19

Release 0.1

August 13, 2014

Contents

9

Components
Workflow
Features

Translation Examples

4.1 Element Content e e e e e e e e e e
42 AHributes L e e e e e e e e e
4.3 Nested Translations 0 0 e e e e e e e e e e e e e
4.4 Pluralization e e e e e e e e e e e e
4.5 JavaScCript. e e

Installation
Configuration
Usage

Angular Module

Requirements

10 Future Features

11 TODO

13

15

17

19

21

23

25

i19, Release 0.1

Internationalization tool chain for AngularJS

Contents 1

i19, Release 0.1

2 Contents

CHAPTER 1

Components

Angular module:
* Directives that mark translation strings
« Service that provides the translation engine
Translation toolchain:
* String extractor, dumps to gettext POT format (Python)
 gettext PO file to JSON converter (Python)

i19, Release 0.1

4 Chapter 1. Components

CHAPTER 2

Workflow

A

Annotate HTML (see Examples below), include 1ib/119. js

Run extraction (see Usage below)

Edit translation strings (see demo/locales/en/LC_MESSAGES/demo.po)
Compile JSON language file (eg demo/locales/en. json) and JavaScript pre-loader

Use the $119 angular service and switch languages on the fly by calling $i19.set_lang (' de’)

i19, Release 0.1

6 Chapter 2. Workflow

CHAPTER 3

Features

Some other features:

the JSON files with the translation strings can be included in a JS file to be available from the start (think
default language) or loaded upon language change (secondary languages)

app remains single page - no reload upon language change

full support for angular expressions in il8n strings, eg. You have {{credits}} EUR
left, with the usual automatic bindings and updates; same for attributes

error checking upon compilation: introduction of new { { scope}} or <ili="template"> references

118n strings can also contain full html ala <a ng-click='do ()’ >foo (I dont think you would
want to use this in general, but experience shows that it might come in handy eventually..)

supports 118n IDs (named translation strings), reverts to default string as ID

in case this turns out to be a bad idea way in the future, the syntax is easily converted into Chameleon style
118n attributes for offline processing

All in all the above is a pretty standard gettext workflow. The resulting POs are fully GNU gettext compatible, so
you can load them e.g. into Google Translation toolkit and work in a nice UI with automatic translation features and
thesaurus and what not. On the other hand, this remains an inline i18n solution, so the HTML inevitably gets more

cluttered.

i19, Release 0.1

8 Chapter 3. Features

CHAPTER 4

Translation Examples

The following examples demonstrate usage of the various 1 19—~ attributes and show the resulting translation data.

4.1 Element Content

To translate the content of an HTML element, either use the 119 tag:

<il9>Tag only</il9>

i19 1D Default
Tag only | Tag only

or the 119 attribute:
<div 1i19>Attribute</div>

i19 ID Default
Attribute | Attribute

To help translators we strongly suggest giving each translation string a name (“i19 ID”) to establish context:

<div 119="product-view-h">With explicit i18n IDs</div>

i191D Default
product-view-h | With explicit i18n IDs

4.2 Attributes

To translate attributes of HTML nodes, use the 119-attr tag:

i19 1D Default

Translated | Translated

Again, you should provide a name for the string:

i191D Default
portrait-alt | Translated too

i19, Release 0.1

Multiple attributes can be translated by separating them with commas. You can mix between explicit and implicit 119
IDs:

i19 ID Default
Translated Translated
with-another-id | Translated too

4.3 Nested Translations

Sometimes you need to translate elements that are contained in other elements that need to be translated as well.
Consider this example:

<p>Click here to continue</p>
While 119 allows you to just include the <a href. . in a translation string, it is less error-prone if the translator does
not have to deal with HTML at all. Ideally, she should translate two strings separately:
¢ the “here” from the link caption, and
¢ the surrounding string, preferably with a placeholder: “Click ${placeholder} to continue”
119 supports this functionality via the 11 9-name attribute:

<p il9="outer">Click
<a il9-name="link-to-next" 119="link-caption">here
to continue

</p>
i19 1D Default Translation notes
outer Click ${link-to-next} to continue
link-caption | here Referenced in ‘outer’ as ${link-to-next}

4.4 Pluralization

119 has full pluralization support. Just add an Angular Expression as parameter to the i19 ID:

<p il19="newmails (count)">You have {{count}} mail</p>

i19 1D Default Example Translation
newmails(count)[0] | You have {{count}} mail | You have one new Email.
newmails(count)[1] | You have {{count}} mail | You have {{count}} new Emails.

