
GradleFx Documentation
Release 0.8.1

GradleFx

March 05, 2014

Contents

i

ii

GradleFx Documentation, Release 0.8.1

Contents:

Contents 1

GradleFx Documentation, Release 0.8.1

2 Contents

CHAPTER 1

Where to start

1. GradleFx is based on Gradle, so if you’re completely new to Gradle start by going through their documentation:
http://www.gradle.org/documentation

This documentation will give you a good overview of Gradle’s features and some essential concepts
which you’ll need to get started with GradleFx.

2. Once you have a good comprehension of Gradle, start going through the rest of the GradleFx documentation.
This will save you some time afterwards.

3. After all this, we have a set of sample projects for each kind of project. These will show you
how to use the GradleFx properties and implement certain mechanisms. These can be found here
https://github.com/GradleFx/GradleFx-Examples

4. If you still have some questions, feedback, or having a problem while creating your build script, please let us
know on our support forum: http://support.gradlefx.org/

5. Found a bug while implementing your build script? Log it here: https://github.com/GradleFx/GradleFx/issues

3

http://www.gradle.org/documentation
https://github.com/GradleFx/GradleFx-Examples
http://support.gradlefx.org/
https://github.com/GradleFx/GradleFx/issues

GradleFx Documentation, Release 0.8.1

4 Chapter 1. Where to start

CHAPTER 2

Basic Setup

2.1 Requirements

• Gradle v1.6

• Minimum Flex 4.x

2.2 Using the plugin in your project

To use the plugin in your project, you’ll have to add the following to your build.gradle file:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath group: ’org.gradlefx’, name: ’gradlefx’, version: ’0.8.1’
}

}

apply plugin: ’gradlefx’

Make sure that the buildscript structure is at the top of your build file.

2.3 Setting up the Flex/Air SDK

GradleFx gives you several options to specify the Flex/AIR SDK:

1. set the FLEX_HOME environment variable (convention), this should point to your Flex/AIR SDK instal-
lation.

2. set the flexHome convention property to the location of your Flex/AIR SDK

flexHome = "C:/my/path/to/the/flex/sdk"

3. specify the Flex/AIR SDK as a dependency. See Flex/AIR SDK Auto Install

5

GradleFx Documentation, Release 0.8.1

2.4 Defining the project type

Every project should define its type, this can be one of the following:
swc: a library project of which the sources will be packaged into a swc file
swf: a Flex web project of which the sources will be packaged into a swf file.
air: a Flex web project of which the sources will be packaged into a air file.
mobile: a Flex mobile project of which the sources will be packaged into an apk or ipa file.

example project type definition:

type = ’swc’

6 Chapter 2. Basic Setup

CHAPTER 3

Flex/AIR SDK Auto Install

GradleFx gives you the option to automatically download and install the Flex/AIR SDK. You can do this by specifying
either of them as a dependency. This mechanism supports both the Adobe and the Apache Flex SDK.

3.1 Overview

When you specify the SDK’s you’ll always have to use a packaged SDK. The supported archive formats are zip, tar.gz
and tbz2.

What basically happens when you declare the dependency is this:

1. GradleFx will determine the install location of the SDK. By convention it will create an SDK specific directory
in the %GRADLE_USER_HOME%/gradlefx/sdks directory. The name of the SDK specific directory is a hash
of the downloaded sdk archive location.

2. When the SDK isn’t yet installed GradleFx will install it.

3. Once installed it will assign the install location to the flexHome convention property.

GradleFx will always install the AIR SDK in the same directory as the Flex SDK.

Note: A sample project which uses the auto-install feature can be found here: Auto-install sample

3.2 Dependency types

There are a couple of ways to specify the SDK’s as dependencies.

3.2.1 Maven/Ivy Dependency

If you have deployed the SDK archives to a Maven/Ivy repository then you can specify them like this:

dependencies {
flexSDK group: ’org.apache’, name: ’apache-flex-sdk’, version: ’4.9.0’, ext: ’zip’
airSDK group: ’com.adobe’, name: ’AdobeAIRSDK’, version: ’3.4’, ext: ’zip’

}

7

https://github.com/GradleFx/GradleFx-Examples/blob/develop/sdk-autoinstall/build.gradle

GradleFx Documentation, Release 0.8.1

3.2.2 URL-based Dependency

You can also specify the SDK by referencing a URL. To do this you need to define custom Ivy URL Resolvers. For
example for the Apache Flex SDK this would be something like this:

repositories {
ivy {

name ’Apache’
// pattern for url http://apache.cu.be/flex/4.9.0/binaries/apache-flex-sdk-4.9.0-bin.zip
artifactPattern ’http://apache.cu.be/flex/[revision]/binaries/[module]-[revision]-bin.[ext]’

}
}

Always make sure to replace the artifact name, version and extension type with [module], [revision] and [ext] in the
pattern. Once you’ve defined the pattern you can define the dependencies like this:

dependencies {
flexSDK group: ’org.apache’, name: ’apache-flex-sdk’, version: ’4.9.0’, ext: ’zip’
airSDK group: ’com.adobe’, name: ’AdobeAIRSDK’, version: ’3.4’, ext: ’zip’

}

3.2.3 File-based dependency

And the last option is to specify the SDK’s as file-based dependencies. This can be done as follows:

dependencies {
flexSDK files(’C:/sdks/flex-4.6-sdk.zip’)
airSDK files(’C:/sdks/air-3.4-sdk.zip’)

}

3.3 Apache Flex SDK dependencies

As you may probably know the Apache Flex SDK requires some dependencies that aren’t included in the SDK archive.
GradleFx handles the installation of these dependencies for you. During the installation some prompts will be shown
to accept some licenses. When you’ve made sure you read the licenses, you can turn the prompts off (e.g. for a
continuous integration build) like this:

sdkAutoInstall {
showPrompts = false

}

8 Chapter 3. Flex/AIR SDK Auto Install

CHAPTER 4

Properties/Conventions

The GradleFx plugin provides some properties you can set in your build script. Most of them are using conventions,
so you’ll only need to specify them if you want to use your own values.

