Git Extensions Documentation
Release 3.00.00.4433

Contributors

Dec 23, 2018

Contents

1 Git Extensions 1
LT Features o v v it e e e e e e e e e e e e e e e e e e 1
1.2 Video tutorials L e e e e e e e e e 1
1.3 Links o e e e 2

2 Getting Started 3
2.1 Installation oL e e e e e e e e e e e e 3
2.2 Portableo e e e e e e 7
2.3 Settings o e e e e e e e 7
24 Dashboard e 8
2.5 Create new repoSItOTY .+ v v v v v v e 9
2.6 OpenTepoSItOTY . . . v v v vt e 9
27 ClonerepoSitory it i it e e e e e e e e e e 9
2.8 Clone Github repository it i e e e e e e e 10

3 Settings 12
3.1 GItEXIenSions o i i e e e e e e e e e e e e e e 13

3.1 General ... L e e e e e e e e 14
3.1.2 0 ApPearance e e e e e e e e e e e e e e e e 15
31210 Colors .. e e e 16
3.1.22 0 FONts . . . o o o e e e e e e e e 17

3.1.3 Revision Links L e e e e e 17
3.1.4 Build serverintegration L. e e e e e e e 20
315 Scripts . . o e e e e e e e e e e e 21
3.1.6 Hotkeys o e e e e e e e e 22
3.1.7 Shell EXtension oo v i i e e e e e e e e e e e 23
3.1.8 Advanced L e e e e e e e e e e 23
3.1.8.1 Confirmations it e e e e e e e e e e e e e e 24

3.1.9 Detailed e e e e e e e e e 25
3.1.9.1 Browserepository windowo e e e e 26
3.1.9.2 Commitdialog e e e 26
3.1.9.3 Diff Viewer e e 27

3110 SSH . . o 27
32 GIt oo e 28
32,1 Paths . . . e 28
322 Config . . . o o e e e e e e 29
323 Advanced L e e e e e 30

10

11

12

Browse Repository

4.1 Viewrevision @rapho e e e
4.2 Searchor filter the commit history e e e
42.1 Quicksearchinhistory e e e
422 Gotoaspecificcommit e e
423 Filterhistory o e e e
File history
S Commit . . oo v e e
52 DIff .
53 VIBW . . o e
54 Blame. e e e
Commit
6.1 Commitchanges o o i e e e e
6.1.1 Stagingchanges i e e e e e e e e e e
6.1.2 Staging selected lines L e e e e
6.1.3 Undoing or resetting changes L e
6.1.4 Makingthecommit L e e e e
6.2 Amendcommit e e e e
Stash
7.1 Revisiongraph L e e e e
Tag
8.1 Createtag o v i e e e e
82 Deletetag o i e e e e e e e e e
Branches
9.1 Createbranch e e e e e e
9.1.1 Orphanbranches e
9.2 Checkoutbranch e e
0.3 Mergebranches. e e e e e e e e e e e e
9.4 Rebasebranch
0.5 Interactiverebase e e e
9.6 Deletebranch L e e e e
Patches
10.1 Createpatch L e e e e e e e e e
10.2 Apply patches L e e e e e e e e e
Remotes
11.1 Manage remote TepOSItOTIES« v v v vt et e e e e e e e e e e e e e e e e e e e
11.2 GitCredential Manager i e e e e
11.3 Create SSHKey o o o e e e e e e e e e e e
11.3.1 PuTTY and github e e e e e e e e e
11.32 OpenSSHandgithub e
11.4 Pullchanges e
11.5 Pushchanges L e e e e e e

Merge Conflicts
12.1 Handle merge conflicts L L e e e e

31
31
33
33
34
34

37
38
38
39
40

41
41
43
43
44
45
47

48
49

50
50
51

53
54
55
55
55
58
59
60

61
62
62

64
64
66
66
66
68
69
71

73
73

13

14

15

16

17

18

19

20

21

22

23

Modify Git history 77
13.1 Cherry pick commit e e e e e e e e e e e e 77
13.2 Revertcommit i e e e e e e e e e e e e 79
13.3 Modify the last commit oL 81
13.4 Modify an older commitol e e e 81

13.4.1 Interactiverebase i i e e e e e e e e e e e e e e 82

13.4.2 Using autosquash rebase feature e 83
Notes 86
Submodules 88
15.1 Manage submoduleso 88
152 Addsubmodule. e e e e e 89
Worktrees 90
Maintenance 91
17.1 Compress Gitdatabase e e 91
17.2 Recoverlostobjects e 92
17.3 FiXUSErNAMES o i it it e e e e e e e e e e e e e e e e 94
174 TIgnorefiles o e 95
Translations 96
18.1 Changelanguage L e e 96
18.2 Translate Git EXtensions o i i i e e e e e e e e 97
Windows Explorer 98
Visual Studio 100
20.1 MenU e e e e e e e e e e e e 100
20.2 Toolbar e e e e e e e e e e 101
20.3 COoNEXtMENU . . & v & v o v e e e e e e e e e e e e e e e 102
Command line 103
21.1 GitExtensions command line 103
Appendix 106
22.1 GitCheat Sheet e 107
Plugins 109
23.1 Autocompile SubModuleso e e e 109
23.2 Bitbucket Server L e e e e e e e 109
23.3 Create local tracking branches e 110
23.4 Delete obsolete branches e 110
23.5 Findlargefiles o L e e e e e e e 110
23.6 Gerrit Code Review e e 110
237 GitHub e 110
23.8 GitFIow e 111
23.9 GOUICE . . . o v i i i e e e e e e e e e 111
23. 10 Impact Graph e e e e e e e e e e e e e 111
2311 JiraCommit Hint e e 111
23.12 Periodic background fetch oL o 111
23.13 Proxy Switcher L e e e e e e e e 112
23.14 Release Notes GENerator v v v v i v i e e e e e e e e e e e 112
23,15 StatiStiCS . . . v o v e e e e e e e e e e e e e s 112

CHAPTER 1

Git Extensions

Git Extensions is a toolkit aimed at making working with Git under Windows more intuitive. The shell extension will
integrate in Windows Explorer and presents a context menu on files and directories. There is also a Visual Studio
extension to use Git from the Visual Studio IDE.

1.1 Features

* Windows Explorer integration for Git

* Feature rich user interface for Git

 32bit and 64bit support

¢ Visual Studio extension (2015-2017)
Specific in 2.5x releases:

* Visual Studio (2010 - 2015) add-in

* Runs under Linux or Mac OS X using Mono

* Basic SVN functionality

For description of 2.x specific features, see the 2.x documentation

1.2 Video tutorials

There are video tutorials for some basic functions on YouTube, for older Git Extensions versions.
1. Clone
2. Commit changes
3. Push changes
4. Pull changes

http://www.mono-project.com
../release-2.51/git_extensions.html
http://www.youtube.com/watch?v=TlZXSkJGKF8
http://www.youtube.com/watch?v=B8uvje6X7lo
http://www.youtube.com/watch?v=JByfXdbVAiE
http://www.youtube.com/watch?v=9g8gXPsi5Ko

Git Extensions Documentation, Release 3.00.00.4433

5. Handle merge conflicts

6. Install Git Extensions on Ubuntu 11.04

1.3 Links

See the following links for the Git Extensions download page, source code and documentation.
* Download page: https://sourceforge.net/projects/gitextensions/
* Source Code: https://github.com/gitextensions/gitextensions
* Source Code Issue tracker: https://github.com/gitextensions/gitextensions/issues
* Documentation: https://github.com/gitextensions/GitExtensionsDoc
* Documentation Issue tracker: https://github.com/gitextensions/GitExtensionsDoc/issues
» Wiki: https://github.com/gitextensions/gitextensions/wiki

Please feel free to raise any issues with Git Extensions or its documentation at the appropriate Issue tracker link as
shown above.

1.3. Links 2

http://www.youtube.com/watch?v=Kmc39RvuGM8
http://www.youtube.com/watch?v=zk2MMUQuW4s
https://sourceforge.net/projects/gitextensions/
https://github.com/gitextensions/gitextensions
https://github.com/gitextensions/gitextensions/issues
https://github.com/gitextensions/GitExtensionsDoc
https://github.com/gitextensions/GitExtensionsDoc/issues
https://github.com/gitextensions/gitextensions/wiki

CHAPTER 2

Getting Started

2.1 Installation

This section only covers Git Extensions installation, you will need to have Git for Windows installed: https://git-scm.
com/download/win

The Git Extensions installer can be found on GitHub.

15 Git Extensions 3.00.00.4409 Setup -

Ready to install Git Extensions 3.00.00.4409

;

Gl+

Click Install to begin the instalation. Click Back to review or change any of
your installation settings. Click Cancel to exit the wizard.

Back Cancel

https://git-scm.com/download/win
https://git-scm.com/download/win
https://github.com/gitextensions/gitextensions/releases/latest

Git Extensions Documentation, Release 3.00.00.4433

Git Extensions 3.00.00.4409 Setup — X

Welcome to the Git Extensions
3.00.00.4409 Setup Wizard

The Setup Wizard will install Git Extensions
3.00.00.4409 on your computer. Click Next to
continue or Cancel to exit the Setup Wizard.

Back Mext Cancel

Fig. 1: Start installation.

#7 Git Extensions 3.00.00.4409 Setup —

Installation Scope
Choose the installation scope and folder

Gl+
EXT ~

() Install just for you [ejgo)
Git Extensions 3.00.00.4409 wil be installed in a per-user folder and be

available just for your user account. You do not need local Administrator
privileges.

(® Install for all users of this machine

Git Extensions 3.00.00.4409 will be installed in 2 per-machine folder by
default and be available for all users. You can change the defaulc
instalation folder. You must have local Administrator privileges.

Back Mext Cancel

Fig. 2: Installation scope.

2.1. Installation 4

Git Extensions Documentation, Release 3.00.00.4433

Git Extensions 3.00.00.4409 Setup —

Destination Folder
Click Mext to install to the default folder or click Change to choos...

;

Gl+

Install Git Extensions 3.00.00.4409 to:

|C:\ngmm Files (x86)\GitExtensions!,

Change...

Back Mext Cancel

Fig. 3: Destination folder.

#7 Git Extensions 3.00.00.4409 Setup —

Custom Setup
Select the way you want features to be installed.

;

Gl+

Click the icons in the tree below to change the way features wil be installed.

- =3~ | Plugins
......... (=3~ | Desktop shortcut
--------- = ~| Custom merge scripts
(- &3~ | Speling dictionaries
[} =8 = | Transktions
--------- (= - | Windows Explorer integration
--------- = ~| Add installation directory to PATH
- =3~ | Visual Studio extension p
Browse...
Back Mext Cancel

Fig. 4: Choose the options to install.

2.1. Installation 5

Git Extensions Documentation, Release 3.00.00.4433

Git Extensions 3.00.00.4409 Setup —

Select SSH Client
Select the 55H client that will be used by Git Extensions

Gl+
EXT

O OpenSSH
OpenssH is the Git default.

(@ puTTY (plink.exe)
PuTTY has better integration with Windows.

Back Mext Cancel

Fig. 5: Choose the SSH client to use. PuTTY is the default because it has better Windows integration, but Pageant
must be running.

2.1. Installation 6

Git Extensions Documentation, Release 3.00.00.4433

2.2 Portable

Git Extensions is also distributed as a portable .zip file, that only require unpacking. Some features like Windows shell
integration and Visual Studio integration is not available with this package.

2.3 Settings

Git must be installed prior to starting Git Extensions: .. image:: /images/install/git_missing.png
First selection is language (depends on the installed languages): .. image:: /images/install/language.png

All settings will be verified when Git Extensions is started for the first time. If Git Extensions requires any settings
to be changed, the Settings dialog will be shown. All incorrect settings will be marked in red (for instance if the Git
version is unsupported) and orange for not recommended setting (like that Git version is older than recommended).
You can ask Git Extensions to try to fix the setting for you by clicking on it. When installing Git Extensions for the
first time, you will normally be required to configure your username and email address.

The settings dialog can be invoked at any time by selecting Sett ings from the Tools menu option.

3 Settings - Checklist %

Settings source: (® Global for all repositories

v -3 Git Extensions
" 5_% General

7% Appearance
) Colors The checklist below validates the basic settings needed for GitExtensions to work properly.

""" Aa F?nts. Git 2.19.1 is found on your computer.
©) Revision links
+ Build server integration A username and an email address are configured.

[£) Hotkeys There is a custom mergetool configured: pdmerge

. Shell extension :))

w ¥ Advanced There is a difftool configured: tmerge

- 4" Confirmations
Detailed

I Browse repository wi Linux tools (sh) found on your computer.

Shell extensions registered properly.

{8 Commit dialog
Diiff Viewer GitExtensions is properly registered.

{}ét SSH Default 55H client, OpenS5H, will be used. (commandline window will appear on pull, push and clone operations)
W i

""" Paths The configured language is English.

----- 5_§ Config

A% Advanced [] Check settings at startup (disables automatically i all settings are correct)

~ . Plugins

o - Save and rescan
-4l Aute compile SubModu

----- O Bitbucket Server

----- # Delete obsolete branche
.1 Find large files

) GitHub

..... E Gource

----- & Jira Commit Hint

--1* Periodic background fet
..... 0 Proxy Switcher

-4 Statistics

Changes on the selected page will be saved instantly. oK

Therefore the Cancel button does NOT revert any changes made. Sl Apply

For further information see Settings.

2.2. Portable 7

Git Extensions Documentation, Release 3.00.00.4433

2.4 Dashboard

The dashboard contains the most common tasks, recently opened repositories and favourites. Favourite repositories
can be added, grouped under Category headings in the right panel.

3 Git Extensions

Start Dashboard Tools Help

G'T:/:EXTENSIONS

3 Create new repository
Open repository
[E Clone repository

Clone GitHub repository

Contribute
<> Develop
4 Donate
% Translate

B Issues

Recent Repositories

Recent repositories

g\. FAdevigclgitextensions

master

Fidev\gc\gitextensions 4

| spdr870/_feature/5853
ge
] F\devigc\gitextensions_2.51

| release/251

other

F FAdevige
master

i g_—\- FAdevigcirosiyn
' master

@hﬂ F\devigc\gitextensions
& master

i {_—k FAdevigcirosiyn
' master

Fh\devigc\gitextensions 251

release/251

Fi\devigc\gitextensions 4
=4 spdr870/_feature/5853

Recent Repositories can be moved to favourites using the repository context menu. Choose Categories / Add
new to create a new category and add the repository to it, or you can add the repository to an existing category (e.g.

‘Currents’ as shown below).

Recent Repositories

Recent repositories

| Fh\devig

== spdr370]

| Fhdevig

== release/d

ge

| | Fhdevigcgitextensions_2.51

= relegse/25]

ey Maswer

Show in folder tensions E
Categories » | (none)
Remove project from the list ge
other
£ Addnew..
1 | FhdevigcgitexTerrsmoms

B

To open an existing repository, simply click the link to the repository, or select Open repository (from where you can
select a repository to open from your local file system).

To create a new repository, one of the following options under Common Actions can be selected.

2.4. Dashboard

Git Extensions Documentation, Release 3.00.00.4433

2.5 Create new repository

When you do not want to work on an existing project, you can create your own repository using this option.

% Create new repository >

Directory || ~ | Browse

Repository type
(® Personal repository

() Central repository, no warking directory (--bare --shared=all) I Create

Select a directory where the repository is to be created. You can choose to create a Personal repository or a Central
repository.

A personal repository looks the same as a normal working directory but has a directory named . git at the root level
containing the version history. This is the most common repository.

Central repositories only contain the version history. Because a central repository has no working directory you cannot
checkout a revision in a central repository. It is also impossible to merge or pull changes in a central repository. This
repository type can be used as a public repository where developers can push changes to or pull changes from.

2.6 Open repository

Opens a Git repo already existing on the file system.

}{ Open local repository X
Directory lF:"gd evigcgitexten 5i-:ur1| j ¢l L] Browse.
Fhdevigcgitextensions
Fidevigcgitextensions_2.51 | L Open
other Fhdegcdgitextensions_4

Fidevigcgitextensions_9

}-{_ 7 r:d ._3:,;\9'; Fhdevigcgitextensions_jbialobr
o Fhdevgcgitextensions_wt2

Fidevigcgitextensionsoo

2.7 Clone repository

You can clone an existing repository using this option.

2.5. Create new repository 9

Git Extensions Documentation, Release 3.00.00.4433

Clane >
X

Sfgithub.com/gerhardol/MBug.qgit - | Browse

Repository to clone: h’ftS:

Dlestination: | Fhdevigchgitextensions_4 w | Browse

Subdirectory to create: |NEUEI |

Branch: ||{|:|efault: remote HEAD) v|

The repository will be cloned to a new directory located here:
Fhdevigcgitextensions_4\MBug (Mew directory)

Repository type
(® Personal repository

() Public repository, no working directory (--bare)

Initialize all submodules Downlead full history [] Use LFS extension

[y Load SSH key Clone

The repository you want to clone could be on a network share or could be a repository that is accessed through an
internet or intranet connection. Depending on the protocol (http or ssh) you might need to load a SSH key into PuTTY.
You also need to specify where the cloned repository will be created and the initial branch that is checked out. If the
cloned repository contains submodules, then these can be initialised using their default settings if required.

There are two different types of repositories you can create when making a clone. A personal repository contains the
complete history and also contains a working copy of the source tree. A central (bare) repository is used as a public
repository where developers push the changes they want to share with others to. A central repository contains the
complete history but does not have a working directory like personal repositories.

2.8 Clone Github repository

This option allows you to
1. Fork a repository on GitHub so it is created in your personal space on GitHub.
2. Clone any repositories on your personal space on GitHub so that it becomes a local repository on your machine.

You can see your own personal repositories on GitHub, and also search for repositories using the Search for
repositories tab.

2.8. Clone Github repository 10

Git Extensions Documentation, Release 3.00.00.4433

% GitHub: Remote repository fork and clone — O *

My repositories Search for repositories
MName Isfork #Forks Priv... &
conemu-inside Yes 9 Mo
Git.hub Yes 15 MNo
gitextensions Mo 1108 MNo
gitextensions.github.io No 4 Ne If you want to fork a repositery owned
GitExtensionsDoc Yes 25 Mo by somebody else, go to the Search for
ICSharpCode. TextEditor Yes 4 Mo repositories tab.
libgitZsharp Yes 1 MNo
MBug Yes 16 MNo
runnerup Mo 187 MNo
st2funbeat Mo 0 Mo v

Clone

Destination folder:

| Fhdevige Browse...

Create directory: Add remote as:

|gitv.=_fxtensinns

Will clone git@github.com:gitextensions/gitextensions.git into F\devigc\gitextensions.

You will have push access.

Clone Close

2.8. Clone Github repository 11

CHAPTER 3

Settings

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

12

Git Extensions Documentation, Release 3.00.00.4433

3¢ Settings - Checklist X

Settings source: (® Global for all repositories

~ % Git Extensions

The checklist below validates the basic settings needed for GitExtensions to work properly.

Git 2.19.1 is found on your computer.
..... (2 Revision links
-t Build server integration A username and an email address are configured.

Scripts
..... [E) Hotkeys There is a custom mergetool configured: pdmerge

----- M Shell extension

Advanced There is a difftool configured: tmerge

' Confirmations Shell extensions registered properly.
. Detailed
i I8 Browse repository wi Linux tools (sh) found on your computer.