Default pluralization rules are automatically included by PyBabel, and the number of available plurals is adjusted per
language in the respective PO file. 119 imports the pluralization function from the PO file.

4.5 JavaScript

Finally, the translation engine can be accessed programmatically from Javascript:

alert ($119("Hello World"));

Pluralization:

10 Chapter 4. Translation Examples

i19, Release 0.1

alert ($119("You have mail (s)", S$scope.count));

Hint: If you want Angular-style variable substitution for JavaScript strings, use $interpolate:

function multi_mail () {
var translated =
$i19 ("You have {{count}} mail", $scope.count);
return S$interpolate (translated) ($scope);
}
$scope.mail_counter = 1;
multi_mail () == "You have one Email.";
Sscope.mail_counter = 23;
multi_mail () == "You have 23 Emails.";

4.5. JavaScript

11

i19, Release 0.1

12 Chapter 4. Translation Examples

CHAPTER 5

Installation

Install via PIP:

pip install https://github.com/johaness/il9/archive/master.zip

13

i19, Release 0.1

14 Chapter 5. Installation

CHAPTER 6

Configuration

Create a new Makef1ile for your project:

languages to pre-load by including in JavaScript
LANGUAGES_INCLUDE=en

other languages available as JSON for delayed loading
LANGUAGES_OTHER=de

translation domain
DOMAIN=my_app

locale directory, will create one sub-directory per language
LOCALES=locale/

HTML sources
HTML=%.html

Output: JavaScript file for pre-loading translation strings
119JS=locale/119dict.js

URL prefix for loading language JSON files
BASEURL=https://cdn.example.org/

include ‘il9conf common.mk '

Initialize the translation file structure once:

make init

15

i19, Release 0.1

16 Chapter 6. Configuration

CHAPTER 7

Usage

Extract strings from source, merge with update existing translations, compile JavaScript and JSON output:

make

17

i19, Release 0.1

18 Chapter 7. Usage

CHAPTER 8

Angular Module

Load the 119. js library from the distribution and the 119dict . js generated by your Makefile, then access the
$119 module in angular:

angular.

module (' demo’, [711971).

controller (’ctl’, [’/Sscope’, '$119’, function ($scope, $119) {

P

// set language
$il19.set_lang(’de’) .success(...).error(...);

// get language
var 1 = $il19.get_lang(); // default ’“en’

// enable / disable console warnings for missing translations
$il9.warn_on_missing_strings = false; // default true

// return default string in case no translation
// 1is available; if false, return 1i18n ID
$i19.fallback_default = true;

// to apply fallback _default, you need generate a language change
// event:
$il19.set_lang($il9.get_lang());

Tip: Run

il9conf 119. Js on the command line to get the full path to the distribution provided 119. js file.

19

i19, Release 0.1

20

Chapter 8. Angular Module

CHAPTER 9

Requirements

pybabel, make

21

i19, Release 0.1

22

Chapter 9. Requirements

cHAPTER 10

Future Features

Handle multiple occurences of the same translation ID
— List all filename:lineno
— Warn if default strings vary
JS string extractor
— Check if pybabel parser can be used
Attribute/Tag name converter for Chameloen to verify fall back

Manhole with support functions for translators

23

i19, Release 0.1

24

Chapter 10. Future Features

CHAPTER 11

TODO

Speed measurements
Unittests
Integration tests: HTML source files w/ corner cases

Documentation

25

	Components
	Workflow
	Features
	Translation Examples
	Element Content
	Attributes
	Nested Translations
	Pluralization
	JavaScript

	Installation
	Configuration
	Usage
	Angular Module
	Requirements
	Future Features
	TODO

