
Forge - Cross-browser Add-on
Development Tools

Release 1.4

Forge

July 28, 2014

Contents

1 Quickstart 1

2 Features 3
2.1 Mobile - see all... 3
2.2 Native plugins - learn more... 3
2.3 Browser add-ons - see all... 3

i

ii

CHAPTER 1

Quickstart

Get started

Step 1: Sign up

Step 2: Install the Trigger Toolkit

Step 3: Read our tutorials and create apps

1

https://trigger.io/account
https://trigger.io/account
https://trigger.io/forge/toolkit

Forge - Cross-browser Add-on Development Tools, Release 1.4

2 Chapter 1. Quickstart

CHAPTER 2

Features

2.1 Mobile - see all...

• Address book
• Analytics
• Barcode / QR scanning
• Camera
• Child browser
• Cross-domain ajax
• Custom URL schemes
• Events
• Facebook SDK access
• Files
• Geolocation
• In-app payments
• Media
• Native UI enhancements
• Offline
• Push notifications
• Reload
• SMS
• Storage
• Topbar native UI
• Tabbar native UI

2.2 Native plugins - learn more...

2.3 Browser add-ons - see all...

• Background page
• Content scripts
• Cross-domain ajax
• Messaging
• Storage
• Toolbar button

3

Forge - Cross-browser Add-on Development Tools, Release 1.4

2.3.1 Get Started

Set up your environment

Start by reading Getting Started with Forge to setup your environment to interact with our cloud build service.

Then, depending on which platforms you’re planning to target, to build a ‘Hello World’ app, you’ll want to cover:

• Forge and Mobile
• Forge and the Web
• Forge and Browser Add-ons

Run through a tutorial

We have tutorials for mobile and browser add-ons. If you run into trouble understanding how to use the provided
Forge APIs, read about Using API methods

• Tutorial: creating a weather app
• Tutorial: creating a browser add-on which interacts with pages

Refer to relevant recipes and API modules

Check out the full list of our API Modules for mobile, web and browser add-ons.

Using our own demo apps and learnings from our mobile customers over the past 6 months, we’ve compiled a list of
recipes and best practices which may help you get started with building your own app.

Getting Started with Forge

To use Forge, you will first need to install the toolkit from: https://trigger.io/forge/toolkit

After completing the install process, start the toolkit and you will be prompted to create an account. You can use the
toolkit UI to build and test your apps or you can use the command-line tools that are bundled with the toolkit.

Read on to get started with the toolkit or learn about Getting started with the command-line tools

Getting started with the toolkit Read the instructions on the toolkit download page to learn how to install and start
the toolkit on your platform.

After signing up or logging in, you will see your Your Apps. You can always return to this screen by clicking “Manage
Apps” in the header. At first no apps will be listed here.

4 Chapter 2. Features

https://trigger.io/forge/toolkit
https://trigger.io/forge/toolkit

Forge - Cross-browser Add-on Development Tools, Release 1.4

Creating your first app Click the “Create” link at the bottom-left to create a new app. You will be prompted for a
name and location and then you will be returned to Your Apps where you will now see the new app listed.

Congratulations, you’ve created your first app and are ready to build and test it.

Working with an existing app If you have an existing app, for example you may have cloned it from an existing
Github repos or created it with the command-line tools, then you will need to import it.

Simply click the “Import” link at the bottom-right of Your Apps. You will be prompted for the location and then
returned to Your Apps where you will now see the app listed ready to be built and tested.

What next? By now, you have a development environment set up.

From here, you could take a look at:

• Forge and Mobile

• Forge and the Web

• Forge and Browser Add-ons

• Tutorial: creating a weather app

Getting started with the command-line tools To run forge commands use the forge executable in your Toolkit
installation.

Note: It is recommended that you add the directory that the forge executable is in to your path, otherwise you will
have to use the full path to the forge executable each time you want to run any forge command.

Windows

C:\> ‘‘C:\Users\<Your Username>\AppData\Local\Trigger Toolkit\forge.exe’’ create

2.3. Browser add-ons - see all... 5

Forge - Cross-browser Add-on Development Tools, Release 1.4

Mac users

$ $HOME/Library/Trigger\ Toolkit/forge create

Linux users
$ ~/TriggerToolkit/forge create

Creating your first app
Note: If you have an existing app you’d like to work with, see Working with an existing app.

To keep each of your apps separate, we expect that you will want to work on them in different directories. In the
terminal, we’ll create a new directory and move into it:

mkdir "../demo-app"
cd "../demo-app"

Now, we’ll create our app, with the forge create command:

$ forge create
[INFO] Forge tools running at version 1
Enter app name:

At this point a descriptive name for your new app: if you’re planning on following along with our tutorial, “Weather
Demo” would be a reasonable choice.

If this is the first time you’re running this command, you will be prompted to log in with the email address and
password that you signed up with at the Forge website:

$ forge create
[INFO] Forge tools running at version 2.3.1
Enter app name: Weather Demo
Your email address: james@trigger.io
Password:
[INFO] authenticating as "james@trigger.io"
[INFO] authentication successful
[INFO] fetching initial project template

At this point, you’re ready to edit your app and start running builds!

Working with an existing app If you are already working with an app on your machine, simply change directory
to where the app is:

cd "../my-existing-app"

In that directory, you should have a src directory, containing the code for your app.

What next? By now, you have a development environment set up.

From here, you could take a look at:

• Forge and Mobile

• Forge and the Web

• Forge and Browser Add-ons

• Tutorial: creating a weather app

6 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Forge and Mobile

The following tutorial is intended to get anyone up to speed developing iOS and Android apps using Forge.

This process does not require you to know Objective C, Java or any platform specific API calls. The only things
needed is a basic understanding of HTML and JavaScript.

We’re working hard to make Forge the simplest way to make mobile apps. We hope you’ll find our guides easy to
follow - but if you get stuck at any point, just drop us a line on support@trigger.io. We’d love to help! This guide will
take you through building your first mobile app with Forge. We recommmend reading Getting Started with Forge first
to set up your environment.

Preparing to run mobile apps Goal: Set up development environment

Forge can be used to generate both iOS and Android apps from a single codebase. You can follow the subsequent
tutorial with either (or both).

If you have a Mac we recommend you get started with the iOS Simulator. With Windows or Linux, the Android
emulator or device is likely to be the simplest. Of course you can also work with the Android emulator on a Mac. Or
an iOS device on any development machine but that requires that you have an iOS developer account and additional
setup:

• Developing iOS apps on Windows

• Developing iOS apps on Linux

• Releasing your mobile apps

Setting up an iOS environment To build and run iOS apps, you can use a Mac, Windows or Linux computer.
However, to use the iOS simulator, a Mac is required.

To use the iOS Simulator on a Mac, you need to install Xcode. You can download Xcode from
https://developer.apple.com/xcode/. When this is installed, start XCode and click ‘Preferences’ from the XCode menu
to check the iOS Simulator and command-line tools are listed as installed under components. If not, you may install it
from that window.

Note: you do not need to install the Xcode command-line tools just to use the iOS Simulator, but it is required for
when you come to package for distribution. So we recommend you install it at the same time that you setup Xcode.

Setting up an Android environment In order to build your app for Android there is a minimum requirement of
having Python and Java installed. Both commands should be installed and made available on your path.

In order to run the app, you’ll need an attached phone with debug drivers installed or an active Android emulator
device. You will also need to have Python and Java installed and both commands made available on your path.

If you do not set this up yourself, the tools will detect this and offer to create an appropriate Android Virtual Device
(AVD) for you - simply follow the instructions given to you by the commands.

If you wish to manually manage your Android emulator you can setup the Android SDK location, by clicking on your
app from the Your Apps page, then clicking on ‘Local config’ in the top right.

2.3. Browser add-ons - see all... 7

mailto:support@trigger.io
http://developer.apple.com
https://developer.apple.com/xcode/

Forge - Cross-browser Add-on Development Tools, Release 1.4

At the command-line, use the --android.sdk flag when using forge run android to point to your Android
SDK location and run your own emulator AVD. All automatic installation procedures will prompt before making any
changes to your system.

Important: There is a bug in the Android 2.3 emulator that will render your apps unusable - this is not a Trigger.io
issue but if you manage your own Android AVD you should use an Android 2.2, 3 or 4+ AVD.

Building and running the code Goal: To see your iOS and Android apps running

You can build and test your app using either the toolkit or the command-line.

Note: If you change your HTML, CSS or JavaScript between builds, then they will take just a couple of seconds. If
you change the local config (in the config.json) file, a full rebuild will occur which will take longer

If you run a new app straight after you’ve created it, you will see our default ‘hello world’ app appear:

8 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Toolkit From the Your Apps screen, simply click on the app name you wish to build.

The first time you do this, the Toolkit will perform an initial download of the resources it needs to build. This should
complete in a few seconds and you will be prompted to ‘Continue’.

You can then click the appropriate link to build and run the app for Android or iOS. You will see the full traceback in
the console as the commands are run so you can see progress and any warnings.

2.3. Browser add-ons - see all... 9

Forge - Cross-browser Add-on Development Tools, Release 1.4

If you make subsequent code changes that you want to build and test on the same platform, just click ‘Run again’ at
the bottom of the console view in the app run page.

Note: if you are running the app for Android using the emulator, and an AVD (Android Virtual Device) is not already
started when you click the run link, it can take a long time to startup. It will be faster on subsequent runs, but in general
we recommend that you develop with an Android device for a faster build / test cycle.

Command-line At the command-line you must use two commands forge build and forge run to build and
test an app. See Getting started with the command-line tools for the location of the forge executable for your
platform.

To build your app:

• Navigate to your app directory

• Run forge build ios and forge build android to create your iOS and Android apps.

• Whenever the src/config.json configuration file changes the entire app needs to be rebuilt.

• When the build finishes take a look inside the development directory and you should see android and ios
sub-directories

To test your app on iOS:

• Type forge run ios

10 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Apple requires apps to be packaged before deploying to iOS devices (see releasing for instructions) so this will
launch the simulator

To test your app on Android:

• Type forge run android

• To use an Android device, connect it with USB Debugging enabled and the appropriate drivers installed

• If no device is available, we will automatically start the Android emulator

Hello Mobile Goal: Adding static content

• After going through the Getting Started with Forge section you should see a src directory created inside your
app directory. This is where all of your app files should be placed

• The src directory should contain a config.json file which holds all of the configuration settings for the
app. You can also edit this file from inside the Toolkit, by click on your app name in the Your Apps page and
then the ‘App config’ link in the top right.

• Open src/index.html in your favorite text editor

• You will see the HTML for a default “Hello World” app: you can use this as a starting point for your real app.

Note: Forge looks for index.html as the entry point of your application. This file must be present and the name
cannot be changed.

Dynamic Hello Goal: Running dynamic JavaScript code and using logging

Let’s add some dynamic functionality next and re-build:

• Replace the contents of the body element in index.html with:

<p>Hello World, this is HTML!</p>

• Create the file js/default.js and change its contents to:

forge.logging.info(’Hello World, this is JavaScript’);

• Open index.html and make sure default.js is being included:

2.3. Browser add-ons - see all... 11

Forge - Cross-browser Add-on Development Tools, Release 1.4

<script type="text/javascript" src="js/default.js"></script>

• Rebuild and re-run the application: you should see your “Hello World” message in the app.

• Look at the command prompt/terminal running the code and you should see your “Hello World” log message.

Important: Now that you know how to use logging it is highly encouraged to use it frequently for debugging
purposes.

Reference app The files in getting-started.zip represent the code you should have in your src folder at this point. If
you run into any issues this is a good place to look.

It’s not working! You can always contact us at support@trigger.io, or ask a question on StackOverflow.

What next? Next you could try our Mobile Weather App tutorial.

Or if you’re comfortable with the tooling and want to do something more advanced check out our recipes and example
apps.

Forge and the Web

In addition to creating native mobile and browser apps, Forge apps can be deployed to the open web for access by
mobile and desktop browsers. This means you don’t need to decide between focusing on native apps or mobile
websites. Both can be created from the same HTML5 code base using the Forge framework.

Forge web apps are built upon Node.js for optimum portability. The Forge build tools handle everything required to
build and deploy your code.

To hear why we created this, see Introducing ‘Build to Web’ - simple deployment of your mobile codebase as a web
app.

Note: Even if you don’t plan to deploy to the web, this is a great place to inspect the DOM and debug your Javascript
using the Chrome Developer Tools or the Firebug plugin for Firefox

Testing your web app First off you’ll need a Forge application. If you’re not yet set up in Forge, try our Getting
Started Guide then our Chrome or Mobile tutorials to learn the basics - or you could download one of our demo apps
from GitHub.

To run the web app locally you’ll need to install node.js on your machine.

Then you can test your web app using either the toolkit or command-line tools:

Toolkit Click on the app name that you want to run from the main Your Apps page. And then just click the ‘Web’
link in the Run section.

12 Chapter 2. Features

mailto:support@trigger.io
http://stackoverflow.com/questions/tagged/trigger.io
http://trigger.io/cross-platform-application-development-blog/2012/03/12/introducing-%E2%80%98build-to-web%E2%80%99-simple-deployment-of-your-mobile-codebase-as-a-web-app/
http://trigger.io/cross-platform-application-development-blog/2012/03/12/introducing-%E2%80%98build-to-web%E2%80%99-simple-deployment-of-your-mobile-codebase-as-a-web-app/
http://docs.trigger.io/en/v1.2/android/getting-started.html#building-the-code
http://www.nodejs.org

Forge - Cross-browser Add-on Development Tools, Release 1.4

Once the build is complete, the app will be opened up in a new tab in your default browser. It’s that simple!

Command-line Running forge build web from your app’s root directory creates the code for your web ap-
plication alongside your mobile apps in just a few seconds (see Building the Code if this is your first time building a
Forge app).

Then type forge run web. This will open a new tab in your browser displaying your app.

Deploying your web app on Heroku Your generated web app can be deployed to any node.js platform. To make
deployment really easy, we’ve added an option to deploy the app directly to Heroku with a single command.

To set this you, you first need to set up a Heroku account if you haven’t already. You can do this by following the steps
in their tutorial. No need to deploy an application at this stage.

Toolkit Click on the app name that you want to run from the main Your Apps page. And then just click the ‘Web’
link in the Package section. If it is the first time you’ve done this for an application, you will be prompted to either
create a new Heroku app or deploy to an existing Heroku app in your account.

Once the build is complete, the app will be opened up in a new tab in your default browser.

That’s it! Your app will be live on Heroku (the web address will be given at the command line output). You can link
this to your domain name by following instructions on the Heroku site.

Command-line

2.3. Browser add-ons - see all... 13

http://docs.trigger.io/en/v1.2/android/getting-started.html#building-the-code
http://www.heroku.com
http://devcenter.heroku.com/articles/quickstart

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Return to your app directory and run forge build web to ensure your latest changes are included in the
generated web app.

• Run forge package web. If it is the first time you’ve done this for an application, the command line tool
will ask if you want to create a new Heroku app or deploy to an existing Heroku app in your account.

Repeat steps 2 and 3 each time you want to update the deployed app.

Deploying your web app to any node.js platform The web application lives in <your-app-
folder>/release/web/heroku after you’ve packaged it. You can take the code from here and deploy to your
favorite node.js platform like any other node.js web app.

Best practices

• Use forge.is.web() in the Forge Javascript framework to detect whether your app is running in a mobile
browser and make any functionality or layout changes required. For example, a photo sharing app may hide
native camera functionality in a web browser but show it in a mobile app.

• If you intend your output to be viewed in a desktop browser, be mindful of how it will look at this much larger
screen size and design your CSS accordingly.

• Test often with forge run web.

• If your Node installation is in a non-standard location (e.g. homebrew installs it to /usr/local/bin/ on OS
X), you can use the node_path parameter to point us at the right place. Either use the “Local Config” section
in the Toolkit, or edit local_config.json directly to add something like:

"web": {
"node_path": "/usr/local/bin/

}

What do you think? If you have any outstanding questions or feedback we’d love to hear from you at sup-
port@trigger.io.

Forge and Browser Add-ons

The Forge platform enables you to easily and quickly write add-ons that run on Chrome, Firefox, Internet Explorer
and Safari. We’ll take you through how to Get Started below, but first lets cover some concepts:

Concepts Add-ons built on the Forge platform have two main aspects:

1. code to run when the browser is started

2. code to run when a page loads

3. code to run when a toolbar button is clicked

Code run at startup: “background code” If your add-on relies on long-running code which is not attached or
associated with any particular web page, you should use background code.

This code is loaded once when the browser is open or add-on is loaded/reloaded. It runs until the browser is closed or
the add-on is removed. It is good practice to put page independent logic/functionality in the background.

To use background files, you need to use the background module.

14 Chapter 2. Features

mailto:support@trigger.io
mailto:support@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

Code run at page load: “content scripts” If your add-on works with the individual web pages a user sees, you
should use content scripts.

For example, an add-on which changes a web page so that any long words are replaced with links to that word in an
online dictionary.

To use content scripts, you need to use the activations module.

Code run when a button is clicked: “popup code” You can use the button module to add an icon to the brower
toolbar.

The HTML page which may be displayed when a user clicks on this icon can include JavaScript. This JavaScript is
executed each time the popup is opened, and is destroyed when the popup is closed; therefore, it is closer conceptually
to content scripts than background code.

Getting Started

Hello Chrome

• After going through the Getting Started with Forge section you should see a src directory created. This is
where all of your add-on files will be placed.

• There will be several files and folders in the src directory: this is a basic “Hello World” app.

• Inside the folder you should see config.json which is automatically generated. This file holds configuration
settings for your add-on. You can edit this from inside the Toolkit by click on your app from the Your Apps
page, then the ‘Local config’ link in the top-right

• Create a file called background.js inside the src/js directory with this code:

forge.logging.info("This is executed once per add-on/browser launch");

• We’ll configure this to run in the background context, by referencing it in the configuration file.

• Open config.json: note how we use the background module to use our background.js file:

"background": {
"files": [

"js/background.js"
]

},

The next sections will explain how to build and load the add-on.

Note: Google calls add-ons on Chrome ‘extensions’. Add-ons and extensions are conceptually the same thing
and different platforms have different conventions on naming. When talking about Chrome specifically, we’ll use
‘extensions’.

Building and testing Chrome extensions using Forge To build your Chrome extension using the Toolkit, simple
click on the app you wish to build from the Your Apps screen, and then the ‘Chrome’ link. You will see the full
traceback in the console as the commands are run so you can see progress and any warnings.

2.3. Browser add-ons - see all... 15

Forge - Cross-browser Add-on Development Tools, Release 1.4

If you make subsequent code changes that you want to build and test on the same platform, just click ‘Run again’ at
the bottom of the console view in the app run page.

Using the command-line tools, use the forge build chrome command. When the build finishes take a look
inside the development directory and you should see your generated Chrome extension. To test the Chrome
extensions:

• Open the Chrome browser and go to chrome:extensions.

• If Developer mode isn’t already enabled click the [+] button at the top right.

• Click Load unpacked extension.

• Navigate to the development directory which contains the generated extension.

• Select the chrome folder and click OK.

• Expand section for your Chrome extension by clicking the ?

• Click forge.html

• A Chrome debugging window will appear: this is where you can debug your background scripts.

• In the console, you should see your message: .. image:: /_static/images/developer-tools.png

It’s not working! You can always contact us at support@trigger.io, or ask a question on StackOverflow.

What next? Now that you’re familiar with some basics try going through the Weather App tutorial.

Using API methods

Most API methods provided by Forge operate asynchronously (exceptions include forge.is methods and
forge.tools.UUID). This means the result of the method is not returned immediately; instead you must pro-
vide a function which will be called with the result. Care must therefore be taken when using the methods, as the order
in which code is executed can be less obvious.

Here is a simplified example:

var url;
forge.tools.getURL("mypage.html", function (myUrl) {

url = myUrl;

16 Chapter 2. Features

mailto:support@trigger.io
http://stackoverflow.com/questions/tagged/trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

});
alert(url);

In this code the alert might be undefined as you cannot be sure the callback would be fired before the next line of code.
Instead it would be better to say:

var url;
forge.tools.getURL("mypage.html", function (myUrl) {

url = myUrl;
alert(url);

});

The different callbacks which appear in Forge API methods are described below.

Callbacks Asynchronous API methods will always have the last two parameters they take as callback functions. The
first of which will either be success or callback and the second will always be error. The way these functions
are called is described below.

success The most commonly used callback is the success callback, this is the penultimate parameter to most
Forge API methods. The success callback can be called with a variety of paramters (including none at all), depend-
ing on the particular method.

The success callback will only ever be called once, and will only be called if the API method completes successfully.

callback The callback callback is similar to success in that it appears as the penultimate parameter - how-
ever, unlike the success callback, it may be called multiple times. An example of its use it adding a listener to a
button being clicked, as the button can be clicked multiple times the callback may be called multiple times.

error The error callback is always the final parameter passed to a method. The error callback will always be
called with exactly one parameter, which will be an object containing several properties.

The returned object will always contain:

• A message property, which is a printable, human readable string describing the error which has occurred.

It will usually also contain:

• A type property, this will be one of the following strings and can be used to determine what type of error
occurred and how to appropriately deal with it.

• "BAD_INPUT" - returned when an API is given invalid parameters, this kind of error should be eliminated
before releasing your app.

• "UNEXPECTED_FAILURE" - returned when an unexpected error causes the API call to fail, this generally
means an error in the forge API and we would be grateful if you could report this kind of error to us.

• "EXPECTED_FAILURE" - returned when an expected situation occurs which means the API call is not suc-
cessful, examples could be a user cancelled action or a timeout. These types of errors should be handled
appropriately within your application.

• "UNAVAILABLE" - returned when an API method is currently unavailable, this could mean unavailable on the
current platform, in the current context, or at this time (i.e. if there is no Internet connection). Your application
may also expected some errors of this type. Also returned for non-existant API calls.

• A subtype property which will give a more precise description of the error than the type, the strings which
this may contain are documented with each API method.

2.3. Browser add-ons - see all... 17

Forge - Cross-browser Add-on Development Tools, Release 1.4

It may also contain additional properties which are relevant to the API method, these properties will be documented
per method in the API reference.

When errors happen the message property will always be logged by Forge, whether a callback handler exists or not.

Tutorial: creating a weather app

Tutorial Part 1 In this tutorial, we will step through building a basic weather app using the Forge tools.

This section of the tutorial will guide you through setting up the display, creating internal data representation, and
doing some basic debugging using logging.

When using this tutorial, you should choose a single platform to follow along with: either iOS, Android, mobile
website or Chrome extension. The code we’ll be writing will work on any platform, but the configuration steps are
different.

The parts that are specific to a platform will be marked with (Mobile Only) or (Chrome Only).

All the code for this tutorial is on Github: https://github.com/trigger-corp/weather-app-demo/

Contents

• Tutorial Part 1
– Goal
– Preparation
– Setting up the UI

* Build and run the code
– Create dummy data
– Check the data
– Remote Debugging on Mobile
– Debugging on Chrome
– Reference app
– What next?

Goal This part of the tutorial is intended to:

• Show how to add project files

• Set up weather forecast data structures

• Familiarize you with developing and running a basic app using Forge

Preparation

• Firstly, if you haven’t already done so, go through the getting started on mobile or getting started on Chrome
instructions. This will help you set up the basics and teach you how to build and run your code.

• Remove any files in the src directory except config.json, identity.json and the js folder (the other
files will not be needed for the rest of this tutorial).

• Sign up for API access at http://www.wunderground.com/weather/api/ - the most basic free developer account
is fine.

• Create a new javascript file called weather.js inside the src/js directory. This file will contain all of the
JavaScript code for the rest of the tutorial.

18 Chapter 2. Features

https://github.com/trigger-corp/weather-app-demo/
http://www.wunderground.com/weather/api/

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Create a file called index.html inside the src directory. This will be the html page that displays the forecast
information.

Setting up the UI Goal: Displaying static content

Open index.html in your favorite editor and add the following:

<!DOCTYPE html>
<html>

<head>
<script type="text/javascript" src="js/weather.js"></script>

</head>
<body>

Weather forecast here.
</body>

</html>

Notice the script tag in the head element points to weather.js file you created earlier. This file does not need any
code at this point.

(Chrome only) For a Chrome extension a toolbar button will be added near the browsers address bar which will
display index.html when clicked.

Click on your App Config tab in the Toolkit or edit config.json to add the following configuration to the modules
section.

Important: JSON requires all key value pairs to be separated by commas. Makes sure to place proceeding or trailing
commas as appropriate!

"button": {
"default_popup": "index.html"

},

Build and run the code

• Instruction on how to build and run a mobile app can be found here.

• Instructions on how to build and load an extension for Chrome can be found here.

On Chrome, a new toolbar icon should be visible!

Create dummy data Goal: Set up some dummy data for a weather forecast First, we will create some dummy
data in a simplified version of the format that the Wunderground API will return to us - open src/js/weather.js
and paste the following code:

var weather = {
"current_observation": {

"display_location": {
"full": "San Francisco, CA"

},
"observation_time":"Last Updated on September 20, 3:50 AM PDT",
"weather": "Mostly Cloudy",
"temp_f": 54.4,
"temp_c": 12.4,
"relative_humidity":"89%",
"wind_string":"From the WNW at 4.0 MPH",
"icon_url":"http://icons-ak.wxug.com/i/c/k/nt_mostlycloudy.gif"

2.3. Browser add-ons - see all... 19

Forge - Cross-browser Add-on Development Tools, Release 1.4

},
"forecast": {

"simpleforecast": {
"forecastday": [

{ "date": { "weekday_short": "Thu" },
"period": 1,
"high": { "fahrenheit": "64", "celsius": "18" },
"low": { "fahrenheit": "54", "celsius": "12" },
"conditions": "Partly Cloudy",
"icon_url":"http://icons-ak.wxug.com/i/c/k/partlycloudy.gif" },

{ "date": { "weekday_short": "Fri" },
"period": 2,
"high": { "fahrenheit": "70", "celsius": "21" },
"low": { "fahrenheit": "54", "celsius": "12" },
"conditions": "Mostly Cloudy",
"icon_url":"http://icons-ak.wxug.com/i/c/k/mostlycloudy.gif" },

{ "date": { "weekday_short": "Sat" },
"period": 3,
"high": { "fahrenheit": "70", "celsius": "21" },
"low": { "fahrenheit": "52", "celsius": "11" },
"conditions": "Partly Cloudy",
"icon_url":"http://icons-ak.wxug.com/i/c/k/partlycloudy.gif" }

]
}

}
};

Check the data Goal: Confirm our data has been correctly populated by using logging

If we need to verify that our app is showing the right forecast in the future, it would be useful to log out what data
input is. We can use the logging module for this.

Add this to the end of js/weather.js:

forge.logging.info(JSON.stringify(weather));

Remote Debugging on Mobile Goal getting started with Catalyst

As you’ve already seen in getting started on mobile forge.logging.info prints output to console/terminal. You
can also use our remote debugging tool, Catalyst, which provides some helpful tools for troubleshooting and examining
the app at runtime.

If you’re working with Chrome, you can just use the Chrome Developer tools by right-clicking on the popup: see the
next section.

For a screencast on Catalyst, and help on how to get started see Screencast: Trigger.io Catalyst in action.

1. Open up a browser and go to http://trigger.io/catalyst/.

2. On this page there will be a generated script tag which you copy and insert into the head element of your
index.html file.

3. Click on the auto-generated link which takes you to a page that looks similar to Chrome’s debugging tools.

4. Open src/js/weather.js and add the following at the beginning of the file:

window.forge.enableDebug();

This will ensure that Catalyst is connected and ready before the code runs, preventing any logging from being lost.