& Commit dialog

E2 Diff Viewer GitExtensions is properly registered.
{}ét s3H Default 55H client, OpenS5H, will be used. (commandline window will appear on pull, push and clone operations)
W i
""" Paths The configured language is English.
----- Al Config
----U_ Advanced [] Check settings at startup (disables automatically i all settings are correct)

v leugins Save and rescan
-7 Auto compile SubMaedu
----- O Bitbucket Server

Delete ohsolete branche
----- % Find large files

) GitHub

-1 Periodic background fet
----- AL Proxy Switcher
& Statistics

Changes on the selected page will be saved instantly. oK

Therefore the Cancel button does NOT revert any changes made. sl Apply

The following buttons are always available on any page of the Settings dialog. Sometimes the Cance1 button has no
effect for the page - this will be noted on the page in the area next to the buttons.

Button Description

OK Save any entered changes made in any settings page and close the Settings dialog.
Cancel Any entered changes in any settings page are not saved. The Settings dialog is closed.
Apply Any entered changes in any settings page are saved.

Settings that are specific to Git Extensions and apply globally will be stored in a file called GitExtensions.
settings either in the user’s application data path or with the program. The location is dependent on the Is-
Portable setting in the GitExtensions.exe.config file that is with the program. Settings that are specific to
Git Extensions but apply to only the current repository will be stored in a file of the same name, GitExtensions.
settings, but in either the root folder of the repository or the . git folder of the repository, depending on whether
or not they are distributed with that repository.

3.1 Git Extensions

This page is a visual overview of the minimal settings that Git Extensions requires to work properly. Any items
highlighted in red should be configured by clicking on the highlighted item.

3.1. Git Extensions 13

Git Extensions Documentation, Release 3.00.00.4433

This page contains the following settings and buttons.

Check settings at startup
Forces Git Extensions to re-check the minimal set of required settings the next time Git Extensions is started. If
all settings are ‘green’ this will be automatically unchecked.

Save and rescan
Saves any setting changes made and re-checks the settings to see if the minimal requirements are now met.

3.1.1 General

This page contains general settings for Git Extensions.

Performance

Show number of changed files on commit button
When enabled, the number of pending commits are shown on the toolbar as a figure in parentheses on the
Commit button. Git Extensions must be stopped and restarted to activate changes to this option. Turn this
off if you experience slowdowns.

Show number of changed files for artificial commits
If artificial commits are enabled in the revision graph, show the pending commits as well as a tool tip with
a summary of changes.

Show current working directory changes as an artificial commit.
When enabled, two artificial revisions are added to the revision graph. The first shows the worktree (current
working directory) status. The second shows the commit index (staged).

Use FileSystemWatcher to check if index is changed
Monitor if the Git index is changed due to changes outside of Git Extensions, if so show this in the Refresh
button in Browse.

Show stash count on status bar in browse window
When you use the stash a lot, it can be useful to show the number of stashed items on the toolbar. This
option causes serious slowdowns in large repositories and is turned off by default.

Show submodule status in browse window
Show the status for submodules (as well as supermodules) in the dropdown menu in Browse. The status
is updated if Show number of changed files for artificial commits is enabled and the number of artificial
commits is updated. (Changes in supermodules is not monitored). This option causes serious slowdowns
in large repositories and is turned off by default.

Check for uncommitted changes in checkout branch dialog
Git Extensions will not allow you to checkout a branch if you have uncommitted changes on the current
branch. If you select this option, Git Extensions will display a dialog where you can decide what to do
with uncommitted changes before swapping branches.

Limit number of commits that will be loaded at start-up
This number specifies the maximum number of commits that Git Extensions will load when it is started.
These commits are shown in the Revision Graph window. To see more commits, then this setting will need
to be adjusted and Git Extensions restarted.

Behaviour

Close Process dialog when process succeeds
When a process is finished, close the process dialog automatically. Leave this option off if you want to see
the result of processes. When a process has failed, the dialog will automatically remain open.

3.1. Git Extensions 14

Git Extensions Documentation, Release 3.00.00.4433

Show console window when executing git process
Git Extensions uses command line tools to access the git repository. In some environments it might be
useful to see the command line dialog when a process is executed. An option on the command line dialog
window displayed allows this setting to be turned off.

Use patience diff algorithm
Use the Git ‘patience diff” algorithm instead of the default. This algorithm is useful in situations where
two files have diverged significantly and the default algorithm may become ‘misaligned’, resulting in a
totally unusable conflict file.

Include untracked files in stash
If checked, when a stash is performed as a result of any action except a manual stash request, e.g. checking
out a new branch and requesting a stash then any files not tracked by git will also be saved to the stash.

Follow renames in file history (experimental)
Try to follow file renames in the file history.

Follow exact renames and copies only
Follow file renames and copies for which similarity index is 100%. That is when a file is renamed or
copied and is committed with no changes made to its content.

Open last working dir on startup
When starting Git Extensions, open the last used repository (bypassing the Dashboard).

Default clone destination
Git Extensions will pre-fill destination directory input with value of this setting on any form used to per-
form repository clone.

Revision grid quick search timeout [ms]
The timeout (milliseconds) used for the quick search feature in the revision graph. The quick search will
be enabled when you start typing and the revision graph has the focus.

Email settings for sending patches

SMTP server name
SMTP server to use for sending patches.

Port
SMTP port number to use.

Use SSL/TLS
Check this box if the SMTP server uses SSL or TLS.

3.1.2 Appearance

This page contains settings that affect the appearance of the application.

General

Show relative date instead of full date
Show relative date, e.g. 2 weeks ago, instead of full date. Displayed on the commit tab on the main
Revision Graph window.

Show current branch in Visual Studio
Determines whether or not the currently checked out branch is displayed on the Git Extensions toolbar
within Visual Studio.

3.1. Git Extensions 15

Git Extensions Documentation, Release 3.00.00.4433

Auto scale user interface when high DPI is used
Automatically resize controls and their contents according to the current system resolution of the display,
measured in dots per inch (DPI).

Truncate long filenames
This setting affects the display of filenames in a component of a window e.g. in the Diff tab of the Revision
Graph window. The options that can be selected are:

e None - no truncation occurs; a horizontal scroll bar is used to see the whole filename.

e Compact - no horizontal scroll bar. Filenames are truncated at both start and end to fit into the width
of the display component.

e Trimstart - no horizontal scroll bar. Filenames are truncated at the start only.

* FileNameOnly - the path is always removed, leaving only the name of the file, even if there is
space for the path.

Author images

Get author image from gravatar.com
If checked, gravatar will be accessed to retrieve an image for the author of commits. This image is dis-
played on the commit tab on the main Revision Graph window.

Image size
The display size of the user image.

Cache images
The number of days to elapse before gravatar is checked for any changes to an authors image.

No image service
If the author has not set up their own image, then gravatar can return an image based on one of these
services.

Clear image cache
Clear the cached avatars.

Language

Language (restart required)
Choose the language for the Git Extensions interface.

Dictionary for spelling checker
Choose the dictionary to use for the spelling checker in the Commit dialog.

3.1.2.1 Colors

This page contains settings to define the colors used in the application.

Revision graph

Multicolor branches
Displays branch commits in different colors if checked. If unchecked, all branches are shown in the same
color. This color can be selected.

Striped branch change
(Unused) .. todo Any effect?

3.1. Git Extensions 16

http://gravatar.com/

Git Extensions Documentation, Release 3.00.00.4433

Draw alternate background
Alternate background colour for revision rows.

Draw non relatives graph gray
Show commit history in gray for branches not related to the current branch.

Draw non relatives text gray
Show commit text in gray for branches not related to the current branch.

Color tag
Color to show tags in.

Color branch
Color to show branch names in.

Color remote branch
Color to show remote branch names in.

Color other label
Color to show other labels in.

Difference View

Color removed line
Highlight color for lines that have been removed.

Color added line
Highlight color for lines that have been added.

Color removed line highlighting
Highlight color for characters that have been removed in lines.

Color added line highlighting
Highlight color for characters that have been added in lines.

Color section
Highlight color for a section.

3.1.2.2 Fonts

Fonts

Code font
The font used for the display of file contents.

Application font
The font used on Git Extensions windows and dialogs.

Commit font
The font used for entering a commit message in the Commit dialog.

Monospace font
The font used for the commit id in the revision graph.

3.1.3 Revision Links

You can configure here how to convert parts of a revision data into clickable links. These links will be located under
the commit message on the Commit tab in the Related links section.

3.1. Git Extensions 17

Git Extensions Documentation, Release 3.00.00.4433

IIF; spdra?ﬂf_featurefﬁaﬂl[} spdra70/feature/5853 el E I

RSN NN o T S NP) [P R—— 1 T [

| ISR (S L 1 R

& Commit EZ pif 'TF Filetree J° GPG @ Console
Author:

Henk Westhuis <henk.westhuis@ultimo.com>
Date:

3 days ago (2018-12-05 13:41:22)

Commit hash: c046f57c93%e7ddabldasb7d21c26a043e0792d
Child: 1b390%44a3
Parent: Gbcd321707

#5853:

Use stack instead of recursion in EnsureScorelsAbove

Related links: View on GitHub, [ssue 5853
Contained in branches: spdr270/ feature/3833
Contained in tags: v3.00.00

Drerives from tag: v2.00.00-rc2 + 53 commits

The most common case is to convert an issue number given as a part of commit message into a link to the coresponding
issue-tracker page. The screenshot below shows an example configuration for GitHub issues.

3.1. Git Extensions

18

Git Extensions Documentation, Release 3.00.00.4433

W Settings - Revision links X
[Type to find | Settings source:
X Git Extenci (® Effective << (O Local for current repository << (O Distributed with current repository << () Global for all repositories
v it Extensions
: ¥ General
5 %% Appearance Categories - -
o Mame |G|tHub - issues |@ Enabled ﬁ Help
P Revision links GitHub - commit
7 Build server integration | (SRS Remote data
i GitHub - PR
g scripts 9;1 feuatu re Use remotes |upstream|origin|gitextensions | [] Only use the first match
Hotkeys
% Shell extension Search in [#] URL [Push URL
3 - Advanced
5 - Detailed Search pattern |github.com[:;"](-+]\.git
i SSH
> ﬁ Revision data
)I - Plugins Search in [#] Message [~] Local branch name [#] Remote branch name
Search pattern |(?i](?<!pu|l request |pr[_]7ENd+ |
Mested pattern |(\d+J+ |
Links
Caption URI
ssue {1}
Categories

Lists all the currently defined Categories. Click the Add button to add a new empty Category. The default name is
‘new’. To remove a Category select it and click the Remove button.

Name

This is the Category name used to match the same categories defined on different levels of the Settings.

Enabled
Indicates whether the Category is enabled or not. Disabled categories are skipped while creating links.

Remote data
It is possible to use data from remote’s URL to build a link. This way, links can be defined globally for all
repositories sharing the same URL schema.

Use remotes
Regex to filter which remotes to use. Leave blank to create links not depending on remotes. If full names
of remotes are given then matching remotes are sorted by its position in the given Regex.

Only use the first match
Check if you want to create links only for the first matching remote.

Search in
Define whether to search in URL, Push URL or both.

3.1. Git Extensions 19

Git Extensions Documentation, Release 3.00.00.4433

Revision data

Search in
Define which parts of the revision should be searched for matches.

id search-pattern

Search pattern
Regular expression used for matching text in the chosen revision parts. Each matched fragment will be
used to create a new link. More than one fragment can be used in a single link by using a capturing group.
Matches from the Remote data group go before matches from the Revision data group. A capturing group
value can be passed to a link by using zero-based indexed placeholders in a link format definition e.g. {0}.

Nested pattern
Nested pattern can be used when only a part of the text matched by the Search pattern should be
used to format a link. When the Nested pattern is empty, matches found by the Search pattern are
used to create links.

Links: Caption/URI
List of links to be created from a single match. Each link consists of the Capt ion to be displayed and the
URTI to be opened when the link is clicked on. In addition to the standard zero-based indexed placeholders,
the $COMMIT_HASH$% placeholder can be used to put the commit’s hash into the link. For example:
https://github.com/gitextensions/gitextensions/commit/%$COMMIT_HASH%

3.1.4 Build server integration

This page allows you to configure the integration with build servers. This allows the build status of each commit to be
displayed directly in the revision log, as well as providing a tab for direct access to the Build Server build report for
the selected commit.

Enable build server integration
Check to globally enable/disable the integration functionality.

Build server type
Select an integration target.

AppVeyor

Account name
AppVeyor account name. You don’t have to enter it if the projects you want to query for build status are
public.

API token
AppVeyor API token. Requiered if the Account name is entered. See https://ci.appveyor.com/api-token

Project (s) name (s)
Projects names separated with ‘I’, e.g. gitextensions/gitextensions|jbialobr/gitextensions

Display tests results in build status summary for every build result
Include tests results in the build status summary for every build result.

Azure DevOps and Team Foundation Server (since TFS2015)

Project URL
Enter the URL of the server (and port, if applicable).

Build definition name
Limit the builds if desired.

3.1. Git Extensions 20

https://ci.appveyor.com/api-token

Git Extensions Documentation, Release 3.00.00.4433

Rest API token
Read token for the build server.

Jenkins

Jenkins server URL
Enter the URL of the server (and port, if applicable).

Project name
Enter the name of the project which tracks this repository in Jenkins. Separate project names with
Multi-branch pipeline projects are supported by adding “?m” to the project name.

44|’7

Ignore build for branch
The plugin will normally display the last build for a certain commit. If Jenkins starts several builds for one
commit, it is possible to ignore the non interesting builds if all builds are not interesting.

TeamCity

TeamCity server URL
Enter the URL of the server (and port, if applicable).

Project name
Enter the name of the project which tracks this repository in TeamCity. Multiple project names can be
entered separated by the | character.

Build Id Filter
Enter a regexp filter for which build results you want to retrieve in the case that your build project creates
multiple builds. For example, if your project includes both devBuild and docBuild you may wish to apply
a filter of “devBuild” to retrieve the results from only the program build.

Team Foundation Server
For TFS prior to 2015.

Tfs server (Name or URL)
Enter the URL of the server (and port, if applicable).

Team collection name

Project name
Enter the name of the project which tracks this repository in Tfs.

Build definition name
Use first found if left empty.

3.1.5 Scripts

This page allows you to configure specific commands to run before/after Git actions or to add a new command to the
User Menu. The top half of the page summarises all of the scripts currently defined. If a script is selected from the
summary, the bottom half of the page will allow modifications to the script definition.

A hotkey can also be assigned to execute a specific script. See Hotkeys.

Add
Adds a new script. Complete the details in the bottom half of the screen.

Remove
Removes a script.

Up/Down Arrows
Changes order of scripts.

3.1. Git Extensions 21

Git Extensions Documentation, Release 3.00.00.4433

Name
The name of the script.

Enabled
If checked, the script is active and will be performed at the appropriate time (as determined by the On
Event setting).

Ask for confirmation
If checked, then a popup window is displayed just before the script is run to confirm whether or not the
script is to be run. Note that this popup is not displayed when the script is added as a command to the User
Menu (On Event setting is ShowInUserMenuBar).

Run in background
If checked, the script will run in the background and Git Extensions will return to your control without
waiting for the script to finish.

Add to revision grid context menu
If checked, the script is added to the context menu that is displayed when right-clicking on a line in the
Revision Graph page.

Is PowersShell
If checked, the command is started through a powershell.exe process. If the Run in background is checked,
the powershell console is closed after finishing. If not, the powershell console is left for the user to close it
manually.

Command
Enter the command to be run. This can be any command that your system can run e.g. an executable program,
a .bat script, a Python command, etc. Use the Browse button to find the command to run.

There are some special prefixes which change the way the script is executed:

* plugin:<plugin-name>: Where <plugin—name> is the name of a plugin (refer Plugins). If a
plugin with that name is found, it is run.

* navigateTo:<script-path>: Where <script-path> is the path to a file containing the script
to run. That script is expected to return a commit hash as the first line of its output. The UI will navigate
to that commit once the script completes.

Arguments
Enter any arguments to be passed to the command that is run. The Help button displays items that will be
resolved by Git Extensions before executing the command e.g. {cBranch} will resolve to the currently checked
out branch, {UserInput} will display a popup where you can enter data to be passed to the command when it is
run.

On Event
Select when this command will be executed, either before/after certain Git commands, or displayed on the User
Menu bar.

Icon
Select an icon to be displayed in a menu item when the script is marked to be shown in the user menu bar.

3.1.6 Hotkeys

This page allows you to define keyboard shortcuts to actions when specific pages of Git Extensions are displayed. The
HotKeyable Items identifies a page within Git Extensions. Selecting a Hotkeyable Item displays the list of commands
on that page that can have a hotkey associated with them.

The Hotkeyable Items consist of the following pages

3.1. Git Extensions 22

Git Extensions Documentation, Release 3.00.00.4433

1. Commit: the page displayed when a Commit is requested via the Commi t User Menu button or the Commands /
Commit menu option.

2. Browse: the Revision Graph page (the page displayed after a repository is selected from the dashboard (Start
Page)).

RevisionGrid: the list of commits in Browse and other forms.
FileViewer: the page displayed when viewing the contents of a file.
FormMergeConflicts: the page displayed when merge conflicts are detected that need correcting.

BrowseDiff: Diff tab in Browse.

N o AW

RevisionFileTree: The FileTree tab in Browse.
8. Scripts: shows scripts defined in Git Extensions and allows shortcuts to be assigned. Refer Scripts.

Hotkey
After selecting a Hotkeyable Item and the Command, the current keyboard shortcut associated with the com-
mand is displayed here. To alter this shortcut, click in the box where the current hotkey is shown and press the
new keyboard combination.

Rpply
Click to apply the new keyboard combination to the currently selected Command.

Clear
Sets the keyboard shortcut for the currently selected Command to ‘None’.

Reset all Hotkeys to defaults
Resets all keyboard shortcuts to the defaults (i.e. the values when Git Extensions was first installed).

3.1.7 Shell Extension

When installed, Git Extensions adds items to the context menu when a file/folder is right-clicked within Windows
Explorer. One of these items is Git Extensions from which a further (cascaded) menu can be opened. This
settings page determines which items will appear on that cascaded menu and which will appear in the main context
menu. Items that are checked will appear in the cascaded menu.

To the right side of the list of check boxes is a preview that shows you how the Git Extensions menu items will be
arranged with your current choices.

By default, what is displayed in the context menu also depends on what item is right-clicked in Windows Explorer; a
file or a folder (and whether the folder is a Git repository or not). If you want Git Extensions to always include all of
its context menu items, check the box Always show all commands.

3.1.8 Advanced

This page allows advanced settings to be modified. Refer Confirmations.

Checkout

Always show checkout dialog
Always show the Checkout Branch dialog when swapping branches. This dialog is normally only shown
when uncommitted changes exist on the current branch

Use last chosen "local changes" action as default action.
This setting works in conjunction with the ‘Git Extensions/Check for uncommitted changes in checkout
branch dialog’ setting. If the ‘Check for uncommitted changes’ setting is checked, then the Checkout

3.1. Git Extensions 23

Git Extensions Documentation, Release 3.00.00.4433

Branch dialog is shown only if this setting is unchecked. If this setting is checked, then no dialog is shown
and the last chosen action is used.

General

Don’t show help images
In the Pull, Merge and Rebase dialogs, images are displayed by default to explain what happens with
the branches and their commits and the meaning of LOCAL, BASE and REMOTE (for resolving merge
conflicts) in different merge or rebase scenarios. If checked, these Help images will not be displayed.

Always show advanced options
In the Push, Merge and Rebase dialogs, advanced options are hidden by default and shown only after you
click a link or checkbox. If this setting is checked then these options are always shown on those dialogs.

