks (),

xxget_deps_minimal(video=None, audio=None))

e.g. to exclude the audio and video providers and for the other core modules only use those loaded.

The key points is to provide the alternate hookspath() which does not list by default all the kivy
providers and instead manually to hiddenimports add the required providers while removing the un-
desired ones (audio and video in this example) with get_deps_minimal().

26.1.9 Alternate installations

The previous examples used e.g. *[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins +
gstreamer.dep_bins)], to make PyInstaller add all the dlls used by these dependencies. If kivy
was not installed using the wheels method these commands will not work and e.g. kivy_deps.sdl2
will fail to import. Instead, one must find the location of these dlls and manually pass them to the Tree
class in a similar fashion as the example.

26.2 Create a package for Android

You can create a package for android using the python-for-android project. This page explains how to
download and use it directly on your own machine (see Packaging your application into APK or AAB)
or use the Buildozer tool to automate the entire process. You can also see Packaging your application for
the Kivy Launcher to run kivy programs without compiling them.

For new users, we recommend using Buildozer as the easiest way to make a full APK or AAB. You can
also run your Kivy app without a compilation step with the Kivy Launcher app.

Kivy applications can be released on an Android market such as the Play store, with a few extra steps to
create a fully signed AAB (Android App Bundle).

The Kivy project includes tools for accessing Android APIs to accomplish vibration, sensor access, tex-
ting etc. These, along with information on debugging on the device, are documented at the 1main Android
page.

141

https://github.com/kivy/python-for-android

26.2.1 Buildozer

Buildozer is a tool that automates the entire build process. It downloads and sets up all the prereg-
uisites for python-for-android, including the android SDK and NDK, then builds an apk that can be
automatically pushed to the device.

Buildozer currently works only in Linux and macOS (You can still use it on Windows via WSL), and
can significantly simplify the apk build.

Please find the installation instructions here
Including the “Targeting Android” section.

Afterwards, navigate to your project directory and run:

buildozer init

This creates a buildozer.spec file controlling your build configuration. You should edit it appropriately
with your app name etc. You can set variables to control most or all of the parameters passed to python-
for-android.

Finally, plug in your android device and run:

buildozer android debug deploy run

to build, push and automatically run the apk on your device.

Buildozer has many available options and tools to help you, the steps above are just the simplest way
to build and run your APK. The full documentation is available here. You can also check the Buildozer
README at https://github.com /kivy/buildozer.

26.2.2 Packaging with python-for-android
You can also package directly with python-for-android, which can give you more control but requires
you to manually download parts of the Android toolchain.

See the python-for-android documentation for full details.

26.2.3 Packaging your application for the Kivy Launcher
The Kivy launcher is an Android application that runs any Kivy examples stored on your SD Card. To
install the Kivy launcher, you must:

1. Go on Google Play Store and search for Kivy Launcher from kivy org

2. Click on Install

3. Select your phone... And you're done!

If you don’t have access to the Google Play Store on your phone/tablet, you can download and install
the APK manually from https://github.com/kivy/kivy-launcher/releases

Once the Kivy launcher is installed, you can put your Kivy applications in the Kivy directory in your
external storage directory (often available at /sdcard even in devices where this memory is internal),

e.g.

/sdcard/kivy/<yourapplication>

<yourapplication> should be a directory containing:

142

https://buildozer.readthedocs.io/en/latest/installation.html
http://buildozer.readthedocs.org/en/latest/
https://github.com/kivy/buildozer
https://python-for-android.readthedocs.io/en/latest/quickstart/
https://github.com/kivy/kivy-launcher/releases

Your main application file:

main.py

Some info Kivy requires about your app on android:
android. txt

The file android.txt must contain:

title=<Application Title>
author=<Your Name>
orientation=<portrait|landscape>

These options are just a very basic configuration. If you create your own APK using the tools above,
you can choose many other settings.

Installation of Examples

Kivy comes with many examples, and these can be a great place to start trying the Kivy launcher. You
can run them as below:

#. Download the 'Kivy demos for Android <https://storage.googleapis.com/
~google-code-archive-downloads/v2/code.google.com/kivy/kivydemo-for-
wandroid.zip> _

#. Unzip the contents and go to the folder “kivydemo-for-android’

#. Copy all the the subfolders here to

/sdcard/kivy

1. Run the launcher and select one of the Pictures, Showcase, Touchtracer, Cymunk or other de-
mos. ..

26.2.4 Release on the market

If you have built your own APK with Buildozer or with python-for-android, you can create a release
version that may be released on the Play store or other Android markets.

To do this, you must run Buildozer with the release parameter (e.g. buildozer android
release), or if using python-for-android use the - - release option to build.py. This creates a re-
lease AAB in the bin directory, which you must properly sign and zipalign. The procedure for doing
this is described in the Android documentation at https://developer.android.com/studio/publish/
app-signing.html#signing-manually - all the necessary tools come with the Android SDK.

26.2.5 Targeting Android

Kivy is designed to operate identically across platforms and as a result, makes some clear design de-
cisions. It includes its own set of widgets and by default, builds an APK or AAB with all the required
core dependencies and libraries.

It is possible to target specific Android features, both directly and in a (somewhat) cross-platform way.
See the Using Android APIs section of the Kivy on Android documentation for more details.

143

https://developer.android.com/studio/publish/app-signing.html#signing-manually
https://developer.android.com/studio/publish/app-signing.html#signing-manually

26.3 Kivy on Android

You can run Kivy applications on Android, on (more or less) any device with OpenGL ES 2.0 (Android
2.2 minimum). This is standard on modern devices; Google reports the requirement is met by 99.9% of
devices.

Kivy APKs are normal Android apps that you can distribute like any other, including on stores like the
Google Play Store. They behave properly when paused or restarted, may utilise Android services and
have access to most of the normal java API as described below.

Follow the instructions below to learn how to package your app for Android, debug your code on the device,
and use Android APIs such as for vibration and reading sensors.

26.3.1 Package for Android

The Kivy project provides all the necessary tools to package your app on Android, including building
your own standalone APK or AAB that may be distributed on a market like the Google Play Store. This
is covered fully in the Create a package for Android documentation.

26.3.2 Debugging your application on the Android platform

You can view the normal output of your code (stdout, stderr), as well as the normal Kivy logs, through
the Android logcat stream. This is accessed through adb, provided by the Android SDK. You may need
to enable adb in your device’s developer options, then connect your device to your computer and run:

adb logcat

You'll see all the logs including your stdout/stderr and Kivy logger.

If you packaged your app with Buildozer, the adb tool may not be in your $PATH and the above com-
mand may not work. You can instead run:

buildozer android logcat

to run the version installed by Buildozer, or find the SDK tools at $HOME/ .buildozer/android/
platform.

You can also run and debug your application using the Kivy Launcher. If you run your application this
way, you will find log files inside the “/.kivy/logs” sub-folder within your application folder.

26.3.3 Using Android APIs

Although Kivy is a Python framework, the Kivy project maintains tools to easily use the normal java
APIs, for everything from vibration to sensors to sending messages through SMS or email.

For new users, we recommend using Plyer. For more advanced access or for APIs not currently
wrapped, you can use Pyjnius directly. Kivy also supplies an android module for basic Android func-
tionality.

User contributed Android code and examples are available on the Kivy wiki.

144

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://developer.android.com/sdk/index.html
https://github.com/kivy/kivy/wiki#mobiles

Plyer

Plyer is a pythonic, platform-independent API to use features commonly found on various platforms,
particularly mobile ones. The idea is that your app can call simply call a Plyer function, such as to
present a notification to the user, and Plyer will take care of doing so in the right way regardless of the
platform or operating system. Internally, Plyer uses Pyjnius (on Android), Pyobjus (on iOS) and some
platform specific APIs on desktop platforms.

For instance, the following code would make your Android device vibrate, or raise a NotImplemented-
Error that you can handle appropriately on other platforms such as desktops that don’t have appropri-
ate hardware::

from plyer import vibrator
vibrator.vibrate(10) # vibrate for 10 seconds

Plyer’s list of supported APIs is growing quite quickly, you can see the full list in the Plyer README.

Pyjnius

Pyjnius is a Python module that lets you access java classes directly from Python, automatically con-
verting arguments to the right type, and letting you easily convert the java results to Python.

Pyjnius can be obtained from github, and has its own documentation.

Here is a simple example showing Pyjnius’ ability to access the normal Android vibration API, the same
result of the plyer code above:

'autoclass' takes a java class and gives it a Python wrapper
from jnius import autoclass

Context is a normal java class in the Android API
Context = autoclass('android.content.Context')

PythonActivity is provided by the Kivy bootstrap app in python-for-
~android
PythonActivity = autoclass('org.renpy.android.PythonActivity')

The PythonActivity stores a reference to the currently running activity
We need this to access the vibrator service
activity = PythonActivity.mActivity

This is almost identical to the java code for the vibrator
vibrator = activity.getSystemService(Context.VIBRATOR _SERVICE)

vibrator.vibrate(10000) # The value is in milliseconds - this is 10s

This code directly follows the java API functions to call the vibrator, with Pyjnius automatically trans-
lating the api to Python code and our calls back to the equivalent java. It is much more verbose and
java-like than Plyer’s version, for no benefit in this case, though Plyer does not wrap every APl available
to Pyjnius.

Pyjnius also has powerful abilities to implement java interfaces, which is important for wrapping some
APIs, but these are not documented here - you can see Pyjnius’ own documentation.

145

https://github.com/kivy/plyer
https://github.com/kivy/plyer
https://github.com/kivy/pyjnius
http://pyjnius.readthedocs.org/en/latest/
http://pyjnius.readthedocs.org/en/latest/

Android module

Python-for-android includes a python module (actually cython wrapping java) to access a limited set
of Android APIs. This has been largely superseded by the more flexible Pyjnius and Plyer as above, but
may still occasionally be useful. The available functions are given in the python-for-android documen-
tation.

This includes code for billing /IAP and creating/accessing Android services, which is not yet available
in the other tools above.

26.3.4 Status of the Project and Tested Devices

These sections previously described the existence of Kivy’s Android build tools, with their limitations
and some devices that were known to work.

The Android tools are now quite stable, and should work with practically any device; our minimum
requirements are OpenGL ES 2.0 and Android 2.2. These are very common now - Kivy has even been
run on an Android smartwatch!

As Kivy works fine on most devices, the list of supported phones/tablets has been retired - all Android
devices are likely to work if they meet the conditions above.

26.4 Creating packages for macOS

Note: This guide describes multiple ways for packaging Kivy applications. Packaging using the Kivy
SDK is recommended for general use.

26.4.1 Using the Kivy SDK

Note: These instructions apply only from Kivy v2.0.0 onwards.

Note: Kivy.app is built with MACOSX_DEPLOYMENT_TARGET=10.9.

We provide a Kivy DMG with all dependencies bundled in a virtual environment, including a Python
interpreter that can be used as a base to package kivy apps.

This is the safest approach because it packages the binaries without references to any binaries on the
system on which the app is packaged. Because all references are to frameworks included in the dmg or
to binaries with the dmg. As opposed to e.g. pyinstaller which copies binaries from your local python
installation.

You can find complete instructions to build and package apps with Kivy.app, starting either with
Kivy.app or building from scratch, in the readme of the kivy-sdk-packager repo.

146

http://python-for-android.readthedocs.org/en/latest/
http://python-for-android.readthedocs.org/en/latest/
https://github.com/kivy/kivy-sdk-packager/tree/master/osx

26.4.2 Using Buildozer
pip install git+http://github.com/kivy/buildozer c¢d /to/where/I1/Want/to/package buil-
dozer init

Edit the buildozer.spec and add the details for your app. Dependencies can be added to the require-
ments= section.

By default the kivy version specified in the requirements is ignored.

If you have a Kivy.app at /Applications/Kivy.app then that is used, for packaging. Otherwise the latest
build from kivy.org using Kivy master will be downloaded and used.

When you're ready to package your macOS app just run:

buildozer osx debug

Once the app is packaged, you might want to remove unneeded packages, just reduce the package to
its minimal state that is needed for the app to run.

That’s it. Enjoy!

Buildozer right now uses the Kivy SDK to package your app. If you want to control more details about
your app than buildozer currently offers then you can use the SDK directly, as detailed in the section
below.

26.4.3 Using PylInstaller and Homebrew

Note: Package your app on the oldest macOS version you want to support.

Complete guide

1. Install Homebrew

2. Install Python:

$ brew install python

Note: To use Python 3, brew install python3 and replace pip with pip3 in the guide
below.

3. (Re)install your dependencies with --build-from-source to make sure they can be used on
other machines:

$ brew reinstall --build-from-source sdl2 sdl2_image sdl2_ttf sdl2_
~mixer

Note: If your project depends on GStreamer or other additional libraries (re)install them with
--build-from-source as described below.

4. Install Cython and Kivy:

$ pip install Cython==0.29.33
$ pip install -U kivy

147

http://brew.sh

5. Install Pylnstaller:

$ pip install -U pyinstaller

6. Package your app using the path to your main.py:

$ pyinstaller -y --clean --windowed --name touchtracer \
--exclude-module _tkinter \
--exclude-module Tkinter \
--exclude-module enchant \
--exclude-module twisted \
/usr/local/share/kivy-examples/demo/touchtracer/main.py

Note: This will not yet copy additional image or sound files. You would need to adapt the created
. spec file for that.

Editing the spec file

The specs file is named touchtracer.spec and is located in the directory where you ran the pyinstaller
command.

You need to change the COLLECTY() call to add the data of touchtracer (touchtracer.kv, particle.png, ...).
Change the line to add a Tree() object. This Tree will search and add every file found in the touchtracer
directory to your final package. Your COLLECT section should look something like this:

coll = COLLECT(exe, Tree('/usr/local/share/kivy-examples/demo/touchtracer/
‘>I)l

a.binaries,

a.zipfiles,

a.datas,

strip=None,

upx=True,

name="'touchtracer')

This will add the required hooks so that PyInstaller gets the required Kivy files. We are done. Your spec
is ready to be executed.

Build the spec and create a DMG

1. Open a console.

2. Go to the Pylnstaller directory, and build the spec:

$ pyinstaller -y --clean --windowed touchtracer.spec

3. Run:

$ pushd dist
$ hdiutil create ./Touchtracer.dmg -srcfolder touchtracer.app -ov
$ popd

4. You will now have a Touchtracer.dmg available in the dist directory.

148

Additional Libraries

GStreamer

If your project depends on GStreamer:

$ brew reinstall --build-from-source gstreamer gst-plugins-{base,good,bad,
~ugly}

Note: If your Project needs Ogg Vorbis support be sure to add the - -with-1ibvorbis option to the
command above.

If you are using Python from Homebrew you will also need the following step until this pull request
gets merged:

$ brew reinstall --with-python --build-from-source https://github.com/
~.cbenhagen/homebrew/raw/patch-3/Library/Formula/gst-python.rb

26.4.4 Using PylInstaller without Homebrew

First install Kivy and its dependencies without using Homebrew as mentioned here http://kivy.org/
docs/installation/installation.html#development-version.

Once you have kivy and its deps installed, you need to install PyInstaller.

Let’s assume we use a folder like testpackaging:

cd testpackaging
git clone http://github.com/pyinstaller/pyinstaller

Create a file named touchtracer.spec in this directory and add the following code to it:

-x- mode: python -x-

block_cipher = None
from kivy.tools.packaging.pyinstaller_hooks import get_deps_all, hookspath,
. runtime_hooks

a = Analysis(['/path/to/yout/folder/containing/examples/demo/touchtracer/
~main.py'l,

pathex=["'/path/to/yout/folder/containing/testpackaging'l],

binaries=None,

win_no_prefer_redirects=False,

win_private_assemblies=False,

cipher=block_cipher,

hookspath=hookspath(),

runtime_hooks=runtime_hooks(),

+xget_deps_all())

pyz = PYZ(a.pure, a.zipped_data,
cipher=block_cipher)
exe = EXE(pyz,
a.scripts,

exclude_binaries=True,

(continues on next page)

149

https://github.com/Homebrew/homebrew/pull/46097
http://kivy.org/docs/installation/installation.html#development-version
http://kivy.org/docs/installation/installation.html#development-version

(continued from previous page)

name='touchtracer',
debug=False,
strip=False,
upx=True,
console=False)
coll = COLLECT(exe, Tree('../kivy/examples/demo/touchtracer/'),
Tree('/Library/Frameworks/SDL2_ttf.framework/Versions/A/
~Frameworks/FreeType.framework'),
a.binaries,
a.zipfiles,
a.datas,
strip=False,
upx=True,
name="'touchtracer')
app = BUNDLE(coll,
name="'touchtracer.app',
icon=None,
bundle_identifier=None)

Change the paths with your relevant paths:

a = Analysis(['/path/to/yout/folder/containing/examples/demo/touchtracer/
~main.py'l,
pathex=["'/path/to/yout/folder/containing/testpackaging'l],

coll = COLLECT(exe, Tree('../kivy/examples/demo/touchtracer/"),

Then run the following command:

pyinstaller/pyinstaller.py touchtracer.spec

Replace touchtracer with your app where appropriate. This will give you a <yourapp>.app in the dist/
folder.

26.5 i0S Prerequisites

The following guide assumes:
e Xcode 13.2.1 or above
e macOS 11.6 or above

Your experience may vary with different versions.

150

26.5.1 Getting started
In order to submit any application to the iTunes store, you will need an iOS Developer License. For
testing, you can use a physical device or the Xcode iOS emulator.

Please note that in order to test on the device, you need to register these devices and install your “pro-
visioning profile” on them. Please refer to the Apple’s Getting started guide for more information.

26.5.2 Homebrew

We use the Homebrew package manager for macOS to install some of the dependencies and tools used
by Kivy. It’s a really helpful tool and is an Open Source project hosted on Github.

Due to the nature of package management (complications with versions and Operating Systems), this
process can be error prone and cause failures in the build process. The Missing requirement: <pkg> is
not installed! message is typically such an error.

The first thing is to ensure you have run the following commands:

$ brew install autoconf automake libtool pkg-config
$ brew link libtool
$ pip install Cython==0.29.33

If you still receive build errors, check your Homebrew is in a healthy state:

brew doctor

For further help, please refer to the Homebrew docs.

The last, final and desperate step to get things working might be to remove Homebrew altogether, get
the latest version, install that and then re-install the dependencies.

How do I uninstall Homebrew?

26.6 Create a package for iOS

The overall process for creating a package for iOS can be explained in 4 steps:
1. Compile the distribution (python + modules for iOS)
2. Create an Xcode project (and link your source code)
3. Update the Xcode project
4. Customize the Xcode project

26.6.1 Prerequisites
You need to install some dependencies, like Cython, autotools, etc. We encourage you to use Homebrew
to install those dependencies:

$ brew install autoconf automake libtool pkg-config
$ brew link libtool
$ pip install Cython==0.29.33

For more detail, see iOS Prerequisites. Just ensure that everything is ok before starting the second step!

151

https://developer.apple.com/programs/ios/
https://help.apple.com/developer-account/
https://brew.sh/
https://github.com/Homebrew
https://docs.brew.sh
https://docs.brew.sh/FAQ#how-do-i-uninstall-homebrew
https://brew.sh

26.6.2 Compile the distribution

Open a terminal, and type:

$ pip install kivy-ios
$ toolchain build kivy

If you experience any issues, please refer to our user group or the kivy-ios project page.

26.6.3 Create an Xcode project

Before proceeding to the next step, ensure your application entry point is a file named main.py.

We provide a script that creates an initial Xcode project to start with. In the command line below, replace
title with your project name. It must be a name without any spaces or illegal characters:

$ toolchain create <title> <app_directory>
$ toolchain create Touchtracer ~/code/kivy/examples/demo/touchtracer

Note: You must use a fully qualified path to your application directory.

A directory named <title>-ios will be created, with an Xcode project in it. You can open the Xcode
project:

$ open touchtracer-ios/touchtracer.xcodeproj

Then click on Play, and enjoy.

Note: Everytime you press Play, your application directory will be synced to the <title>-ios/YourApp
directory. Don’t make changes in the -ios directory directly.

26.6.4 Update the Xcode project

Let’s say you want to add numpy to your project but you did not compile it prior to creating your
XCode project. First, ensure it is built:

$ toolchain build numpy

Then, update your Xcode project:

$ toolchain update touchtracer-ios

All the libraries / frameworks necessary to run all the compiled recipes will be added to your Xcode
project.

152

https://groups.google.com/forum/#!forum/kivy-users
https://github.com/kivy/kivy-ios

26.6.5 Customize the Xcode project

There are various ways to customize and configure your app. Please refer to the kivy-ios documentation
for more information.

26.6.6 Known issues
All known issues with packaging for iOS are currently tracked on our issues page. If you encounter an

issue specific to packaging for iOS that isn’t listed there, please feel free to file a new issue, and we will
get back to you on it.

While most are too technical to be written here, one important known issue is that removing some
libraries (e.g. SDL_Mixer for audio) is currently not possible because the kivy project requires it. We
will fix this and others in future versions.

26.6.7 FAQ

Application quit abnormally!
In debug mode, all the print statements are sent to the Xcode console. Looking and grep’ing these logs

is highly encouraged. You'll probably find that you missed to build/install a required dependency. Not
your case? Feel free to ask on our Discord support channels.

How can Apple accept a python app?

We managed to merge the app binary with all the libraries into a single binary, called libpython. This
means all binary modules are loaded beforehand, so nothing is dynamically loaded.

Have you already submitted a Kivy application to the App store?

Yes, absolutely. Kivy Apps in the Apple App Store.

153

http://www.github.com/kivy/kivy-ios
https://github.com/kivy/kivy-ios/issues
https://github.com/kivy/kivy/wiki/List-of-Kivy-Projects#kivy-apps-in-the-apple-app-store

154

CHAPTER

TWENTYSEVEN

PACKAGE LICENSING

Warning: This is not a legally authoritative guide! The Kivy organisation, authors and contributors
take no responsibility for any lack of knowledge, information or advice presented here. The guide
is merely informative and is meant to protect inexperienced users.

Your code alone may not require including licensing information or copyright notices of other included
software, but binaries are something else. When a binary (.exe, .app, .apk, ...) is created, it includes
Kivy, its dependencies and other packages that your application uses.

Some of them are licensed in a way that requires including a copyright notice somewhere in your app
(or more). Before distributing any of the binaries, please check all the created files that don’t belong to
your source (.dll, .pyd, .so, ...) and include the appropriate copyright notices if required by the license
the files belong to. This way you may satisfy licensing requirements of the Kivy deps.

27.1 Dependencies

All of the dependencies will be used at least partially on each platform Kivy supports. You therefore
need to comply to their licenses, which mostly requires only pasting a copyright notice in your app and
not pretending you wrote the code.

¢ docutils

¢ “pygments https://github.com/pygments/pygments/blob/master/LICENSE"_
e sdI2

e clew

e ostreamer (if used)

* image & audio libraries(e.g. SDL_mixer has them)

You'll probably need to check image and audio libraries manually (most begin with 1ib). The
LICENSEx files that belong to them should be included by PylInstaller, but are not included by python-
for-android and you need to find them.

155

https://docutils.sourceforge.io/COPYING.html
https://www.libsdl.org/license.php
http://glew.sourceforge.net/glew.txt
https://github.com/GStreamer/gstreamer/blob/master/COPYING
https://github.com/libsdl-org/SDL_mixer/tree/master/external

27.2 Windows (Pylnstaller)

To access some Windows API features, Kivy uses the pypiwin32 package. This package is released
under the PSF license.

27.2.1 Visual Studio Redistributables

Python compiled with Visual Studio (official) includes files from Microsoft and you are only allowed to
redistribute them under specific conditions listed in the CRTlicense. You need to include the names of
the files and a reworded version of Py2 CRT license or Py3 CRT license (depending which interpreter
you use) and present these to the end-user of your application in order to satisfy their requirements.

e [ist of redistributables

27.2.2 Other libraries

e 7lib

Note: Please add the attributions for other libraries that you don’t use directly but are present after
packaging with e.g. PyInstaller on Windows.

27.3 Linux

Linux has many distributions which means there’s no correct guide for all of the distributions. This
applies to the RPi too. However, it can be simplified in two ways depending on how you create a
package (also with PyInstaller): with or without including binaries.

If the binaries are included, you should check every file (e.g. .s0) that’s not your source and find the
license it belongs to. According to that license, you'll probably need to put an attribution into your
application or possibly more, depending on the requirements of that license.

If the binaries are not included (which allows packaging your app as e.g. a .deb package), there’s a
situation bad for your user. It’s up to you to decide whether you satisfy the conditions of other licenses
and, for example, include copyright attributions into your app or not.

27.4 Android

As APK or AAB are just an archive of files: you can extract files from them and (as in Windows redis-
tributables) check all the files.

private.tar contains all the included files. Most of them are related to Kivy, Python or your source,
but those that aren’t need checking.

apk: APK/assets/private.tar
aab: AAB/base/assets/private.tar

There are other included libraries, included either by Kivy directly or through SDL2, that are located
in APK/lib/* or AAB/base/1lib/*. Most of them are related to dependencies or are produced by
python-for-android and are part of its source (and licensing).

156

https://pypi.python.org/pypi/pypiwin32
https://opensource.org/licenses/Python-2.0
https://hg.python.org/sandbox/2.7/file/tip/Tools/msi/crtlicense.txt
https://hg.python.org/cpython/file/tip/Tools/msi/exe/crtlicense.txt
https://msdn.microsoft.com/en-us/library/8kche8ah(v=vs.90).aspx
https://github.com/madler/zlib/blob/master/README

Warning: libpybundle.so is actually a tarball that contains python modules and
site-packages. You'll probably want to inspect it for licensing purposes via tar -xvf
libpybundle. so.

27.5 macOS

Missing.

27.6 i10S

Missing.

27.7 Avoiding binaries

There might be a way how to avoid this licensing process by avoiding creating a distribution with
third-party stuff completely. With Python you can create a module, which is only your code with
—_main__.py + setup.py that only lists required dependencies.

This way, you can still distribute your app - your code - and you might not need to care about other
licenses. The combination of your code and the dependencies could be specified as a “usage” rather
than a “distribution”. The responsibility of satisfying licenses, however, most likely transfers to your
user, who needs to assemble the environment to even run the module. If you care about your users,
you might want to slow down a little and read more about the consequences.

157

http://programmers.stackexchange.com/a/234295

158

Part IV

TUTORIALS

159

160

CHAPTER

TWENTYEIGHT

PONG GAME TUTORIAL

28.1 Introduction

Welcome to the Pong tutorial

This tutorial will teach you how to write pong using Kivy. We’ll start with a basic application like the
one described in the and turn it into a playable pong game, describing each step
along the way.

r]

Pong

Here is a check list before starting this tutorial:
* You have a working Kivy installation. See the section for detailed descriptions
* You know how to run a basic Kivy application. See if you don’t.

If you have read the programming guide, and understand both basic Widget concepts (
) and basic concepts of the kv language (), you can probably skip the first 2 steps and go
straight to step 3.

161

® N @ e W N =

Note: You can find the entire source code—and source code files for each step-in the Kivy examples
directory under tutorials/pong/.

Ready? Sweet, let’s get started!

28.2 Getting Started

Getting Started

Let’s start by getting a really simple Kivy app up and running. Create a directory for the game and a
file named main.py

from kivy.app import App
from kivy.uix.widget import Widget

class PongGame(Widget):
pass

class PongApp(App):
def build(self):
return PongGame()

if __name__ == '__main__"':
PongApp() . run()

Go ahead and run the application. It should just show a black window at this point. What we’ve done
is create a very simple Kivy App, which creates an instance of our PongGame Widget class and returns
it as the root element for the applications Ul, which you should imagine at this point as a hierarchical
tree of Widgets. Kivy places this widget-tree in the default Window. In the next step, we will draw the
Pong background and scores by defining how the PongGame widget looks.

28.3 Add Simple Graphics

Creation of pong.kv

We will use a .kv file to define the look and feel of the PongGame class. Since our App class is called
PongApp, we can simply create a file called pong. kv in the same directory that will be automatically
loaded when the application is run. So create a new file called ““pong.kv™" and add the following con-
tents.

#:kivy 1.0.9

<PongGame>:
canvas:
Rectangle:
: self.center_x - 5, 0
10, self.height

(continues on next page)

162

(continued from previous page)

Label:
: 70
: root.width / 4
root.top - 50
IIOII
Label:

: 70

root.width x 3 / 4
root.top - 50
IIOII

Note: COMMON ERROR: The name of the kv file, e.g. pong.kv, must match the name of the app, e.g.
PongApp (the part before the App ending).

If you run the app now, you should see a vertical bar in the middle, and two zeros where the player
scores will be displayed.

28.3.1 Explaining the Kv File Syntax

Before going on to the next step, you might want to take a closer look at the contents of the kv file we
just created and figure out what is going on. If you understand what’s happening, you can probably
skip ahead to the next step.

On the very first line we have:

#:kivy 1.0.9

This first line is required in every kv file. It should start with #:kivy followed by a space and the
Kivy version it is intended for (so Kivy can make sure you have at least the required version, or handle
backwards compatibility later on).

After that, we begin defining rules that are applied to all PongGame instances:

<PongGame>:

Like Python, kv files use indentation to define nested blocks. A block defined with a class name inside
the < and > characters is a Widget rule. It will be applied to any instance of the named class. If you
replaced PongGame with Widget in our example, all Widget instances would have the vertical line and
the two Label widgets inside them because it would define these rules for all Widget instances.

Inside a rule section, you can add various blocks to define the style and contents of the widgets they
will be applied to. You can:

* set property values
* add child widgets

¢ define a canvas section in which you can add Graphics instructions that define how the widget is
rendered.

The first block inside the <PongGame> rule we have is a canvas block:

163

<PongGame>:
canvas:
Rectangle:
self.center_x - 5, 0
10, self.height

So this canvas block says that the PongGame widget should draw some graphics primitives. In this
case, we add a rectangle to the canvas. We set the pos of the rectangle to be 5 pixels left of the horizontal
center of the widget, and 0 for y. The size of the rectangle is set to 10 pixels in width, and the widget’s
height in height. The nice thing about defining the graphics like this, is that the rendered rectangle will
be automatically updated when the properties of any widgets used in the value expression change.

Note: Try to resize the application window and notice what happens. That’s right, the entire Ul resizes
automatically. The standard behaviour of the Window is to resize an element based on its property
size_hint. The default widget size_hint is (1,1), meaning it will be stretched 100% in both x-direction
and y-direction and hence fill the available space. Since the pos and size of the rectangle and center_x
and top of the score labels were defined within the context of the PongGame class, these properties will
automatically update when the corresponding widget properties change. Using the Kv language gives
you automatic property binding. :)

The last two sections we add look pretty similar. Each of them adds a Label widget as a child widget
to the PongGame widget. For now, the text on both of them is just set to “0”. We'll hook that up to the
actual score once we have the logic implemented, but the labels already look good since we set a bigger
font_size, and positioned them relatively to the root widget. The root keyword can be used inside the
child block to refer back to the parent/root widget the rule applies to (PongGame in this case):

<PongGame>:
...
Label:
1 70
root.width / 4
root.top - 50
IIOII
Label:

1 70

: root.width x 3 / 4
root.top - 50
IIGII

28.4 Add the Ball

Add the Ball

Ok, so we have a basic pong arena to play in, but we still need the players and a ball to hit around. Let’s
start with the ball. We'll add a new PongBall class to create a widget that will be our ball and make it
bounce around.

164

Lo N

28.4.1 PongBall Class

Here is the Python code for the PongBall class:

class PongBall(Widget):

velocity of the ball on x and y axis
velocity_x = NumericProperty(0)
velocity_y = NumericProperty(0)

referencelist property so we can use ball.velocity as
a shorthand, just like e.g. w.pos for w.x and w.y
velocity = ReferencelListProperty(velocity_x, velocity_y)

“move’ function will move the ball one step. This
will be called in equal intervals to animate the ball
def move(self):

self.pos = Vector(xself.velocity) + self.pos

And here is the kv rule used to draw the ball as a white circle:

<PongBall>:
: 50, 50
canvas:
Ellipse:
: self.pos
: self.size

To make it all work, you also have to add the imports for the Properties Property classes used and the
Vector.

Here is the entire updated python code and kv file for this step:

main.py:

from kivy.app import App

from kivy.uix.widget import Widget

from kivy.properties import NumericProperty, ReferencelListProperty
from kivy.vector import Vector

class PongBall(Widget):
velocity_x = NumericProperty(0)
velocity y = NumericProperty(0)

O ® N e @ R W N =

10 velocity = ReferencelListProperty(velocity_x, velocity_y)
11

1 def move(self):

13 self.pos = Vector(xself.velocity) + self.pos

14
s | class PongGame(Widget):
17 pass

18

» |class PongApp(App):
2 def build(self):

(continues on next page)

165

(continued from previous page)

2 return PongGame()

23

24

» [if __name__ == '__main__":

2 PongApp().run()
pong.kv:

1 |#:kivy 1.0.9

s |<PongBall>:

" : 50, 50

5 canvas:

6 Ellipse:

7 : self.pos

8 : self.size

v |<PongGame>:

1 canvas:
12 Rectangle:

13 : self.center_x - 5, 0
14 : 10, self.height

16 Label:

17 1 70

18 : root.width / 4

19 : root.top - 50

20 N O

21

2 Label:

23 : 70

21 : root.width x 3 / 4
2 : root.top - 50

26 HER O

27

2 PongBall:

2 : self.parent.center

30

Note that not only a <PongBall> widget rule has been added, but also a child widget PongBall in the
<PongGame> widget rule.

166

® N G A W N =

28.5 Adding Ball Animation

Making the ball move
Cool, so now we have a ball, and it even has a move function... but it’s not moving yet. Let’s fix that.

28.5.1 Scheduling Functions on the Clock

We need the move method of our ball to be called regularly. Luckily, Kivy makes this pretty easy by
letting us schedule any function we want using the C Lock and specifying the interval:

Clock.schedule_interval(game.update, 1.0/60.0)

This line for example, would cause the update function of the game object to be called once every 60th
of a second (60 times per second).

28.5.2 Object Properties/References

We have another problem though. We’d like to make sure the PongBall has its move function called
regularly, but in our code we don’t have any references to the ball object since we just added it via the
kv file inside the kv rule for the PongGame class. The only reference to our game is the one we return
in the applications build method.