20 Chapter 2. Features

http://trigger.io/cross-platform-application-development-blog/2012/05/04/screencast-trigger-io-catalyst-in-action-2/
http://trigger.io/catalyst/

Forge - Cross-browser Add-on Development Tools, Release 1.4

5. Rebuild and re-run your app. In a few moments, your Catalyst tab in the browser should show the device.

6. Check the console of the Catalyst tool: you should see your forecast object being logged.

Note: Catalyst is a great tool, especially for debugging mobile apps: check out the “Elements” view to inspect and
modify the DOM, the “API” tab to see your forge calls flowing back and forth, and the “Network” view to diagnose
performance problems.

Debugging on Chrome Goal: Checking forge.logging.log output in Chrome console

forge.logging.log output can be seen in the Chrome console. Since weather.js is running inside
index.html we need to inspect that page to see the logged output.

• Open up a Chrome browser and go to chrome:extensions

• If you have already added your Chrome extension, refresh it (Chrome caches aggressively - refreshing a few
times is a good idea)

• If you haven’t added your Chrome extension yet, see loading an extension in Chrome

• Open your app’s popup by clicking the toolbar button, right-click and pick Inspect pop-up

• This will open up the Chrome developer tools for your popup in a new window

• At the bottom is the console section, which should contain the output from forge.logging.log

• Inspect the logged properties of the forecast object and make sure everything looks OK

The background context also receives the logging call for debugging convenience.

• Navigate to chrome:extensions

• You should see a Inspect active views option, with a forge.html link

• Click forge.html which will open up the Chrome developer tools for your background page

• The console may not be displayed automatically, but it can be opened by pressing the Esc key or clicking the
console button on the bottom left

Reference app See the part-1 tag in the Github repository for a reference app for this stage of the tutorial.

part-1.zip

What next? Continue on to Tutorial Part 2!

Tutorial Part 2 In this part of the tutorial, we’ll explore one way to take the raw weather data and display it in a
HTML interface.

Contents

• Tutorial Part 2
– Goal
– Adding external libraries
– Displaying the Data
– Adding CSS
– Reference app
– What next?

2.3. Browser add-ons - see all... 21

https://github.com/trigger-corp/weather-app-demo/tree/part-1
https://github.com/trigger-corp/weather-app-demo/zipball/part-1

Forge - Cross-browser Add-on Development Tools, Release 1.4

Goal This part of the tutorial is intended to:

• Embed external scripts

• Display dynamic data using jQuery and Mustache templating

Adding external libraries Goal: Embedding jQuery and Mustache libraries

jQuery provides a lot of helpful functionality, and in order to display the forecast information we will use Mustache
Templates.

Download the jQuery and Mustache from their project pages and save them in the js directory.

To use these libraries in your app simply append the following script tags in the head of index.html before the
js/weather.js script tag:

<script type="text/javascript" src="js/jquery.min.js"></script>
<script type="text/javascript" src="js/mustache.min.js"></script>

It’s that simple. You can now access jQuery using “$” or “jQuery” inside index.html and weather.js.

Displaying the Data Goal: Displaying dynamic data

Using Mustache, it is quite simple to display the data.

Note: To prevent attempts to parse Mustache or other templates as HTML, we recommend wrapping them in script
tags with custom type attributes

• Open index.html

• Remove “Weather forecast here.” from the body tag

• Append to the body tag a Mustache template to represent the forecast information:

<script type="x-mustache-template" id="forecast_information_tmpl">
<h1>Forecast for {{display_location.full}}</h1>
<p>{{observation_time}}</p>

</script>

• Next we need a template to render the current conditions object:

<script type="x-mustache-template" id="current_conditions_tmpl">
<table>

<tr>
<td></td>
<td>

<div>{{weather}}</div>
<div>{{temp_f}}°F</div>
<div>Humidity: {{relative_humidity}}</div>
<div>Wind: {{wind_string}}</div>

</td>
</tr>

</table>
</script>

• And finally add a template for the daily forecast data. Here, we’re using Mustache’s Enumerable syntax to loop
through a few days’ conditions:

22 Chapter 2. Features

https://github.com/janl/mustache.js

Forge - Cross-browser Add-on Development Tools, Release 1.4

<script type="x-mustache-template" id="forecast_conditions_tmpl">
{{#forecastday}}
<td>

<h2>{{date.weekday_short}}</h2>

<div>{{conditions}}</div>
<div>Low: {{low.fahrenheit}}°F</div>
<div>High: {{high.fahrenheit}}°F</div>

</td>
{{/forecastday}}

</script>

• Next we need designated elements where the templated information will be appended. Add the following tags
following the templates inside the body element:

<header id="forecast_information"></header>

<section id="current_conditions"></section>

<section id="forecast_conditions">
<table>

<tr>
</tr>

</table>
</section>

• Now open weather.js and add the following JavaScript code which will template and append the data:

function populateWeatherConditions (weather) {
var tmpl, output;
forge.logging.log("[populateWeatherConditions] beginning populating weather conditions");

tmpl = $("#forecast_information_tmpl").html();
output = Mustache.to_html(tmpl, weather.current_observation);
$("#forecast_information").append(output);
forge.logging.log("[populateWeatherConditions] finished populating forecast information");

tmpl = $("#current_conditions_tmpl").html();
output = Mustache.to_html(tmpl, weather.current_observation);
$("#current_conditions").append(output);
forge.logging.log("[populateWeatherConditions] finished populating current conditions");

tmpl = $("#forecast_conditions_tmpl").html();
output = Mustache.to_html(tmpl, weather.forecast.simpleforecast);
$("#forecast_conditions table tr").append(output);
forge.logging.log("[populateWeatherConditions] finished populating forecast conditions");

forge.logging.log("[populateWeatherConditions] finished populating weather conditions");
};

• Finally add a jQuery.ready listener inside weather.js which will kick things off when the page finishes
loading:

$(function () {
populateWeatherConditions(weather);

});

Important: Any code that modifies the page should only be run when the page is finished loading. The above
achieves this using jQuery’s document ready listener $(function () { /* code here */ }).

2.3. Browser add-ons - see all... 23

Forge - Cross-browser Add-on Development Tools, Release 1.4

(Mobile Only) Build the code and run the app and you should see the dummy weather forecast displayed automatically.

(Chrome Only) Build the code and reload the extension. When you click on the toolbar button you should see the
weather forecast displayed in a pop-up window.

Adding CSS You can make the display a bit more pleasant by adding some custom CSS. Create a css directory
and download style.css into it. Link this file in the head element of index.html to add some basic styling to the
Weather App:

<link rel="stylesheet" type="text/css" href="css/style.css">

At this point, your app should display static weather data for San Francisco, CA when it is opened.

24 Chapter 2. Features

https://raw.github.com/trigger-corp/weather-app-demo/part-2/css/style.css

Forge - Cross-browser Add-on Development Tools, Release 1.4

2.3. Browser add-ons - see all... 25

Forge - Cross-browser Add-on Development Tools, Release 1.4

Reference app See the part-2 tag in the Github repository for a reference app for this stage of the tutorial.

part-2.zip

What next? Continue on to Tutorial Part 3!

Tutorial Part 3 This part of the tutorial will demonstrate how to use the Forge request module to retrieve data
from the Wunderground API. We will then parse the data to pull the necessary information to generate our internal
representation. We will then parse the data to pull the necessary information to generate our internal representation.

Contents

• Tutorial Part 3
– Goal
– Remove Test Dummy Code
– Understanding the Data
– Adding Permissions
– Fetching Data
– Fetching and Populating Data for a US City
– Reference app
– What next?

Goal This part of the tutorial is intended to:

• Show how to do cross-domain requests

• Using forge.request.ajax

• Fetch and display live data

Remove Test Dummy Code Goal: Remove irrelevant code

In this part of the tutorial we are going to be fetching live data, so we can remove the dummy data. Open weather.js
and ...

• Remove the var weather = { ... } declaration

• Remove the forge.logging.log(weather) call

• Remove populateWeatherConditions invocation from the document ready listener (Note you do not
need to remove the entire jQuery document ready listener as it will be used again in the following sections)

Understanding the Data Goal: Gain an understanding of what data is available and how it’s structured

If you have not done so already sign up for API access at http://www.wunderground.com/weather/api/ and make a note
of your API key.

To request a forecast which includes current conditions from the Weather Underground API you will specify an URL
using the following format:

http://api.wunderground.com/api/API_KEY/conditions/forecast/q/STATE/CITY_NAME.json

Replace API_KEY by your Weather Underground API key, STATE by the two-letter abbreviation of the city’s state
and CITY_NAME by a city name with any spaces replaced by an underscore (_).

For example to look up weather in New York City, you could use:

26 Chapter 2. Features

https://github.com/trigger-corp/weather-app-demo/tree/part-2
https://github.com/trigger-corp/weather-app-demo/zipball/part-2
http://www.wunderground.com/weather/api/
http://api.wunderground.com/api/API_KEY/conditions/forecast/q/STATE/CITY_NAME.json

Forge - Cross-browser Add-on Development Tools, Release 1.4

http://api.wunderground.com/api/API_KEY/conditions/forecast/q/NY/New_York.json

The data returned will be JSON formatted with an identical structure as our sample data from the first tutorial though
with much more detail.

Our forecast_information_tmpl template is populated from the current_observation.display_location
and current_observation.observation_time sections:
...
"current_observation": {

...
"display_location": {

"full":"New York, NY",
"latitude":"40.75013351",
"longitude":"-73.99700928",
"elevation":"17.00000000"

},
"station_id":"KNYNEWYO62",
"observation_time":"Last Updated on September 21, 4:30 AM EDT",
...

The current_conditions_tmpl template is populated from variables in the current_observation sec-
tion:
...
"current_observation": {

...
"weather":"Mostly Cloudy",
"temp_f":63.7,
"temp_c":17.6,
"relative_humidity":"74%",
"wind_string":"Calm",
"icon_url":"http://icons-ak.wxug.com/i/c/k/nt_mostlycloudy.gif",
...

Finally, the forecast_conditions_tmpl template is populated from variables in the
current_observation.forecast.simple_forecast section:
...
"current_observation": {

...
},
"forecast":{

"txt_forecast": {
...
},
"simpleforecast": {

"forecastday": [
{"date":{

"weekday_short":"Fri",
},
"period":1,
"high": {

"fahrenheit":"72",
"celsius":"22"

},
"low": {

"fahrenheit":"64",
"celsius":"18"

},
...

2.3. Browser add-ons - see all... 27

http://api.wunderground.com/api/API_KEY/conditions/forecast/q/NY/New_York.json

Forge - Cross-browser Add-on Development Tools, Release 1.4

Adding Permissions Since we are retrieving data from a 3rd party, we need to enable the request module and list
the URLs we want to access at run-time.

Either look at the App Config section in the Toolkit, or edit config.json to add this request module configuration
to the modules object:

"requests": {
"permissions": ["http://api.wunderground.com/api/*"]

}

The items in the permissions array are match patterns: see http://code.google.com/chrome/extensions/match_patterns.html.

The next time you build, re-creating your app will take longer than usual: changing the configuration of your app
means we need to do some work server-side.

Fetching Data Goal: Using forge.request.ajax

Now that you have a feel for what the returned data looks like, let’s add a function to weather.js that will retrieve
this data:

function getWeatherInfo(location) {
var api_key = "YOUR_API_KEY";
forge.logging.info("[getWeatherInfo] getting weather for for " + location);
forge.request.ajax({

url: "http://api.wunderground.com/api/" + api_key +
"/conditions/forecast/q/" + location + ".json",

dataType: "json",
success: function (data) {

forge.logging.info("[getWeatherInfo] success");
},
error: function (error) {

forge.logging.error("[getWeatherInfo] " + JSON.stringify(error));
}

});
};

forge.request.ajax is similar to the behaviour of jQuery’s $.ajax, where we specify the url, dataType to be
returned, success and error callbacks.

The returned data is a Document object which can be easily parsed with jQuery.

Remember to specify your weather underground API key or the API request will fail!

var api_key = "YOUR_API_KEY";

At this point the function doesn’t actually do anything with the data but you can test to see if the ajax call succeeded.
For example to look up the forecast in San Francisco add the following code to the document ready listener:

$(function() {
getWeatherInfo("CA/San_Francisco");

});

You can verify that this call is working by checking the console output. Expect to see log output like:

[FORGE] ’[getWeatherInfo] getting weather for for CA/San_Francisco’
[FORGE] ’[getWeatherInfo] success’

• (Mobile Only) Check either the command prompt/terminal or console of Catalyst

• (Chrome Only) Check the console of the pop-up

28 Chapter 2. Features

http://code.google.com/chrome/extensions/match_patterns.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Fetching and Populating Data for a US City Alter the getWeatherInfo function to take an extra callback
parameter that will be called if the retrieval was successful. The code should now look like:

function getWeatherInfo(location, callback) {
var api_key = "YOUR_API_KEY";
forge.logging.info("[getWeatherInfo] getting weather for for " + location);
forge.request.ajax({

url: "http://api.wunderground.com/api/" + api_key +
"/conditions/forecast/q/" + location + ".json",

dataType: "json",
success: function (data) {

forge.logging.info("[getWeatherInfo] success");
callback(data);

},
error: function (error) {

forge.logging.error("[getWeatherInfo] " + JSON.stringify(error));
}

});
};

Since we already have a function to populate the GUI we just pass that in as the callback to getWeatherInfo.The
new call would look like:

$(function(){
getWeatherInfo("CA/San_Francisco", populateWeatherConditions);

});

Rebuild and run the code to see live forecast data displayed.

Reference app See the part-3 tag in the Github repository for a reference app for this stage of the tutorial.

part-3.zip

What next? Continue on to the last part: Tutorial Part 4!

Tutorial Part 4 In this part of the tutorial we’ll add some UI components that allow the user to select a city and use
persistent storage to retrieve the information when the application restarts.

Goal This part of the tutorial is intended to:

• Show how to use persistent storage

• Set up city selection UI

• Add listeners to handle city selection changes

Modyfying the UI Goal: Add city selection UI

We need to add a drop down which will allow the user to select and get forecast information for a particular city. Open
index.html and append the following to the body element:

<div id="options">
<div id="options_header">Select City</div>
<select id="city_menu"></select>

</div>

2.3. Browser add-ons - see all... 29

https://github.com/trigger-corp/weather-app-demo/tree/part-3
https://github.com/trigger-corp/weather-app-demo/zipball/part-3

Forge - Cross-browser Add-on Development Tools, Release 1.4

Populating City Selection Goal: Running code which modifies page content

• Open weather.js and remove getWeatherInfo("CA/San_Francisco",
populateWeatherConditions); from the document ready listener.

• In the document ready listener, we will populate a drop-down with some example cities:

$(function(){
var cities = [

{ name: "London", code: "UK/London" },
{ name: "San Francisco", code: "CA/San_Francisco" },
{ name: "Cape Town", code: "ZA/Cape_Town" },
{ name: "Barcelona", code: "ES/Barcelona" },
{ name: "Boston", code: "NY/Boston" },
{ name: "New York", code: "NY/New_York" },
{ name: "Washington DC", code: "DC/Washington" },
{ name: "Tampa", code: "FL/Tampa" },
{ name: "Houston", code: "AL/Houston" },
{ name: "Montreal", code: "CYUL" },
{ name: "Los Angeles", code: "CA/Los_Angeles" },
{ name: "Miami", code: "FL/Miami" },
{ name: "West Palm Beach", code: "FL/West_Palm_Beach" }

];
cities.forEach(function(city) {

$("#city_menu").append("<option value=’" + city.code + "’>" + city.name + "</option>");
});

});

Clearing Displayed Data Goal: Displaying new data when city selection changes

When the user selects a new city the first thing we want to do is get rid of the old forecast content. The
emptyContent function is simply clears the old weather information from the html page.

Note: If you decided to have a different layout this function will need to be specific to your custom display.

function emptyContent() {
forge.logging.log("[emptyContent] removing old data");
$("#forecast_information").empty();
$("#current_conditions").empty();
$("#forecast_conditions table tr").empty();

forge.logging.log("[emptyContent] finished emptying content");
};

This function should be called every time new data is about to be displayed, which is handled
by the populateWeatherConditions. Add the call to emptyContent at the top of the
populateWeatherConditions function, which should then look like:

function populateWeatherConditions (weather) {
var tmpl, output;

emptyContent();

forge.logging.log("[populateWeatherConditions] beginning populating weather conditions");

tmpl = $("#forecast_information_tmpl").html();
output = Mustache.to_html(tmpl, weather.current_observation);
$("#forecast_information").append(output);

30 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

forge.logging.log("[populateWeatherConditions] finished populating forecast information");

tmpl = $("#current_conditions_tmpl").html();
output = Mustache.to_html(tmpl, weather.current_observation);
$("#current_conditions").append(output);
forge.logging.log("[populateWeatherConditions] finished populating current conditions");

tmpl = $("#forecast_conditions_tmpl").html();
output = Mustache.to_html(tmpl, weather.forecast.simpleforecast);
$("#forecast_conditions table tr").append(output);
forge.logging.log("[populateWeatherConditions] finished populating forecast conditions");

forge.logging.log("[populateWeatherConditions] finished populating weather conditions");
};

Remembering the previous location Goal: show different weather reports based on the selected city; and
remember the previous selected city

The following code should be placed inside of the document ready listener.

When a city is selected from the drop-down list, we want to remember it to use it as the default city when the app is
restarted.

To do that, we listen for changes to the city_menu element:

$("#city_menu").change(function() {
var city = $("#city_menu option:selected").val();
forge.prefs.set("city", city);
getWeatherInfo(city, populateWeatherConditions);

});

See forge.prefs.set.

Using remembered locations Goal: default to the user’s previously selected city when they re-open the app

When the application first runs we want to check if a city has already been saved from a previous run.

• the first time the app is run, this preference will be null, meaning its value has not been set

• if a city has been saved previously, it is selected in the drop-down list

forge.prefs.get("city", function(resource) {
if (resource) { // user has previously selected a city

var city = resource;
} else { // no previous selection

var city = "CA/San_Francisco";
}
$("#city_menu").val(city);
$("#city_menu").change();

}, function (error) {
forge.logging.error("failed when retrieving city preferences");
$("#city_menu").val("CA/San_Francisco"); // default;

});

See forge.prefs.get.

The weather app should now be complete.

• Build and run the code

2.3. Browser add-ons - see all... 31

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Bask in all your glory, you have just written an app using Forge!

Reference app See the part-4 tag in the Github repository for a reference app for this stage of the tutorial.

part-4.zip

What’s next? It’s easy to run the Weather App on a different platform.

Here are some suggestions on how to extend the weather app.

Weather App Conversion One of the key benefits of using Forge is being able to generate for multiple platforms
from the same source code. Converting the Weather App from Chrome to mobile and vice-versa is as simple as making
a few tweaks to the configuration file.

Chrome to Mobile If you did the Weather App tutorial using a Chrome extension you do not need to make any
modifications at all. Simply go through the Mobile getting started section which will show you how to set up the
development environment. Once you have the JDK, SDK and AVD configured simply follow the directions on how to
build and run the app.

Mobile to Chrome The code used for building the Chrome extension will be identical, but we just need a way to
display index.html.

One option is to have it show up as a popup that appears when a user clicks a toolbar button. To configure this, simply
add the following button configuration to the modules section in config.json directory:

"button": {
"default_popup": "index.html"

},

• the default_popup setting points to the HTML file that should be displayed when the toolbar button is clicked

If you want to know more about the configuration file, see the Config File Reference.

Now just build and load the extension to see the Weather Demo in Chrome.

Extensions and API This has been only a simple demo of what Forge is capable of. You can try extending the
weather app with your own custom functionality. Here are a few suggestions to get you going. Also take a look at the
API documentation to see what type of functionality is provided by Forge.

Possible Extensions If the tutorial has piqued your interest and you are looking for some more improvements to the
weather app here are a few suggestions.

• The current UI is still quite basic. Why not add some CSS or change up the layout?

• Custom themes. Have a UI that allows the user to select a theme which is saved to preferences and persists after
restarts

• Set the color of the temperature based on a numeric range

• The data returned by the weather API has loads more fields - customise the app for whatever your needs are

More challenging:

• Use geolocation to determine the current lat/lng

32 Chapter 2. Features

https://github.com/trigger-corp/weather-app-demo/tree/part-4
https://github.com/trigger-corp/weather-app-demo/zipball/part-4

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Using reverse geocoding determine the current city (see http://trigger.io/cross-platform-application-
development-blog/2012/05/15/how-to-build-a-location-based-hybrid-mobile-app-with-reverse-geocoding/)

• Use the information to look up the forecast for the current location

You could take a look at the Forge API documentation to help you implement this functionality or as a source of
inspiration.

Tutorial: creating a browser add-on which interacts with pages

Tutorial Part 1 In this tutorial, we will use the Forge platform to create a browser extension which lets users attach
text notes to profiles on Facebook.

As this particular app is based around modifying the contents of web pages on-the-fly, it is not applicable to mobile
app development: see our weather app tutorial for how to get started with a mobile app.

Contents

• Tutorial Part 1
– Goal
– What you’ll need
– Preparation
– Update the extension name and description
– Building the app

* Toolkit
* Command-line

– Activating on the right pages
– Customise the JavaScript
– Include your JavaScript in your extension
– Reference extension
– It’s not working!

Goal By the end of this part of the tutorial, you will have a development environment set up to embed your JavaScript
code into Facebook pages.

What you’ll need

• an internet connection

• Google Chrome: version 5 or higher

• a working knowledge of HTML, CSS and JavaScript debugging tools like the Chrome Developer Tools

• about an hour of your time

Preparation Firstly, follow the Getting Started with Forge instructions. This will leave you with a browser extension
to be customised to your particular needs.

This will leave you with a src directory (where all your code will be placed), containing a config.json file.

2.3. Browser add-ons - see all... 33

http://trigger.io/cross-platform-application-development-blog/2012/05/15/how-to-build-a-location-based-hybrid-mobile-app-with-reverse-geocoding/
http://trigger.io/cross-platform-application-development-blog/2012/05/15/how-to-build-a-location-based-hybrid-mobile-app-with-reverse-geocoding/
http://www.google.com/chrome/
http://code.google.com/chrome/devtools/docs/overview.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Update the extension name and description A cosmetic change, but an important one, is setting the name and
description for your extension. Depending on the browser, this may appear during the install process and on the list of
installed extensions.

Open config.json from the src folder created above, and change the name and description:

"name": "Facebook note demo",
"description": "A demo application: lets users attach notes to Facebook profiles",

Building the app

Toolkit To build your Chrome extension using the Toolkit, simple click on the app you wish to build from the Your
Apps screen, and then the ‘Chrome’ link. You will see the full traceback in the console as the commands are run so
you can see progress and any warnings.

If you make subsequent code changes that you want to build and test on the same platform, just click ‘Run again’ at
the bottom of the console view to rebuild it.

Command-line To build the extension, bring up your terminal, find the location of the forge executable for your
platform, and enter the forge build chrome command.

$ forge build chrome
[INFO] Forge tools running at version 1.0.1
[INFO] configuration has changed: creating new templates
[INFO] starting new build
[INFO] build 11 started...
[INFO] build completed successfully
[INFO] current configuration hash is 564c9ef0ede72b76ce06b823047f075a
[INFO] fetching new Forge templates
[INFO] fetching unpackaged artefacts for build 532 into ".template"
[WARNING] creating output directory ".template"
[INFO] Development build created. Use forge run to run your app.

Underneath the development/chrome directory, you now have a development Chrome extension which can be
installed from the chrome://extensions screen. Following these instructions, create and load an extension.

Warning: Whenever you make changes to files in the src directory, you will need to rebuild the app with forge
build chrome, then reload the extension by going to chrome://extensions and clicking on Reload in
the relevant section.

Activating on the right pages This particular browser extension should only be activated on Facebook pages.

To set this up, we need to make sure the activations module is enabled and set the patterns array in config.json.
To do this we need to add an activations object to modules in config.json, if it already exists you will need
to edit it to look like this:

"modules": {
"activations": [
{

"patterns": ["http://www.facebook.com/*", "https://www.facebook.com/*"],
"styles": [],
"scripts": []

}
]

}

34 Chapter 2. Features

http://code.google.com/chrome/extensions/getstarted.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

The "http://www.facebook.com/*" value is a match pattern dictating which URLs the extension should
activate on.

Customise the JavaScript Goal: run some JavaScript when Facebook pages load

Currently, the extension doesn’t run any JavaScript when your extension activates. In this section, we’ll create a new
JavaScript file and configure the extension to load it on the right pages.

Firstly, in the src directory, create a file called fb-note-demo.js. Open fb-note-demo.js in your preferred
text editor, and add this code:

alert("Facebook demo extension loaded");

Include your JavaScript in your extension The JavaScripts we embed are defined in src/config.json, in the
scripts array. Change this:

"scripts": []

to this:

"scripts": [
"/fb-note-demo.js"

]

Now, rebuild your extension and reload it in Chrome. When you go to a Facebook page, you should see your own
alert popup.

Reference extension fb-part-1.zip contains the code you should have at this point. Feel free to check your code
against it, or use it to resume the tutorial from this point.

It’s not working! Things to check:

• have you updated src/config.json to point at the modified local copy of fb-note-demo.js?

• have you reloaded your extension?

• on Facebook, use Chrome’s Developer Tools to see which scripts have been embedded in the page: do you see
a HTTP 404 for your JavaScript file?

• on Facebook, use the console in Chrome’s Developer Tools to check for JavaScript errors: uncaught exceptions
may cause the alert messages not to appear

• clearing your browser cache (at chrome://history/#e=1&p=0) will flush out any old resources

• still not working? Get in touch at support@trigger.io!

Tutorial Part 2 In the second part of this tutorial, we build on the previous steps to add the JavaScript code which
lets users attach text notes to profiles on Facebook.

2.3. Browser add-ons - see all... 35

http://code.google.com/chrome/extensions/match_patterns.html
http://code.google.com/chrome/devtools/docs/overview.html
mailto:support@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

Contents

• Tutorial Part 2
– Goal
– Identifying a Facebook profile
– Reading in existing notes
– How do users change the note?
– Using jQuery instead of plain JavaScript
– Saving the note
– Bringing it together
– Reference extension
– It’s not working!

Goal By the end of this part of the tutorial, you will have a basic extension which lets users attach notes to Facebook
profiles.

Identifying a Facebook profile Goal: only show an alert when we’re on a Facebook profile page

To show the correct note on each Facebook profile page, we will use a regular expression to pull the user ID out of a
Facebook URL.

Facebook profile page URLs take two forms:

* ‘‘www.facebook.com/profile.php?id=123456789‘‘

* ‘‘www.facebook.com/profile.name‘‘

If we’re not on a page that has a URL like this, we don’t want to do anything.

Replace your alert with:

var oldProfile = new RegExp("\\.facebook\\.com/profile\\.php\\?id=(\\d+)");
var newProfile = new RegExp("\\.facebook\\.com/([A-Za-z0-9\\.]+)(\\?.+)?$");
var ignoreProfiles = new RegExp("\\.php$");

var oldProfileM = oldProfile.exec(document.URL),
newProfileM = newProfile.exec(document.URL),
personID = undefined;

if (oldProfileM) {
// URL is like www.facebook.com/profile.php?id=123456789
var personID = oldProfileM[1];

} else if (newProfileM) {
// URL is like www.facebook.com/profile.name ...
var personID = newProfileM[1];
if (ignoreProfiles.exec(personID)) {
// ... but it’s a system page (like the login screen)
var personID = undefined;

}
}

if (typeof personID !== "undefined") {
handleProfilePage(personID);

}

function handleProfilePage(personID) {
alert("On a Facebook profile page");

}

36 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

We’ve used a regular expression which matches URLs like http://www.facebook.com/profile.php?id=123456789 to
only continue with our code if we appear to be on a profile page. It also pulls out the unique user ID which we will
soon use to attribute the right note to the right person - we save the unique ID into the personID variable.