Use Console Emulator for console output in command dialogs
Using Console Emulator for console output in command dialogs may be useful the running command
requires an user input, e.g. push, pull using ssh, confirming gc.

Auto normalise branch name
Controls whether branch name should be automatically normalised as per git branch naming rules. If
enabled, any illegal symbols will be replaced with the replacement symbol of your choice.

Commit

Push forced with lease when Commit & Push action is performed with Amend option checke
In the Commit dialog, users can commit and push changes with one click. However, if changes are meant
to amend an already pushed commit, a standard push action will be rejected by the remote server. If this
option is enabled, a push action with ——force-with-lease switch will be performed instead. The
—-—force-with-1lease switch will be added only when the Amend option is checked.

Updates

Check for updates weekly
Check for newer version every week.

Check for release candidate versions
Include release candidate versions when checking for a newer version.

3.1.8.1 Confirmations

This page allows you to turn off certain confirmation popup windows.

Don’t ask to confirm to

Amend last commit
If checked, do not display the popup warning about the rewriting of history when you have elected to
amend the last committed change.

Commit when no branch is currently checked out
When committing changes and there is no branch currently being checked out, then GitExtensions warns
you and proposes to checkout or create a branch. Enable this option to continue working with no warning.

Apply stashed changes after successful pull
In the Pull dialog, if Auto stash is checked, then any changes will be stashed before the pull is per-
formed. Any stashed changes are then re-applied after the pull is complete. If this setting is checked, the
stashed changes are applied with no confirmation popup.

3.1. Git Extensions 24

Git Extensions Documentation, Release 3.00.00.4433

Apply stashed changes after successful checkout
In the Checkout Branch dialog, if Stash is checked, then any changes will be stashed before the branch
is checked out. If this setting is checked, then the stashed changes will be automatically re-applied after
successful checkout of the branch with no confirmation popup.

Drop stash
Popup when dropping a stash.

Add a tracking reference for newly pushed branch
When you push a local branch to a remote and it doesn’t have a tracking reference, you are asked to confirm
whether you want to add such a reference. If this setting is checked, a tracking reference will always be
added if it does not exist.

Push a new branch for the remote
When pushing a new branch that does not exist on the remote repository, a confirmation popup will nor-
mally be displayed. If this setting is checked, then the new branch will be pushed with no confirmation
popup.

Update submodules on checkout
When you check out a branch from a repository that has submodules, you will be asked to update the
submodules. If this setting is checked, the submodules will be updated without asking.

Resolve conflicts
If enabled, then when conflicts are detected GitExtensions will start the Resolve conflicts dialog automat-
ically without any prompt.

Commit changes after conflicts have been resolved
Enable this option to start the Commit dialog automatically after all conflicts have been resolved.

Confirm for the second time to abort a merge
When aborting a merge, rebase or other operation that caused conflicts to be resolved, an user is warned
about the consequences of aborting and asked if he/she wants to continue. If the user chooses to continue
the aborting operation, then he/she is asked for the second time if he/she is sure that he/she wants to abort.
Enable this option to skip this second confirmation.

Rebase on top of selected commit
Rebase context menu command popup in revision graph.

Undo last commit
Browse Command popup.

Fetch and prune all
Browse fetch/prune popup.

3.1.9 Detailed

This page allows detailed settings to be modified.

Push window

Get remote branches directly from the remote
Git caches locally remote data. This data is updated each time a fetch operation is performed. For a better
performance GitExtensions uses the locally cached remote data to fill out controls on the Push dialog.
Enable this option if you want GitExtensions to use remote data recieved directly from the remote server.

Merge window

3.1. Git Extensions 25

Git Extensions Documentation, Release 3.00.00.4433

Add log messages
If enabled, then in addition to branch names, git will populate the log message with one-line descriptions
from at most the given number actual commits that are being merged. See https://git-scm.com/docs/git-

merge#git-merge—Ilogltngt

3.1.9.1 Browse repository window

Console emulator

Show the Console tab
Show the Console tab in the Browse Repository window.

Console style

Choose one of the predefined ConEmu schemes. See http://conemu.github.io/en/SettingsColors.html.

Shell to run
Choose one of the predefined terminals.

Font size
Console font size.

Show GPG information
Show tab for GPG information if available.

3.1.9.2 Commit dialog

This page contains settings for the Git Extensions Commit dialog. Note that the dialog itself has further options.

Behaviour

Provide auto-completion in commit dialog
Enables auto-completion in commit dialog message box. Auto-completion words are taken from the
changed files shown by the commit dialog. For each file type there can be configured a regular expression
that decides which words should be considered as candidates for auto-completion. The default regular ex-
pressions included with Git Extensions can be found here: https://github.com/gitextensions/gitextensions/
blob/master/GitExtensions/AutoCompleteRegexes.txt You can override the default regular expressions by
creating an AutoCompleteRegexes.txt file in the Git Extensions installation directory.

Show errors when staging files
If an error occurs when files are staged (in the Commit dialog), then the process dialog showing the results
of the git command is shown if this setting is checked.

Ensure the second line of commit message is empty
Enforces the second line of a commit message to be blank.

Compose commit messages in Commit dialog
If this is unchecked, then commit messages cannot be entered in the commit dialog. When the Commit
button is clicked, a new editor window is opened where the commit message can be entered.

Number of previous messages in commit dialog
The number of commit messages, from the top of the current branch, that will be made available from the
Commit message combo box on the Commit dialog.

Remember 'Amend commit' checkbox on commit form close
Remembers the state of the ‘Amend commit’ checkbox when the ‘Commit dialog’ is being closed. The
remembered state will be restored on the next ‘Commit dialog’ creation. The ‘Amend commit’ checkbox
is being unchecked after each commit. So, when the ‘Commit dialog’ is being closed automatically after

3.1. Git Extensions 26

https://git-scm.com/docs/git-merge#git-merge---logltngt
https://git-scm.com/docs/git-merge#git-merge---logltngt
http://conemu.github.io/en/SettingsColors.html
https://github.com/gitextensions/gitextensions/blob/master/GitExtensions/AutoCompleteRegexes.txt
https://github.com/gitextensions/gitextensions/blob/master/GitExtensions/AutoCompleteRegexes.txt

Git Extensions Documentation, Release 3.00.00.4433

commiting changes, the ‘Amend commit’ checkbox is going to be unchecked first and its state will be
saved after that. Therefore the checked state is remembered only if the ‘Commit dialog’ is being closed by
an user without commiting changes.

Show additional buttons in commit button area
Tick the boxes in this sub-group for any of the additional buttons that you wish to have available below
the commit button. These buttons are considered additional to basic functionality and have consequences
if you should click them accidentally, including resetting unrecorded work.

3.1.9.3 Diff Viewer

Remember the 'Ignore whitespaces' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Ignore whitespaces’ preference. Use the
remembered value the next time GitExtensions is opened.

Remember the 'Show nonprinting characters' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Show nonprinting characters’ preference.
Use the remembered value the next time GitExtensions is opened.

Remember the 'Show entire file' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Show entire file’ preference. Use the
remembered value the next time GitExtensions is opened.

Remember the 'Number of context lines' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Number of context lines’ preference.
Use the remembered value the next time GitExtensions is opened.

Omit uninteresting changes from combined diff
Includes git —cc switch when generating a diff. See https://git-scm.com/docs/git-diff-tree#git-diff-tree—cc

Open Submodule Diff in separate window
If enabled then double clicking on a submodule in the Diff file list opens a new instance of GitExtensions with
the submodule as the selected repository. If disabled, the File history window is opened for the double clicked
submodule.

Show file differences for all parents in browse dialog
Enable this option to see diff against each of the revision parents, combined diff including.

Vertical ruler position
Position for ruler. .. todo Any effect?

3.1.10 SSH

This page allows you to configure the SSH client you want Git to use. Git Extensions is optimized for PuTTY. Git
Extensions will show command line dialogs if you do not use PuTTY and user input is required (unless you have
configured SSH to use authentication with key instead of password). Git Extensions can load SSH keys for PuTTY
when needed.

Specify which ssh client to use

PuTTY
Use PuTTY as SSH client.

OpenSSH
Use OpenSSH as SSH client.

3.1. Git Extensions 27

https://git-scm.com/docs/git-diff-tree#git-diff-tree---cc

Git Extensions Documentation, Release 3.00.00.4433

Other ssh client
Use another SSH client. Enter the path to the SSH client you wish to use.

Configure PuTTY

Path to plink.exe
Enter the path to the plink.exe executable.

Path to puttygen
Enter the path to the puttygen.exe executable.

Path to pageant
Enter the path to the pageant.exe executable.

Automatically start authentication
If an SSH key has been configured, then when accessing a remote repository the key will automatically be
used by the SSH client if this is checked.

3.2 Git

The settings that are used by Git are stored in the configuration files of Git. The global settings are stored in the file
called .gitconfig in the user directory. The local settings are stored in the . git\config file of the repository.

3.2.1 Paths

This page contains the settings needed to access git repositories. The repositories will be accessed using external tools.
For Windows usually “Git for Windows” is used. Git Extensions will try to configure these settings automatically.

Git

Command used to run git (git.cmd or git.exe)
Needed for Git Extensions to run Git commands. Set the full command used to run git (“Git for Windows”).
Use the Browse button to find the executable on your file system. (Cygwin Git may work but is not
officially supported.)

Path to Linux tools (sh).
A few Linux tools are used by Git Extensions. When Git for Windows is installed, these tools are located
in the bin directory of Git for Windows. Use the Browse button to find the directory on your file system.
Leave empty when it is in the path.

Environment

Change HOME
This button opens a dialog where the HOME directory can be changed.

The global configuration file used by git will be put in the HOME directory. On some systems the home
directory is not set or is pointed to a network drive. Git Extensions will try to detect the optimal setting
for your environment. When there is already a global git configuration file, this location will be used. If
you need to relocate the home directory for git, click the Change HOME button to change this setting.
Otherwise leave this setting as the default.

3.2. Git 28

Git Extensions Documentation, Release 3.00.00.4433

3.2.2 Config

This page contains some of the settings of Git that are used by and therefore can be changed from within Git Exten-
sions.

If you change a Git setting from the Git command line using git config then the same change in setting can be
seen inside Git Extensions. If you change a Git setting from inside Git Extensions then that change can be seen using
git config —--get.

Git configuration can be global or local configuration. Global configuration applies to all repositories. Local configu-
ration overrides the global configuration for the current repository.

User name
User name shown in commits and patches.

User email
User email shown in commits and patches.

Editor
Editor that git.exe opens (e.g. for editing commit message). This is not used by Git Extensions, only when you
call git.exe from the command line. By default Git will use the built in editor.

Mergetool
Merge tool used to solve merge conflicts. Git Extensions will search for common merge tools on your system.

Path to mergetool
Path to merge tool. Git Extensions will search for common merge tools on your system.

Mergetool command
Command that Git uses to start the merge tool. Git Extensions will try to set this automatically when a merge
tool is chosen. This setting can be left empty when Git supports the mergetool (e.g. kdiff3).

Keep backup (.orig) after merge
Check to save the state of the original file before modifying to solve merge conflicts. Refer to Git configuration
setting “mergetool.keepBackup .

Difftool
Diff tool that is used to show differences between source files. Git Extensions will search for common diff tools
on your system.

Path to difftool
The path to the diff tool. Git Extensions will search for common diff tools on your system.

DiffTool command
Command that Git uses to start the diff tool. This setting should only be filled in when Git doesn’t support the
diff tool.

Path to commit template
A path to a file whose contents are used to pre-populate the commit message in the commit dialog.

Line endings

Checkout/commit radio buttons
Choose how git should handle line endings when checking out and checking in files. Refer to https:
//help.github.com/articles/dealing- with-line-endings/#platform-all

Files content encoding
The default encoding for files content.

3.2. Git 29

https://help.github.com/articles/dealing-with-line-endings/#platform-all
https://help.github.com/articles/dealing-with-line-endings/#platform-all

Git Extensions Documentation, Release 3.00.00.4433

3.2.3 Advanced

Various settings for Git.

3.3 Plugins

Plugins provide extra functionality for Git Extensions. Please refer to Plugins.

3.3. Plugins 30

CHAPTER 4

Browse Repository

You can browse a repository by starting Git Extensions and select the repository to open. The main window contains
the revision graph (commit log). You could also open the ‘Browse’ window from the shell extensions and from Visual
Studio.

4.1 View revision graph

The full commit history can be browsed. There is a graph that shows branches and merges. You can show the difference
between any two revisions by selecting them using ctrl-click.

31

Git Extensions Documentation, Release 3.00.00.4433

itextensions_4 (release/3.00) - Git Extensions — O x
9

Start Repository MNavigate View Commands GitHub Plugins Tools Help

| L) ~| B9~ Fadevige\gitextensions 4+ release/3.00 v | & = § - Commit(5) (% (67) v| [] ¢ & | Branches: | | | Fitter | |7- ¢
Search: gitextensions/master Update README.md . RussKie 2018-12-07 11:54:40 7a9alBc @3.0000.44.. "
v I Branches (111) Working directory /2 =1 cg1 Bui
w . B release
b 300 Commit index e
-k gotest I » release!E.OOlD gitextensions/release/3.00 W EER RS EU TSR 1T 4VES
B 251 :
249 Merge pull request #5860 from spdr870/feature/guardensurescore . RussKie 2018-12-07 11:05:18 F9dcc58 @ 3.00.00.44...
spdr870 =pdrl70/feature/quardensurescore Added guard for EnsureScorelsAbove. Henk Westhuis 2018-12-07 08:57:23 9dbdl4c 3.00.00.44...
texd
f‘ : nsieons spdr270/release/5781 Fix build seript . RusslGe 2018-12-06 11:47:15 c15bad2 o 3.00.00.44...
eature
bugfix 5781: Attempt to fix disappearing scrollbar Henk Westhuis 2018-12-06 10:43:42 Fae7be2
3683 exceptio Mark repo as clean enly for release branches . RussKie 2018-12-05 22:21:04 S@cbcdc
- B msty
I jbialobr Rermove PluginManaaer from the release . RussKie 2018-12-05 22:20:39 1+fbaa? v
5 d:wnﬂakes & Commit E2 piff %3 Filetree J” GPG @M Console %) Build Report
B vbja .
‘.E Io:ar . diff --git a/GitUI/GitUl.csproj b/GitUI/GitUl.csproj
o index b&3fa78be..f51f32c2d leescdd
E iff with: # 70/feat...
[tmp Diff with: Merge pull request #5050 from speT0/feat.. o]
b master .+ GitUI/GitUl.csproj +++ b/GitUI/GitUI.cspraj
«(p amaiorano /" GitUl/Resources/ChangeLog.md @@ -1715,6 +1715,7 @
«(AbhiAgarwall <None Include="Properties\DataSources\GitCommands.GitItem.datasource™ />
P
(B rusckie <None Include="Properties\DataSources\GitCommands.GitItemStatus.datasource™ />
- ¥ 9999999999¢ <None Include="Properties\DataSources\GitCommands.GitRevision.datasource” />
B crypto-rsa + <hone Include="Resources\Changelog.md™ />
gelog.
-k NikolayXHD <None Include="Translation\Czech.Plugins.x1f">
- e amaiorano_an <CopyTolutputDirectory>Preservelewest</CopyToOutputDirectory>
'k mdonatas </None>
-} navigate_com
B pmiossec
e test
- Nikolay
B or
< < >

The context menu for a commit can both execute Git commands and change the appearance for the form.

4.1. View revision graph 32

Git Extensions Documentation, Release 3.00.00.4433

iy

$ = g

0 E &

Lol

E BEe 4% ¢

Copy to clipboard

Checkout branch
Merge into current branch
Rebase current branch on

Reset current branch to here

Create new branch
Rename branch

Delete branch
Compare

Create new tag

Delete tag

Checkout revision
Revert commit
Cherry pick commit
Archive revision

Advanced

Mavigate

YView

Open build report in the browser

Open on GitHub
supdate

4.2 Search or filter the commit history

You can find text in the commit messages or jump to a specific commit in the current commit history shown in Git
Extensions. You can also filter the commit history so that fewer commits are shown.

4.2.1 Quick search in history

You can find a commit in the commit history that is shown in Git Extensions by searching for text in the commit
message, branch label or tag. This is a quick search function. Simply click into the commit history to give that pane
focus and start typing. Git Extensions will show your search term in the top left corner and will immediately jump
to the next commit with matching text. You can search for the next or previous commit with matching text using

Alt-Down ArroworAlt-Up Arrow.

In Settings, Git Extensions you can change the timeout for typing the text for the quick search.

4.2. Search or filter the commit history

33

Git Extensions Documentation, Release 3.00.00.4433

4.2.2 Go to a specific commit

You can jump to a particular commit in the commit history if you know the SHA, tag or branch. In fact you can use
any expression valid for git-rev-parse. Select Navigate, Go to commit or press Ctrl-Shift-G to open the
Go to commit window. Enter an SHA or other term to be passed to git-rev-parse into the box at the top and click
Go, or select a branch or tag from one of the two combo boxes below.

4.2.3 Filter history

The history can be filtered using regular expressions and basic filter terms. Filtering will reduce the number of commits
that are shown in the Git Extensions commit history. The quick filter in the toolbar filters by the commit message, the
author and/or the committer.

K gitextensions_4 (release/3.00) - Git Extensions - m} X

Start Repository Mavigate View Commands GitHub Plugins Tools Help
(7] | m ==] v|ﬂ ~ F\devigc\gitextensions_ 4 ~ release/3.00 v| Q - 2 Commit (5) t‘(‘}'fj v| (] ig¢ | Branches: ? - | Filter: ? - o
Search: gitextensions/master Update README.md . RussKie 2018-12-07 11:54:40 7a%alsc ®3.00.0044.

~ [Branches (111)

. k8 release R .
» 3.00 Commit index

Werking directory

&= gotest I » rEIeaseH.()i)lD ELSAESELREEEIENN Update the changelog for v3 t- RussKie 2018-12-07 11:04:24 fcalcf2
I 251 -
Merge pull request #3860 from spdr870/feature/guardensurescore . RussKie 2018-12-07 11:05:18 f9dccs58

~f 248 v
- spdr270 S
.. [gitedensions & Commit B2 Diff % Filetree /7 GPG @M Console &) Build Report
+ - e feature - diff --git a/GitUI/GitUI.csproj b/GitUI/GitUI.csproj
-y bugfix index b&3fa78be..f51f32c2d 108644

B 5683 exceptio Diff with: Merge pull request... 4 -~ a/GitUI/GitUI.csproj

C B st " 'G\tUI_.'GitU\-csprOJ ++ b/GitUI/GitUI.csproj
B e Gi/Resources Changelogimd
<None Includ roperties\DataSources\GitCommands.GitItem.datasource™ />

<None Include="Properties\DataScurces\GitCommands.GitItemStatus.datasource™ />
<None Include="Properties\DataScurces\GitCommands.GitRevision.datasource”™ />
+ <None Include="Resources\Changelog.md" />
<Mone Include="Translation\Czech.Plugins.x1f">
<CopyToOutputDirectory»PreserveNewest</CopyToQutputDirectory>
</None>

+ e drewnoakes
b vbjey

- E local

B tmp

o master

- B amaiorano
» e Abhifgarwall
- B russkie
i b qaqaagaqaqe

In the context menu of the commit log you can open the advanced filter dialog. The advanced filter dialog allows you
to filter for more specific commits. To remove the filter either remove the filter in the toolbar and press enter or remove
the filter in the advanced filter dialog.