Since we're going to have to do more than just move the ball (e.g. bounce it off the walls and later the
players racket), we’ll probably need an update method for our PongGame class anyway. Furthermore,
given that we have a reference to the game object already, we can easily schedule its new update
method when the application gets built:

class PongGame(Widget):

def update(self, dt):
call ball.move and other stuff
pass

class PongApp(App):

def build(self):
game = PongGame()
Clock.schedule_interval(game.update, 1.0/60.0)
return game

However, that still doesn’t change the fact that we don’t have a reference to the PongBall child widget
created by the kv rule. To fix this, we can add an ObjectProperty to the PongGame class, and hook
it up to the widget created in the kv rule. Once that’s done, we can easily reference the ball property
inside the update method and even make it bounce off the edges:

class PongGame(Widget):
ball = ObjectProperty(None)

def update(self, dt):
self.ball.move()

bounce off top and bottom
if (self.ball.y < 0) or (self.ball.top > self.height):

(continues on next page)

167

® N e e oA W N =

(continued from previous page)

self.ball.velocity_y = -1

bounce off left and right
if (self.ball.x < 0) or (self.ball.right > self.width):
self.ball.velocity_x *= -1

Don’t forget to hook it up in the kv file, by giving the child widget an id and setting the PongGame’s
ball ObjectProperty to that id:

<PongGame>:
: pong_ball

... (canvas and Labels)
PongBall:

: pong_ball
: self.parent.center

Note: At this point everything is hooked up for the ball to bounce around. If you're coding along as we
g0, you might be wondering why the ball isn’t moving anywhere. The ball’s velocity is set to 0 on both
x and y. In the code listing below, a serve_ball method is added to the PongGame class and called in
the app’s build method. It sets a random x and y velocity for the ball, and also resets the position, so
we can use it later to reset the ball when a player has scored a point.

Here is the entire code for this step:

main.py:

from kivy.app import App
from kivy.uix.widget import Widget
from kivy.properties import (

NumericProperty, ReferencelListProperty, ObjectProperty
)
from kivy.vector import Vector
from kivy.clock import Clock
from random import randint

© ® N G ke W N =

10

un | class PongBall(Widget):

12 velocity_x = NumericProperty(0)

1 velocity y = NumericProperty(0)

1 velocity = ReferencelListProperty(velocity_x, velocity_y)
15

16 def move(self):

17 self.pos = Vector(xself.velocity) + self.pos

18

19

» |class PongGame(Widget):

2 ball = ObjectProperty(None)

22

23 def serve_ball(self):

2 self.ball.center = self.center

2 self.ball.velocity = Vector(4, 0).rotate(randint(0, 360))

(continues on next page)

168

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

(continued from previous page)

def update(self, dt):
self.ball.move()

bounce off top and bottom
if (self.ball.y < 0) or (self.ball.top > self.height):
self.ball.velocity_y *= -1

bounce off left and right
if (self.ball.x < 0) or (self.ball.right > self.width):
self.ball.velocity_x *= -1

class PongApp(App):
def build(self):
game = PongGame()
game.serve_ball()
Clock.schedule_interval(game.update, 1.0 / 60.0)
return game

if __name__ == '__main__"':
PongApp().run()

pong.kv:
1 |#:kivy 1.0.9
2
s |<PongBall>:
4 H 50, 50
5 canvas:
6 Ellipse:
7 : self.pos
8 : self.size
9
v | <PongGame>:
1 : pong_ball
12
13 canvas:
1 Rectangle:
15 : self.center_x - 5, 0
16 : 10, self.height
18 Label:
19 : 70
20 root.width / 4
2 root.top - 50
22 "0"
23
24 Label:
25 1 70
% : root.width x 3 / 4
7 root.top - 50

(continues on next page)

169

(continued from previous page)

28 O

29

30 PongBall:

51 : pong_ball

2 : self.parent.center
33

28.6 Connect Input Events

Adding Players and reacting to touch input

Sweet, our ball is bouncing around. The only things missing now are the movable player rackets and
keeping track of the score. We won’t go over all the details of creating the class and kv rules again, since
those concepts were already covered in the previous steps. Instead, let’s focus on how to move the
Player widgets in response to user input. You can get the whole code and kv rules for the PongPaddle
class at the end of this section.

In Kivy, a widget can react to input by implementing the on_touch_down, the on_touch_move and
the on_touch_up methods. By default, the Widget class implements these methods by just calling the
corresponding method on all its child widgets to pass on the event until one of the children returns
True.

Pong is pretty simple. The rackets just need to move up and down. In fact it’s so simple, we don’t
even really need to have the player widgets handle the events themselves. We'll just implement the
on_touch_move function for the PongGame class and have it set the position of the left or right player
based on whether the touch occurred on the left or right side of the screen.

Check the on_touch_move handler:

def on_touch move(self, touch):
if touch.x < self.width/3:
self.playerl.center_y = touch.y
if touch.x > self.width - self.width/3:
self.player2.center_y = touch.y

We'll keep the score for each player ina NumericProperty. The score labels of the PongGame are kept
updated by changing the NumericProperty score, which in turn updates the PongGame child labels
text property. This binding occurs because Kivy properties automatically bind to any references in
their corresponding kv files. When the ball escapes out of the sides, we'll update the score and serve
the ball again by changing the update method in the PongGame class. The PongPaddle class also
implements a bounce_ball method, so that the ball bounces differently based on where it hits the
racket. Here is the code for the PongPaddle class:

class PongPaddle(Widget):
score = NumericProperty(0)

def bounce_ball(self, ball):
if self.collide_widget(ball):
speedup = 1.1
offset = 0.02 x Vector(0, ball.center_y-self.center_y)
ball.velocity = speedup * (offset - ball.velocity)

170

Note: This algorithm for ball bouncing is very simple, but will have strange behavior if the ball hits
the paddle from the side or bottom... this is something you could try to fix yourself if you like.

And here it is in context. Pretty much done:

main.py:

from kivy.app import App
from kivy.uix.widget import Widget
from kivy.properties import (

NumericProperty, ReferencelListProperty, ObjectProperty
)
from kivy.vector import Vector
from kivy.clock import Clock

class PongPaddle(Widget):
score = NumericProperty(0)

def bounce_ball(self, ball):
if self.collide_widget(ball):
vx, vy = ball.velocity
offset = (ball.center_y - self.center_y) / (self.height /_

bounced = Vector(-1 * vx, vy)
vel = bounced * 1.1
ball.velocity = vel.x, vel.y + offset

class PongBall(Widget):
velocity_x = NumericProperty(0)
velocity_y = NumericProperty(0)
velocity = ReferencelListProperty(velocity_x, velocity_y)

def move(self):
self.pos = Vector(xself.velocity) + self.pos

class PongGame(Widget):
ball = ObjectProperty(None)
playerl = ObjectProperty(None)
player2 = ObjectProperty(None)

def serve_ball(self, vel=(4, 0)):
self.ball.center = self.center
self.ball.velocity = vel

def update(self, dt):
self.ball.move()

bounce off paddles
self.playerl.bounce_ball(self.ball)
self.player2.bounce_ball(self.ball)

(continues on next page)

171

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

(continued from previous page)

bounce ball off bottom or top
if (self.ball.y < self.y) or (self.ball.top > self.top):
self.ball.velocity_y *= -1

went off to a side to score point?

if self.ball.x < self.x:
self.player2.score += 1
self.serve_ball(vel=(4, 0))

if self.ball.right > self.width:
self.playerl.score += 1
self.serve_ball(vel=(-4, 0))

def on_touch_move(self, touch):
if touch.x < self.width / 3:
self.playerl.center_y = touch.y
if touch.x > self.width - self.width / 3:
self.player2.center_y = touch.y

class PongApp(App):
def build(self):
game = PongGame()
game.serve_ball()
Clock.schedule_interval(game.update, 1.0 / 60.0)
return game

if __name__ == '__main__"':
PongApp().run()

pong.kv:

© ® N G e w N e

10

11

13

14

16

17

19

20

21

#:kivy 1.0.9

<PongBall>:
: 50, 50
canvas:
Ellipse:
: self.pos
: self.size

<PongPaddle>:
: 25, 200
canvas:
Rectangle:
: self.pos
: self.size

<PongGame>:
: pong_ball
: player_left
: player_right

(continues on next page)

172

(continued from previous page)

» canvas:
3 Rectangle:

2 : self.center_x - 5, 0
2 : 10, self.height

26

27 Label:

28 : 70

2 : root.width / 4

30 : root.top - 50

a1 : str(root.playerl.score)
33 Label:

34 1 70

5 : root.width *x 3 / 4

36 : root.top - 50

% : str(root.player2.score)
38

5 PongBall:

1 : pong_ball

a : self.parent.center

5 PongPaddle:

u : player_left

5 : root.x

16 : root.center_y

47

18 PongPaddle:

19 : player_right

50 : root.width - self.width

51 : root.center_y

28.7 Where To Go Now?

Have some fun

Well, the pong game is pretty much complete. If you understood all of the things that are covered in
this tutorial, give yourself a pat on the back and think about how you could improve the game. Here
are a few ideas of things you could do:

® Add some nicer graphics / images. (Hint: check out the source property on the graphics in-
structions like circle or Rectangle, to set an image as the texture.)

* Make the game end after a certain score. Maybe once a player has 10 points, you can display
a large “PLAYER 1 WINS” label and/or add a main menu to start, pause and reset the game.
(Hint: check out the Button and Label classes, and figure out how to use their add_widget and
remove_widget functions to add or remove widgets dynamically.)

* Make it a 4 player Pong Game. Most tablets have Multi-Touch support, so wouldn't it be cool to
have a player on each side and have four people play at the same time?

¢ Fix the simplistic collision check so hitting the ball with an end of the paddle results in a more
realistic bounce.

173

Note: You can find the entire source code—and source code files for each step-in the Kivy examples
directory under tutorials/pong/.

174

CHAPTER

TWENTYNINE

A SIMPLE PAINT APP

In the following tutorial, you will be guided through the creation of your first widget. This provides
powerful and important knowledge when programming Kivy applications, as it lets you create com-
pletely new user interfaces with custom elements for your specific purpose.

29.1 Basic Considerations

When creating an application, you have to ask yourself three important questions:
* What data does my application process?
e How do I visually represent that data?
* How does the user interact with that data?

If you want to write a very simple line drawing application for example, you most likely want the user
to just draw on the screen with his/her fingers. That’s how the user interacts with your application.
While doing so, your application would memorize the positions where the user’s finger were, so that
you can later draw lines between those positions. So the points where the fingers were would be your
data and the lines that you draw between them would be your visual representation.

In Kivy, an application’s user interface is composed of Widgets. Everything that you see on the screen is
somehow drawn by a widget. Often you would like to be able to reuse code that you already wrote in a
different context, which is why widgets typically represent one specific instance that answers the three
questions above. A widget encapsulates data, defines the user’s interaction with that data and draws
its visual representation. You can build anything from simple to complex user interfaces by nesting
widgets. There are many widgets built in, such as buttons, sliders and other common stuff. In many
cases, however, you need a custom widget that is beyond the scope of what is shipped with Kivy (e.g.
a medical visualization widget).

So keep these three questions in mind when you design your widgets. Try to write them in a minimal
and reusable manner (i.e. a widget does exactly what its supposed to do and nothing more. If you need
more, write more widgets or compose other widgets of smaller widgets. We try to adhere to the Single
Responsibility Principle).

175

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle

29.2 Paint Widget

We're sure one of your childhood dreams has always been creating your own multitouch paint program.
Allow us to help you achieve that. In the following sections you will successively learn how to write a
program like that using Kivy. Make sure that you have read and understood Create an application. You
have? Great! Let’s get started!

29.2.1 Initial Structure

Let’s start by writing the very basic code structure that we need. By the way;, all the different pieces of
code that are used in this section are also available in the examples/guide/firstwidget directory
that comes with Kivy, so you don’t need to copy & paste it all the time. Here is the basic code skeleton
that we will need:

from kivy.app import App
from kivy.uix.widget import Widget

class MyPaintWidget(Widget):
pass

class MyPaintApp(App):
def build(self):
return MyPaintWidget()

if __name__ == '__main__"':
MyPaintApp().run()

This is actually really simple. Save it as paint.py. If you run it, you should only see a black screen. As
you can see, instead of using a built-in widget such as a Button (see Create an application), we are going to
write our own widget to do the drawing. We do that by creating a class that inherits from Widget (line
5-6) and although that class does nothing yet, we can still treat it like a normal Kivy widget (line 11).
The if __name__ ... construct (line 14) is a Python mechanism that prevents you from executing
the code in the if-statement when importing from the file, i.e. if you write import paint, it won’t do
something unexpected but just nicely provide the classes defined in the file.

Note: You may be wondering why you have to import App and Widget separately, instead of doing
something like from kivy import *. While shorter, this would have the disadvantage of polluting
your namespace and make the start of the application potentially much slower. It can also introduce
ambiguity into class and variable naming, so is generally frowned upon in the Python community. The
way we do it is faster and cleaner.

176

http://en.wikipedia.org/wiki/Namespace_%28computer_science%29#Python
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29#Python

29.2.2 Adding Behaviour

Let’s now add some actual behaviour to the widget, i.e. make it react to user input. Change the code
like so:

from kivy.app import App
from kivy.uix.widget import Widget

class MyPaintWidget(Widget):
def on_touch_down(self, touch):
print(touch)

class MyPaintApp(App):
def build(self):
return MyPaintWidget()

if __name__ == '__main__"':
MyPaintApp().run()

This is just to show how easy it is to react to user input. When a MotionEvent (i.e. a touch, click, etc.)
occurs, we simply print the information about the touch object to the console. You won’t see anything
on the screen, but if you observe the command-line from which you are running the program, you will
see a message for every touch. This also demonstrates that a widget does not have to have a visual
representation.

Now that’s not really an overwhelming user experience. Let’s add some code that actually draws some-
thing into our window:

from kivy.app import App
from kivy.uix.widget import Widget
from kivy.graphics import Color, Ellipse

class MyPaintWidget(Widget):

def on_touch_down(self, touch):
with self.canvas:
Color(1, 1, 0)
d = 30.
Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))

class MyPaintApp(App):

def build(self):
return MyPaintWidget()

if __name__ == '__main__"':
MyPaintApp().run()

177

lﬁ W _" ;'l.-"ﬂ .}‘. F:I 3 i M t

If you run your code with these modifications, you will see that every time you touch, there will be a
small yellow circle drawn where you touched. How does it work?

e Line 9: We use Python’s with statement with the widget’s Canvas object. This is like an area in

which the widget can draw things to represent itself on the screen. By using the with statement
with it, all successive drawing commands that are properly indented will modify this canvas. The
with statement also makes sure that after our drawing, internal state can be cleaned up properly.

Line 10: You might have guessed it already: This sets the Co L 01 for successive drawing operations
to yellow (default color format is RGB, so (1, 1, 0) is yellow). This is true until another Color is
set. Think of this as dipping your brushes in that color, which you can then use to draw on a
canvas until you dip the brushes into another color.

Line 11: We specify the diameter for the circle that we are about to draw. Using a variable for
that is preferable since we need to refer to that value multiple times and we don’t want to have to
change it in several places if we want the circle bigger or smaller.

Line 12: To draw a circle, we simply draw an £ [[ipse with equal width and height. Since we
want the circle to be drawn where the user touches, we pass the touch’s position to the ellipse.
Note that we need to shift the ellipse by -d/2 in the x and y directions (i.e. left and downwards)
because the position specifies the bottom left corner of the ellipse’s bounding box, and we want it
to be centered around our touch.

That was easy, wasn't it? It gets better! Update the code to look like this:

from kivy.app import App
from kivy.uix.widget import Widget
from kivy.graphics import Color, Ellipse, Line

class MyPaintWidget(Widget):

def on_touch_down(self, touch):
with self.canvas:
Color(1, 1, 0)
d = 30.
Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
touch.ud['line'] = Line(points=(touch.x, touch.y))

(continues on next page)

178

21

22

23

24

25

26

(continued from previous page)

def on_touch_move(self, touch):

touch.ud['line'].points += [touch.x, touch.y]

class MyPaintApp(App):

def build(self):

return MyPaintWidget()

if __name__ == '__main__"':
MyPaintApp().run()

ﬂ L] I‘-.."!'}"FJEIiF'It

This is what has changed:

Line 3: We now not only import the E1 [1pse drawing instruction, but also the Line draw-

ing instruction. If you look at the documentation for Line, you will see that it accepts a

points argument that has to be a list of 2D point coordinates, like (x1, yl, x2, y2,
., XN, yN).

Line 13: This is where it gets interesting. touch. ud is a Python dictionary (type <dict>) that
allows us to store custom attributes for a touch.

Line 13: We make use of the Line instruction that we imported and set a Line up for drawing.
Since this is done in on_touch_down, there will be a new line for every new touch. By
creating the line inside the with block, the canvas automatically knows about the line and
will draw it. We just want to modify the line later, so we store a reference to it in the touch.
ud dictionary under the arbitrarily chosen but aptly named key ‘line’. We pass the line that
we're creating the initial touch position because that’s where our line will begin.

Lines 15: We add a new method to our widget. This is similar to the on_touch_down
method, but instead of being called when a new touch occurs, this method is being called
when an existing touch (for which on_touch_down was already called) moves, i.e. its posi-
tion changes. Note that this is the same MotionEvent object with updated attributes. This
is something we found incredibly handy and you will shortly see why.

Line 16: Remember: This is the same touch object that we got in on_touch_down, so we can

179

simply access the data we stored away in the touch . ud dictionary! To the line we set up for
this touch earlier, we now add the current position of the touch as a new point. We know that
we need to extend the line because this happens in on_touch_move, which is only called
when the touch has moved, which is exactly why we want to update the line. Storing the line
in the touch.ud makes it a whole lot easier for us as we don’t have to maintain our own
touch-to-line bookkeeping.

So far so good. This isn’t exactly beautiful yet, though. It looks a bit like spaghetti bolognese. How
about giving each touch its own color? Great, let’s do it:

from
from
from
from

clas

random import random

kivy.app import App

kivy.uix.widget import Widget
kivy.graphics import Color, Ellipse, Line

s MyPaintWidget(Widget):

def on_touch_down(self, touch):
color = (random(), random(), random())
with self.canvas:
Color(xcolor)
d = 30.
Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
touch.ud['line'] = Line(points=(touch.x, touch.y))

def on_touch_move(self, touch):
touch.ud['line'].points += [touch.x, touch.y]

class MyPaintApp(App):

def build(self):
return MyPaintWidget()

if __name__ == '__main__"':

MyPaintApp().run()

180

MyPFaint

Here are the changes:

¢ Line 1: We import Python’s random() function that will give us random values in the range of [0.,
1.).

¢ Line 10: In this case we simply create a new tuple of 3 random float values that will represent a
random RGB color. Since we do this in on_touch_down, every new touch will get its own color.
Don't get confused by the use of tuples. We're just binding the tuple to color for use as a shortcut
within this method because we’re lazy.

e Line 12: As before, we set the color for the canvas. Only this time we use the random values
we generated and feed them to the color class using Python’s tuple unpacking syntax (since the
Color class expects three individual color components instead of just 1. If we were to pass the
tuple directly, that would be just 1 value being passed, regardless of the fact that the tuple itself
contains 3 values).

This looks a lot nicer already! With a lot of skill and patience, you might even be able to create a nice
little drawing!

Note: Since by default the Color instructions assume RGB mode and we're feeding a tuple with three
random float values to it, it might very well happen that we end up with a lot of dark or even black
colors if we are unlucky. That would be bad because by default the background color is dark as well, so
you wouldn’t be able to (easily) see the lines you draw. There is a nice trick to prevent this: Instead of
creating a tuple with three random values, create a tuple like this: (random(), 1., 1.).Then, when
passing it to the color instruction, set the mode to HSV color space: Color(*color, mode="'hsv').
This way you will have a smaller number of possible colors, but the colors that you get will always be
equally bright: only the hue changes.

181

http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

29.2.3 Bonus Points

At this point, we could say we are done. The widget does what it’s supposed to do: it traces the touches
and draws lines. It even draws circles at the positions where a line begins.

But what if the user wants to start a new drawing? With the current code, the only way to clear the
window would be to restart the entire application. Luckily, we can do better. Let us add a Clear button
that erases all the lines and circles that have been drawn so far. There are two options now:

* We could either create the button as a child of our widget. That would imply that if you create
more than one widget, every widget gets its own button. If you're not careful, this will also allow
users to draw on top of the button, which might not be what you want.

¢ Or we set up the button only once, initially, in our app class and when it’s pressed we clear the
widget.

For our simple example, it doesn’t really matter that much. For larger applications you should give
some thought to who does what in your app. We'll go with the second option here so that you see how
you can build up your application’s widget tree in your app class’s bui ld() method. We’ll also change
to the HSV color space (see preceding note):

from random import random

from kivy.app import App

from kivy.uix.widget import Widget

from kivy.uix.button import Button

from kivy.graphics import Color, Ellipse, Line

class MyPaintWidget(Widget):

def on_touch_down(self, touch):
color = (random(), 1, 1)
with self.canvas:
Color(xcolor, mode='hsv')
d = 30.
Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
touch.ud['line'] = Line(points=(touch.x, touch.y))

def on_touch_move(self, touch):
touch.ud['line'].points += [touch.x, touch.y]

class MyPaintApp(App):

def build(self):
parent = Widget()
self.painter = MyPaintWidget()
clearbtn = Button(text='Clear')
clearbtn.bind(on_release=self.clear_canvas)
parent.add_widget(self.painter)
parent.add_widget(clearbtn)
return parent

def clear_canvas(self, obj):
self.painter.canvas.clear()

(continues on next page)

182

37

38

(continued from previous page)

if __name__ == '__main__"':
MyPaintApp().run()

Here’s what happens:
¢ Line 4: We added an import statement to be able to use the Button class.

* Line 25: We create a dummy Widget () object as a parent for both our painting widget and the
button we're about to add. This is just a poor-man’s approach to setting up a widget tree hierarchy.
We could just as well use a layout or do some other fancy stuff. Again: this widget does absolutely
nothing except holding the two widgets we will now add to it as children.

e Line 26: We create our MyPaintWidget () as usual, only this time we don’t return it directly but
bind it to a variable name.

* Line 27: We create a button widget. It will have a label on it that displays the text ‘Clear’.

¢ Line 28: We then bind the button’s on_release event (which is fired when the button is pressed
and then released) to the callback function clear_canvas defined on below on Lines 33 & 34.

* Line 29 & 30: We set up the widget hierarchy by making both the painter and the clearbtn chil-
dren of the dummy parent widget. That means painter and clearbtn are now siblings in the usual
computer science tree terminology.

* Line 33 & 34: Up to now, the button did nothing. It was there, visible, and you could press it,
but nothing would happen. We change that here: we create a small, throw-away function that is
going to be our callback function when the button is pressed. The function just clears the painter’s
canvas’ contents, making it black again.

Note: The Kivy Widget class, by design, is kept simple. There are no general properties such as back-
ground color and border color. Instead, the examples and documentation illustrate how to easily handle
such simple things yourself, as we have done here, setting the color for the canvas, and drawing the
shape. From a simple start, you can move to more elaborate customization. Higher-level built-in wid-
gets, deriving from Widget, such as Button, do have convenience properties such as background_color,
but these vary by widget. Use the API docs to see what is offered by a widget, and subclass if you need
to add more functionality.

Congratulations! You've written your first Kivy widget. Obviously this was just a quick introduction.

183

http://en.wikipedia.org/wiki/Callback_function#Python
http://en.wikipedia.org/wiki/Callback_function#Python

There is much more to discover. We suggest taking a short break to let what you just learned sink in.
Maybe draw some nice pictures to relax? If you feel like you've understood everything and are ready
for more, we encourage you to read on.

184

CHAPTER

THIRTY

CRASH COURSE

The Kivy Crash Course is a series of YouTube video tutorials by Kivy core developer inclement. They
provide a simple walkthrough in Kivy for users who know how to code in Python and is friendly
to Python beginners. After the Pong and Paint tutorials, this set of videos covers basic features and
techniques that can be used to create your app quicker, keeping your code elegant and eye-friendly.

30.1 Basic Info

The Crash Course primarily consists of a series of YouTube videos, each roughly 10 minutes long. There
are also articles describing some of the videos and the code used in the videos.

30.1.1 Topics covered by the Crash Course include:

e Use of the basic Kivy widgets such as the Label, Button, Scatter and TextInput
¢ Building an app for android with python-for-android’s old toolchain
¢ Binding functions to events

* Using changes in variables on the go

® Smart user interface (Kv language)

* Properties

¢ Canvas and drawing

* Label with scrolling

¢ Positioning and layouts

¢ Animation and Clock

® Accessing android API (pyjnius, plyer)

¢ Settings panel (and building your own options)

® ScreenManager

185

https://github.com/inclement
https://github.com/kivy/python-for-android/tree/old_toolchain
https://kivy.org/docs/guide/lang.html
https://github.com/kivy/pyjnius
https://github.com/kivy/plyer

30.1.2 Links:

¢ Videos
e Articles

e Code

186

https://www.youtube.com/watch?v=F7UKmK9eQLY&list=PLdNh1e1kmiPP4YApJm8ENK2yMlwF1_edq
http://inclem.net/pages/kivy-crash-course
https://github.com/inclement/kivycrashcourse

PartV

API REFERENCE

The API reference is a lexicographic list of all the different classes, methods and features that Kivy
offers.

187

188

CHAPTER

THIRTYONE

KIVY FRAMEWORK

Kivy is an open source library for developing multi-touch applications. It is cross-platform
(Linux/OSX/Windows/Android /iOS) and released under the terms of the MIT License.

It comes with native support for many multi-touch input devices, a growing library of multi-touch
aware widgets and hardware accelerated OpenGL drawing. Kivy is designed to let you focus on build-
ing custom and highly interactive applications as quickly and easily as possible.

With Kivy, you can take full advantage of the dynamic nature of Python. There are thousands of high-
quality, free libraries that can be integrated in your application. At the same time, performance-critical
parts are implemented using Cython.

See http:/ /kivy.org for more information.

kivy.kivy_base_dir = '/home/docs/checkouts/readthedocs.org/user_builds/
kivy/envs/latest/lib/python3.7/site-packages/kivy"

Kivy directory
kivy.kivy_config_fn = "'

Kivy configuration filename
kivy.kivy_configure()

Call post-configuration of Kivy. This function must be called if you create the window yourself.

kivy.kivy_data_dir = '/home/docs/checkouts/readthedocs.org/user_builds/
kivy/envs/latest/lib/python3.7/site-packages/kivy/data’

Kivy data directory

kivy.kivy_examples_dir = '/home/docs/checkouts/readthedocs.org/user_builds/
kivy/envs/latest/share/kivy-examples’

Kivy examples directory

kivy.kivy_home_dir = "'

Kivy user-home storage directory

kivy.kivy_icons_dir = '/home/docs/checkouts/readthedocs.org/user_builds/
kivy/envs/latest/lib/python3.7/site-packages/kivy/data/icons/"

Kivy icons config path (don’t remove the last ')

kivy.kivy_options = {'audio': ('gstplayer', 'pygame', 'ffpyplayer’,
'sd12', 'avplayer'), 'camera': ('opencv', 'gi', 'avfoundation', 'android’,
'picamera'), 'clipboard': ('android', 'winctypes', 'xsel', 'xclip',
'dbusklipper', 'nspaste', 'sdl2', 'pygame', 'dummy', 'gtk3'), 'image':
('tex', 'imageio', 'dds', 'sdl2', 'pygame', 'pil‘', 'ffpy', 'gif'),
'spelling': ('enchant', 'osxappkit'), 'text': ('pil', 'sdl2', 'pygame’,
'sdlttf'), 'video': ('gstplayer', 'ffmpeg', 'ffpyplayer', 'null'),
'window': ('egl_rpi', 'sdl2', 'pygame', 'sdl', 'x11')}

189

https://en.wikipedia.org/wiki/MIT_License
http://cython.org/
http://kivy.org

Global settings options for kivy

kivy.kivy_register_post_configuration (callback)
Register a function to be called when kivy_configure() is called.

Warning: Internal use only.

kivy.kivy_shader_dir = '/home/docs/checkouts/readthedocs.org/user_builds/
kivy/envs/latest/lib/python3.7/site-packages/kivy/data/glsl’

Kivy glsl shader directory
kivy.kivy_usermodules_dir = '’
Kivy user modules directory

kivy.parse_kivy_version (version)
Parses the kivy version as described in require() into a 3-tuple of ([x, y, z], ‘rclalb | dev | post’,
‘N’) where N is the tag revision. The last two elements may be None.

kivy.require (version)

Require can be used to check the minimum version required to run a Kivy application. For exam-
ple, you can start your application code like this:

import kivy
kivy.require('1.0.1")

If a user attempts to run your application with a version of Kivy that is older than the specified
version, an Exception is raised.

The Kivy version string is built like this:

X.Y.Z[tag[tagrevision]]

X is the major version
Y is the minor version
Z is the bugfixes revision

The tag is optional, but may be one of “.dev’, “.post’, ‘a’, ‘b’, or ‘rc’. The tagrevision is the revision
number of the tag.

Warning: You must not ask for a version with a tag, except -dev. Asking for a ‘dev’ version
will just warn the user if the current Kivy version is not a -dev, but it will never raise an
exception. You must not ask for a version with a tagrevision.

31.1 Animation

Animation and AnimationTransition are used to animate Widget properties. You must specify
at least a property name and target value. To use an Animation, follow these steps:

® Setup an Animation object

* Use the Animation object on a Widget

190

31.1.1 Simple animation

To animate a Widget’s x or y position, simply specify the target x/y values where you want the widget
positioned at the end of the animation:

anim = Animation(x=100, y=100)
anim.start(widget)

The animation will last for 1 second unless duration is specified. When anim.start() is called, the
Widget will move smoothly from the current x/y position to (100, 100).

31.1.2 Multiple properties and transitions

You can animate multiple properties and use built-in or custom transition functions using transition
(or the t= shortcut). For example, to animate the position and size using the ‘in_quad’ transition:

anim = Animation(x=50, size=(80, 80), t='in_quad')
anim.start(widget)

Note that the f= parameter can be the string name of a method in the AnimationTransition class or
your own animation function.

31.1.3 Sequential animation

To join animations sequentially, use the ‘+” operator. The following example will animate to x=50 over
1 second, then animate the size to (80, 80) over the next two seconds:

anim = Animation(x=50) + Animation(size=(80, 80), duration=2.)
anim.start(widget)

31.1.4 Parallel animation

To join animations in parallel, use the ‘&’ operator. The following example will animate the position to
(80, 10) over 1 second, whilst in parallel animating the size to (800, 800):

anim = Animation(pos=(80, 10))
anim &= Animation(size=(800, 800), duration=2.)
anim.start(widget)

Keep in mind that creating overlapping animations on the same property may have unexpected results.
If you want to apply multiple animations to the same property, you should either schedule them se-
quentially (via the ‘+” operator or using the on_complete callback) or cancel previous animations using
the cancel_all method.

191

31.1.5 Repeating animation

New in version 1.8.0.

Note: This is currently only implemented for ‘Sequence” animations.

To set an animation to repeat, simply set the Sequence. repeat property to True:

anim = Animation(...) + Animation(...)
anim.repeat = True
anim.start(widget)

For flow control of animations such as stopping and cancelling, use the methods already in place in the
animation module.

class kivy.animation.Animation (*kw)
Bases: kivy.event.EventDispatcher

Create an animation definition that can be used to animate a Widget.
Parameters

duration or d: float, defaults to 1.
Duration of the animation, in seconds.

transition or t: str or func
Transition function for animate properties. It can be the name of a method from
AnimationTransition.

step or s: float
Step in milliseconds of the animation. Defaults to 0, which means the animation
is updated for every frame.

To update the animation less often, set the step value to a float. For example, if
you want to animate at 30 FPS, use s=1/30.

Events

on_start: animation, widget
Fired when the animation is started on a widget.

on_complete: animation, widget
Fired when the animation is completed or stopped on a widget.

on_progress: animation, widget, progression
Fired when the progression of the animation is changing.

Changed in version 1.4.0: Added s/step parameter.
Changed in version 1.10.0: The default value of the step parameter was changed from 1/60. to 0.
property animated_properties
Return the properties used to animate.
cancel (widget)

Cancel the animation previously applied to a widget. Same effect as stop, except the
on_complete event will not be triggered!

New in version 1.4.0.

192

static cancel_all(widget, *largs)

Cancel all animations that concern a specific widget / list of properties. See cancel.

Example:

anim = Animation(x=50)
anim.start(widget)

and later
Animation.cancel_all(widget, 'x'")

New in version 1.4.0.

Changed in version 2.1.0: If the parameter widget is None, all animated widgets will be the
target and cancelled. If largs is also given, animation of these properties will be canceled
for all animated widgets.

cancel_property (widget, prop)

Even if an animation is running, remove a property. It will not be animated further. If it was
the only/last property being animated, the animation will be canceled (see cancel)

New in version 1.4.0.

property duration

Return the duration of the animation.

have_properties_to_animate (widget)

Return True if a widget still has properties to animate.

New in version 1.8.0.
start (widget)

Start the animation on a widget.
stop (widget)

Stop the animation previously applied to a widget, triggering the on_complete event.
static stop_all(widget, *largs)

Stop all animations that concern a specific widget / list of properties.

Example:

anim = Animation(x=50)
anim.start(widget)

and later
Animation.stop_all(widget, 'x'")

stop_property (widget, prop)
Even if an animation is running, remove a property. It will not be animated further. If it was
the only/last property being animated, the animation will be stopped (see stop).

property transition

Return the transition of the animation.

class kivy.animation.AnimationTransition
Bases: builtins.object

Collection of animation functions to be used with the Animation object. Easing Functions ported
to Kivy from the Clutter Project https:/ /developer.gnome.org/clutter /stable /ClutterAlpha.html

The progress parameter in each animation function is in the range 0-1.