Reading in existing notes Of course, we want to save notes away so that we can see them again next time we visit
a profile page. To do that, we will use a feature of the Forge platform which lets us persist data between browser
windows and across page loads and browser restarts; we call these data preferences.

To read a preference, we will use the forge.prefs.get method in fb-note-demo.js: add the following code inside
the to the end of the handleProfilePage function:

forge.prefs.get("fb_notes", function(notes) {
// set to null when no preference yet set
var existingNotes = notes === null? {}: notes;

if (existingNotes[personID] === undefined) {
existingNotes[personID] = "";

}
});

As forge.prefs.get is an asynchronous method, we have passed in a callback to process the stored value.

Note: The check for existingNotes being null is to handle the initial case where there are no persisted notes.

How do users change the note? Now we can read in existing notes, but how do we let users edit them?

Well, to do this we will create a small HTML snippet to be inserted into the Facebook page, which lets users edit the
note. Add this code to the end of the forge.prefs.get callback:

var noteEl = document.createElement("div"),
textarea = document.createElement("textarea");

noteEl.appendChild(textarea);
document.body.insertBefore(noteEl, document.body.firstChild);

Now, rebuild your extension and reload it in Chrome. On profile pages you should now see a <textarea> inserted
right at the top of the page. We will cover how to save the note in a short while.

Using jQuery instead of plain JavaScript Interacting with the DOM can be a bit cumbersome in plain JavaScript:
for this reason, you may want to include third-party libraries in your extension. To do so, we’ll just change
src/config.json to include jQuery in the list of scripts we include when the extension activates.

First, download http://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js to your src directory, then update
your src/config.json:

"scripts": ["jquery.min.js", "/fb-note-demo.js"]

So, we can replace the code from the previous section with this (adding a couple of element classes):

var noteEl = $("<div class=’fb-note’ style=’z-index: 1000; position: absolute’>"+
"<textarea class=’fb-note-content’></textarea>"+
"</div>");

$(".fb-note-content", noteEl).val(existingNotes[personID]);
$("body").first().prepend(noteEl);

2.3. Browser add-ons - see all... 37

http://www.facebook.com/profile.php?id=123456789
http://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js

Forge - Cross-browser Add-on Development Tools, Release 1.4

Saving the note At this point, you should see a textarea at the top of Facebook profile pages. Next, we need to
be able to save the contents of that textarea, so that the notes are persisted between page loads and browser restarts.

First, change the noteEl element to include a save link:

var noteEl = $("<div class=’fb-note’ style=’z-index: 1000; position: absolute’>"+
"<textarea class=’fb-note-content’></textarea>"+
"save note"+
"</div>");

Then add a click() handler to that link:

$("a.save-note", noteEl).click(function() {
// save textarea content into the existingNotes object we read before
existingNotes[personID] = $(".fb-note-content", noteEl).val();
// forge.prefs.set is the inverse of forge.prefs.get
forge.prefs.set("fb_notes", existingNotes);
alert("Note saved!");

});

Bringing it together Now, when you go to a Facebook profile page, you should see a textarea at the top of the
page, along with a save note link. Editing the text and saving it should pop up an alert box - and the next time you
visit that profile page, the saved message should be displayed.

You should be able to save different notes for different people.

Reference extension fb-part-2.zip contains the code you should have at this point. Feel free to check your code
against it, or use it to resume the tutorial from here.

It’s not working!

• You can use the standard Chrome JavaScript debugger to check for logic problems in your code

• JavaScript files can be cached, clear this out at chrome://history/#e=1&p=0

• are you seeing the wrong note for people? It’s due to Facebook’s strange page transitions: reloading the page
should show the right note. In a real application, you could add a simple poller on document.URL

• if your JavaScript file has not been embedded in the page (i.e. you don’t see it in the list of available scripts in
the debugger), there’s either a syntax error in your file (which will show up on the console) or there’s a problem
reading the file (which will show up as an 404 error in the Resources panel)

Common gotchas:

• remember to rebuild your extension and reload it in Chrome after changing any config or code

• can’t figure out the problem? Get in touch at support@trigger.io!

Tutorial Part 3 In the final part of this tutorial, we build on Part II to improve the appearance and functionality of
the notes interface.

38 Chapter 2. Features

mailto:support@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

Contents

• Tutorial Part 3
– Goal
– Making the note look nicer
– Adding a close button
– Reference extension
– It’s not working!
– Other useful functions

Goal By the end of this part of the tutorial, your Facebook notes application will look much more appealing than
before!

Making the note look nicer Rather than just a plain, unstyled textarea, let’s make the note more appealing by having
it look a bit like a Post-It note.

To do this, we’ll need to embed a CSS file in the Facebook page to style our note. In src/config.json, change
the styles array from:

"styles": [
],

to:

"styles": [
"/fb-note-demo.css"

],

In the same folder as fb-note-demo.js, create fb-note-demo.css with the following content:

.fb-note {
background-color: #FEF49C;
border: 1px solid #CEC46C;
position: absolute;
top: 10px;
right: 10px;
z-index:1000;
-moz-box-shadow: 5px 5px 5px #555;
-webkit-box-shadow: 5px 5px 5px #555;
box-shadow: 5px 5px 5px #555;

}

.fb-note a.save-note {
display: block;
font-size: 140%;
width: 280px;
background-color: white;
margin: 0px auto;
text-align: center;
margin-bottom: 3px;
background-color: #EEEEFF;

}

.fb-note .fb-note-content {
width: 280px;
height: 170px;
border: none;

2.3. Browser add-ons - see all... 39

Forge - Cross-browser Add-on Development Tools, Release 1.4

background-color: transparent;
}

Feel free to change this CSS as you see fit!

Reload a Facebook profile page, and your note should be a bit nicer to look at!

Adding a close button Now that the note is covering some of the page, we should really add a close button to
let people temporarily hide it. Of course, in a real application, this setting should be persisted, and more complex
show/hide functionality considered, but for this demo a simple approach is fine.

When building the note in your JavaScript, change noteEl to be:

var noteEl = $("<div class=’fb-note’ style=’z-index: 1000; position: absolute’>"+
"X"+
"<textarea class=’fb-note-content’></textarea>"+
"save note"+
"</div>");

Then add a click() handler for the close button to the end of your forge.prefs.get callback:

$("a.fb-close-note", noteEl).click(function() {
$(".fb-note").remove();

});

Finally, add some CSS styling for the close button in fb-note-demo.css:

.fb-note a.fb-close-note {
float: right;
color: red;
font-weight: bold;

}

Reference extension fb-part-3.zip contains the code you should have at the end of this tutorial. Feel free to check
your code against it, or build on it to improve the Facebook note demo add-on!

It’s not working!

• if there’s a problem with your CSS not being applied properly, check that you can access the stylesheet at the
URL specified in src/config.json

• for JavaScript problems, setting a debugger breakpoint at the start of your onLoad function is often the best
place to start.

• are you seeing the wrong note for people? It’s due to Facebook’s strange page transitions: reloading the page
should show the right note. In a real application, you could add a simple poller on document.URL.

Note: api.log(message) is a useful function which outputs messages to the console; we find it much more
convenient than having alert() calls everywhere!

Other useful functions This tutorial has not covered all of the API Forge exposes to your extensions: see the API
documentation for a comprehensive list.

40 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

2.3.2 API

Questions? Ask them on StackOverflow or email us.

Features

Mobile - see all...

• Address book
• Analytics
• Barcode / QR scanning
• Camera
• Child browser
• Cross-domain ajax
• Custom URL schemes
• Events
• Facebook SDK access
• Foreground camera
• Files
• Geolocation
• In-app payments
• Media
• Native UI enhancements
• Offline
• Push notifications
• Reload
• SMS
• Storage
• Topbar native UI
• Tabbar native UI

Native plugins - learn more...

Browser add-ons - see all...

• Background page
• Content scripts
• Cross-domain ajax
• Messaging
• Storage
• Toolbar button

Mobile

barcode: Barcode / QR Code scanner The forge.barcode namespace allows the user to scan a barcode
using the devices camera and returns its content

Config The barcode module must be enabled in config.json

2.3. Browser add-ons - see all... 41

http://stackoverflow.com/questions/tagged/trigger.io
mailto:support@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

{
"modules": {

"barcode": true
}

}

API

scan Platforms: iOS, Android

Show a UI that allows the user to scan a barcode and return its value

Example:

forge.barcode.scan(function (value) {
alert("You scanned: "+value);

});

barcode.scan(success, error)

Arguments

• success (function(value)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

scanWithFormat Platforms: iOS, Android

Show a UI that allows the user to scan a barcode and return its value and type.

Example:

forge.barcode.scanWithFormat(function (barcode) {
alert(’You scanned a ’+barcode.format+’: ’+barcode.value);

});

barcode.scanWithFormat(success, error)

Arguments

• success (function(barcode)) – callback to be invoked when no errors occur - barcode will
contain format and value keys, where format is the barcode type as returned by ZXing

• error (function(content)) – called with details of any error which may occur

contact: Accessing contacts Platforms: Mobile

The forge.contact namespace allows access to the native contact address book on the device the app is running
on.

Contacts are represented by a simple Javascript object which follows the W3C Contacts API as much as possible.

Config The contact module must be enabled in config.json

{
"modules": {

"contact": true
}

}

42 Chapter 2. Features

https://github.com/zxing/zxing
http://www.w3.org/TR/contacts-api/#contact-interface

Forge - Cross-browser Add-on Development Tools, Release 1.4

API

select Platforms: Mobile

Prompts the user to select a contact and returns a contact object.

contact.select(success, error)

Arguments

• success (function(contact)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

selectAll Platforms: Mobile

Returns a list of all the available contact IDs and contact name.

Due to performance limitations on Android devices, this method is unable to return the full list of fully populated
contact names; our recommended pattern is to use this method to get the list of all available contact IDs, then lazily
load the more detailed full contact information with the selectById method.

contact.selectAll(success, error)

Arguments

• success (function(contactList)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

selectById Platforms: Mobile

Returns more detailed information about a contact whose contact ID we already know.

contact.selectById(id, success, error)

Arguments

• success (function(contact)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

Contact object When using selectAll, the returned contacts list would look something like:

[
{

":ref:‘id <field-contact-id>‘": "14894",
":ref:‘displayName <field-contact-displayName>‘": "Mr Joe Bloggs"

},
{

":ref:‘id <field-contact-id>‘": "481516",
":ref:‘displayName <field-contact-displayName>‘": "Mr John Locke"

},
...

]

Below is an example of a contact object returned from select or selectById, with details for some field types.

{
‘‘˙0contact0idmodules/contact:field0contact0idid’’: ‘‘14894’’,
‘‘˙0contact0displaynamemodules/contact:field0contact0displaynamedisplayName’’: ‘‘Mr Joe Bloggs’’,

2.3. Browser add-ons - see all... 43

Forge - Cross-browser Add-on Development Tools, Release 1.4

‘‘˙0contact0namemodules/contact:field0contact0namename’’: {
‘‘formatted’’: ‘‘Mr Joe Bloggs’’,
‘‘familyName’’: ‘‘Bloggs’’,
‘‘givenName’’: ‘‘Joe’’,
‘‘middleName’’: null,
‘‘honorificPrefix’’: ‘‘Mr’’,
‘‘honorificSuffic’’: null

},
‘‘˙0contact0nicknamemodules/contact:field0contact0nicknamenickname’’: ‘‘Joe’’,
‘‘˙0contact0phonenumbersmodules/contact:field0contact0-

phonenumbersphoneNumbers’’: [
{

‘‘value’’: ‘‘+447554639203’’,
‘‘type’’: ‘‘work’’,
‘‘pref’’: false

}
],
‘‘˙0contact0emailsmodules/contact:field0contact0emailsemails’’: [
{

‘‘value’’: ‘‘joe-bloggs@trigger.io’’,
‘‘type’’: ‘‘work’’,
‘‘pref’’: false

}
],
‘‘˙0contact0addressesmodules/contact:field0contact0addressesaddresses’’: [

{
‘‘country’’: ‘‘United Kingdom’’,
‘‘formatted’’: ‘‘1-11 Baches Street\nLondon\nLondon\N1 6DL\nUnited Kingdom’’,
‘‘locality’’: ‘‘London’’,
‘‘postalCode’’: ‘‘N1 6DL’’,
‘‘pref’’: false,
‘‘region’’: ‘‘London’’,
‘‘streetAddress’’: ‘‘1-11 Baches Street’’,
‘‘type’’: ‘‘work’’

}
],
‘‘˙0contact0imsmodules/contact:field0contact0imsims’’: [

{
‘‘value’’: ‘‘joe-bloggs@trigger.io’’,
‘‘type’’: ‘‘gtalk’’,
‘‘pref’’: false

}
],
‘‘˙0contact0organizationsmodules/contact:field0contact0-

organizationsorganizations’’: [
{

‘‘department’’: ‘‘Product development’’,
‘‘name’’: ‘‘Forger’’,
‘‘pref’’: false,
‘‘title’’: ‘‘Software engineer’’,
‘‘type’’: null

}
],
‘‘˙0contact0birthdaymodules/contact:field0contact0birthdaybirthday’’: ‘‘1983-11-23’’,

44 Chapter 2. Features

mailto:joe\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}bloggs@trigger.io
mailto:joe\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}bloggs@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

‘‘˙0contact0notemodules/contact:field0contact0notenote’’: ‘‘Any text can go here’’,
‘‘˙0contact0photosmodules/contact:field0contact0photosphotos’’: [
{

‘‘value’’: ‘‘’’,
‘‘type’’: null,
‘‘pref’’: false

}
],
‘‘˙0contact0categoriesmodules/contact:field0contact0categoriescategories’’: null,
‘‘˙0contact0urlsmodules/contact:field0contact0urlsurls’’: [

{
‘‘value’’: ‘‘http://trigger.io’’,
‘‘type’’: ‘‘homepage’’,
‘‘pref’’: false

}
],

}

Fields This section includes more detailed information on the contents of fields with non-obvious content.

id This is a unique identifier for the contact, and is guaranteed to be the same if the user selects the same contact
again.

displayName This is a formatted version of the contacts name which can be used for display. On iOS this is
generated from the various parts of the name, on Android this is stored as a separate value.

name This is an object containing the various parts of the contacts name, including a formatted version which is
used as the previous displayName value.

nickname A string value containing a nickname for the contact

phoneNumbers An array of objects containing details of a contacts phone numbers. Each number has a value, a
type (such as home or work) and also a pref property, which is unsupport on Android and iOS so is always false.

emails Similarly this property is an array of objects describing a contacts emails, with value, type and pref
(which is also always false).

addresses An array of objects describing a contacts addresses, formatted contains a string generated from the
other properties which can be used to display the address. Each object also contains a pref property which is always
false.

ims Contains an array of Instant Messaging details for a contact, formatted similarly to phoneNumbers and emails.

organizations Contains an array of objects describing organizations the contact is part of.

Can only contain one organization on iOS.

2.3. Browser add-ons - see all... 45

http://trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

birthday Contains a string with the date of birth of the contact.

note A string which can contain arbitrary information about the contact.

photos Contains an array of thumbnail photos associated with the contact, each photo has a value which contains a
data: uri of the image. The type and pref properties are not used.

Contains at most 1 photo on iOS.

categories Not available on iOS or Android.

urls Contains an array of URLs related to the contact, formatted similarly to phoneNumbers and emails.

Permissions On Android this module will add the READ_CONTACTS permission to your app, users will be
prompted to accept this when they install your app.

display: App display options This controls how your app will be displayed as the device is moved around. The
default is to allow for any orientation, with the content being re-drawn as the screen is rotated.

Config

{
‘‘modules’’: {

‘‘display’’: {
‘‘orientations’’: {

‘‘˙0orientations0defaultmodules/display:field0orientations0-
defaultdefault’’: ‘‘any’’,

‘‘˙0orientations0iphonemodules/display:field0orientations0-
iphoneiphone’’: ‘‘portrait’’,

‘‘˙0orientations0ipadmodules/display:field0orientations0-
ipadipad’’: ‘‘landscape’’,

‘‘˙0orientations0androidmodules/display:field0orientations0-
androidandroid’’: ‘‘landscape’’,

},
‘‘˙0fullscreenmodules/display:field0fullscreenfullscreen’’: {

‘‘android’’: false,
‘‘ios’’: false,
‘‘wp’’: true

}
}

}
}

You can limit this behaviour by specifying the desired supported orientations as orientations.default, choos-
ing from "any", "portrait" or "landscape". You can further customise this behaviour by specifying orien-
tation support for different devices, e.g. orientations.iphone and orientations.ipad. For example:

"orientations": {
"default": "any",
"iphone": "portrait",
"ipad": "landscape"

},

46 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

This configuration means

• by default, display your app in any orientation

• ... but on iPhones, only display your app in portrait mode, either way up

• ... and on iPads, your app will only use the landscape orientation

• ... on Android the default will apply and any orientation allowed by the device will be used

The fullscreen option will hide the system statusbar while your app is running and allow your app to run completely
fullscreen on the device. Supported device types are:

• android: Android devices

• ios: Both iPhone and iPad devices

• wp: Windows phone devices

API The display module also allows you to change the orientation limitations while your app is running with the
following API.

orientation.forceLandscape Platforms: Mobile

Force the app into a landscape orientation.

display.orientation.forceLandscape(success, error)

Arguments

• success (function(value)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

orientation.forcePortrait Platforms: Mobile

Force the app into a portrait orientation.

display.orientation.forcePortrait(success, error)

Arguments

• success (function(value)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

orientation.allowAny Platforms: Mobile

Allow any app orientation.

display.orientation.allowAny(success, error)

Arguments

• success (function(value)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

document: Document utility functions Internet Explorer features a number of inconsistencies with some common
document operations, these methods allow you to work around these problems in a platform-independent manner.

API

2.3. Browser add-ons - see all... 47

Forge - Cross-browser Add-on Development Tools, Release 1.4

reload Platforms: Browser Only

document.reload()

Internet Explorer’s implementation of document.reload() only refreshes the static content of a page. This method will
reload a page and force all scripts to be re-evaluated as well.

location Platforms: All

document.location(success, error)

Arguments

• success (function(location)) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

Internet Explorer versions 9 and later aborts page loading with a permission denied message if the document location
is accessed from within an iframe. This function provides a workaround which functions correctly under all browsers.

Error object properties:

• statusCode: Status code returned from the server.

• content: Content returned from the server (if available).

Example:

forge.document.location(function(location) {
forge.logging.log(location.href);

}, function(error) {
alert(’Failed to get document location: ’+error.message);

}
});

event: Events

Config The event module must be enabled in config.json

{
"modules": {

"event": true
}

}

API The forge.event namespace allows app to listen for events of interest, which may be triggered multiple
times (or potentially not at all) depending on the situation.

menuPressed.addListener Platforms: Android

Triggered when the menu button is pressed on an Android device.

event.menuPressed.addListener(callback, error)

Arguments

• callback (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

48 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

backPressed.addListener Platforms: Android

Triggered when the back button is pressed on an Android device.

event.backPressed.addListener(callback, error)

Arguments

• callback (function(closeApplication)) – callback invoked when back button is pressed, the
first argument is a function which if called will close the application.

• error (function(content)) – called with details of any error which may occur

backPressed.preventDefault Platforms: Android

Prevents the default action when the back button is pressed from the point this is called onwards, allowing the app to
handle the event itself using backPressed.addListener.

event.backPressed.preventDefault(success, error)

Arguments

• success (function()) – invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

orientationChange.addListener Platforms: Mobile

Triggered when the device is rotated, use forge.is.orientation.portrait() and forge.is.orientation.landscape() to deter-
mine orientation.

event.orientationChange.addListener(callback, error)

Arguments

• callback (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

connectionStateChange.addListener Platforms: Mobile

Triggered when the device connection state changes, use forge.is.connection.connected() and
forge.is.connection.wifi() to test new connection state.

This event will also be fired once during app startup, as soon as we determine the connection status.

event.connectionStateChange.addListener(callback, error)

Arguments

• callback (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

messagePushed.addListener Platforms: Mobile

Triggered when a push notification is received both while the application is running or if the application is launched
via that notification.

Currently available as part of our integration with Parse.

event.messagePushed.addListener(callback, error)

Arguments

2.3. Browser add-ons - see all... 49

Forge - Cross-browser Add-on Development Tools, Release 1.4

• callback (function(data)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

appPaused.addListener Platforms: Mobile

Triggered when the app loses focus and moves into the background. At this point what can be executed varies by
platform:

• Android: Any javascript can be run, but timers may not be fired until the app is resumed, this prevents unneces-
sary battery usage by the app.

• iOS: A short amount of time is given for execution, it is generally best to assume that callbacks and timers may
not fire until the app is resumed.

• Windows Phone: Any javascript will be executed only when the app resumes.

You should also not assume that an app that is paused will be resumed, the app may be killed at this point by the user
or device without ever being resumed.

event.appPaused.addListener(callback, error)

Arguments

• callback (function(data)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

appResumed.addListener Platforms: Mobile

Triggered when the app is resumed from a previous paused state.

event.appResumed.addListener(callback, error)

Arguments

• callback (function(data)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

facebook: Facebook SDK access The forge.facebook namespace allows access to the native Facebook
SDK, which provides similar functionality to the JavaScript SDK with the additional feature of supporting SSO (Single
Sign-On) between the users Facebook app and your Forge app.

You can see a demo app that makes use of the Facebook module in this screencast, with the code on Github.

Important: Using the Facebook module requires you to have a Facebook account and signup to Facebook’s developer
platform. Your relationship with Facebook is separate from your relationship with Trigger.io. If you include the
Facebook module in your app, the App Id will report information about app installs and usage to Facebook with that
information also made available on your dashboard at https://developers.facebook.com. You must disclose to your
users that your app passes the App Id to you and Facebook.

Config The facebook module must be enabled in config.json

{
"modules": {

"facebook": {
"appid": "123456789012345"

}

50 Chapter 2. Features

https://developers.facebook.com/docs/sdks/
https://developers.facebook.com/docs/sdks/
https://developers.facebook.com/docs/reference/javascript/
https://vimeo.com/62372298
https://github.com/trigger-corp/scrumptious
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com

Forge - Cross-browser Add-on Development Tools, Release 1.4

}
}

Note: To use this module you will need to setup your app in Facebook. More information can be found in the Tips
section below and at https://developers.facebook.com/

API

facebook.authorize Platforms: Mobile

Authorize the current user with Facebook, may show a login UI if new permissions are required, or a valid login token
is not available (i.e. on first login).

The audience parameter is only used on iOS (due to differences in the Facebook SDK), but can be passed in on
Android to no ill effect. It should be one of:

• “everyone” - by default, your app’s updates are public

• “friends” - by default, the user’s friends can see your your app’s updates

• “only_me” - by default, just the user can see the updates

• “none” - no one can see the updates by default

The success callback will be called with information about the users access_token, you can store and use this token
following the Facebook developer guidelines.

facebook.authorize([permissions], success, error)

Arguments

• permissions (array) – An optional array of permissions to request

• audience (array) – Optional string indicating who should see updates by default

• success (function(token_information)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

facebook.hasAuthorized Platforms: Mobile

Takes the same options and returns the same data as facebook.authorize, but will not prompt the user for login
if required. Used to only log in a user if their interaction is not required.

For more information about the audience parameter, see the facebook.authorize.

facebook.hasAuthorized([permissions], success, error)

Arguments

• permissions (array) – An optional array of permissions to request

• audience (array) – Optional string indicating who should see updates by default

• success (function(token_information)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

2.3. Browser add-ons - see all... 51

https://developers.facebook.com/

Forge - Cross-browser Add-on Development Tools, Release 1.4

facebook.logout Platforms: Mobile

Logout the current user and clear any cached login details.

facebook.logout(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

facebook.api Platforms: Mobile

Make a Facebook Graph API call. See https://developers.facebook.com/docs/reference/javascript/FB.api/ for further
details.

facebook.api(path[[, method], params], success, error)

Arguments

• path (string) – API path to call, i.e. "me/posts"

• method (string) – Type of request, i.e. "GET"

• params (object) – Additional parameters for the request, i.e. {limit: 5}

• success (function(response)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

facebook.ui Platforms: Mobile

Display a Facebook dialog UI. See https://developers.facebook.com/docs/reference/javascript/FB.ui/ for further de-
tails.

Note that if the user hits “Cancel” in the dialog, your success callback will still be called - with {}
as its parameter. This is the behaviour of the underlying Facebook SDK - for more information, see
http://stackoverflow.com/a/13729707/29903.

facebook.ui(params, success, error)

Arguments

• params (object) – Dictionary of paramters, must include method

• success (function(response)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

Tips For a quick tutorial on setting up your app in Facebook to enable login and open graph API calls see our demo
app build instructions

General

• To use the Facebook module a Facebook app needs to be created on https://developers.facebook.com/apps.
Additionally, on the app configuration page, “Native iOS App” and “Native Android App” need to be enabled,
and within each of those sections SSO should also be enabled.

• If a user revokes your apps access, or logs out from the Facebook app you may get OAuth errors returned from
API calls, in this situation you should call forge.facebook.logout() and reauthorize the user.

52 Chapter 2. Features

https://developers.facebook.com/docs/reference/javascript/FB.api/
https://developers.facebook.com/docs/reference/javascript/FB.ui/
http://stackoverflow.com/a/13729707/29903
https://github.com/trigger-corp/scrumptious#preparing-your-own-version-ready-for-deployment
https://github.com/trigger-corp/scrumptious#preparing-your-own-version-ready-for-deployment
https://developers.facebook.com/apps

Forge - Cross-browser Add-on Development Tools, Release 1.4

Android

• On Android a hash of the key used to sign your app is required by Facebook to confirm your app should be
allowed to access the Facebook API. The easiest way to configure this is to simply start using the Facebook
API, any API methods will return an error message which includes the hash and the URL to visit to configure it.

iOS

• On iOS you must add your applications bundle id to the Facebook developer app settings page. You set a specific
bundle id using the package_names module.

file: File and Camera access The file API allows storage of files on the local system as well as capturing images
with the camera or selecting them from the users saved photos.

Notes

• File objects are simple Javascript objects which contain at least a uri. They can be serialised using
JSON.stringify and safely stored in Forge preferences.

• The uri parameter can be used directly on some platforms. This is not recommended - instead use the provided
helper function forge.file.URL.

• Image orientation is automatically handled where possible: if a camera photo contains rotation information it
will be correctly rotated before it is displayed or uploaded.

• Files can be uploaded by including them as an array in request.ajax(). For example if myFile1 and
myFile2 were images returned by file.getImage():

forge.request.ajax({
url: "http://example.com/file_upload",
files: [myFile1, myFile2]

});

Note: For more information about how to cache remote files in your app, see Caching files.

Config The file module must be enabled in config.json

{
"modules": {

"file": true
}

}

API

getImage Platforms: Mobile

Returns a file object for a image selected by the user from their photo gallery or (if possible on the device) taken using
their camera.

The optional parameters can contain any combination of the following:

• width: The maximum height of the image when used, if the returned image is larger than this it will be
automatically resized before display. The stored image will not be resized.

2.3. Browser add-ons - see all... 53

Forge - Cross-browser Add-on Development Tools, Release 1.4

• height: As width but sets a maximum height, both height and width can be set.

• source: By default the user will be prompted to use the camera or select an image from the photo gallery, if
you want to limit this choice you can set this to "camera" or "gallery".

• saveLocation: By default camera photos will be saved to the device photo album, with this setting they can
be forced to be saved within your application by using "file".