4.2. Search or filter the commit history 34

Git Extensions Documentation, Release 3.00.00.4433

= M'r\ hmnk - fmal £ nny Updatethe l:hangelog for vl L-.- RussKie
Copy to clipboard -

juardensurescaore : . RussKie
Checkout branch 3
Merge into current branch R d for EnsureScorelsAbove, : Henk Westhuis
Rebase current branch on » . RussKie
Reset current branch to here Henk Westhuis
Create new branch ' RussKie
Rename branch » . RussKie
Q Comrr g Deletebranch * | Console @ Build Report
EZ Compare (3
Diff with: § -2 Create new tag A
GitUl/Git . Deletetag 5 Show all branches Ctrl+Skift+4
GitUl/Re il - Show current branch only Ctrl+Skift+ U
" Checkout revision Show filtered branches Ctrle Skift+ T
' Revert commit
£ Cheny pick commit Show remote branches Ctrl+Skift+R
B Archive revision Show reflog references
B2 Advanced 3 Show superproject tags
B Navigate . Show superproject branches
‘Elq_? View , | Show superproject remote branches
+' Open build report in the browser Show revision graph colurnn
O Open on GitHub Show author avatar coelumn
supdate Show author narme celumn
- Show date column
Show SHA-1 column
Show build status icon
H Show build status text
Draw non relatives gray
Show author date
Show relative date
Show merge commits Ctrl+Skift+M
Show tags Ctrl+Al+T
Show git notes
Highlight selected branch (until refresh) Ctrl+Skift+B
Show first parents Ctrl+Skift+5
Set advanced filter Ctrl+F

4.2. Search or filter the commit history 35

Git Extensions Documentation, Release 3.00.00.4433

8 Filter b4
Since [den 9 december 2018
Until [] den 9 december 2018
Author L]
Committer]
Message L]
Ignore case
Limnit 100000 -
File filter Ll
Branches]
OK

4.2. Search or filter the commit history 36

CHAPTER B

File history

To display the single file history, right click on a file name in the Browse Repository File tree orinthe Diff tab
and select File history or Blame. The single file history viewer shows all revisions of a single file. (This is
available for submodules too, but the information is mostly not interesting.)

& Commit =2 Diff %5 Filetree J° GPG

Diff with: _go/latest @f9%e

7 sourcpleattina et

EZ Open with difftool 3
E Save selected as... Ctrl+5
#. FResetfile(s) to 3
& Cherry pick file's changes

|+ Editfile F4

& Deletefile Diel

U Copy full path(z) Ctrl+C
|| Show in folder

%% Show in File tree

[50 File history H
ﬁ» Blarme B

Find Ctrl+F

37

Git Extensions Documentation, Release 3.00.00.4433

5.1 Commit

The Commit tab contains the information about the commit, including the other files in the commit.
3¢ File History - GitUl/CommandsDialogs/FormBrowse.cs - F\dev\gc\gitextensions_4
Branches: » = | Filter T~ ¢ |8~ 3 8-

Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, etc.) registers for callbacks and handles its own update, instead of being told to reload

Issue 5616: Provide a way to remove all invalid recent repositories.

p_commit_info_scroll

2

Merge pull request #5641 from NikolayXH

Force commit info to clear on module change

& Commit EZ piff View 4 Blame
Author: RussKie <RussKie@users.noreply.github.com>
Date: 1 month age (2018-10-31 06:54:11)
Committer: GitHub <noreply@agithub.com>
Commit hash: 66380983451680c816d9abcd6797c3Ted2307449
Parents: Oe3ddbd35f e538ea30b8

Merge pull request #5641 from NikolayXHD/fix_commit_info_scroll

Fix commitInfo scroll on mouse wheel
Notes:

Related links: View on GitHub, PR 5641
Contained in branches: vhjay/_AboutlLayout, tmp/master, spdr870/_feature/gitcmdmissing, spdr870/_feature/3853, spdr870/_feature/3782, spdrB70/_feature/3678, russkie/_fix_3644_undc

Diff with: De3d4bd5 ~ diff --git a/GitUI/Com
/7 GitUl/CommandsDizlogs/FormBrowse.Designer.cs lndex;;?:z';i;ea‘ - 7:9?
: g --- a/Gi ommandsDi
.+ GitUlfCommandsDialogs/FormBrowse.cs P e e

" GitUl/Commitinfo/Commitinfo.Designer.cs @@ -1214,11 +1214,6 @

7 GitUl/Commitinfo/Commitinfe.cs

/" GitUl/Commitinfo/ CommitinfoHeader.Designer.cs var child

/7 GitUl/Commitinfo/ CommitinfoHeader.cs '?EVlSlOf.TI

" Gitll/MouseWheelRedirector.cs - ;'f (Revis
Diff with: e358ea30 A _ paren

" github/ISSUE_TEMPLATE.md = paren
@& Externals/NBug (+1) - }

" GitCommands/GitCommands.csproj }

== GitExtUtils/BinarySearch.cs private async

7 GitExtUtils/ GitExtUtils.csproj

5.2 Diff

You can view the difference report from the commit in the Dif £ tab.

Note: Added lines are marked with a +, removed lines are marked with a —.

5.1. Commit 38

Git Extensions Documentation, Release 3.00.00.4433

}-{ File History - GitUl/CemmandsDialogs/FormBrowse.cs - Fh\devigchgitextensi
Branches: = | = | Filter: T -
Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, et

Issue 3616 Provide a way to remove all invalid recent repositories,

¢

Merge pull request #5641 from MikelayXHD/fi_commit_info_scroll

Force commit info to clear on module change

| PRSP SNy RPN | [P PRy O [

® Commit ES Diff View 4 Blame
diff --git a/GitUI/CommandsDialogs/FormBrowse.cs b/
index 7386feced..759d88737 1leacdd
--- a/GitUI/CommandsDialogs/FormBrowse.cs
++ b/GitUI/CommandsDialogs/FormBrowse.cs
@ -1214,11 +1214,6 @@ private woid FillCommitInfo(

var children = RevisionGrid.GetRevisio
RevisionInfo.SetRevisionkWithChildren(r

1217 = if (RewvisiconInfo.Parent is Panel paren
1218 - {
1219 - parent.AutoScroll = true;
1228 = parent.AutoScrollMinSize = Revisio
1221 - }

¥

private async Task FillapgInfohsynci)

5.3 View

You can view the content of the file in after each commit in the View tab.

5.3. View 39

Git Extensions Documentation, Release 3.00.00.4433

}-{ File History - GitUl/CemmandsDialogs/FormBrowse.cs - Fh\devigchgitextens
Branches: - ? - | Filter: ? 1

Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remnotes, ¢

Issue 3616 Provide a way to remove all invalid recent repositories,

¢

Merge pull request #5841 from MNikelayXHD/fi

_commit_info_scroll

Force commit info to clear on module change
| PRSP SNy RPN | [P PRy O [

B Commit EZ Diff
using System;
using System.Collections.Generic;
using System.ComponentModel;

System.Diagnostics;
using System.Drawing;

[y I) IR SR WV % I
c
4]
o8
=]
g

using System.Drawing.Drawing2D;
using System.IO;

[|

using System.Lling;

5.4 Blame

There is a blame function in the file history browser. The commit for the selected line is displayed.

ile History - Gitl ommandsChalol ormBrowse.cs - F\devigchgitextensions._.

File History - GitUl/C dsDialogs/F B Fdevigcigi i 4

Branches: - 5 - | Filter: A BL RIS E o
Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, etc.) registers for callbacks and handles its own update, instead of being told to reload

Issue 5616: Provide a way to remove all invalid recent repositories.

Merge pull request #5641 from NikolayXH

commit_info_scroll

KX

Force commit info to clear on module change

® commit E2 Diff View # Blame

Author Henk Westhuis <henk westhuis@hotmail.com>
Date: 10 years ago (2008-11-27 20:17:44)

Commit hash: bfcbc832fd%aad0of67fedaTf3452a1673% elfe
Parent: abadeabd06

added files

Notes:

Tala52 - 2812-86-15 ©8:83:18 - GitUI/FormBrowse.cs 1 using System;

Henk Westhuis - 2088-11-27 20:17:44 - GitUI/Browse.cs 2 using System.Collections.Generic;
Drew Moakes - 2818-86-19 11:37:16 - GitUL/CommandsDialogs/FormBrowse.cs 3 i

Steffen Forkmann - 2018-87-28 16:44:38 - GitUI/FormBrowse.cs 4 Author: Henk Westhuis

Arkadiy Shapkin - 2811-1@-28 81:53:22 - GitUI/FormBrowse.cs 5 23:%;’;’:?:;%;;;%;;2”?"“"

Drew Noakes - 2@18-87-19 16:22:56 - GitUL/CommandsDialogs/FormBrowse.cs g CommitterTime: 2008-11-27 20:17:44
Steffen Forkmann - 2818-87-28 16:44:38 - GitUI/FormBrowse.cs 7 Summane: added files

Double clicking on a code line shows the full commit introducing the change.

5.4. Blame 40

CHAPTER O

Commit

A commit is a set of changes with some extra information. Every commit contains the following information:
* Changes
* Committer name and email
e Commit date
¢ Commit message
 Cryptographically strong SHA1 hash

Each commit creates a new revision of the source. Revisions are not tracked per file; each change creates a new
revision of the complete source. Unlike most traditional source control management systems, revisions are not named
using a revision number. Each revision is named using a SHA1, a 41 long characters cryptographically strong hash.

6.1 Commit changes

Changes can be committed to the local repository. Unlike centralised source control management systems you do not
need to checkout files before you start editing. You can just start editing files, and review all the changes you made in
the commit dialog later. When you open the commit dialog, all changes are listed in the top-left.

41

Git Extensions Documentation, Release 3.00.00.4433

3 Commit to feature/i5693-doc-3.00 (FAdevige\ gitextensions_4\GitExtensionsDoc) u] X
diff --git a/source/commit.rst b/source/commit.rst

index bsasbbb..bsz5e29 leesas

--- a/source/commit.rst

" source/commit.rst +++ b/source/commit.rst

@@ -18,7 +18,7 @@ using a revision number. Each revision is named using a SHAL, a 41 long characts

Commit changes

Fi | 2 Working directory changes -

-Changes can be committed to the local repository. Unlike most other source control management systems you do not need to
+Changes can be committed to the local repository. Unlike centralised source control management systems you do not need to
checkout files before you start editing. You can just start editing files, and review all the changes you made in the commit
dialog later. When you open the commit dialog, all changes are listed in the top-left.

@ | & unstage § stage | B
=) Commit ! Commit message ~ (=] Commit templates = 13, Create branch Options ~
% Commit & push
[stage in Superproject
[Amend Commit
& Resetall changes
2 Reset unstaged changes
Committer Gerhard Qlsson <gerhardol@users.noreply.github.com> I feature/i5693-doc-3.00 Staged 0/1 Ln 0 Col O
There are three kinds of changes:
Un- This file is not yet tracked by Git. This is probably a new file, or a file that has not been committed to

tracked Git before.
Modified | This file is modified since the last commit.
Deleted This file has been deleted.

When you rename or move a file Git will notice that this file has been moved and notice in index pane (not in working
directory).

During your initial commit there are probably lots of files you do not want to be tracked. You can ignore these files by
not staging them, but they will show every time. You can instead add them to the . git ignore file of your repository.
Files that are in the . gitignore file will not show up in the commit dialog again. You can open the .gitignore
editor from the menu Working dir changes by selecting Edit ignored files.

6.1. Commit changes 42

Git Extensions Documentation, Release 3.00.00.4433

% Commit to feature/i5693-dec-3.00 (F\dev\gc\gitextensions_4\GitExtensionsDoc)

L] | = Werking directory changes -
Show ignored files -
Show skip-worktree files

P Show assumed-unchanged files

===l « Show untracked files

Delete selected files

Reset selected files
#: Reset unstaged changes
#: Reset all (tracked) changes

B Edit ignored files

< Edit locally ignored files

Delete all untracked files

% | Selection filter & Stage | &

Making a commit is a two step procedure:

* Adding to index (staging) the changes to be committed, which saves a snapshot of the changes into the Git
“index”.

» Committing those staged changes, which records the staged changes and other information into the repository.

You do not have to commit immediately after staging changes. You can close the commit dialog, make further changes
to the files in the working dir, then re-open the commit dialog to stage further changes and commit. Changes that you
have staged previously will still be staged when you re-open the dialog.

6.1.1 Staging changes

The changes that you have made to your working directory are not automatically included in a commit. You must
choose which of the changed files, or individual changes from within those files, will be included in the commit by
“staging” the changes in Git Extensions. Staging changes in Git Extensions is the same as using git add on the Git
command line.

You can stage the changes you want to commit by selecting the files in the top-left or “Unstaged changes” pane and
pressing the Stage button or pressing the [S] key. The file entries will move to the lower left or “Staged changes”
pane. You need to stage deleted files because you stage the change and not the file. If you have staged changes from a
file and you wish to exclude those changes from the commit, select the entry in the staged changes pane and press the
Unstage button or press the [U] key.

If the file that is selected in either the unstaged or staged changes pane is text format, Git Extensions will show a Git
“diff” view in the right side pane of the window.

6.1.2 Staging selected lines

You do not have to commit all of the changes in a text format file in one commit. You can select and stage individual
lines from within a file such that only the chosen lines will be included in your next commit; the remaining changes in

6.1. Commit changes 43

Git Extensions Documentation, Release 3.00.00.4433

the file will appear as unstaged changes for the next commit.

In the diff view on the right, select the line or lines that you want to stage then right-click and choose Stage
selected line (s) or press the [S] key. The file will now appear in both the staged changes and unstaged
changes panes on the left since now there are both staged and unstaged changes in the same file. The change that was
selected will disappear from the diff view on the right because the diff view is showing only the unstaged changes.

To see the line changes that have been staged select the entry for the file in the staged changes pane. To unstage
selected changed lines from a file, select that file in the staged changes pane, then select the line or lines in the diff
view, right -click, and choose Unstage selected line (s) or pressthe [U] key.

Note: If you select an entire line including the end-of-line character then staging or unstaging that line will include
both the selected line and the next line. To select a single line to stage or unstage you may simply click onto the line
without selecting any particular characters.

Note: Staging and unstaging individual lines from a file does not change the file itself. It is simply choosing which
changes from within that file will be included in the next commit.

6.1.3 Undoing or resetting changes

You can undo or reset changes to files from the commit dialog. You can only do this from the top-left or “Unstaged
changes” pane. If you have already staged the changes then you must first unstage them as described above. To
reset the changes in a file, select the file in the unstaged changes pane, right-click and choose Reset file or
directory changes or press the [R] key.

6.1. Commit changes 44

Git Extensions Documentation, Release 3.00.00.4433

}{ Commit to feature/i5693-doc-3.00 (Fhdevigcdgitextensions_4\GitExtensionsDoc)

[+ | = Working directory changes -

Show ignored files -
g Show skip-worlktree files
& s Show assumed-unchanged files

Show untracked files

Delete selected files
Reset selected files

Reset unstaged changes

#: Reset all (tracked) changes

< Editignored files
« Edit locally ignored files
Delete all untracked files

i | Selection filter & Stage | &

=1

v | Commit

@ Commit & push
[] Stage in Superproject
[1 Amend Commit

#: Resetall changes

+#; Reset unstaged changes

You can reset individual changed lines in a similar way to staging and unstaging individual lines, which are described
above. To reset an individual line, select the line or lines in the diff view on the right then right-click and choose
Reset selected lines orpressthe [R] key.

Warning: Resetting changes modifies the file, discarding either all of the changes or the changes on the selected
lines.

6.1.4 Making the commit

When all the changes you want to commit are staged, enter a commit message into the lower-right pane and press the
commit button.

6.1. Commit changes 45

Git Extensions Documentation, Release 3.00.00.4433

3¢ Commit to feature/i3693-doc-3.00 (F\devigc\gitextensions_4\GitExtensionsDoc)

[+ | =} Working directory changes ~

4

source/commit.rst
source/images/commit_dialog.png
source/images/reset_changes.png

source/images/commit_reset_changes.png ()

i | & Unstage

& Stage | &

—

ks Commit
& Cormmit & push

[] stage in Superproject
[] Amend Commit

#: FResetall changes

. Reset unstaged changes

- E
=} Commit message -

There is a built-in spelling checker that checks the commit message. Incorrectly spelled words are underlined with a
wavey red line. Right-click on the misspelled word to choose the correct spelling or choose one of the other options.

Git Extensions installs a number of dictionaries by default. You can choose another language in the context menu
of the spelling checker or in the settings dialog. To add a new spelling dictionary add the dictionary file to the
Dictionaries folder inside the Git Extensions installation folder.

6.1. Commit changes

46

Git Extensions Documentation, Release 3.00.00.4433

F e

& Commit = Commit message - = Commit templates = I3 Create branch
-

Incorrect speling

4 Commit & push

spelling
[] Stage in Superproject SPiElil-'bg
[] Amend Commit spewing
suppling
#: Resetall changes spooling
£ Add to dicticnary
: Ignore word
Remove word
Cut
Copy
Paste
Delete
Select all
| Dictionary " None
Mark ill formed lines de-DE
en-All
en-Ch
en-GB
en-Us
es-ES
es-MX
fr-FR
it-1T
nl-ML
pl-PL
ro-RO
ru-RLU

6.2 Amend commit

It is also possible to add changes to your last commit by checking the Amend Commit checkbox. This can be very
useful when you forgot some changes. This function rewrites history; it deletes the last commit and commits it again
including the added changes.

See also Modify Git history, especially if you have published the changes to a repote repository already.

6.2. Amend commit 47

CHAPTER /

Stash

If there are local changes that you do not want to commit yet and not want to throw away either, you can temporarily
stash them. This is useful when working on a feature and you need to start working on something else for a few hours.
You can stash changes away and then reapply them to your working dir again later. Stashes are typically used for very
short periods.

48

Git Extensions Documentation, Release 3.00.00.4433

% Stash — O >
Show: |WIP on i5693-doc-3.00: cfo26t [=|| Ty @ @ [@2 2| 1 E B8 us-asal T W
._/‘+make.cmd --- a/readme.md

_ readme.md +++ b/readme.md

+To generate the documentation, you need to have Sph
+If you have
+ pip install -U sphinx
+ sphinx-build -b html -d build/doctrees source buil
+
#4548 HTML
Simply run “make-html.cmd®. You can alsc use “make-
file. The “make_and_start Browser.cmd™ is an alias

WIP on i5693-doc-3.00: cfb269b Split Browse-»
Browse, File History

[Keep index Include untracked

Stash all changes
Stash selected changes

Drop Selected Stash

Apply Selected Stash = }

7.1 Revision graph

You can create multiple stashes if needed. The latest stash is shown in the commit log with the text [stash], all
stashes if reflog is visible (see Maintenance).

master | | origin/master | ' Ogerhardol/feature/3.00-version | ' feature/3.00-versi
feature/3.00-version | _go/feature/3.00-version Update release version

stash WIP on i5693-doc-3.00: cfb269b Split Browse- > Browse, File History
index on i3693-doc-3.00: cfb269b Split Browse->Browse, File History

untracked files on i3693-doc-3.00: cfb26%9b Split Browse-=>Browse, File History

The stash is especially useful when pulling remote changes into a dirty working directory. If you want a more perma-
nent stash, you should create a branch.