The following sections describe the properties you can/have to specify in your build script(required means whether
you have to specify it yourself):

9

GradleFx Documentation, Release 0.8.1

10 Chapter 4. Properties/Conventions

GradleFx Documentation, Release 0.8.1

4.1 Standard Properties

Property
Name

Convention Re-
quired

Description

gradle-
FxUser-
HomeDir

%GRA-
DLE_USER_HOME%/gradleFx

false The location where GradleFx will store GradleFx specific
files (e.g. installed SDK’s)

flexHome FLEX_HOME environment
var

false The location of your Flex SDK

flexSd-
kName

false The name you want to give to the Flex SDK Primarily used in
the IDE integration

type n/a true Whether this is a library project or an application. Possible
values: ‘swc’, ‘swf’, ‘air’ or ‘mobile’

srcDirs [’src/main/actionscript’] false An array of source directories
re-
sourceDirs

[’src/main/resources’] false An array of resource directories (used in the copyresources
task, or included in the SWC for library projects)

testDirs [’src/test/actionscript’] false An array of test source directories
testRe-
sourceDirs

[’src/test/resources’] false An array of test resource directories

include-
Classes

null false Equivalent of the include-classes compiler option. Accepts a
list of classnames

includeS-
ources

null false Equivalent of the include-sources compiler option. Accepts a
list of classfiles and/or directories.

frame-
workLink-
age

‘external’ for swc projects,
‘rsl’ for swf projects and
‘none’ for pure as projects

false How the Flex framework will be linked in the project:
“external”, “rsl”, “merged” or “none”

useDebu-
gRSLSwfs

false false Whether to use the debug framework rsl’s when
frameworkLinkage is rsl

addition-
alCom-
pilerOp-
tions

[] false Additional compiler options you want to specify to the compc
or mxmlc compiler. Can be like [’-target-player=10’,
‘-strict=false’]

fatSwc null false When set to true the asdoc information will be embedded into
the swc so that Adobe Flash Builder can show the
documentation

localeDir ‘src/main/locale’ false Defines the directory in which locale folders are located like
en_US etc.

locales [] false The locales used by your application. Can be something like
[’en_US’, ‘nl_BE’]

main-
Class

‘Main’ false This property is required for the mxmlc compiler. It defines
the main class of your application. You can specify your own
custom file like ‘org/myproject/MyApplication.mxml’ or
‘org.myproject.MyApplication’

output ${project.name} false This is the name of the swc/swf that will be generated by the
compile task

jvmArgu-
ments

[] false You can use this property to specify jvm arguments which are
used during the compile task. Only one jvm argument per
array item: e.g. jvmArguments =
[’-Xmx1024m’,’-Xms512m’]

play-
erVersion

‘10.0’ false Defines the flash player version

html-
Wrapper

complex property false This is a complex property which contains properties for the
createHtmlWrapper task

flexUnit complex property false This is a complex property which contains properties for the
flexUnit task

air complex property false This is a complex property which contains properties for AIR
projects

asdoc complex property false This is a complex property which contains properties for the
asdoc task

sdkAu-
toInstall

complex property false This is a complex property which contains properties for the
SDK auto install feature

4.1. Standard Properties 11

GradleFx Documentation, Release 0.8.1

Note: All the available compiler options for the mxmlc and compc compiler are available here Compc
options , Mxmlc options

4.2 Complex properties

4.2.1 air

Prop-
erty
Name

Convention Re-
quired

Description

keystore “${project.name}.p12”false The name of the certificate which will be used to sign the air package.
Uses the project name by convention.

storepass null true The password of the certificate
applica-
tionDe-
scriptor

“src/main/actionscript/${project.name}.xml”false The location of the air descriptor file. Uses the project name by
convention for this file.

include-
File-
Trees

null false A list of FileTree objects which reference the files to include into the
AIR package, like application icons which are specified in your
application descriptor. Can look like this: air.includeFileTrees =
[fileTree(dir: ‘src/main/actionscript/’, include: ‘assets/appIcon.png’)]

12 Chapter 4. Properties/Conventions

http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a92.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a92.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a80.html

GradleFx Documentation, Release 0.8.1

4.2. Complex properties 13

GradleFx Documentation, Release 0.8.1

4.2.2 airMobile

Property Name Convention Required Description
target apk false Specifies the mobile plat-

form for which the package
is created.

ane - an AIR
native
extension
package

Android package targets:
apk - an
Android
package. A
package
produced with
this target can
only be
installed on an
Android
device, not an
emulator.
apk-captive-
runtime - an
Android
package that
includes both
the application
and a captive
version of the
AIR runtime.
A package
produced with
this target can
only be
installed on an
Android
device, not an
emulator.
apk-debug -
an Android
package with
extra
debugging
information.
(The SWF files
in the
application
must also be
compiled with
debugging
support.)
apk-emulator
- an Android
package for
use on an
emulator
without
debugging
support. (Use
the apk-debug
target to permit
debugging on
both emulators
and devices.)
apk-profile -
an Android
package that
supports
application
performance
and memory
profiling.