Returned files will be accessible to the app as long as they exist on the device.

file.getImage([params], success, error)

Arguments

• params (object) – object optional parameters.

• success (function(file)) – callback to be invoked when no errors occur (argument is the re-
turned file)

• error (function(content)) – called with details of any error which may occur

Important: On iOS devices, the first time your app reads from the gallery, the user will be prompted to allow the
app to access your location. This is because the EXIF data in images stored there could be used to infer a user’s
geolocation. For more information, see Permissions.

getVideo Platforms: Mobile

Returns a file object for a video selected by the user from their photo gallery or (if possible on the device) taken using
their camera.

The optional parameters can contain any combination of the following:

• source: By default the user will be prompted to use the camera or select a video from the photo gallery, if you
want to limit this choice you can set this to "camera" or "gallery".

Returned files will be accessible to the app as long as they exist on the device.

file.getVideo([params], success, error)

Arguments

• params (object) – object optional parameters.

• success (function(file)) – callback to be invoked when no errors occur (argument is the re-
turned file)

• error (function(content)) – called with details of any error which may occur

Important: On iOS devices, the first time your app reads from the gallery, the user will be prompted to allow the app
to access your location. This is because the EXIF data in files stored there could be used to infer a user’s geolocation.
For more information, see Permissions.

getLocal Platforms: Mobile

Returns a file object for a file included in the src folder of your app

file.getLocal(path, success, error)

Arguments

• path (string) – Path to the file, i.e. "images/home.png".

54 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

• success (function(file)) – callback to be invoked when no errors occur (argument is the re-
turned file)

• error (function(content)) – called with details of any error which may occur

cacheURL Platforms: Mobile

Downloads a file at a specified URL and returns a file object which can be used for later access. Useful for caching
remote resources such as images which can then be accessed directly from the local filesystem at a later date.

Cached files may be removed at any time by the operating system, and it is highly recommended you use the isFile
method to check a cached file is still available before using it.

file.cacheURL(url, success, error)

Arguments

• url (string) – URL of file to cache.

• success (function(file)) – callback to be invoked when no errors occur (argument is the re-
turned file)

• error (function(content)) – called with details of any error which may occur

saveURL Platforms: Mobile

Downloads a file at a specified URL and returns a file object which can be used for later access. Saves the file in a
permanant location rather than in a cache location as with cacheURL.

Important: Files downloaded via this method will not be removed if you do not remove them, if the file is only going
to be used temporarily then cacheURL is more appropriate.

file.saveURL(url, success, error)

Arguments

• url (string) – URL of file to save.

• success (function(file)) – callback to be invoked when no errors occur (argument is the re-
turned file)

• error (function(content)) – called with details of any error which may occur

isFile Platforms: Mobile

Returns true or false based on whether a given object is a file object and points to an existing file on the current device.

file.isFile(file, success, error)

Arguments

• file (file) – the file object to check

• success (function(isFile)) – callback to be invoked when no errors occur (argument is a
boolean value).

• error (function(content)) – called with details of any error which may occur

2.3. Browser add-ons - see all... 55

Forge - Cross-browser Add-on Development Tools, Release 1.4

URL Platforms: Mobile

Returns a URL which can be used to display an image. Height and width will be limited by the values given when
originally selecting the image.

file.URL(file, success, error)

Arguments

• file (file) – the file object to load data from

• success (function(url)) – callback to be invoked when no errors occur, first argument is the
image URL

• error (function(content)) – called with details of any error which may occur

base64 Platforms: Mobile

Returns the base64 value for a files content.

file.base64(file, success, error)

Arguments

• file (file) – the file object to load data from

• success (function(base64String)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

string Platforms: Mobile

Returns the string value for a files content.

file.string(file, success, error)

Arguments

• file (file) – the file object to load data from

• success (function(string)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

remove Platforms: Mobile

Delete a file from the local filesystem, will work for cached files but not images stored in the users photo gallery.

file.remove(file, success, error)

Arguments

• file (file) – the file object to delete

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

56 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

clearCache Platforms: Mobile

Deletes all files currently saved in the local cache.

file.clearCache(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

Permissions On Android this module will add the WRITE_EXTERNAL_STORAGE permission to your app, users
will be prompted to accept this when they install your app.

On iOS, accessing files in the device’s gallery causes the user to be prompted to give your app access to their location.
This is because files in the gallery may contain EXIF data, including geolocation and timestamps.

To avoid the user being shown this prompt, you could save your image into a file rather than the gallery, using the
saveLocation parameter. This is not yet supported when capturing videos.

If a user chooses not to share their location with your app, the error callback of the method trying to read files from
the gallery will be invoked.

flurry: Analytics with Flurry The forge.flurry APIs allow you to access the native Flurry SDK, which
provides usage tracking and analytics via Flurry.

Before you can use this module, you will need to have set up a Flurry application, and know its API key.

Config The flurry module must be enabled in config.json with API keys specified for Android and/or iOS.

{
"modules": {

"flurry": {
"android_api_key": "VMGKY81MY88PCDR38ARM",
"ios_api_key": "3RAG3ZW4QXMRVNJH092S"

}
}

}

By just including this configuration in your app config, basic app analytics information - such as sessions, active users
and new users - will be available in your Flurry dashboard.

For more advanced analytics, you can use the API methods described below.

API

flurry.customEvent Platforms: Mobile

Send a named and optionally parameterised event to Flurry. You could use this to track a user’s navigation through
your app, for example.

flurry.customEvent(name[, parameters], success, error)

Arguments

• name (string) – a name to identify this event

2.3. Browser add-ons - see all... 57

http://www.flurry.com/

Forge - Cross-browser Add-on Development Tools, Release 1.4

• parameters (object) – an optional hash of extra information that will be stored with this
event

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

flurry.startTimedEvent Platforms: Mobile

Takes the same options as flurry.customEvent, but using flurry.endTimedEvent you are able to easily
measure the time it takes for your users to move from one action to another in your app.

flurry.startTimedEvent(name[, parameters], success, error)

Arguments

• name (string) – a name to identify this event

• parameters (object) – an optional hash of extra information that will be stored with this
event

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

flurry.endTimedEvent Platforms: Mobile

Mark the end of a particular timed event: the name parameter should match the name parameter passed into
flurry.startTimedEvent.

flurry.endTimedEvent(name, success, error)

Arguments

• name (string) – a name to identify this event: should match the name passed into
flurry.startTimedEvent

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

flurry.setDemographics Platforms: Mobile

Store some demographic data about the current user, to enable more advanced filtering and grouping in the Flurry
dashboard.

The demographics object should contain some or all of these keys:

• user_id: (string) a unique ID for the current user

• age: (number) the current user’s age

• gender: (string) either “m” or “f”

flurry.setDemographics(demographics, success, error)

Arguments

• demographics (string) – a hash optionally including values for user_id, age and
gender

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

58 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

flurry.setLocation Platforms: Mobile

Set the user’s current location: we recommend you use the geolocation module to grab the coords object which should
be passed in. E.g.:

forge.geolocation.getCurrentPosition(function (position) {
forge.flurry.setLocation(position.coords);

});

flurry.setLocation(coords, success, error)

Arguments

• coords (object) – hash representing location - must include latitude, longitude and
accuracy.

• success (function(response)) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

geolocation: Geolocation Although geolocation APIs are part of the HTML5 specification, on some platforms,
the default permissions dialogs can be cumbersome and annoying to your users.

For that reason, we offer an alternative way to get geolocation data.

Config The geolocation module must be enabled in config.json

{
"modules": {

"geolocation": true
}

}

API
geolocation.getCurrentPosition(options, success, error)

Arguments

• options (object) – request specific levels of service from the location provider, currently
supports "enableHighAccuracy": true to request GPS location if available.

• success (function(position)) – called with an object matching the W3C Position specification

• error (function(error)) – called when the user chooses not to share their location with your
app

Note: To enable easy porting from existing HTML5 code onto Forge, we also accept parameters in the order
(success, error, options)

Permissions On Android this module will add the ACCESS_FINE_LOCATION permission to your app, users will
be prompted to accept this when they install your app.

icons: App icons This part of the config allows you to define the icons to be used for your app. All icons are
square, and must be placed in your src directory.

Define your desired icons with "size": "path" attributes, where size is the pixel height (and width) of the
icon, and path is where the image has been placed under the src directory.

2.3. Browser add-ons - see all... 59

http://dev.w3.org/geo/api/spec-source.html#coordinates

Forge - Cross-browser Add-on Development Tools, Release 1.4

You can specify different icons for different platforms as so:

"android": {
"36": "icon36.png",
"48": "icon48-android.png",
"72": "icon72.png"

},
"chrome": {

"16": "icon16.png",
"48": "icon48-chrome.png",
"128": "icon128.png"

}

Here, Android and Chrome will share their 16x16 pixel icon, but use different 48x48 pixel icons.

The icons required for each platform are listed below:

• Android: 36px, 48px and 72px

• Chrome: 16px, 48px and 128px

• Firefox: 32px and 64px

• Internet Explorer: 16px .ico format

• iOS: 57px, 72px, 114px and 144px for home screen icons, 512px to be shown in iTunes.

• Safari: 32px, 48px and 64px with transparent background. See the Creating an Image section in Apple’s Safari
extension guide.

Note: If you specify any icons for a particular platform, you must specify all required icons!

Note: iOS includes a special prerendered option, setting this to true will stop iOS from applying the gloss effect
to your icons.

Config
{

"modules": {
"icons": {

"android": {
"36": "icon36.png",
"48": "icon48-android.png",
"72": "icon72.png"

},
"ios": {

"57": "icon57.png",
"72": "icon72-ios.png",
"114": "icon114.png",
"144": "icon144.png",
"prerendered": true

}
}

}
}

is: Platform Detection Forge allows you to build cross-platform mobile apps and browser extensions from the
same code. Sometimes it may be necessary to do a specific action based on the platform that is running the code. The
following methods allow you to determine what platform that is.

60 Chapter 2. Features

http://developer.apple.com/library/safari/#documentation/Tools/Conceptual/SafariExtensionGuide/AddingButtonstotheMainSafariToolbar/AddingButtonstotheMainSafariToolbar.html
http://developer.apple.com/library/safari/#documentation/Tools/Conceptual/SafariExtensionGuide/AddingButtonstotheMainSafariToolbar/AddingButtonstotheMainSafariToolbar.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config The is module must be enabled in config.json

{
"modules": {

"is": true
}

}

API

API

mobile
is.mobile()

Return boolean Returns true if running on a mobile device

desktop
is.desktop()

Return boolean Returns true if running on a desktop/laptop computer

web
is.web()

Return boolean Returns true if running on as a hosted web app

android
is.android()

Return boolean Returns true if running on an Android device

ios
is.ios()

Return boolean Returns true if running on an IOS device

chrome
is.chrome()

Return boolean Returns true if running on Chrome browser

firefox
is.firefox()

Return boolean Returns true if running on Firefox browser

safari
is.safari()

Return boolean Returns true if running on Safari browser

2.3. Browser add-ons - see all... 61

Forge - Cross-browser Add-on Development Tools, Release 1.4

ie
is.ie()

Return boolean Returns true if running on IE browser

orientation Platforms: Mobile

portrait
is.orientation.portrait()

Return boolean Returns true if a mobile device has a portrait orientation

landscape
is.orientation.landscape()

Return boolean Returns true if a mobile device has a landscape orientation

connection Platforms: Mobile

Note: These functions are not reliable during your app’s initialisation: you should use connectionState-
Change.addListener. We guarantee to fire that event as the app starts up.

connected
is.connection.connected()

Return boolean Returns true if a mobile device has an active internet connection.

wifi
is.connection.wifi()

Return boolean Returns true if a mobile device is connected via wifi.

launchimage: Launch images The launchimage module displays an image while your app is loading.

By default, the launch image is hidden automatically when the window load event fires - this gives your JavaScript
some time to initialise itself, set up native topbars and tabbars for example.

However, if you want full control over hiding the launch image yourself, set hide-manually to true (see below).

Config Images to be displayed during launch as required on iOS, for further details see the Apple documentation.

On Android the image will be displayed centered while the first page is loading: as Android device sizes vary a pixel
perfect loading image cannot be used. The image will be proportionally scaled down to fit the screen if necessary. The
solid color to use behind this launch image can be configured with the background-color configuration directive
seen below.

All 7 iOS images must be defined for any to be included in iOS builds. Both Android images must be defined for
Android builds.

Properties and image sizes are:

• iphone: 320x480px

• iphone-retina: 640x960px

62 Chapter 2. Features

http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/App-RelatedResources/App-RelatedResources.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

• iphone-retina4: 640x1136px - for the iPhone 5’s four inch screen

• ipad: 768x1004px

• ipad-landscape: 1024x748px

• ipad-retina: 1536x2008px

• ipad-landscape-retina: 2048x1496px

• android

• android-landscape

{
"modules": {

"launchimage": {
"iphone": "iphone.png",
"iphone-retina": "iphone-retina.png",
"iphone-retina4": "iphone-retina4.png",
"ipad": "ipad.png",
"ipad-landscape": "ipad-landscape.png",
"ipad-retina": "ipad-retina.png",
"ipad-landscape-retina": "ipad-landscape-retina.png",
"android": "android.png",
"android-landscape": "android-landscape.png",
"hide-manually": true,
"background-color": "#000000"

}
}

}

API

hide Platforms: Mobile

launchimage.hide(success, error)

Arguments

• success (function(content)) – called after the launch image has been hidden

• error (function(content)) – called with details of any error which may occur

If you want to manually hide the launch image yourself, use this API.

You will probably also want to specify hide-manually in your launchimage module configuration.

logging: Logging Allows you to log a message, and optionally an exception, to the console service provided by
the underlying platform.

Config The logging.level configuration directive controls the verbosity of the logging system. It should be
set to one of DEBUG, INFO, WARNING, ERROR or CRITICAL. A setting of DEBUG means that all messages will be
logged, whereas a setting of CRITICAL means that only messages of level CRITICAL will be logged.

{
"modules": {

"logging": {
"level": ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]

2.3. Browser add-ons - see all... 63

Forge - Cross-browser Add-on Development Tools, Release 1.4

},
}

}

Platforms: Internet Explorer only

The logging.console configuration directive enables a log window for the add-on’s background page.

"logging": {
"console": true

},

API

log Platforms: All

logging.log(message[, exception][, level])

Arguments

• message – a string to log on the browser console

• exception – a JavaScript Error instance: details from the exception will be appended to your
log message

• level – importance of this message: one of forge.logging.DEBUG,
forge.logging.INFO, forge.logging.WARNING, forge.logging.ERROR
or forge.logging.CRITICAL

logging.debug(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.DEBUG)

logging.info(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.INFO)

logging.warning(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.WARNING)

logging.error(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.ERROR)

logging.critical(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.CRITICAL)

media: Media file playback

Config The media module must be enabled in config.json

{
"modules": {

"media": {
"enable_background_audio": true

}
}

}

• enable_background_audio: If this is true then audio players will continue to play even when the app is
running in the background.

64 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

API

videoPlay Platforms: Mobile

Play a video at a URL fullscreen on the device.

Note: Allow users to select or capture videos using their device you may use the file module.

media.videoPlay(url, success, error)

Arguments

• url (string) – URL to video.

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

createAudioPlayer Platforms: Mobile

Create a audio player object from a media file which can then be used to play the audio.

The audio player object returned in the success callback has the following methods, all of which take success and error
callbacks in the same manner as other Forge methods:

• player.play(success, error): Begin (or resume) playing the audio file.

• player.pause(success, error): Pause the playback of the file.

• player.stop(success, error): Stop the playback of the file and release the audio system.

• player.duration(success, error): Calls the success callback with the duration of the audio in
seconds.

• player.seek(seekTo, success, error): Seek to the given time (in seconds) in the audio file, if the
file is playing it will continue to play after seeking.

Warning: For player.duration and player.seek to work properly on Android, use 128kb/s constant
bit-rate MP3 files.

Example:

forge.file.getLocal("music.mp3", function (file) {
forge.media.createAudioPlayer(file, function (player) {
player.play();

});
});

media.createAudioPlayer(file, success, error)

Arguments

• file (string) – File object created using forge.file methods representing audio object.

• success (function(player)) – callback to be invoked when player has been created

• error (function(content)) – called with details of any error which may occur

notification: Notifications

2.3. Browser add-ons - see all... 65

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config The notification module must be enabled in config.json

{
"modules": {

"notification": true
}

}

API Notifications allow you to send alerts.

create Platforms: All

notification.create(title, text, success, error)

Arguments

• title (string) – title

• text (string) – notification message

• success (function()) – success

• error (function(content)) – called with details of any error which may occur

setBadgeNumber Platforms: iOS

Allows you to set or remove a badge for your app’s icon on the iOS home screen:

If you pass in 0 as number, it will remove this badge. This is particularly useful if you want to clear a badge set by a
push notification.

notification.setBadgeNumber(number, success, error)

Arguments

• number (string) – number

alert Platforms: Android, iOS

Show a dialog window with text content that the user can dismiss. Similar to using window.alert except you can
control the title text for the dialog.

To create an alert like this:

66 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

You would use this code:

forge.notification.alert("My Title: Alert", "My Body: Alert", function () {
// ... implement logic for when user dismissed alert

});

notification.alert(title, body, success, error)

Arguments

• title (string) – text to show as the title of the dialog

• body (string) – text to show as the body of the dialog

• success (function()) – called when the user dismisses the alert

• error (function(content)) – called with details of any error which may occur

confirm Platforms: Android, iOS

Show a dialog window prompting the user with a “yes”/”no” style question.

To show a confirmation dialog like this:

You would use this code:

forge.notification.confirm("My Title: Confirm", "My Body: Confirm", "Y", "N", function (userClickedYes) {
if (userClickedYes) {
// ... implement logic for when user clicked "Y"

} else {
// ... implement logic for when user clicked "N"

2.3. Browser add-ons - see all... 67

Forge - Cross-browser Add-on Development Tools, Release 1.4

}
});

notification.confirm(title, body, positive, negative, success, error)

Arguments

• title (string) – text to show as the title of the dialog

• body (string) – text to show as the body of the dialog

• positive (string) – text to use for the positive action button

• negative (string) – text to use for the negative action button

• success (function(result)) – called with true if the user selected the positive option, false
if they selected the negative option.

• error (function(content)) – called with details of any error which may occur

toast Platforms: Android, iOS

Create a small popup which disappears after a few seconds.

notification.toast(body, success, error)

Arguments

• body (string) – body

• success (function()) – called if the toast is displayed successfully

• error (function(content)) – called with details of any error which may occur

Permissions On Chrome this module will add the notifications permission to your app, users will be prompted
to accept this when they install your app.

On Android this module will add the VIBRATE permission.

package_names: Built package names This controls the package name used internally when building your app;
if you don’t set this manually, we’ll generate a package name automatically for you, which looks something like
io.trigger.forge7faf8ebcb8a111e1910212313d1adcbe.

Although your users aren’t really going to see this value, it can be useful to be able to control it manually, for example
when updating a previous app that wasn’t built on Forge, or if you already have iOS provisioning profiles which don’t
match our generated ID.

68 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config package_names should be an object mapping a target name onto a package name, e.g.:

"android": "com.example.my_app_name",
"ios": "com.example.ios.app"

Currently, only android and ios are supported.

{
"modules": {

"package_names": {
"android": "com.example.app",
"ios": "com.example.ios.app"

}
}

}

parameters: Custom config options parameters are custom config options your app can access via
forge.config.modules.parameters.

Config
{

"modules": {
"parameters": {

"my_option": "my data"
}

}
}

payments: In-app payments

Config The payments module must be enabled in config.json

{
‘‘modules’’: {

‘‘payments’’: {
‘‘androidPublicKey’’: ‘‘BASE64KEY==’’

}
}

}

API The forge.payments namespace allows access to native in-app payment processing.

transactionReceived.addListener Platforms: Mobile

Triggered for all payment transaction events, if the payments module is used this listener must be add on all pages to
handle transaction events.

The callback for this event will be invoked with two arguments, the first is an object containing the following keys:

• orderId: A unique order ID returned from iTunes or Google Play, use this to match refunds or cancellations
to purchases.

• productId: The product involved in this transaction

• purchaseTime: The date and time of purchase

2.3. Browser add-ons - see all... 69

Forge - Cross-browser Add-on Development Tools, Release 1.4

• purchaseState: One of PURCHASED, REFUNDED, CANCELED or EXPIRED. Gives the state of the trans-
action, only PURCHASED exists on iOS.

• notificationId: An internal identifier used by Forge when confirming transactions.

• receipt: Receipt information which can be sent to a server and verified with iTunes or Google Play. See the
guide for more details.

The 2nd argument is a function used to confirm the transaction has been processed, this is required by both iOS and
Android to confirm the transaction has been both recieved and correctly processed.

Example:

forge.payments.transactionReceived.addListener(function (data, confirm) {
if (data.purchaseState == "PURCHASED") {

alert("Thanks for buying: "+data.productId);
confirm();

} else {
alert("Your product ’"+productId+"’ has been removed");
confirm();

}
});

purchaseProduct Platforms: Mobile

Purchase an in-app product identified by productId. The success callback will be called when the purchase has
been approved by the user; after this the transaction information will be returned via the transactionReceived
listener.

payments.purchaseProduct(productId, success, error)

Arguments

• productId (string) – product id registered with iTunes or Google Play.

• success (function()) – Purchase approved

• error (function(content)) – called with details of any error which may occur

startSubscription Platforms: Mobile

The same as purchaseProduct but starts a subscription rather than a one-off purchase.

payments.startSubscription(productId, success, error)

Arguments

• productId (string) – product id registered with iTunes or Google Play.

• success (function()) – Purchase approved

• error (function(content)) – called with details of any error which may occur

restoreTransactions Platforms: Mobile

If in-app products are managed by iTunes or Google Play, previous transactions may be requested at any time.
This allows transactions to be restored on a new device or if the app has been reinstalled. The success call-
back will be called once the request is made; after this the transaction information will be returned via the
transactionReceived listener.

payments.restoreTransactions(success, error)

70 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Arguments

• success (function()) – Request sent

• error (function(content)) – called with details of any error which may occur

Guide

Using in-app payments

Javascript

• In order to receive asynchronous transaction details you must register a transactionReceived listener on
all pages in your app: this must deal with incoming transactions and call the confirmation function when they
are dealt with. Not calling the confirm function will cause transactions events to be emitted again at a later time
as iTunes/Google Play will assume your app has not handled them successfully.

• To purchase a product use forge.payments.purchaseProduct. When calling purchaseProduct
pass the ID of your product as created on iTunes/Google Play.

• To begin a subscription use forge.payments.startSubscription. Similarly to purchaseProduct
pass in the product ID of the package you wish to subscribe to. See the receipts section below for details on
verifying subscription status.

Android

When developing your app and not signing with a release key, you can use the following special product IDs to test in-app payments:

• android.test.purchased: This product will return a successful PURCHASED transaction if the
user presses “Buy”. It is not managed and so will not be restorable.

• android.test.canceled: This product will return a CANCELED transaction immediately if the user
presses “Buy”.

• android.test.refunded: This product acts the same as android.test.canceled but is
marked as REFUNDED.

• android.test.item_unavailable: This product cannot be bought and will display an error to
the user.

Important: In a real purchase, a CANCELED transaction may be returned after a PURCHASED transaction: in this
situation, your app should be able to deal with revoking any features enabled by a previously PURCHASED transaction.
If a transaction is cancelled it will have the same orderId as the original purchase.

Test products are a close simulation to actual products bought through in-app payments, but they do act in subtly
different ways: it is important you also test your app with real purchases before deploying it to users.

In order to test your actual products you will need to make sure you have done the following things:

• Add your in-app products on the Google Play Developer Console. To do this you will need to sign up for
a merchant account through the console.

• Make sure your in-app products are marked as published: unpublished products will not appear for test
users in unpublished APKs

2.3. Browser add-ons - see all... 71

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Add test accounts in your profile on the Google Play Developer Console. As a developer you cannot
purchase your own products, they must be purchased by a test account, who must be the primary user on
the device you are testing on. If you (the developer) are the primary user on your device you will need to
perform a factory reset and sign in with a test account to test your app.

• Copy the public key from your profile on the Google Play Developer Console into your payments module
config.

• Package your app through Forge and upload the APK you wish to test to Google Play. You do not need
to publish the app to test it as one of the test users you previously created, but you do need to upload it to
enable in-app purchases.

• Install the APK you uploaded to Google Play to the device you wish to test on (and make sure your primary
account on the device is a test user who has been added on Google Play).

• You should now be able to perform in-app purchase actions in your app. Test user purchases will be charged
if you allow them to go through: you can manually cancel or refund purchases through the merchant
account section of Google Play.

Important: You cannot buy your own products: test users must have a different ID to your merchant ID, and the test
user must be the primary user account on the testing device.

Note: You cannot use the emulator to test in-app payments: it must be a real device.

Note: When uploading APKs and adding test users, we’ve found there can sometimes be a delay for the changes
to take effect. If you see unexpectedly see messages like this app is not configured for billing or this item is not
available, try waiting for 10 minutes.

iOS When developing on iOS, there are no test product IDs - only actual products created for your app in iTunes
Connect can be tested. However, apps signed with a “iPhone Developer” certificate will run in the iTunes sandbox and
any purchases will be simulated (no charge will be made).

In order to test in-app payments on iOS you must make sure you have completed the following steps:

• Create a specific app ID for your app in the iOS provisioning portal, and create development and distribu-
tion provisioning profiles for that app. Wildcard provisioning profiles will not work with in-app purchases.

• Add your app to iTunes Connect and add any in-app products you want to sell.

• Package your app with the distribution provisioning profile into an IPA and submit it to iTunes Connect; if
you do not wish you submit your app for approval yet you can submit it then immediately reject the binary
through iTunes Connect.

• Run the app on a device using the development provisioning profile to be able to test in the sandbox with
dummy transactions.

• You cannot buy apps using a real iTunes account while testing: in order to test, you must sign out of the
App Store on your device, and when using your app and prompted to login, sign in with a test user created
through iTunes Connect.

• You may need to wait several hours between submitting your app and in-app items and them being available
for you to test with. If you have followed all of the above steps and still have problems you may just need
to wait for the changes you have made to become active.

Note: You can configure the provisioning profile and developer certificate to use in your local_config.json
file, see Configuration for the tools. Being able to switch between development and distribution environments with
Profiles is a time saver.

72 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Managed products / restoreTransactions If you create “managed” items on Google Play or “Non-
Consumable” items on iTunes Connect (this includes subscriptions on both platforms) then you can restore purchases
the user has made at a later date, if they have reinstalled your app or moved to another device.

To restore transactions made on another install or another device use forge.payments.restoreTransactions,
calling this may cause the user to be prompted for login details, so it is best to only call it when first setting up
an application, or if a user specifically requests it. Any restored transactions will be returned through the
transactionReceived listener.

Receipts In order to confirm a purchase has been legitimately made through iTunes or Google Play it is best to
forward details of the transaction to your server and verify the transaction there. To allow this both iTunes and Google
Play provide signed receipts for the transactions.

Android On Android, the receipt property of the transaction contains the type as android, as well as a data
property containing a JSON string with the receipt data, a purchaseToken which can be used to verify subscription
purchases, a signature property containing a base64 encoded signature and a signed property which is a boolean
indicating whether or not the signature matches. Details on how to verify the signature can be found in the Android
documentation: http://developer.android.com/guide/market/billing/billing_integrate.html#billing-signatures.

The signed property is determined on the device in Java and should not be trusted if the data can be sent to a server
to be verified.