7.1. Revision graph 49

CHAPTER 8

Tag

Tags are used to mark a specific version. Usually a tag will not be moved anymore. The image below shows the
commit log of Git Extensions with a tag indicating version [3.00.00].

release/3.00 w3.00.00[..] Updatethe changelog forw3
Merge pull request #5860 from spdr870/feature/guardensurescore
Added guard for EnsureScorelsAbove,

Fix build script

8.1 Create tag

In Git Extensions you can tag a revision by choosing Create new tag in the commit log context menu. A dialog
will prompt for the name of the tag. You can also choose Create tag from the Commands menu, which will show
a dialog to choose the revision and enter the tag name.

50

Git Extensions Documentation, Release 3.00.00.4433

release/3.00 § w3.00000 [...]
1 Copy to clipboard »

Merge pull request #5860 from sp N
|f, Checkout branch 3
Added guard for EnsureScorelsAb i, Mergeinto current branch R
Fix build script 2L Rebase current branch on »
5781: Atternpt to fix disappearing| 45 Reset current branch to here
Mark repo as clean only for releas I, Create new branch
Remnove PluninMananer from the 45 Rename branch r
B Commit ES piff TH Filetree g Delete branch ’
% Compare 3
Diff with: Merge pull request #3860 from spdrlﬁ Create new tag
- GitUI/GitUl.csproj “_ Delete tag b
" GitUl/Resources/Changelog.md]
"% Checkout revision
Revert commit
g Cherry pick commit
= Archive revision
Ea Advanced 3
£l Mavigate 3
07 View b
% Open build report in the browser
0 Open on GitHub
supdate

Once a tag is created, it cannot be moved again. You need to delete the tag and create it again to move it.

8.2 Delete tag

Tags can be deleted, read about “What should you do when you tag a wrong commit and you would want to re-tag?”
here: https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

8.2. Delete tag 51

https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

Git Extensions Documentation, Release 3.00.00.4433

X

Select tag v3.00.00 || Delete

This will delete the selected tag from the (local) repository.

] Delete tag also from the following remote(s):

Ogerhardol

109 Help (includes information about deleting tags which are already pushed)

8.2. Delete tag 52

CHAPTER 9

Branches

Branches are used to commit changes separate from other commits. It is very common to create a new branch when
you start working on a feature to keep the work done on that feature separate from other work. When the feature is
complete the branch can be merged or rebased as you choose such that the commits for the feature either remain as
a parallel branch or appear as a continuous single line of development as if the branch had never existed in the first
place. The image on the right illustrates a branch created on top of commit B.

You can see the name of your current branch in a combo box in the toolbar. You can switch to another branch by
choosing from the combo box list. In the commit log the current branch has an arrow head to the left of its name. If
you are not currently on a branch because you have checked out a specific commit but not any particular branch then
Git Extensions will show (no branch) in place of a branch name in the toolbar. This is called “Detached HEAD
mode”. In Git you can refer to your current branch or commit by the special reference HEAD in place of the branch
name or commit reference.

R (== "| 9 ~ Fhdev\gc\gitextensions 4\GitExtensionsDoc »¢Feature/i5693-doc-3.00 |Q * 4

53

Git Extensions Documentation, Release 3.00.00.4433

9.1 Create branch

In Git Extensions there are multiple ways to create a new branch. In the image below I create a new branch from the
context menu in the commit log. This will create a new branch on the revision that is selected.

Working directory 471 o1 ==
Commit index

O » feature/i5693-doc-3.00 remotes

Im 1 Copy to clipboard -

B4 : jins.rst
[, Merge into current branch 3

feat| .

= 4L Rebase current branch on 3 touchuy

tag | 4. Reset current branch to here

stash |} Create new branch

com EZ Compare k

file_k _— .

I will create a new branch called feature/refactor. In this branch I can do whatever I want without affecting
others. The default in Git Extensions is to check out a new branch after it is created. If you want to create a new branch
but remain on your current branch, uncheck the Checkout after create checkbox inthe Create branch

dialog.

% Create branch et
Branch name ||::|ugfixfm3,r_l::|ranch| |
Create branch at this revision [a83867c8b3 &
Checkout after create

Orphan
[] Create arphan Clear working directory and indesx
i01 Help |Fs, Create branch

When the branch is created you will see the new branch feature/refactor in the commit log. If you chose to

checkout this branch the next commit will be committed to the new branch.

feature/i3693-doc-3.00 remotes
Working directory 3 de 1 ==
Commit index

i

_go/feature/i3693-doc-3.00 Update source/plugins.rst

featurefui-refresh | | _go/feature/ui-refresh Doc Ul touchup

9.1. Create branch

54

Git Extensions Documentation, Release 3.00.00.4433

Creating branches in Git requires only 41 bytes of space in the repository. Creating a new branch is very easy and fast.
The complete work flow of Git is optimized for branching and merging.

9.1.1 Orphan branches

In special cases it is helpful to have orphan branches (see for example https://www.google.com/search?q=why+use+
orphan+branches+in+git). Check the “Create orphan” checkbox to create an orphan branch (-—orphan option in

git).
The newly created branch will have no parent commits.

The option “Clear working dir and index” (git rm -rf) is active by default. So the working dir and index will be
cleared. If you uncheck the last option then the working dir and index will not be touched.

9.2 Checkout branch

You can switch from the current branch to another branch using the checkout command. Checking out a branch sets
the current branch and updates all of the source files in the working directory. Uncommitted changes in the working
directory can be overwritten so it is best practice to make sure your working directory is clean by either committing
or stashing any current changes before checking out a branch. If you do not clean your working directory then, in the
Checkout branch dialog, you can choose between four options for your local uncommitted changes:

Don't Local changes will be retained if there are not conflicting changes from the branch you are checking

change out.

Merge Performs a three-way merge between your current branch, your local changes and the branch you are
checking out.

Stash Your local changes are stashed and the new branch is checked out. You can retrieve your changes on
the new branch with stash-pop.

Reset Your local changes are discarded and the new branch is checked out. Use caution with this option as
Git has no record of uncommitted changes so they cannot be retrieved.

Working directory 74 o] ==
Commit index

O b feature/i5693-doc-3.00 remotes
bugfie/ry_branch ficup

[> _go/feature/15693-doc-3.00 Update source/plugins.rst

In feature/ui-refresh I_gc_-'feature-'ui-refre:h (o | Copy to clipboard
tag |&. Checkout branch 2 feature/ui-refresh
stash I, Merge into current branch 3 _go/feature/ui-refresh
commit. solit to stash. medifv history] Rehasze current hranch on 3

9.3 Merge branches

In the image below there are two branches, [feature/refactor] and [master]. We can merge the commits
from the master branch into the feature/refactor branch. If we do this, the feature/refactor branch will be up to date
with the master branch, but not the other way around. As long as we are working on the feature/refactor branch we
cannot touch the master branch itself. We can merge the sources of master into our branch, but cannot make any
change to the master branch.

9.2. Checkout branch 55

https://www.google.com/search?q=why+use+orphan+branches+in+git
https://www.google.com/search?q=why+use+orphan+branches+in+git

Git Extensions Documentation, Release 3.00.00.4433

Working directory

Commit index

durnmy change 1 Gerha
master | gitextensions/master Correct version nu.., == ";’:a Gerhai
Update build version 3.00.00 -» 3.01.00.0 (¥5331) ";’:u Gerhai
feature/version-update Update build version 2.99.90 - Gerha
spdrd70/feature/lockfreelist Review changes ﬂ Henk'
N Merge pull request #5378 from drewnoakes/fix-3859.., - . RussKi

To merge the feature/refactor branch into the master branch, we first need to switch to the master branch.

feature/refactor| durmmy change 2
durnmy change 1
Working directory

Commit index

I p master I [» gitextensions/master gy n QU 0 :.

L}

Update build version 3.00.00 -> 3.01.00.0 (#5881) o
feature/version-update Update build version 2.99.90 -
spdr870/feature/lockfreelist Review changes ﬂ
Merge pull request #5878 from drewnoakes/fix-3859... -

N “

Once we are on the master branch, select the feature/refactor branch and select merge. Alternatively choose Merge
branches from the Commands menu and select the feature/refactor branch.

/7 Copy to clipboard 3
Gerhard C

\f. Checkout branch 3

|m Merge into current branch J " feature/refactor

2L Rebase current branch on »

#. Reset current branch to here t VErsi.. =* ’:\ Gerhard O

I Create new branch 1) "; ¥, Gerhard O

8% Rename branch » h29990-> .. L1 GerhardC

\fg Delete branch | ﬂ Henk Wesi

E=

=5 Compare » eseso.. o [Russkie
\ E T rmmdm s b | 2 [

In the merge dialog you can verify which branch you are working on. Select the branch to merge with then click the
Merge button.

9.3. Merge branches 56

Git Extensions Documentation, Release 3.00.00.4433

3 Merge branches d

Hide help Merge

Hover to see scenario when fast forward is possible, Merge branch o | =
merge commi oM current Into current branch master

other
¥ REMOTE

(®) Keep a single branch line if possible (fast forward)
() Always create a new merge commit

[] Do not commit

Show advanced options

current

4 LOCAL (] Use non-default merge strategy

(] Squash commits
[] Allow unrelated histories

[] Add log messages 0 |

[] Specify merge message

squara = grean =
surrant branch new commit

postfix for files if
AR marge conflicls ocour

After the merge the commit log will show the new commit containing the merge. Notice that the feature/refactor
branch is not changed by this merge. If you want to continue working on the feature/refactor branch you can merge
the feature/refactor branch with master. You can instead delete the feature/refactor branch if it is not used anymore.

Working directory
Commit index

| M ES Sl Merge branch 'feature/refactor’

rl |

featurefrefactor dummy change 2
dummmy change 1
[» gitextensions/master Correct version number fo...

Update build version 3.00.00 -= 3.01.00.0 (#3321)

Sa P Aa P

featurefversion-update Update build version 2,99.90 -=

spdr870/feature/lockfreelist Review changes |

Merge pull request #5878 from drewncakes/fix-5859..,

AN

Note: When you need to merge with an unnamed branch you can use a tag to give it a temporary name.

Note: During a merge conflicts can occur. See Merge Conflicts for more information.

9.3. Merge branches 57

Git Extensions Documentation, Release 3.00.00.4433

9.4 Rebase branch

The rebase command is the most complex command in Git. The rebase command is very similar to the merge com-
mand. Both rebase and merge are used to get a branch up-to-date. The main difference is that rebase can be used to
keep the history linear contrary to merges.

Working directory

Commit index

I- b feature/refactor JIT T =TT TR

dumrny change 1

-
o

master gitextensions/master Correct version nu...

- - A

Update build version 3.00.00 -» 3.01.00.0 (#5881)

L
I

e

feature/version-update Update build version 2.99.90 -> ..,
spdr870/feature/lockfreelist Review changes

Merge pull request #5878 from drewnoakes/fix-5859...

N

Select the commit where you want to to rebase the current branch.

I- Y Copytoclipboard 3 m

|y, Checkout branch 3 Gerhard €

||ﬂ|h, Merge inte current branch 3 " feature/refactor

4L Rebase current branch on 3

#. Reset current branch to here + versi... - “;f:\ Gerhard O

B Create new branch 21] ":::x Gerhard O

8% Renamebranch b h299.90-> .. Li0 GerhardC

|l Delete branch » ! ﬂ Henk Wesi

S5 Compare * poseso.. o [Russkie
N P =

A rebase of feature/refactor on top of master will perform the following actions:
* All commits specific to the feature/refactor branch will be stashed in a temporary location
 The branch feature/refactor will be removed
* The branch feature/refactor will be recreated on the master branch

¢ All commits will be recommitted in the new feature/refactor branch

Note: During a rebase merge conflicts can occur. You need to solve the merge conflicts for each commit that is
rebased. The rebase function in Git Extensions will guide you through all steps needed for a successful rebase. See
Merge Conflicts for more information.

9.4. Rebase branch 58

Git Extensions Documentation, Release 3.00.00.4433

3 Rebase — O X

Hide help Rebase current branch on top of another branch
Current branch: feature/refactor

| Rebase |
[] Interactive Rebase [] Preserve Merges - Autosquash o Auto stash
| Specific range From (exc.) =! To |feature/refactor b | Solve conflicts |
Commits to re-a| 3
opply | Add files |
MName Subject Author Date Status
| Commit... |
| Continue rebase |

| Skip this commit |

| Abort |

square = green =
current branch new commit

sitfis for files il
A R&aroe conflicts oceur

The image below shows the commit log after the rebase. Notice that the history is changed and it seems like the
commits on the feature/refactor branch are created after the commits on the master branch.

Working directory

Commit index

p feature/refactor JIT LT =1 T

durnmy change 1

master gitextensions/master Correct version nu...

Update build version 3.00.00 -» 3.01.00.0 (#3331)

feature/version-update Update build version 2.59.90 -=
spdr@70/feature/lockfreelist Review changes

Merge pull request #5878 from drewnoakes/fix-5839..,

Warning: Because this function rewrites history you should only use this on branches that are not published to
other repositories yet. When you rebase a branch that is already pushed it will be harder to pull or push to that
remote. If you want to get a branch up-to-date that is already published you should merge.

9.5 Interactive rebase

It is possible to modify the order, merge commits etc when committing.

See Modify Git history for more information.

9.5. Interactive rebase 59

Git Extensions Documentation, Release 3.00.00.4433

9.6 Delete branch

Since it is common to create many branches, it is often necessary to delete branches. Most commonly you will need to
delete branches on which work has finished and their contents are merged into master or your main branch. You can
also delete unmerged branches when they are not needed anymore and you do not want to keep the work done in that
branch.

When you delete a branch that is not yet merged, all of the commits that are in only the deleted branch will be lost.
When you delete a branch that is already merged with another branch, the merged commits will not be lost because
they are also part of another branch.

You can delete a branch using Delete branch from the Commands menu. If you want to delete a branch that is
not merged into your current branch (HEAD in Git), you need to check the Force delete checkbox.

p featurefi5693-doc-3.00 remotes

!. S hranchH [Copytoclipboard _

[» _go/feature/i3693-

I Checkout branch *
feature/ui-refresh | W, Merge into current branch 3
tag 4L Rebase current branch on 3

stash #. Reset current branch to here

commit, split to stash| . Create new branch

file_history ﬂ‘; Rename branch »
fixup explorer |'B* Delete branch d bugfix/my_branch
B3 ramnars .

9.6. Delete branch 60

cHAaPTER 10

Patches

Every commit contains a change-set, a commit date, the committer name, the commit message and a cryptograph
SHAT1 hash. Local commits can be published by pushing it to a remote repository. To be able to push you need to have
sufficient rights and you need to have access to the remote repository. When you cannot push directly you can create
patches. Patches can be e-mailed to someone with access to the repository. Each patch contains an entire commit

including the commit message and the SHAT.

:'I.IFrorr. E8c02ec4701c84c6T71la41elebds0c5822859851f Mon Sep 17 00:00:00 2001
2 From: Russell King <rmkfdyn-67.arm.linux.org.uk>
3 Date: Sun, 17 Apr 2005 15:40:46 40100

4 Subject: [PATCH 000213/123824] [PATCH] ARM: h3600_irda set speed arguments

5
6 h3600_irda set_speed() had the wrong type for the "speed" argument.
T Fix this.

8

9 Signed-off-by: Russell Hing <rmkfarm.linux.org.uk>
10 ——-

11 archfarm/mach-=a21100,/h3600.c | 2 +-

12 1 files changed, 1 insertions(+), 1 deletions(-)
13

14 diff --git afarch/arm/mach-=2al1100,/h3600.c bfarch/arm/mach-sal1100/h3600.

15 index 9788d3a..84cB654 100644
16 -—- afarch/farm/mach-=sall100/h3600.c
17 +++ bfarch/farm/mach-=sal1100/h3600.c

18 @@ -130,7 +130,7 @8 static int h3600 irda set power(struct device *dev, unsigned int state)

19 return 0;

20 }

21

22

25 +static void h3600_irda set_ speed(3truct device *dev, unsigned int speed)
24 {

25 if (=peed « 4000000) {

26 clr h3600 egpio (IPAQ EGPIC IR FSEL):

27

281.6.1.9.g97c34

61

Git Extensions Documentation, Release 3.00.00.4433

10.1 Create patch

Format a single patch or patch series using the format patch dialog. You need to select the newest commit first and then
select the oldest commit using ctrl-click. You can also select an interrupted patch series, but this is not recommended
because the files will not be numbered.

8 Format patch bt
(®) Save patches in directory Browse
() Mail patches from gerhardol@users.noreply.github.com
To
Subject
Body
mb feature/i5693-doc-3.00 QT 5 . Gerhard Olsson 2018-12-11 23:41:59 3bc7@ac
remotes Gerhard Olsson 2018-12-11 00:06:33 aBl3af3
fizup Gerhard Olsson 2018-12-11 00:05:52 a83867c
[> _go/feature/i3693-doc-3.00 Update source/plugins.rst g Drew Noakes 2018-12-11 15:29:52 8191893
feature/ui-refresh | _go/feature/ui-refresh Doc Ul touchup Gerhard Olsson 2018-12-10221%01 e63el3c
tag Gerhard Olsson 2018-12-1000:53:18 9¥p9221
stash Gerhard Olsson 2018-12-10 00:33:08 F2el237
commit, split to stash, modify history Gerhard Olsson 2018-12-10 00:30:10 defbaze
file_history % Gerhard Olsson 2018-12-09 23:32:58 228claa
fixup explorer % Gerhard Olsson 2018-12-09 23:10:09 5767568 .,

Current branch: feature/i3693-doc-3.00
Create patch(es)

When the patches are created successfully the following dialog will appear.

Patch result >

F:/temp/0001-branches. patch

10.2 Apply patches

It is possible to apply a single patch file or all patches in a directory. When there are merge conflicts applying the patch
you need to resolve them before you can continue. Git Extensions will help you applying all patches by marking the
next recommended step.

10.1. Create patch 62

Git Extensions Documentation, Release 3.00.00.4433

% Apply patch (F\devigc\gitextensions_4\GitExtensionsDoc\) — O et
@® Patch file |Fi\temp\0001-branches.patch ||__Browse | Applypatch |
Orangeao T Do

Mame Subject Author Date Status

(<2}

10.2. Apply patches 3

cHAPTER 11

Remotes

Git is a distributed source control management system. This means that all changes you make are local. When you
commit changes, you only commit them to your local repository. To publish your local changes you need to push. In
order to get changes committed by others, you need to fetch/pull.

11.1 Manage remote repositories

You can manage the remote repositories in the Remotes menu.

}{ GitExtensionsDoc (feature/13693-doc-3.00) - Git BExtensions
Start | Repository | Mavigate View Commands GitHub

[Refresh F5
File Explorer Ctrl+5Skift+0

& |

Search:

\GitExtensionsD

_go/feature/ui-

g flo= Remote repositories...
LV I

W Submodules...
Update all submodules

Synchronize all submedules

----- £ Worktrees

k

1

pc-3.00 [_q

When you cloned your repository from a public repository, this remote is already configured. You can rename each
remote for easy recognition. The default name after cloning a remote is origin. If you use PuTTY as SSH client
you can also enter the private key file for each remote. Git Extensions will load the key when needed. How to create a

private key file is described in the next paragraph.

64

Git Extensions Documentation, Release 3.00.00.4433

K Remote repositories

Remote repositeries Default pull behavior (fetch & merge)

- Edit Remote Details

Active 4=

_go

ety = MName |_gD |

origin - Url |https:ﬁgithuh.cnmfgerhardol)’GitExtensinr v|] Browse...

[Separate Push Url

ml Save changes

In the Default pull behaviour tab you can configure the branches that need to be pulled and merged by

default. If you configure this correctly you will not need to choose a branch when you pull or push. There are two
buttons on this dialog:

Prune remote branches Throw away remote branches that do not exist on the remote anymore.