193

https://developer.gnome.org/clutter/stable/ClutterAlpha.html

static in_back(progress)

static in_bounce (progress)

static in_circ(progress)

static in_cubic(progress)

static in_elastic(progress)

static in_expo (progress)

194

static in_out_back (progress)

static in_out_bounce (progress)

static in_out_circ(progress)

static in_out_cubic(progress)

static in_out_elastic(progress)

static in_out_expo (progress)

195

static in_out_quad (progress)

static in_out_quart (progress)

static in_out_quint (progress)

static in_out_sine (progress)

static in_quad (progress)

static in_quart (progress)

196

static in_quint (progress)

static in_sine(progress)

static linear(progress)

static out_back (progress)

static out_bounce(progress)

static out_circ(progress)

197

static out_cubic (progress)

static out_elastic(progress)

static out_expo (progress)

static out_quad (progress)

static out_quart(progress)

static out_quint (progress)

198

static out_sine(progress)

31.2 Application

The App class is the base for creating Kivy applications. Think of it as your main entry point into the
Kivy run loop. In most cases, you subclass this class and make your own app. You create an instance of
your specific app class and then, when you are ready to start the application’s life cycle, you call your
instance’s App. run () method.

31.2.1 Creating an Application

Method using build() override

To initialize your app with a widget tree, override the build() method in your app class and return
the widget tree you constructed.

Here’s an example of a very simple application that just shows a button:

Application example using build() + return

An application can be built if you return a widget on build(), or if you,_
-set
self.root.

import kivy
kivy.require('1.0.7")

from kivy.app import App
from kivy.uix.button import Button
class TestApp(App):

def build(self):

return a Button() as a root widget
return Button(text='hello world")

if __name__ == '__main__"':
TestApp().run()

The file is also available in the examples folder at kivy/examples/application/
app_with_build. py.

199

Here, no widget tree was constructed (or if you will, a tree with only the root node).

Method using kv file

You can also use the Kivy Language for creating applications. The .kv can contain rules and root widget
definitions at the same time. Here is the same example as the Button one in a kv file.

Contents of ‘test.kv’:

#:kivy 1.0

Button:
text: 'Hello from test.kv'

Contents of ‘main.py”:

Application built from a .kv file

This shows how to implicitly use a .kv file for your application. You
should see a full screen button labelled "Hello from test.kv".

After Kivy instantiates a subclass of App, it implicitly searches for a .kv
file. The file test.kv is selected because the name of the subclass of App._
~1s

TestApp, which implies that kivy should try to load "test.kv". That file
contains a root Widget.

import kivy
kivy.require('1.0.7")

from kivy.app import App

class TestApp(App):
pass

if __name__ == '__main__":
TestApp().run()

See kivy/examples/application/app_with_kv.py
The relationship between main.py and test.kv is explained in App. Load_kv ().

200

31.2.2 Application configuration

Use the configuration file

Your application might need its own configuration file. The App class handles ‘ini’ files automatically
if you add the section key-value pair to the App. build_config() method using the config parameter
(an instance of ConfigParser):

class TestApp(App):
def build config(self, config):
config.setdefaults('sectionl', {
'keyl': 'valuel',
'key2': '42'
})

As soon as you add one section to the config, a file is created on the disk (see
get_application_config for its location) and named based your class name. “TestApp”
will give a config file named “test.ini” with the content:

[sectionl]
keyl = valuel
key2 = 42

The “test.ini” will be automatically loaded at runtime and you can access the configuration in your

App.build() method:

class TestApp(App):
def build config(self, config):
config.setdefaults('sectionl', {
'keyl': 'valuel',
'key2': '42'
1)

def build(self):
config = self.config
return Label(text='keyl is %s and key2 is %d' % (
config.get('sectionl', 'keyl'),
config.getint('sectionl', 'key2')))

201

Create a settings panel

Your application can have a settings panel to let your user configure some of your config tokens. Here
is an example done in the KinectViewer example (available in the examples directory):

Index
Kinectindex

Theme
Shader to use for a specific visualization

You can add your own panels of settings by extending the App.build settings() method. Check
the Settings about how to create a panel, because you need a JSON file / data first.

Let’s take as an example the previous snippet of TestApp with custom config. We could create a JSON
like this:

[
{ "type": "title",
"title": "Test application" },

{ "type": "options",
"title": "My first key",
"desc": "Description of my first key",
"section": "sectionl",
"key": "keyl",
"options": ["valuel", "value2", "another value"] },

{ "type": "numeric",
"title": "My second key",
"desc": "Description of my second key",
"section": "sectionl",
"key": "key2" }
1

Then, we can create a panel using this JSON to automatically create all the options and link them to our
App. config ConfigParser instance:

class TestApp(App):
...
def build settings(self, settings):
jsondata = """... put the json data here ..."""
settings.add_json_panel('Test application’,
self.config, data=jsondata)

That’s all! Now you can press F1 (default keystroke) to toggle the settings panel or press the “set-
tings” key on your android device. You can manually call App.open_settings() and App.
close_settings() if you want to handle this manually. Every change in the panel is automatically
saved in the config file.

202

You can also use App. build_settings() to modify properties of the settings panel. For instance,
the default panel has a sidebar for switching between json panels whose width defaults to 200dp. If
you'd prefer this to be narrower, you could add:

settings.interface.menu.width = dp(100)

to your build_settings () method.

You might want to know when a config value has been changed by the user in order to adapt or reload
your UL You can then overload the on_config_change () method:

class TestApp(App):
...
def on config change(self, config, section, key, value):
if config is self.config:
token = (section, key)
if token == ('sectionl', ‘'keyl'):
print('Our keyl has been changed to', value)
elif token == ('sectionl', 'key2'):
print('Our key2 has been changed to', value)

The Kivy configuration panel is added by default to the settings instance. If you don’t want this panel,
you can declare your Application as follows:

class TestApp(App):
use_kivy_settings = False
...

This only removes the Kivy panel but does not stop the settings instance from appearing. If you want
to prevent the settings instance from appearing altogether, you can do this:

class TestApp(App):
def open_settings(self, xlargs):
pass

New in version 1.0.7.

31.2.3 Profiling with on_start and on_stop

It is often useful to profile python code in order to discover locations to optimise. The standard li-
brary profilers (http://docs.python.org/2/library/profile.html) provides multiple options for profil-
ing code. For profiling the entire program, the natural approaches of using profile as a module or
profile’s run method does not work with Kivy. It is however, possible to use App.on_start() and
App.on_stop() methods:

import cProfile

class MyApp(App):
def on_start(self):
self.profile = cProfile.Profile()
self.profile.enable()

def on _stop(self):
self.profile.disable()
self.profile.dump_stats('myapp.profile')

This will create a file called myapp.profile when you exit your app.

203

http://docs.python.org/2/library/profile.html

31.2.4 Customising layout

You can choose different settings widget layouts by setting App. settings_cls. By default, this is a
Settings class which provides the pictured sidebar layout, but you could set it to any of the other
layouts provided in kivy.uix.settings or create your own. See the module documentation for
kivy.uix.settings for more information.

You can customise how the settings panel is displayed by overriding App. display settings()
which is called before displaying the settings panel on the screen. By default, it simply draws the panel
on top of the window, but you could modify it to (for instance) show the settings in a Popup or add
it to your app’s ScreenlManager if you are using one. If you do so, you should also modify App.
close_settings() to exit the panel appropriately. For instance, to have the settings panel appear in
a popup you can do:

def display settings(self, settings):
try:
p = self.settings_popup
except AttributeError:
self.settings_popup = Popup(content=settings,
title='Settings’,
size_hint=(0.8, 0.8))
p = self.settings_popup
if p.content is not settings:
p.content = settings
p.open()

def close settings(self, =*args):
try:
p = self.settings_popup
p.dismiss()
except AttributeError:
pass # Settings popup doesn't exist

Finally, if you want to replace the current settings panel widget, you can remove the internal refer-
ences to it using App.destroy_settings(). If you have modified App.display_settings(),
you should be careful to detect if the settings panel has been replaced.

31.2.5 Pause mode

New in version 1.1.0.

On tablets and phones, the user can switch at any moment to another application. By default, your
application will close and the App. on_stop() event will be fired.

If you support Pause mode, when switching to another application, your application will wait indef-
initely until the user switches back to your application. There is an issue with OpenGL on Android
devices: it is not guaranteed that the OpenGL ES Context will be restored when your app resumes. The
mechanism for restoring all the OpenGL data is not yet implemented in Kivy.

The currently implemented Pause mechanism is:

1. Kivy checks every frame if Pause mode is activated by the Operating System due to the user
switching to another application, a phone shutdown or any other reason.

2. App.on_pause() is called:

3. If False is returned or App . on_pause () hasno return statement, then App . on_stop () is called.

204

4. If True is returned or App.on_pause() is not defined, the application will sleep until the OS
resumes our App.

5. When the app is resumed, App. on_resume () is called.
6. If our app memory has been reclaimed by the OS, then nothing will be called.

Here is a simple example of how on_pause() should be used:

class TestApp(App):

def on_pause(self):
Here you can save data 1f needed
return True

def on resume(self):
Here you can check if any data needs replacing (usually nothing)
pass

Warning: Both on_pause and on_stop must save important data because after on_pause is called,
on_resume may not be called at all.

31.2.6 Asynchronous app

In addition to running an app normally, Kivy can be run within an async event loop such as provided
by the standard library asyncio package or the trio package (highly recommended).

Background

Normally, when a Kivy app is run, it blocks the thread that runs it until the app exits. Internally, at each
clock iteration it executes all the app callbacks, handles graphics and input, and idles by sleeping for
any remaining time.

To be able to run asynchronously, the Kivy app may not sleep, but instead must release control of the
running context to the asynchronous event loop running the Kivy app. We do this when idling by
calling the appropriate functions of the async package being used instead of sleeping.

Async configuration

To run a Kivy app asynchronously, either the async_runTouchApp () or App.async_run() corou-
tine must be scheduled to run in the event loop of the async library being used.

The environmental variable KIVY_EVENTLOOP or the async_lib parameter in
async_runTouchApp() and App.async_run() set the async library that Kivy uses internally
when the app is run with async_runTouchApp() and App.async_run(). It can be set to one
of “asyncio” when the standard library asyncio is used, or “trio” if the trio library is used. If the
environment variable is not set and async_1ib is not provided, the stdlib asyncio is used.

init_async_lib() canalso be directly called to set the async library to use, but it may only be called
before the app has begun running with async_runTouchApp() or App.async_run().

To run the app asynchronously, one schedules async_runTouchApp() or App.async_run() torun
within the given library’s async event loop as in the examples shown below. Kivy is then treated as just
another coroutine that the given library runs in its event loop. Internally, Kivy will use the specified

205

async library’s API, so KIVY_EVENTLOOP or async_1ib must match the async library that is running
Kivy.

For a fuller basic and more advanced examples, see the demo apps in examples/async.

Asyncio example ~~~~ -~~~

import asyncio

from kivy.app import async_runTouchApp
from kivy.uix.label import Label

loop = asyncio.get_event_loop()
loop.run_until_complete(

async_runTouchApp(Label(text='Hello, World!'), async_lib='asyncio'))
loop.close()

Trio example ~~~~~~~~r~~—

import trio

from kivy.app import async_runTouchApp
from kivy.uix.label import Label

from functools import partial

use functools.partial() to pass keyword arguments:
async_runTouchApp_func = partial(async_runTouchApp, async_lib='trio'")

trio.run(async_runTouchApp_func, Label(text='Hello, World!'))

31.2.7 Interacting with Kivy app from other coroutines

It is fully safe to interact with any kivy object from other coroutines running within the same async
event loop. This is because they are all running from the same thread and the other coroutines are only
executed when Kivy is idling.

Similarly, the kivy callbacks may safely interact with objects from other coroutines running in the same
event loop. Normal single threaded rules apply to both case.

New in version 2.0.0.

class kivy.app.App (*kwargs)
Bases: kivy.event.EventDispatcher

Application class, see module documentation for more information.
Events

on_start:
Fired when the application is being started (before the runTouchApp () call.

on_stop:
Fired when the application stops.

on_pause:
Fired when the application is paused by the OS.

206

on_resume:
Fired when the application is resumed from pause by the OS. Beware: you

have no guarantee that this event will be fired after the on_pause event has been
called.

Changed in version 1.7.0: Parameter kv_file added.
Changed in version 1.8.0: Parameters kv_file and kv_directory are now properties of App.
async async_run (async_lib=None)
Identical to run(), but is a coroutine and can be scheduled in a running async event loop.
See kivy.app for example usage.
New in version 2.0.0.

build()

Initializes the application; it will be called only once. If this method returns a widget (tree),
it will be used as the root widget and added to the window.

Returns
None or a root Widget instance if no self.root exists.

build_config/(config)

New in version 1.0.7.

This method is called before the application is initialized to construct your ConfigParser
object. This is where you can put any default section / key / value for your config.
If anything is set, the configuration will be automatically saved in the file returned by
get_application_config().

Parameters

config: ConfigParser
Use this to add default section / key / value items

build_settings (settings)
New in version 1.0.7.

This method is called when the user (or you) want to show the application settings. It is
called once when the settings panel is first opened, after which the panel is cached. It may
be called again if the cached settings panel is removed by destroy_settings().

You can use this method to add settings panels and to customise the settings widget e.g. by
changing the sidebar width. See the module documentation for full details.

Parameters
settings: Settings
Settings instance for adding panels
close_settings (*largs)
Close the previously opened settings panel.

Returns
True if the settings has been closed.
config

Returns an instance of the ConfigParser for the application configuration. You can use
this to query some config tokens in the build() method.

207

create_settings ()

Create the settings panel. This method will normally be called only one time per application
life-time and the result is cached internally, but it may be called again if the cached panel is
removed by destroy_settings().

By default, it will build a settings panel according to settings_cls, «call
build_settings(), add a Kivy panel if use_kivy_settings is True, and bind to
on_close/on_config_change.

If you want to plug your own way of doing settings, without the Kivy panel or close/config
change events, this is the method you want to overload.

New in version 1.8.0.

destroy_settings()

New in version 1.8.0.

Dereferences the current settings panel if one exists. This means that when App.
open_settings() is next run, a new panel will be created and displayed. It doesn’t affect
any of the contents of the panel, but lets you (for instance) refresh the settings panel layout if
you have changed the settings widget in response to a screen size change.

If you have modified open_settings() ordisplay_settings(),youshould be careful
to correctly detect if the previous settings widget has been destroyed.

property directory

New in version 1.0.7.

Return the directory where the application lives.

display_settings (settings)

New in version 1.8.0.

Display the settings panel. By default, the panel is drawn directly on top of the window. You
can define other behaviour by overriding this method, such as adding it to a ScreenManager
or Popup.

You should return True if the display is successful, otherwise False.
Parameters

settings: Settings
You can modify this object in order to modify the settings display.

get_application_config (defaultpath="%appdir)s/% (appname)s.ini’)

Return the filename of your application configuration. Depending on the platform, the ap-
plication file will be stored in different locations:

¢ on iOS: <appdir>/Documents/.<appname>.ini
¢ on Android: <user_data_dir>/.<appname>.ini
¢ otherwise: <appdir>/<appname>.ini

When you are distributing your application on Desktops, please note that if the application
is meant to be installed system-wide, the user might not have write-access to the application
directory. If you want to store user settings, you should overload this method and change
the default behavior to save the configuration file in the user directory.

class TestApp(App):
def get_application_config(self):
return super(TestApp, self).get _application_config(
'~/ .%(appname)s.ini')

208

Some notes:
¢ The tilda ‘~" will be expanded to the user directory.
* %(appdir)s will be replaced with the application directory
* %(appname)s will be replaced with the application name
New in version 1.0.7.

Changed in version 1.4.0: Customized the defaultpath for iOS and Android platforms.
Added a defaultpath parameter for desktop OS’s (not applicable to iOS and Android.)

Changed in version 1.11.0: Changed the Android version to make use of the
user_data_dir and added a missing dot to the iOS config file name.

get_application_icon()

Return the icon of the application.

get_application_name()

Return the name of the application.

static get_running_app()
Return the currently running application instance.
New in version 1.1.0.
icon
Icon of your application. The icon can be located in the same directory as your main file. You
can set this as follows:

class MyApp(App):
def build(self):
self.icon = 'myicon.png'

New in version 1.0.5.

Changed in version 1.8.0: icon is now a StringProperty. Don’t set the icon in the class as
previously stated in the documentation.

Note: For Kivy prior to 1.8.0, you need to set this as follows:

class MyApp(App):
icon = 'customicon.png'

Recommended 256x256 or 1024x1024? for GNU/Linux and Mac OSX 32x32 for Windows7
or less. <= 256x256 for windows 8 256x256 does work (on Windows 8 at least), but is scaled
down and doesn’t look as good as a 32x32 icon.

kv_directory
Path of the directory where application kv is stored, defaults to None

New in version 1.8.0.

If a kv_directory is set, it will be used to get the initial kv file. By default, the file is assumed
to be in the same directory as the current App definition file.

kv_file

Filename of the Kv file to load, defaults to None.

New in version 1.8.0.

209

If a kv_file is set, it will be loaded when the application starts. The loading of the “default”
kv file will be prevented.

load_config()

(internal) This function is used for returning a ConfigParser with the application configura-
tion. It’s doing 3 things:

1. Creating an instance of a ConfigParser
2. Loading the default configuration by calling build_config(), then
3. If it exists, it loads the application configuration file, otherwise it creates one.

Returns
ConfigParser instance

load_kv (filename=None)

This method is invoked the first time the app is being run if no widget tree has been con-
structed before for this app. This method then looks for a matching kv file in the same
directory as the file that contains the application class.

For example, say you have a file named main.py that contains:

class ShowcaseApp(App):
pass

This method will search for a file named showcase.kv in the directory that contains main.py.
The name of the kv file has to be the lowercase name of the class, without the ‘App” postfix
at the end if it exists.

You can define rules and a root widget in your kv file:

<ClassName>: # this is a rule

ClassName: # this is a root widget

There must be only one root widget. See the Kivy Language documentation for more infor-
mation on how to create kv files. If your kv file contains a root widget, it will be used as
self.root, the root widget for the application.

Note: This function is called from run(), therefore, any widget whose styling is defined
in this kv file and is created before run() is called (e.g. in __init__), won't have its styling
applied. Note that build() is called after Load_kV has been called.

property name

New in version 1.0.7.
Return the name of the application based on the class name.
on_config_change (config, section, key, value)
Event handler fired when a configuration token has been changed by the settings page.
Changed in version 1.10.1: Added corresponding on_config_change event.

on_pause()

Event handler called when Pause mode is requested. You should return True if your app can
go into Pause mode, otherwise return False and your application will be stopped.

210

You cannot control when the application is going to go into this mode. It's determined by
the Operating System and mostly used for mobile devices (android /ios) and for resizing.

The default return value is True.
New in version 1.1.0.
Changed in version 1.10.0: The default return value is now True.

on_resume()

Event handler called when your application is resuming from the Pause mode.

New in version 1.1.0.

Warning: When resuming, the OpenGL Context might have been damaged / freed. This
is where you can reconstruct some of your OpenGL state e.g. FBO content.

on_start()

Event handler for the on_start event which is fired after initialization (after build() has been
called) but before the application has started running.

on_stop()

Event handler for the on_stop event which is fired when the application has finished running
(i.e. the window is about to be closed).

open_settings (*largs)

Open the application settings panel. It will be created the very first time, or recreated if
the previously cached panel has been removed by destroy_settings(). The settings
panel will be displayed with the display_settings() method, which by default adds
the settings panel to the Window attached to your application. You should override that
method if you want to display the settings panel differently.

Returns
True if the settings has been opened.

options

Options passed to the __init__ of the App
pause (*largs)

Pause the application.

On Android set OS state to pause, Kivy app state follows. No functionality on other OS. ..
versionadded:: 2.2.0

root

The root widget returned by the build() method or by the load kv() method if the kv
file contains a root widget.

property root_window

New in version 1.9.0.

Returns the root window instance used by run().
run()

Launches the app in standalone mode.
settings_cls

New in version 1.8.0.

211

The class used to construct the settings panel and the instance passed to build_config().
You should use either Settings or one of the provided subclasses with different lay-
outs (SettingsWithSidebar, SettingsWithSpinner, SettingswWithTabbedPanel,
SettingsWithNoMenu). You can also create your own Settings subclass. See the documen-
tation of Settings for more information.

settings _clsisan ObjectProperty and defaults to SettingsWithSpinner which
displays settings panels with a spinner to switch between them. If you set a string, the
Factory will be used to resolve the class.

stop (*largs)

Stop the application.

If you use this method, the whole application will stop by issuing a call to stopTouchApp ().
Except on Android, set Android state to stop, Kivy state then follows.

title

Title of your application. You can set this as follows:

class MyApp(App):
def build(self):
self.title = 'Hello world'

New in version 1.0.5.

Changed in version 1.8.0: title is now a StringProperty. Don't set the title in the class as
previously stated in the documentation.

Note: For Kivy < 1.8.0, you can set this as follows:

class MyApp(App):
title = 'Custom title'

If you want to dynamically change the title, you can do:

from kivy.base import EventLoop
EventLoop.window.title = 'New title'

use_kivy_settings = True

New in version 1.0.7.

If True, the application settings will also include the Kivy settings. If you don’t want the user
to change any kivy settings from your settings UI, change this to False.

property user_data_dir

New in version 1.7.0.

Returns the path to the directory in the users file system which the application can use to
store additional data.

Different platforms have different conventions with regards to where the user can store data
such as preferences, saved games and settings. This function implements these conventions.
The <app_name> directory is created when the property is called, unless it already exists.

On iOS, ~/Documents/<app_name> is returned (which is inside the app’s sandbox).
On Windows, %APPDATA%/<app_name> is returned.

On OS X, ~/Library/Application Support/<app_name> is returned.

On Linux, $XDG_CONFIG_HOME/<app_name> is returned.

212

On Android, Context.GetFilesDir is returned.

Changed in version 1.11.0: On Android, this function previously returned /sd-
card/<app_name>. This folder became read-only by default in Android API 26 and the
user_data_dir has therefore been moved to a writeable location.

async kivy.app.async_runTouchApp (widget=None, embedded=False, async_lib=None)

Identical to runTouchApp () but instead it is a coroutine that can be run in an existing async
event loop.

async_1ib is the async library to use. See kivy. app for details and example usage.
New in version 2.0.0.

kivy.app.runTouchApp (widget=None, embedded=False)

Static main function that starts the application loop. You can access some magic via the following
arguments:

See kivy.app for example usage.
Parameters
<empty>

To make dispatching work, you need at least one input listener. If not, applica-
tion will leave. (MTWindow act as an input listener)

widget
If you pass only a widget, a MTWindow will be created and your widget will
be added to the window as the root widget.

embedded
No event dispatching is done. This will be your job.

widget + embedded
No event dispatching is done. This will be your job but we try to get the window
(must be created by you beforehand) and add the widget to it. Very useful for
embedding Kivy in another toolkit. (like Qt, check kivy-designed)

kivy.app.stopTouchApp()
Stop the current application by leaving the main loop.

See kivy.app for example usage.

31.3 Asynchronous data loader

This is the Asynchronous Loader. You can use it to load an image and use it, even if data are not yet
available. You must specify a default loading image when using the loader:

from kivy.loader import Loader
image = Loader.image('mysprite.png')

You can also load an image from a url:

image = Loader.image('http://mysite.com/test.png')

If you want to change the default loading image, you can do:

Loader.loading_image = Image('another_loading.png')

213

https://developer.android.com/reference/android/content/Context.html#getFilesDir()

31.3.1 Tweaking the asynchronous loader

New in version 1.6.0.

You can tweak the loader to provide a better user experience or more performance, depending of the

images you are going to load. Take a look at the parameters:

e Loader.num_workers - define the number of threads to start for loading images.

e Loader.max_upload_per_frame - define the maximum image uploads in GPU to do per

frame.

class kivy.loader.LoaderBase
Bases: builtins.object

Common base for the Loader and specific implementations. By default, the Loader will be the

best available loader implementation.

The _update() function is called every 1 / 25.s or each frame if we have less than 25 FPS.

property error_image

Image used for error. You can change it by doing:

Loader.error_image = 'error.png'

Changed in version 1.6.0: Not readonly anymore.

image (filename, load_callback=None, post_callback=None, **kwargs)

Load a image using the Loader. A Proxylmage is returned with a loading image. You can

use it as follows:

from kivy.app import App
from kivy.uix.image import Image
from kivy.loader import Loader

class TestApp(App):
def _image loaded(self, proxyImage):
if proxyImage.image.texture:
self.image.texture = proxyImage.image.texture

def build(self):
proxyImage = Loader.image("myPic.jpg")
proxyImage.bind(on_load=self._image_loaded)
self.image = Image()
return self.image

TestApp().run()

In order to cancel all background loading, call Loader.stop().
property loading_image

Image used for loading. You can change it by doing:

Loader.loading_image = 'loading.png’

Changed in version 1.6.0: Not readonly anymore.

property max_upload_per_frame

The number of images to upload per frame. By default, we’ll upload only 2 images to the

214

GPU per frame. If you are uploading many small images, you can easily increase this pa-
rameter to 10 or more. If you are loading multiple full HD images, the upload time may have
consequences and block the application. If you want a smooth experience, use the default.

As a matter of fact, a Full-HD RGB image will take ~6MB in memory, so it may take time. If
you have activated mipmap=True too, then the GPU must calculate the mipmap of these big
images too, in real time. Then it may be best to reduce the max_upload_per_frame to1 or
2. If you want to get rid of that (or reduce it a lot), take a look at the DDS format.

New in version 1.6.0.

property num_workers

Number of workers to use while loading (used only if the loader implementation supports
it). This setting impacts the loader only on initialization. Once the loader is started, the
setting has no impact:

from kivy.loader import Loader
Loader.num_workers = 4

The default value is 2 for giving a smooth user experience. You could increase the number
of workers, then all the images will be loaded faster, but the user will not been able to use
the application while loading. Prior to 1.6.0, the default number was 20, and loading many
full-hd images was completely blocking the application.

New in version 1.6.0.

pause()

Pause the loader, can be useful during interactions.
New in version 1.6.0.

resume()
Resume the loader, after a pause().

New in version 1.6.0.
run (*largs)
Main loop for the loader.

start()
Start the loader thread /process.

stop()
Stop the loader thread /process.

class kivy.loader.ProxyImage (arg, **kwargs)
Bases: kivy.core.image.Image

Image returned by the Loader.image() function.
Properties

loaded: bool, defaults to False
This value may be True if the image is already cached.

Events

on_load
Fired when the image is loaded or changed.

on_error
Fired when the image cannot be loaded. error: Exception data that occurred

215

31.4 Atlas

New in version 1.1.0.

Atlas manages texture atlases: packing multiple textures into one. With it, you reduce the number of
images loaded and speedup the application loading. This module contains both the Atlas class and
command line processing for creating an atlas from a set of individual PNG files. The command line
section requires the Pillow library, or the defunct Python Imaging Library (PIL), to be installed.

An Atlas is composed of 2 or more files:
* ajson file (.atlas) that contains the image file names and texture locations of the atlas.

* one or multiple image files containing textures referenced by the .atlas file.

31.4.1 Definition of .atlas files

A file with <basename>.atlas is a json file formatted like this:

{
"<basename>-<index>.png": {
"idl": [<x>, <y>, <width>, <height>],
"id2": [<x>, <y>, <width>, <height>],
.
},
.
}
Example from the Kivy data/images/defaulttheme.atlas
{

"defaulttheme-0.png": {
"progressbar_background": [431, 224, 59, 24],
"image-missing": [253, 344, 48, 48],
"filechooser_selected": [1, 207, 118, 118],
"bubble_btn": [83, 174, 32, 321,

... and more ...

}

}

In this example, “defaulttheme-0.png” is a large image, with the pixels in the rectangle
from (431, 224) to (431 + 59, 224 + 24) usable as atlas://data/images/defaulttheme/
progressbar_background in any image parameter.

31.4.2 How to create an Atlas

Warning: The atlas creation requires the Pillow library (or the defunct Imaging/PIL library). This
requirement will be removed in the future when the Kivy core Image is able to support loading,
blitting, and saving operations.

You can directly use this module to create atlas files with this command:

$ python -m kivy.atlas <basename> <size> <list of images...>

216

Let’s say you have a list of images that you want to put into an Atlas. The directory is named images
with lots of 64x64 png files inside:

$ 1s

images

$ cd images

$ 1s

bubble.png bubble-red.png button.png button-down.png

You can combine all the png’s into one and generate the atlas file with:

$ python -m kivy.atlas myatlas 256x256 *.png

Atlas created at myatlas.atlas

1 image has been created

$ 1s

bubble.png bubble-red.png button.png button-down.png myatlas.atlas
myatlas-0.png

As you can see, we get 2 new files: myatlas.atlas and myatlas-0.png. myatlas-0.pngisanew
256x256 .png composed of all your images. If the size you specify is not large enough to fit all of the
source images, more atlas images will be created as required e.g. myatlas-1.png, myatlas-2.png
etc.

Note: When using this script, the ids referenced in the atlas are the base names of the images without
the extension. So, if you are going to name a file . . /images/button.png, the id for this image will
be button.

If you need path information included, you should include use_path as follows:

$ python -m kivy.atlas -- --use_path myatlas 256 *.png

In which case the id for . . /images/button.png will be images_button

31.4.3 How to use an Atlas

Usually, you would specify the images by supplying the path:

a = Button(background_normal='images/button.png’,
background_down="'images/button_down.png')

In our previous example, we have created the atlas containing both images and put them in images/
myatlas.atlas. You can use url notation to reference them:

a = Button(background_normal='atlas://images/myatlas/button’,
background_down="'atlas://images/myatlas/button_down"')

In other words, the path to the images is replaced by:

atlas://path/to/myatlas/id
will search for the " “path/to/myatlas.atlas ~ and get the image "~ "id °

Note: In the atlas url, there is no need to add the . atlas extension. It will be automatically append to
the filename.

217

31.4.4 Manual usage of the Atlas

>>> from kivy.atlas import Atlas

>>> atlas = Atlas('path/to/myatlas.atlas')

>>> print(atlas.textures.keys())

['bubble', 'bubble-red', 'button', 'button-down']

>>> print(atlas['button'])
<kivy.graphics.texture.TextureRegion object at 0x2404d10>

class kivy.atlas.Atlas (filename)

Bases: kivy.event.EventDispatcher
Manage texture atlas. See module documentation for more information.

static create(outname, filenames, size, padding=2, use_path=False)

This method can be used to create an atlas manually from a set of images.
Parameters

outname: str

Basename to use for .atlas creation and -<idx>.png associated images.

filenames: list
List of filenames to put in the atlas.

size: int or list (width, height)

Size of the atlas image. If the size is not large enough to fit all of the source

images, more atlas images will created as required.

padding: int, defaults to 2
Padding to put around each image.

Be careful. If you're using a padding < 2, you might have issues with the
borders of the images. Because of the OpenGL linearization, it might use the
pixels of the adjacent image.

If you're using a padding >= 2, we’ll automatically generate a “border” of 1px
around your image. If you look at the result, don’t be scared if the image
inside is not exactly the same as yours :).

use_path: bool, defaults to False

If True, the relative path of the source png file names will be included in the
atlas ids rather that just in the file names. Leading dots and slashes will be
excluded and all other slashes in the path will be replaced with underscores.
For example, if use_path is False (the default) and the file name is . . /data/
tiles/green_grass.png, theid willbe green_grass. If use_path is True,

itwillbe data_tiles_green_grass.
Changed in version 1.8.0: Parameter use_path added

filename
Filename of the current Atlas.

filenameisanAliasProperty and defaults to None.

original_textures
List of original atlas textures (which contain the textures).

original _ texturesisalistProperty and defaults to []

New in version 1.9.1.

218

textures

List of available textures within the atlas.

texturesisaDictProperty and defaults to {}.

31.5 Cache manager

The cache manager can be used to store python objects attached to a unique key. The cache can be
controlled in two ways: with a object limit or a timeout.

For example, we can create a new cache with a limit of 10 objects and a timeout of 5 seconds:

register a new Cache
Cache.register('mycache', 1imit=10, timeout=5)

create an object + id

key = 'objectid'

instance = Label(text=text)
Cache.append('mycache', key, instance)

retrieve the cached object
instance = Cache.get('mycache', key)

If the instance is NULL, the cache may have trashed it because you've not used the label for 5 seconds
and you've reach the limit.

class kivy.cache.Cache
Bases: builtins.object

See module documentation for more information.

static append (category, key, obj, timeout=None)
Add a new object to the cache.

Parameters

category: str
Identifier of the category.

key: str
Unique identifier of the object to store.

obj: object
Object to store in cache.

timeout: double (optional)
Time after which to delete the object if it has not been used. If None, no time-
out is applied.

Raises
ValueError: If None is used as key.

Changed in version 2.0.0: Raises ValueError if None is used as key.

static get (category, key, default=None)
Get a object from the cache.

Parameters

category: str
Identifier of the category.

219

key: str
Unique identifier of the object in the store.

default: anything, defaults to None
Default value to be returned if the key is not found.

static get_lastaccess (category, key, default=None)

Get the objects last access time in the cache.
Parameters

category: str
Identifier of the category.

key: str
Unique identifier of the object in the store.

default: anything, defaults to None
Default value to be returned if the key is not found.

static get_timestamp (category, key, default=None)

Get the object timestamp in the cache.
Parameters

category: str
Identifier of the category.

key: str
Unique identifier of the object in the store.

default: anything, defaults to None
Default value to be returned if the key is not found.

static print_usage()
Print the cache usage to the console.
static register (category, limit=None, timeout=None)
Register a new category in the cache with the specified limit.
Parameters
category: str
Identifier of the category.

limit: int (optional)
Maximum number of objects allowed in the cache. If None, no limit is applied.
timeout: double (optional)
Time after which to delete the object if it has not been used. If None, no time-
out is applied.
static remove (category, key=None)
Purge the cache.

Parameters

category: str
Identifier of the category.
key: str (optional)

Unique identifier of the object in the store. If this argument is not supplied,
the entire category will be purged.

220

31.6 Clock object

The Clock object allows you to schedule a function call in the future; once or repeatedly at specified
intervals. You can get the time elapsed between the scheduling and the calling of the callback via the dt
argument:

dt means delta-time
def my callback(dt):
pass

call my_callback every 0.5 seconds
Clock.schedule_interval(my_callback, 0.5)

call my_callback in 5 seconds
Clock.schedule_once(my_callback, 5)

call my_callback as soon as possible (usually next frame.)
Clock.schedule_once(my_callback)

Note: If the callback returns False, the schedule will be canceled and won't repeat.