iOS package targets:
ipa-ad-hoc -
an iOS
package for ad
hoc
distribution.
ipa-app-store
- an iOS
package for
Apple App
store
distribution.
ipa-debug - an
iOS package
with extra
debugging
information.
(The SWF files
in the
application
must also be
compiled with
debugging
support.)
ipa-test - an
iOS package
compiled
without
optimization or
debugging
information.
ipa-debug-
interpreter -
functionally
equivalent to a
debug
package, but
compiles more
quickly.
However, the
ActionScript
bytecode is
interpreted and
not translated
to machine
code. As a
result, code
execution is
slower in an
interpreter
package.
ipa-debug-
interpreter-
simulator -
functionally
equivalent to
ipa-debug-
interpreter, but
packaged for
the iOS
simulator.
Macintosh-
only. If you
use this option,
you must also
include the
-platformsdk
option,
specifying the
path to the iOS
Simulator
SDK.
ipa-test-
interpreter -
functionally
equivalent to a
test package,
but compiles
more quickly.
However, the
ActionScript
bytecode is
interpreted and
not translated
to machine
code. As a
result, code
execution is
slower in an
interpreter
package.
ipa-test-
interpreter-
simulator -
functionally
equivalent to
ipa-test-
interpreter, but
packaged for
the iOS
simulator.
Macintosh-
only. If you
use this option,
you must also
include the
-platformsdk
option,
specifying the
path to the iOS
Simulator
SDK.

extensionDir false The name of a directory to
search for native extensions
(ANE files). Either an ab-
solute path or a relative path
from the project directory.

targetDevice false Specify ios_simulator, the
serial number (Android), or
handle (iOS) of the con-
nected device. On iOS,
this parameter is required;
on Android, this paramater
only needs to be specified
when more than one An-
droid device or emulator
is attached to your com-
puter and running. If the
specified device is not con-
nected, ADT returns exit
code 14: Device error (An-
droid) or Invalid device
specified (iOS). If more
than one device or emulator
is connected and a device is
not specified, ADT returns
exit code 2: Usage error

provisioningProfile false The path to your iOS pro-
visioning profile. Relative
from your project directory.

outputExtension apk false The extension of the pack-
aged application.

platform android false The name of the platform of
the device. Specify ios or
android.

platformSdk false The path to the platform
SDK for the target device:
Android - The AIR 2.6+
SDK includes the tools
from the Android SDK
needed to implement the
relevant ADT commands.
Only set this value to use
a different version of the
Android SDK. Also, the
platform SDK path does not
need to be supplied if the
AIR_ANDROID_SDK_HOME
environment variable is al-
ready set. iOS - The AIR
SDK ships with a captive
iOS SDK. The platformsdk
option lets you package
applications with an ex-
ternal SDK so that you
are not restricted to using
the captive iOS SDK. For
example, if you have built
an extension with the latest
iOS SDK, you can specify
that SDK when packaging
your application. Addi-
tionally, when using ADT
with the iOS Simulator,
you must always include
the platformsdk option,
specifying the path to the
iOS Simulator SDK.

simulatorPlatformSdk false The path to the platform
SDK for the simulator.

simulatorTarget apk false Specifies the mobile plat-
form of the simulator. See
the target property for more
information.

simulatorTargetDevice false Specifies the device of
the simulator. See the
targetDevice property
for more information.

14 Chapter 4. Properties/Conventions

GradleFx Documentation, Release 0.8.1

4.2.3 adl

Prop-
erty
Name

Con-
ven-
tion

Re-
quired

Description

profile false ADL will debug the application with the specified profile. Can have the following
values: desktop, extendedDesktop, mobileDevice

screen-
Size

false The simulated screen size to use when running apps in the mobileDevice profile on
the desktop. To specify the screen size as a predefined screen type, look at the list
provided here: http://help.adobe.com/en_US/air/build/WSfffb011ac560372f-
6fa6d7e0128cca93d31-8000.html | To specify the screen pixel dimensions directly,
use the following format: widthXheight:fullscreenWidthXfullscreenHeight

4.2.4 htmlWrapper

Property Name Convention Required Description
title project.description false The title of the html page
file “${project.name}.html” false Name of the html file
percentHeight ‘100’ false Height of the swf in the

html page
percentWidth ‘100’ false Width of the swf in the html

page
application project.name false Name of the swf object in

the HTML wrapper
swf project.name false The name of the swf that

is embedded in the HTML
page. The ‘.swf’ extension
is added automatically, so
you don’t need to specify it.

history ‘true’ false Set to true for deeplinking
support.

output project.buildDir false Directory in which the html
wrapper will be generated.

expressInstall ‘true’ false use express install
versionDetection ‘true’ false use version detection
source null false The relative path to your

custom html template
tokenReplacements

[application: wrap-
per.application,
percentHeight:
“$wrap-
per.percentHeight%”,
percentWidth:
“$wrap-
per.percentWidth%”,
swf: wrapper.swf,
title: wrapper.title

]

false A map of tokens which will
be replaced in your custom
template. The keys have
to be specified as ${key} in
your template

4.2. Complex properties 15

http://help.adobe.com/en_US/air/build/WSfffb011ac560372f-6fa6d7e0128cca93d31-8000.html
http://help.adobe.com/en_US/air/build/WSfffb011ac560372f-6fa6d7e0128cca93d31-8000.html

GradleFx Documentation, Release 0.8.1

4.2.5 flexUnit

(Since GradleFx uses the FlexUnit ant tasks it also uses the same properties, more information about
the properties specified in this table can be found in the “Property Descriptions” section on this page:
http://docs.flexunit.org/index.php?title=Ant_Task)