To verify subscription purchases,find out when they will expire and cancel subscriptions use the android-publisher
API: https://developers.google.com/android-publisher/v1/

iOS On iOS the receipt property of the transaction contains the type as iOS
and a data property which is a base64 encoded receipt. You can forward the re-
ceipt to iTunes in order to verify it by following the instructions provided by Apple:
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/VerifyingStoreReceipts/VerifyingStoreReceipts.html

Details on subscriptions and how to verify subscription receipts can also be found in the iOS documentation:
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/RenewableSubscriptions/RenewableSubscriptions.html

prefs: Preferences Preferences are used to save state in your extension. State is persisted between restarts and is
consistent across all parts of your app.

Config The prefs module must be enabled in config.json

{
"modules": {

"prefs": true
}

}

API

2.3. Browser add-ons - see all... 73

http://developer.android.com/guide/market/billing/billing_integrate.html#billing-signatures
https://developers.google.com/android-publisher/v1/
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/VerifyingStoreReceipts/VerifyingStoreReceipts.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/StoreKitGuide/RenewableSubscriptions/RenewableSubscriptions.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

get
prefs.get(name, success, error)

Arguments

• name (string) – the name of the preference you want to query

• success (function(value)) – will be invoked as the preference value as its only parameter

• error (function(content)) – called with details of any error which may occur
Platforms: All

If the preference has not been set (with set), and there is no default value for this preference, null is returned.

set Platforms: All

prefs.set(name, value, success, error)

Arguments

• name (string) – the name of the preference you want to save

• value – the value to save

• success (function()) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

The preference value given here will override a default value (if one was given).

clear Platforms: All

prefs.clear(name, success, error)

Arguments

• name (string) – the name of the preference to un-set

• success (function()) – a callback to be invoked (with no arguments) when the operation is
complete

• error (function(content)) – called with details of any error which may occur

Un-sets the given preference name, so that future calls to set will return undefined (or the default preference value,
if given).

clearAll Platforms: All

prefs.clearAll(success, error)

Arguments

• success (function()) – a callback to be invoked (with no arguments) when the operation is
complete

• error (function(content)) – called with details of any error which may occur

Un-sets all preference names, so that calls to set will return undefined (or the default value for a preference, if
given).

74 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

keys Platforms: All

prefs.keys(success, error)

Arguments

• success (function(keysArray)) – invoked with an array of the set key names as its only argu-
ment

• error (function(content)) – called with details of any error which may occur

Find which preferences have been set.

push: notifications (with Parse) “Add a Backend to Your Mobile App in Minutes” - Parse allows you to add
backend features to your mobile app without a server. Their back end features include a datastore, user accounts and
push notifications.

For a small example on our blog, see Using Parse and Trigger.io for cross-platform apps without pain in the back-end.

Parse push notifications are integrated directly Forge. Other Parse features may be accessed by using forge.request.ajax
with the Parse REST API.

Configuring Push Notifications First you’ll need to register an app at parse.com.

In order for your app to communicate with the Parse servers for push notifications you must specifiy both your appli-
cationId and clientKey in your app’s config.json as shown:

"partners": {
"parse": {

"applicationId": "YourApplicationKeyZdAtirdSn02Qy6NofiU2Hf",
"clientKey": "YourClientKeyZdAtirdSn02QQy6NofiU2Hfy6No"

}
}

Note: This Parse configuration must go in the partners section of your config.json, not modules as is the norm
with normal Forge modules.

API: forge.partners.parse Push notifications received through Parse can be used with the generic push
notification event in Forge, see the event API for more details. The following code is an example of how to show an
alert to a user when a push notification is received.

Example:

forge.event.messagePushed.addListener(function (msg) {
alert(msg.alert);

});

You can try out sending a push notification from your app’s control panel at parse.com.

Parse uses channels to send push notifications to specific groups of users. By default all users are subscribed to the
empty channel; if you wish to send push notifications to specific users, you can use the following methods to manage
which channels a user is subscribed to.

installationInfo Platforms: Mobile

Every Parse installation has a unique ID associated with it; you can use this method to retrieve the installation ID for
this user and do things like advanced targetting of push notifications.

2.3. Browser add-ons - see all... 75

https://parse.com/
http://trigger.io/cross-platform-application-development-blog/2012/03/23/using-parse-and-trigger-io-for-cross-platform-apps-without-pain-in-the-back-end/
https://parse.com/docs/rest
https://parse.com/
https://parse.com/
https://parse.com/docs/push_guide#sending-queries/REST

Forge - Cross-browser Add-on Development Tools, Release 1.4

parse.installationInfo(success, error)

Arguments

• success (function(info)) – Called if the request is successful: info will contain at least an
id entry

• error (function(content)) – Called with details of any error which may occur

Example:

forge.partners.parse.installationInfo(function (info) {
forge.logging.info("installation: "+JSON.stringify(info));

});

push.subscribe Platforms: Mobile

parse.push.subscribe(channel, success, error)

Arguments

• channel (string) – Identifier of the channel to subscribe to

• success (function()) – Called if the request is successful

• error (function(content)) – Called with details of any error which may occur

Example:

forge.partners.parse.push.subscribe("beta-testers",
function () {
forge.logging.info("subscribed to beta-tester push notifications!");

},
function (err) {

forge.logging.error("error subscribing to beta-tester notifications: "+
JSON.stringify(err));

});

push.unsubscribe Platforms: Mobile

parse.push.unsubscribe(channel, success, error)

Arguments

• channel (string) – Identifier of the channel to unsubscribe from

• success (function()) – Called if the request is successful

• error (function(content)) – Called with details of any error which may occur

Example:

forge.partners.parse.push.unsubscribe("beta-testers",
function () {
forge.logging.info("no more beta-tester notifications...");

},
function (err) {

forge.logging.error("couldn’t unsubscribe from beta-tester notifications: "+
JSON.stringify(err));

});

76 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

push.subscribedChannels Platforms: Mobile

parse.push.subscribedChannels(success, error)

Arguments

• success (function(channels)) – Called with an array of subscribed channels

• error (function(content)) – Called with details of any error which may occur

Example:

forge.partners.parse.push.subscribedChannels(
function (channels) {
forge.logging.info("subscribed to: "+JSON.stringify(channels));

},
function (err) {

forge.logging.error("couldn’t retreive subscribed channels: "+
JSON.stringify(err));

});

Permissions On Android this module will add the VIBRATE and RECEIVE_BOOT_COMPLETED permissions to
your app, users will be prompted to accept this when they install your app.

reload: Push updates to deployed apps The Reload module allows you to update the HTML, CSS and JavaScript
in your app for your users without you needing to push an App Store update or your users needing to re-install the app.

Config The reload module must be enabled in config.json, once the reload module is enabled you will be
able to push updates to any builds of your app from that point.

{
"modules": {

"reload": true
}

}

Concepts You can reload updates via the Toolkit UI, command-line or standalone build API.

You can reload all of your users, or divide them into streams for A/B testing.

You can use the default update behavior without altering your code at all beyond including the reload module in the
configuration. Or you can use the JavaScript API described here to have finer grain control over how reloads occur in
your app.

You can Reload your app with up to 250Mb of content via Trigger.io. You can Reload your app with larger content
hosted in a 3rd party CDN like Rackspace Cloud Files.

How Reloads work When you reload a new version of your code through the Toolkit UI, users will see the new
version of your code when they switch away from your app and switch back to it: we download updated files when
focus is lost and apply the changes when focus is restored.

You have control over this process using the JavaScript API described here, but the default behavior does not require
any change to your app’s logic.

2.3. Browser add-ons - see all... 77

Forge - Cross-browser Add-on Development Tools, Release 1.4

Streams Streams let you segment your user base so that not everyone has to receive every update you push with
Reload. This is useful for pushing regular unstable updates to developers, release candidates to beta testers and stable
versions to the wider user base.

By default, your users are added to the “default” stream - you can create as many streams as you want, and switch
apps to different streams using using the switchStream method described below.

Config versions

You must only reload HTML / CSS and JavaScript where it works with the minor version of the Forge
platform which you originally built against.

If your updated JavaScript relies on Forge APIs that are only available in newer versions of the wrapper than your
users currently have installed, then you will need to re-package your apps and deploy through the app stores again.

API In order to use reload no API calls are required, however some apps may which to use the following API
methods to force updates at a users request, or switch the user to an alternate streams.

updateAvailable Platforms: Mobile

Gives true or false depending on whether there is a reload update available to be downloaded.

reload.updateAvailable(success, error)

Arguments

• success (function(update_available)) – Called with whether or not an update is available.

• error (function(content)) – called with details of any error which may occur

update Platforms: Mobile

Forces the application to check for, and if available download a reload update. The update will then be applied the
next time the app is closed or loses focus.

78 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

If you have previously called pauseUpdate, this will override that and continue Reload updates - including any
in-progress updates if applicable.

reload.update(success, error)

Arguments

• success (function()) – Called when an update is available and the download has started - see
the updateReady event to be notified when the update is complete

• error (function(content)) – called with details of any error which may occur

pauseUpdate Platforms: Mobile

If there is a Reload update in-progress (i.e. downloading files), we will halt downloading after the current file has been
received.

Reload updates will not be downloaded for this app until you explicitly call update. Re-installing the app via the
Toolkit (during development) or via an app store (in production) will also re-enable Reload updates.

reload.pauseUpdate(success, error)

Arguments

• success (function()) – called when the Reload updates have been successfully paused

• error (function(content)) – called with details of any error which may occur

applyNow Platforms: Mobile

Warning: This method is deprecated and does not do anything any more. Reload updates can only be applied by
the user closing or switching from the app. This is due to a bug in iOS’s webkit implementation.

switchStream Platforms: Mobile

Switches the reload stream the app will download updates from.

reload.switchStream(stream_name, success, error)

Arguments

• success (function()) – Stream switched

• error (function(content)) – called with details of any error which may occur

updateReady.addListener Platforms: Mobile

Fired when a Reload update has been downloaded and is ready to apply.

reload.updateReady.addListener(callback, error)

Arguments

• callback (function()) – an update will be applied next time the app resumes

• error (function(content)) – called with details of any error which may occur

2.3. Browser add-ons - see all... 79

Forge - Cross-browser Add-on Development Tools, Release 1.4

Update process The reload update process has several parts. First, it must be determined if an update is available,
and if it is available it needs to be downloaded. Once an update has been downloaded it has to be applied, this means
making the new files available to the app. If the app is running while an update is applied then there may need to be
additional code in the app to make use of the updated files.

The following things will cause reload to download new update files if available:

• A call to forge.reload.update().

• On all platforms new files will be downloaded shortly after the app is launched.

• On Android and iOS new files will also be downloaded when the app loses focus but is running in the back-
ground.

• On Android new files will also be downloaded when the app exits.

Assuming an update has been fully downloaded and is ready to apply the following things will replace the apps assets
files with the new update:

• On all platforms when the app is relaunched (i.e. when it has been quit and opened again).

• On iOS and Android when the app is restored from the background.

If updates are applied during launching or restoring an app index.html will be reloaded with the new update files.

Notes

• See Using Trigger.io Reload for more information about how to use Reload

• Updates may take some time if the user is on a slow network, however several things are done to improve this,
only changed files are downloaded in an update, and if an update is interrupted part way through it will resume
where it left off next time it is started.

• On iOS updates are given 10 minutes to download each time the app is paused as this is the maximum amount
of background processing time available on iOS. If an update is interrupted it will resume where it left off on
the next attempt.

• Only one update is downloaded at a time, if an update is waiting to be applied any future updates will not be
downloaded until it has been applied to the app. This should never be a problem for real users but may be
confusing during testing.

• When testing the easiest way to cause an update is to leave the app by pressing the home button on the device,
wait a few seconds (or look at the log output to see when the reload update is complete), and reopen the app to
see the update applied.

Important: Currently, pushing a Reload update will cause iOS devices to copy files out of the installed app bundle
into a secondary area. This is due to sandboxing rules which prevent us directly accessing files in your installed app
after a Reload has been completed. In order to avoid your app taking too much storage space on the device, it’s
recommended you distribute larger files using something like forge.file.saveURL, rather than including them in the
app bundle.

We are actively looking for a way to avoid this limitation.

request: Cross-domain requests Normal in-page JavaScript is only able to make HTTP requests to the same
server as one hosting the current web page. These methods allow you to work around this restriction.

80 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config
Note: For security reasons, you must specify the remote URLs you will send requests to in the permissions array
of your JSON configuration file.

This array, like the patterns array, should contain Match Patterns to match the remote URLs you want to interact
with.

To protect your users, make these match patterns as restrictive as possible.

{
‘‘modules’’: {

‘‘request’’: {
‘‘permissions’’: [’’https://trigger.io/*‘‘]

}
}

}

API

get Platforms: All

request.get(url, callback, error)

Arguments

• url (string) – the URL to GET

• callback (function(content)) – called with the retrieved content body as the only argument

• error (function(content)) – called with details of any error which may occur

The callback function callback is invoked with the content body of the requested URL. JSON-encoded content will
automatically be parsed into a JavaScript object.

As it is limited to GET requests and lacks the more advanced options of forge.request.ajax, it’s recommended that
forge.request.get is only used in very simple scenarios.

ajax Platforms: All

request.ajax(options)

Arguments

• options (object) – jQuery-style parameters to control the request

Note: unlike jQuery, we expect the URL for the the request to be passed into the options hash, not as a positional
parameter

This function is closer to the jQuery.ajax method than forge.request.get. However, the full range of jQuery options are
not supported for this method, due to the structure of browser and mobile apps.

Also, note that the error and success callbacks are not passed a jQuery XHR object.

Currently supported options:

• accepts

• cache

• contentType

2.3. Browser add-ons - see all... 81

http://code.google.com/chrome/extensions/match_patterns.html
https://trigger.io/*
http://api.jquery.com/jQuery.ajax/

Forge - Cross-browser Add-on Development Tools, Release 1.4

• data

• dataType

• error

• password

• success

• timeout

• type

• url

• username

• files (Mobile only, see forge.file)

• fileUploadMethod

• headers

Error object properties:

• statusCode: Status code returned from the server.

• content: Content returned from the server (if available).

Error values (see error callback docs for more detail):

• type: "UNAVAILABLE"

• subtype: "NO_INTERNET_CONNECTION" No internet connection is currently available (on iOS it is
required you inform the user of this if it impacts their current experience).

Example:

forge.request.ajax({
type: ’POST’,
url: ’http://my.server.com/update/’,
data: {x: 1, y: "2"},
dataType: ’json’,
headers: {
’X-Header-Name’: ’header value’,

},
success: function(data) {
alert(’Updated x to ’+data.x);

},
error: function(error) {
alert(’Failed to update x: ’+error.message);

}
});

You can control the name of uploaded files by setting the name attribute, e.g.:

myFile.name = ’name_of_input’;
forge.request.ajax({

type: ’POST’,
url: ’http://my.server.com/upload/’,
files: [myFile],
success: function(data) {
alert(’Uploaded file as ’+myFile.name);

},
error: function(error) {

82 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

alert(’Failed to upload file: ’+error.message);
}

});

If you need to POST an image as the whole request body, use fileUploadMethod. E.g.:

forge.request.ajax({
type: ’POST’,
url: ’http://my.server.com/upload_image/’,
fileUploadMethod: "raw",
success: function(data) {
alert(’Uploaded image’);

}
});

In this example, the Content-Type header will be set to image/jpeg and the POST body will consist of just the
image data with no extra encoding. This is useful in conjunction with services like Parse.

Permissions On Chrome this module will any of the Match Patterns you specify to your app, users will be prompted
to accept this when they install your app.

requirements: App requirements The requirementsmodule allows you to set specific device requirements
for your apps.

Config
{

"requirements": {
"android": {

"minimum_version": "6",
"disable_ics_acceleration": true

},
"ios": {

"minimum_version": "4.3",
"device_family": "iphone"

},
"chrome": {

"content_security_policy": "script-src ’self’ https://ssl.google-analytics.com; object-src ’self’",
"web_accessible_resources": [

"background.jpg"
]

}
}

}

Android

• minimum_version: the minimum Android API level you want to support, it must be between 5 and 15.
More details can be found on the Android developers site: http://developer.android.com/guide/appendix/api-
levels.html.

• disable_ics_acceleration: Disables hardware acceleration on Android 4.0, this is a workaround to
potential rendering issues which can affect some apps on this particular version of Android.

2.3. Browser add-ons - see all... 83

https://www.parse.com/tutorials/saving-images
http://code.google.com/chrome/extensions/match_patterns.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

iOS

• minimum_version: The iOS version is the minimum iOS version you want to support, between 4.0 and 5.1.

• device_family: Used to limit the types of device which can run the app, must be one of any, iphone or
ipad.

Chrome The Chrome options relate to Chromes “manifest_version”: 2 changes, which are documented on the
Chrome website http://code.google.com/chrome/extensions/manifestVersion.html. The available settings are:

• content_security_policy: This determines what javascript can be executed in pages that be-
long to your extension (such as popups). The example given above is how you would allow
Google Analytics to work within an extension. More documentation is available on the Chrome site
http://code.google.com/chrome/extensions/contentSecurityPolicy.html

• web_accessible_resources: This is an array of any files in your extension which are to be accessed
from external sites. The most common use of this is if your extension uses a content script to load images from
your extension into a 3rd party site.

sms: SMS messaging The forge.sms namespace allows you to prompt the user to send SMS messages from
your app.

Config The sms module must be enabled in config.json

{
"modules": {

"sms": true
}

}

API

send Platforms: Mobile

Send an SMS message, optionally with one or more recipients and a message pre-filled in.

Example:

forge.sms.send({
body: "Hello, World!",
to: ["123457869", "328592835"]

}, function () {
alert("Message sent");

});

sms.send(params, success, error)

Arguments

• params (function()) – Data to pre-fill SMS message with, contains body which is the con-
tent of the message, and to as either a string or array of phone numbers to send to.

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

84 Chapter 2. Features

http://code.google.com/chrome/extensions/manifestVersion.html
http://code.google.com/chrome/extensions/contentSecurityPolicy.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

tabbar: Native tab bar The tabbar module shows a fixed footer as part of your app which can show multiple
“tab” buttons, these buttons can be selected by the user or activated by Javascript.

To get an idea of how these footers can look, see our blog post, How to build hybrid mobile apps combining native UI
components with HTML5.

Config The tabbar module must be enabled in config.json as follows:

{
"modules": {

"tabbar": true
}

}

API

show Platforms: Mobile

Shows the tabbar. The tabbar is shown by default and will only be hidden if you call tabbar.hide().

tabbar.show(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

hide Platforms: Mobile

Hides the tabbar.

tabbar.hide(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

setTint Platforms: Mobile

Set a colour to tint the tabbar with, in effect the tabbar will become this colour with a gradient effect applied.

tabbar.setTint(color, success, error)

Arguments

• color (array) – an array of four integers in the range [0,255] that make up the RGBA color
of the badge. For example, opaque red is [255, 0, 0, 255].

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

2.3. Browser add-ons - see all... 85

http://trigger.io/cross-platform-application-development-blog/2012/04/30/how-to-build-hybrid-mobile-apps-combining-native-ui-components-with-html5/
http://trigger.io/cross-platform-application-development-blog/2012/04/30/how-to-build-hybrid-mobile-apps-combining-native-ui-components-with-html5/

Forge - Cross-browser Add-on Development Tools, Release 1.4

setActiveTint Platforms: Mobile

Set a colour to tint active tabbar item with.

tabbar.setActiveTint(color, success, error)

Arguments

• color (array) – an array of four integers in the range [0,255] that make up the RGBA color
of the badge. For example, opaque red is [255, 0, 0, 255].

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

addButton Platforms: Mobile

Add a button with an icon and text to the tabbar. The first parameter is an object of options for the button, which
can include:

• icon (required): This sets the icon which will be shown on the tab, only the alpha channel of the icon will be
used with the color being replaced for a consistent style. You can use a file object as returned by something like
forge.file.saveURL, or a string path relative to the src directory, e.g. "img/button.png".

• text (required): This sets the text which will appear below the icon on the tab.

• index (recommended): This sets the order of the button to be added, not setting this will result in the order of
the tabs not being fixed.

When adding a button the success callback will be called with a button object. This object has methods to allow you
to interact with the button as follows:

• button.remove(success, error): Remove the button

• button.setActive(success, error): Mark the button as selected, without calling this and before
the user clicks on one of the buttons no button will be marked active.

• button.onPressed.addListener(callback, error): Add a callback to handle when the button
is pressed

Example:

forge.tabbar.addButton({
icon: "search.png",
text: "Search",
index: 0

}, function (button) {
button.setActive();
button.onPressed.addListener(function () {
alert("Search");

});
});

tabbar.addButton(params, success, error)

Arguments

• params (object) – Button options, must contain an icon, text and optionally index

• success (function(button)) – called with the button object.

• error (function(content)) – called with details of any error which may occur

86 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

removeButtons Platforms: Mobile

Remove all buttons from the tabbar.

tabbar.removeButtons(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

setInactive Platforms: Mobile

Unselect any currently active tab, leaving the tabbar with no tabs selected.

tabbar.setInactive(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

tabs: Tabs Management Tabs management provides functionality specific to tabs.

Config The tabs module must be enabled in config.json

{
"modules": {

"tabs": true
}

}

API

open Platforms: All except web

Opens a new tab with the specified url with an option to retain focus on the calling tab.

On mobile this will display a modal view and the success callback will be called with an object containing a url and
optionally a userClosed boolean property.

tabs.open(url[, keepFocus], success, error)

Arguments

• url (string) – The URL to open in the new tab

• keepFocus (boolean) – (optional) If true keeps the current tab focused

• success (function(object)) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

2.3. Browser add-ons - see all... 87

Forge - Cross-browser Add-on Development Tools, Release 1.4

openWithOptions Platforms: All except web

As open but takes an object with the following parameters:

Required:

• url: Required URL to open

Browser only:

• keepFocus: Whether or not to keep focus on the current page.

Mobile only:

• pattern: Pattern to close the modal view, see modal views for more detail.

• title: Title of the modal view.

• tint: Colour to tint the top bar of the modal view. An array of four integers in the range [0,255] that make up
the RGBA color. For example, opaque red is [255, 0, 0, 255].

• buttonText: Text to show in the button to close the modal view.

• buttonIcon: Icon to show in the button to close the modal view, if buttonIcon is specified buttonText
will be ignored.

• buttonTint: Colour to tint the button of the top bar in the modal view.

Example:

forge.tabs.openWithOptions({
url: ’http://my.server.com/login/’,
pattern: ’http://my.server.com/loggedin/*’,
title: ’Login Page’

}, function (data) {
forge.logging.log(data.url);

});

tabs.openWithOptions(options, success, error)

Arguments

• options (object) – Object containing url and optional properties.

• success (function(object)) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

closeCurrent Platforms: Browser only

Restrictions: Only available inside a page (not from a background script)

Close the tab which makes the call.

tabs.closeCurrent(error)

Arguments

• error (function(content)) – called with details of any error which may occur

Permissions On Chrome this module will add the tabs permission to your app, users will be prompted to accept
this when they install your app.

tools: Miscellaneous tools

88 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config The tools module must be enabled in config.json

{
"modules": {

"tools": true
}

}

API

UUID Platforms: All

A UUID is a globally unique token; when represented as a string, they look something like
18ADF182-7B12-4FA1-AF0B-6032108C0AE8. Forge already uses UUIDs internally to ensure your
extension doesn’t conflict with others; this method returns a new UUID for you to use as a unique token.

Note: This function is synchronous and returns a value rather than taking a callback.

tools.UUID()

Returns a string representation of the UUID

getURL Platforms: All

Resolve this name to a fully-qualified local or remote resource

tools.getURL(name, callback, error)

Arguments

• name (string) – unqualified resource name, e.g. my/resource.html

• callback (function(url)) – will be invoked with the URL as its only parameter

• error (function(content)) – called with details of any error which may occur

topbar: Native top bar The topbar module displays a fixed native header bar in mobile apps and provides a
Javascript API to modify it at runtime.

To get an idea of how these headers can look, see our blog post, How to build hybrid mobile apps combining native
UI components with HTML5.

Config The topbar module must be enabled in config.json as follows:

{
"modules": {

"topbar": true
}

}

Style Guidlines The setTitleImage method and icon option in the addButton method allow you to specify
images within the topbar element. These guidelines may help you to make them look good across devices:

• The title image will be scaled down (but not up) to fit the height of the topbar exactly. This means any padding
should be included in the image, and the image should be at least 100px high.

2.3. Browser add-ons - see all... 89

http://en.wikipedia.org/wiki/Uuid
http://trigger.io/cross-platform-application-development-blog/2012/04/30/how-to-build-hybrid-mobile-apps-combining-native-ui-components-with-html5/
http://trigger.io/cross-platform-application-development-blog/2012/04/30/how-to-build-hybrid-mobile-apps-combining-native-ui-components-with-html5/

Forge - Cross-browser Add-on Development Tools, Release 1.4

• The button icons will also be scaled down (but not up) to fit the height of the button precisely. The width of the
button is the width of the icon (or text) plus a small amount of padding. We’d recommend button icons are at
least 64px high to make sure they always fill the button.

• The total width of the title and buttons is not checked by Forge, so its up to you to test everything fits, We’d
recommend leaving spare space to make sure devices with unexpected screen ratios don’t overlap.

API

show Platforms: Mobile

Shows the topbar. The topbar is shown by default and will only be hidden if you call topbar.hide().

topbar.show(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

hide Platforms: Mobile

Hides the topbar.

topbar.hide(success, error)

Arguments

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

setTitle Platforms: Mobile

Set the title displayed in the top bar.

topbar.setTitle(title, success, error)

Arguments

• title (string) – Title to be displayed

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

setTitleImage Platforms: Mobile

Set the title displayed in the top bar to an image.

topbar.setTitleImage(image, success, error)

Arguments

• image (file) – file object as returned by something like forge.file.saveURL, or a string path
relative to the src directory, e.g. "img/button.png"

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

90 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

setTint Platforms: Mobile

Set a colour to tint the topbar with, in effect the topbar will become this colour with a gradient effect applied.

On iOS 6 this color will also be used to tint the status bar, you can use this in combination with hiding the topbar if
you only want a colored status bar and not a topbar.

topbar.setTint(color, success, error)

Arguments

• color (array) – an array of four integers in the range [0,255] that make up the RGBA color
of the badge. For example, opaque red is [255, 0, 0, 255].

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

addButton Platforms: Mobile

Add a button with an icon to the top bar. The first parameter is an object describing the button with the following
properties:

• icon: An icon to be shown on the button: this should be relative to the src directory, e.g.
"img/button.png".

• text: Text to be shown on the button, either text or icon must be set.

• type: Create a special type of button, the only option currently is "back" which means the button will cause
the webview to go back when pressed.

• style: Use a predefined style for the button, currently this can either be "done" which will style a positive
action (which may be overriden by tint), or "back" to show a back arrow style button on iOS.

• position: The position to display the button, either left or right. If not specified the first free space will
be used.

• tint: The color of the button, defined as an array similar to setTint.

Example:

forge.topbar.addButton({
text: "Search",
position: "left"

}, function () {
alert("Search pressed");

});

topbar.addButton(params, callback, error)

Arguments

• params (object) – Button options, must contain at least icon or text

• callback (function()) – callback to be invoked each time the button is pressed

• error (function(content)) – called with details of any error which may occur

removeButtons Platforms: Mobile

Remove currently added buttons from the top bar.

topbar.removeButtons(success, error)

Arguments

2.3. Browser add-ons - see all... 91

Forge - Cross-browser Add-on Development Tools, Release 1.4

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

urlhandler: Custom URL schemes

Config The urlhandler module must be enabled in config.json

{
"modules": {

"urlhandler": {
"scheme": "your.url.scheme"

}
}

}

API

urlhandler.urlLoaded Platforms: Mobile

Triggered when the app is loaded by a custom URL scheme.

urlhandler.urlLoaded.addListener(callback, error)

Arguments

• function({url – url}) callback: callback invoked with details of the url.