If you want to schedule a function to call with default arguments, you can use the functools.partial
python module:

from functools import partial

def my callback(value, key, *largs):
pass

Clock.schedule_interval(partial(my_callback, 'my value', 'my key'), 0.5)

Conversely, if you want to schedule a function that doesn’t accept the dt argument, you can use a
lambda expression to write a short function that does accept dt. For Example:

def no_args_func():
print("I accept no arguments, so don't schedule me in the clock")

Clock.schedule_once(lambda dt: no_args_func(), 0.5)

Note: You cannot unschedule an anonymous function unless you keep a reference to it. It’s better to
add *args to your function definition so that it can be called with an arbitrary number of parameters.

Important: The class method callback is weak-referenced: you are responsible for keeping a reference
to your original object/callback. If you don’t keep a reference, the ClockBase will never execute your
callback. For example:

class Foo(object):
def start(self):
Clock.schedule_interval(self.callback, 0.5)

def callback(self, dt):

(continues on next page)

221

http://docs.python.org/library/functools.html#functools.partial
http://docs.python.org/2/reference/expressions.html#lambda

(continued from previous page)

print('In callback')

A Foo object is created and the method start is called.

Because no reference is kept to the instance returned from Foo(),
the object will be collected by the Python Garbage Collector and
your callback will be never called.

Foo().start()

So you should do the following and keep a reference to the instance
of foo until you don't need it anymore!

foo = Foo()

foo.start()

31.6.1 Schedule before frame

New in version 1.0.5.

Sometimes you need to schedule a callback BEFORE the next frame. Starting from 1.0.5, you can use a
timeout of -1:

Clock.schedule_once(my_callback, 0) # call after the next frame
Clock.schedule_once(my_callback, -1) # call before the next frame

The Clock will execute all the callbacks with a timeout of -1 before the next frame even if you add a new
callback with -1 from a running callback. However, CL0ock has an iteration limit for these callbacks: it
defaults to 10.

If you schedule a callback that schedules a callback that schedules a ... etc more than 10 times, it
will leave the loop and send a warning to the console, then continue after the next frame. This is
implemented to prevent bugs from hanging or crashing the application.

If you need to increase the limit, set the max_iteration property:

from kivy.clock import Clock
Clock.max_iteration = 20

31.6.2 Triggered Events

New in version 1.0.5.

CyClockBase.create_trigger() is an advanced method way to defer a callback. It functions
exactly like CyClockBase. schedule_once() and CyClockBase. schedule_interval() except
that it doesn’t immediately schedule the callback. Instead, one schedules the callback using the
ClockEvent returned by it. This ensures that you can call the event multiple times but it won’t be
scheduled more than once. This is not the case with CyClockBase. schedule_once():

will run the callback twice before the next frame
Clock.schedule_once(my_callback)
Clock.schedule_once(my_callback)

will run the callback once before the next frame
event = Clock.create_trigger(my_callback)
event ()

(continues on next page)

222

(continued from previous page)

event ()

will also run the callback only once before the next frame

event = Clock.schedule_once(my_callback) # now it's already scheduled
event() # won't be scheduled again

event ()

In addition, it is more convenient to create and bind to the triggered event than using CyClockBase.
schedule_once() in a function

from kivy.clock import Clock
from kivy.uix.widget import Widget

class Sample(Widget):
def _init_ _(self, *xkwargs):
self._trigger = Clock.create_trigger(self.cb)
super(Sample, self). _init__ (*xkwargs)
self.bind(x=self._trigger, y=self._trigger)

def chb(self, xlargs):
pass

Even if x and y changes within one frame, the callback is only run once.

31.6.3 Unscheduling

An event scheduled with CyClockBase.schedule_once(), CyClockBase.
schedule_interval(), or with CyClockBase.create_trigger() and then triggered can
be unscheduled in multiple ways. E.g:

def my_callback(dt):
pass

call my_callback every 0.5 seconds
event = Clock.schedule_interval(my_callback, 0.5)

call my_callback in 5 seconds
event2 = Clock.schedule_once(my_callback, 5)

event_trig = Clock.create_trigger(my_callback, 5)
event_trig()

unschedule using cancel
event.cancel()

unschedule using Clock.unschedule
Clock.unschedule(event2)

unschedule using Clock.unschedule with the callback
NOT RECOMMENDED
Clock.unschedule(my_callback)

The best way to unschedule a callback is with ClockEvent.cancel(). CyClockBase.
unschedule() is mainly an alias for that for that function. However, if the original callback itself

223

is passed to CyClockBase.unschedule(), it'll unschedule all instances of that callback (provided
allis True, the default, otherwise only the first match is removed).

Calling CyClockBase.unschedule() on the original callback is highly discouraged because it’s sig-
nificantly slower than when using the event.

31.6.4 Clock Lifecycle

Kivy’s clock has a lifecycle. By default, scheduling a callback after the Clock has ended will not raise
an error, even though the callback may never be called. That’s because most callbacks are like services,
e.g. responding to a user button press - if the app is running the callbacks need to service the app
and respond to the input, but once the app has stopped or is stopping, we can safely not process these
events.

Other events always need to be processed. E.g. another thread may request a callback in kivy’s thread
and then process some result. If the event is not processed in Kivy’s thread because the app stopped,
the second thread may block forever hanging the application as it exits.

Consequently, we provide a API (CyClockBase.create_lifecycle_aware_trigger()) for
scheduling callbacks that raise a ClockNotRunningError if the clock has stopped. If the schedul-
ing succeeded it guarantees that one of its callbacks will be called. Le. the new CyClockBase.
create_lifecycle_aware_trigger() accepts an additional clock_ended_callback param-
eter. Normally, cal lback will be called when the event is processed. But, if the clock is stopped before
it can be processed, if the application exited normally (and the app was started) and the event wasn’t
canceled, and the callbacks are not garbage collected, then clock_ended_callback will be called
instead when the clock is stopped.

That is, given these conditions, if CLockNotRunningError was not raised when the event was sched-
uled, then one of these callbacks will be called - either callback if the event executed normally, or
clock_ended_callback if the clock is stopped while the event is scheduled.

By default, events can be scheduled before the clock is started because it is assumed
the clock will eventually be started when the app starts. le. calling CyClockBase.
create_lifecycle_aware_trigger() before the clock and application starts will succeed. But
if the app never actually starts, then neither of the callbacks may be executed.

New in version 2.0.0: The lifecycle was added in 2.0.0

31.6.5 Exception Handling

Kivy provides a exception handling manager, ExceptionManager, to handle its internal exceptions
including exceptions raised by clock callbacks, without crashing the application. By default when an
exception is raised, the app will crash. But, if a handler is registered with the exception manager and
the handler handles the exception, the app will not crash and will continue as normal.:

from kivy.base import ExceptionHandler, ExceptionManager
class MyHandler(ExceptionHandler):
def handle_exception(self, inst):
if isinstance(inst, ValueError):
Logger.exception('ValueError caught by MyHandler')
return ExceptionManager.PASS
return ExceptionManager.RAISE

ExceptionManager.add_handler(MyHandler())

Then, all ValueError exceptions will be logged to the console and ignored. Similarly, if a scheduled
clock callback raises a ValueError, other clock events will still be processed normally.

224

If an event’s callback raises an exception, before the exception handler is executed, the callback is im-
mediately canceled.

It still is possible for the app to be corrupted if kivy itself is the source of the exception. le. even
with a handler that ignores exceptions and doesn’t crash, the app may be in a corrupted state if the
error originates from within Kivy itself. However, the exception handler can help protect the app from
crashing and can help protect against user callbacks crashing the app.

Changed in version 2.0.0: Prior to Kivy 2.0.0, an exception raised in a event’s callback would cause the
clock to crash and subsequent events may or may not be executed. Even if the exception was handled
by an ExceptionHandler, there was no guarantee that some scheduled events would not be skipped.

From 2.0.0 onward, if a event’s exception is handled by an ExceptionHandler, other events will be
shielded from the exception and will execute normally.

31.6.6 Scheduling from __del__

It is not safe to schedule Clock events from a object’s __del__ or __dealloc__ method. If
you must schedule a Clock call from this method, use CyClockBase.schedule_del_safe() or
CyClockBase.schedule_lifecycle_aware_del_safe() instead.

31.6.7 Threading and Callback Order

Beginning with 1.10.0, all the events scheduled for the same frame, e.g. all the events scheduled in the
same frame with a timeout of 0, well be executed in the order they were scheduled.

Also, all the scheduling and canceling methods are fully thread safe and can be safely used from external
threads.

As a a consequence, calling CyClockBase.unschedule() with the original callback is now signif-
icantly slower and highly discouraged. Instead, the returned events should be used to cancel. As a
tradeoff, all the other methods are now significantly faster than before.

31.6.8 Advanced Clock Details

The following section goes into the internal kivy clock details as well as the various clock options. It is
meant only for advanced users.

Fundamentally, the Kivy clock attempts to execute any scheduled callback rhythmically as determined
by the specified fps (frame per second, see maxfps in config). That is, ideally, given e.g. a desired
fps of 30, the clock will execute the callbacks at intervals of 1 / 30 seconds, or every 33.33 ms. All the
callbacks in a frame are given the same timestamp, i.e. the dt passed to the callback are all the same
and it’s the difference in time between the start of this and the previous frame.

Because of inherent indeterminism, the frames do not actually occur exactly at intervals of the fps and
dt may be under or over the desired fps. Also, once the timeout is “close enough” to the desired
timeout, as determined internally, Kivy will execute the callback in the current frame even when the
“actual time” has not elapsed the timeout amount.

Kivy offers now, since 1.10.0, multiple clocks with different behaviors.

225

Default Clock

The default clock (default) behaves as described above. When a callback with a timeout of zero or
non-zero is scheduled, they are executed at the frame that is near the timeout, which is a function of the
fps. So a timeout of zero would still result in a delay of one frame or about 1 / fps, typically a bit less
but sometimes more depending on the CPU usage of the other events scheduled for that frame.

In a test using a fps of 30, a callback with a timeout of 0, 0.001, and 0.05, resulted in a mean callback
delay of 0.02487, 0.02488, and 0.05011 seconds, respectively. When tested with a fps of 600 the delay for
0.05 was similar, except the standard deviation was reduced resulting in overall better accuracy.

Interruptible Clock

The default clock suffers from the quantization problem, as frames occur only on intervals and any
scheduled timeouts will not be able to occur during an interval. For example, with the timeout of 0.05,
while the mean was 0.05011, its values ranged between 0.02548 - 0.07348 and a standard deviation of
0.002. Also, there’s the minimum timeout of about 0.02487.

The interruptible clock (interrupt) will execute timeouts even during a frame. So a timeout of zero
will execute as quickly as possible and similarly a non-zero timeout will be executed even during the
interval.

This clock, and all the clocks described after this have an option, ClockBaseInterruptBehavior.
interupt_next_only. When True, any of the behavior new behavior will only apply to the callbacks
with a timeout of zero. Non-zero timeouts will behave like in the default clock. E.g. for this clock when
True, only zero timeouts will execute during the the interval.

In a test using a fps of 30, a callback with a timeout of 0, 0.001, and 0.05, resulted in a mean callback
delay of 0.00013, 0.00013, and 0.04120 seconds, respectively when ClockBaseInterruptBehavior.
interupt_next_only was False. Also, compared to the default clock the standard deviation was re-
duced. When ClockBaseInterruptBehavior.interupt_next_only was True, the values were
0.00010, 0.02414, and 0.05034, respectively.

Free Clock

The interruptible clock may not be ideal for all cases because all the events are executed during the
intervals and events are not executed anymore rhythmically as multiples of the fps. For example, there
may not be any benefit for the graphics to update in a sub-interval, so the additional accuracy wastes
CPU.

The Free clock (free_all) solves this by having Clock.xxx_free versions of all the Clock
scheduling methods. By free, we mean the event is free from the fps because it’s not fps
limited. E.g. CyClockBaseFree.create_trigger_free() corresponds to CyClockBase.
create_trigger().Only when an event scheduled using the Clock.xxx_f ree methods is present
will the clock interrupt and execute the events during the interval. So, if no free event is present the
clock behaves like the default clock, otherwise it behaves like the interrupt clock.

In a test using a fps of 30, a callback with a timeout of 0s, 0.001s, and 0.05s, resulted in a mean callback
delay of 0.00012s, 0.00017s, and 0.04121s seconds, respectively when it was a free event and 0.02403s,
0.02405s, and 0.04829s, respectively when it wasn't.

226

Free Only Clock

The Free clock executes all events when a free event was scheduled. This results in normal events also
being execute in the middle of the interval when a free event is scheduled. For example, above, when
a free event was absent, a normal event with a 0.001s timeout was delayed for 0.02405s. However, if a
free event happened to be also scheduled, the normal event was only delayed 0.00014s, which may be
undesirable.

The Free only clock (free_only) solves it by only executing free events during the interval and normal
events are always executed like with the default clock. For example, in the presence of a free event, a
normal event with a timeout of 0.001s still had a delay of 0.02406. So this clock, treats free and normal
events independently, with normal events always being fps limited, but never the free events.

Summary

The kivy clock type to use can be set with the kivy_clock option the config. If KIVY_CLOCK is
present in the environment it overwrites the config selection. Its possible values are as follows:

e When kivy_clock is default, the normal clock, ClockBase, which limits callbacks to the
maxfps quantization - is used.

e When kivy_clockis interrupt, a interruptible clock, ClockBaseInterrupt, which doesn’t
limit any callbacks to the maxfps - is used. Callbacks will be executed at any time.

e When kivy_clockis free_all, ainterruptible clock, ClockBaseFreeInterruptAll, which
doesn’t limit any callbacks to the maxfps in the presence of free events, but in their absence it limits
events to the fps quantization interval - is used.

e When kivy_clock is free_only, a interruptible clock, ClockBaseFreelInterruptAll,
which treats free and normal events independently; normal events are fps limited while free
events are not - is used.

31.6.9 Async clock support

New in version 2.0.0.

Experimental async support has been added in 2.0.0. The Clock now has a ClockBaseBehavior.
async_tick() and ClockBaseBehavior.async_idle() coroutine method which is used by the
kivy EventLoop when the kivy EventLoop is executed in a asynchronous manner. When used, the kivy
clock does not block while idling.

The async library to use is selected with the KIVY_EVENTLOOP environmental variable or by calling
init_async_lib() directly. The library can be one of “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used. If not set it defaults to “asyncio”.

See app for example usage.

kivy.clock.Clock: C(ClockBase = None

The kivy Clock instance. See module documentation for details.

class kivy.clock.ClockBase (*kwargs)
Bases: kivy.clock.ClockBaseBehavior, kivy._clock.CyClockBase

The default kivy clock. See module for details.

usleep (microseconds)

Sleeps for the number of microseconds.

227

class kivy.clock.ClockBaseBehavior (async_lib="asyncio’, **kwargs)
Bases: builtins.object

The base of the kivy clock.
Parameters

async_lib: string
The async library to use when the clock is run asynchronously. Can be one of,
“asyncio” when the standard library asyncio should be used, or “trio” if the trio
library should be used.

It defaults to ‘asyncio” or the value in the environmental variable
KIVY_EVENTLOORP if set. init_async_lib() can also be called directly to
set the library.

MIN_SLEEP = 0.005

The minimum time to sleep. If the remaining time is less than this, the event loop will con-

tinue.
async async_idle()
(internal) async version of idle().
async async_tick()
async version of tick().
property frames
Number of internal frames (not necessarily drawn) from the start of the clock.
New in version 1.8.0.
property frames_displayed
Number of displayed frames from the start of the clock.
property frametime
Time spent between the last frame and the current frame (in seconds).
New in version 1.8.0.

get_boottime()

Get the time in seconds from the application start.
get_fps()

Get the current average FPS calculated by the clock.
get_rfps()

Get the current “real” FPS calculated by the clock. This counter reflects the real framerate

displayed on the screen.

In contrast to get_fps(), this function returns a counter of the number of frames, not the

average of frames per second.

get_time()
Get the last tick made by the clock.

idle()

(internal) waits here until the next frame.

init_async_lib(lib)

Manually sets the async library to use internally, when running in a asynchronous manner.

This can be called anytime before the kivy event loop has started, but not once the kivy App

is running.

228

Parameters

lib: string
The async library to use when the clock is run asynchronously. Can be one
of, “asyncio” when the standard library asyncio should be used, or “trio” if the
trio library should be used.
post_idle (ts, current)

Called after 1dle() by tick().

pre_idle()
Called before idle() by tick().
tick()

Advance the clock to the next step. Must be called every frame. The default clock has a tick()
function called by the core Kivy framework.

tick_draw()

Tick the drawing counter.
static time()

Proxy method for cLock().

usleep (microseconds)
Sleeps for the number of microseconds.

class kivy.clock.ClockBaseFreeInterruptAll(*kwargs)

Bases: kivy.clock.ClockBaseInterruptFreeBehavior, kivy._clock.
CyClockBaseFree

The free_all kivy clock. See module for details.

class kivy.clock.ClockBaseFreeInterruptOnly (**kwargs)

Bases: kivy.clock.ClockBaseInterruptFreeBehavior, kivy._clock.
CyClockBaseFree

The free_only kivy clock. See module for details.
async async_idle()

(internal) async version of idle().
idle()

(internal) waits here until the next frame.

class kivy.clock.ClockBaseInterrupt (interupt_next_only=False, **kwargs)

Bases: kivy.clock.ClockBaseInterruptBehavior, kivy._clock.CyClockBase

The interrupt kivy clock. See module for details.

class kivy.clock.ClockBaseInterruptBehavior (interupt_next_only=False, **kwargs)

Bases: kivy.clock.ClockBaseBehavior
A kivy clock which can be interrupted during a frame to execute events.
async async_idle()
(internal) async version of idle().
idle()

(internal) waits here until the next frame.

229

init_async_lib(/ib)

Manually sets the async library to use internally, when running in a asynchronous manner.

This can be called anytime before the kivy event loop has started, but not once the kivy App
is running.
Parameters
lib: string
The async library to use when the clock is run asynchronously. Can be one

of, “asyncio” when the standard library asyncio should be used, or “trio” if the
trio library should be used.

usleep (microseconds)

Sleeps for the number of microseconds.

class kivy.clock.ClockBaseInterruptFreeBehavior (**kwargs)

Bases: kivy.clock.ClockBaseInterruptBehavior

A base class for the clock that interrupts the sleep interval for free events.

class kivy.clock.ClockEvent (CyClockBase clock, int loop, callback, double timeout, double starttime,

cid=None, int trigger=False, clock_ended_callback=None,
release_ref=True, **kwargs)

Bases: builtins.object

This class is never created by the user; instead, kivy creates and returns an instance of this class
when scheduling a callback.

An event can be triggered (scheduled) by calling it. If it’s already scheduled, nothing will happen,
otherwise it'll be scheduled. E.g.:

event = Clock.schedule_once(my_callback, .5)

event() # nothing will happen since it's already scheduled.
event.cancel() # cancel it

event() # now it's scheduled again.

callback

callback: object
cancel()

Cancels the callback if it was scheduled to be called. If not scheduled, nothing happens.
cid

cid: object
clock

clock: kivy._clock.CyClockBase The Cy(ClockBase instance associated with the event.
clock_ended_callback

clock_ended_callback: object A Optional callback for this event, which if provided is called
by the clock

when the clock is stopped and the event was not ticked.

get_callback()

Returns the callback associated with the event. Callbacks get stored with a indirect ref so that
it doesn’t keep objects alive. If the callback is dead, None is returned.

230

get_clock_ended_callback()

Returns the clock_ended_callback associated with the event. Callbacks get stored with a
indirect ref so that it doesn’t keep objects alive. If the callback is dead or wasn’t provided,
None is returned.

is_triggered

Returns whether the event is scheduled to have its callback executed by the kivy thread.
loop

loop: ‘int” Whether this event repeats at intervals of timeout.

next
next: kivy._clock.ClockEvent The next C lockEvent in order they were scheduled.

prev
prev: kivy._clock.ClockEvent The previous C lockEvent in order they were scheduled.

release()
(internal method) Converts the callback into a indirect ref.

release_ref
release_ref: “int’ If True, the event should never release the reference to the callbacks.

If False, a weakref may be created instead.

tick (double curtime)
(internal method) Processes the event for the kivy thread.
timeout
timeout: ‘double’ The duration after scheduling when the callback should be executed.
weak_callback
weak_callback: object
weak_clock_ended_callback
weak_clock_ended_callback: object
exception kivy.clock.ClockNotRunningError
Bases: RuntimeError

Raised by the kivy Clock when scheduling an event if the Kivy Clock has already finished
(stop_clock was called).
class kivy.clock.CyClockBase (**kwargs)
Bases: builtins.object
clock_resolution
clock_resolution: ‘double’ If the remaining time until the event timeout is less than
clock_resolution,

the clock will execute the callback even if it hasn’t exactly timed out.

If -1, the default, the resolution will be computed from config’s maxfps. Otherwise,
the provided value is used. Defaults to -1.

create_lifecycle_aware_trigger (callback, clock_ended_callback, timeout=0, interval=False,
release_ref=True) — ClockEvent

Create a Trigger event similarly to create_trigger(), but the event is sensitive to the
clock’s state.

If this event is triggered after the clock has stopped (stop_clock()), then a
ClockNotRunningError will be raised. If the error is not raised, then either callback

231

or clock_ended_callback will be called. callback will be called when the event is nor-
mally executed. If the clock is stopped before it can be executed, provided the app exited
normally without crashing and the event wasn’t manually canceled, and the callbacks are
not garbage collected then clock_ended_callback will be called instead when the clock
is stopped.

Parameters

callback: callable
The callback to execute from kivy. It takes a single parameter - the current
elapsed kivy time.

clock_ended_callback: callable
A callback that will be called if the clock is stopped while the event is still
scheduled to be called. The callback takes a single parameter - the event ob-
ject. When the event is successfully scheduled, if the app exited normally and
the event wasn’t canceled, and the callbacks are not garbage collected - it is
guaranteed that either callback or clock_ended_callback would have
been called.

timeout: float
How long to wait before calling the callback.

interval: bool
Whether the callback should be called once (False) or repeatedly with a period
of timeout (True) like schedule_interval().

release_ref: bool
If True, the default, then if callback or clock_ended_callback is a class
method and the object has no references to it, then the object may be garbage
collected and the callbacks won’t be called. If False, the clock keeps a reference
to the object preventing it from being garbage collected - so it will be called.

Returns
A ClockEvent instance. To schedule the callback of this instance, you can call
it.

New in version 2.0.0.

create_trigger (callback, timeout=0, interval=False, release_ref=True) — ClockEvent

Create a Trigger event. It is thread safe but not __del__ or __dealloc__ safe (see
schedule_del_safe()). Check module documentation for more information.

To cancel the event before it is executed, call ClockEvent. cancel () on the returned event.
To schedule it again, simply call the event (event ()) and it'll be safely rescheduled if it isn’t
already scheduled.

Parameters

callback: callable
The callback to execute from kivy. It takes a single parameter - the current
elapsed kivy time.

timeout: float
How long to wait before calling the callback.

interval: bool
Whether the callback should be called once (False) or repeatedly with a period
of timeout (True) like schedule _interval().

release_ref: bool
If True, the default, then if callback is a class method and the object has
no references to it, then the object may be garbage collected and the callbacks

232

won't be called. If False, the clock keeps a reference to the object preventing it
from being garbage collected - so it will be called.

Returns
A ClockEvent instance. To schedule the callback of this instance, you can call
it.
New in version 1.0.5.
Changed in version 1.10.0: interval has been added.
Changed in version 2.0.0: release_ref has been added.

get_before_frame_events()
Returns the list of ClockEvent instances that are scheduled to be called before the next
frame (- 1 timeout).

New in version 2.1.0.

get_events()
Returns the list of CLockEvent instances currently scheduled.

get_min_timeout ()

Returns the remaining time since the start of the current frame for the event with the smallest
timeout.

get_resolution()
Returns the minimum resolution the clock has. It’s a function of clock_resolution and
maxfps provided at the config.

handle_exception(e¢)
Provides an opportunity to handle an event’s exception.
If desired, the exception is handled, otherwise it should be raised again. By default it is raised
again.

Parameters
e — The exception to be handled.

New in version 2.0.0.

has_ended

has_ended: ‘int’

has_started

has_started: ‘int’

max_iteration
max_iteration: ‘int” The maximum number of callback iterations at the end of the frame,
before the next

frame. If more iterations occur, a warning is issued.

on_schedule (event)

Function that is called internally every time an event is triggered for this clock. It takes the
event as a parameter.

The order of on_schedule calls are not guaranteed to be in the same order that the events
are scheduled. Similarly, it is possible that the event being scheduled was canceled before
this is called on the event. That’s because 0n_schedule() may be called from different
threads.

233

schedule_del_safe (callback)

Schedule a callback that is thread safe and __del__ or __dealloc__ safe.

It's unsafe to call various kinds of code from __del__ or __dealloc__ methods be-
cause they can be executed at any time. Most Kivy’s Clock methods are unsafe to call the
Clock from these methods. Instead, use this method, which is thread safe and __del__ or
__dealloc__ safe, to schedule the callback in the kivy thread. It'll be executed in order
after the normal events are processed.

Parameters

callback: Callable
The callback the execute from kivy. It takes no parameters and cannot be can-
celed.

New in version 1.11.0.

schedule_interval (callback, timeout) — ClockEvent

Schedule an event to be called every <timeout> seconds. See create_trigger () for ad-
vanced scheduling and more details.

To cancel the event before it is executed, call ClockEvent. cancel () on the returned event.
If the callback is a class method, a weakref to the object is created and it may be garbage
collected if there’s no other reference to the object.

Returns
A ClockEvent instance. As opposed to create_trigger() which only cre-
ates the trigger event, this method also schedules it.

schedule_lifecycle_aware_del_safe callback, clock_ended_callback)

Schedule a callback that is thread safe and __del__ or __dealloc__ safe similarly to
schedule_del_safe(),but the callback is sensitive to the clock’s state.

If this event is triggered after the clock has stopped (stop_clock()), then a
ClockNotRunningError will be raised. If the error is not raised, then either callback
or clock_ended_callback will be called. callback will be called when the callback is
normally executed. If the clock is stopped before it can be executed, provided the app exited
normally without crashing then clock_ended_callback will be called instead when the
clock is stopped.

Parameters

callback: Callable
The callback the execute from kivy. It takes no parameters and cannot be can-
celed.

clock_ended_callback: callable
A callback that will be called if the clock is stopped while the callback is
still scheduled to be called. The callback takes a single parameter - the call-
back. If the app exited normally, it is guaranteed that either callback or
clock_ended_callback would have been called.

New in version 2.0.0.

schedule_once (callback, timeout=0) — ClockEvent

Schedule an event in <timeout> seconds. If <timeout> is unspecified or 0, the callback will be
called after the next frame is rendered. See create_trigger() for advanced scheduling
and more details.

To cancel the event before it is executed, call ClockEvent. cancel () on the returned event.
If the callback is a class method, a weakref to the object is created and it may be garbage
collected if there’s no other reference to the object.

234

Returns
A ClockEvent instance. As opposed to create_trigger() which only cre-
ates the trigger event, this method also schedules it.

Changed in version 1.0.5: If the timeout is -1, the callback will be called before the next frame
(at tick_draw()).

start_clock()
Must be called to start the clock.

Once stop_clock() is called, it cannot be started again.
stop_clock()
Stops the clock and cleans up.
This must be called to process the lifecycle_aware callbacks etc.
unschedulle (callback, all=True)
Remove a previously scheduled event.
An ClockEvent can also be canceled directly by calling ClockEvent. cancel().
Parameters

callback: ClockEvent or a callable.
Ifit'sa ClockEvent instance, then the callback associated with this event will
be canceled if it is scheduled.

If it’s a callable, then the callable will be unscheduled if it was scheduled.

Warning: Passing the callback function rather than the returned
ClockEvent will result in a significantly slower unscheduling.

all: bool
If True and if callback is a callable, all instances of this callable will be unsched-
uled (i.e. if this callable was scheduled multiple times). Defaults to True.

Changed in version 1.9.0: The all parameter was added. Before, it behaved as if all was True.

class kivy.clock.CyClockBaseFree
Bases: kivy._clock.CyClockBase

A clock class that supports scheduling free events in addition to normal events.

Each of the create_trigger(), schedule_once(),and schedule_interval () methods,
which create a normal event, have a corresponding method for creating a free event.

create_lifecycle_aware_trigger (callback, clock_ended_callback, timeout=0, interval=False,
release_ref=True) — FreeClockEvent

create_lifecycle_aware_trigger_free (callback, clock_ended_callback, timeout=0,
interval=False, release_ref=True) —
FreeClockEvent

Similar to create_lifecycle_aware_trigger(),butinstead creates a free event.
create_trigger (callback, timeout=0, interval=False, release_ref=True) — FreeClockEvent

create_trigger_free (callback, timeout=0, interval=False, release_ref=True) — FreeClockEvent
Similar to create_trigger/(),but instead creates a free event.

235

get_min_free_timeout()

Returns the remaining time since the start of the current frame for the free event with the
smallest timeout.

schedule_interval (callback, timeout) — FreeClockEvent

schedule_interval_free (callback, timeout) — FreeClockEvent
Similar to schedule_interval (), butinstead creates a free event.

schedule_once (callback, timeout=0) — FreeClockEvent

schedule_once_free (callback, timeout=0) — FreeClockEvent
Similar to schedule_once(), but instead creates a free event.

class kivy.clock.FreeClockEvent (free, *largs, **kwargs)

Bases: kivy._clock.ClockEvent
CyClockBaseFree. It stores whether the event was scheduled as a free event.

free
free: ‘int’ Whether this event was scheduled as a free event.

kivy.clock.mainthread (func)

Decorator that will schedule the call of the function for the next available frame in the mainthread.
It can be useful when you use UrlRequest or when you do Thread programming: you cannot
do any OpenGL-related work in a thread.

Please note that this method will return directly and no result can be returned:

@mainthread
def callback(self, =*args):
print('The request succeeded!',
'This callback is called in the main thread.')

self.req = UrlRequest(url="http://..."', on_success=callback)

New in version 1.8.0.

kivy.clock.triggered /timeout=0, interval=False)

Decorator that will trigger the call of the function at the specified timeout, through the method
CyClockBase.create_trigger(). Subsequent calls to the decorated function (while the
timeout is active) are ignored.

It can be helpful when an expensive function (i.e. call to a server) can be triggered by different
methods. Setting a proper timeout will delay the calling and only one of them will be triggered.

@triggered(timeout, interval=False) def callback(id):
print("The callback has been called with id=%d" % id)
>> callback(id=1) >> callback(id=2) The callback has been called with id=2
The decorated callback can also be unscheduled using;:
>> callback.cancel()

New in version 1.10.1.

236

31.7 Compatibility module for Python 2.7 and >= 3.4

This module provides a set of utility types and functions for optimization and to aid in writing Python
2/3 compatible code.

kivy.compat.PY2 = False

False, because we don’t support Python 2 anymore.
kivy.compat.clock() — float

A clock with the highest available resolution on your current Operating System.
kivy.compat.isclose(q, b, * rel_tol=1e-09, abs_tol=0.0)

Determine whether two floating point numbers are close in value.

rel_tol
maximum difference for being considered “close”, relative to the magnitude of the
input values

abs_tol
maximum difference for being considered “close”, regardless of the magnitude of
the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them must be smaller than at least
one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything,
even itself. inf and -inf are only close to themselves.

kivy.compat.string_types
A utility type for detecting string in a Python 2/3 friendly way. For example:

if isinstance(s, string_types):
print("It's a string or unicode type")
else:
print("It's something else.")

31.8 Configuration object

The Config object is an instance of a modified Python ConfigParser. See the ConfigParser documenta-
tion for more information.

Kivy has a configuration file which determines the default settings. In order to change these settings,
you can alter this file manually or use the Config object. Please see the Configure Kivy section for more
information.

237

http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html

31.8.1 Applying configurations

Configuration options control the initialization of the App. In order to avoid situations where the config
settings do not work or are not applied before window creation (like setting an initial window size),
Config.set should be used before importing any other Kivy modules. Ideally, this means setting
them right at the start of your main.py script.

Alternatively, you can save these settings permanently using Config.set then Config.write. In
this case, you will need to restart the app for the changes to take effect. Note that this approach will
effect all Kivy apps system wide.

Please note that no underscores (_) are allowed in the section name.

31.8.2 Usage of the Config object

To read a configuration token from a particular section:

>>> from kivy.config import Config
>>> Config.getint('kivy', 'show_fps')
0

Change the configuration and save it:

>>> Config.set('postproc', 'retain_time', '50')
>>> Config.write()

For information on configuring your App, please see the Application configuration section.

Changed in version 1.7.1: The ConfigParser should work correctly with utf-8 now. The values are
converted from ascii to unicode only when needed. The method get() returns utf-8 strings.

31.8.3 Changing configuration with environment variables

Since 1.11.0, it is now possible to change the configuration using environment variables. They take
precedence on the loaded config.ini. The format is:

KCFG_<section>_<key> = <value>

For example:

KCFG_GRAPHICS_FULLSCREEN=auto ... KCFG_KIVY_LOG_LEVEL=warning ...
Or in your file before any kivy import:

import os os.environ[“KCFG_KIVY_LOG_LEVEL”] = “warning”

If you don’t want to map any environment variables, you can disable the behavior:

os.environ["KIVY_NO_ENV_CONFIG"] = "1"

238

31.8.4 Available configuration tokens

kivy

default_font: list
Default fonts used for widgets displaying any text. It defaults to
[‘Roboto’, ‘data/fonts/Roboto-Regular.ttf’, ‘data/fonts/Roboto-Italic.ttf’,
‘data/fonts/Roboto-Bold.ttf’, ‘data/fonts/Roboto-BoldItalic.ttf’].

desktop: int, 0 or 1
This option controls desktop OS specific features, such as enabling drag-able scroll-
bar in scroll views, disabling of bubbles in TextInput etc. 0 is disabled, 1 is enabled.

exit_on_escape: int, 0 or 1
Enables exiting kivy when escape is pressed. 0 is disabled, 1 is enabled.

pause_on_minimize: int, 0 or 1
If set to 1, the main loop is paused and the on_pause event is dispatched when the
window is minimized. This option is intended for desktop use only. Defaults to 0.

keyboard_layout: string
Identifier of the layout to use.

keyboard_mode: string
Specifies the keyboard mode to use. If can be one of the following:

* - Let Kivy choose the best option for your current platform.

* ‘system’ - real keyboard.

* ‘dock’ - one virtual keyboard docked to a screen side.

* ‘multi’ - one virtual keyboard for every widget request.