Property
Name

Convention Re-
quired

Description

template Uses the internal
template provided
by GradleFx

false The path to your test runner template relative from the project
directory

player ‘flash’ false Whether to execute the test SWF against the Flash Player or ADL.
See the “Property Descriptions” section on this page for more
information: http://docs.flexunit.org/index.php?title=Ant_Task

command FLASH_PLAYER_EXE
environment
variable

false The path to the Flash player executable which will be used to run the
tests

toDir “${project.buildDirName}/reports”false Directory to which the test result reports are written
work-
ingDir

project.path false Directory to which the task should copy the resources created during
compilation.

haltonfail-
ure

‘false’ false Whether the execution of the tests should stop once a test has failed

verbose ‘false’ false Whether the tasks should output information about the test results
local-
Trusted

‘true’ false The path specified in the ‘swf’ property is added to the local
FlashPlayer Trust when this property is set to true.

port ‘1024’ false On which port the task should listen for test results
buffer ‘262144’ false Data buffer size (in bytes) for incoming communication from the

Flash movie to the task. Default should in general be enough, you
could possibly increase this if your tests have lots of failures/errors.

timeout ‘60000’ false How long (in milliseconds) the task waits for a connection with the
Flash player

failure-
property

‘flexUnitFailed’ false If a test fails, this property will be set to true

headless ‘false’ false Allows the task to run headless when set to true.
display ‘99’ false The base display number used by Xvnc when running in headless

mode.
includes [’**/*Test.as’] false Defines which test classes are executed when running the tests
excludes [] false Defines which test classes are excluded from execution when running

the tests
swfName “TestRunner.swf” false the name you want to give to the resulting test runner application
additional-
Com-
pilerOp-
tions

[] false A list of custom compiler options for the test runner application

4.2.6 asdoc

Property Name Convention Required Description
outputDir ‘doc’ false The directory in which the asdoc documentation will be created
additionalASDocOptions [] false Additional options for the asdoc compiler.

16 Chapter 4. Properties/Conventions

http://docs.flexunit.org/index.php?title=Ant_Task
http://docs.flexunit.org/index.php?title=Ant_Task

GradleFx Documentation, Release 0.8.1

4.2.7 sdkAutoInstall

Property
Name

Con-
ven-
tion

Re-
quired

Description

show-
Prompts

true false Whether to show prompts during the installation or let it run in full auto mode.
Make sure you agree with all the licenses before turning this off

Note: All the available asdoc options (for Flex 4.6) can be found here: asdoc compiler options

4.3 Example usage (build.gradle)

buildscript {
repositories {

mavenLocal()
}
dependencies {

classpath group: ’org.gradlefx’, name: ’gradlefx’, version: ’0.5’
}

}

apply plugin: ’gradlefx’

flexHome = System.getenv()[’FLEX_SDK_LOCATION’] //take a custom environment variable which contains the Flex SDK location

srcDirs = [’/src/main/flex’]

additionalCompilerOptions = [
’-player-version=10’,
’-strict=false’

]

htmlWrapper {
title = ’My Page Title’
percentHeight = 80
percentWidth = 80

}

4.3. Example usage (build.gradle) 17

http://help.adobe.com/en_US/flex/using/WSd0ded3821e0d52fe1e63e3d11c2f44bc36-7ffa.html#WSd0ded3821e0d52fe1e63e3d11c2f44bb7b-7feb

GradleFx Documentation, Release 0.8.1

18 Chapter 4. Properties/Conventions

CHAPTER 5

Dependency Management

5.1 Overview

The GradleFx plugin adds the following configurations to your project:

• merged: This configuration can be used for dependencies that should be merged in the SWC/SWF. Same as
-compiler.library-path

• internal: The dependency content will be merged in the SWC/SWF. Same as -compiler.include-libraries

• external: The dependency won’t be included in the SWC/SWF. Same as -compiler.external-library-path

• rsl: The SWF will have a reference to load the dependency at runtime. Same as -runtime-shared-library-path

• test: This is for dependencies used in unit tests

• theme: The theme that will be used by the application. Same as -theme

You can specify your dependencies like this:

dependencies {
external group: ’org.springextensions.actionscript’, name: ’spring-actionscript-core’, version: ’1.2-SNAPSHOT’, ext: ’swc’
external group: ’org.as3commons’, name: ’as3commons-collections’, version: ’1.1’, ext: ’swc’
external group: ’org.as3commons’, name: ’as3commons-eventbus’, version: ’1.1’, ext: ’swc’

merged group: ’org.graniteds’, name: ’granite-swc’, version: ’2.2.0.SP1’, ext: ’swc’
merged group: ’org.graniteds’, name: ’granite-essentials-swc’, version: ’2.2.0.SP1’, ext: ’swc’

theme group: ’my.organization’, name: ’fancy-theme’, version: ’1.0’, ext: ’swc’
}

5.2 Project Lib Dependencies

You can also add dependencies to other projects, as described here in the Gradle documentation:
http://www.gradle.org/current/docs/userguide/userguide_single.html#sec:project_jar_dependencies

19

http://www.gradle.org/current/docs/userguide/userguide_single.html#sec:project_jar_dependencies

GradleFx Documentation, Release 0.8.1

20 Chapter 5. Dependency Management

CHAPTER 6

Tasks

6.1 Overview

The GradleFx plugin adds the following tasks to your project:

Task name Depends on Description
clean n/a Deletes the build directory
compileFlex copyresources Creates a swc or swf file from your code. The ‘type’

property defines the type of file
package compile Packages the generated swf file into an .air package
copyresources n/a Copies the resources from the source ‘resources’

directory to the build directory
copytestre-
sources

n/a Copies the test resources from the test ‘resources’
directory to the build directory

publish n/a Copies the files from the build directory to the
publish directory.

createHtml-
Wrapper

n/a Creates an HTML wrapper for the project’s swf

test copytestresources Runs the FlexUnit tests
asdoc compile Creates asdoc documentation for your sources
packageMobile compile Packages the mobile app for a release version.
packageSimula-
torMobile

compile Packages the mobile app for the simulator.

installMobile uninstallMobileApp packageMobile install app to target device
installSimula-
torMobile

uninstallSimulatorMobileApp
packageSimulatorMobileApp

Installs the app on the simulator.

uninstallMobile Uninstalls the app from the device.
uninstallSimu-
latorMobile

Uninstalls the app from the simulator.

launchMobile installMobileApp Launches the app to a certain device.
launchSimula-
torMobile

installSimulatorMobileApp Launches the app on the simulator.

launchAdl compile Task which launches ADL.

The Flashbuilder plugin adds the following tasks to your project:

Task name Depends on Description
flashbuilder n/a Creates the Adobe Flash Builder project files
flashbuilderClean n/a Deletes the Adobe Flash Builder project files

The Idea plugin adds the following tasks to your project:

21

GradleFx Documentation, Release 0.8.1

Task name Depends on Description
idea n/a Creates the IDEA Intellij project files
ideaClean n/a Deletes the IDEA Intellij project files

The Scaffold plugin adds the following tasks to your project:

Task name Depends on Description
scaffold n/a Generates directory structure and main application class

6.2 Adding additional logic

Sometimes you may want to add custom logic right after or before a task has been executed. If you want to add some
logging before or after the compile task, you can just do this:

compile.doFirst {
println "this gets printed before the compile task starts"

}

compile.doLast {
println "this gets printed after the compile task has been completed"

}

22 Chapter 6. Tasks

CHAPTER 7

AIR

This page describes how you need to configure your AIR project. Only a few things are needed for this.

Note: There’s a working example available in the GradleFx examples project: https://github.com/GradleFx/GradleFx-
Examples/tree/master/air-single-project

7.1 Project type

First you’ll need to specify the project type, which in this case is ‘air’. You do this as follows:

type = ’air’

7.2 AIR descriptor file

Then you’ll need an AIR descriptor file (like in every AIR project). If you give this file the same name as your project
and put it in the default source directory (src/main/actionscript) then you don’t have to configure anything because this
is the convention. If you want to deviate from this convention you can specify the location like this:

air {
applicationDescriptor ’src/main/resources/airdescriptor.xml’

}

7.3 Certificate

Then you’ll need a certificate to sign the AIR package. This certificate has to be a *.p12 file. GradleFx uses the
project name for the certificate by convention, so if your certificate is located at the root of your project and has
a %myprojectname%.p12 filename; then you don’t have to configure anything. If you want to deviate from this
convention, then you can do this by overriding the air.keystore property:

air {
keystore ’certificate.p12’

}

You also need to specify the password for the certificate. This property is required. You can specify this as follows:

23

https://github.com/GradleFx/GradleFx-Examples/tree/master/air-single-project
https://github.com/GradleFx/GradleFx-Examples/tree/master/air-single-project

GradleFx Documentation, Release 0.8.1

air {
storepass ’mypassword’

}

If you don’t want to put the password in the build file then you can use the prop-
erties system of Gradle, see the Gradle documentation for more information about this:
http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.html#sec:gradle_properties_and_system_properties

7.4 Adding files to the AIR package

In most cases you will want to add some files to your AIR package, like application icons which are being specified in
your application descriptor like this:

<icon>
<image32x32>assets/appIcon.png</image32x32>

</icon>

Only specifying those icons in your application descriptor won’t do it for the compiler, so you need to provide them
to it. With GradleFx you can do that with the includeFileTrees property, which looks like this:

air {
includeFileTrees = [

fileTree(dir: ’src/main/actionscript/’, include: ’assets/appIcon.png’)
]

}

You have to make sure that the ‘include’ part always has the same name as the one specified in your application descrip-
tor, otherwise the compiler won’t recognize it. The fileTree also accepts patterns and multiple includes, more info about
this can be found in the Gradle documentation: http://gradle.org/docs/current/userguide/working_with_files.html

24 Chapter 7. AIR

http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.html#sec:gradle_properties_and_system_properties
http://gradle.org/docs/current/userguide/working_with_files.html

CHAPTER 8

Mobile

This page describes how you can setup GradleFx to build your mobile project.

Note: There’s a working example available in the GradleFx examples project: https://github.com/GradleFx/GradleFx-
Examples/tree/master/mobile-android

Note: For a complete list of mobile convention properties, take a look at the airMobile and adt sections in the
Properties/Conventions page.

8.1 General setup

You’ll have to define the project as a mobile project. You can define this as follows:

type = ’mobile’

For other general AIR setup instructions, check out the AIR documentation page: AIR

The mobile properties have conventions for Android, so if you’re building for this platform, you’re all set (unless you
want to tune them a bit). For iOS you’ll have to override some convention properties. Check out the platform specific
sections for more information.

8.2 Android

8.2.1 Target & simulatorTarget

To specify how you want to package for Android, you can define the target property for installing to a device, or
simulatorTarget for installing to a simulator. This property defaults to apk for the target property and to
apk-simulator for the simulatorTarget property.