• error (function(content)) – called with details of any error which may occur

ui: Native UI enhancements This module includes miscellaneous native UI enhancements. This currently consists
of enhancement to date, time and datetime form elements on Android.

Config The ui module must be enabled in config.json

{
"modules": {

"ui": true
}

}

API

enhanceInput Platform: Android

This method can be used to enhance a specific or set of specific input elements, when called any input elements of
type date, time, datetime or datetime-local matching the given selector will be updated to show a native
date picker when the user taps on them. The value the user selects will be inserted into the input element so it can be
treated as normal by other Javascript. The input element will also be disabled to prevent other user input into the field.

After the user selects a value from a picker the blur event will be triggered on the input element. This is the same
behaviour as the native pickers built into iOS.

ui.enhanceInput(selector)

92 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Arguments

• selector (string) – Any input elements of type date, time or datetime matching this selector
will be enhanced.

enhanceAllInputs Platform: Android

This method will enhance all appropriate input elements currently in the DOM.

ui.enhanceAllInputs()

Native plugins
Important: Plugins are currently a beta feature, get in touch with support@trigger.io if you’re interested in trying
them out.

Native plugins allow you to write native Android and iOS code, compile it and include this compiled code in your app
built using Forge. As part of this it also provides a method for your native code to communicate with your Javascript
code.

Writing native plugins is obviously different for Android and iOS, however we have tried to keep the experience as
consistent as possible. With that in mind these docs are split into the various tasks you might want to complete as part
of writing a native plugin, with instructions for Android and iOS included in each section.

The Basics In order to allow developers to write native plugins we provide what we call inspector projects for both
Android and iOS. These are Eclipse and Xcode projects that include the core library used by Forge, as well as an
example plugin to get you started. This environment can be used as a sandbox to develop and compile your plugin.

Once you are happy with your plugin you can use the Toolkit to upload a compiled version with any additional files
(detailed below) to the Forge build server. Once we have a copy of your plugin you can then add the plugin to your
app through the app’s config in the Toolkit.

Downloading the inspector projects Getting setup to develop native plugins is fairly simple, but there are some
prerequisites you need to install.

Android

1. You will need Eclipse setup with the Android SDK, you can find details on how to install this on the Android
developer site: http://developer.android.com/sdk/installing/index.html

2. Download the ForgeInspector project through the Toolkit. You should be able to do this from the plugin’s
toolkit page once you have a local template setup. If you can’t see plugins in the Toolkit, then contact us at
support@trigger.io to get into the native plugins beta.

3. ForgeCore, ForgeInspector and ForgeTemplates should have been downloaded to the
inspector/an-inspector directory

4. In Eclipse, go to File then Import Project... and import the an-inspector directory: all three
projects will appear in Eclipse

iOS

1. You will need a Mac running OS X

2. You will need Xcode 4.5, this is available as a free download in the OS X App Store

3. Download the ForgeInspector project through the plugin’s page in the Trigger Toolkit.

2.3. Browser add-ons - see all... 93

mailto:support@trigger.io
http://developer.android.com/sdk/installing/index.html
mailto:support@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

4. Open this project in Xcode.

At this point you can run the inspector project. It includes an app which can list native methods exposed to Javascript
and allows you to call them with sample data. It also includes a small example plugin called alert which allows
you to show native alert style dialogs, and triggers an event in Javascript when the app is paused and resumed. It is
probably a good idea to try out this plugin to get a feel for the layout of a plugin before you get started.

Updating inspector projects Some plugins will need to make changes to the Forge build process, such as including
3rd party frameworks, registering a URL handler or requesting app permissions. In order to do this, additional steps
can be included in a plugin which will be run when the plugin in used in an app.

When you update your plugin’s build steps or change the platform_version in manifest.json, your inspector
project will need to be updated.

The Toolkit will remind you automatically when an update is required, and the code and any resources for your plugin
will be preserved.

Structure of the inspector projects

General

• The assets folder contains files loaded into the webview, i.e. HTML/JS/CSS files.

• The assets/forge folder contains a prebuilt all.js which should not need to be modified.

• The assets/src folder contains a prebuilt Forge app designed for testing plugins, allowing you to run API
methods from a simple web based GUI within the app. It is not recommended you modify this app, as it is
re-generated and overwritten when the Inspector project is updated. Instead, it is better to write tests for your
plugin - see Testing your plugin.

Android

• Plugins must contain a package io.trigger.forge.android.modules.<plugin> where
<plugin> is the plugin name you gave at creation time.

• This package must contain an API.java file which is the API exposed to Javascript, see API methods.

• It can also contain an EventListener.java to listen for native events, see Events.

• An example plugin is included in io.trigger.forge.android.modules.alert

Important: On Android you should only need to modify files in ForgeModule/src directly, any other changes
should be done using build steps.

iOS The iOS inspector project should look something like this:

94 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

The ForgeModule subproject is used to contain the code and resources for your plugin, and the ForgeInspector outer-
project is the sandbox you can run and test your plugin in before packaging it up to send to Trigger.io.

• There is no namespacing in Objective-C, you can create files in any structure you like in the ForgeInspector
project.

• Files to be included in the plugin build should be in the ForgeModule project and included in the ForgeModule
target.

• Plugins must include a <plugin>_API.m file which is the API exposed to Javascript. See Exposing native
APIs to Javascript.

• Plugins can also contain <plugin>_EventListener.m, to listen for native events, see Handling native
events.

• An example plugin is included in ForgeModule/alert/alert_API.m

Important: On iOS you should only add or change files in the ForgeModule project.

Structure of a plugin In order to upload a plugin you must put the files that make up a plugin, along with a manifest
for the plugin in a particular structure in a folder. To help you get started, the Trigger Toolkit can create an initial
plugin folder and manifest.json for you. To do this, choose “Create new local version” after creating a new
plugin in the Toolkit.

Plugins take the following structure:

.trigger/ - Contains code used by the Toolkit to help develop your plugin
plugin/ - The parts of your plugin that are uploaded to be used when building apps

manifest.json - Contains the basic properties for your plugin
android/ - Folder containing all android related files

plugin.jar - Built Android code

2.3. Browser add-ons - see all... 95

Forge - Cross-browser Add-on Development Tools, Release 1.4

build_steps.json - Android build steps, see ˙0-
plugins0native0build0stepsmodules/native/native_build_steps:native0plugins0-
native0build0stepsnative build steps

res/ - Android resource files, see ˙0-
plugins0including0resourcesmodules/native/including_resources:native0plugins0-
including0resourcesincluding resources

values/
myvalues.xml

libs/ - Android libraries
mysdk.jar
arm/

mynativesdk.so
ios/ - Folder containing iOS related files

plugin.a - Built iOS plugin
build_steps.json - iOS build steps
bundles/ - iOS bundles (resources) to include

myplugin.bundle
mysdk.bundle

javascript/
plugin.js - Javascript code for your plugin, generally used to expose your plugins API.

tests/ - see ˙0plugins0-
testingmodules/native/testing:native0plugins0testingTesting your plugin

automated.js - Automated tests for your plugin
interactive.js - Tests for your plugin that require user interaction
fixtures/ - Files your tests require to run

test.png
inspector/ - Inspector projects used to develop your plugin

an-inspector/ - Android inspector project
ios-inspector/ - iOS inspector project
ios-inspector.2012-11-19 - A backup of a previous version of the iOS inspector

manifest.json The manifest for a plugin looks something like:

{
"description": "Example alert box plugin",
"name": "alert",
"uuid": "e5ed6305192f11f4efde406c8f074dfa",
"version": "1.0",
"platform_version": "v1.4.26"

}

All of its fields are required - a template manifest.json will be generated for you when you create your plugin in the
toolkit.

Note: The platform version for your plugin does not need to match your app, you only need to update your plugins
platform version if you require newer plugin feature, or if the Toolkit prompts you to.

Testing your plugin An inspector app is included which allows you to view and invoke all available API methods,
as well as run your test files.

To run the inspector app from Xcode, select the ForgeInspector target and an appropriate device or simulator:

96 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

In Eclipse, select the ForgeInspector project and choose to run it as an Android application.

2.3. Browser add-ons - see all... 97

Forge - Cross-browser Add-on Development Tools, Release 1.4

For more detailed information on writing and running tests for your plugin see Testing your plugin.

Building/packaging your plugin

Android To build and export your plugin to be included in an actual Forge app:

1. Right click the src folder and choose Export...

2. Use the wizard to export the contents of the folder as a JAR

3. Export generated class files and resources should be checked.

4. Save that jar as android/plugin.jar in your plugin folder.

iOS To build and export your plugin to be included in an actual Forge app, choose the UniversalForgeModule
target and press Run. A file build/plugin.a should appear in the ForgeInspector folder: save that file as
ios/plugin.a in your plugin folder.

98 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Expected workflow The inspector app is a convenient way to check that your plugin works properly, before export-
ing it and uploading it to Trigger.io.

Using the default app supplied by the inspector app, you can send messages to your plugin to check it responds
correctly, and check that it fires the right Javascript events when required.

To perform more detailed tests of your plugins you should write automated or interactive test files, these will allow
you to fully exercise your plugin through the inspector project.

Exposing native APIs to Javascript One use of native plugins is to expose to Javascript a number of API methods
that run native code. To facilitate this, Forge provides a structure to simplify communication between Javascript and
native code.

Important: API Methods are always asynchronous: this means you provide a callback in Javascript which will be
called with the result, and other Javascript code may excute while waiting for the result. This also means in native
code you can perform tasks that don’t return immediately without blocking Javascript execution.

Javascript To make an API call from Javascript the following code is used:

forge.internal.call(
’alert.show’,
{text: ’Test’},
function () { alert(’Success!’) },
function (e) { alert(’Error: ’+e.message)}

)

The forge.internal.call method sends a message to native code, it takes 4 parameters:

• alert.show is a string representing the native method which will be called: in this case the method show
will be called from the plugin alert. See the Android and iOS sections below for more detail on how the
native method will be found.

• The second parameter is an object containing data to be passed back to the method. Top level properties in this
object can be passed directly to parameters in the method (see below for details). This object must be JSON
serializable.

• The third parameter is a success callback, which may be called with data returned from native code.

• The forth parameter is an error callback, this may also be called with data, it is conventional to return a human
readable description of the error in the property message of the returned object.

To expose an API similar to standard Forge modules you can include JavaScript code with your plugin by placing it
in javascript/plugin.js in your plugin directory. to expose the alert.show method above you could use
code such as:

forge.alert = {
show: function (text, success, error) {

forge.internal.call(’alert.show’, {text: text}, success, error);
}

};

Android To expose API methods in Android they must be in API.java in the package
io.trigger.forge.android.modules.<plugin> where <plugin> is your plugin name.

To explain the structure of an Android API method we can look at the alert.show method included in the inspector
project:

2.3. Browser add-ons - see all... 99

Forge - Cross-browser Add-on Development Tools, Release 1.4

public static void show(final ForgeTask task, @ForgeParam("text") final String text) {
if (text.length() == 0) {

// Error if there is no text to show
task.error("No text entered");
return;

}
AlertDialog.Builder builder = new AlertDialog.Builder(ForgeApp.getActivity());
builder.setMessage(text).setCancelable(false).setPositiveButton("Ok",

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {

task.success();
}

}
);
AlertDialog alert = builder.create();
alert.show();

}

Firstly, looking at the method signature:

• All exposed API methods should be public static void methods.

• The first parameter is always a

object, which contains information about the task as well as helper methods to complete the task and to return a
response.

• Additional parameters must be String, long, int, double, JsonArray or JsonObject and must have
a @ForgeParam annotation.

• annotations pass properties with the given name from Javascript directly to parameters in the API method, after
checking they exist and are the right type.

• Parameters do not need to be specified and the full passed from Javascript can be accessed through
task.params.

Most of the method body is code to display the alert dialog in Android, the important lines to notice related to Forge
are:

• task.error("No text entered"); - Returns the string given to the error callback in Javascript.

• task.success(); - Calls the success callback in Javascript with no arguments.

• We can see the success method is only called when the alert dialog button is clicked, which means it happens
asynchronously: this is not a problem.

All API methods should call task.error() or task.success() exactly once: if a method needs to return
values to Javascript multiple times then events should be used.

iOS API methods are exposed in iOS by creating a class called <plugin>_API within the ForgeModule project
where <plugin> is your plugin name.

The structure of an API method can be seen in the example included in the inspector project:

+ (void)show:(ForgeTask*)task text:(NSString *)text {
if ([text length] == 0) {

[task error:@"You must enter a message"];
return;

}
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Alert"

message:text

100 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

delegate:nil
cancelButtonTitle:@"OK"
otherButtonTitles:nil];

[alert show];
[task success:nil];

}

The method signature defines the API method:

• All exposed API methods are + (void) methods.

• The name of the exposed method is taken up to the first :, so in this case is show

• The first parameter to API methods is a

object, which contains information about the task as well as helper methods to complete the task and to return a
response.

• Additional parameters must be NSString, NSNumber, NSDictionary or NSArray, the name of the
parameter will be used to extract the argument from the javascript parameters object. Type checking is not
performed on iOS.

• Any parameters not specified in the signature can be accessed through task.params

The method body contains the following Forge specific features:

• [task error:@"You must enter a message"]; - Returns a string to the error callback in
Javascript

• [task success:nil]; - Returns no parameters to the success callback in Javascript

All API methods should call [task error:] or [task success:] exactly once.

Triggering Javascript events There are two distinct types of events in plugins:

• Javascript events which can be triggered from native code at any point, used for situations that aren’t a direct
response to an API method call.

• Native events which are points in an application’s execution that plugins can hook into and execute their own
code. For example plugins can execute native code on application start, without having to use any Javascript.

Quite frequently you’ll want to handle a native event and trigger and trigger a corresponding Javascript event. This
section of the plugin docs will discuss the second type of event, those which are triggered by the device. If you’re
interested in the second type of event described, see Handling native events.

Javascript An example of listening for a Javascript event is included in the inspector project:

forge.internal.addEventListener("alert.resume", function () {
alert("Welcome back!");

});

• Events are identified by a unique string, it is conventional to use the format plugin.eventName for this
string as shown above.

• The second parameter is a callback to be invoked whenever the event is triggered from native code: data can be
passed in the first parameter to this callback.

2.3. Browser add-ons - see all... 101

Forge - Cross-browser Add-on Development Tools, Release 1.4

Android To trigger a Javascript event from native Android code, the

method can be called at any point. For example:

ForgeApp.event("alert.resume", null);

• The first parameter is the event identification string which is listened for in Javascript.

• The second is an optional object to pass back to Javascript.

iOS To trigger Javascript events from native iOS code, use [ForgeApp event] at any point. For example:

[[ForgeApp sharedApp] event:@"alert.resume" withParam:nil];

• The first parameter is the event identification string which is listened for in Javascript.

• The second is an optional object to pass back to Javascript.

Handling native events There are two distinct types of events in plugins:

• Javascript events which can be triggered from native code at any point, used for situations that aren’t a direct
response to an API method call.

• Native events which are points in an application’s execution that plugins can hook into and execute their own
code. For example plugins can execute native code on application start, without having to use any Javascript.

Quite frequently you’ll want to handle a native event and trigger a corresponding Javascript event. This section of the
plugin docs will discuss the second type of event, those which are triggered by the device. If you’re interested in the
first type of event described, see Triggering Javascript events.

Android To listen for native events in Android an EventListener class must be added to your plugin’s package.
For example, io.trigger.forge.android.modules.alert.EventListener. This class should extend
the ForgeEventListener class and implement any of the methods it wants to listen for. See the for the list of
methods available for override as well as their meaning.

The example EventListener from the inspector project looks like:

public class EventListener extends ForgeEventListener {
@Override
public void onRestart() {

ForgeApp.event("alert.resume", null);
}

}

• @Override on the method ensures the method exists in ForgeEventListener and is an available event.

• If you want to prevent subsequent event listeners from receiving an event, you should return a non-null value.
For example, if a key press event is handled by a plugin it can return true and prevent other plugins from
seeing the event.

iOS To listen for native events in iOS, a class called <plugin>_EventListener must be created where
<plugin> is your plugin name. This class should extend ForgeEventListener and implement any of the
methods it wants to listen for. See the for the list of methods available for override as well as their meaning.

The example EventListener from the inspector project looks like:

102 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

@interface alert_EventListener : ForgeEventListener

@end

@implementation alert_EventListener

+ (void)applicationWillEnterForeground:(UIApplication *)application {
[[ForgeApp sharedApp] event:@"alert.resume" withParam:nil];

}

@end

• If you want to prevent subsequent event listeners from receiving an event, you should return a non-nil value.
For example, if a key press event is handled by a plugin it can return YES and prevent other plugins from seeing
the event.

Communicating with native code When making native API calls or triggering events it is useful to send more than
just a string as data between the JavaScript and native code (in both directions).

On both Android and iOS you are able to send either simple pieces of data (numbers or strings) or JavaScript style
objects and arrays in both directions. In JavaScript this means you can send any JSON serializable data to native, and
you will always recieve back JSON parsed variables.

Android To encode and decode this JSON data in Java we use the Gson library. This provides a fast way of working
with JSON with a simple and clear API. When working on Android you should keep the following in mind:

• When returning data to JavaScript it should be a .

– Simple types can be converted to a JsonElement using the constructor: new JsonPrimitive("My
string") or new JsonPrimitive(50).

– More complex types can be created using and .

– ForgeTask.success and ForgeApp.event will also directly accept a String and create the
JsonElement for you.

• ForgeTask.params is of type . To read the string test from {"test":"My Data"} sent from
Javascript the following code could be used task.params.get("test").getAsString().

• If accepting parameters directly using the annotation then the types JsonObject and JsonArray must be
used rather than JSONObject and JSONArray.

• null passed to and from JavaScript is represented by JsonNull.INSTANCE.

iOS On iOS we use JSONKit to encode and decode JSON data. When working on iOS you should keep the following
in mind:

• JSONKit maps JSON on to the familiar NSNull, NSString, NSNumber, NSArray and NSDictionary objects:
any time you return data to JavaScript you should return one of these types. Any time you receive data from
Javascript, you should expect one of these types.

• JavaScript booleans are encoded as NSNumber using [NSNumber numberWithBool:YES/NO]

Using external libraries Often it is useful to include external libraries in your plugin, this can be done on both
Android and iOS.

Important: Class names must be unique across all plugins and the core Forge app: this means multiple plugins

2.3. Browser add-ons - see all... 103

Forge - Cross-browser Add-on Development Tools, Release 1.4

cannot include the same libraries. In the future we will be supporting dependencies between plugins to allow shared
libaries; until then if multiple plugins include the same libraries only one of them can be enabled for any individual
app.

Android To include libraries copy them into the plugin/android/libs folder in your plugin. Once in place
update your inspector project through the Toolkit and the libraries will be included in the inspector project as they
would be in a Forge build.

Both Java and native libraries are supported: native libraries should be placed in a sub-folder to indicate the architecture
they’re built for - see Structure of a plugin.

If the library you want to include is distributed as unbuilt Java files, you can include that code in your own plugin
source tree and export it as part of the JAR file from Eclipse.

iOS On iOS, there are two two types of external libraries: system frameworks made available by Apple, and 3rd
party frameworks.

System frameworks To include Apple frameworks an add_ios_system_framework build step must be added to link
with the framework at build time.

Once added the inspector project should be updated to apply this change while you develop your plugin.

3rd party libraries/frameworks There are a number of different formats used to distribute 3rd party libraries for
iOS: not all of them are directly compatibile with Forge, but with some minor changes they can all be included in a
plugin:

• If the library is a .a file, simply include it in the ForgeModule project and add it to the ForgeModule target. If
the library includes separate header files you can also add these to the ForgeModule project.

• If the library is a framework you will need to browse the contents of the framework and add the main framework
file (which will be the name of the framework with no file extension) and any headers to the ForgeModule
manually.

• If the framework contains any .bundle files you will need to include them in the plugin (see Including resources).

Changing build configuration Plugins often need to change properties of the app which cannot be set at runtime,
such as app permissions on Android, or linked system frameworks on iOS. These changes can be described in the
native build steps file for each platform, and will be applied at build time for the Forge app.

The build steps go in either android/build_steps.json or ios/build_steps.json in the plugin’s folder.
These JSON files take the following format:

[
{

"do": {
"build_task": {

"parameter": "value"
}

}
}, {

"do": {
"second_build_task": {

"input": "data",
"other_input": "data2"

}

104 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

}
}

]

This consists of an array of tasks to perform before the build is completed.

The types of task that can be performed and the parameters that need to be passed to each task varies by platform and
is described below.

Note: After changing the build steps for either Android or iOS it is important to update the inspector project, any new
build steps will be applied to the project to keep your development environment as close as possible to the final Forge
build.

General

include_dependencies This build step can contain a dictionary of dependencies and their details, each de-
pendency must contain a hash, for example:

{
"do": {

"include_dependencies": {
"my_library": {

"hash": "0123012301230123012301230123"
},
"my_other_library": {

"hash": "4567456745674567456745674567"
}

}
}

}

In the future these dependencies will be selectable via the Toolkit, until then a list of currently available dependencies
can be found at: native_plugins_shared_dependencies.

Android

android_add_permission

• permission: the permission to add, i.e. android.permission.CAMERA

Example:

{
"do": {

"android_add_permission": {
"permission": "android.permission.CAMERA"

}
}

}

android_add_feature

• feature: the feature to request

• required: Whether or not the feature is required, "true" or "false"

2.3. Browser add-ons - see all... 105

Forge - Cross-browser Add-on Development Tools, Release 1.4

Example:

{
"do": {

"android_add_feature": {
"feature": "android.hardware.camera",
"required": "true"

}
}

}

android_add_activity

• activity_name: Name of activity

• attributes: Optional attributes

Example:

{
"do": {

"android_add_activity": {
"activity_name": "com.example.sdk.MyActivity",
"attributes": {

"android:screenOrientation": "portrait"
}

}
}

}

android_add_service

• service_name: Name of service

• attributes: Optional attributes

Example:

{
"do": {

"android_add_service": {
"service_name": "com.example.sdk.MyService"

}
}

}

android_add_receiver

• receiver_name: Name of receiver

• attributes: Optional attributes

• intent_filters: Optional intent filters

Example:

{
"do": {

"android_add_receiver": {
"receiver_name": "com.example.sdk.MyReceiver",

106 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

"intent_filters": [{
"action": "android.intent.action.BOOT_COMPLETED"

}]
}

}
}

iOS

add_ios_system_framework

• framework: the framework to add

Example:

{
"do": {

"add_ios_system_framework": {
"framework": "CoreMedia.framework"

}
}

}

ios_add_url_handler

• scheme: URL scheme to handle

Example:

{
"do": {

"ios_add_url_handler": {
"scheme": "myurlscheme"

}
}

}

set_in_info_plist

• key: Key to add/change: you can use a.b to change key b nested inside a

• value: Value to set it to

Example:

{
"do": {

"set_in_info_plist": {
"key": "MyKey",
"value": "My Data"

}
}

}

Including resources Native code sometimes requires additional resources, such as layout or image files. These work
in slightly different ways on Android and iOS but can be easily included in plugins for both.

2.3. Browser add-ons - see all... 107

Forge - Cross-browser Add-on Development Tools, Release 1.4

Android To include resources they must be placed in the plugin/android/res folder, once there the inspector
project can be updated and the resource files will be included.

For more information about what kind of resources can be added to your plugin and how they can be used with the
Android SDK, see the official Android docs concerning App Resources.

Important: Resources must be accessed dynamically from your Java code:

is a helper method which lets you access the ID for a named resource.

iOS On iOS, any resources included in your plugin must be part of a bundle.

3rd party bundles can be included by placing the bundles in plugin/ios/bundles. An inspector project update
will then be required to include them in the inspector for development

If you have resources such as images that you want to include in your plugin, you must create your own bundle. The
inspector project includes a ForgeModuleResources target which can be used to help with this:

1. All bundles must have a unique name - you can name your bundle by setting the Product Name for the
ForgeModuleResources target.

2. Add the required resources to the ForgeModule project and include them in the ForgeModuleResources
target.

3. Use the named bundle to reference these resources from your native code, with code like this:

NSString * bundlePath = [[NSBundle mainBundle] pathForResource:@"my_bundle_name" ofType:@"bundle"];
NSBundle * myBundle = [NSBundle bundleWithPath:bundlePath];

For more information, see Accessing a Bundle’s Contents.

4. When building UniversalForgeModule your bundle will be output in the build folder: make sure to in-
clude this in ios/bundles/ in your plugin folder.

5. After adding the bundle to ios/bundles, you’ll need to re-generate your Inspector before continuing.

Working with files Forge plugins will often want to consume or produce files (or both). To make this easy Forge
has a ForgeFile object which can be passed efficiently between plugins and between native and JavaScript code.

108 Chapter 2. Features

http://developer.android.com/guide/topics/resources/index.html
https://developer.apple.com/library/mac/#documentation/CoreFOundation/Conceptual/CFBundles/AccessingaBundlesContents/AccessingaBundlesContents.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Javascript ForgeFile objects can be represented as simple JavaScript objects. These objects must contain a uri
which references an actual file that either Forge or a loaded plugin will be able to resolve at a later point. They should
also contain a name and a mimeType if sensible values for these are known. Some file objects will contain additional
properties such as width and height which may be used when processing the file.

The file module has a number of methods which accept file objects.

For information on testing with files see Testing your plugin.

Android

Receiving from JavaScript When receiving a file from JavaScript it will be of type JsonObject, this can be passed
into the ForgeFile constructor to access various helper fuctions for the file. For example:

ForgeFile file = new ForgeFile(ForgeApp.getActivity(), task.params.get("file"));
byte[] fileData = null;
try {

fileData = file.data();
} catch (IOException e) {

// handle properly
}

Further details on the ForgeFile class in Android can be found in the API docs:

Returning to JavaScript To return a file to JavaScript (which can then be used with other modules, such as
forge.request.ajax) a JsonObject with the appropriate properties must be constructed and returned. For example:

JsonObject file = new JsonObject();
file.addProperty("uri", "file:///data/path/to/file");
task.success(file);

iOS

Receiving from JavaScript When receiving a file from JavaScript it will be of type NSDictionary, this can be passed
into the ForgeFile constructor to access various helper fuctions for the file. For example:

ForgeFile* file = [[ForgeFile alloc] initWithFile:[task.params objectForKey:@"file"]];
NSString* fileURL = [file url];

Further details on the ForgeFile class in iOS can be found in the API docs:

Returning to JavaScript To return a file to JavaScript (which can then be used with other modules, such as
forge.request.ajax) an NSDictionary with the appropriate properties must be constructed and returned. For example:

NSDictionary* file = @{@"uri": @"/path/to/file"};
[task success:file];

Testing your plugin As well as allowing you to directly call exposed API methods, the Inspector project will run
tests you include with your plugin. These tests are written in JavaScript, using QUnit, and are split into automated and
interactive sections. To run the tests simply press the appropriate button when running the Inspector project.

2.3. Browser add-ons - see all... 109

Forge - Cross-browser Add-on Development Tools, Release 1.4

Automated tests To include automated tests you should create a file tests/automated.js in your plugin
folder: it is important that these tests complete without requiring user input as we may run them automatically to check
compatibility with new platform versions. Test as much of your API as possible in these tests, so that we can give you
early warning about incompatibility with new platform versions and other plugins.