* ‘systemanddock’ - virtual docked keyboard plus input from real keyboard.
* ’‘systemandmulti’ - analogous.

kivy_clock: one of default, interrupt, free_all, free_only
The clock type to use with kivy. See kivy. clock.

log_dir: string
Path of log directory.

log_enable: int, 0 or 1
Activate file logging. 0 is disabled, 1 is enabled.

Note: Logging output can also be controlled by the environment variables
KIVY_LOG_MODE, KIVY_NO_FILELOG and KIVY_NO_CONSOLELOG. More infor-
mation is provided in the kivy. logger module.

log_level: string, one of ‘trace’, “debug’, ‘info’, “‘warning’, “error’ or “critical’
Set the minimum log level to use.

log_name: string
Format string to use for the filename of log file.

log_maxfiles: int
Keep log_maxfiles recent logfiles while purging the log directory. Set ‘log_maxfiles’
to -1 to disable logfile purging (eg keep all logfiles).

239

Note: You end up with ‘log_maxfiles + 1" logfiles because the logger adds a new
one after purging.

window_icon: string
Path of the window icon. Use this if you want to replace the default pygame icon.

postproc

double_tap_distance: float
Maximum distance allowed for a double tap, normalized inside the range 0 - 1000.

double_tap_time: int
Time allowed for the detection of double tap, in milliseconds.

ignore: list of tuples
List of regions where new touches are ignored. This configuration token can be
used to resolve hotspot problems with DIY hardware. The format of the list must
be:

ignore = [(xmin, ymin, xmax, ymax), ...]

All the values must be inside the range 0 - 1.

jitter_distance: int
Maximum distance for jitter detection, normalized inside the range 0 - 1000.

jitter_ignore_devices: string, separated with commas
List of devices to ignore from jitter detection.

retain_distance: int
If the touch moves more than is indicated by retain_distance, it will not be retained.
Argument should be an int between 0 and 1000.

retain_time: int
Time allowed for a retain touch, in milliseconds.

triple_tap_distance: float
Maximum distance allowed for a triple tap, normalized inside the range 0 - 1000.

triple_tap_time: int
Time allowed for the detection of triple tap, in milliseconds.

graphics

borderless: int, one of 0 or 1
If set to 1, removes the window border/decoration. Window resizing must also be
disabled to hide the resizing border.

custom_titlebar: int, one of 0 or 1
If set to 1, removes the window border and allows user to set a Widget as a titlebar
see set_custom_titlebar() for detailed usage

custom_titlebar_border: int, defaults to 5
sets the how many pixles off the border should be used as the rezising frame

window_state: string, one of ‘visible’, ‘hidden’, “‘maximized’
or ‘minimized’
Sets the window state, defaults to “visible’. This option is available only for the
SDL2 window provider and it should be used on desktop OSes.

fbo: string, one of ‘hardware’, ‘software’ or ‘force-hardware’
Selects the FBO backend to use.

240

fullscreen: int or string, one of 0, 1, ‘fake’ or ‘auto’
Activate fullscreen. If set to 1, a resolution of width times height pixels will be used.
If set to auto, your current display’s resolution will be used instead. This is most
likely what you want. If you want to place the window in another display, use fake,
or set the borderless option from the graphics section, then adjust width, height, top
and left.

height: int

Height of the Window, not used if fullscreen is set to auto.
left: int

Left position of the Window.

maxfps: int, defaults to 60
Maximum FPS allowed.

Warning: Setting maxfps to 0 will lead to max CPU usage.

‘multisamples”: int, defaults to 2
Sets the MultiSample Anti-Aliasing (MSAA) level. Increasing this value results in
smoother graphics but at the cost of processing time.

Note: This feature is limited by device hardware support and will have no effect
on devices which do not support the level of MSAA requested.

position: string, one of ‘auto’ or ‘custom’
Position of the window on your display. If auto is used, you have no control of the
initial position: top and left are ignored.

show_cursor: int, one of 0 or 1
Set whether or not the cursor is shown on the window.

top: int
Top position of the Window.

resizable: int, one of 0 or 1
If 0, the window will have a fixed size. If 1, the window will be resizable.

rotation: int, one of 0, 90, 180 or 270
Rotation of the Window.

width: int
Width of the Window, not used if fullscreen is set to auto.

minimum_width: int
Minimum width to restrict the window to. (sdl2 only)

minimum_height: int
Minimum height to restrict the window to. (sdl12 only)

min_state_time: float, defaults to .035
Minimum time for widgets to display a given visual state. This attrib is currently
used by widgets like DropDown & ButtonBehavior to make sure they display
their current visual state for the given time.

always_on_top: int, one of 0 or 1, defaults to 0
When enabled, the window will be brought to the front and will keep the win-
dow above the rest. Only works for the sd12 window provider. 0 is disabled, 1 is
enabled.

241

http://en.wikipedia.org/wiki/Multisample_anti-aliasing

show_taskbar_icon: int, one of 0 or 1, defaults to 1
Determines whether the app’s icon will be added to the taskbar. Only applicable
for the SDL2 window provider. 0 means the icon will not be shown in the taskbar
and 1 means it will.

allow_screensaver: int, one of 0 or 1, defaults to 1
Allow the device to show a screen saver, or to go to sleep on mobile devices. Only
works for the sd12 window provider.

vsync: none, empty value, or integers
Whether vsync is enabled, currently only used with sd12 window. Possible values
are none or empty value — leaves it unchanged, 0 — disables vsync, 1 or larger — sets
vsync interval, - 1 sets adaptive vsync. It falls back to 1 if setting to 2+ or - 1 failed.
See SDL_GL_SetSwapInterval

verify_gl_main_thread: int, 1 or 0, defaults to 1
Whether to check if code that changes any gl instructions is running outside the
main thread and then raise an error.

input
You can create new input devices using this syntax:

example of input provider instance
yourid = providerid, parameters

example for tuio provider

default = tuio,127.0.0.1:3333
mytable = tuio,192.168.0.1:3334
See also:

Check the providers in kivy. input.providers for the syntax to use inside the con-
figuration file.

widgets

scroll_distance: int
Default value of the scroll_distance property used by the Scrol [View wid-
get. Check the widget documentation for more information.

scroll_friction: float
Default value of the scroll_friction property used by the ScrollView wid-
get. Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use effect_cls instead.

scroll_timeout: int
Default value of the scrol l_timeout property used by the ScrollView wid-
get. Check the widget documentation for more information.

scroll_stoptime: int
Default value of the scroll_stoptime property used by the ScrollView wid-
get. Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use effect_cls instead.

scroll_moves: int
Default value of the scroll_moves property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use effect_cls instead.

242

modules
You can activate modules with this syntax:

modulename =

Anything after the = will be passed to the module as arguments. Check the specific
module’s documentation for a list of accepted arguments.

New in version 2.2.0: always_on_top have been added to the graphics section. show_taskbar_icon have
been added to the graphics section.

Changed in version 2.2.0: implementation has been added to the network section.

Changed in version 2.1.0: vsync has been added to the graphics section. verify_gl_main_thread has been
added to the graphics section.

Changed in version 1.10.0: min_state_time and allow_screensaver have been added to the graphics section.
kivy_clock has been added to the kivy section. default_font has beed added to the kivy section. useragent
has been added to the network section.

Changed in version 1.9.0: borderless and window_state have been added to the graphics section. The fake
setting of the fullscreen option has been deprecated, use the borderless option instead. pause_on_minimize
has been added to the kivy section.

Changed in version 1.8.0: systemanddock and systemandmulti has been added as possible values for key-
board_mode in the kivy section. exit_on_escape has been added to the kivy section.

Changed in version 1.2.0: resizable has been added to graphics section.

Changed in version 1.1.0: tuio no longer listens by default. Window icons are not copied to user direc-
tory anymore. You can still set a new window icon by using the window_icon config setting.

Changed in version 1.0.8: scroll_timeout, scroll_distance and scroll_friction have been added. list_friction,
list_trigger_distance and list_friction_bound have been removed. keyboard_type and keyboard_layout have
been removed from the widget. keyboard_mode and keyboard_layout have been added to the kivy section.

kivy.config.Config = None

The default Kivy configuration object. This is a ConfigParser instance with the name set to
‘kivy’.

Config = ConfigParser(name='kivy"')

class kivy.config.ConfigParser (name="", **kwargs)
Bases: configparser.RawConfigParser,builtins.object

Enhanced ConfigParser class that supports the addition of default sections and default values.

By default, the kivy ConfigParser instance, Con11g,is named ‘kivy” and the ConfigParser instance
used by the App.build_settings method is named ‘app’.

Parameters

name: string
The name of the instance. See name. Defaults to *.

Changed in version 1.9.0: Each ConfigParser can now be named. You can get the ConfigParser
associated with a name using get_configparser(). In addition, you can now control the
config values with ConfigParserProperty.

New in version 1.0.7.

243

add_callback (callback, section=None, key=None)

Add a callback to be called when a specific section or key has changed. If you don’t specify
a section or key, it will call the callback for all section/key changes.

Callbacks will receive 3 arguments: the section, key and value.
New in version 1.4.1.
adddefaultsection (section)
Add a section if the section is missing.
get (section, option, **kwargs)
Get an option value for a given section.

If *vars’ is provided, it must be a dictionary. The option is looked up in “vars’ (if provided),
‘section’, and in "DEFAULTSECT’ in that order. If the key is not found and ‘fallback’ is
provided, it is used as a fallback value. "None’ can be provided as a “fallback’ value.

If interpolation is enabled and the optional argument ‘raw’ is False, all interpolations are
expanded in the return values.

Arguments ‘raw’, “vars’, and “fallback’ are keyword only.
The section DEFAULT is special.
static get_configparser (name)
Returns the ConfigParser instance whose name is name, or None if not found.
Parameters

name: string
The name of the ConfigParser instance to return.

getdefault (section, option, defaultvalue)

Get the value of an option in the specified section. If not found, it will return the default
value.

getdefaultint (section, option, defaultvalue)

Get the value of an option in the specified section. If not found, it will return the default
value. The value will always be returned as an integer.

New in version 1.6.0.

property name

The name associated with this ConfigParser instance, if not ”’. Defaults to ”. It can be safely
changed dynamically or set to .

When a ConfigParser is given a name, that config object can be retrieved using
get_configparser(). In addition, that config instance can also be used with a
ConfigParserProperty instance that set its config value to this name.

Setting more than one ConfigParser with the same name will raise a ValueError.

read (filename)

Read only one filename. In contrast to the original ConfigParser of Python, this one is able
to read only one file at a time. The last read file will be used for the write() method.

Changed in version 1.9.0: read() now calls the callbacks if read changed any values.

remove_callback (callback, section=None, key=None)

Removes a callback added with add_callback(). remove_callback() must be called
with the same parameters as add_cal lback().

Raises a ValueError if not found.

244

New in version 1.9.0.

set (section, option, value)

Functions similarly to PythonConfigParser’s set method, except that the value is implicitly
converted to a string.

setall (section, keyvalues)

Sets multiple key-value pairs in a section. keyvalues should be a dictionary containing the
key-value pairs to be set.

setdefault (section, option, value)
Set the default value for an option in the specified section.

setdefaults (section, keyvalues)

Set multiple key-value defaults in a section. keyvalues should be a dictionary containing the
new key-value defaults.

update_config((filename, overwrite=False)

Upgrade the configuration based on a new default config file. Overwrite any existing values
if overwrite is True.

write()
Write the configuration to the last file opened using the read() method.

Return True if the write finished successfully, False otherwise.

31.9 Context

New in version 1.8.0.

Warning: This is experimental and subject to change as long as this warning notice is present.

Kivy has a few “global” instances that are used directly by many pieces of the framework: Cache, Builder,
Clock.

TODO: document this module.
class kivy.context.Context (init=False)
Bases: builtins.dict
pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

kivy.context.get_current_context()

Return the current context.

kivy.context.register_context (name, cls, *args, **kwargs)

Register a new context.

245

31.10 Event dispatcher

All objects that produce events in Kivy implement the EventDispatcher which provides a consistent
interface for registering and manipulating event handlers.

Changed in version 1.0.9: Property discovery and methods have been moved from the Widget to the
EventDispatcher.

class kivy.event.EventDispatcher (**kwargs)

Bases: kivy.event.ObjectWithUid
See the module docstring for usage.

apply—_property (*kwargs)

Adds properties at runtime to the class. The function accepts keyword arguments of the
form prop_name=prop, where prop is a Property instance and prop_name is the name of the
attribute of the property.

New in version 1.9.1.

Warning: This method is not recommended for common usage because you should
declare the properties in your class instead of using this method.

For example:

>>> print(wid.property('sticks', quiet=True))

None

>>> wid.apply_property(sticks=0bjectProperty(55, max=10))
>>> print(wid.property('sticks', quiet=True))
<kivy.properties.ObjectProperty object at 0x04303130>

bind (**kwargs)

Bind an event type or a property to a callback.
Usage:

With properties
def my_x callback(obj, value):
print('on object', obj, 'x changed to', value)
def my_width_callback(obj, value):
print('on object', obj, 'width changed to', value)
self.bind(x=my_x_callback, width=my_width_callback)

With event

def my press callback(obj):
print('event on object', obj)

self.bind(on_press=my_press_callback)

In general, property callbacks are called with 2 arguments (the object and the property’s new
value) and event callbacks with one argument (the object). The example above illustrates
this.

The following example demonstrates various ways of using the bind function in a complete
application:

246

from kivy.uix.boxlayout import BoxlLayout
from kivy.app import App

from kivy.uix.button import Button

from functools import partial

class DemoBox(BoxLayout):
This class demonstrates various techniques that can be used_
~for binding to
events. Although parts could me made more optimal, advanced_
~Python concepts
are avoided for the sake of readability and clarity.
def __init_ _(self, *xxkwargs):
super(DemoBox, self). _init_ _ (*xxkwargs)
self.orientation = "vertical"

We start with binding to a normal event. The only_
—argument

passed to the callback is the object which we have bound_
~to.

btn = Button(text="Normal binding to event")

btn.bind(on_press=self.on_event)

Next, we bind to a standard property change event. This,_,
~typically

passes 2 arguments: the object and the value

btn2 = Button(text="Normal binding to a property change")

btn2.bind(state=self.on_property)

Here we use anonymous functions (a.k.a lambdas) to_
wperform binding.

Their advantage is that you can avoid declaring new_,
~functions 1i.e.

they offer a concise way to "redirect" callbacks.

btn3 = Button(text="Using anonymous functions.")

btn3.bind(on_press=lambda x: self.on_event(None))

You can also declare a function that accepts a variable,_
~number of

positional and keyword arguments and use introspection_,
~to determine

what is being passed in. This is very handy for_
~debugging as well

as function re-use. Here, we use standard event binding_,
~to a function

that accepts optional positional and keyword arguments.

btn4 = Button(text="Use a flexible function")

btn4.bind(on_press=self.on_anything)

Lastly, we show how to use partial functions. They are_
~sometimes
difficult to grasp, but provide a very flexible and_

(continues on next page)

247

(continued from previous page)

wpowerful way to

reuse functions.

btn5 = Button(text="Using partial functions. For hardcores.
r‘}ll)

btn5.bind(on_press=partial(self.on_anything, "1", "2",_
~monthy="python"))

for but in [btn, btn2, btn3, btn4, btn5]:
self.add_widget(but)

def on_event(self, obj):
print("Typical event from", obj)

def on_property(self, obj, value):
print("Typical property change from", obj, "to", value)

def on_anything(self, xargs, xxkwargs):
print('The flexible function has *args of', str(args),
"and xxkwargs of", str(kwargs))

class DemoApp(App):
def build(self):
return DemoBox()

if __name__ == "__main__":
DemoApp() . run()

If a callback has already been bound to a given event or property, it won’t be added again.

When binding a method to an event or property, a kivy.weakmethod.WeakMethod of
the callback is saved. That is, rather than storing a regular reference, it stores both a weak
reference to the instance (see Python’s weakref).

This has two consequences.

The first is that the binding will not prevent garbage collection of the method’s object. The
client must maintain a reference to the instance for the desired lifetime. The callback refer-
ence is silently removed if it becomes invalid.

The second is that when using a decorated method e.g.:

@my_decorator
def callback(self, =*args):
pass

the decorator (ny_decorator here) must use wraps internally.

create_property (unicode name, value=None, default_value=True, *largs, **kwargs)

Create a new property at runtime.
New in version 1.0.9.

Changed in version 1.8.0: value parameter added, can be used to set the default value of the
property. Also, the type of the value is used to specialize the created property.

Changed in version 1.9.0: In the past, if value was of type bool, a NumericProperty would be
created, now a BooleanProperty is created.

248

https://docs.python.org/3/library/functools.html#functools.wraps

Also, now and positional and keyword arguments are passed to the property when created.

Changed in version 2.0.0: default_value has been added.

Warning: This function is designed for the Kivy language, don’t use it in your code. You
should declare the property in your class instead of using this method.

Parameters

name: string
Name of the property

value: object, optional
Default value of the property. Type is also used for creating more appropriate
property types. Defaults to None.

default_value: bool, True by default
If True, value will be the default for the property. Otherwise, the property will
be initialized with the the property type’s normal default value, and subse-
quently set to value.

>>> mywidget = Widget()

>>> mywidget.create_property('custom')
>>> mywidget.custom = True

>>> print(mywidget.custom)

True

dispatch (event_type, *largs, **kwargs)
Dispatch an event across all the handlers added in bind /fbind(). As soon as a handler returns
True, the dispatching stops.

The function collects all the positional and keyword arguments and passes them on to the
handlers.

Note: The handlers are called in reverse order than they were registered with bind().

Parameters
event_type: str
the event name to dispatch.
Changed in version 1.9.0: Keyword arguments collection and forwarding was added. Before,

only positional arguments would be collected and forwarded.
dispatch_children (event_type, *largs, **kwargs)
dispatch_generic (cvent_type, *largs, **kwargs)
events()

Return all the events in the class. Can be used for introspection.

New in version 1.8.0.

fbind (name, func, *largs, **kwargs)

A method for advanced, and typically faster binding. This method is different than bind()
and is meant for more advanced users and internal usage. It can be used as long as the
following points are heeded.

249

1. As opposed to bind(), it does not check that this function and largs/kwargs has not
been bound before to this name. So binding the same callback multiple times will just
keep adding it.

2. Although bind() creates a WeakMethod of the callback when binding to an event or
property, this method stores the callback directly, unless a keyword argument ref with
value True is provided and then a WeakMethod is saved. This is useful when there’s no
risk of a memory leak by storing the callback directly.

3. This method returns a unique positive number if name was found and bound, and 0,
otherwise. It does not raise an exception, like bind() if the property name is not found.
If not zero, the uid returned is unique to this name and callback and can be used with
unbind_uid() for unbinding.

When binding a callback with largs and /or kwargs, funbind() mustbe used for unbinding.
If no largs and kwargs are provided, unbind() may be used as well. unbind_uid() can
be used in either case.

This method passes on any caught positional and/or keyword arguments to the callback,
removing the need to call partial. When calling the callback the expended largs are passed
on followed by instance/value (just instance for kwargs) followed by expended kwargs.

Following is an example of usage similar to the example in bind():

class DemoBox(BoxLayout):

def init (self, *xkwargs):
super(DemoBox, self).__init__(xxkwargs)
self.orientation = "vertical"

btn = Button(text="Normal binding to event")
btn.fbind('on_press', self.on_event)

btn2 = Button(text="Normal binding to a property change")
btn2.fbind('state', self.on_property)

btn3 = Button(text="A: Using function with args.")
btn3.fbind('on_press', self.on_event_with_args, 'right’,
tree='birch', food='apple')

btn4 = Button(text="Unbind A.")
btn4.fbind('on_press', self.unbind_a, btn3)

btn5 = Button(text="Use a flexible function")
btn5.fbind('on_press', self.on_anything)

btne = Button(text="B: Using flexible functions with args.
~For hardcores.")

btn6.fbind('on_press', self.on_anything, "1", "2", monthy=
~"python")

btn7 = Button(text="Force dispatch B with different params
A)II)

btn7.fbind('on_press', btn6.dispatch, 'on_press', 6, 7,
—~monthy="other python")

for but in [btn, btn2, btn3, btn4, btn5, btn6, btn7]:

(continues on next page)

250

(continued from previous page)

self.add_widget(but)

def on_event(self, obj):
print("Typical event from", obj)

def on_event with_args(self, side, obj, tree=None, food=None):
print("Event with args", obj, side, tree, food)

def on_property(self, obj, value):
print("Typical property change from", obj, "to", value)

def on_anything(self, xargs, *xxkwargs):
print('The flexible function has x*args of', str(args),
"and xxkwargs of", str(kwargs))
return True

def unbind_a(self, btn, event):
btn.funbind('on_press', self.on_event_with_args, 'right’',
tree='birch', food='apple')

Note: Since the kv lang uses this method to bind, one has to implement this method, instead
of bind() when creating a non EventDispatcher based class used with the kv lang. See
Observab le for an example.

New in version 1.9.0.
Changed in version 1.9.1: The ref keyword argument has been added.

funbind (name, func, *largs, **kwargs)
Similar to Thind().

When unbinding, unbind() will unbind all callbacks that match the callback, while this
method will only unbind the first.

To unbind, the same positional and keyword arguments passed to 7b1n1d () must be passed
on to funbind.

Note: It is safe to use funbind() to unbind a function bound with bind() as long as no
keyword and positional arguments are provided to funbind().

New in version 1.9.0.

get_property_observers (name, args=False)

Returns a list of methods that are bound to the property/event passed as the name argument:

widget_instance.get_property_observers('on_release')

Parameters

name: str
The name of the event or property.

args: bool
Whether to return the bound args. To keep compatibility, only the callback

251

functions and not their provided args will be returned in the list when args is
False.

If True, each element in the list is a 5-tuple of (callback, largs, kwargs, is_ref, uid),
where is_ref indicates whether callback is a weakref, and uid is the uid given
by fbind(), or None if bind() was used. Defaults to False.

Returns
The list of bound callbacks. See args for details.
New in version 1.8.0.
Changed in version 1.9.0: args has been added.

getter (name)
Return the getter of a property.

New in version 1.0.9.

is_event_type (cvent_type)

Return True if the event_type is already registered.
New in version 1.0.4.

properties() — dict

Return all the properties in the class in a dictionary of key/property class. Can be used for
introspection.

New in version 1.0.9.

property (name, quiet=False)

Get a property instance from the property name. If quiet is True, None is returned instead of
raising an exception when narme is not a property. Defaults to False.

New in version 1.0.9.

Returns
A Property derived instance corresponding to the name.

Changed in version 1.9.0: quiet was added.

proxy_ref
Returns a WeakProxy reference to the EventDispatcher.

New in version 1.9.0.

Changed in version 2.0.0: Previously it just returned itself, now it actually returns a
WeakProxy.

register_event_type (event_type)
Register an event type with the dispatcher.

Registering event types allows the dispatcher to validate event handler names as they are
attached and to search attached objects for suitable handlers. Each event type declaration
must:

1. start with the prefix on_.
2. have a default handler in the class.

Example of creating a custom event:

252

class MyWidget(Widget):
def __init_ _(self, *xxkwargs):
super(MyWidget, self). _init _ (xxkwargs)
self.register_event_type('on_swipe')

def on_swipe(self):
pass

def on_swipe_callback(xlargs):
print('my swipe is called', largs)

w = MyWidget()

w.dispatch('on_swipe')

setter (name)

Return the setter of a property. Use: instance.setter(‘name’). The setter is a convenient call-
back function useful if you want to directly bind one property to another. It returns a partial
function that will accept (obj, value) args and results in the property ‘name’ of instance being
set to value.

New in version 1.0.9.

For example, to bind number2 to numberl in python you would do:

class ExampleWidget(Widget):
numberl = NumericProperty(None)
number2 = NumericProperty(None)

def __init_ _(self, *xxkwargs):
super(ExampleWidget, self). _init _(*xxkwargs)
self.bind(numberl=self.setter('number2'))

This is equivalent to kv binding:

<ExampleWidget>:
number2: self.numberl

unbind (**kwargs)

Unbind properties from callback functions with similar usage as bind().

If a callback has been bound to a given event or property multiple times, only the first occur-
rence will be unbound.

Note: It is safe to use unbind() on a function bound with fbind() as long as that func-
tion was originally bound without any keyword and positional arguments. Otherwise, the
function will fail to be unbound and you should use funbind() instead.

unbind_uid (name, uid)
Uses the uid returned by 701nd() to unbind the callback.

This method is much more efficient than funbind(). If uid evaluates to False (e.g. 0) a
ValueError is raised. Also, only callbacks bound with fbind() can be unbound with this
method.

Since each call to 7b1nd () will generate a unique uid, only one callback will be removed. If
uid is not found among the callbacks, no error is raised.

E.g.

253

btn6 = Button(text="B: Using flexible functions with args. For_
~hardcores.")
uid = btn6.fbind('on_press', self.on_anything, "1", "2", monthy=
~"python")
if not uid:

raise Exception('Binding failed').

btn6.unbind_uid('on_press', uid)

New in version 1.9.0.

unregister_event_type (cvent_type)

Unregister an event type in the dispatcher.

Changed in version 2.1.0: Method renamed from unregister_event_types to unregis-
ter_event_type.

unregister_event_types (self, cvent_type)

class kivy.event.ObjectWithUid

Bases: builtins.object

(internal) This class assists in providing unique identifiers for class instances. It is not intended
for direct usage.

class kivy.event.Observable

Bases: kivy.event.0ObjectWithUid

Observable is a stub class defining the methods required for binding. EventDispatcher is
(the) one example of a class that implements the binding interface. See EventDispatcher for
details.

New in version 1.9.0.

bind (**kwargs)

fbind (name, func, *largs, **kwargs)

See EventDispatcher. fbind().

Note: To keep backward compatibility with derived classes which may have inherited
from Observable before, the fbind() method was added. The default implementa-
tion of fbind() is to create a partial function that it passes to bind while saving the uid
and largs/kwargs. However, funbind() (and unbind_uid()) are fairly inefficient since
we have to first lookup this partial function using the largs/kwargs or uid and then call
unbind() on the returned function. It is recommended to overwrite these methods in de-
rived classes to bind directly for better performance.

Similarly to EventDispatcher. fbind(), this method returns 0 on failure and a positive
unique uid on success. This uid can be used with unbind_uid().

funbind (name, func, *largs, **kwargs)

See fbind() and EventDispatcher. funbind().

unbind (**kwargs)

unbind_uid (name, uid)

See fbind() and EventDispatcher.unbind_uid().

254

31.11 Factory object

The factory can be used to automatically register any class or module and instantiate classes from it
anywhere in your project. It is an implementation of the Factory Pattern.

The class list and available modules are automatically generated by setup.py.

Example for registering a class/module:

>>> from kivy.factory import Factory
>>> Factory.register('Widget', module='kivy.uix.widget')
>>> Factory.register('Vector', module='kivy.vector')

Example of using the Factory:

>>> from kivy.factory import Factory
>>> widget = Factory.Widget(pos=(456,456))
>>> vector Factory.Vector(9, 2)

Example using a class name:

>>> from kivy.factory import Factory
>>> Factory.register('MyWidget', cls=MyWidget)

By default, the first classname you register via the factory is permanent. If you wish to change the
registered class, you need to unregister the classname before you re-assign it:

>>> from kivy.factory import Factory

>>> Factory.register('MyWidget', cls=MyWidget)

>>> widget = Factory.MyWidget()

>>> Factory.unregister('MyWidget')

>>> Factory.register('MyWidget', cls=CustomWidget)
>>> customWidget = Factory.MyWidget()

kivy.factory.Factory: FactoryBase = <kivy.factory.FactoryBase object>

Factory instance to use for getting new classes

exception kivy.factory.FactoryException
Bases: Exception

31.12 Geometry utilities

This module contains some helper functions for geometric calculations.

kivy.geometry.circumcircle(a, b, c)
Computes the circumcircle of a triangle defined by a, b, c. See: http://en.wikipedia.org/wiki/
Circumscribed_circle
Parameters

a: iterable containing at least 2 values (for x and y)
The 1st point of the triangle.

b: iterable containing at least 2 values (for x and y)
The 2nd point of the triangle.

c: iterable containing at least 2 values (for x and y)
The 3rd point of the triangle.

255

http://en.wikipedia.org/wiki/Factory_pattern
http://en.wikipedia.org/wiki/Circumscribed_circle
http://en.wikipedia.org/wiki/Circumscribed_circle

Return
A tuple that defines the circle :
¢ The first element in the returned tuple is the center as (x, y)
e The second is the radius (float)

kivy.geometry.minimum_bounding_circle (points)

Returns the minimum bounding circle for a set of points.
For a description of the problem being solved, see the Smallest Circle Problem.

The function uses Applet’s Algorithm, the runtime is 0(h”3, #*n), where h is the number of
points in the convex hull of the set of points. But it runs in linear time in almost all real world
cases. See: http:/ /tinyurl.com/6e4n5yb

Parameters

points: iterable
A list of points (2 tuple with x,y coordinates)

Return
A tuple that defines the circle:
¢ The first element in the returned tuple is the center (x, y)

¢ The second the radius (float)

31.13 Gesture recognition

This class allows you to easily create new gestures and compare them:

from kivy.gesture import Gesture, GestureDatabase

Create a gesture

g = Gesture()

g.add_stroke(point_list=[(1,1), (3,4), (2,1)])
g.normalize()

Add it to the database
gdb = GestureDatabase()
gdb.add_gesture(qg)

And for the next gesture, try to find it!
g2 = Gesture()

...

gdb.find(g2)

Warning: You don’t really want to do this: it’s more of an example of how to construct gestures
dynamically. Typically, you would need a lot more points, so it’s better to record gestures in a file
and reload them to compare later. Look in the examples/gestures directory for an example of how
to do that.

class kivy.gesture.Gesture (tolerance=None)
Bases: builtins.object

256

http://en.wikipedia.org/wiki/Smallest_circle_problem
http://tinyurl.com/6e4n5yb

A python implementation of a gesture recognition algorithm by Oleg Dopertchouk: http://www.
gamedev.net/reference/articles/article2039.asp

Implemented by Jeiel Aranal (chemikhazi@gmail.com), released into the public domain.

add_stroke (point_list=None)

Adds a stroke to the gesture and returns the Stroke instance. Optional point_list argument is
a list of the mouse points for the stroke.

dot_product (comparison_gesture)
Calculates the dot product of the gesture with another gesture.
get_rigid_rotation (dstpts)

Extract the rotation to apply to a group of points to minimize the distance to a second group
of points. The two groups of points are assumed to be centered. This is a simple version that
just picks an angle based on the first point of the gesture.

get_score (comparison _gesture, rotation_invariant=True)
Returns the matching score of the gesture against another gesture.
normalize (stroke_samples=32)
Runs the gesture normalization algorithm and calculates the dot product with self.
class kivy.gesture.GestureDatabase
Bases: builtins.object
Class to handle a gesture database.

add_gesture (gesture)
Add a new gesture to the database.

find (gesture, minscore=0.9, rotation_invariant=True)

Find a matching gesture in the database.
gesture_to_str(gesture)

Convert a gesture into a unique string.
str_to_gesture(data)

Convert a unique string to a gesture.

class kivy.gesture.GestureStroke

Bases: builtins.object
Gestures can be made up of multiple strokes.
add_point (x=x_pos, y=y_pos)

Adds a point to the stroke.
center_stroke (offset_x, offset_y)

Centers the stroke by offsetting the points.
normalize_stroke (sample_points=32)

Normalizes strokes so that every stroke has a standard number of points. Returns True if
stroke is normalized, False if it can’t be normalized. sample_points controls the resolution of
the stroke.

points_distance (point1=GesturePoint, point2=GesturePoint)
Returns the distance between two GesturePoints.

scale_stroke (scale_factor=float)

Scales the stroke down by scale_factor.

257

http://www.gamedev.net/reference/articles/article2039.asp
http://www.gamedev.net/reference/articles/article2039.asp
mailto:chemikhazi@gmail.com

stroke_length (point_list=None)
Finds the length of the stroke. If a point list is given, finds the length of that list.

31.14 Interactive launcher

New in version 1.3.0.
Deprecated since version 1.10.0: The interactive launcher has been deprecated.

The InteractivelLauncher provides a user-friendly python shell interface to an App so that it can
be prototyped and debugged interactively.

Note: The Kivy API intends for some functions to only be run once or before the main EventLoop has
started. Methods that can normally be called during the course of an application will work as intended,
but specifically overriding methods such as on_touch () dynamically leads to trouble.

31.14.1 Creating an InteractiveLauncher

Take your existing subclass of App (this can be production code) and pass an instance to the
InteractivelLauncher constructor.

from kivy.interactive import Interactivelauncher
from kivy.app import App
from kivy.uix.button import Button

class MyApp(App):
def build(self):
return Button(text='Hello Shell')

launcher = InteractivelLauncher(MyApp())
launcher.run()

After pressing enter, the script will return. This allows the interpreter to continue running. Inspection
or modification of the App can be done safely through the InteractiveLauncher instance or the provided
SafeMembrane class instances.

Note: If you want to test this example, start Python without any file to have already an interpreter, and
copy/paste all the lines. You'll still have the interpreter at the end + the kivy application running,.

31.14.2 Interactive Development

IPython provides a fast way to learn the Kivy API. The App instance and all of its attributes, including

methods and the entire widget tree, can be quickly listed by using the ’.” operator and pressing ‘tab’.
Try this code in an Ipython shell.

from kivy.interactive import Interactivelauncher
from kivy.app import App

from kivy.uix.widget import Widget

from kivy.graphics import Color, Ellipse

(continues on next page)

258

(continued from previous page)

class MyPaintWidget(Widget):
def on_touch_down(self, touch):
with self.canvas:
Color(1, 1, 0)
d = 30.
Ellipse(pos=(touch.x - d/2, touch.y - d/2), size=(d, d))

class TestApp(App):
def build(self):
return Widget()

= InteractivelLauncher(TestApp())

.run()

press 'tab' to list attributes of the app

.root. # press 'tab' to list attributes of the root widget

[A =

H*

App 1s boring. Attach a new widget!
.root.add_widget(MyPaintWidget())

-

.safeln()

The application is now blocked.
Click on the screen several times.
.safeOut()

The clicks will show up now

- 3 W -

H

Erase artwork and start over
.root.canvas.clear()

[

Note: All of the proxies used in the module store their referent in the _ref attribute, which can be
accessed directly if needed, such as for getting doc strings. help () and type () will access the proxy,
not its referent.