These are all the targets you can use for Android:

apk - an Android package. A package produced with this target can only be installed on an Android device, not an
emulator. |
apk-captive-runtime - an Android package that includes both the application and a captive version of the AIR
runtime. A package produced with this target can only be installed on an Android device, not an emulator. |

25

https://github.com/GradleFx/GradleFx-Examples/tree/master/mobile-android
https://github.com/GradleFx/GradleFx-Examples/tree/master/mobile-android

GradleFx Documentation, Release 0.8.1

apk-debug - an Android package with extra debugging information. (The SWF files in the application must also be
compiled with debugging support.) |
apk-emulator - an Android package for use on an emulator without debugging support. (Use the apk-debug target to
permit debugging on both emulators and devices.) |
apk-profile - an Android package that supports application performance and memory profiling.

You can specify it like this:

airMobile {
target = ’apk-debug’

}

Or like this when you use any of the simulator tasks:

airMobile {
simulatorTarget = ’apk-emulator’

}

8.3 iOS

8.3.1 Platform

The platform convention property defines the platform for which you want to deploy. For iOS this value should be
the following:

airMobile {
platform = ’ios’

}

8.3.2 Target & simulatorTarget

To specify how you want to package for iOS, you can define the target property for installing to a device, or
simulatorTarget for installing to a simulator. For iOS the target property is required, since it defaults to an
Android value. The same is true for the simulatorTarget property in case you want to use a simulator.

These are all the targets you can use for iOS:

ipa-ad-hoc - an iOS package for ad hoc distribution. |
ipa-app-store - an iOS package for Apple App store distribution. |
ipa-debug - an iOS package with extra debugging information. (The SWF files in the application must
also be compiled with debugging support.) |
ipa-test - an iOS package compiled without optimization or debugging information. |
ipa-debug-interpreter - functionally equivalent to a debug package, but compiles more quickly.
However, the ActionScript bytecode is interpreted and not translated to machine code. As a result, code
execution is slower in an interpreter package. |
ipa-debug-interpreter-simulator - functionally equivalent to ipa-debug-interpreter, but packaged for
the iOS simulator. Macintosh-only. If you use this option, you must also include the -platformsdk option,
specifying the path to the iOS Simulator SDK. |
ipa-test-interpreter - functionally equivalent to a test package, but compiles more quickly. However, the
ActionScript bytecode is interpreted and not translated to machine code. As a result, code execution is
slower in an interpreter package. |

26 Chapter 8. Mobile

GradleFx Documentation, Release 0.8.1

ipa-test-interpreter-simulator - functionally equivalent to ipa-test-interpreter, but packaged for the iOS
simulator. Macintosh-only. If you use this option, you must also include the -platformsdk option,
specifying the path to the iOS Simulator SDK.

You can specify it like this:

airMobile {
target = ’ipa-debug’

}

Or like this when you use any of the simulator tasks:

airMobile {
simulatorTarget = ’ipa-debug-interpreter-simulator’

}

8.3.3 Defining the target device

For iOS you have to define the target device. This should be the ios_simulator or handle of the iOS device.

airMobile {
targetDevice 22

}

You can find the handle of the attached devices with the following command:

> adt -devices -platform ios

8.3.4 Provisioning Profile

To package an application for iOS, you need a provisioning profile provided by Apple. You can define it like this:

airMobile {
provisioningProfile = ’AppleDevelopment.mobileprofile’

}

8.4 Tasks

To package a mobile project:

> packageMobile
> packageSimulatorMobile

To install a mobile project on a device/simulator:

> installMobile
> installSimulatorMobile

To uninstall a mobile project from a device/simulator:

> uninstallMobile
> uninstallSimulatorMobile

To launch a mobile project on a device/simulator:

8.4. Tasks 27

GradleFx Documentation, Release 0.8.1

> launchMobile
> launchSimulatorMobile

28 Chapter 8. Mobile

CHAPTER 9

FlexUnit

GradleFx supports automatically running tests written with FlexUnit 4.1.

9.1 Setting up testing in GradleFx

First you need to specify the FlexUnit dependencies. You can download the required FlexUnit libraries from their site
and then deploy them on your repository (recommended) or use file-based dependencies. Once you’ve done that you
have to define them as dependencies in your build file.

1. When you have deployed the artifacts on your own repository:

dependencies {
test group: ’org.flexunit’, name: ’flexunit-tasks’, version: ’4.1.0-8’, ext: ’swc’
test group: ’org.flexunit’, name: ’flexunit’, version: ’4.1.0-8’, ext: ’swc’
test group: ’org.flexunit’, name: ’flexunit-cilistener’, version: ’4.1.0-8’, ext: ’swc’
test group: ’org.flexunit’, name: ’flexunit-uilistener’, version: ’4.1.0-8’, ext: ’swc’

}

2. When you have FlexUnit installed on your machine:

def flexunitHome = System.getenv()[’FLEXUNIT_HOME’] //FLEXUNIT_HOME is an environment variable referencing the FlexUnit install location
dependencies {

test files("${flexunitHome}/flexunit-4.1.0-8-flex_4.1.0.16076.swc",
"${flexunitHome}/flexUnitTasks-4.1.0-8.jar",
"${flexunitHome}/flexunit-cilistener-4.1.0-8-4.1.0.16076.swc",
"${flexunitHome}/flexunit-uilistener-4.1.0-8-4.1.0.16076.swc")

}

Then you’ll need to specify the location of the Flash Player executable. GradleFx uses the FLASH_PLAYER_EXE
environment variable by convention which should contain the path to the executable. If you don’t want to use this
environment variable you can override this with the ‘flexUnit.command’ property. You can download the executable
from here (these links may get out of date, look for the Flash Player standalone/projector builds on the Adobe site):

• For Windows

• For Mac

• For Linux

And that’s basically it in terms of setup when you follow the following conventions:

• Use src/test/actionscript as the source directory for your test classes.