Update all remote branch info | Fetch all remote branch information.

}.{ Remote repositories

Remote repositories Default pull behavior (fetch & merge)

Local branch Remc"te D;fault merge Local branch name |featureiui-refresh |
name repository with
feature/ui-refresh feature/ui-refresh Remote repository |-glj > |
feature/i3693-doc-3... _go feature/i3693-doc-3.. Default merge with |feature-"ui-refresh v|
rnaster origin rnaster

feature/3.00-version _go
release/3.00

latest origin

I Save changes
feature/3.00-version

latest

Prune remote branches Update all remote branch info

After cloning a repository you do not need to configure all remote branches manually. Instead you can checkout the
remote branch and choose to create a local tracking branch.

11.1. Manage remote repositories 65

Git Extensions Documentation, Release 3.00.00.4433

11.2 Git Credential Manager

The Git Credential Manager can be used to authenticate http links. For more information and instructions, see https:

//github.com/Microsoft/Git-Credential-Manager- for- Windows

11.3 Create SSH key

Git uses SSH for accessing private repositories. SSH uses a public/private key pair for authentication. This means you
need to generate a private key and a public key. The private key is stored on your computer locally and the public key
can be given to anyone. SSH will encrypt whatever you send using your secret private key. The receiver will then use

the public key you send to decrypt the data.

This encryption will not protect the data itself but it protects the authenticity. Because the private key is only available
to the sender, the receiver can be sure about the origin of the data. In practise the key pair is only used for the
authentication process. The data itself will be encrypted using a key that is exchanged during this initial phase.

11.3.1 PuTTY and github

PuTTY is SSH client that for Windows that is a bit more user friendly then OpenSSH. Unfortunately PuTTY does not
work with all servers. In this paragraph I will show how to generate a key for github using putty.

First make sure GitExtensions is configured to use PuTTY and all paths are correct, see SSH

x GitExtensionsDoc (feature/i13693-doc-3.00) - Git EBxtensions

Start Repository Mavigate View Commands GitHub Plugins | Tools | Help
("] | == v| [¥ ~ Fiden\gc\gitexensions_4\GitExtensionsDoc + fez Git bash Ctrl+G P Commit () 11(1] ~|] oy | Bram
L GitGul
Search: feature/ui-refresh _go/feature/ui-refresh | ___ Gitk
~w ¥ Branches (4) T — —
L= Working directory & 4 2
i w. b feature @ PuTTY L4 | @ Start authentication agent
(5 l..li-refl'esh Commit index Bl G commanding F12 £ Generateorimport key
I+ i5693-doc p feature/i5693-doc-3.00 [» _go/feature
i fo 3.00-versic s Settings Ctrl+,
P master stash
- I8 release commit, split to stash, modify history
can choose Generate or import key to start the key generator.
11.2. Git Credential Manager 66

https://github.com/Microsoft/Git-Credential-Manager-for-Windows
https://github.com/Microsoft/Git-Credential-Manager-for-Windows

Git Extensions Documentation, Release 3.00.00.4433

g PuTTY Key Generator
File Key Ceonversions Help
Key

Please generate some randomness by moving the mouse over the blank area

Actions
Generate a public/private key pair Generate
Load an existing private key file Load
Save the generated key Save public key Save private key
Parameters
Type of key to generate:

RSA DSA ECDSA ED25519 S5H-1(RSA)
Number of bits in a generated key: 2048

P PuTTY Key Generator X

File Key Conversions Help

Key
Public ke')' for pasting into OpenSSH authorized_keys file

ssh-s

WAB&NzaC1yc2EMBJOWOEAhR4uJIBw&gT‘,'W R5+g35s Un\r2in3|T4uaIRfO
Jo+mBt6n

+5TBgkaVWCyCe0zQ SHv KKNKQbuR5Kyws6WBm AbJivdkeylkgmYrea YQXgi Bch&uﬁ
26k 30ixAFkcxlsnhwofNHu0EzBXzEb P27v BHmBwnnn s X35

Key fingerprint |ssh-rsa 2048 b6:83.7df1b5:6a:d :c3:75:b5bd:ca:cadd:8c:03

Key passphrase: |

|
Key comment: |rsakey-20181210 |
|
|

Confirm passphrase: |

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key
Parameters

Type of keyto generate:

@ RSA (O DSA (OECDSA (O ED25519 () SSH-1(RSA)
MNumber of bits in a generated key: 2048

PuTTY will ask you to move the mouse around to generate a more random key. When the key is generated you can
save the public and the private key in a file. You can choose to protect the private key with a password but this is not

necessary.

Now you have a key pair you need to give github the public key. This can be done in Account Settings in the
tab SSH Public Keys. You can add multiple keys here, but you only need one key for all repositories.

Pull requests Iss

<« c o (© & GitHub, Inc. (US) | https://github.com/settings/ssh/new see g INn @0 »

Marketplace Explore

Blocked users

Personal settings SSH keys / Add new
Profile
Title
Account
Demo
Emails
Key
Motifications
ssharsa
Billing AAAABINZaC 1yc2EAAAABIQAAAQEARRAL]IBwSigTyWRS +g35sUnv2gKi3jT4uZjIRfFOJo+mbten+5TBgKaVWCyCe0zQ
SFvKKNKQbuR5KywsE6WBm3IbllvdkeyOkgmYreaYQXgiBoh5u626k3 QixAFkadsnhwofNHUOEzBXzELP27vBHmMBwnnnUs
SSH and GPG keys X35+ 1XMmESEeD)jsvhaiGrSCnVPm LZybKImxQPmNGM /LI 8BmNOKT g/TDQG5uck1CCqlEoUktS8k
JH+|j+bdlaHdPItOP8iAsBftlbcVmeMzrSqljJPJYET +oLMuOSWyS5Rb1iT7Wazxtd TTT HiXUEPNFCVRxh +cToQfE 1 TyPzBkg
Security 26Q4+Zzwkw== rsa-key-20181 210|
Sessions

Repositories Add S5H key

Organizations

After telling github what public key to use to decrypt, you need to tell GitExtensions what private key to use to encrypt.
Load the private key into the PuTTY authentication agent in Clone dialoge or by starting the PuTTY authentication
agent and choose add key in the context menu in the system tray.

GitExtensions can load the private keys automatically for you when communicating with a remote. You need to

11.3. Create SSH key

67

Git Extensions Documentation, Release 3.00.00.4433

configure the private key for the remote.

This is done in the Manage remote repositories dialog.

11.3.2 OpenSSH and github

To configure GitExtensions to use OpenSSH, see SSH.

OpenSSH is the best SSH client there is but it lacks Windows support. Therefore it is slightly more complex to use.
Another drawback is that GitExtensions cannot control OpenSSH and needs to show the command line dialogs when
OpenSSH might be used. GitExtensions will show the command line window for every command that might require
a SSH connection. For this reason PuTTY is the preferred SSH client in GitExtensions.

To generate a key pair in OpenSSH you need to go to the command line. I recommend to use the git bash because the
path to OpenSSH is already set. Open the separate Git bash or the console tab.

. GitExtensionsDoc (feature/i3693-doc-3.00) - Git Extensions

Start Repository Mavigate View Commands GitHub Plugins Tools Help
L5V | == V|E!v Fhdevigcgitextensions_$\GitExtensionsDoc ~ feature/i3693-doc-3.00 v| {f - ¢ () Commit 11(1] v| _Og,

Type the following command: ssh-keygen -C "your@email.com" -t rsa Use the same email address as
the email address used in git. You will be asked where if you want to protect the private key with a password. This is
not necessary. By default the public and private keys are stored in c: \Documents and Settings\[User]\.
ssh\ orc:\Users\ [user]\.ssh\.

Update to GE icons

& Commit EZ pif % Filetree J° GPG B Console

h/eithub_ 3.
zh/github_test_rsa.p

mail.com

You do not need to tell GitExtensions about the private key because OpenSSH will load it for you. Now open the
public key using notepad and copy the key to github. This can be done in Account Settings in the tab SSH

11.3. Create SSH key 68

Git Extensions Documentation, Release 3.00.00.4433

Public Keys on GitHub.

11.4 Pull changes

You can get remote changes using the pull function. Before you can pull remote changes you need to make sure there
are no uncommitted changes in your local repository. If you have uncommitted changes you should commit them or
stash them during the pull. You can read about how to use the stash in the Stash chapter.

| == v| 9 ~ Fidevigc\gitextensions_d\GitExtensionsDoc + feature/i5693-doc-2.00 v| &F = & © Commit(11) [F(1) =

In order to get your personal repository up-to-date, you need to fetch changes from a remote repository. You can do
this using the Pull dialog. When the dialog starts the default remote for the current branch is set. You can choose
another remote or enter a custom url if you like. When the remote branches configured correctly, you do not need to
choose a remote branch.

If you just fetch the commits from the remote repository and you already committed some changes to your local
repository, the commits will be in a different branch. In the pull dialog this is illustrated in the image on the left. This
can be useful when you want to review the changes before you want to merge them with your own changes.

){ Fetch (Fh\dev\gc\gitextensions_d\GitExtensionsDoc) X

Hide help Pull frem
(@ Remote m V| == Manage remotes

O o https://github.com/gerhardol/GitExtensionsDoc.git

Branch
Local branch | |

remote
repository

Remote branch | v|

Merge options

(O I, Merge remote branch into current branch

(O) 2L Rebase current branch on top of remote branch, creates linear history (use with caution)
(® Do not merge, only fetch remote changes

Tag options

® Follow tagopt, if not specified, fetch tags reachable from remote HEAD

(O Fetch no tag
nsquare=
current branch O Fetch all tags

1 Prune remote branches

Solve conflicts Stash changes D Auto stash

When you choose to merge the remote branch after fetching the changes a branch will be created, and will be merged
into your commit. Doing this creates a lot of branches and merges, making the history harder to read.

11.4. Pull changes 69

http://www.github.com

Git Extensions Documentation, Release 3.00.00.4433

¥ Fetch (FAdev\gc\gitextensions_4\GitExtensionsDoc) X
Hide help Pull from
Hover to see scenaric when fast forward is possible. =]
® Remote _go ~| |22 Manage remotes
merge commit
(*Bcurrent O Ud https://github.com/gerhardol/GitExtensionsDoc.git

¥ .REMOTE Branch

other el bEma: feature/i -doc-3.00

remote

repository Remote branch v

Merge options
current

& LOCAL (w0, Merge remote branch into current branch

(0) 4L Rebase current branch on top of remote branch, creates linear history (use with caution)
(O Do not merge, only fetch remote changes

Tag options

(® Follow tagopt, if not specified, fetch tags reachable from remote HEAD

(O Fetch no tag

uare = green =

ol <!
il current branch raw cormmil

postiix for files if
#AMR marge conflicts eceur [] Prune remote branches

Solve conflicts Stash changes [Auto stash

Instead of merging the fetched commits with your local commits, you can also choose to rebase your commits on top
of the fetched commits. This is illustrated on the left in the image below. A rebase will first undo your local commits
(c and d), then fetch the remote commits (e) and finally recommit your local commits. When there is a merge conflict
during the rebase, the rebase dialog will show.

3 Fetch (F\dev\gc\gitextensions_4\GitExtensionsDoc) *
Hide help Pull from
(® Remote _go ~| |52 Manage remotes
(@R https://github.com/gerhardol/GitExtensionsDoc.git
4 LOCAL Branch
other "y
Local branch feature/i
remote
repository Remote branch v

Merge options
current

& REMOTE (O, Merge remote branch inte current branch

(@ 2L Rebase current branch on top of remote branch, creates linear history (use with caution)
(O Do not merge, only fetch remote changes

Tag options

(® Follow tagopt, if not specified, fetch tags reachable from remote HEAD

(O Fetch no tag

sguare = graen =
current branch raw commil

postfix for files if
& AAR merge conflicts ooour

Solve conflicts Stash changes [Auto stash

Next to the pull button there are some buttons that can be useful:

11.4. Pull changes 70

Git Extensions Documentation, Release 3.00.00.4433

Solve When there are merge conflicts, you can solve them by pressing this button.

con-

flicts

Stash When the working dir contains uncommitted changes, you need to stash them before pulling.

changes

Auto Check this checkbox if you want to stash before pulling. The stash will be reapplied after pulling.
stash

Load This button is only available when you use PuTTY as SSH client. You can press this button to load the
SSH key configured for the remote. If no key is set, a dialog will prompt for the key.

key

11.5 Push changes

In the browse window you can check if there are local commits that are not pushed to a remote repository yet. In the
image below the green labels mark the position of the master branch on the remote repository. The red label marks the
position of the master branch on the local repository. The local repository is ahead three commits.

Rl e L e T, s e o e

Norking directory 5 3 ==y

Commit index

fixup

[* _go/feature/i3693-doc-3.00 Update source/plugins.rst

To push the changes press Push in the toolbar.

B | | =|/=I v| F¥ ~ F\dev\gc\gitextensions_4\GitExtensionsDoc v feature/i3693-doc-3.00 | OF~ & © Commit(l) [F() ~

The push dialog allows you to choose the remote repository to push to. The remote repository is set to the remote of
the current branch. You can choose another remote or choose a url to push to. You can also specify a branch to push.

11.5. Push changes 4

Git Extensions Documentation, Release 3.00.00.4433

A Push (F\dev\gc\gitextensions_4\GitExtensicnsDoc\)

Push branches Pushtags Push multiple branches

Push to
® Remote _go v | L Manage remotes
) U https://github.com,/gerhardel/GitExtensionsC

eature/i53693-doc-3.00

Branch to push

[] Force With Lease [] Force Push
[] Replace tracking reference
[] Create pull request after push

Pull

v| to | eature/i5603-doc-3.00

Recursive submodules | On-demand

St

&

Push

Tags are not pushed to the remote repository. If you want to push a tag you need to open the Tags tab in the dialog.
You can choose to push a singe tag or all tags. No commits will be pushed when the Tags tab is selected, only tags.

You can not merge your changes in the remote repository. Merging must be done locally. This means that you cannot
push your changes before the commits are merged locally. In practice you need to pull before you can push most of

the times.

11.5. Push changes

72

cHAPTER 12

Merge Conflicts

When merging or rebasing branches or commits you can get conflicts. Git will try to resolve these, but some conflicts
need to be resolved manually. Git Extensions will show warnings when there is a merge conflict in the status bar in
the bottom right corner.

IThere are unresolved merge conflicts

12.1 Handle merge conflicts

To solve merge conflicts just click on a warning or open the Solve merge conflicts... dialog from the
Commands menu. A dialog will prompt showing all conflicts.

73

Git Extensions Documentation, Release 3.00.00.4433

}{ Resolve merge conflicts

Unresolved merge conflicts

— | pod

Filename

GitbdSshAskPass/SshaskPass.rc?

GitExtensionsShellEx/GitExtensionsShellBxre

o The file has been changed both locally(ours) and
remotely(theirs). Merge the changes.

Local
Basze
Remote

GitExtSshAskPass/SshAskPass.rc?
GitbtSshAskPass/ SshAskPass.rc?
GitExt5shAskPass/SshAskPass.rcd

| Open in pdmerge |

| Start mergetool |

| Rescan merge conflicts |

| Abort merge |

Merge

The context menu shows the actions to resolve the conflicts. Double-click on a filename will start the mergetool.

12.1. Handle merge conflicts

74

Git Extensions Documentation, Release 3.00.00.4433

}{ Resolve merge conflicts

Unresolved merge conflicts

— | >

Open in pdmerge

Filename

GitExtSshAskPass/ SshfskPass.rg

GitExtensionsShellEx/GitExtensi

o The file has been changed b
remotely(theirs). Merge the ¢

Local GitExtSshAskPass/Sshs

Start mergetool
Open in pdmerge - 2

Mark conflict as solved Rescan merge conflicts

Choose local (ours) Ctrl+1 Abort merge
Choose remote (theirs) Ctrl+2
Choose baze Ctrl+3

Open local with
Open remote with

Open base with

Save local as

.

Save remote as

Save base as

Base GitExtSshAskPass/Sshi Open
Remote GitExtSshAskPass/Sshé Open With
i1 Help File history
There are three kinds of conflicts:
File deleted and changed Use modified or deleted file?
File deleted and created Use created or deleted file?
File changed both locally and remotely | Start merge tool.

If the file is deleted in one commit and changed in another commit, a dialog will ask to keep the modified file or delete
the file. When there is a conflicting change the merge tool will be started. You can configure the tool you want to use
for merge conflicts. The image below shows Perforce P4Merge, a merge tool free to use for small teams.

In the merge tool you will see four versions of the same file:

Base

The latest version of the file that exist in both repositories

Local

The latest local version of the file

Remote

The latest remote version of the file

Merged

The result of the merge

doubt.

Caution: When you are in the middle of a merge the file named local represents your file. When you are in the
middle of a rebase the file named remote represents your file. This can be confusing, so double check if you are in

12.1. Handle merge conflicts

75

Git Extensions Documentation,

Release 3.00.00.4433

@ SshaskPass.c? - Perforce PAMerge
Fle Edt Vew Search Help

SEB %e 0 » «» 08

3 iffs (Ignere line ending differences) | Tab spacing: 4 | File format (Encoding: System Line endings: Windows)

Base: SshAskPass_BASE_2604.rc2
Left: SshAskPass_LOCAL_2604.rc2

@ Right: SshAskPass_REMOTE_2604.rc2

@ Merge: SshAskPass.rc2

Differences from base: 2
Differences from base: 0
Conflicts: 1

@ /GitExtsshaskPass/SshAskPass_LOCAL_2604.1c2

. fGitExtSshAskPass/SshAskPass_BASE_2604.rc2

L

. JGitExtSshAskPass/SshAskPass_REMOTE_2604.rc2

QASIITTEALETLFIT AT LT LIT LA AL AL STLEAT AT LTI QULSITLLTEATSITLLTIEAT AT EAL LTS TALT AL LETEAT A S A i ATy QSATIELTETLLTLLIT AT EAL LTI LT IALT AL SIS LA IATTALI LT
10| // Bdd manually edited resources here. 10|// Rdd manually edited resources here. 10| // Add manually edited resources here.

11 /// 11 /// 11 ///
12/ 12/ 12 /7

13 // Version 13|// Version 13 // Version

14 // 14// 14 /7

15 VS VERSION INFO VERSIONINFO 15|¥S VERSION INFO VERSIGNINFO 15 VS VERSION INFG VERSIGNINFO

16| FILEVERSION 3,01,00,0 16| FILEVERSION 3,00,00,%433 16| FILEVERSION-dummy-change2 3,00, 00,4433

17 PRODUCTVERSION 3,01,00,8 17| PRODUCTVERSION 3,00,00,4433 17 _PRODUCTVERSION 3,00,00,4433

18 FILEFLAGSMASE 0x3fL 18| FILEFLAGSMASK Ox3fL 18| FILEFLAGSMASK Ox3fL

19 #ifdef _DEBUG 19| #ifdef _DEBUG 19 #ifdef _DEBUG

20 FILEFLAGS OxlL 20| FILEFLAGS 0xlL 20 FILEFLAGS OxlL

21 #else 21| #else 21 #else

22 FILEFLAGS OxOL 22| FILEFLAGS 0x0L 22 FILEFLAGS Ox0L

23 #endif 23 #endif 23 #endif

24 FILEOS Ox4L 24| FILEOS Ox4L 24 FILEOS Oxm4L

25 FILETYPE Ox2L 25| FILETYPE 0x2L 25 FILETYPE 0x2L

@ sshiskPass.rc2

// 2dd manually edited resources her

// Version
7
WS VERSICN INFO VERSICNINFO

///
///

FILEVERSION 3,00,00,4433
PRODUCTVERSION 3,00, 00,2433
FILEVERSION 3,01,00,0

PRODUCTVERSION 3,01,00,0
FILEVERSION-dummy-change2 3,00,00,4453
PRODUCTVERSION 3,00,00, 2433

*e

FILEFLAGSMASK OX3fL

]
$ifdef _DEBUG
FILEFLAGS Ox1L
]
#else
FILEFLAGS 0xOL
#endif

FILECS Ox4L
FILETYPE 0x2L
FTTFSIRTYPE Ownl.