An example automated test (from the prefs module) could be:

asyncTest("Set and get a pref (Number)", 1, function() {
var pref = "test"+Math.random();
var value = Math.random();
forge.prefs.set(pref, value, function () {

forge.prefs.get(pref, function (newValue) {
equal(newValue, value, "Preference value which was set");
start();

});
});

});

Further documentation on available QUnit methods is available at: http://api.qunitjs.com/.

Interactive tests Sometimes tests require user interaction - in this case you should include them in
tests/interactive.js in your plugin folder. These tests will never be run automatically, but placing them
here is a good way for you to be able to test the functionality of your plugin as you develop it.

A helper function askQuestion(question, answers) is provided to make it easier to prompt the user for
input: question is the question to ask, and answers is a mapping of answers to callback functions.

An example interactive test (this time taken from the barcode module) could be:

asyncTest("Scan barcode", 1, function() {
askQuestion("Does this device have a camera? If yes when prompted scan a barcode", {

Yes: function () {
forge.barcode.scanWithFormat(function (barcode) {

askQuestion("Is this your barcode: "+barcode.value+" and was it a: "+barcode.format, {
Yes: function () {

ok(true, "User claims success");
start();

},
No: function () {

ok(false, "User claims failure");
start();

}
});

}, function (e) {
ok(false, "API call failure: "+e.message);
start();

});
},
No: function () {

ok(true, "No camera");
start();

}
});

});

Fixtures If you need to use additional resources (such as an image file) as part of your test, you can place them in
the tests/fixtures folder in your plugin. These files will be included in src/fixtures/<plugin name>/
when you update the Inspector app.

110 Chapter 2. Features

http://api.qunitjs.com/

Forge - Cross-browser Add-on Development Tools, Release 1.4

If your plugin has an API which accepts a ForgeFile object as described in Working with files, it can be useful to create
file objects to test with. Calling forge.inspector.getFixture("plugin", "file.png") will return a
ForgeFile object for the fixture “file.png”.

API docs Documentation in Javadoc and appledoc format is available for the classes you can use in your plugins on
Android and iOS

Common problems This page details some of the common problems when developing plugins. If you
can’t find information on the problem you are having then you can email support@trigger.io or check
http://stackoverflow.com/questions/tagged/trigger.io.

Toolkit error messages As plugins have a greater affect on the build process it is far easier for a plugin to cause
issues when trying to build an app using it, to limit this the Toolkit will try to detect common problems while you
develop your plugin. This page contains some more detailed information about the various errors that can appear
while developing, and how you can fix them.

iOS/Android inspector not found This is shown when your plugin contains an Android or iOS folder but no match-
ing inspector project is found.

iOS/Android inspector out of date This message is shown when your current inspector project was not created
with the files included in your plugins folder and with the current plugins platform version. This generally indicates
you should update your inspector project before continuing development.

The directory ‘x’ was expected to be a file This error is shown if a directory is found in a location that a file was
expected, for example if a plugins jar file was actually an extracted folder rather than a compressed file.

The file ‘x’ was expected to be a directory Similarly this error is shown if a file is found in a location that was
expected to be a directory. An example of this would be if an iOS bundle was a file, iOS bundles are actually a special
type of directory that appears as a single file in Finder.

The path ‘x’ is required and was not found This error means a file that is required based on the current structure
of your plugin was not found. The most common example of this is if an android folder is found within your plugin
then a plugin.jar file must be included within that folder.

The path ‘x’ was found but not expected This warning means a file or directory was found with a path that was
not expected, this generally won’t cause a problem in itself, but this file will not be used when including the plugin in
a Forge build, and could mean it is named incorrectly or placed in the wrong location.

File ‘android/plugin.jar’ is not a valid jar file containing a Forge Android plugin with name ‘x’ The Toolkit
checks the jar file for your plugin contains a class which looks like it belongs to your plugin, if it can’t find it then
something is probably wrong with the structure of your code or with the way you created you jar file. Check your
plugin is named correctly and you include a API.java for that module name in your jar, if you still see problems then
get in touch so we can look into it.

2.3. Browser add-ons - see all... 111

mailto:support@trigger.io
http://stackoverflow.com/questions/tagged/trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

File ‘ios/plugin.a’ is not a valid static library file containing a Forge iOS plugin with name ‘x’ The Toolkit
checks your built iOS plugin contains classes that look like they belong to your plugin, if it can’t find them then
something is probably wrong with the file you’ve built. Read through the docs and rebuild your plugin, if you can’t
solve the problem get in touch and we’ll be able to help you out.

Validation for ‘x’ failed: ... If your error message isn’t explictly listed above but starts with this text it means the
given file failed some kind of pre-upload validation we perform, often a more descriptive error message will be given.
Check the file follows this documentation and if you still can’t resolve the issue get in touch.

Browser add-on

activations: Inject files into pages Platforms: Browser

The activations module allows styles and scripts to be injected into webpages with specified URLs.

Config The activations module must be enabled in config.json as follows:

{
‘‘modules’’: {

‘‘activations’’: [
{

‘‘˙0activations0patternsmodules/activations:field0-
activations0patternspatterns’’: [’’http://mail.google.com‘‘],

‘‘˙0activations0scriptsmodules/activations:field0activations0-
scriptsscripts’’: [’’gmail.js’’],

‘‘˙0activations0stylesmodules/activations:field0activations0-
stylesstyles’’: [’’gmail.css’’],

‘‘˙0activations0runatmodules/activations:field0activations0-
runatrun_at’’: ‘‘start’’,

‘‘˙0activations0allframesmodules/activations:field0-
activations0allframesall_frames’’: false

}
]

}
}

This field specifies when and how your foreground files will be embedded into pages. It is an array of objects with
three required keys:

• patterns is an array of Match Patterns which control on which URLs your app will activate

• scripts is an array of Javascript files which will be embedded

• styles is an array of CSS files which will be embedded

As well as an optional keys:

• run_at optionally defines when your included scripts will be added to the page, must be one of the following:

• "start" scripts will be run immediately, potentially before the DOM is ready

• "ready" scripts will run as soon as the DOM is ready

• "end" (default) scripts will run at some point after the DOM is ready, with no guarantees as to whether or not
window.onload will have fired yet or not.

112 Chapter 2. Features

http://mail.google.com
http://code.google.com/chrome/extensions/match_patterns.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

• all_frames optionally defines whether activations will be run in all frames or just the top level document, by
default it is false.

Important: Safari only supports a single object in the activations array.

background: Background scripts Platforms: Browser

The background module allows your app to have a persistent Javascript context running in the background

Config Browsers have the concept of content scripts and background files.

This field lists the files that should be included in background context.

{
"modules": {

"background": {
"files": ["js/background.js"]

}
}

}

button: Toolbar button Platforms: Browser

Config The button configuration controls the appearance and function of toolbar icons in the browsers. With this
directive, you can specify a HTML file which will be displayed when the button is clicked, a default button icon as
well as platform-specific icons.

{
‘‘modules’’: {

‘‘button’’: {
‘‘˙0default0popupmodules/button:field0default0-

popupdefault_popup’’: ‘‘popup.html’’,
‘‘˙0default0titlemodules/button:field0default0-

titledefault_title’’: ‘‘Button Title’’,
‘‘˙0default0iconmodules/button:field0default0-

icondefault_icon’’: ‘‘my-default-icon.ico’’,
‘‘˙0default0iconsmodules/button:field0default0-

iconsdefault_icons’’: {
‘‘firefox’’: ‘‘my-icon-for-firefox.ico’’

}
}

}
}

• default_popup should refer to a local HTML file, included in your app, which will be displayed after the
button is clicked; for more information, see part I of the tutorial

• default_title this will show as the tooltip text when users hover over the toolbar button. It is a required
field for IE.

• default_icon should refer to a local image file, included in your app, to be used as the button icon

• default_icons allows you to override the default_icon icon, one platform at a time: the object keys
should be one or more of chrome, firefox, safari or ie

2.3. Browser add-ons - see all... 113

Forge - Cross-browser Add-on Development Tools, Release 1.4

Important: Internet Explorer requires you to override the default_icon with a 16x16 bitmap in .ico format.

API Adding and manipulating a toolbar button near the browser’s address bar.

setIcon Platforms: Browser only

Sets the icon for the toolbar button.

button.setIcon(url, success, error)

Arguments

• url (string) – the URL of the icon

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

setURL Platforms: Browser only

Sets the path to the HTML page that should be opened when the toolbar button is clicked.

button.setUrl(url, success, error)

Arguments

• url (string) – relative URL to the HTML to set as the toolbar button popup

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

onClicked.addListener Platforms: Browser only

Sets a function to be executed when the toolbar button is clicked.

button.onClicked.addListener(callback)

Arguments

• callback (function()) – function to be executed when the toolbar button is clicked.

setBadge Platforms: Browser only (Not supported on Internet Explorer)

Sets a number to appear as a notification badge on the toolbar button.

button.setBadge(number, success, error)

Arguments

• number (number) – number to display as badge

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

114 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

setBadgeBackgroundColor Platforms: Browser only (Not supported on Safari or Internet Explorer)

Sets the background color for the badge.

button.setBadgeBackgroundColor(color, success, error)

Arguments

• color (array) – an array of four integers in the range [0,255] that make up the RGBA color
of the badge. For example, opaque red is [255, 0, 0, 255].

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

setTitle Platforms: Browser only

Set the tooltip text for a toolbar button.

button.setTitle(title, success, error)

Arguments

• title (string) – title text to set as the toolbar tooltip

• success (function()) – callback to be invoked when no errors occur

• error (function(content)) – called with details of any error which may occur

document: Document utility functions Internet Explorer features a number of inconsistencies with some common
document operations, these methods allow you to work around these problems in a platform-independent manner.

API

reload Platforms: Browser Only

document.reload()

Internet Explorer’s implementation of document.reload() only refreshes the static content of a page. This method will
reload a page and force all scripts to be re-evaluated as well.

location Platforms: All

document.location(success, error)

Arguments

• success (function(location)) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

Internet Explorer versions 9 and later aborts page loading with a permission denied message if the document location
is accessed from within an iframe. This function provides a workaround which functions correctly under all browsers.

Error object properties:

• statusCode: Status code returned from the server.

• content: Content returned from the server (if available).

Example:

2.3. Browser add-ons - see all... 115

Forge - Cross-browser Add-on Development Tools, Release 1.4

forge.document.location(function(location) {
forge.logging.log(location.href);

}, function(error) {
alert(’Failed to get document location: ’+error.message);

}
});

icons: App icons This part of the config allows you to define the icons to be used for your app. All icons are
square, and must be placed in your src directory.

Define your desired icons with "size": "path" attributes, where size is the pixel height (and width) of the
icon, and path is where the image has been placed under the src directory.

You can specify different icons for different platforms as so:

"android": {
"36": "icon36.png",
"48": "icon48-android.png",
"72": "icon72.png"

},
"chrome": {

"16": "icon16.png",
"48": "icon48-chrome.png",
"128": "icon128.png"

}

Here, Android and Chrome will share their 16x16 pixel icon, but use different 48x48 pixel icons.

The icons required for each platform are listed below:

• Android: 36px, 48px and 72px

• Chrome: 16px, 48px and 128px

• Firefox: 32px and 64px

• Internet Explorer: 16px .ico format

• iOS: 57px, 72px, 114px and 144px for home screen icons, 512px to be shown in iTunes.

• Safari: 32px, 48px and 64px with transparent background. See the Creating an Image section in Apple’s Safari
extension guide.

Note: If you specify any icons for a particular platform, you must specify all required icons!

Note: iOS includes a special prerendered option, setting this to true will stop iOS from applying the gloss effect
to your icons.

Config
{

"modules": {
"icons": {

"android": {
"36": "icon36.png",
"48": "icon48-android.png",
"72": "icon72.png"

},

116 Chapter 2. Features

http://developer.apple.com/library/safari/#documentation/Tools/Conceptual/SafariExtensionGuide/AddingButtonstotheMainSafariToolbar/AddingButtonstotheMainSafariToolbar.html
http://developer.apple.com/library/safari/#documentation/Tools/Conceptual/SafariExtensionGuide/AddingButtonstotheMainSafariToolbar/AddingButtonstotheMainSafariToolbar.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

"ios": {
"57": "icon57.png",
"72": "icon72-ios.png",
"114": "icon114.png",
"144": "icon144.png",
"prerendered": true

}
}

}
}

is: Platform Detection Forge allows you to build cross-platform mobile apps and browser extensions from the
same code. Sometimes it may be necessary to do a specific action based on the platform that is running the code. The
following methods allow you to determine what platform that is.

Config The is module must be enabled in config.json

{
"modules": {

"is": true
}

}

API

API

mobile
is.mobile()

Return boolean Returns true if running on a mobile device

desktop
is.desktop()

Return boolean Returns true if running on a desktop/laptop computer

web
is.web()

Return boolean Returns true if running on as a hosted web app

android
is.android()

Return boolean Returns true if running on an Android device

ios
is.ios()

Return boolean Returns true if running on an IOS device

2.3. Browser add-ons - see all... 117

Forge - Cross-browser Add-on Development Tools, Release 1.4

chrome
is.chrome()

Return boolean Returns true if running on Chrome browser

firefox
is.firefox()

Return boolean Returns true if running on Firefox browser

safari
is.safari()

Return boolean Returns true if running on Safari browser

ie
is.ie()

Return boolean Returns true if running on IE browser

orientation Platforms: Mobile

portrait
is.orientation.portrait()

Return boolean Returns true if a mobile device has a portrait orientation

landscape
is.orientation.landscape()

Return boolean Returns true if a mobile device has a landscape orientation

connection Platforms: Mobile

Note: These functions are not reliable during your app’s initialisation: you should use connectionState-
Change.addListener. We guarantee to fire that event as the app starts up.

connected
is.connection.connected()

Return boolean Returns true if a mobile device has an active internet connection.

wifi
is.connection.wifi()

Return boolean Returns true if a mobile device is connected via wifi.

logging: Logging Allows you to log a message, and optionally an exception, to the console service provided by
the underlying platform.

118 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config The logging.level configuration directive controls the verbosity of the logging system. It should be
set to one of DEBUG, INFO, WARNING, ERROR or CRITICAL. A setting of DEBUG means that all messages will be
logged, whereas a setting of CRITICAL means that only messages of level CRITICAL will be logged.

{
"modules": {

"logging": {
"level": ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]

},
}

}

Platforms: Internet Explorer only

The logging.console configuration directive enables a log window for the add-on’s background page.

"logging": {
"console": true

},

API

log Platforms: All

logging.log(message[, exception][, level])

Arguments

• message – a string to log on the browser console

• exception – a JavaScript Error instance: details from the exception will be appended to your
log message

• level – importance of this message: one of forge.logging.DEBUG,
forge.logging.INFO, forge.logging.WARNING, forge.logging.ERROR
or forge.logging.CRITICAL

logging.debug(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.DEBUG)

logging.info(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.INFO)

logging.warning(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.WARNING)

logging.error(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.ERROR)

logging.critical(message[, exception])
Shorthand for forge.logging.log(message[, exception], forge.logging.CRITICAL)

message: Component communication Platforms: Browser only

It is often useful to be able to send and receive messages between components of your extension. To achieve this in a
cross-browser manner, use these methods to broadcast and listen for messages.

2.3. Browser add-ons - see all... 119

Forge - Cross-browser Add-on Development Tools, Release 1.4

Config The message module must be enabled in config.json

{
"modules": {

"message": true
}

}

API

listen Platforms: Browser only

Sets up a handler function which will receive messages sent (“broadcast”) by your extension.

By supplying the optional type parameter, you can filter the messages on which your callback will be invoked; see the
type parameter to the broadcast and broadcastBackground methods. If the type parameter is omitted, your callback
will be invoked for all broadcast messages.

The callback parameter will be invoked when a message is to be delivered, with the message contents as its first
parameter and a “reply function” as its second parameter. The “reply function” is used to send responses back to the
code which broadcast the original message.

message.listen([type], callback, error)

Arguments

• type (string) – (optional) if included, the callback will only be fired for messages broadcast
with the same type; if omitted, the callback will be fired for all messages

• callback (function(content,reply)) – will be called with the contents of relevant broadcast
messages as its first parameter and a reply function as its second parameter

• error (function(content)) – called with details of any error which may occur

broadcast Platforms: Browser only

Sends a message to be received by other components of your extension. Messaging will not be recieved by the
background page.

The type parameter can be used to indicate the purpose of the message and limit the active listeners which will receive
the message.

The callback parameter will be invoked with any responses from listeners; it may be called multiple times, depending
on whether your listeners use the “reply function”.

message.broadcast(type, content, callback, error)

Arguments

• type (string) – limits the listeners which will receive this message

• content (any) – the message body

• callback (function(content)) – invoked each time a listener returns a response to the broad-
caster, with the response as its only argument

• error (function(content)) – called with details of any error which may occur

120 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

broadcastBackground Platforms: Browser only

Restrictions: Not available from the background page

Sends a message to be received by listeners in your background code: similar to broadcast, except that listeners
created in individual browser pages will not receive this message; only listeners created in your background page (see
extension-concept-background).

message.broadcastBackground(type, content, callback, error)

Arguments

• type (string) – limits the listeners which will receive this message

• content (any) – the message body

• callback (function(content)) – invoked each time a listener returns a response to the broad-
caster, with the response as its only argument

• error (function(content)) – called with details of any error which may occur

toFocussed Platforms: Browser only

Like broadcast, this method sends a message to be received by content script listeners.

However, not all listeners are passed the message: only the currently focused tab’s listeners will receive this message.
If the currently focussed tab is not displaying a page your add-on has activated on, no listeners will receive this
message.

The callback may be invoked a number of times if several message listeners have been set up per page.

message.toFocussed(type, content, callback, error)

Arguments

• type (string) – limits the listeners which will receive this message

• content (any) – the message body

• callback (function(content)) – invoked each time a listener returns a response to the broad-
caster, with the response as its only argument

• error (function(content)) – called with details of any error which may occur

Permissions On Chrome this module will add the tabs permission to your app, users will be prompted to accept
this when they install your app.

notification: Notifications

Config The notification module must be enabled in config.json

{
"modules": {

"notification": true
}

}

API Notifications allow you to send alerts.

2.3. Browser add-ons - see all... 121

Forge - Cross-browser Add-on Development Tools, Release 1.4

create Platforms: All

notification.create(title, text, success, error)

Arguments

• title (string) – title

• text (string) – notification message

• success (function()) – success

• error (function(content)) – called with details of any error which may occur

setBadgeNumber Platforms: iOS

Allows you to set or remove a badge for your app’s icon on the iOS home screen:

If you pass in 0 as number, it will remove this badge. This is particularly useful if you want to clear a badge set by a
push notification.

notification.setBadgeNumber(number, success, error)

Arguments

• number (string) – number

alert Platforms: Android, iOS

Show a dialog window with text content that the user can dismiss. Similar to using window.alert except you can
control the title text for the dialog.

To create an alert like this:

You would use this code:

122 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

forge.notification.alert("My Title: Alert", "My Body: Alert", function () {
// ... implement logic for when user dismissed alert

});

notification.alert(title, body, success, error)

Arguments

• title (string) – text to show as the title of the dialog

• body (string) – text to show as the body of the dialog

• success (function()) – called when the user dismisses the alert

• error (function(content)) – called with details of any error which may occur

confirm Platforms: Android, iOS

Show a dialog window prompting the user with a “yes”/”no” style question.

To show a confirmation dialog like this:

You would use this code:

forge.notification.confirm("My Title: Confirm", "My Body: Confirm", "Y", "N", function (userClickedYes) {
if (userClickedYes) {
// ... implement logic for when user clicked "Y"

} else {
// ... implement logic for when user clicked "N"

}
});

notification.confirm(title, body, positive, negative, success, error)

Arguments

• title (string) – text to show as the title of the dialog

• body (string) – text to show as the body of the dialog

• positive (string) – text to use for the positive action button

• negative (string) – text to use for the negative action button

• success (function(result)) – called with true if the user selected the positive option, false
if they selected the negative option.

• error (function(content)) – called with details of any error which may occur

2.3. Browser add-ons - see all... 123

Forge - Cross-browser Add-on Development Tools, Release 1.4

toast Platforms: Android, iOS

Create a small popup which disappears after a few seconds.

notification.toast(body, success, error)

Arguments

• body (string) – body

• success (function()) – called if the toast is displayed successfully

• error (function(content)) – called with details of any error which may occur

Permissions On Chrome this module will add the notifications permission to your app, users will be prompted
to accept this when they install your app.

On Android this module will add the VIBRATE permission.

parameters: Custom config options parameters are custom config options your app can access via
forge.config.modules.parameters.

Config
{

"modules": {
"parameters": {

"my_option": "my data"
}

}
}

prefs: Preferences Preferences are used to save state in your extension. State is persisted between restarts and is
consistent across all parts of your app.

Config The prefs module must be enabled in config.json

{
"modules": {

"prefs": true
}

}

API

124 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

get
prefs.get(name, success, error)

Arguments

• name (string) – the name of the preference you want to query

• success (function(value)) – will be invoked as the preference value as its only parameter

• error (function(content)) – called with details of any error which may occur
Platforms: All

If the preference has not been set (with set), and there is no default value for this preference, null is returned.

set Platforms: All

prefs.set(name, value, success, error)

Arguments

• name (string) – the name of the preference you want to save

• value – the value to save

• success (function()) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

The preference value given here will override a default value (if one was given).

clear Platforms: All

prefs.clear(name, success, error)

Arguments

• name (string) – the name of the preference to un-set

• success (function()) – a callback to be invoked (with no arguments) when the operation is
complete

• error (function(content)) – called with details of any error which may occur

Un-sets the given preference name, so that future calls to set will return undefined (or the default preference value,
if given).

clearAll Platforms: All

prefs.clearAll(success, error)

Arguments

• success (function()) – a callback to be invoked (with no arguments) when the operation is
complete

• error (function(content)) – called with details of any error which may occur

Un-sets all preference names, so that calls to set will return undefined (or the default value for a preference, if
given).

2.3. Browser add-ons - see all... 125

Forge - Cross-browser Add-on Development Tools, Release 1.4

keys Platforms: All

prefs.keys(success, error)

Arguments

• success (function(keysArray)) – invoked with an array of the set key names as its only argu-
ment

• error (function(content)) – called with details of any error which may occur

Find which preferences have been set.

request: Cross-domain requests Normal in-page JavaScript is only able to make HTTP requests to the same
server as one hosting the current web page. These methods allow you to work around this restriction.

Config
Note: For security reasons, you must specify the remote URLs you will send requests to in the permissions array
of your JSON configuration file.

This array, like the patterns array, should contain Match Patterns to match the remote URLs you want to interact
with.

To protect your users, make these match patterns as restrictive as possible.

{
‘‘modules’’: {

‘‘request’’: {
‘‘permissions’’: [’’https://trigger.io/*‘‘]

}
}

}

API

get Platforms: All

request.get(url, callback, error)

Arguments

• url (string) – the URL to GET

• callback (function(content)) – called with the retrieved content body as the only argument

• error (function(content)) – called with details of any error which may occur

The callback function callback is invoked with the content body of the requested URL. JSON-encoded content will
automatically be parsed into a JavaScript object.

As it is limited to GET requests and lacks the more advanced options of forge.request.ajax, it’s recommended that
forge.request.get is only used in very simple scenarios.

ajax Platforms: All

request.ajax(options)

Arguments

• options (object) – jQuery-style parameters to control the request

126 Chapter 2. Features

http://code.google.com/chrome/extensions/match_patterns.html
https://trigger.io/*

Forge - Cross-browser Add-on Development Tools, Release 1.4

Note: unlike jQuery, we expect the URL for the the request to be passed into the options hash, not as a positional
parameter

This function is closer to the jQuery.ajax method than forge.request.get. However, the full range of jQuery options are
not supported for this method, due to the structure of browser and mobile apps.

Also, note that the error and success callbacks are not passed a jQuery XHR object.

Currently supported options:

• accepts

• cache

• contentType

• data

• dataType

• error

• password

• success

• timeout

• type

• url

• username

• files (Mobile only, see forge.file)

• fileUploadMethod

• headers

Error object properties:

• statusCode: Status code returned from the server.

• content: Content returned from the server (if available).

Error values (see error callback docs for more detail):

• type: "UNAVAILABLE"

• subtype: "NO_INTERNET_CONNECTION" No internet connection is currently available (on iOS it is
required you inform the user of this if it impacts their current experience).

Example:

forge.request.ajax({
type: ’POST’,
url: ’http://my.server.com/update/’,
data: {x: 1, y: "2"},
dataType: ’json’,
headers: {
’X-Header-Name’: ’header value’,

},
success: function(data) {
alert(’Updated x to ’+data.x);

},

2.3. Browser add-ons - see all... 127

http://api.jquery.com/jQuery.ajax/

Forge - Cross-browser Add-on Development Tools, Release 1.4

error: function(error) {
alert(’Failed to update x: ’+error.message);

}
});

You can control the name of uploaded files by setting the name attribute, e.g.:

myFile.name = ’name_of_input’;
forge.request.ajax({

type: ’POST’,
url: ’http://my.server.com/upload/’,
files: [myFile],
success: function(data) {
alert(’Uploaded file as ’+myFile.name);

},
error: function(error) {
alert(’Failed to upload file: ’+error.message);

}
});

If you need to POST an image as the whole request body, use fileUploadMethod. E.g.:

forge.request.ajax({
type: ’POST’,
url: ’http://my.server.com/upload_image/’,
fileUploadMethod: "raw",
success: function(data) {
alert(’Uploaded image’);

}
});

In this example, the Content-Type header will be set to image/jpeg and the POST body will consist of just the
image data with no extra encoding. This is useful in conjunction with services like Parse.

Permissions On Chrome this module will any of the Match Patterns you specify to your app, users will be prompted
to accept this when they install your app.

requirements: App requirements The requirementsmodule allows you to set specific device requirements
for your apps.

Config
{

"requirements": {
"android": {

"minimum_version": "6",
"disable_ics_acceleration": true

},
"ios": {

"minimum_version": "4.3",
"device_family": "iphone"

},
"chrome": {

"content_security_policy": "script-src ’self’ https://ssl.google-analytics.com; object-src ’self’",
"web_accessible_resources": [

"background.jpg"
]

128 Chapter 2. Features

https://www.parse.com/tutorials/saving-images
http://code.google.com/chrome/extensions/match_patterns.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

}
}

}

Android

• minimum_version: the minimum Android API level you want to support, it must be between 5 and 15.
More details can be found on the Android developers site: http://developer.android.com/guide/appendix/api-
levels.html.

• disable_ics_acceleration: Disables hardware acceleration on Android 4.0, this is a workaround to
potential rendering issues which can affect some apps on this particular version of Android.

iOS

• minimum_version: The iOS version is the minimum iOS version you want to support, between 4.0 and 5.1.

• device_family: Used to limit the types of device which can run the app, must be one of any, iphone or
ipad.

Chrome The Chrome options relate to Chromes “manifest_version”: 2 changes, which are documented on the
Chrome website http://code.google.com/chrome/extensions/manifestVersion.html. The available settings are:

• content_security_policy: This determines what javascript can be executed in pages that be-
long to your extension (such as popups). The example given above is how you would allow
Google Analytics to work within an extension. More documentation is available on the Chrome site
http://code.google.com/chrome/extensions/contentSecurityPolicy.html

• web_accessible_resources: This is an array of any files in your extension which are to be accessed
from external sites. The most common use of this is if your extension uses a content script to load images from
your extension into a 3rd party site.

tabs: Tabs Management Tabs management provides functionality specific to tabs.

Config The tabs module must be enabled in config.json

{
"modules": {

"tabs": true
}

}

API

open Platforms: All except web

Opens a new tab with the specified url with an option to retain focus on the calling tab.