• Use src/test/resources as the directory for your test resources.

29

http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.exe
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.app.zip
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.tar.gz

GradleFx Documentation, Release 0.8.1

• You end all your test class names with “Test.as”

GradleFx will by convention execute all the *Test.as classes in the test source directory when running the tests.

9.2 Running the tests

You can run the FlexUnit tests by executing the “gradle test” command on the command-line.

9.3 Skipping the tests

In case you want to execute a task which depends on the test task, but you don’t want to execute the tests, then you
can skip the test execution by excluding the test task with the ‘-x test’ parameter. Like this:

> gradle build -x test

9.4 Customization

9.4.1 Changing the source/resource directories

You can change these directories by specifying the following properties like this:

testDirs = [’src/testflex’]
testResourceDirs = [’src/testresources’]

9.4.2 Include/Exclude test classes

You can include or exclude test classes which are being run by specifying a pattern to some GradleFx properties. To
specify the includes you can use the flexUnit.includes property:

flexUnit {
includes = [’**/Test*.as’] //will include all actionscript classes which start with ’Test’

}

To specify the excludes you can use the flexUnit.excludes property:

flexUnit {
excludes = [’**/*IntegrationTest.as’]

}

9.4.3 Use a custom test runner template

If you want to customize the test application which runs your unit tests, you can create a custom template for this. An
example of such a template can be found here https://github.com/GradleFx/GradleFx-Examples/blob/master/flexunit-
single-project/src/test/resources/CustomFlexUnitRunner.mxml

This template accepts two parameters:

• fullyQualifiedNames: These are the fully qualified names of the test classes (e.g. ‘org.gradlefx.SomeTest’)

• testClasses: These are the test class names (e.g. ‘SomeTest’)

30 Chapter 9. FlexUnit

https://github.com/GradleFx/GradleFx-Examples/blob/master/flexunit-single-project/src/test/resources/CustomFlexUnitRunner.mxml
https://github.com/GradleFx/GradleFx-Examples/blob/master/flexunit-single-project/src/test/resources/CustomFlexUnitRunner.mxml

GradleFx Documentation, Release 0.8.1

Once you’ve created your template, you can specify it in your build script:

flexUnit {
template = ’src/test/resources/CustomFlexUnitRunner.mxml’

}

9.4.4 Add custom compiler options

In some cases you want to specify custom compiler options to your test application, for example for keeping certain
metadata. You can do this by using the flexUnit.additionalCompilerOptions property:

flexUnit {
additionalCompilerOptions = [

’-incremental=true’,
]

}

9.4.5 Other customizations

There are a lot more properties available on flexUnit.*, all these can be found on the properties description page.

9.4. Customization 31

GradleFx Documentation, Release 0.8.1

32 Chapter 9. FlexUnit

CHAPTER 10

Html Wrapper

GradleFx allows you to create a html wrapper for your application by using the createHtmlWrapper task and the
htmlWrapper convention properties.

10.1 Usage

10.1.1 Execution

You can create the html wrapper files without having to specify any htmlWrapper convention properties. Just execute
the createHtmlWrapper task like this and it will use the conventions:

>gradle createHtmlWrapper

10.1.2 Customization

You can customize the conventions by overriding the htmlWrapper properties, like this:

htmlWrapper {
title = ’My Page Title’
percentHeight = 80
percentWidth = 80

}

Note: For a full list of htmlWrapper properties, visit the properties section: Properties/Conventions

You can also provide your own html page which contains replaceable tokens. This can be done with the help of the
htmlWrapper.source and htmlWrapper.tokenReplacements properties. source is the relative path to an existing HTML-
file that can be provided as a template instead of using the default one. If the property isn’t provided, the template will
be generated with the default html file.

tokenReplacements is map of replacements for tokens in the provided source file. If the template contains the token
${swf}, it’ll be replaced with ‘example’ if this property contains a [swf:example] mapping. If source isn’t specified,
this property will be ignored.

You can use this as follows:

htmlWrapper {
source = ’myCustomTemplate.html’
tokenReplacements = [swf:example]

}

33

GradleFx Documentation, Release 0.8.1

34 Chapter 10. Html Wrapper

CHAPTER 11

AsDoc

GradleFx has support for generating asdoc documentation for your swc-based projects.

11.1 How to use it

No specific configuration is needed for this, you can simply execute the “gradle asdoc” command and it will create a
doc folder in your project which will contain the html documentation files.