12.1. Handle merge conflicts

76

cHAPTER 13

Modify Git history

A Git commit cannot be changed, the sha for the commit will change at all changes. All changes will be seen as a new
commit.

* A commit can be reverted, the changes of a certain commit can be reverted and added as a new commit. Similar,
a commit can be applied again (possibly to a new branch), known as cherry picking.

* The commit can be added again (and all commits that are children to the commit) as new commits and git
branches can be made to point to the new commit instead.

There are 2 different cases, and consequently 2 ways to do it with git when we want to modify the history:
* Modify the last commit of the current branch with doing an amend
* Modify an older commit with doing an interactive rebase

Note: There are 2 things to understand when working with the history with git:

* As git only creates immutable commits (sealed by the shal), “modifying” a commit is in fact creating a new
more or less similar commit.

» Consequently, the entire history of children following the changed commit will be different.

So, except if the history has not been already pushed, or if you have good reasons, it is a bad practice to change the
history because you will mess the history of other developers.

13.1 Cherry pick commit

A commit can be recommitted by using the cherry pick function. This can be very useful when you want to make the
same change on multiple branches. Select the commit (or range of commits) you want to cheery pick:

77

Git Extensions Documentation, Release 3.00.00.4433

Working directory
Commit index
O p feature/refactor dummy change 2
durnmy change 1
master gitextensions/master Correct version nu
Update build version 3.00,00 -= 3,01.00.0 (#3881)

featurefversion-update Update build version 2.99,

F
I SFI 070 L 'y Il L Lk
[Copyteo clipboard 3
Me

\ l#, Checkout branch v |
i
d [, Merge into current branch 3
Rep 4t Rebase current branch on v !
spd . Reset current branch to here b
drs |l Create new branch I
g Delete branch 3
EZ Diff L
== %8 EZ Compare *
. Create new ta
Diff with: Minog = ?
7 GitUI/GitUl.cs “% Checkout revision
& Gitll/UserCof ¥ Revert commit I,
GitUl/UserCo | & Cherry pick commit
GitUl/UserCo | Archive revision P
w Gitll/UserCo EE Advanced p
Mavigate 3
I View b
0 Open on GitHub
supdate

The confirm dialog opens:

13.1. Cherry pick commit 78

Git Extensions Documentation, Release 3.00.00.4433

% Cherry pick commit x
Cherry pick this commit:
3adlalabd Choose another
revision:
Review changes

=

Author Henk Westhuis
Commit date: 2 days ago (2018-12-13 19:40:34)
Branch(es): n/a

Tag(s): n/a

Automatically create a commit

[] Add commit reference to commit message Cherry pick

13.2 Revert commit

A commit cannot be deleted once it is published. If you need to undo the changes made in a commit, you need to
create a new commit that undoes the changes. This is called a revert commit. A revert commit is similar to a cherry
pick, but the cherry pick tries to apply the same changes as the original commit, a revert will try to reverse the changes.

13.2. Revert commit 79

Git Extensions Documentation, Release 3.00.00.4433

Warking directory
Commit index

O » feature/refactor dummy change 2
dumrny change 1

master gitextensions/master Correct version nu..

Update build version 3.00.00 -= 3.01.00.0 (#3821)

L7
Ildrﬂ?ﬂa’featu reflockfreelist m

\ Me U Cepyto clipboard 3 -
Mi |3, Checkout branch 2
. W, Merge into current branch »
e /v
[4L Rebase current branch on 3 '
=P . Reset current branch to here =
dr Hu
| Create new branch
- Delete branch 3
ES biff Gg &
% Compare 3
Diff with: Mino S

7 GitUl/GitUl.of -
& GitUl/UserCq
F N ez A

Checkout revision

Revert commit |r|-"r

[8]e s

The confirm dialog opens:

13.2. Revert commit 80

Git Extensions Documentation, Release 3.00.00.4433

% Revert commit x
Revert this commit:
Jadla2labd

Review changes

Author: Henk Westhuis

Commit dater 2 days age (2018-12-13 15:40:34)

Branchies): n/a

Tag(s): n/a
] Automatically create a commit Revert this commit

13.3 Modify the last commit

The easiest way to modify the last commit is to do an amend commit. To do that, open the commit windows and
check the option “Amend commit”. If the commit message text area was empty, it is now filled with the message of
the last commit. You could now just update the commit message and commit or also add some more changes in the
staging area to add them to the commit.

fome

B = B
(%) Commit = Commit message = Commit templates = |I& Create branch

Fixes 5888: Reorder nodes correct]
©7 Commit 8 push

Amend Commit

#. FResetall changes

. Reset unstaged changes

13.4 Modify an older commit

To modify an older commit than the last one of the current branch, use interactive rebase.

13.3. Modify the last commit 81

Git Extensions Documentation, Release 3.00.00.4433

13.4.1 Interactive rebase

First, you should create a commit containing the changes you want to add to a previous commit (or know an existing

commit that contains this changes).

Then use the rebase feature in interactive mode on a base commit older than the one that you want to modify. See
Branches for how to start a rebase, start an interactive rebase from the context menu or by selecting the checkbox in

the rebase dialog.
3 Rebase - O X
Hide help Rebase current branch on top of another branch
Current branch: feature/refactor
Rebase |
[Interactive Rebase [] Preserve Merges | Autosquash o Auto stash
#LOCAL [] Specific range From (exc) To |feature/refactor Solve conflicts |
C its to re- 2
ommits to re-apply: T |
MName Subject Author Date Status
¥ REMOTE -
Commit... |
4 BASE Continue rebase |
Skip this commit |
Abort |
ngmﬁ :rsnch °g::::mmll
s for files it
&AM mfrgeo?:‘nﬁlz; aecur
You will be prompted by a text editor displaying all the commits that will be rebased
13.4. Modify an older commit 82

Git Extensions Documentation, Release 3.00.00.4433

% Fi/dev/gc/gitextensions/.git/rebase-merge/git-rebase-todo - O x
1 hick 9d7aB81f5 dummy change 1
2 pick a4feed7716 dummy change 2
3
g # Rebase 3c2ac977b..4feed?716 onto 3c2ac977b (2 commands)
5 #
6 # Commands:
7 # p, pick <commit»> = use commit
2 # r, reword <commit> = use commit, but edit the commit message
[=} # e, edit <commit> = use commit, but stop for amending
1@ # s, squash <commit> = use commit, but meld into prewvious commit
11 # T, fixup <commit> = like “squash”, but discard this commit's log message
12 # x, exec <command: = run command (the rest of the line) using shell
13 # b, break = stop here (continue rebase later with 'git rebase --continue')
14 # d, drop <commit> = remove commit
15 # 1, label <label> = label current HEAD with a name
16 # t, reset <label:> = reset HEAD to a label
17 # m, merge [-C <commit> | -c <commit>] <label> [# <onelinex]
12 # . create a merge commit using the original merge commit's
19 # . message (or the oneline, if no original merge commit was
28 # . specified). Use -c <commit> to reword the commit message.
21 #
22 # These lines can be re-ordered; they are executed from top to bottom.
23 #
24 # If you remove a line here THAT COMMIT WILL BE LOST.
25 #
26 # However, if you remove everything, the rebase will be aborted.
27 #
2g # Note that empty commits are commented out
25

You could have a look to this _documentation: https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History to better
understand all the possibilities offered.

The options offered are :
* reorder the lines to reorder the commits,
¢ delete a line to throw away a commit and the changes introduced by the commit,
* write 7 or reword in front of a commit to rewrite the commit message,

e write f or fixup in front of a commit to meld the commit with the previous commit and with keeping the commit
message of the first commit,

e write s or squash in front of a commit to meld the commit with the previous commit and with rewriting the
commit message.

Often, we will use interactive rebase to move the line and squash or fixup commits to modify the history.

Once we did the changes, save and close the editor to let git do the rebase.

13.4.2 Using autosquash rebase feature

There is an option to facilitate the use of the interactive rebase when you know, at the moment of doing a
commit that the changes introduced by this commit should have been made in an older commit (the case of a fixup or
squash).

13.4. Modify an older commit 83

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

Git Extensions Documentation, Release 3.00.00.4433

In this case, you should create a commit containing the changes you want to add to a previous commit and use the
Advanced menu to:

e create a fixup commit
* create a squash commit
Right click on the commit in the history, you know that you want to “modify”.

And choose the suitable option. ..

Working directory
Commit index

O b feature/refactor dummy change 2 Gerhard Olsson 2018-12-13 1

I M| Copy 1o chpboard BB Gerhard Otsson 2018-12-15 1
j) nu... [5 r:'\ Gerhard Olsson 2018-12-150
., Merge into current branch 3 4N
U Rebase current branch on , "; % Gerhard Olsson 2018-12-13 2
f 1‘3 Reset current branch to here 60,90 -= ., Gerhard Olsson 2018-12-10 2
S Create new branch BB ok westhuis 2018-12-13 1
. MBS Compare s Bso.. o (B Russkie 2018-12-130
==
M 2 Create newtag B Henk westhuis 2018-12-122
V#
R{ _ = by witho... [l Henk Westhuis 2018-12-12.1
% Checkout revision
5 & Revert commit bExa... = Henk Westhuis 2018-12-111
d ¢ Cherry pick commit pduct [Drew Noakes 2018-12-12 1
= Archive revision -
EZ piff %8|ﬁ Advanced 3 | Edit commit
. .github = Navigate b Reword commit
— .r1.uget 057 View » | Create a fixup commit Ctrl+X
- B Creat h it
. reate a squash commi
Build 0 Open on GitHub .
17 Bxternal dat Get help on how to use these features
. supdate
Gt nm i

If you have not the changes prior to open the dialog, do them now.

GitExtensions will open the commit window with an already filled commit message containing the needed information
to find the commit to “modify”. Do not change the commit message and commit all the changes needed.

Then process to the interactive rebase, like describe in the previous paragraph but with enabling the option Autosquash.

13.4. Modify an older commit 84

Git Extensions Documentation, Release 3.00.00.4433

3 Rebase — O X
Hide help Rebase current branch on top of another branch
Current branch: feature/refactor
Rebase on |35403203bd3be3?365635463ﬁ96559ﬂ - | | = |
[Interactive Rebase [] Preserve Merges ™ Autosquash | Auto stash
% LOCAL | Specific range From (exc.) To |feature/refactor b | Solve conflicts |
Commits to re-apply:
Add files
MName Subject Author Date Status | |
% REMOTE | Commit |
4+ BASE | Continue rebase |
[skipthiscommit |
| Abort |
niﬂ"-‘;ﬁ ;ranch °g:va::mmll
tix for files if
7 ABA masrge o?:‘nﬁcfs aceur

Launch the rebase by clicking on Rebase.

The interactive rebase will process the same way but with a major difference! When enabling the Autosquash option,
git will automatically reorder the commits lines and write the good actions in front of the commits when it will open
the text editor. You normally have just to close the editor (except if you want to do additional changes). And let git do
the rebase.

13.4. Modify an older commit 85

cHAPTER 14

Notes

Notes can be added to a commit. Notes will be stored separately and will not be pushed. To add a new note choose

add notes in the context menu of the commit information box.

& Commit EZ piff T Filetree J” GPG @M Conscle @) Build Report

Author: RussKie <RussKie@users.noreply.github.com>
Date: 14 hours ago (2018-12-13 08:10:44)
Committer: GitHub < noreply@github.com:>

Commit hash: al77c46a2f0eTad2481d21e2f5638d9d610e1b95
Children: 93cOcicaid caledas8fl

Parents: dd0bebe3cd 2ab6511£725

Merge pull request #5878 from drewnoakes/fix-5859-blocking-avatar-download

Avoid blocking UI wia WebClient.OpenReadTaskAsync

Related links: View on GitHub, PR 5878
Contained in branches: feature/version-update

Contained in no tag Cepy commit info

Derives from tag: ¥3.00.00-rcd + 45 commits Show local branches containing this commit

Show remote branches containing this commit

Show tags containing this commit
Show messages of annotated tags

Show remote branches only when no local branch contains this commit

Show the most recent tag this commit derives from

| Add notes

Ctrl+Skift+N |

The editor that has been configured in the settings dialog will be used to enter or edit the notes. The Git Extensions

editor is advised.

86

Git Extensions Documentation, Release 3.00.00.4433

3 F/dev/gc/gitextensions/.git/worktrees/gitextensions_4/NOTES_EDITMSG

H oK

Write/edit the notes for the following object:

commit al77c46a2fBe7ad42481d21e2f5638d9d618e1bI5
gpE: Signature made Thu Dec 13 @8:18:44 2813

EPE: using RSA key 4AEE1BF33AFDEB23
gpg: Can't check signature: No public key

Merge: dd@bebc3c 23651172

Author: RussKie <RussKiefusers.noreply.github.com>
Date: Thu Dec 13 18:1@:44 2813 +11@@

Merge pull request #5878 from drewncakes/fix-5859-blocking-avatar-download

Avoid blocking UT wvia WebClient.OpenReadTaskAsync
GitUI/Avatars/AvatarDownloader.cs | 19
GitUI/UserControls/AvatarControl.cs | 2 ++

Plugins/Gource/GourceStart.cs | 3 +++
3 files changed, 24 insertions(+)

HoH oK oK oK H oK oK H W K K W K W

87

cHAPTER 15

Submodules

Large projects can be split into smaller parts using submodules. A submodule contains the name, url and revision of
another repository. To create a submodule in an existing git repository you need to add a link to another repository
containing the files of the submodule.

% gitextensions_4 (feature/version-update) - Git Extensions

Start | Repository | Mavigate View Commands
Ly | [Refresh F5 .
File Explorer Ctrl+Skift+ 0
Search: b dire
=~ PRemote repositories...
it ind
Submedules... [
refv
Update all submodules Jrm—
. ffeat
Synchronize all submeodules
sion:
Worktrees *
ki e

15.1 Manage submodules

The current state of the submodules can be viewed with the Manage submodules function. All submodules are
shown in the list on the left.

88

Git Extensions Documentation, Release 3.00.00.4433

% Submodules — O >

Mame

Externals/ICSharpC.., |Up-to-date

Status Details
Mame | Externals/Git.hub

Externals/MBug Up-to-date

Remote path | https://github.com/gitextensions/Git.hub.git

Externals/conemu-i.. |Up-to-date

GitExtensionsDoc Modified

|
|
Local path | Externals/Github |
|

Commit |Tdf92436320fbﬁﬂ3ﬁ33ﬁbf95d41 b2c9ebb5alc

Branch |remotﬁforigianEAD |
Status | Up-to-date |
Add submedule Synchronize | | ‘. Update | | Remove
Add sub- | Add a new submodule to the repository
module
Synchro- | Synchronizes the remote URL configuration setting to the value specified in . gitmodules for the
nize selected submodule.
Initialize | Initialize the selected submodules, i.e. register each submodule name and url found in . gitmodules
into .git/config. The submodule will also be updated.
Update Update the registered submodules, i.e. clone missing submodules and checkout the commit specified
in the index of the containing repository.
Remove Remove the submodule from the repository

15.2 Add submodule

To add a new submodule choose Add submodule in the Manage submodules dialog.

Add submaodule n

Path to submodule

Local path

Branch

[] Force

| Add |

Path to submodule | Path to the remote repository to use as submodule.

Local path Local path to this submodule, relative to the root of the current repository.

Branch Branch to track.

15.2. Add submodule 89

cHAPTER 16

Worktrees

Git Extensions support Git worktrees: Multiple checked out working directories can share local branches. For more
information see the Git documentation: https://git-scm.com/docs/git-worktree

% gitextensions_4 (feature/version-update) - Git Extensions

Tools

Start | Repository | Mavigate View Commands GitHub Plugins
[| B “d Refresh F5 + feature/version-update '| Q‘
|| File Explorer Ctrl+Skift+ 0
Search: ns/master Update build version 3.0
=~ PRemote repositories...
! Bra| = rectory cp1 a1
v Submedules...
dex
""" Update all submodules !
..... Synchronize all submeodules e) [T
----- |@ Worktrees “— Create a worktree... | .
% Edit .gitignore Manage worktrees...
N nalizations

90

https://git-scm.com/docs/git-worktree

cHAPTER 17

Maintenance

In this chapter some of the functions to maintain a repository are discussed.

17.1 Compress Git database

Git will create a lot of files. You can run the Compress git database to pack all small files building up a
repository into one big file. Git will also garbage collect all unused objects that are older then 15 days. When a
database is fragmented into a many small files compressing the database can increase performance.

91

Git Extensions Documentation, Release 3.00.00.4433

% gitextensions_4 (feature/version-update) - Git Extensions

Start | Repository | Mavigate View Commands GitHub Plugins Tools H

ol | [L= = * feature/versicn-update v| & v
| File Explorer Ctrl+Skift+0
Search: b directory a1 Ban
= Remote repositories...
-_ Bra| = It index
v e Submedules... -
refversion-update [» Ogerhardol/f
""" Update all submodules
..... Synchronize all submodules /feature/lockfreelist Review changes
sions/master M Il t#5¢
_____ @ Worktrees R erge pull reques

..... - ptimalizations
_____ < Edit .gitignore
Edit .git/info/exclude EynchronizedCollection with cheaper

----- Edit .gitattributes feature/trygetexacthpath Delete T
""" Edit .rnailmap gkes/code-of-conduct . Add code of
..... Edit .gitreview akes/fic-3859-blocking-avatar-downli

Sparse Working Copy

akes/master Merge pull request #58¢

""" @ Git maintenance r "; Compress git database !
_____ % Repository settings M Recover lost objects...
----- %5 Close (go to Dashboard) Ctrl+W ‘= Deleteindexlock
----- s b= = =i | w» Edit.git/config
o IS2RA_thrattlc Do "okl RN RS TEN NSRS o S e) D e

17.2 Recover lost objects

Normally Git will not delete files right away when you remove something from your repository. The reason for this is
that you can restore deleted items if you need to. Git will delete removed items when they are older then 15 days and
yourun Compress git database.

Commits without branches or tags can be shown with Git reflog https://git-scm.com/docs/git-reflog The easiest way
to view the commits is to show Git reflog in the revision graph:

}{ gitextensions_4 (feature/version-update) - Git Extensions

Start Repository Mavigate | View | Commands GitHub Plugins Tools Help

| OE=- |- Eadell] Show all branches Cirl+ Skift+ A 1
Show current branch only Ctrl+Skift+ 1

Search: Show filtered branches Ctrl+Skift+T B

. Branches (112)

v . B feature Z Show rernote branches Ctrl+Skift+R
N S version-upd: v | Show reflog references
i B 3.00-version M — i

The reflog commits are listed as gray:

17.2. Recover lost objects 92

https://git-scm.com/docs/git-reflog

Git Extensions Documentation, Release 3.00.00.4433

}{ gitextensions_4 (master] - Git Extensions
Start Repository Mavigate View Commands GitHub Plu
iy | HEE | [9 ~ Fudev\gcigitextensions_4 ~ master - | Q
Working directory o1 B
Commit index

b master J[> gitextensions/master USRI BPELS AN

feature/version-update | Ogerhardol/feature/version-updat

(Update build version 2.99.90 -> 3.01.00.a0 Y

T s O

Update build version 2.99.90 -» 3.01.00.a0

spdrd70/feature/lockfreelist Review changes

GE also supports the previous way to show you all dangling objects and will allow you to review and recover them. If
you accidentally deleted a commit you can try to recover it using the Recover lost objects function.