31.14.3 Directly Pausing the Application

Both the InteractivelLauncher and SafeMembrane hold internal references to the EventLoop’s
‘safe” and ‘confirmed” threading.Event objects. You can use their safing methods to control the
application manually.

SafeMembrane.safeln() will cause the application to pause and SafeMembrane. safeOut () will
allow a paused application to continue running. This is potentially useful for scripting actions into
functions that need the screen to update etc.

Note: The pausing is implemented via the Clocks' schedule_once() method and occurs before
the start of each frame.

259

31.14.4 Adding Attributes Dynamically

Note: This module uses threading and object proxies to encapsulate the running App. Deadlocks and
memory corruption can occur if making direct references inside the thread without going through the
provided proxy(s).

The InteractivelLauncher can have attributes added to it exactly like a normal object and if these
were created from outside the membrane, they will not be threadsafe because the external references to
them in the python interpreter do not go through InteractiveLauncher’s membrane behavior, inherited
from SafeMembrane.

To threadsafe these external references, simply assign them to SafelMembrane instances of themselves
like so:

from kivy.interactive import SafeMembrane

interactivelLauncher.attribute = myNewObject
myNewObject is unsafe

myNewObject = SafeMembrane(myNewObject)

myNewObject is now safe. Call at will.
myNewObject.method()

TODO

Unit tests, examples, and a better explanation of which methods are safe in a running application would
be nice. All three would be excellent.

Could be re-written with a context-manager style i.e.

with safe:
foo()

Any use cases besides compacting code?

class kivy.interactive.InteractiveLauncher (app=None, *args, **kwargs)
Bases: kivy.interactive.SafeMembrane

Proxy to an application instance that launches it in a thread and then returns and acts as a proxy
to the application in the thread.

class kivy.interactive.SafeMembrane (ob, *args, **kwargs)
Bases: builtins.object

This help is for a proxy object. Did you want help on the proxy’s referent instead? Try using
help(<instance>._ref)

The SafeMembrane is a threadsafe proxy that also returns attributes as new thread-safe objects
and makes thread-safe method calls, preventing thread-unsafe objects from leaking into the user’s
environment.

safeln()

Provides a thread-safe entry point for interactive launching.

safeOut ()

Provides a thread-safe exit point for interactive launching.

260

31.15 Kivy Base

This module contains the Kivy core functionality and is not intended for end users. Feel free to look
through it, but bare in mind that calling any of these methods directly may result in an unpredictable
behavior as the calls access directly the event loop of an application.

kivy.base.EventLoop = <kivy.base.EventLoopBase object>
EventLoop instance
class kivy.base.EventLoopBase
Bases: kivy.event.EventDispatcher
Main event loop. This loop handles the updating of input and dispatching events.

add_event_listener (listener)
Add a new event listener for getting touch events.
add_input_provider (provider, auto_remove=False)
Add a new input provider to listen for touch events.
add_postproc_module (mod)
Add a postproc input module (DoubleTap, TripleTap, De]itter RetainTouch are defaults).
async async_idle()
Identical to 1dle(), but instead used when running within an async event loop.
close()
Exit from the main loop and stop all configured input providers.
dispatch_input()
Called by EventLoopBase.idle() to read events from input providers, pass events to
postproc, and dispatch final events.
ensure_window ()
Ensure that we have a window.
exit()
Close the main loop and close the window.
idle()

This function is called after every frame. By default:
e it “ticks” the clock to the next frame.
e itreads all input and dispatches events.
e it dispatches on_update, on_draw and on_flip events to the window.

on_pause()
Event handler for on_pause which will be fired when the event loop is paused.

on_start()

Event handler for on_start which will be fired right after all input providers have been started.

on_stop()
Event handler for on_stop events which will be fired right after all input providers have been
stopped.

post_dispatch_input (etype, me)

This function is called by EventLoopBase.dispatch_input() when we want to dis-
patch an input event. The event is dispatched to all listeners and if grabbed, it’s dispatched
to grabbed widgets.

261

remove_android_splash (*args)
Remove android presplash in SDL2 bootstrap.

remove_event_listener (listener)
Remove an event listener from the list.
remove_input_provider (provider)
Remove an input provider.
Changed in version 2.1.0: Provider will be also removed if it exist in auto-remove list.
remove_postproc_module (mod)
Remove a postproc module.
run()
Main loop
set_window (window)
Set the window used for the event loop.
start()
Must be called before EventlLoopBase. run(). This starts all configured input providers.

Changed in version 2.1.0: Method can be called multiple times, but event loop will start only
once.

stop()
Stop all input providers and call callbacks registered using EventLoop.add_stop_callback().

Changed in version 2.1.0: Method can be called multiple times, but event loop will stop only
once.

property touches

Return the list of all touches currently in down or move states.

class kivy.base.ExceptionHandler

Bases: builtins.object

Base handler that catches exceptions in runTouchApp (). You can subclass and extend it as fol-
lows:

class E(ExceptionHandler):
def handle_exception(self, inst):
Logger.exception('Exception caught by ExceptionHandler')
return ExceptionManager.PASS

ExceptionManager.add_handler(E())

Then, all exceptions will be set to PASS, and logged to the console!

handle_exception (exception)
Called by ExceptionManagerBase to handle a exception.
Defaults to returning ExceptionManager.RAISE that re-raises the exception. Return

ExceptionManager.PASS to indicate that the exception was handled and should be ig-
nored.

This may be called multiple times with the same exception, if ExceptionManager.RAISE
is returned as the exception bubbles through multiple kivy exception handling levels.

262

kivy.base.ExceptionManager: ExceptionManagerBase =
<kivy.base.ExceptionManagerBase object>

The ExceptionManagerBase instance that handles kivy exceptions.

class kivy.base.ExceptionManagerBase
Bases: builtins.object

ExceptionManager manages exceptions handlers.

PASS =1
The exception should be ignored as it was handled by the handler.
RAISE = 0

The exception should be re-raised.
add_handler (cls)
Add a new exception handler to the stack.
handle_exception (inst)
Called when an exception occurred in the runTouchApp () main loop.
remove_handler(cls)
Remove the exception handler from the stack.
async kivy.base.async_runTouchApp (widget=None, embedded=False, async_lib=None)

Identical to runTouchApp () but instead it is a coroutine that can be run in an existing async
event loop.

async_1ib is the async library to use. See kivy. app for details and example usage.
New in version 2.0.0.

kivy.base.runTouchApp (widget=None, embedded=False)
Static main function that starts the application loop. You can access some magic via the following
arguments:
See kivy.app for example usage.

Parameters

<empty>
To make dispatching work, you need at least one input listener. If not, applica-
tion will leave. (MTWindow act as an input listener)

widget
If you pass only a widget, a MTWindow will be created and your widget will
be added to the window as the root widget.

embedded
No event dispatching is done. This will be your job.

widget + embedded
No event dispatching is done. This will be your job but we try to get the window
(must be created by you beforehand) and add the widget to it. Very useful for
embedding Kivy in another toolkit. (like Qt, check kivy-designed)
kivy.base.stopTouchApp()

Stop the current application by leaving the main loop.

See kivy.app for example usage.

263

31.16 Kivy Logging
By default, Kivy provides a logging system based on the standard Python logging module with several
additional features designed to be more convenient. These features include:

¢ simplied usage (single instance, simple configuration, works by default)

¢ color-coded output on supported terminals

¢ output to stderr by default

* message categorization via colon separation

* access to log history even if logging is disabled

¢ built-in handling of various cross-platform considerations

* any stray output written to sys. stderr is captured, and stored in the log file as a warning.

These features are configurable via the Conlfig file or environment variables - including falling back to
only using the standard Python system.

31.16.1 Logger object

The Kivy Logger class provides a singleton logging.logger instance.

As well as the standard logging levels (debug, info, warning, error and critical), an additional
trace level is available.

Example Usage

Use the Logger as you would a standard Python logger.

from kivy.logger import Logger

Logger.info('title: This is a info message.')
Logger.debug('title: This is a debug message.')

try:
raise Exception('bleh')

except Exception:
Logger.exception('Something happened!")

The message passed to the logger is split into two parts separated by a colon (:). The first part is used as
a title and the second part is used as the message. This way, you can “categorize” your messages easily.

Logger.info('Application: This is a test')
will appear as

[INFO] [Application] This is a test

You can change the logging level at any time using the setLevel method.

from kivy.logger import Logger, LOG_LEVELS

Logger.setlLevel (LOG_LEVELS["debug"])

Changed in version 2.2.0.

264

https://docs.python.org/3/library/logging.html

Interaction with other logging

The Kivy logging system will, by default, present all log messages sent from any logger - e.g. from
third-party libraries.

Additional handlers may be added.

Warning: Handlers that output to sys. stderr may cause loops, as stderr output is reported as a
warning log message.

31.16.2 Logger Configuration
Kivy Log Mode

At the highest level, Kivy’s logging system is controlled by an environment variable KIVY_LOG_MODE.
It may be given any of three values: KIVY, PYTHON, MIXED

KIVY Mode (default)

In KIVY mode, all Kivy handlers are attached to the root logger, so all log messages in the system are
output to the Kivy log files and to the console. Any stray output to Sys. stderrislogged as a warning.

If you are writing an entire Kivy app from scratch, this is the most convenient mode.

PYTHON Mode

In PYTHON mode, no handlers are added, and sys . stderr output is not captured. It is left to the client
to add appropriate handlers. (If none are added, the L0gging module will output them to stderr.)

Messages logged with Logger will be propagated to the root logger, from a logger named kivy.

If the Kivy app is part of a much larger project which has its own logging regimen, this is the mode that
gives most control.

The kivy.logger file contains a number of Logging.handler, logging.formatter, and other
helper classes to allow users to adopt the features of Kivy logging that they like, including the stderr
redirection.

MIXED Mode

In MIXED mode, handlers are added to the Kivy’s Logger object directly, and propagation is turned
off. sys.stderr is not redirected.

Messages logged with Kivy’s Logger will appear in the Kivy log file and output to the Console.

However, messages logged with other Python loggers will not be handled by Kivy handlers. The client
will need to add their own.

If you like the features of Kivy Logger, but are writing a Kivy app that relies on third-party libraries
that don’t use colon-separation of categorise or depend on the display of the logger name, this mode
provides a compromise.

Again, the kivy. logger file contains re-usable logging features that can be used to get the best of both
systems.

265

Conlfig Files

In KIVY and MIXED modes, the logger handlers can be controlled via the Kivy configuration file:

[kivy]

log_level = info

log_enable =1

log_dir = logs

log_name = Kivy_%y-%m-%d_%_.txt
log_maxfiles = 100

More information about the allowed values are described in the kivy. config module.

In addition, the environment variables KIVY_NO_FILELOG and KIVY_NO_CONSOLELOG can be used
to turn off the installation of the corresponding handlers.

Logger History

Even if the logger is not enabled, you still have access to the last 100 LogRecords:

from kivy.logger import LoggerHistory

print(LoggerHistory.history)

class kivy.logger.ColonSplittinglLogRecord (logrecord)
Bases: Logging.LogRecord

Clones an existing logRecord, but reformats the message field if it contains a colon.
New in version 2.2.0.

class kivy.logger.ColoredLogRecord (logrecord)
Bases: Llogging.LogRecord

Clones an existing logRecord, but reformats the levelname to add color, and the message to add
bolding (where indicated by $BOLD and $RESET in the message).

New in version 2.2.0.

class kivy.logger.ConsoleHandler (stream=None)
Bases: Llogging.StreamHandler

Emits records to a stream (by default, stderr).
However, if the msg starts with “stderr:” it is not formatted, but written straight to the stream.
New in version 2.2.0.

filter (record)

Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto this and the record is then
dropped. Returns a zero value if a record is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

class kivy.logger.FileHandler (level=0)
Bases: Logging.Handler

266

emit (message)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a Notlmplemented-
Error.

purge_logs ()
Purge logs which exceed the maximum amount of log files, starting with the oldest creation
timestamp (or edit-timestamp on Linux)

class kivy.logger.KivyFormatter (*args, use_color=True, **kwargs)
Bases: logging.Formatter

Split out first field in message marked with a colon, and either apply terminal color codes to the
record, or strip out color markup if colored logging is not available.

New in version 2.2.0.

format (record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation
which yields the returned string. Before formatting the dictionary, a couple of prepara-
tory steps are carried out. The message attribute of the record is computed using Lo-
gRecord.getMessage(). If the formatting string uses the time (as determined by a call to
usesTime(), formatTime() is called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

class kivy.logger.LoggerHistory (level=0)
Bases: Llogging.Handler

emit (message)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplemented-
Error.

flush()
Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by subclasses.

class kivy.logger.ProcessingStream(channel, func)
Bases: builtins.object

Stream-like object that takes each completed line written to it, adds a given prefix, and applies the
given function to it.

New in version 2.2.0.

class kivy.logger.UncoloredLogRecord (logrecord)
Bases: Llogging.LogRecord

Clones an existing logRecord, but reformats the message to remove $BOLD/$RESET markup.
New in version 2.2.0.

kivy.logger.add_kivy_handlers (logger)
Add Kivy-specific handlers to a logger.

New in version 2.2.0.

267

kivy.logger.is_color_terminal()

Detect whether the environment supports color codes in output.

New in version 2.2.0.

31.17 Low level Metrics

31.18 Metrics

New in version 1.5.0.

A screen is defined by its physical size, density and resolution. These factors are essential for creating
UI's with correct size everywhere.

In Kivy, all the graphics pipelines work with pixels. But using pixels as a measurement unit is problem-
atic because sizes change according to the screen.

31.18.1 Dimensions

If you want to design your Ul for different screen sizes, you will want better measurement units to work
with. Kivy provides some more scalable alternatives.

Units

pt
Points - 1/72 of an inch based on the physical size of the screen. Prefer to use sp
instead of pt.

mim
Millimeters - Based on the physical size of the screen.

cm
Centimeters - Based on the physical size of the screen.

in
Inches - Based on the physical size of the screen.

dp
Density-independent Pixels - An abstract unit that is based on the physical density
of the screen. With a density of 1, 1dp is equal to 1px. When running on a
higher density screen, the number of pixels used to draw 1dp is scaled up a factor
appropriate to the screen’s dpi, and the inverse for a lower dpi. The ratio of dp-to-
pixels will change with the screen density, but not necessarily in direct proportion.
Using the dp unit is a simple solution to making the view dimensions in your
layout resize properly for different screen densities. In others words, it provides
consistency for the real-world size of your Ul across different devices.

sp

Scale-independent Pixels - This is like the dp unit, but it is also scaled by the user’s
font size preference. We recommend you use this unit when specifying font sizes,
so the font size will be adjusted to both the screen density and the user’s preference.

268

31.18.2 Examples

Here is an example of creating a label with a sp font_size and setting the height manually with a 10dp
margin:

#:kivy 1.5.0
<MyWidget>:
Label:
text: 'Hello world'
font_size: '15sp'’
size_hint_y: None
height: self.texture_size[l] + dp(10)

31.18.3 Manual control of metrics

The metrics cannot be changed at runtime. Once a value has been converted to pixels, you can’t retrieve
the original value anymore. This stems from the fact that the DPI and density of a device cannot be
changed at runtime.

We provide some environment variables to control metrics:

e KIVY_METRICS_DENSITY if set, this value will be used for density instead of the systems one.
On android, the value varies between 0.75, 1, 1.5 and 2.

e KIVY_METRICS_FONTSCALE: if set, this value will be used for fontscale instead of the sys-
tems one. On android, the value varies between 0.8 and 1.2.

e KIVY_DPI: if set, this value will be used for dpi. Please note that setting the DPI will not impact
the dp/sp notation because these are based on the screen density.

For example, if you want to simulate a high-density screen (like the HTC One X):

KIVY_DPI=320 KIVY_METRICS_DENSITY=2 python main.py --size 1280x720

Or a medium-density (like Motorola Droid 2):

KIVY_DPI=240 KIVY_METRICS_DENSITY=1.5 python main.py --size 854x480

You can also simulate an alternative user preference for fontscale as follows:

KIVY_METRICS_FONTSCALE=1.2 python main.py

kivy.metrics.Metrics: MetricsBase = <kivy.metrics.MetricsBase object>
The metrics object storing the window scaling factors.

New in version 1.7.0.
Changed in version 2.1.0: Metrics is now a Context registered variable (like e.g. CLocCk).

class kivy.metrics.MetricsBase (**kwargs)
Bases: Kivy.event.EventDispatcher
Class that contains the default attributes for Metrics. Don’t use this class directly, but use the
Metrics instance.
cm: float
The scaling factor that converts from centimeters to pixels.
cm is a AliasProperty containing the factor. E.g in KV: width: self.

texture_size[0] + 10 * Metrics.cm will update width when cm changes from a
screen configuration change.

269

density: float
The density of the screen.

This value is 1 by default on desktops but varies on android depending on the screen.

densityisa AliasProperty and can be set to change the value. But, the density is
reloaded and reset if we got it from the Window and the Window density changed.

dp: float
The scaling factor that converts from density-independent pixels to pixels.
dp is a AliasProperty containing the factor. E.g in KV: width: self.
texture_size[0] + 10 * Metrics.dp will update width when dp changes from a
screen configuration change.

dpi: float
The DPI of the screen.

Depending on the platform, the DPI can be taken from the Window provider (Desktop
mainly) or from a platform-specific module (like android/ios).

dpiisaAliasProperty and can be set to change the value. But, the density is reloaded
and reset if we got it from the Window and the Window dp1i changed.

dpi_rounded: int
Return the dpi of the screen, rounded to the nearest of 120, 160, 240 or 320.

dpi_roundedisaAliasProperty and updates when dpi changes.

fontscale: float

The fontscale user preference.
This value is 1 by default but can vary between 0.8 and 1.2.
fontscaleisaAliasProperty and can be set to change the value.

inch: float
The scaling factor that converts from inches to pixels.
inch is a AliasProperty containing the factor. ~E.g in KV: width: self.
texture_size[0] + 10 * Metrics.inch will update width when inch changes from
a screen configuration change.

mm: float
The scaling factor that converts from millimeters to pixels.
mm is a AliasProperty containing the factor. E.g in KV: width: self.
texture_size[0] + 10 x Metrics.mm will update width when mm changes from a
screen configuration change.

pt: float
The scaling factor that converts from points to pixels.
pt is a AliasProperty containing the factor. E.g in KV: width: self.
texture_size[0] + 10 * Metrics.pt will update width when pt changes from a
screen configuration change.

reset_dpi (*args)
Resets the dpi (and possibly density) to the platform values, overwriting any manually set
values.

reset_metrics()

Resets the dpi/density/fontscale to the platform values, overwriting any manually set val-
ues.

270

sp: float

The scaling factor that converts from scale-independent pixels to pixels.

sp is a AliasProperty containing the factor. E.g in KV: width: self.
texture_size[0] + 10 x Metrics.sp will update width when sp changes from a
screen configuration change.

kivy.metrics.cm(value) — float

Convert from centimeters to pixels

kivy.metrics.dp(value) — float

Convert from density-independent pixels to pixels

kivy.metrics.dpi2px (value, unicode ext) — float
Converts the value according to the ext.

kivy.metrics.inch (value) — float
Convert from inches to pixels

kivy.metrics.mm(value) — float

Convert from millimeters to pixels

kivy.metrics.pt(value) — float
Convert from points to pixels

kivy.metrics.sp(wvalue) — float
Convert from scale-independent pixels to pixels

31.19 Multistroke gesture recognizer

New in version 1.9.0.

Warning: This is experimental and subject to change as long as this warning notice is present.

See kivy/examples/demo/multistroke/main.py for a complete application example.

31.19.1 Conceptual Overview

This module implements the Protractor gesture recognition algorithm.

Recognizer is the search/database API similar to GestureDatabase. It maintains a list of
MultistrokeGesture objects and allows you to search for a user-input gestures among them.

ProgressTracker tracks the progress of a Recognizer.recognize() call. It can be used to in-
teract with the running recognizer task, for example forcing it to stop half-way, or analyzing results as
they arrive.

MultistrokeGesture represents a gesture in the gesture database (Recognizer.db). It is a con-
tainer for UnistrokeTemplate objects, and implements the heap permute algorithm to automatically
generate all possible stroke orders (if desired).

UnistrokeTemplate represents a single stroke path. It’s typically instantiated automatically by
MultistrokeGesture, but sometimes you may need to create them manually.

Candidate represents a user-input gesture that is used to search the gesture database for matches. It
is normally instantiated automatically by calling Recognizer. recognize().

271

31.19.2 Usage examples

See kivy/examples/demo/multistroke/main.py for a complete application example.

You can bind to events on Recognizer to track the state of all calls to Recognizer. recognize().
The callback function will receive an instance of ProgressTracker that can be used to analyze and
control various aspects of the recognition process

from kivy.vector import Vector
from kivy.multistroke import Recognizer

gdb = Recognizer()

def search_start(gdb, pt):
print("A search is starting with %d tasks" % (pt.tasks))

def search_stop(gdb, pt):
This will call max() on the result dictionary, so it's best to store
it instead of calling it 3 times consecutively
best = pt.best
print("Search ended (%s). Best is %s (score %f, distance %f)" % (
pt.status, best['name'], best['score'], best['dist']))

Bind your callbacks to track all matching operations
gdb.bind(on_search_start=search_start)
gdb.bind(on_search_complete=search_stop)

The format below is referred to as ‘"strokes', a list of stroke paths.
Note that each path shown here consists of two points, ie a straight
line; if you plot them it looks like a T, hence the name.
gdb.add_gesture('T', [

[Vector(30, 7), Vector(103, 7)1,

[Vector(66, 7), Vector(66, 87)11)

Now you can search for the 'T' gesture using similar data (user input).
This will trigger both of the callbacks bound above.
gdb.recognize([

[Vector(45, 8), Vector(110, 12)1,

[Vector(88, 9), Vector(85, 95)11)

On the next Clock tick, the matching process starts (and, in this case, completes).

To track individual calls to Recognizer.recognize(), use the return value (also a
ProgressTracker instance)

Same as above, but keep track of progress using returned value
progress = gdb.recognize([

[Vector(45, 8), Vector(110, 12)1,

[Vector(88, 9), Vector(85, 95)11)

progress.bind(on_progress=my_other_callback)
print(progress.progress) # = 0

[assuming a kivy.clock.Clock.tick() here]

print(result.progress) # = 1

272

31.19.3 Algorithm details

For more information about the matching algorithm, see:
“Protractor: A fast and accurate gesture recognizer” by Yang Li
http:/ /yangl.org/pdf/protractor-chi2010.pdf
“$N-Protractor” by Lisa Anthony and Jacob O. Wobbrock
http:/ /depts.washington.edu/aimgroup/proj/dollar /ndollar-protractor.pdf

Some of the code is derived from the JavaScript implementation here:
http:/ /depts.washington.edu/aimgroup/proj/dollar /ndollar.html
class kivy.multistroke.Candidate (strokes=None, numpoints=16, **kwargs)
Bases: builtins.object
Represents a set of unistroke paths of user input, ie data to be matched against a

UnistrokeTemplate object using the Protractor algorithm. By default, data is precomputed
to match both rotation bounded and fully invariant UnistrokeTemplate objects.

Arguments

strokes
See MultistrokeGesture.strokes for format example. The Candidate
strokes are simply combined to a unistroke in the order given. The idea
is that this will match one of the unistroke permutations in MultistrokeGes-
ture.templates.

numpoints
The Candidate’s default N; this is only for a fallback, it is not normally used
since n is driven by the UnistrokeTemplate we are being compared to.

skip_bounded
If True, do not generate/store rotation bounded vectors

skip_invariant
If True, do not generate/store rotation invariant vectors

Note that you WILL get errors if you set a skip-flag and then attempt to retrieve the data.
add_stroke (stroke)
Add a stroke to the candidate; this will invalidate all previously computed vectors
get_angle_similarity (tpl, **kwargs)
(Internal use only) Compute the angle similarity between this Candidate and a
UnistrokeTemplate object. Returns a number that represents the angle similarity (lower is
more similar).
get_protractor_vector (numpoints, orientation_sens)

(Internal use only) Return vector for comparing to a UnistrokeTemplate with Protractor

get_start_unit_vector (numpoints, orientation_sens)

(Internal use only) Get the start vector for this Candidate, with the path resampled to num-
points points. This is the first step in the matching process. It is compared to a UnistrokeTem-
plate object’s start vector to determine angle similarity.

prepare (numpoints=None)

Prepare the Candidate vectors. self.strokes is combined to a single unistroke (connected end-
to-end), resampled to numpoints points, and then the vectors are calculated and stored in
self.db (for use by get_distance and get_angle_similarity)

273

http://yangl.org/pdf/protractor-chi2010.pdf
http://depts.washington.edu/aimgroup/proj/dollar/ndollar-protractor.pdf
http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

class kivy.multistroke.MultistrokeGesture (name, strokes=None, **kwargs)
Bases: builtins.object

MultistrokeGesture represents a gesture. It maintains a set of strokes and generates unistroke
(ie UnistrokeTemplate) permutations that are used for evaluating candidates against this ges-

ture later.
Arguments
name
Identifies the name of the gesture - it is returned to you in the results of
a Recognizer.recognize() search. You can have any number of Multi-
strokeGesture objects with the same name; many definitions of one gesture.
The same name is given to all the generated unistroke permutations. Required,
no default.
strokes
A list of paths that represents the gesture. A path is a list of Vector objects:
gesture = MultistrokeGesture('my_gesture', strokes=[
[Vector(xl, yl), Vector(x2, y2), 1, # stroke 1
[Vector(), Vector(), Vector(), Vector() 1 # stroke 2
#, [stroke 3], [stroke 4],
1)
For template matching purposes, all the strokes are combined to a single
list (unistroke). You should still specify the strokes individually, and set
stroke_sensitive True (whenever possible).
Once you do this, unistroke permutations are immediately generated and
stored in self.templates for later, unless you set the permute flag to False.
priority
Determines when Recognizer. recognize () will attempt to match this tem-
plate, lower priorities are evaluated first (only if a priority filter is used). You
should use lower priority on gestures that are more likely to match. For ex-
ample, set user templates at lower number than generic templates. Default is
100.
numpoints

Determines the number of points this gesture should be resampled to (for
matching purposes). The default is 16.

stroke_sensitive
Determines if the number of strokes (paths) in this gesture is required to be the
same in the candidate (user input) gesture during matching. If this is False, can-
didates will always be evaluated, disregarding the number of strokes. Default
is True.

orientation_sensitive
Determines if this gesture is orientation sensitive. If True, aligns the indicative
orientation with the one of eight base orientations that requires least rotation.
Default is True.

angle_similarity
This is used by the Recognizer. recognize() function when a candidate is
evaluated against this gesture. If the angles between them are too far off, the
template is considered a non-match. Default is 30.0 (degrees)

permute
If False, do not use Heap Permute algorithm to generate different stroke orders

274

when instantiated. If you set this to False, a single UnistrokeTemplate built from
strokes is used.

add_stroke (stroke, permute=False)

Add a stroke to the self.strokes list. If permute is True, the permute() method is called to
generate new unistroke templates

get_distance (cand, tpl, numpoints=None)

Compute the distance from this Candidate to a UnistrokeTemplate. Returns the Cosine dis-
tance between the stroke paths.

numpoints will prepare both the UnistrokeTemplate and Candidate path to n points (when
necessary), you probably don’t want to do this.

match_candidate (cand, **kwargs)

Match a given candidate against this MultistrokeGesture object. Will test against all tem-
plates and report results as a list of four items:

index 0
Best matching template’s index (in self.templates)

index 1
Computed distance from the template to the candidate path

index 2

List of distances for all templates. The list index corresponds to a
UnistrokeTemplate index in self.templates

index 3

Counter for the number of performed matching operations, ie templates
matched against the candidate

permute()

Generate all possible unistroke permutations from self.strokes and save the resulting list of
UnistrokeTemplate objects in self.templates.

Quote from http:/ /faculty.washington.edu/wobbrock/pubs/gi-10.2.pdf

We use Heap Permute [16] (p. 179) to generate all stroke orders

in a multistroke gesture. Then, to generate stroke directions for
each order, we treat each component stroke as a dichotomous

[0,1] variable. There are 2”N combinations for N strokes, so we
convert the decimal values 0 to 2”N-1, inclusive, to binary
representations and regard each bit as indicating forward (@) or
reverse (1). This algorithm is often used to generate truth tables
in propositional logic.

See section 4.1: “$N Algorithm” of the linked paper for details.

Warning: Using heap permute for gestures with more than 3 strokes can result in very
large number of templates (a 9-stroke gesture = 38 million templates). If you are dealing
with these types of gestures, you should manually compose all the desired stroke orders.

class kivy.multistroke.ProgressTracker (candidate, tasks, **kwargs)
Bases: Kivy.event.EventDispatcher

Represents an ongoing (or completed) search operation. Instantiated and returned by the
Recognizer.recognize() method when it is called. The results attribute is a dictionary that is
updated as the recognition operation progresses.

275

http://faculty.washington.edu/wobbrock/pubs/gi-10.2.pdf

Note: You do not need to instantiate this class.

Arguments

candidate
Candidate object to be evaluated

tasks
Total number of gestures in tasklist (to test against)

Events

on_progress
Fired for every gesture that is processed

on_result
Fired when a new result is added, and it is the first match for the name so far, or
a consecutive match with better score.

on_complete
Fired when the search is completed, for whatever reason. (use Pro-
gressTracker.status to find out)

Attributes

results
A dictionary of all results (so far). The key is the name of the
gesture (ie UnistrokeTemplate.name wusually inherited from
MultistrokeGesture). Each item in the dictionary is a dict with the
following entries:

name
Name of the matched template (redundant)

score
Computed score from 1.0 (perfect match) to 0.0
dist
Cosine distance from candidate to template (low=closer)

gesture
The MultistrokeGesture object that was matched

best_template
Index of the best matching template (in MultistrokeGesture.
templates)

template_results
List of distances for all templates. The list index corresponds to a
UnistrokeTemplate index in gesture.templates.

status

search
Currently working

stop
Was stopped by the user (stop () called)

timeout
A timeout occurred (specified as timeout= to recognize())

276

goodscore
The search was stopped early because a gesture with a high enough score
was found (specified as goodscore= to recognize())

complete
The search is complete (all gestures matching filters were tested)

property best
Return the best match found by recognize() so far. It returns a dictionary with three keys,
‘name’, “dist” and ‘score’ representing the template’s name, distance (from candidate path)
and the computed score value. This is a Python property.

property progress
Returns the progress as a float, 0 is 0% done, 1 is 100%. This is a Python property.

stop()
Raises a stop flag that is checked by the search process. It will be stopped on the next clock
tick (if it is still running).

class kivy.multistroke.Recognizer (**kwargs)
Bases: kivy.event.EventDispatcher

Recognizer provides a gesture database with matching facilities.
Events

on_search_start
Fired when a new search is started using this Recognizer.

on_search_complete
Fired when a running search ends, for whatever reason. (use
ProgressTracker.status to find out)

Properties

db
A ListProperty that contains the available MultistrokeGesture objects.

dbisalListProperty and defaults to []

add_gesture (name, strokes, **kwargs)

Add a new gesture to the database. This will instantiate anew MultistrokeGesture with
strokes and append it to self.db.

Note: If you already have instantiated a ultistrokeGesture object and wish to add it,
append it to Recognizer. db manually.

export_gesture (filename=None, **kwargs)
Export a list of MultistrokeGesture objects. Outputs a base64-encoded string that can
be decoded to a Python list with the parse_gesture() function or imported directly to
self.db using Recognizer.import_gesture(). If filename is specified, the output is
written to disk, otherwise returned.

This method accepts optional Recognizer. filter () arguments.

filter (**kwargs)

filter() returns a subset of objects in self.db, according to given criteria. This is
used by many other methods of the Recognizer; the arguments below can for example
be used when calling Recognizer.recognize() or Recognizer.export_gesture().
You normally don’t need to call this directly.

277

Arguments

name
Limits the returned list to gestures where MultistrokeGesture.name
matches given regular expression(s). If re.match(name, MultistrokeGes-
ture.name) tests true, the gesture is included in the returned list. Can be a
string or an array of strings

gdb = Recognizer()

Will match all names that start with a capital N
(ie Next, New, N, Nebraska etc, but not "n" or "next")
gdb.filter(name='N")

exactly 'N'
gdb.filter(name='N$")

Nebraska, teletubbies, France, fraggle, N, n, etc
gdb.filter(name=['[Nn]"', '(?1)T', "(?1)F'])

priority
Limits the returned list to gestures with certain MultistrokeGesture.
priority values. If specified as an integer, only gestures with a lower prior-
ity are returned. If specified as a list (min/max)

Max priority 50
gdb.filter(priority=50)

Max priority 50 (same result as above)
gdb.filter(priority=[0, 501])

Min priority 50, max 100
gdb.filter(priority=[50, 100])

When this option is used, Recognizer.db is automatically sorted according
to priority, incurring extra cost. You can use force_priority_sort to override this
behavior if your gestures are already sorted according to priority.

orientation_sensitive
Limits the returned list to gestures that are orientation sensitive (True), ges-
tures that are not orientation sensitive (False) or None (ignore template sensi-
tivity, this is the default).

numstrokes
Limits the returned list to gestures that have the specified number of strokes
(in MultistrokeGesture.strokes). Can be a single integer or a list of
integers.

numpoints
Limits the returned list to gestures that have specific
MultistrokeGesture.numpoints values. This is provided for flexi-
bility, do not use it unless you understand what it does. Can be a single
integer or a list of integers.

force_priority_sort
Can be used to override the default sort behavior. Normally
MultistrokeGesture objects are returned in priority order if the pri-
ority option is used. Setting this to True will return gestures sorted in priority

278

order, False will return in the order gestures were added. None means decide
automatically (the default).

Note: For improved performance, you can load your gesture database in
priority order and set this to False when calling Recognizer. recognize()

db
Can be set if you want to filter a different list of objects than Recognizer.
db. You probably don’t want to do this; it is used internally by
import_gesture().

import_gesture (data=None, filename=None, **kwargs)

Import a list of gestures as formatted by export_gesture(). One of data or filename must
be specified.

This method accepts optional Recognizer. filter() arguments, if none are specified
then all gestures in specified data are imported.

parse_gesture(data)

Parse data formatted by export_gesture(). Returns a list of MultistrokeGesture objects.
This is used internally by import_gesture(),younormally don’t need to call this directly.

prepare_templates (**kwargs)

This method is used to prepare UnistrokeTemp late objects within the gestures in self.db.
This is useful if you want to minimize punishment of lazy resampling by preparing all vec-
tors in advance. If you do this before a call to Recognizer.export_gesture(), you will
have the vectors computed when you load the data later.