11.1.1 Creating a fat swc

A fat swc is a swc file which has asdoc information embedded in it so that Adobe Flash Builder can show the doc-
umentation while you’re working in it. GradleFx has a handly property for this which, when turned on, will always
create a fat swc when you compile your project. This property can be set like this:

fatSwc = true

11.1.2 Customizing the asdoc generation

GradleFx also provides some properties which can be used to customize the asdoc generation. One of them is the
asdoc.outputDir property, which allows you to specify a different destination directory for the asdoc documentation.
This property can be used as follows:

asdoc {
outputDir ’documentation’ //will create the documentation in the %projectdir%/documentation folder

}

Another property which allows the most customization is the asdoc.additionalASDocOptions property. It can be used
like the additionalCompilerOptions, but this one accepts asdoc compiler options. These options can be found here (for
Flex 4.6): asDoc compiler options

The property can be used as follows:

asdoc {
additionalASDocOptions = [

’-strict=false’,
’-left-frameset-width 200’

]
}

35

http://help.adobe.com/en_US/flex/using/WSd0ded3821e0d52fe1e63e3d11c2f44bc36-7ffa.html#WSd0ded3821e0d52fe1e63e3d11c2f44bb7b-7feb

GradleFx Documentation, Release 0.8.1

36 Chapter 11. AsDoc

CHAPTER 12

Localization

GradleFx provides an easy way to specify locales instead of having to specify the compiler arguments. The two
convention properties of importance are:

• localeDir: This defines the directory in which locale folders are located (relative from the project root). The
convention here is ‘src/main/locale’

• locales: Defines a list of locales used by your application, like en_US, nl_BE, etc. This property has no default.

Let’s say you want to support the en_GB and nl_BE locales. Then you could have the following directory structure:

• %PROJECT_ROOT%/src/main/locale/en_GB/resources.properties

• %PROJECT_ROOT%/src/main/locale/nl_BE/resources.properties

Because ‘src/main/locale’ is already the default value for the localeDir property you only have to specify the locales,
like this:

locales = [’en_GB’, ’nl_BE’]

You can also change the default value of the localeDir in case you don’t want to follow the convention like this:

localeDir = ’locales’ //directory structure will then look like this: %PROJECT_ROOT%/locales/en_GB

37

GradleFx Documentation, Release 0.8.1

38 Chapter 12. Localization

CHAPTER 13

IDE Plugin

This feature mimics the behavior of the ‘eclipse’, ‘idea’, etc. Gradle plugins for Flex projects. It generates IDE
configuration files and puts the dependencies from the Gradle/Maven cache on the IDE’s build path. It consists of
subplugins for both FlashBuilder and Intellij which can be applied separately.

If you want support for all supported IDE’s load the plugin like this:

apply plugin: ’ide’

In any other case just apply the required subplugins.

13.1 Sub-plugins

There is a plugin for each of the following IDE’s; each plugin has its matching task:

IDE load plugin execute task

IDE Load plugin Execute task
FlashBuilder apply plugin: ‘flashbuilder’ gradle flashbuilder
IntelliJ IDEA apply plugin: ‘ideafx’ gradle idea

The IDEA plugin was named ideafx to avoid conflicts with the existing ‘java’ idea plugin.

Every IDE plugin depends on the Scaffold plugin (cf. Templates Plugin) that generates the directory structure and the
main application file.

Each of these plugins also has a matching clean task; for instance you could remove all the FlashBuilder configuration
files from a project by executing gradle flashbuilderClean.

13.2 FlashBuilder plugin

Load the plugin:

apply plugin: ’flashbuilder’

Run the associated task:

gradle flashbuilder

With all conventions the output for a swf application might be something like this:

39

GradleFx Documentation, Release 0.8.1

:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

Creating main class
src/main/actionscript/Main.mxml

::my-first-app:flashbuilder
Verifying project properties compatibility with FlashBuilder

OK
Creating FlashBuilder project files

.project

.actionScriptProperties

.flexProperties

BUILD SUCCESSFULL

To clean the project, i.e. remove all FlashBuilder configuration files:

gradle flashbuilderClean

13.3 IDEA Intellij plugin

Load the plugin:

apply plugin: ’ideafx’

Run the associated task:

gradle idea

With all conventions the output for a swf application might be something like this:

:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

Creating main class
src/main/actionscript/Main.mxml

:my-first-app:idea
Verifying project properties compatibility with IntelliJ IDEA
Creating IntelliJ IDEA project files

BUILD SUCCESSFUL

To clean the project, i.e. remove all IDEA configuration files:

gradle ideaClean

40 Chapter 13. IDE Plugin

CHAPTER 14

Templates Plugin

14.1 Overview

The Templates plugin is a feature similar to gradle-templates that can generate default directory structures and/or
classes. As of GradleFx v0.5 this plugin has only very partially been implemented. Actually only the automatic
generation of directory structure and the main application file (+ the descriptor file for AIR projects) is currently
available, as it is a dependency required by the IDE Plugin. Further development is not on our priority list for the time
being.

Load the plugin like so:

apply plugin: ’templates’

14.2 Sub-plugins

As of GradleFx v0.5 only one sub-plugin exists:

• Scaffold plugin: generates directory structure and main application class

This means that at the moment apply plugin: ‘templates’ and apply plugin: ‘scaffold’ will both result in the same tasks
being available.

14.3 Scaffold plugin

Load the plugin:

apply plugin: ’scaffold’

The scaffold task is now available to you. It is the only available task for now. To use it execute gradle
scaffold at the command line.

With all conventions this will result in the following output for a swf project:

$ gradle scaffold
:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript

41

https://launchpad.net/gradle-templates

GradleFx Documentation, Release 0.8.1

src/test/resources
Creating main class

src/main/actionscript/Main.mxml

BUILD SUCCESSFUL

14.3.1 Application descriptor

In an air or mobile project an application descriptor file will also be created based on the air.applicationDescriptor
property:

src/main/actionscript/Main-app.xml

14.3.2 Localization

If you’ve defined some locales in your build script (say locales = [’nl_BE’, ’fr_BE’]), directories for
these locales will also be created:

src/main/locale/nl_BE
src/main/locale/fr_BE

42 Chapter 14. Templates Plugin

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

43