}{ gitextensions_4 (master) - Git Extensions
Start | Repositery | Mavigate View Commands GitHub Plugins Tools Hel

@ | q "y Refresh F3 ~ master "|Q - & @ Commit
|| File Explorer Ctrl+Skift+ 0

. Remote repositories...

Submodules...
I. date build version 3.00.00 -> 3.01.00.
Update all submodules

Synchronize all submedules lurea’versinn-update Update build vers

Worltrees 3

= Edit .gitignore

Edit .git/info/exclude [10E5

Edit .gitattributes 2c/fin- 3859-blocking-avatar-download
Edit .mailmap

Edit .gitreview

B per array without locking

5 Working C
parse frorng L-opy TryGetExactPath, to remove performal

|a/ it maintenance k | % Compress git database
i2 Repository settings | M Recover lost objects... i
i€
¥% Close (go to Dashboard) Ctrl+W f= Delete indexlock
\ - ’ iy Edit.git/config
nitextensinns/release/300 Fivec SN R-ATHEr AAMEE FHTTET

17.2. Recover lost objects 93

Git Extensions Documentation, Release 3.00.00.4433

x Verify database

dangling objects”

Double-click on a row for quick view

By default enly unreferenced objects that are older than
2 weeks are removed when cleaning up the database. All
other object are only deleted when you run "Remove all

Check commits you want to recover and press Recover button
Context menu for additional operations

Show commits and tags [] Show other objects

Do not consider commits that are referenced only by an entry in a
y by y

reflog to be reachable,

O Print out chjects that exist but that aren't readable from any of the reference

nedes,

m Check not just ehjects in GIT_OBJECT_DIRECTORY (SGIT_DIR/objects),
but also the ones found in alternate object pools.

Date Type

[1|2018-12-13 21:49 dangling commit

Author

Gerhard Olssen

Hash

661b2fbTe5f2f93cfB8354a11240dfb287a5ae1b

Parent(s) hashs 2

al77cd6a2fle7ad2481d21e2f5638d9

[1/2018-12-11 16:27 | dangling commit

Henk Westhuis

6b283c5999b302e56c05c3dbc88255da588e18df

022e8e1643316e535b9de32bhiabZed.

) 2018-12-11 00:09 dangling commit

Gerhard Olssen

47377Tb365317afbbfad07adc19a3f134f0b23fba

034fc2528acld1e18bed7odafe7d117

>

Remaove all dangling cbjects

Delete all LOST_AMND_FOUND tags

Recover selected objects I

Save objects to .git/lost-found

Cancel

Git Extensions also is able to tag all lost objects. Doing this will make all lost objects visible again making it very
easy to locate the commit(s) you would like to recover.

17.3 Fix user names

When someone accidentally committed using a wrong username this can be fixed using the Edit .mailmap func-

tion. Git will use the username for an email address when it is set in the

x Edit .mailmap

Proper Name <Proper Name <properfjemail.xx> Commit Name <commit@email.sx> : .
P P proper @ Edit the mailmap.

This file is meant to correct usernames.

Example:

Henk Westhuis <Henk@.(none)>
Henk Westhuis =henk_westhuis@hotmail.com>

For more information run
command "git help shortlog”

For more information, see https://git-scm.com/docs/git-check-mailmap.

.mailmap file.

Save

17.3. Fix user names

94

https://git-scm.com/docs/git-check-mailmap

Git Extensions Documentation, Release 3.00.00.4433

17.4 Ignore files

Git will track all files that are in the working directory. Normally you do not want to exclude all files that are created
by the compiler. You can add files that should be ignored to the .gitignore file. You can use wildcards and regular
expressions. All entries are case sensitive. The button Add default ignores will add files that should be ignored
when using Visual Studio.

3 Edit.gitignore — O >
build *.suo®.bak*.cache®.ilk*.log i */*.sbrobj/[Rr]lelease*/_ReSharper”
*.orig
tx.exe

GitExtensions.settings.backup
source/locale/.doctrees/
/source/__pycache_ /
/source/extensions/_ pycache_ /

*.pyc
Add default ignores Add pattern Example ignore patterns Generate a custom ignore file for git
Cancel | Save
A short overview of the syntax:
Lines started with # are handled as comments
! Lines started with ! are exclude patterns
[Dd]| Characters inside [. .] means that 1 of the characters must match
Wildcard
/ A leading slash matches the beginning of the pathname; for example, /* . ¢ matches cat—file. c but not
mozilla-shal/shal.c
/ If the pattern ends with a slash, it is removed for the purpose of the following description, but it would only
find a match with a directory. In other words, foo/ will match a directory foo and paths underneath it, but
will not match a regular file or a symbolic link foo (this is consistent with the way how pathspec works in
general in git).

For more detailed information.

17.4. Ignore files 95

https://git-scm.com/docs/gitignore

cHAPTER 18

Translations

18.1 Change language

In the settings dialog the language can be chosen.

% Choose language

Choose your language

You can change the language at any time in the settings dialog

English Dutch

Paolish

Simplified Chinese

rAin IS

French

Russian

96

Git Extensions Documentation, Release 3.00.00.4433

18.2 Translate Git Extensions

More information in the Git Extensions wiki: https://github.com/gitextensions/gitextensions/wiki/Translations

Translations are done on Transifex: https://www.transifex.com/git-extensions/git-extensions/

18.2. Translate Git Extensions 97

https://github.com/gitextensions/gitextensions/wiki/Translations
https://www.transifex.com/git-extensions/git-extensions/

cHAPTER 19

Windows Explorer

The common commands can be started from Windows Explorer using the shell extensions. This option is only avail-
able when Shell Extensions are installed.

GitEx Browse
2 GitEx Commit
EE it Extensions 4L Pull
if Push
+__+ View stash

t1r View changes

Checkout branch
Checkout revision

v Create branch

it Openwith difftocl

U File history
¥ Reset file changes
4 Add files
Apply patch
{0F Settings

98

Git Extensions Documentation, Release 3.00.00.4433

If the folder do not have a Git repository, you can clone.
Gitkx Clone
o Gitkx Create new repository

éh Git Extensions b | {0 Settings

99

cHAPTER 20

Visual Studio

20.1 Menu

Almost all function can be started from the GitExt menu in Visual Studio.

100

Git Extensions Documentation, Release 3.00.00.4433

ﬂ GitExtensions - Microsoft Visual Studic
File Edit View | GitExt | Project Build Debug

o - | j‘*j -~ | [X| Browse

— tE Clone repository

2" | Solution Explore . i
= Create new repository

@B |

Commit

Pull

Search Solution

&

Iﬂ'_-l Solution 'G % Push

[nuget |

[External © Stash

[+ Plugins #: Reset File Changes
P Solution =2

‘)

[

[

a

1q

0% B

[=
=
[al
m
[~

Manage remotes

UnitTes Edit .gitignare
Vs
GitCom Apply patch
GitExte Format patch
b M ProR (5 File history
[» =B Refe

View changes

a5 app: # Blame
B Aut{ /~ Findfile
P C# Prog =

& = "% Checkout branch
4 GitExtLH
| Create branch

b Prog .

b wm Refe "'t Merge

b Gitl 2% Rebase
b Ling Solve merge conflicts

¥ app; :

Cherry pick

Booo# Arg * vE
[C# Argl Git bash
PooC® Arra i3 Settings
b € Bina © About Git Extensions
P Cliooerosoores - .

20.2 Toolbar

A Git Extensions toolbar allows you to perform the most common actions. The buttons can be customized, same
functions as in the menu.

EEE@CGmmit N & @ mﬁ?};

The current branch name can be shown in the commit button.

20.2. Toolbar 101

Git Extensions Documentation, Release 3.00.00.4433

% Settings - Appearance

v-¥

LY

Git Bxtensions

----- % General

7% Appearance

----- e #) Revision links

< Build server integraticn

----- B Scripts
----- £} Hotkeys

L RN 1 SIS | [I -

20.3 Context menu

Settings source: (@ Global for all repositories

General

[] Show relative date instead of full date
Show current branch in Visual Studic

Auto scale user interface when high DPI is used

Truncate long filenames Mone

Options in the context menu on files and in Solution Explorer:

* Diff changes to the commit index

* View the file history by choosing the ‘File history’ option.

* Reset the file changes to the last committed revision.

FormClone.cs

GitUl

%

- Irx P
[¥Y]

R

[« Y|

=

o0

(Y=}

]

%]

=
oL

=

=]

(Y=}

I
S T R W T, O Y R Y, [, W, [- S A A O -1
L

)

Solution Explorer * 0 X
@&~ o-5 "
Search Solution Explorer (Ctr 2 -
fa] Solution 'GitExtensions' (45 p
4 nuget
P Externals
B Plugins
P Solution ltems
4 UnitTests
4 Vs
B GitCommands
4 GitExtensions
b Properties
[=B References
v app.config
pEi app.manifest
B AutoCompleteRegere
P @ Programcc
4 GitbxtU E2 GitExt: Diff
b A Pro| [File history
bowm R?ﬁ #: Reset File Changes
[itl

20.3. Context menu

102

CHAPTER 2 1

Command line

21.1 Git Extensions command line

Most features can be started from the command line. It is recommended to add gitex . cmd to the path when using
from the command line. It is typically stored in the C: \Program Files (x86)\GitExtensions folder.

103

Git Extensions Documentation, Release 3.00.00.4433

% Commandline usage — x

Supported commandline arguments for
gitex.cmd / gitex (located in the same folder as GitExtensions.exe):

browse [path] [-filter=] [-commit=]
about

add [filename]

addfiles [filename]

apply [filename]
applypatch [filename]
blame filename

branch

checkout
checkoutbranch
checkoutrevision

cherry

cleanup

clone [path)

commit [--quiet]

difftool filenarme
filehistory filename
fileeditor filenarme
formatpatch

gitbash

gitignore

help (shows this dialeg)
init [path]

merge [--branch name]
mergecoenflicts [--quiet]
mergetool [--quiet]
cpenrepo [path] [-filter=]
pull [--rebase] [--merge] [--fetch] [--quiet] [--remotebranch name]
push [--guiet]

rebase [--branch name]
remotes

reset

revert filename
zearchfile

settings

stash

synchronize [--rebase] [--merge] [--fetch] [--quiet]
tag

wiewdiff

viewpatch [filename]

21.1. Git Extensions command line 104

Git Extensions Documentation, Release 3.00.00.4433

MINGWES:f/dev/gc/gitextensions_4 — O >

21.1. Git Extensions command line 105

106

Git Extensions Documentation, Release 3.00.00.4433

CHAPTER 22

Appendix

22.1 Git Cheat Sheet

Action

Command

Create new repository

$ git init

Create shared repository

$ git init —bare —shared=all

Clone repository

$ git clone c:/demol c:/demo?2

Checkout branch

$ git checkout <name>

Create branch

$ git branch <name>

Delete branch

$ git branch -d <name>

Merge branch (from the branch to merge into):

$ git merge PDC

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool $ git commit

Create tag

$ git tag <name>

Add files/changes (. for all files)

$ git add |

Commit added files/changes (—amend to amend to last
commit)

$ git commit —m “Enter commit message”

Discard changes

$ git reset —hard

Create patch (-M = detect renames —C = detect copies)

$ git format-patch —M —C origin

Apply patch without merging

$ git apply c:/patch/01-emp.patch

Merge patch

$ git am -—3way —-signoff c:/patch/01-emp.patch

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool
3 git am —3way -—resolved

Stash changes

$ git stash

Apply stashed changes

$ git stash apply

Pull changes (add —rebase to rebase instead of merge)

$ git pull c:/demol master

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool

$ git commit

i t
Push changes (in branch $ git push c:/demol master
master:<new>)

$ git push c:/demol

Blame

$ git blame —-M —w <filename>

Taln

C At mmvrrrmrand~ ol

Git Extensions Documentation, Release 3.00.00.4433

Here are some default names used by Git.

Default names

master default branch

origin default upstream repository

HEAD current branch

HEAD* parent of HEAD

HEAD~4 | the great-great grandparent of HEAD

22.1. Git Cheat Sheet

108

CHAPTER 23

Plugins

Git Extensions has a possibility to add functionality in external plugins. Some are distributed with the main program.

Most plugins has settings in Sertings. Most plugins also have UI forms accessible from the main menu in Browse
Repository.

This list is incomplete.

23.1 Auto compile SubModules

This plugin proposes (confirmation required) that you automatically build submodules after they are updated via the
GitExtensions Update submodules command.

Enabled
Enter true to enable the plugin, or false to disable.

Path to msbuild.exe
Enter the path to the msbuild.exe executable.

msbuild.exe arguments
Enter any arguments to msbuild.

23.2 Bitbucket Server

For repositories is hosted on Atlassian Bitbucket Server, the plugin cannot be used for bitbucket.org. For more infor-
mation see: https://www.atlassian.com/software/bitbucket/server

This plugin will enable you to view and create pull requests for Bitbucket.

Bitbucket Username
The username required to access Bitbucket.

Bitbucket Password
The password required to access Bitbucket.

109

https://www.atlassian.com/software/bitbucket/server

Git Extensions Documentation, Release 3.00.00.4433

Specify the base URL to Bitbucket
The URL from which you will access Bitbucket.

Disable SSL verification
Check this option if you do not require SSL verification to access Bitbucket Server.

23.3 Create local tracking branches

This plugin will create local tracking branches for all branches on a remote repository. The remote repository is
specified when the plugin is run.

23.4 Delete obsolete branches

This plugin allows you to delete obsolete branches i.e. those branches that are fully merged to another branch. It will
display a list of obsolete branches for review before deletion.

Delete obsolete branches older than (days)
Select branches created greater than the specified number of days ago.

Branch where all branches should be merged
The name of the branch where a branch must have been merged into to be considered obsolete.

23.5 Find large files

Finds large files in the repository and allows you to delete them.

Find large files bigger than (Mb)
Specify what size is considered a ‘large’ file.

23.6 Gerrit Code Review

The Gerrit plugin provides integration with Gerrit for GitExtensions. This plugin has been based on the git-review
tool.

For more information see: https://www.gerritcodereview.com/

23.7 GitHub

This plugin will create an OAuth token so that some common GitHub actions can be integrated with Git Extensions.
For more information see: https://github.com/

OAuth Token
The token generated and retrieved from GitHub.

23.3. Create local tracking branches 110

https://www.gerritcodereview.com/
https://github.com/

Git Extensions Documentation, Release 3.00.00.4433

23.8 GitFlow

This plugin permit to manage your _branching model: http://nvie.com/posts/a-successful-git-branching-model/ with
_GitFlow: https://github.com/nvie/gitflow in GitExtension

You should have GitFlow installed to use this plugin.

The GitFlow plugin permit to : - init gitflow in your git repository - create your feature, hotfix, release or support
branch - manage (pull, publish or finish) your existing gitflow branches

23.9 Gource

Gource is a software version control visualization tool.
For more information see: http://gource.io/

Path to "gource"
Enter the path to the gource software.

Arguments
Enter any arguments to gource.

23.10 Impact Graph

This plugin shows in a graphical format the number of commits and counts of changed lines in the repository performed
by each person who has committed a change.

23.11 Jira Commit Hint

Provides hints for Atlassian Jira issues in the commit form.

23.12 Periodic background fetch

This plugin keeps your remote tracking branches up-to-date automatically by fetching periodically.

Arguments of git command to run
Enter the git command and its arguments into the edit box. The default command is fetch --all, which
will fetch all branches from all remotes. You can modify the command if you would prefer, for example, to
fetch only a specific remote, e.g. fetch upstream.

Fetch every (seconds)
Enter the number of seconds to wait between each fetch. Enter O to disable this plugin.

Refresh view after fetch
If checked, the commit log and branch labels will be refreshed after the fetch. If you are browsing the commit
log and comparing revisions you may wish to disable the refresh to avoid unexpected changes to the commit
log.

Fetch all submodules
If checked, also perform git fetch —--all recursively on all configured submodules as part of the periodic
background fetch.

23.8. GitFlow 111

http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow
http://gource.io/

Git Extensions Documentation, Release 3.00.00.4433

23.13 Proxy Switcher

This plugin can set/unset the value for the http.proxy git config file key as per the settings entered here.

Username
The user name needed to access the proxy.

Password
The password attached to the username.

HttpProxy
Proxy Server URL.

HttpProxyPort
Proxy Server port number.

23.14 Release Notes Generator

This plugin will generate ‘release notes’. This involves summarising all commits between the specified from and to
commit expressions when the plugin is started. This output can be copied to the clipboard in various formats.

23.15 Statistics

This plugin provides various statistics (and a pie chart) about the current Git repository. For example, number of
commits by author, lines of code per language.

Code files
Specifies extensions of files that are considered code files.

Directories to ignore (EndsWith)
Ignore these directories when calculating statistics.

Ignore submodules
Ignore submodules when calculating statistics (true/false).

23.13. Proxy Switcher 112

	Git Extensions
	Features
	Video tutorials
	Links

	Getting Started
	Installation
	Portable
	Settings
	Dashboard
	Create new repository
	Open repository
	Clone repository
	Clone Github repository

	Settings
	Git Extensions
	General
	Appearance
	Colors
	Fonts

	Revision Links
	Build server integration
	Scripts
	Hotkeys
	Shell Extension
	Advanced
	Confirmations

	Detailed
	Browse repository window
	Commit dialog
	Diff Viewer

	SSH

	Git
	Paths
	Config
	Advanced

	Plugins

	Browse Repository
	View revision graph
	Search or filter the commit history
	Quick search in history
	Go to a specific commit
	Filter history

	File history
	Commit
	Diff
	View
	Blame

	Commit
	Commit changes
	Staging changes
	Staging selected lines
	Undoing or resetting changes
	Making the commit

	Amend commit

	Stash
	Revision graph

	Tag
	Create tag
	Delete tag

	Branches
	Create branch
	Orphan branches

	Checkout branch
	Merge branches
	Rebase branch
	Interactive rebase
	Delete branch

	Patches
	Create patch
	Apply patches

	Remotes
	Manage remote repositories
	Git Credential Manager
	Create SSH key
	PuTTY and github
	OpenSSH and github

	Pull changes
	Push changes

	Merge Conflicts
	Handle merge conflicts

	Modify Git history
	Cherry pick commit
	Revert commit
	Modify the last commit
	Modify an older commit
	Interactive rebase
	Using autosquash rebase feature

	Notes
	Submodules
	Manage submodules
	Add submodule

	Worktrees
	Maintenance
	Compress Git database
	Recover lost objects
	Fix user names
	Ignore files

	Translations
	Change language
	Translate Git Extensions

	Windows Explorer
	Visual Studio
	Menu
	Toolbar
	Context menu

	Command line
	Git Extensions command line

	Appendix
	Git Cheat Sheet

	Plugins
	Auto compile SubModules
	Bitbucket Server
	Create local tracking branches
	Delete obsolete branches
	Find large files
	Gerrit Code Review
	GitHub
	GitFlow
	Gource
	Impact Graph
	Jira Commit Hint
	Periodic background fetch
	Proxy Switcher
	Release Notes Generator
	Statistics