This method accepts optional Recognizer. filter() arguments.

force_numpoints, if specified, will prepare all templates to the given number of points (instead
of each template’s preferred n; ie UnistrokeTemplate.numpoints). You normally don't
want to do this.

recognize (strokes, goodscore=None, timeout=0, delay=0, **kwargs)

Search for gestures matching strokes. Returns a ProgressTracker instance.
This method accepts optional Recognizer. filter () arguments.
Arguments

strokes
A list of stroke paths (list of lists of Vector objects) that will be matched
against gestures in the database. Can also be a Candidate instance.

Warning: If you manually supply a Candidate thathas a skip-flag, make
sure that the correct filter arguments are set. Otherwise the system will at-
tempt to load vectors that have not been computed. For example, if you set
skip_bounded and do not set orientation_sensitive to False, it will raise an ex-
ception if an orientation_sensitive UnistrokeTemplate is encountered.

goodscore
If this is set (between 0.0 - 1.0) and a gesture score is equal to or higher than the
specified value, the search is immediately halted and the on_search_complete
event is fired (+ the on_complete event of the associated ProgressTracker
instance). Default is None (disabled).

279

timeout
Specifies a timeout (in seconds) for when the search is aborted and the results
returned. This option applies only when max_gpf is not 0. Default value is
0, meaning all gestures in the database will be tested, no matter how long it
takes.

max_gpf
Specifies the maximum number of Mu L tistrokeGesture objects that can be

processed per frame. When exceeded, will cause the search to halt and resume
work in the next frame. Setting to 0 will complete the search immediately (and
block the UI).

Warning: This does not limit the number of UnistrokeTemplate ob-
jects matched! If a single gesture has a million templates, they will all be
processed in a single frame with max_gpf=1!

delay
Sets an optional delay between each run of the recognizer loop. Normally, a
run is scheduled for the next frame until the tasklist is exhausted. If you set
this, there will be an additional delay between each run (specified in seconds).
Default is 0, resume in the next frame.

force_numpoints
forces all templates (and candidate) to be prepared to a certain number of
points. This can be useful for example if you are evaluating templates for
optimal n (do not use this unless you understand what it does).

transfer_gesture (fgt, “*kwargs)

Transfers MultistrokeGesture objects from Recognizer.db to another Recognizer
instance tgt.

This method accepts optional Recognizer. filter () arguments.

class kivy.multistroke.UnistrokeTemplate (name, points=None, **kwargs)
Bases: builtins.object

Represents a (uni)stroke path as a list of Vectors. Normally, this class is instantiated by Multi-
strokeGesture and not by the programmer directly. However, it is possible to manually compose
UnistrokeTemplate objects.

Arguments

name
Identifies the name of the gesture. This is normally inherited from the parent
MultistrokeGesture object when a template is generated.

points
A list of points that represents a unistroke path. This is normally one of the
possible stroke order permutations from a MultistrokeGesture.

numpoints
The number of points this template should (ideally) be resampled to before the
matching process. The default is 16, but you can use a template-specific settings
if that improves results.

orientation_sensitive
Determines if this template is orientation sensitive (True) or fully rotation in-
variant (False). The default is True.

280

Note: You will get an exception if you set a skip-flag and then attempt to retrieve those vectors.

add_point(p)

Add a point to the unistroke/path. This invalidates all previously computed vectors.

prepare (numpoints=None)

This function prepares the UnistrokeTemplate for matching given a target number of points
(for resample). 16 is optimal.

31.20 Parser utilities

Helper functions used for CSS parsing.

kivy.parser.parse_bool (fext)

Parse a string to a boolean, ignoring case. “true”/”1” is True, “false”/”0” is False. Anything else
throws an exception.

kivy.parser.parse_color (text)

Parse a string to a kivy color. Supported formats:
* rgb(r, g, b)
* rgba(r, g, b, a)
* rgb
* rgha
* rrggbb
* rrggbbaa
For hexadecimal values, you case also use:
* #rgb
* #rgba
* #rrggbb
e #rrggbbaa

kivy.parser.parse_filename (filename)

Parse a filename and search for it using resource_find(). If found, the resource path is returned,
otherwise return the unmodified filename (as specified by the caller).

kivy.parser.parse_float
alias of float

kivy.parser.parse_float4 (text)
Parse a string to a list of exactly 4 floats.

>>> parse_float4('54 87. 35 0')
54, 87., 35, 0

kivy.parser.parse_int
alias of int

281

kivy.parser.parse_int2 (text)

Parse a string to a list of exactly 2 integers.

>>> print(parse_int2("12 54"))
12, 54

kivy.parser.parse_string(text)
Parse a string to a string (removing single and double quotes).

31.21 Properties

The Properties classes are used when you create an EventDispatcher.

Warning: Kivy’s Properties are not to be confused with Python’s properties (i.e. the @ roperty
decorator and the <property> type).

Kivy’s property classes support:

Value Checking / Validation
When you assign a new value to a property, the value is checked against validation
constraints. For example, validation for an OptionProperty will make sure that the
value is in a predefined list of possibilities. Validation for a NumericProperty will
check that your value is a numeric type. This prevents many errors early on.

Observer Pattern
You can specify what should happen when a property’s value changes. You can bind
your own function as a callback to changes of a Property. If, for example, you want
a piece of code to be called when a widget's pos property changes, you can bind a
function to it.

Better Memory Management
The same instance of a property is shared across multiple widget instances.

31.21.1 Comparison Python vs. Kivy

Basic example

Let’s compare Python and Kivy properties by creating a Python class with ‘a” as a float property:

class MyClass(object):
def __init__(self, a=1.0):
super(MyClass, self). _init__()
self.a = a

With Kivy, you can do:

class MyClass(EventDispatcher):
a = NumericProperty(1.0)

282

Depth being tracked

Only the “top level” of a nested object is being tracked. For example:

my_list prop = ListProperty([1l, {'hi': 0}])

Changing a top level element will trigger all ‘on_my_list_prop’ callbacks
my_list_prop[0] = 4

Changing a deeper element will be ignored by all “on_my_list_prop
~callbacks

my_list_prop[1]['hi'] = 4

The same holds true for all container-type kivy properties.

Value checking

If you wanted to add a check for a minimum / maximum value allowed for a property, here is a possible
implementation in Python:

class MyClass(object):
def __init__(self, a=1):
super(MyClass, self). _init_ ()

self.a_min = 0
self.a_max = 100
self.a = a

def get a(self):
return self._a
def _set_a(self, value):
if value < self.a_min or value > self.a_max:
raise ValueError('a out of bounds')
self._a = value
a = property(_get_a, _set_a)

The disadvantage is you have to do that work yourself. And it becomes laborious and complex if you
have many properties. With Kivy, you can simplify the process:

class MyClass(EventDispatcher):
a = BoundedNumericProperty(1l, min=0, max=100)

That’s all!

Error Handling

If setting a value would otherwise raise a ValueError, you have two options to handle the error grace-
fully within the property. The first option is to use an errorvalue parameter. An errorvalue is a substitute
for the invalid value:

simply returns O if the value exceeds the bounds
bnp = BoundedNumericProperty(0, min=-500, max=500, errorvalue=0)

The second option in to use an errorhandler parameter. An errorhandler is a callable (single argument
function or lambda) which can return a valid substitute:

283

returns the boundary value when exceeded
bnp = BoundedNumericProperty(0, min=-500, max=500,
errorhandler=lambda x: 500 if x > 500 else -500)

Keyword arguments and __init_ ()

When working with inheritance, namely with the _ init_ () of an object that inherits from
EventDispatcher e.g. alWidget, the properties protect you from a Python 3 object error. This error
occurs when passing kwargs to the object instance through a super() call:

class MyClass(EventDispatcher):
def _init_ _(self, *xkwargs):
super(MyClass, self). _init_ _ (*xxkwargs)
self.my_string = kwargs.get('my_string')

print(MyClass(my_string='value').my_string)

While this error is silenced in Python 2, it will stop the application in Python 3 with:

TypeError: object. init () takes no parameters

Logically, to fix that you'd either put my_string directly in the __init_ () definition as a required argu-
ment or as an optional keyword argument with a default value i.e.:

class MyClass(EventDispatcher):
def __init (self, my_string, #*xkwargs):
super(MyClass, self)._ _init__ (*xxkwargs)
self.my_string = my_string

or:

class MyClass(EventDispatcher):
def init (self, my_string='default', x*xkwargs):
super(MyClass, self). _init _(*xxkwargs)
self.my_string = my_string

Alternatively, you could pop the key-value pair from the kwargs dictionary before calling super():

class MyClass(EventDispatcher):
def __init (self, *xxkwargs):
self.my_string = kwargs.pop('my_string"')
super(MyClass, self). _init__ (*xkwargs)

Kivy properties are more flexible and do the required kwargs.pop() in the background automatically
(within the super() call to EventDispatcher) to prevent this distraction:

class MyClass(EventDispatcher):
my_string = StringProperty('default')
def __init_ _(self, *xxkwargs):
super(MyClass, self). _init__ (*xxkwargs)

print(MyClass(my_string='value').my_string)

284

Conclusion

Kivy properties are easier to use than the standard ones. See the next chapter for examples of how to
use them :)

31.21.2 Observe Property changes

As we said in the beginning, Kivy’s Properties implement the Observer pattern. That means you can
bind() to a property and have your own function called when the value changes.

There are multiple ways to observe the changes.

Observe using bind()

You can observe a property change by using the bind() method outside of the class:

class MyClass(EventDispatcher):
a = NumericProperty(1)

def callback(instance, value):
print('My callback is call from', instance)
print('and the a value changed to', value)

ins = MyClass()
ins.bind(a=callback)

At this point, any change to the a property will call your callback.
ins.a =5 # callback called

ins.a =5 # callback not called, because the value did not change
ins.a = -1 # callback called

Note: Property objects live at the class level and manage the values attached to instances. Re-assigning
at class level will remove the Property. For example, continuing with the code above, MyClass.a = 5
replaces the property object with a simple int.

Observe using ‘on_<propname>’

If you defined the class yourself, you can use the ‘on_<propname>’ callback:

class MyClass(EventDispatcher):
a = NumericProperty(1)

def on_a(self, instance, value):
print('My property a changed to', value)

Warning: Be careful with ‘on_<propname>’. If you are creating such a callback on a property you
are inheriting, you must not forget to call the superclass function too.

285

http://en.wikipedia.org/wiki/Observer_pattern

31.21.3 Binding to properties of properties.

When binding to a property of a property, for example binding to a numeric property of an object saved
in a object property, updating the object property to point to a new object will not re-bind the numeric
property to the new object. For example:

<MyWidget>:
Label:
first
'First label'
Label:
second
'Second label!
Button:

first
self.label.text
self.label = second

When clicking on the button, although the label object property has changed to the second widget, the
button text will not change because it is bound to the text property of the first label directly.

In 1.9.0, the rebind option has been introduced that will allow the automatic updating of the text
when label is changed, provided it was enabled. See ObjectProperty.

class kivy.properties.AliasProperty (getter, setter=None, rebind=False,
watch_before_use=True, **kwargs)

Bases: kivy.properties.Property

If you don’t find a Property class that fits to your needs, you can make your own by creating
custom Python getter and setter methods.

Example from kivy/uix/widget.py where x and width are instances of NumericProperty:

def get right(self):
return self.x + self.width
def set right(self, value):
self.x = value - self.width
right = AliasProperty(get_right, set_right, bind=['x"', 'width'l])

If x were a non Kivy property then you have to return True from setter to dispatch new value of
right:

def set_right(self, value):
self.x = value - self.width
return True

Usually bind list should contain all Kivy properties used in getter method. If you return True it
will cause a dispatch which one should do when the property value has changed, but keep in
mind that the property could already have dispatched the changed value if a kivy property the
alias property is bound was set in the setter, causing a second dispatch if the setter returns True.

If you want to cache the value returned by getter then pass cache=True. This way getter will only
be called if new value is set or one of the binded properties changes. In both cases new value of
alias property will be cached again.

To make property readonly pass None as setter. This way AttributeError will be raised on every set
attempt:

286

right = AliasProperty(get_right, None, bind=['x', 'width'], cache=True)

Parameters

getter: function
Function to use as a property getter.

setter: function
Function to use as a property setter. Callbacks bound to the alias property won't
be called when the property is set (e.g. right = 10), unless the setter returns True.

bind: list/tuple
Properties to observe for changes as property name strings. Changing values of
this properties will dispatch value of the alias property.

cache: boolean
If True, the value will be cached until one of the binded elements changes or if
setter returns True.

rebind: bool, defaults to False
See ObjectProperty for details.

watch_before_use: bool, defaults to True
Whether the bind properties are tracked (bound) before this property is used
in any way.

By default, the getter is called if the bind properties update or if the property
value (unless cached) is read. As an optimization to speed up widget creation,
when watch_before_use is False, we only track the bound properties once
this property is used in any way (i.e. it is bound, it was set/read, etc).

The property value read/set/bound will be correct as expected in both cases.
The difference is only that when False, any side effects from the getter
would not occur until this property is interacted with in any way because the
getter won't be called early.

Changed in version 1.9.0: rebind has been introduced.

Changed in version 1.4.0: Parameter cache added.

get (EventDispatcher obj)
link_deps (EventDispatcher obj, unicode name)
link_eagerly (EventDispatcher obj) — PropertyStorage

rebind
rebind: ‘int’
set (EventDispatcher obj, value)
trigger_change (EventDispatcher obj, value)
class kivy.properties.BooleanProperty (defaultvalue=True, **kw)
Bases: Kivy.properties.Property
Parameters

defaultvalue: boolean
Specifies the default value of the property.

287

class kivy.properties.BoundedNumericProperty (*largs, **kw)
Bases: kivy.properties.Property

maximum bound — within a numeric range.
Parameters

default: numeric
Specifies the default value of the property.

**kwargs: a list of keyword arguments
If a min parameter is included, this specifies the minimum numeric value that
will be accepted. If a max parameter is included, this specifies the maximum
numeric value that will be accepted.

bounds
Return min/max of the value.

New in version 1.0.9.

get_max (EventDispatcher obj)

Return the maximum value acceptable for the BoundedNumericProperty in obj. Return None
if no maximum value is set. Check get_min for a usage example.

New in version 1.1.0.

get_min (EventDispatcher obj)
Return the minimum value acceptable for the BoundedNumericProperty in obj. Return None
if no minimum value is set:

class MyWidget(Widget):
number = BoundedNumericProperty(0, min=-5, max=5)

widget = MyWidget()
print(widget.property('number').get_min(widget))
will output -5

New in version 1.1.0.

set_max (EventDispatcher obj, value)

Change the maximum value acceptable for the BoundedNumericProperty, only for the obj
instance. Set to None if you want to disable it. Check set_min for a usage example.

Warning: Changing the bounds doesn’t revalidate the current value.

New in version 1.1.0.

set_min (EventDispatcher obj, value)

Change the minimum value acceptable for the BoundedNumericProperty, only for the obj
instance. Set to None if you want to disable it:

class MyWidget(Widget):
number = BoundedNumericProperty(0, min=-5, max=5)

widget = MyWidget()

change the minimum to -10
widget.property('number').set_min(widget, -10)
or disable the minimum check
widget.property('number').set_min(widget, None)

288

Warning: Changing the bounds doesn’t revalidate the current value.

New in version 1.1.0.
class kivy.properties.ColorProperty (defaultvalue=0, **kw)
Bases: kivy.properties.Property
¢ a collection of 3 or 4 float values between 0-1 (kivy default)
e a string in the format #rrggbb or #rrggbbaa
* a string representing color name (eg. ‘red’, “yellow’, ‘green’)

Object colormap is used to retrieve color from color name and names definitions can be found at
this link. Color can be assigned in different formats, but it will be returned as ObservablelList
of 4 float elements with values between 0-1.

Parameters

defaultvalue: list or string, defaults to [1.0, 1.0, 1.0, 1.0]
Specifies the default value of the property.

New in version 1.10.0.

Changed in version 2.0.0: Color value will be dispatched when set through indexing or slicing,
but when setting with slice you must ensure that slice has 4 components with float values between
0-1. Assingning color name as value is now supported. Value None is allowed as default value for

property.
class kivy.properties.ConfigParserProperty (defaultvalue, section, key, config, **kw)
Bases: kivy.properties.Property

of a ConfigParser as well as to bind the ConfigParser values to other properties.

A ConfigParser is composed of sections, where each section has a number of keys and values
associated with these keys. ConfigParserProperty lets you automatically listen to and change the
values of specified keys based on other kivy properties.

For example, say we want to have a TextInput automatically write its value, represented as an
int, in the info section of a ConfigParser. Also, the textinputs should update its values from the
ConfigParser’s fields. Finally, their values should be displayed in a label. In py:

class Info(Label):

number = ConfigParserProperty(0, 'info', 'number', ‘'example',
val_type=int, errorvalue=41)

def _init__(self, *xxkw):
super(Info, self). _init _ (*xkw)
config = ConfigParser(name="'example')

The above code creates a property that is connected to the number key in the info section of the
ConfigParser named example. Initially, this ConfigParser doesn’t exist. Then, in __init__, a Config-
Parser is created with name example, which is then automatically linked with this property. then
in kv:

BoxLayout:
TextInput:
number
str(info.number)

(continues on next page)

289

https://www.w3.org/TR/SVG11/types.html#ColorKeywords

(continued from previous page)

Info:
info
number. text
"Number: {}'.format(self.number)

You'll notice that we have to do text: str(info.number), this is because the value of this property is
always an int, because we specified int as the val_type. However, we can assign anything to the
property, e.g. number: number.text which assigns a string, because it is instantly converted with
the val_type callback.

Note: If a file has been opened for this ConfigParser using read(), then write() will be called
every property change, keeping the file updated.

Warning: It is recommend that the config parser object be assigned to the property after
the kv tree has been constructed (e.g. schedule on next frame from init). This is because the
kv tree and its properties, when constructed, are evaluated on its own order, therefore, any
initial values in the parser might be overwritten by objects it’s bound to. So in the example
above, the TextInput might be initially empty, and if number: number.text is evaluated before
text: str(info.number), the config value will be overwritten with the (empty) text value.

Parameters

default: object type
Specifies the default value for the key. If the parser associated with this property
doesn’t have this section or key, it'll be created with the current value, which is
the default value initially.

section: string type
The section in the ConfigParser where the key / value will be written. Must be
provided. If the section doesn’t exist, it’ll be created.

key: string type
The key in section section where the value will be written to. Must be provided.
If the key doesn’t exist, it'll be created and the current value written to it, other-
wise its value will be used.

config: string or ConfigParser instance.
The ConfigParser instance to associate with this property if not None. If it's a
string, the ConfigParser instance whose name is the value of config will be used.
If no such parser exists yet, whenever a ConfigParser with this name is created,
it will automatically be linked to this property.

Whenever a ConfigParser becomes linked with a property, if the section or key
doesn’t exist, the current property value will be used to create that key, other-
wise, the existing key value will be used for the property value; overwriting its
current value. You can change the ConfigParser associated with this property
if a string was used here, by changing the name of an existing or new Config-
Parser instance. Or through set_config().

**kwargs: a list of keyword arguments

val_type: a callable object
The key values are saved in the ConfigParser as strings. When the Config-
Parser value is read internally and assigned to the property or when the user
changes the property value directly, if val_type is not None, it will be called

290

with the new value as input and it should return the value converted to the
proper type accepted ny this property. For example, if the property represent
ints, val_type can simply be int.

If the val_type callback raises a ValueError, errorvalue or errorhandler will be
used if provided. Tip: the getboolean function of the ConfigParser might also
be useful here to convert to a boolean type.

verify: a callable object
Can be used to restrict the allowable values of the property. For every value
assigned to the property, if this is specified, verify is called with the new value,
and if it returns True the value is accepted, otherwise, errorvalue or errorhandler
will be used if provided or a ValueError is raised.

New in version 1.9.0.

link_deps (EventDispatcher obj, unicode name)
set (EventDispatcher obj, value)

set_config/(config)
Sets the ConfigParser object to be used by this property. Normally, the ConfigParser is set
when initializing the Property using the config parameter.

Parameters

config: A ConfigParser instance.
The instance to use for listening to and saving property value changes. If
None, it disconnects the currently used ConfigParser.

class MyWidget(Widget):
username = ConfigParserProperty('', 'info', 'name', None)

widget = MyWidget()
widget.property('username').set_config(ConfigParser())

class kivy.properties.DictProperty (defaultvalue=0, rebind=False, **kw)
Bases: kivy.properties.Property

Parameters

defaultvalue: dict, defaults to {}
Specifies the default value of the property.

rebind: bool, defaults to False
See ObjectProperty for details.

Changed in version 1.9.0: rebind has been introduced.

Warning: Similar to ListProperty, when assigning a dict to a DictProperty, the
dict stored in the property is a shallow copy of the dict and not the original dict. See
ListProperty for details.

Link (EventDispatcher obj, unicode name) — PropertyStorage

rebind
rebind: ‘int’

set (EventDispatcher obj, value)

291

class kivy.properties.ListProperty (defaultvalue=0, **kw)

Bases: kivy.properties.Property
Parameters

defaultvalue: list, defaults to []
Specifies the default value of the property.

Warning: When assigning a list to a ListProperty, the list stored in the property is a
shallow copy of the list and not the original list. This can be demonstrated with the following
example:

>>> class MyWidget(Widget):
>>> my_list = ListProperty([1)

>>> widget = MyWidget()

>>> my_list = [1, 5, {'hi': 'hello'}]

>>> widget.my_list = my_list

>>> print(my_list is widget.my_list)

False

>>> my_list.append(10)

>>> print(my_list, widget.my_list)

[1, 5, {'hi': 'hello'}, 10] [1, 5, {'hi': 'hello'}]

However, changes to nested levels will affect the property as well, since the property uses a
shallow copy of my_list.

>>> my_list[2]['hi'] = 'bye'
>>> print(my_list, widget.my_1list)
[1, 5, {'hi': 'bye'}, 10] [1, 5, {'hi': 'bye'}]

Link (EventDispatcher obj, unicode name) — PropertyStorage

set (EventDispatcher obj, value)

class kivy.properties.NumericProperty (defaultvalue=0, **kw)

Bases: kKivy.properties.Property

It only accepts the int or float numeric data type or a string that can be converted to a number as
shown below. For other numeric types use ObjectProperty or use errorhandler to convert it to an
int/float.

It does not support numpy numbers so they must be manually converted to int/float. E.g.
widget.num = np.arange(4)[0] will raise an exception. Numpy arrays are not supported
at all, even by ObjectProperty because their comparison does not return a bool. But if you must
use a Kivy property, use a ObjectProperty with comparator settonp.array_equal. E.g.

>>> class A(EventDispatcher):

. data = ObjectProperty(comparator=np.array_equal)
>>> a = A()

>>> a.bind(data=print)

>>> a.data = np.arange(2)

<__main__.A object at 0x000001C839B50208> [0 1]

>>> a.data = np.arange(3)

<__main__.A object at 0x000001C839B50208> [0 1 2]

Parameters

292

defaultvalue: int or float, defaults to 0
Specifies the default value of the property.

>>> wid = Widget()

>>> wid.x = 42

>>> print(wid.x)

42

>>> wid.x = "plop"

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "properties.pyx", line 93, in kivy.properties.Property.__set _
File "properties.pyx", line 111, in kivy.properties.Property.set
File "properties.pyx", line 159, in kivy.properties.NumericProperty.

~check

ValueError: NumericProperty accept only int/float

Changed in version 1.4.1: NumericProperty can now accept custom text and tuple value to indi-

cate a type, like “in”, “pt”, “px”, “cm”, “mm”, in the format: “10pt’ or (10, ‘pt’).

get_format (EventDispatcher obj)

Return the format used for Numeric calculation. Default is px (mean the value have not been
changed at all). Otherwise, it can be one of “in’, “pt’, ‘cm’, ‘mm’.

class kivy.properties.ObjectProperty (defaultvalue=None, rebind=False, **kw)
Bases: kivy.properties.Property

Parameters

defaultvalue: object type
Specifies the default value of the property.

rebind: bool, defaults to False
Whether kv rules using this object as an intermediate attribute in a kv rule, will
update the bound property when this object changes.

That is the standard behavior is that if there’s a kv rule text: self.a.
b.c.d, where a, b, and c are properties with rebind False and d is a
StringProperty. Then when the rule is applied, text becomes bound only
to d. If @, b, or ¢ change, text still remains bound to d. Furthermore, if any of
them were None when the rule was initially evaluated, e.g. b was None; then
text is bound to b and will not become bound to d even when b is changed to
not be None.

By setting rebind to True, however, the rule will be re-evaluated and all the
properties rebound when that intermediate property changes. E.g. in the ex-
ample above, whenever b changes or becomes not None if it was None before,
text is evaluated again and becomes rebound to d. The overall result is that
text is now bound to all the properties among a, b, or ¢ that have rebind set
to True.

**kwargs: a list of keyword arguments

baseclass
If kwargs includes a baseclass argument, this value will be used for validation:
isinstance(value, kwargs[baseclass’]).

Warning: To mark the property as changed, you must reassign a new python object.

293

Changed in version 1.9.0: rebind has been introduced.
Changed in version 1.7.0: baseclass parameter added.

rebind

rebind: ‘int’

class kivy.properties.OptionProperty (*args, *kw)

Bases: kivy.properties.Property
options.

If the string set in the property is not in the list of valid options (passed at property creation time),
a ValueError exception will be raised.

Parameters

default: any valid type in the list of options
Specifies the default value of the property.

**kwargs: a list of keyword arguments
Should include an options parameter specifying a list (not tuple) of valid op-
tions.

For example:

class MyWidget(Widget):
state = OptionProperty("None", options=["On", "Off", "None"])

options
Return the options available.

New in version 1.0.9.

class kivy.properties.Property (defaultvalue, **kw)

Bases: builtins.object

This class handles all the basic setters and getters, None type handling, the observer list and
storage initialisation. This class should not be directly instantiated.

By default, a Property always takes a default value:

class MyObject(Widget):

hello = Property('Hello world"')

The default value must be a value that agrees with the Property type. For example, you can’t set
alisttoa StringProperty because the StringProperty will check the default value.

None is a special case: you can set the default value of a Property to None, but you can’t set
None to a property afterward. If you really want to do that, you must declare the Property with
allownone=True:

class MyObject(Widget):
hello = ObjectProperty(None, allownone=True)

then later

a = MyObject()

a.hello = 'bleh' # working

a.hello = None # working too, because allownone is True.

294

Parameters

default:
Specifies the default value for the property.

**kwargs:
If the parameters include errorhandler, this should be a callable which must take
a single argument and return a valid substitute value.

If the parameters include errorvalue, this should be an object. If set, it will replace
an invalid property value (overrides errorhandler).

If the parameters include force_dispatch, it should be a boolean. If True, no value
comparison will be done, so the property event will be dispatched even if the
new value matches the old value (by default identical values are not dispatched
to avoid infinite recursion in two-way binds). Be careful, this is for advanced
use only.

comparator: callable or None
When not None, it’s called with two values to be compared. The function
returns whether they are considered the same.

deprecated: bool
When True, a warning will be logged if the property is accessed or set. De-
faults to False.
Changed in version 1.4.2: Parameters errorhandler and errorvalue added
Changed in version 1.9.0: Parameter force_dispatch added
Changed in version 1.11.0: Parameter deprecated added

bind (EventDispatcher obj, observer)

Add a new observer to be called only when the value is changed.

defaultvalue
defaultvalue: object

dispatch (EventDispatcher obj)

Dispatch the value change to all observers.
Changed in version 1.1.0: The method is now accessible from Python.

This can be used to force the dispatch of the property, even if the value didn’t change:

button = Button()

get the Property class instance

prop = button.property('text')

dispatch this property on the button instance
prop.dispatch(button)

Property.fbind(EventDispatcher obj, observer, int ref, tuple largs=
Similar to bind, except it doesn’t check if the observer already exists. It also expands and
forwards largs and kwargs to the callback. funbind or unbind_uid should be called when
unbinding. It returns a unique positive uid to be used with unbind_uid.

Property. funbind (EventDispatcher obj, observer, tuple largs=
Remove the observer from our widget observer list bound with fbind. It removes the first
match it finds, as opposed to unbind which searches for all matches.

get (EventDispatcher obj)

Return the value of the property.

295

Link (EventDispatcher obj, unicode name) — PropertyStorage

Link the instance with its real name.

Warning: Internal usage only.

When a widget is defined and uses a Property class, the creation of the property object
happens, but the instance doesn’t know anything about its name in the widget class:

class MyWidget(Widget):
uid = NumericProperty(0)

In this example, the uid will be a NumericProperty() instance, but the property instance
doesn’t know its name. That’s why [ink () is used in Widget._ new__. The link function is
also used to create the storage space of the property for this specific widget instance.

Link_deps (EventDispatcher obj, unicode name)
link_eagerly (EventDispatcher obj) — PropertyStorage
set (EventDispatcher obj, value)
Set a new value for the property.
set_name (EventDispatcher obj, unicode name)
unbind (EventDispatcher obj, observer, int stop_on_first=0)
Remove the observer from our widget observer list.

unbind_uid (EventDispatcher obj, uid)
Remove the observer from our widget observer list bound with fbind using the uid.

class kivy.properties.ReferencelListProperty (*largs, **kw)

Bases: kivy.properties.Property

For example, if x and y are NumericPropertys, we can create a ReferencelListProperty
for the pos. If you change the value of pos, it will automatically change the values of x and y
accordingly. If you read the value of pos, it will return a tuple with the values of x and y.

For example:

class MyWidget(EventDispatcher):
X = NumericProperty(0)
y = NumericProperty(0)
pos = ReferencelListProperty(x, y)

get (EventDispatcher obj)

Link (EventDispatcher obj, unicode name) — PropertyStorage
link_deps (EventDispatcher obj, unicode name)

set (EventDispatcher obj, _value)

setitem(EventDispatcher obj, key, value)

trigger_change (EventDispatcher obj, value)

296

class kivy.properties.StringProperty (defaultvalue="", **kw)
Bases: kivy.properties.Property

Parameters

defaultvalue: string, defaults to *
Specifies the default value of the property.

class kivy.properties.VariableListProperty (defaultvalue=None, length=4, **kw)
Bases: Kivy.properties.Property

list items and to expand them to the desired list size.

For example, GridLayout’s padding used to just accept one numeric value which was applied
equally to the left, top, right and bottom of the GridLayout. Now padding can be given one, two
or four values, which are expanded into a length four list [left, top, right, bottom] and stored in
the property.

Parameters

default: a default list of values
Specifies the default values for the list.

length: int, one of 2 or 4.
Specifies the length of the final list. The default list will be expanded to match a
list of this length.

**kwargs: a list of keyword arguments
Not currently used.

Keeping in mind that the default list is expanded to a list of length 4, here are some examples of
how VariableListProperty is handled.

* VariableListProperty([1]) represents [1, 1, 1, 1].
* VariableListProperty([1, 2]) represents [1, 2, 1, 2].
* VariableListProperty(['1px’, (2, ‘px’), 3, 4.0]) represents [1, 2, 3, 4.0].
* VariableListProperty(5) represents [5, 5, 5, 5].
¢ VariableListProperty(3, length=2) represents [3, 3].
New in version 1.7.0.
length
length: ‘int’

link (EventDispatcher obj, unicode name) — PropertyStorage

31.22 Resources management

Resource management can be a pain if you have multiple paths and projects. Kivy offers 2 functions for
searching for specific resources across a list of paths.

297

31.22.1 Resource lookup

When Kivy looks for a resource e.g. an image or a kv file, it searches through a predeter-
mined set of folders. You can modify this folder list using the resource_add _path() and
resource_remove_path() functions.

31.22.2 Customizing Kivy

These functions can also be helpful if you want to replace standard Kivy resources with your own. For
example, if you wish to customize or re-style Kivy, you can force your style.kv or data/defaulttheme-0.png
files to be used in preference to the defaults simply by adding the path to your preferred alternatives
via the resource_add path() method

As almost all Kivy resources are looked up using the resource_find(), so you can use this approach
to add fonts and keyboard layouts and to replace images and icons.

kivy.resources.resource_add_path (path)

Add a custom path to search in.

kivy.resources.resource_find (filename, use_cache=False)

Search for a resource in the list of paths. Use resource_add_path to add a custom path to the
search. By default, results are cached for 60 seconds. This can be disabled using use_cache=False.

Changed in version 2.1.0: use_cache parameter added and made True by default.

kivy.resources.resource_remove_path (path)

Remove a search path.

New in version 1.0.8.

31.23 Support

Activate other frameworks/toolkits inside the kivy event loop.

kivy.support.install_android()
Install hooks for the android platform.

* Automatically sleep when the device is paused.
e Automatically kill the application when the return key is pressed.

kivy.support.install_gobject_iteration()

Import and install gobject context iteration inside our event loop. This is used as soon as gobject
is used (like gstreamer).

kivy.support.install_twisted_reactor (**kwargs)

Installs a threaded twisted reactor, which will schedule one reactor iteration before the next frame
only when twisted needs to do some work.

Any arguments or keyword arguments passed to this function will be passed on the the threaded-
select reactors interleave function. These are the arguments one would usually pass to twisted’s
reactor.startRunning.

Unlike the default twisted reactor, the installed reactor will not handle any signals unless you set
the “installSignalHandlers” keyword argument to 1 explicitly. This is done to allow kivy to handle
the signals as usual unless you specifically want the twisted reactor to handle the signals (e.g.
SIGINT).

298

Note: Twisted is not included in iOS build by default. To use it on iOS, put the twisted distribu-
tion (and zope.interface dependency) in your application directory.

kivy.support.uninstall_twisted_reactor()

Uninstalls the Kivy’s threaded Twisted Reactor. No more Twisted tasks will run after this got
called. Use this to clean the twisted.internet.reactor .

New in version 1.9.0.

31.24 Utils

The Utils module provides a selection of general utility functions and classes that may be useful for
various applications. These include maths, color, algebraic and platform functions.

Changed in version 1.6.0: The OrderedDict class has been removed. Use collections.OrderedDict in-
stead.

class kivy.utils.QueryDict
Bases: builtins.dict

QueryDict is a dict() that can be queried with dot.

d = QueryDict()

create a key named toto, with the value 1
d.toto =1

it's the same as

d['toto'] =1

New in version 1.0.4.

class kivy.utils.Safelist (*args, **kwargs)
Bases: builtins.list

List with a clear() method.

Warning: Usage of the iterate() function will decrease your performance.

clear()

Remove all items from list.

kivy.utils.boundary (value, minvalue, maxvalue)
Limit a value between a minvalue and maxvalue.
kivy.utils.deprecated (func=None, msg="")

This is a decorator which can be used to mark functions as deprecated. It will result in a warning
being emitted the first time the function is used.

kivy.utils.difference(set1, set2)

Return the difference between 2 lists.

kivy.utils.escape_markup (text)

Escape markup characters found in the text. Intended to be used when markup text is activated
on the Label:

299

untrusted_text = escape_markup('Look at the example [1]')
text = '[color=ff00O00]' + untrusted_text + '[/color]’
w = Label(text=text, markup=True)

New in version 1.3.0.
kivy.utils.get_color_from_hex(s)
Transform a hex string color to a kivy Color.

kivy.utils.get_hex_from_color (color)
Transform a kivy Color to a hex value:

>>> get_hex_from_color((0, 1, 0))
'#00T 00"

>>> get_hex_from_color((.25, .77, .90, .5))
"#3fcde57f"

New in version 1.5.0.
kivy.utils.get_random_color (alpha=1.0)
Returns a random color (4 tuple).

Parameters

alpha: float, defaults to 1.0
If alpha == ‘random’, a random alpha value is generated.

kivy.utils.interpolate (value_from, value_to, step=10)

Interpolate between two values. This can be useful for smoothing some transitions. For example:

instead of setting directly
self.pos = pos

use interpolate, and you'll have a nicer transition
self.pos = interpolate(self.pos, new_pos)

Warning: These interpolations work only on lists/tuples/doubles with the same dimensions.
No test is done to check the dimensions are the same.

kivy.utils.intersection (set1, set2)
Return the intersection of 2 lists.

kivy.utils.is_color_transparent(c)
Return True if the alpha channel is 0.
kivy.utils.platform = 'linux'

A string identifying the current operating system. It is one of: ‘win’, ‘linux’, ‘android’, ‘macosx’, “ios’
or ‘unknown’. You can use it as follows:

from kivy.utils import platform
if platform == 'linux':
do_linux_things()

New in version 1.3.0.

Changed in version 1.8.0: platform is now a variable instead of a function.

300

class kivy.utils.reify (func)
Bases: builtins.object

Put the result of a method which uses this (non-data) descriptor decorator in the instance dict
after the first call, effectively replacing the decorator with an instance variable.

It acts like @property, except that the function is only ever called once; after that, the value is
cached as a regular attribute. This gives you lazy attribute creation on objects that are meant to be
immutable.

Taken from the Pyramid project.

To use this as a decorator:

@reify
def lazy(self):

return hard_to_compute_int
first_time = self.lazy # lazy is reify obj, reify.__get__() runs
second_time = self.lazy # lazy is hard_ to_compute_int

kivy.utils.rgba(s, *args)
Return a Kivy color (4 value from 0-1 range) from either a hex string or a list of 0-255 values.
New in version 1.10.0.

kivy.utils.strtotuple(s)

Convert a tuple string into a tuple with some security checks. Designed to be used with the eval()

function:

a = (12, 54, 68)

b = str(a) # return '(12, 54, 68)'
c = strtotuple(b) # return (12, 54, 68)

31.25 Vector

The Vector represents a 2D vector (x, y). Our implementation is built on top of a Python list.

An example of constructing a Vector:

>>> # Construct a point at 82,34
>>> v = Vector(82, 34)

>>> v[0]

82

>>> V., X

82

>>> v[1]

34

>>> V.y

34

>>> # Construct by giving a list of 2 values
>>> pos = (93, 45)

>>> v = Vector(pos)

>>> v[0]

93

(continues on next page)

301

https://pypi.python.org/pypi/pyramid/

(continued from previous page)

>>> V.X
93
>>> v[1]
45
>>> V.Y
45

31.25.1 Optimized usage

Most of the time, you can use a list for arguments instead of using a Vector. For example, if you want to
calculate the distance between 2 points:

a
b

(10, 10)
(87, 34)

optimized method
print('distance between a and b:', Vector(a).distance(b))

non-optimized method

va = Vector(a)

vb = Vector(b)

print('distance between a and b:', va.distance(vb))

31.25.2 Vector operators

The Vector supports some numeric operators such as +, -, /:

>>> Vector(l, 1) + Vector(9, 5)
[10, 6]

>>> Vector(9, 5) - Vector(5, 5)
[4, 0]

>>> Vector(10, 10) / Vector(2., 4.)
[5.0, 2.5]

>>> Vector (10, 10) / 5.
[2.0, 2.0]

You can also use in-place operators:

>>> v = Vector(1l, 1)
>>> Vo += 2

>>> Y
[3, 3]

>>> Vv x= 5
[15, 15]
>>> vy /= 2.
[7.5, 7.5]

class kivy.vector.Vector(*largs)
Bases: builtins.list

302

Vector class. See module documentation for more information.
angle(a)

Computes the angle between a and b, and returns the angle in degrees.

>>> Vector(100, 0).angle((0, 100))
-90.0

>>> Vector(87, 23).angle((-77, 10))
-157.7920283010705

distance(to)
Returns the distance between two points.

>>> Vector(10, 10).distance((5, 10))
5.

>>> a = (90, 33)

>>> b = (76, 34)

>>> \ector(a).distance(b)
14.035668847618199

distance2(to)

Returns the distance between two points squared.

>>> Vector(10, 10).distance2((5, 10))
25

dot(a)
Computes the dot product of a and b.

>>> Vector(2, 4).dot((2, 2))
12

static in_bbox(point,a,b)
Return True if point is in the bounding box defined by a and b.

>>> bmin = (0, 0)

>>> pmax = (100, 100)

>>> Vector.in_bbox((50, 50), bmin, bmax)
True

>>> \ector.in_bbox((647, -10), bmin, bmax)
False

length()

Returns the length of a vector.

>>> Vector(10, 10).1length()
14.142135623730951

>>> pos = (10, 10)

>>> Vector(pos).length()
14.142135623730951

length2()

Returns the length of a vector squared.

303

>>> Vector(10, 10).length2()
200

>>> pos = (10, 10)

>>> Vector(pos).length2()
200

static line_intersection(v1, v2, v3, v4)

Finds the intersection point between the lines (1)v1->v2 and (2)v3->v4 and returns it as a
vector object.

>>> g = (98, 28)

>>> b = (72, 33)
>>> ¢ = (10, -5)
>>> d = (20, 88)

>>> Vector.line_intersection(a, b, c, d)
[15.25931928687196, 43.911669367909241]

Warning: This is a line intersection method, not a segment intersection.

For math see: http://en.wikipedia.org/wiki/Line-line_intersection
normalize()

Returns a new vector that has the same direction as vec, but has a length of one.

>>> v = Vector(88, 33).normalize()

>>>

[0.93632917756904444, 0.3511234415883917]
>>> v.length()

1.0

rotate (angle)

Rotate the vector with an angle in degrees.

>>> v = Vector(100, 0)
>>> v.rotate(45)
[70.71067811865476, 70.71067811865474]

static segment_intersection(v1, v2,v3, v4)

Finds the intersection point between segments (1)v1->v2 and (2)v3->v4 and returns it as a
vector object.

>>> g = (98, 28)

>>> b = (72, 33)

>>> ¢ = (10, -5)

>>> d = (20, 88)

>>> Vector.segment_intersection(a, b, c, d)
None

>>> a = (0, 0)

>>> b = (10, 10)

>>> ¢ = (0, 10)

>>> d = (10, 0)

(continues on next page)

304

http://en.wikipedia.org/wiki/Line-line_intersection

(continued from previous page)

>>> \lector.segment_intersection(a, b, c, d)
[5, 5]

property x

X represents the first element in the list.

>>> v = Vector(12, 23)
>>> v[0]

12

>>> V. X

12

property y
Y represents the second element in the list.

>>> v = Vector(12, 23)
>>> v[1]

23

>>> V.y

23

31.26 Weak Method

The WeakMethod is used by the CLock class to allow references to a bound method that permits the

associated object to be garbage collected. Please refer to examples/core/clock_method.py for more informa-
tion.

This WeakMethod class is taken from the recipe http:/ /code.activestate.com/recipes/81253/, based on
the nicodemus version. Many thanks nicodemus!

class kivy.weakmethod.WeakMethod (method)
Bases: builtins.object

Implementation of a weakref for functions and bound methods.
is_dead()

Returns True if the referenced callable was a bound method and the instance no longer exists.
Otherwise, return False.

31.27 Weak Proxy

In order to allow garbage collection, the weak proxy provides weak references to objects. It effectively
enhances the weakref.proxy by adding comparison support.

class kivy.weakproxy.WeakProxy (obj, destructor=None)
Bases: builtins.object

Replacement for weakref.proxy to support comparisons

305

http://code.activestate.com/recipes/81253/
http://en.wikipedia.org/wiki/Weak_reference
https://en.wikipedia.org/wiki/Weak_reference
https://docs.python.org/2/library/weakref.html#weakref.proxy

306

CHAPTER

THIRTYTWO

CORE ABSTRACTION

This module defines the abstraction layers for our core providers and their implementations. For further
information, please refer to Architectural Overview and the Core Providers and Input Providers section of
the documentation.

In most cases, you shouldn’t directly use a library that’s already covered by the core abstraction. Always
try to use our providers first. In case we are missing a feature or method, please let us know by opening
a new Bug report instead of relying on your library.

Warning: These are not widgets! These are just abstractions of the respective functionality. For
example, you cannot add a core image to your window. You have to use the image widget class
instead. If you're really looking for widgets, please refer to kivy. uix instead.

exception kivy.core.CoreCriticalException
Bases: Exception

32.1 Audio

Load an audio sound and play it with:

from kivy.core.audio import SoundLoader

sound = SoundLoader.load('mytest.wav')

if sound:
print("Sound found at %s" % sound.source)
print("Sound is %.3f seconds" % sound.length)
sound.play()

You should not use the Sound class directly. The class returned by SoundLoader. load() will be the
best sound provider for that particular file type, so it might return different Sound classes depending
the file type.

307

32.1.1 Event dispatching and state changes

Audio is often processed in parallel to your code. This means you often need to enter the Kivy

eventloop in order to allow events and state changes to be dispatched correctly.

You seldom need to worry about this as Kivy apps typically always require this event loop for the
GUI to remain responsive, but it is good to keep this in mind when debugging or running in a REPL

(Read-eval-print loop).

Changed in version 1.10.0: The pygst and gi providers have been removed.

Changed in version 1.8.0: There are now 2 distinct Gstreamer implementations: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST working only for Python 2

+ Gstreamer 0.10.

Note: The core audio library does not support recording audio. If you require this functionality, please

refer to the audiostream extension.

class kivy.core.audio.Sound

Bases: kivy.event.EventDispatcher

Represents a sound to play. This class is abstract, and cannot be used directly.

Use SoundLoader to load a sound.
Events

on_play: None
Fired when the sound is played.

on_stop: None
Fired when the sound is stopped.

filename

Deprecated since version 1.3.0: Use source instead.

get_pos()

Returns the current position of the audio file. Returns 0 if not playing.
New in version 1.4.1.

property length
Get length of the sound (in seconds).

load()
Load the file into memory.

loop
Set to True if the sound should automatically loop when it finishes.

New in version 1.8.0.
LoopisaBooleanProperty and defaults to False.

pitch

Pitch of a sound. 2 is an octave higher, .5 one below. This is only implemented for SDL2

audio provider yet.
New in version 1.10.0.

pitchisaNumericProperty and defaults to 1.

308

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://github.com/kivy/audiostream

play()
Play the file.

seek (position)

Go to the <position> (in seconds).

Note: Most sound providers cannot seek when the audio is stopped. Play then seek.

source

Filename / source of your audio file.
New in version 1.3.0.

source is a StringProperty that defaults to None and is read-only. Use the
SoundLoader. load() forloading audio.

state
State of the sound, one of ‘stop” or ‘play’.

New in version 1.3.0.
stateisaread-only OptionProperty.

status

Deprecated since version 1.3.0: Use state instead.

stop()
Stop playback.

unload()

Unload the file from memory.

volume

Volume, in the range 0-1. 1 means full volume, 0 means mute.
New in version 1.3.0.
volumeisalNumericProperty and defaults to 1.

class kivy.core.audio.SoundLoader
Bases: builtins.object

Load a sound, using the best loader for the given file type.

static load (filename)

Load a sound, and return a Sound() instance.

static register (classobj)

Register a new class to load the sound.

32.2 Camera

Core class for acquiring the camera and converting its input into a Texture.
Changed in version 1.10.0: The pygst and videocapture providers have been removed.

Changed in version 1.8.0: There is now 2 distinct Gstreamer implementation: one using Gi/Gst working
for both Python 2+3 with Gstreamer 1.0, and one using PyGST working only for Python 2 + Gstreamer
0.10.

309

class kivy.core.camera.CameraBase (**kwargs)
Bases: kivy.event.EventDispatcher

Abstract Camera Widget class.

Concrete camera classes must implement initialization and frame capturing to a buffer that can
be uploaded to the gpu.

Parameters
index: int
Source index of the camera.
size: tuple (int, int)
Size at which the image is drawn. If no size is specified, it defaults to the reso-
lution of the camera image.

resolution: tuple (int, int)
Resolution to try to request from the camera. Used in the gstreamer pipeline by
forcing the appsink caps to this resolution. If the camera doesn’t support the
resolution, a negotiation error might be thrown.

Events

on_load
Fired when the camera is loaded and the texture has become available.

on_texture
Fired each time the camera texture is updated.

property index
Source index of the camera

init_camera()

Initialise the camera (internal)

property resolution

Resolution of camera capture (width, height)

start()
Start the camera acquire

stop()
Release the camera

property texture

Return the camera texture with the latest capture

32.3 Clipboard

Core class for accessing the Clipboard. If we are not able to access the system clipboard, a fake one will
be used.

Usage example:

#:import Clipboard kivy.core.clipboard.Clipboard

Button:
on_release:
self.text = Clipboard.paste()
Clipboard.copy('Data')

310

32.4 OpenGL

Select and use the best OpenGL library available. Depending on your system, the core provider can
select an OpenGL ES or a “classic” desktop OpenGL library.

32.5 Image

Core classes for loading images and converting them to a Texture. The raw image data can be keep in
memory for further access.

Changed in version 1.11.0: Add support for argb and abgr image data

32.5.1 In-memory image loading

New in version 1.9.0: Official support for in-memory loading. Not all the providers support it, but
currently SDL2, pygame, pil and imageio work.

To load an image with a filename, you would usually do:

from kivy.core.image import Image as CoreImage
im = CorelImage("image.png")

You can also load the image data directly from a memory block. Instead of passing the filename, you’ll
need to pass the data as a ByteslO object together with an “ext” parameter. Both are mandatory:

import io

from kivy.core.image import Image as Corelmage
data = io0.BytesIO(open("image.png", "rb").read())
im = CoreImage(data, ext="png")

By default, the image will not be cached as our internal cache requires a filename. If you want caching,
add a filename that represents your file (it will be used only for caching):

import io

from kivy.core.image import Image as CorelImage

data = io.BytesIO(open("image.png", "rb").read())

im = CorelImage(data, ext="png", filename="image.png")

32.5.2 Saving an image

A Corelmage can be saved to a file:

from kivy.core.image import Image as CorelImage
image = Corelmage(...)
image.save("/tmp/test.png")

Or you can get the bytes (new in 1.11.0):

import io from kivy.core.image import Image as Corelmage data = io.ByteslO() image =
Corelmage(...) image.save(data, fmt="png”) png_bytes = data.read()

311

class kivy.core.image.Image (arg, **kwargs)
Bases: kivy.event.EventDispatcher

Load an image and store the size and texture.

Changed in version 1.0.7: mipmap attribute has been added. The texture mipmap and tex-
ture_rectangle have been deleted.

Changed in version 1.0.8: An Image widget can change its texture. A new event ‘on_texture” has
been introduced. New methods for handling sequenced animation have been added.

Parameters

arg: can be a string (str), Texture, BytesIO or Image object
A string path to the image file or data URI to be loaded; or a Texture object,
which will be wrapped in an Image object; or a ByteslO object containing raw
image data; or an already existing image object, in which case, a real copy of the
given image object will be returned.

keep_data: bool, defaults to False
Keep the image data when the texture is created.

mipmap: bool, defaults to False
Create mipmap for the texture.

anim_delay: float, defaults to .25

Delay in seconds between each animation frame. Lower values means faster
animation.

ext: str, only with BytesIO arg
File extension to use in determining how to load raw image data.

filename: str, only with BytesIO arg
Filename to use in the image cache for raw image data.

property anim_available

Return True if this Image instance has animation available.
New in version 1.0.8.

property anim_delay

Delay between each animation frame. A lower value means faster animation.
New in version 1.0.8.

property anim_index

Return the index number of the image currently in the texture.
New in version 1.0.8.

anim_reset (allow_anim)
Reset an animation if available.

New in version 1.0.8.
Parameters

allow_anim: bool
Indicate whether the animation should restart playing or not.

Usage:

start/reset animation
image.anim_reset(True)

(continues on next page)

312

(continued from previous page)

or stop the animation
image.anim_reset(False)

You can change the animation speed whilst it is playing:

Set to 20 FPS
image.anim_delay = 1 / 20.

property filename

Get/set the filename of image
property height

Image height
property image

Get/set the data image object

static load (filename, **kwargs)

Load an image
Parameters

filename: str
Filename of the image.

keep_data: bool, defaults to False

Keep the image data when the texture is created.

load_memory (data, ext, filename="__inline__")

(internal) Method to load an image from raw data.

property nocache

Indicate whether the texture will not be stored in the cache or not.

New in version 1.6.0.

on_texture(*largs)

This event is fired when the texture reference or content has

changed. It is normally used for sequenced images.
New in version 1.0.8.

read_pixel(x, y)

For a given local x/y position, return the pixel color at that position.

keyword. For example:

Warning: This function can only be used with images loaded with the keep_data=True

color = m.read_pixel(150, 150)

m = Image.load('image.png', keep_data=True)

Parameters
x: int
Local x coordinate of the pixel in question.
y: int
Local y coordinate of the pixel in question.

313

remove_from_cache()

Remove the Image from cache. This facilitates re-loading of images from disk in case the
image content has changed.

New in version 1.3.0.

Usage:

im = CorelImage('l.jpg')

-- do something --

im.remove_from_cache()

im = CorelImage('l.jpg')

this time image will be re-loaded from disk

save (filename, flipped=False, fmt=None)

Save image texture to file.

The filename should have the “.png” extension because the texture data read from the GPU
is in the RGBA format. “jpg’ might work but has not been heavily tested so some providers
might break when using it. Any other extensions are not officially supported.

The flipped parameter flips the saved image vertically, and defaults to False.

Example:

Save an core image object

from kivy.core.image import Image
img = Image('hello.png')
img.save('hello2.png')

Save a texture

texture = Texture.create(...)
img = Image(texture)
img.save('hello3.png')

New in version 1.7.0.

Changed in version 1.8.0: Parameter flipped added to flip the image before saving, default to
False.

Changed in version 1.11.0: Parameter fmt added to force the output format of the file File-
name can now be a ByteslO object.

property size

Image size (width, height)
property texture

Texture of the image
property width

Image width

class kivy.core.image.ImageData (width, height, fmt, data, source=None, flip_vertical=True,
source_image=None, rowlength=0)
Bases: builtins.object

Container for images and mipmap images. The container will always have at least the mipmap
level 0.

314

add_mipmap (level, width, height, data, rowlength)
Add a image for a specific mipmap level.

New in version 1.0.7.

property data
Image data. (If the image is mipmapped, it will use the level 0)

flip_vertical
Indicate if the texture will need to be vertically flipped

fmt

Decoded image format, one of a available texture format

get_mipmap (level)
Get the mipmap image at a specific level if it exists

New in version 1.0.7.
property height
Image height in pixels. (If the image is mipmapped, it will use the level 0)

iterate_mipmaps ()

Iterate over all mipmap images available.
New in version 1.0.7.

mipmaps
Data for each mipmap.

property rowlength
Image rowlength. (If the image is mipmapped, it will use the level 0)

New in version 1.9.0.
property size
Image (width, height) in pixels. (If the image is mipmapped, it will use the level 0)

source

Image source, if available

property width

Image width in pixels. (If the image is mipmapped, it will use the level 0)

32.6 Spelling

Provides abstracted access to a range of spellchecking backends as well as word suggestions. The API
is inspired by enchant but other backends can be added that implement the same APL

Spelling currently requires python-enchant for all platforms except OSX, where a native implementation
exists.

>>> from kivy.core.spelling import Spelling

>>> s = Spelling()

>>> s.list_Tlanguages()

['en', 'en_CA', 'en_GB', 'en_US']

>>> s.select_language('en_US"')

>>> s.suggest('helo')

[u'hole', u'help', u'helot', u'hello', u'halo', u'hero', u'hell', u'held',
u'helm', u'he-lo']

315

exception kivy.core.spelling.NoLanguageSelectedError
Bases: Exception

Exception to be raised when a language-using method is called but no language was selected prior
to the call.

exception kivy.core.spelling.NoSuchLangError
Bases: Exception

Exception to be raised when a specific language could not be found.

class kivy.core.spelling.SpellingBase (language=None)
Bases: builtins.object

Base class for all spelling providers. Supports some abstract methods for checking words and
getting suggestions.

check (word)

If word is a valid word in self._language (the currently active language), returns True. If the
word shouldn’t be checked, returns None (e.g. for “'). If it is not a valid word in self._language,
return False.

Parameters

word: str
The word to check.

list_languages ()
Return a list of all supported languages. E.g. [‘en’, ‘en_GB’, ‘en_US’, ‘de’, ...]

select_language (language)
From the set of registered languages, select the first language for language.

Parameters

language: str

Language identifier. =~ Needs to be one of the options returned by
list_languages(). Sets the language used for spell checking and word sugges-
tions.

suggest (fragment)

For a given fragment (i.e. part of a word or a word by itself), provide corrections (fragment
may be misspelled) or completions as a list of strings.

Parameters

fragment: str
The word fragment to get suggestions/corrections for. E.g. ‘foo” might be-
come “of’, “food’” or “foot’.

32.7 Text

An abstraction of text creation. Depending of the selected backend, the accuracy of text rendering may
vary.

Changed in version 1.10.1: LabelBase. find_base_direction() added.
Changed in version 1.5.0: LabelBase. line_height added.

Changed in version 1.0.7: The Labe [Base does not generate any texture if the text has a width <= 1.

316

This is the backend layer for rendering text with different text providers, you should only be using this
directly if your needs aren’t fulfilled by the Labe .

Usage example:

from kivy.core.text import Label as Corelabel

my_label = CoreLabel()

my_label.text = 'hello’

the label is usually not drawn until needed, so force it to draw.
my_label.refresh()

Now access the texture of the label and use it wherever and

however you may please.

hello_texture = my_label.texture

32.7.1 Font Context Manager

A font context is a namespace where multiple fonts are loaded; if a font is missing a glyph needed to
render text, it can fall back to a different font in the same context. The font context manager can be
used to query and manipulate the state of font contexts when using the Pango text provider (no other
provider currently implements it).

New in version 1.11.0.

Warning: This feature requires the Pango text provider.

Font contexts can be created automatically by kivy.uix. label.Label or kivy.uix.textinput.
TextInput;if a non-existent context is used in one of these classes, it will be created automatically, or
if a font file is specified without a context (this creates an isolated context, without support for fallback).

Usage example:

from kivy.uix.label import Label
from kivy.core.text import FontContextManager as FCM

Create a font context containing system fonts + one custom TTF
FCM.create('system://myapp')
family = FCM.add_font('/path/to/file.ttf")

These are now interchangeable ways to refer to the custom font:
1bll = Label(font_context='system://myapp', family_name=family)
1b1l2 = Label(font_context='system://myapp', font_name='/path/to/file.ttf"')

You could also refer to a system font by family, since this is a
system:// font context
1b1l3 = Label(font_context='system://myapp', family_name='Arial')

317

class kivy.core.text.LabelBase (fext="', font_size=12, font_name=None, bold=False, italic=False,
underline=False, strikethrough=False, font_family=None,
halign="left’, valign="bottom’, shorten=False, text_size=None,
mipmap=False, color=None, line_height=1.0, strip=False,
strip_reflow=True, shorten_from="center’, split_str="",
unicode_errors="replace’, font_hinting="normal’,
font_kerning=True, font_blended=True, outline_width=None,
outline_color=None, font_context=None, font_features=None,
base_direction=None, font_direction="Itr’,
font_script_name="Latin’, text_language=None, **kwargs)

Bases: builtins.object

Core text label. This is the abstract class used by different backends to render text.

Warning: The core text label can’t be changed at runtime. You must recreate one.

Parameters

font_size: int, defaults to 12
Font size of the text

font_context: str, defaults to None
Context for the specified font (see kivy.uix. label.Label for details). None
will autocreate an isolated context named after the resolved font file.

font_name: str, defaults to DEFAULT_FONT
Font name of the text

font_family: str, defaults to None
Font family name to request for drawing, this can only be used with
font_context.

bold: bool, defaults to False
Activate “bold” text style

italic: bool, defaults to False
Activate “italic” text style

text_size: tuple, defaults to (None, None)
Add constraint to render the text (inside a bounding box). If no size is given,
the label size will be set to the text size.

padding: int| float or list | tuple, defaults to [0, 0, 0, 0].
Padding of the text in the format [padding_left, padding_top, padding_right,
padding bottom]. padding should be int!float or a list| tuple with 1, 2 or 4
elements.

padding_x: float, defaults to 0.0
Left/right padding

padding_y: float, defaults to 0.0
Top /bottom padding

halign: str, defaults to “left”
Horizontal text alignment inside the bounding box

valign: str, defaults to “bottom”
Vertical text alignment inside the bounding box

shorten: bool, defaults to False
Indicate whether the label should attempt to shorten its textual contents as

318

much as possible if a size is given. Setting this to True without an appropri-
ately set size will lead to unexpected results.

shorten_from: str, defaults to center
The side from which we should shorten the text from, can be left, right, or center.
E.g. if left, the ellipsis will appear towards the left side and it will display as
much text starting from the right as possible.

split_str: string, defaults to * * (space)
The string to use to split the words by when shortening. If empty, we can split
after every character filling up the line as much as possible.

max_lines: int, defaults to 0 (unlimited)
If set, this indicate how maximum line are allowed to render the text. Works
only if a limitation on text_size is set.

mipmap: bool, defaults to False
Create a mipmap for the texture

strip: bool, defaults to False
Whether each row of text has its leading and trailing spaces stripped. If halign
is justify it is implicitly True.

strip_reflow: bool, defaults to True
Whether text that has been reflowed into a second line should be stripped, even
if strip is False. This is only in effect when size_hint_x is not None, because
otherwise lines are never split.

unicode_errors: str, defaults to ‘replace’
How to handle unicode decode errors. Can be ‘strict’, ‘replace” or “ignore’.

outline_width: int, defaults to None
Width in pixels for the outline.

outline_color: tuple, defaults to (0, 0, 0)
Color of the outline.

font_features: str, defaults to None
OpenType font features in CSS format (Pango only)

base_direction: str, defaults to None (auto)
Text direction, one of None, ‘Itr’, ‘rtl’, ‘weak_ltr’, or ‘weak_rtl” (Pango only)

text_language: str, defaults to None (user locale)
RFC-3066 format language tag as a string (Pango only)
Deprecated since version 2.2.0: padding_x and padding_y have been deprecated. Please use padding

instead.

Changed in version 2.2.0: padding is now a list and defaults to [0, 0, 0, 0]. padding accepts int | float
or a list | tuple with 1, 2 or 4 elements.

Changed in version 1.10.1: font_context, font_family, font_features, base_direction and text_language
were added.

Changed in version 1.10.0: outline_width and outline_color were added.
Changed in version 1.9.0: strip, strip_reflow, shorten_from, split_str, and unicode_errors were added.

Changed in version 1.9.0: padding_x and padding_y has been fixed to work as expected. In the past,
the text was padded by the negative of their values.

Changed in version 1.8.0: max_lines parameters has been added.

Changed in version 1.0.8: size have been deprecated and replaced with text_size.

319

Changed in version 1.0.7: The valign is now respected. This wasn’t the case previously so you
might have an issue in your application if you have not considered this.

property content_height

Return the content height; i.e. the height of the text without any padding.
property content_size

Return the content size (width, height)
property content_width

Return the content width; i.e. the width of the text without any padding,.
static find_base_direction(text)

Searches a string the first character that has a strong direction, according to the Unicode
bidirectional algorithm. Returns None if the base direction cannot be determined, or one of
“Itr” or ‘rtl’.

Note: This feature requires the Pango text provider.

property fontid

Return a unique id for all font parameters
get_cached_extents()

Returns a cached version of the get_extents () function.

>>> func = self._get_cached_extents()

>>> func

<built-in method size of pygame.font.Font object at Ox01E45650>
>>> func('a line')

(36, 18)

Warning: This method returns a size measuring function that is valid for the font settings
used at the time get_cached_extents() was called. Any change in the font settings
will render the returned function incorrect. You should only use this if you know what
you're doing.

New in version 1.9.0.
get_extents (text)
Return a tuple (width, height) indicating the size of the specified text
static get_system_fonts_dir()
Return the directories used by the system for fonts.
property label
Get/Set the text
refresh()
Force re-rendering of the text
static register (name, fu_reqular, fn_italic=None, fu_bold=None, fu_bolditalic=None)
Register an alias for a Font.

New in version 1.1.0.

320

If you're using a ttf directly, you might not be able to use the bold/italic properties of the ttf
version. If the font is delivered in multiple files (one regular, one italic and one bold), then
you need to register these files and use the alias instead.

All the fn_regular/fn_italic/fn_bold parameters are resolved with kivy.resources.
resource_find().If fn_italic/fn_bold are None, fn_regular will be used instead.

render (real=False)
Return a tuple (width, height) to create the image with the user constraints. (width, height)
includes the padding.

shorten (text, margin=2)
Shortens the text to fit into a single line by the width specified by text_size [0]. If
text_size [0] is None, it returns text text unchanged.
split_str and shorten_from determines how the text is shortened.

Params
text str, the text to be shortened. margin int, the amount of space to leave between
the margins and the text. This is in addition to padding_x.

Returns
the text shortened to fit into a single line.
property text
Get/Set the text

property text_size
Get/set the (width, height) of the * ‘contrained rendering box

property usersize

(deprecated) Use text_size instead.

32.7.2 Text layout

An internal module for laying out text according to options and constraints. This is not part of the API
and may change at any time.

class kivy.core.text.text_layout.LayoutLine
Bases: builtins.object

Formally describes a line of text. A line of text is composed of many LayoutWord instances, each
with it’s own text, size and options.

A LayoutLine instance does not always imply that the words contained in the line ended with
a newline. That is only the case if 15_last_line is True. For example a single real line of text
can be split across multiple LayoutLine instances if the whole line doesn’t fit in the constrained
width.

Parameters

x: int
the location in a texture from where the left side of this line is began drawn.
y: int
the location in a texture from where the bottom of this line is drawn.
w: int
the width of the line. This is the sum of the individual widths of its
LayoutWord instances. Does not include any padding.

321

h: int
the height of the line. This is the maximum of the individual heights of its
LayoutWord instances multiplied by the line_height of these instance. So this is
larger then the word height.

is_last_line: bool
whether this line was the last line in a paragraph. When True, it implies that the
line was followed by a newline. Newlines should not be included in the text of
words, but is implicit by setting this to True.

line_wrap: bool
whether this line is continued from a previous line which didn’t fit into a con-
strained width and was therefore split across multiple LayoutLine instances.
line_wrap can be True or False independently of is_last_line.

words: python list
a list that contains only LayoutlWord instances describing the text of the line.

h: ‘int’
is_last_line
is_last_line: ‘int’

line_wrap

line_wrap: ‘int’

w

w: ‘int’
words

words: list
X

x: ‘int’
y

y: ‘int’

class kivy.core.text.text_layout.LayoutWord
Bases: builtins.object

Formally describes a word contained in a line. The name word simply means a chunk of text and
can be used to describe any text.

A word has some width, height and is rendered according to options saved in options. See
LayoutLine for its usage.

Parameters
options: dict
the label options dictionary for this word.
lw: int
the width of the text in pixels.
Ih: int
the height of the text in pixels.

text: string
the text of the word.

322

1h
lh: ‘int’
w
Iw: “int’
options
options: dict
text

text: object

kivy.core.text.text_layout.layout_text (text, list lines, tuple size, tuple text_size, dict options,
get_extents, int append_down, int complete)

Lays out text into a series of LayoutlWord and LayoutlLine instances according to the options
specified.

The function is designed to be called many times, each time new text is appended to the last line
(or first line if appending upwards), unless a newline is present in the text. Each text appended is
described by its own options which can change between successive calls. If the text is constrained,
we stop as soon as the constraint is reached.

Parameters

text: string or bytes
the text to be broken down into lines. If lines is not empty, the text is added
to the last line (or first line if append_down is False) until a newline is reached
which creates a new line in lines. See LayoutLine.

lines: list
a list of LayoutLine instances, each describing a line of the text. Calls to
Layout_text() append or create new LayoutLine instances in lines.

size: 2-tuple of ints
the size of the laid out text so far. Upon first call it should probably be (0, 0),
afterwards it should be the (w, h) returned by this function in a previous call.
When size reaches the constraining size, text_size, we stop adding lines and
return True for the clipped parameter. size includes the x and y padding.

text_size: 2-tuple of ints or None.
the size constraint on the laid out text. If either element is None, the text is
not constrained in that dimension. For example, (None, 200) will constrain the
height, including padding to 200, while the width is unconstrained. The first
line, and the first character of a line is always returned, even if it exceeds the
constraint. The value be changed between different calls.

options: dict
the label options of this text. The options are saved with each word allowing
different words to have different options from successive calls.

Note, options must include a space_width key with a value indicating the width
of a space for that set of options.

get_extents: callable
a function called with a string, which returns a tuple containing the width,
height of the string.

append_down: bool
Whether successive calls to the function appends lines before or after the exist-
ing lines. If True, they are appended to the last line and below i