On mobile this will display a modal view and the success callback will be called with an object containing a url and
optionally a userClosed boolean property.

tabs.open(url[, keepFocus], success, error)

Arguments

2.3. Browser add-ons - see all... 129

http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://code.google.com/chrome/extensions/manifestVersion.html
http://code.google.com/chrome/extensions/contentSecurityPolicy.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

• url (string) – The URL to open in the new tab

• keepFocus (boolean) – (optional) If true keeps the current tab focused

• success (function(object)) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

openWithOptions Platforms: All except web

As open but takes an object with the following parameters:

Required:

• url: Required URL to open

Browser only:

• keepFocus: Whether or not to keep focus on the current page.

Mobile only:

• pattern: Pattern to close the modal view, see modal views for more detail.

• title: Title of the modal view.

• tint: Colour to tint the top bar of the modal view. An array of four integers in the range [0,255] that make up
the RGBA color. For example, opaque red is [255, 0, 0, 255].

• buttonText: Text to show in the button to close the modal view.

• buttonIcon: Icon to show in the button to close the modal view, if buttonIcon is specified buttonText
will be ignored.

• buttonTint: Colour to tint the button of the top bar in the modal view.

Example:

forge.tabs.openWithOptions({
url: ’http://my.server.com/login/’,
pattern: ’http://my.server.com/loggedin/*’,
title: ’Login Page’

}, function (data) {
forge.logging.log(data.url);

});

tabs.openWithOptions(options, success, error)

Arguments

• options (object) – Object containing url and optional properties.

• success (function(object)) – callback to be invoked when no errors occurs

• error (function(content)) – called with details of any error which may occur

closeCurrent Platforms: Browser only

Restrictions: Only available inside a page (not from a background script)

Close the tab which makes the call.

tabs.closeCurrent(error)

Arguments

130 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

• error (function(content)) – called with details of any error which may occur

Permissions On Chrome this module will add the tabs permission to your app, users will be prompted to accept
this when they install your app.

tools: Miscellaneous tools

Config The tools module must be enabled in config.json

{
"modules": {

"tools": true
}

}

API

UUID Platforms: All

A UUID is a globally unique token; when represented as a string, they look something like
18ADF182-7B12-4FA1-AF0B-6032108C0AE8. Forge already uses UUIDs internally to ensure your
extension doesn’t conflict with others; this method returns a new UUID for you to use as a unique token.

Note: This function is synchronous and returns a value rather than taking a callback.

tools.UUID()

Returns a string representation of the UUID

getURL Platforms: All

Resolve this name to a fully-qualified local or remote resource

tools.getURL(name, callback, error)

Arguments

• name (string) – unqualified resource name, e.g. my/resource.html

• callback (function(url)) – will be invoked with the URL as its only parameter

• error (function(content)) – called with details of any error which may occur

update_url: Automatic update urls Browsers only.

URLs to check for application updates from.

Note that Firefox update URLs must begin with https: https://developer.mozilla.org/en/Install_Manifests#updateURL.

Config

2.3. Browser add-ons - see all... 131

http://en.wikipedia.org/wiki/Uuid
https://developer.mozilla.org/en/Install_Manifests#updateURL

Forge - Cross-browser Add-on Development Tools, Release 1.4

{
"modules": {

"update_url": {
"chrome": "url",
"firefox": "url"

}
}

}

Release Notes This file contains information about new features and capabilities of Forge versions, along with
migration information for how to upgrade from one level to another.

In your config.json file, you can use a major version (like v1.3), which means you will receive rolling updates
and fixes, or you can use a minor version (like v1.3.2), which will only be updated with critical fixes and security
patches.

To see the minor version used to create a particular build, look in .template/platform_version.txt in your
app directory (.template sits alongside src).

v1.4

Supported Targets

• Android

• iOS

• Windows Phone

• Chrome

• Firefox

• Safari

• Internet Explorer

• Web

Changes from v1.3 The v1.4 major version changes the format of config.json slightly, putting the orientations
configuration inside a new display module.

In addition, due to internal changes in how Forge apps work, you will no longer be able to make cross-domain requests
without using the forge.request module or CORS.

Upgrade Instructions To upgrade from v1.3 to v1.4, we provide a command which automates the process of updat-
ing your config.json file.

If you’re using the command-line tools, just run forge migrate: we will create a backup of your current
config.json file in src/config.json.bak.

Note: v1.4 requires iPad retina launchimage configuration: see the module documentation.

You should also check your code is not attempting to make cross-domain XHRs: either use forge.request instead
(recommended), or CORS if you prefer.

132 Chapter 2. Features

http://www.w3.org/TR/cors/

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.42 Released: 23rd April 2013

Features:

• support for wildcard Ad Hoc provisioning profiles

Bug fixes:

• saveURL and cacheURL can be safely used in a tight loop - generated file names are unique

• saveURL persists files properly on iOS (fixing regression in v1.4.41)

v1.4.41 Released: 19th April 2013

Features:

• new camera module: modules-camera - more reliable image capture on low memory Android devices

• improved barcode module: option to turn on light, and barcode type is available - barcode: Barcode / QR Code
scanner

Bug fixes:

• saveURL and cacheURL in file module paused JS execution on iOS

• apply Reload updates asynchronously to accelerate app resumes

• focus was being lost from iOS inputs due to automatic invocation of launchimage.hide

• running apps on web target was failing with builtin_function_or_method object has no
attribute __getitem__

• updated Android Facebook SDK to version 3.0.1 (to fix http://stackoverflow.com/questions/15877837/trigger-
io-facebook-authorize-error-callback-not-called-when-user-presses-back)

v1.4.40 Released: 9th April 2013

Bug fixes:

• fixed regression of a bug in the tabs module on Android 2.x, lost in merge into v1.4.37

v1.4.39 Released: 8th April 2013

Features:

• audio playback API: media: Media file playback

• native alert, confirm and toast dialogs: notification: Notifications

Bug fixes:

• web target applications can be deployed on Node.js version 0.10

• iOS returns purchaseState parameter in payment callback: payments: In-app payments (original
PurchaseState parameter kept for compatibility)

• non-ASCII characters are handled properly in the app name

• fixed an empty view being shown just before the launch image on Android

• data in parameters module available as forge.config.modules.parameters once again

2.3. Browser add-ons - see all... 133

http://stackoverflow.com/questions/15877837/trigger-io-facebook-authorize-error-callback-not-called-when-user-presses-back
http://stackoverflow.com/questions/15877837/trigger-io-facebook-authorize-error-callback-not-called-when-user-presses-back

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.38 Released: 3rd April 2013

Bug fixes:

• fix for backwards compatibility: allow module configuration to set to false. NB this does not disable the
module, however! To disable a module, remove it from config.json or uncheck its checkbox in the Toolkit
App Config.

v1.4.37 Released: 3rd April 2013

Note: There was significant internal refactoring in this platform version: some functionality which previously worked
but was not explicitly supported has been removed. In particular, forge.ajax does not exist; neither do modules
which don’t work on particular build targets (e.g. topbar: Native top bar on web).

Features:

• update to Parse Android SDK v1.2.3 (https://parse.com/questions/androidcontentreceivercallnotallowedexception-
when-registering-for-push-notifications)

• launch images are always hidden after 5 seconds, to prevent apps appearing to hang for slow resources

Bug fixes:

• file module respects Reload updates when returning local URLs: file: File and Camera access

• Flurry custom events are properly sent: flurry: Analytics with Flurry

v1.4.36 Released: 27th March 2013

Bug fixes:

• re-installing iOS IPAs on top of existing installations caused hangs on launchimage in some situations

v1.4.35 Released: 20th March 2013

Features:

• can set minimum required iOS version to be 6.0: requirements: App requirements

• allow the web target Node.js app to be deployed at non-root paths
(http://stackoverflow.com/questions/15070765/)

Bug fixes:

• fix crash in API demo (https://github.com/trigger-corp/Forge-API-Demo/issues/7)

• fix playback of video and audio after Reload usage on iOS - note the Gotchas on Using Trigger.io Reload!

v1.4.34 Released: 12th March 2013

Bug fixes:

• fix slight inaccuracy when adding calendar events: modules-calendar

• fix race condition where tabbar buttons could be wrongly ordered: tabbar: Native tab bar

• fix modal view redirect on older versions of Android (http://stackoverflow.com/questions/15262840/)

• fix NullPointerException in urlhandler module urlhandler: Custom URL schemes
(http://stackoverflow.com/questions/13824961/)

• fix cross-device link error (http://stackoverflow.com/questions/11578443/)

134 Chapter 2. Features

https://parse.com/questions/androidcontentreceivercallnotallowedexception-when-registering-for-push-notifications
https://parse.com/questions/androidcontentreceivercallnotallowedexception-when-registering-for-push-notifications
http://stackoverflow.com/questions/15070765/
https://github.com/trigger-corp/Forge-API-Demo/issues/7
http://stackoverflow.com/questions/15262840/
http://stackoverflow.com/questions/13824961/
http://stackoverflow.com/questions/11578443/

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.33 Released: 6th March 2013

Bug fixes:

• application of Reload updates was broken on iOS devices

v1.4.32 Released: 4th March 2013

Features:

• support for subscription payments on Android: see payments: In-app payments

• support for using the forge APIs on trusted remote HTML pages: see Configuration for your app

Bug fixes:

• update to Android Parse SDK version 1.1.15 to fix http://stackoverflow.com/questions/14811733/

v1.4.31 Released: 28th February 2013

Features:

• new installationInfo API for Parse, by popular demand: see push: notifications (with Parse)

• pause Reload updates, and receive progress updates: see reload: Push updates to deployed apps

• create file fixtures when developing native plugins: see Working with files

• update Parse SDK to version 1.1.32

Bug fixes:

• benign stack trace on startup from urlhandler module

• enhanced date inputs on Android now fire on touchend rather than touchstart
(http://stackoverflow.com/questions/14551349/)

• fix minimum_version requirement for iOS

v1.4.30 Released: 15th February 2013

Bug fixes:

• handle Android gallery not including Exif data in photos

v1.4.29 Released: 30th January 2013

Bug fixes:

• sensible fallback if image processing fails on Android

v1.4.28 Released: 30th January 2013

Bug fixes:

• include ForgeFile.h in native plugin Inspector projects on iOS

2.3. Browser add-ons - see all... 135

http://stackoverflow.com/questions/14811733/
http://stackoverflow.com/questions/14551349/

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.27 Released: 29th January 2013

Features:

• Exif orientation data is used when displaying or uploading images on Android

• launch IE as original user after extension installation

• prefix plugin projects with name in Eclipse

• update Parse Android SDK to version 1.1.11

Bug fixes:

• forge.request was interacting badly with Reload in some situations on Android

• fix threading issues in barcode and Catalyst

• Parse broadcast channel was broken on Android

v1.4.26 Released: 17th January 2013

Note: Due to the switch to using Gson, the way to return non-primitive results from native plugins has changed: see
Communicating with native code

Features:

• create calendar events with the calendar module

• Use Gson for JSON parsing and serialisation for increased performance on Android

• new forge.file.saveURL API: file: File and Camera access

Bug fixes:

• IE activates properly on pages opened with target="_blank"

• Android datepicker activates for datetime-local inputs

• Android datepicker results are properly zero-padded

v1.4.25 Released: 14th January 2013

Bug fixes:

• support for large Android launchimages

• fix for NumberFormatException in Android contacts module

• facebook.ui result now has same schema as the JavaScript SDK

v1.4.24 Released: 18th December 2012

Features:

• you can run the iOS simulator at a specified version with simulatorfamily and simulatorsdk - see
Configuration for the tools

Bug fixes:

• Android launchimages are scaled properly on high pixel density screens

• HTTP 401 does not cause NullPointerException on Android when no username and password supplied

136 Chapter 2. Features

https://trigger.io/catalyst/

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.23 Released: 7th December 2012

Features:

• server-side code signing for IE extensions

• Android native date picker fires blur event when complete

• during development on Windows or Linux, iOS apps are only partially code-signed for performance

Bug fixes:

• fullscreen display didn’t work for holo theme Android devices

• Android native date picker follows W3C spec when returning values

• facebook.ui returns dialog outcome information on iOS

v1.4.22 Released: 30th November 2012

Features:

• support for IE 10 extensions

Bug fixes:

• Android native date picker results were off-by-one on the month

• unicode characters in app description caused build failures on some platforms

• running the “web” target repeatedly would cause address in use errors on OS X

v1.4.21 Released: 21st November 2012

Features:

• ability to set the background color behind Android launch images (docs)

Bug fixes:

• incorrect data was returned for emails by the contacts API on Android

• handle usage of unavailable APIs more gracefully

v1.4.20 Released: 7th November 2012

Features:

• cookies are persisted by default on Android

• Windows Phone builds are now done against the version 8 SDK

• launch image can be hidden manually (docs)

• support for iOS 6.1 beta

• native date / time pickers for Android (docs)

Bug fixes:

• fix issue where only Google contacts were returned by contact.selectAll

• modal views wouldn’t close when user hit back button on Android

2.3. Browser add-ons - see all... 137

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.19 Released: 29th October 2012

Features:

• Command-line tools bundled in Toolkit can update the Toolkit install

• native plugins v1 - see Native plugins

• Flurry analytics module: see docs

• update to Firefox Addon SDK 1.10

• ability to manually quit the app when the back button is pressed on Android - see event: Events

v1.4.18 Released: 15th October 2012

Bug fixes:

• “publish” permissions work properly with new Facebook SDK on iOS 6

v1.4.17 Released: 12nd October 2012

Features:

• support for using Linux for iOS builds: Developing iOS apps on Linux

• true native back buttons for the topbar module on iOS: topbar: Native top bar

• update to version 3.1.1 of the Facebook SDK for iOS for facebook: Facebook SDK access

• new selectAll and selectById methods in contact: Accessing contacts

• new Facebook API to check authentication status

• support for coloured status bar on iOS 6 (setTint in topbar: Native top bar)

• ability to create and use wireless distribution manifests for iOS Wireless distribution on iOS

Bug fixes:

• video uploads to Facebook API were failing

v1.4.16 Released: 1st October 2012

Warning: Due to a bug to do with resource caching in iOS 6, we’ve been forced to remove the applyNow
method from the Reload module.

Features:

• more intelligent diff made during Reload update: faster and less bandwidth consumed

• ability to build for iPad or iPhone/iPod only: requirements: App requirements

• post-build hooks: Using hooks

• hooks are passed the currently-building target as first command-line argument

• build and run iOS apps from Linux Developing iOS apps on Linux

Bug fixes:

• fix json2.js operation on IE9 running in IE7 compatability mode

• ability to set the same cookie several times in one request on web target

138 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

• localStorage and webSql databases are persisted correctly

v1.4.15 Released: 25th September 2012

Features:

• register custom URL schemes: urlhandler: Custom URL schemes

• beta of custom native plugins complete Native plugins

Bug fixes:

• non-ASCII characters in some config fields were causing build problems

• can run Firefox extensions automatically on Linux

• Android landscape launchimages properly used

• null values in multipart/form-data requests are not sent to server

v1.4.14 Released: 17th September 2012

Warning: To accommodate the iPhone 5, this platform version requires you to set the new iphone-retina4
configuration directive in the launchimage module.

Features:

• support for iOS 6 and iPhone 5

Bug fixes:

• fixed canvas drawImage crashing when using external resources

v1.4.13 Released: 4th September 2012

Features:

• consider build timestamps while Reloading so new installs don’t apply older updates

• add node_path local configuration option if Node.js is not on your path: Best practices

• programmatically control allowed app orientation: display: App display options

Bug fixes:

• fix POST encoding of objects in arrays http://stackoverflow.com/questions/12194600/forge-request-ajax-post-
data-as-json

• fix iPad landscape-mode launchimage distortion

• IE installer uses configured icon as branding

v1.4.12 Released: 24th August 2012

Features:

• option to disable hardware acceleration on Ice Cream Sandwich due to some rendering issues in libraries such
as KendoUI

• iOS: automatically use distribution developer certificate with distribution provisioning profile and vice versa

Bug fixes:

2.3. Browser add-ons - see all... 139

http://stackoverflow.com/questions/12194600/forge-request-ajax-post-data-as-json
http://stackoverflow.com/questions/12194600/forge-request-ajax-post-data-as-json

Forge - Cross-browser Add-on Development Tools, Release 1.4

• updated iOS app install utility for better Mountain Lion support, faster operation and increased reliability

• Forge-based IE extensions can be disabled in IE 9

• initial connectionStateChanged event fired even earlier

• tabbar and topbar buttons aren’t duplicated by Reload

• content is zoomable and pannable in Android modal views

• cookies containing double quotes work when using web target with Opera

v1.4.11 Released: 22nd August 2012

Bug fixes:

• fix Facebook API regression, where authentication flows didn’t return to the app

• fix Express’s zlib dependency on Heroku http://stackoverflow.com/questions/11995324/zlib-module-not-
playing-nicely-with-web-deployment

v1.4.10 Released: 20th August 2012

Features:

• can set name of files uploaded through request.ajax

• better Reload download logic to speed up update deployment

Bug fixes:

• fullscreen mode incompatible with orientation limitation on iOS

• unicode characters in app config could cause problems in some situations

• prerendered icons for iOS were broken

v1.4.9 Released: 13th August 2012

Features:

• re-use of Reload files already present on iOS device

Bug fixes:

• version number updated properly in IE setup scripts

• resource loading on iOS improved using Reload

• tools.getURL needed adjustment for Reload

v1.4.8 Released: 8th August 2012

Bug fixes:

• relative resource paths in CSS files on iOS

• make AVD creation more resilient to failure

• handle lack of JRE more gracefully

• force IE popups to the foreground

140 Chapter 2. Features

http://stackoverflow.com/questions/11995324/zlib-module-not-playing-nicely-with-web-deployment
http://stackoverflow.com/questions/11995324/zlib-module-not-playing-nicely-with-web-deployment

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.4.7 Released: 7th August 2012

Bug fixes:

• playback of locally bundled media files fixed on iOS

• loading locally bundled resources in modal views fixed on iOS

• fixed incompatibility between iOS contact module and MS Exchange

v1.4.6 Released: 2nd August 2012

Features:

• Facebook authentication details returned as parameter to facebook.authorize

Bug fixes:

• minimum_version configuration on Android was causing build problems for some

• remove dependency on Express 2.5.0 for web target

• remove default orientation configuration and fix Android “any” mode

v1.4.5 Released: 1st August 2012

Bug fixes:

• ensure focus events work properly for popup windows on IE

v1.4.4 Released: 31st July 2012

Bug fixes:

• fix internal generateQueryString method on IE

v1.4.3 Released: 26th July 2012

Bug fixes:

• creating modal dialogs was broken on some older versions of Android

v1.4.2 Released: 24th July 2012

Bug fixes:

• enable use of modal views immediately after app launch on iOS

• modules are fully disabled by default, unless explicitly enabled

v1.4.1 Released: 20th July 2012

Features:

• support retina scaled images for iPad

• integration with native Facebook SDKs

• use enableHighAccuracy in iOS geolocation API

Bug fixes:

2.3. Browser add-ons - see all... 141

Forge - Cross-browser Add-on Development Tools, Release 1.4

• topbar and tabbar buttons are correctly re-added after app is closed on Android

• network activity indicator properly cleared after closing iOS modal views

v1.4.0 Released: 17th July 2012

Features:

• Reload

• lifecycle events (appPaused and appResumed docs)

• barcode scanning module: barcode: Barcode / QR Code scanner

• use Chrome manifest version 2 (see requirements: App requirements)

• fullscreen support (display: App display options)

v1.3

Supported Targets

• Android

• iOS

• Windows Phone

• Chrome

• Firefox

• Safari

• Internet Explorer

• Web

Changes from v1.2 The v1.3 platform release changes the format of config.json to put most optional configuration
into separate modules, this allows Forge to provide more features without having them all enabled for every app.

By default all of the features from v1.2 will be enabled, but these can be disabled if not required. Disabled modules
allow the Forge generation process to remove code from your app, making it smaller. Modules also define the permis-
sions your app will required, so disabled unused modules will reduce the permissions users are prompted for when
installing your app.

Upgrade Instructions To upgrade from v1.2 to v1.3 your config.json file needs to be updated, this can be
done automatically by running forge migrate with the command line tools, or choosing to migrate from Trigger
Toolkit.

The migration process will automatically update your config.json file to v1.3, if for any reason it doesn’t work a
backup of your config.json file will be saved as config.json.bak.

v1.3.23 Released: 20 July 2012

Features:

• migration script to upgrade to v1.4

142 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.3.22 Released: 18th July 2012

Bug fixes:

• launchimage on iPad is correctly sized

v1.3.21 Released: 12th July 2012

Features:

• network activity spinner / progress bar shown while loading modal views

Bug fixes:

• connectionStateChanged callbacks are fired at least once

• request.ajax response contains the body data for non-200 status codes on Android

v1.3.20 Released: 12th July 2012

Bug fixes:

• re-enable running Firefox automatically

• clean up some extra files produced by new Android SDK

v1.3.19 Released: 3rd July 2012

Bug fixes:

• forge.prefs fix for Internet Explorer

v1.3.18 Released: 3rd July 2012

Features:

• allow ad-hoc builds to be created on iOS

Bug fixes:

• update to latest Parse Android SDK for push notifications fixes

• panel sizing fix for Firefox

v1.3.17 Released: 22nd June 2012

Bug fixes:

• a Python fix which makes us less incompatible with 2.6 - note 2.7 is still the only officially supported Python
version!

• Windows Phone IE does not support setZeroTimeout

v1.3.16 Released: 18th June 2012

Bug fixes:

• “no such file or directory” during Android tasks on some Linux setups

• Node.js directory locking issue on Windows

• lots of Trigger Toolkit UI tweaks and fixes

2.3. Browser add-ons - see all... 143

Forge - Cross-browser Add-on Development Tools, Release 1.4

• allow for running Forge builds on non-root mount point

v1.3.15 Released: 11th June 2012

Features:

• better Q & A system for Trigger Toolkit

• build for iOS on Windows: http://trigger.io/cross-platform-application-development-blog/2012/05/31/work-on-
what-you-want-week-at-trigger-io/

• iframes are allowed on iOS now - embed media players, buttons and so on

Bug fixes:

• about:blank caused app to crash in iOS simulator

• logcat process were left hanging after runs

v1.3.14 Released: 30th May 2012

Features:

• can install apps to SD card on Android

Bug fixes:

• default value for file character encoding guess

• handle non-ASCII command line parameters

• playVideo callback is fired after video finishes and focus returns

• mailto: links handled properly in modal views

v1.3.13 Released: 22nd May 2012

Features:

• show / hide topbar and tabbar programmatically

• specify minimum version of iOS and Android

• complete forge.file support on Windows Phone 7

• in-app purchase support

• updated Firefox SDK

v1.3.12 Released: 17th May 2012

Features:

• .template/platform_version.txt created as part of build process

• button popups on IE are moved and resized intelligently

Bug fixes:

• index not required for tabbar.addButton

• large number of tabbar buttons handled properly

• callbacks firefox after tabbar and topbar buttons added

144 Chapter 2. Features

http://trigger.io/cross-platform-application-development-blog/2012/05/31/work-on-what-you-want-week-at-trigger-io/
http://trigger.io/cross-platform-application-development-blog/2012/05/31/work-on-what-you-want-week-at-trigger-io/

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.3.11 Released: 15th May 2012

Features:

• disable icon glossiness on iOS (docs)

• file.getLocal and file.string support in non-mobile targets (docs)

• Catalyst shows waiting message until debugger has connected

Bug fixes:

• run app on Android emulator, when emulator has been started automatically

• prebuild hooks are found and run correctly

v1.3.10 Released: 10th May 2012

Features:

• full video support on Android and iOS

• topbar module on Windows Phone

Bug fixes:

• callbacks sometimes not invoked after tabbar.addButton

• window.forge initialisation sometimes got stuck in a loop

• NullPointerException sometimes occurring when using console.log on Android

• prevent BroadcastReceiver intent leak on Android

• prevent console windows popping up during Toolkit builds

v1.3.9 Released: 8th May 2012

Features:

• greatly improved error messages and status codes for failed HTTP requests on Android

v1.3.8 Released: 7th May 2012

Bug fixes:

• handle change in status codes returned by Heroku API

v1.3.7 Released: 6th May 2012

Features:

• Windows Phone 7 support: partial

Bug fixes:

• ensure iOS permission dialog shown on main thread: was sometimes not visible

• fix segfault which occurred in some situations showing camera on iPhone running v5.1

2.3. Browser add-ons - see all... 145

http://trigger.io/catalyst/

Forge - Cross-browser Add-on Development Tools, Release 1.4

v1.3.6 Released: 3rd May 2012

Bug fixes:

• character encoding guessing now deals with empty files

• ensure connection change event is fired soon after app startup

• callbacks are properly fired for camera usage (iOS) and modal views (Android)

• launch images on Android

v1.3.5 Released: 2nd May 2012

Features:

• connection status information in forge.is.connection, as well as connection state change events

• Web SQL support

Warning: Web SQL is not supported in all browsers or on all devices: http://caniuse.com/#search=websql

v1.3.4 Released: 29th April 2012

Bug fixes:

• Parse push notifications were not recieved on Android in some situations

v1.3.3 Released: 27th April 2012

Features:

• styling for modal views on mobile

• better incremental builds: faster development cycle in normal conditions

Bug fixes:

• authentication loop occurring in some situations when deploying code to Heroku

• users cancelling out of iPad gallery now fires the error callback

• support for nested JavaScript objects sent through forge.request.ajax

• incorrect keystore password produces clearer error message

v1.3.2 Released: 19th April 2012

Bug fixes:

• handle the native top bar not being styleable on older iPhones

• disable troublesome Windows Phone builds temporarily

v1.3.1 Released: 17th April 2012

Features:

• pre-build hooks

• re-use server-side builds, improving forge build performance

146 Chapter 2. Features

http://www.w3.org/TR/webdatabase/
http://caniuse.com/#search=websql

Forge - Cross-browser Add-on Development Tools, Release 1.4

Bug fixes:

• correct usage of homepage, update_url, author and icons entries from your config.json in various
browser extension manifests

• quitting Android 2.1 app with the back button was causing app crash

• push notifications with Parse on iOS were not enabled properly

• process suspended while looking for Android device on Linux

• better handling of location permission denied after image capture on iOS

v1.3.0 Released: 5th April 2012

Features:

• button module on IE

• getLocal function in file module

• native bar at bottom of app: tabbar module

• ask for the minimum set of required permissions on Android

v1.2

Supported Targets

• Chrome

• Android

• Firefox

• iOS

• Web

v1.2.4 Released: 27th April 2012

2.3.3 Tools

This section contains reference documentation on how to use our tools to develop applications for the Forge platform.

The Trigger.io Toolkit

The Trigger.io Toolkit is a graphical interface to start / stop builds, package your app, push Reload updates to your
users and create native plugins.

It offers more functionality than the command-line tools and is the preferred user interface for new and existing
Trigger.io users.

Installing the Trigger.io Toolkit

You can download the Toolkit installer from https://trigger.io/forge/toolkit/.

Follow the OS-specific instructions on the download page to install and start the Toolkit.

2.3. Browser add-ons - see all... 147

https://trigger.io/forge/toolkit/

Forge - Cross-browser Add-on Development Tools, Release 1.4

Common tasks in the Trigger.io Toolkit

Creating a new project Open the toolkit and click the “Create a new project” button.

A page on our website will be opened so that you can enter the new project name and select a project plan.

Creating a new app Enter into a project by clicking on its name, then click the “Create new app” button (shown in
pink).

If one of your colleagues has sent you the source code for an existing app, chose “Im-
port existing app” (shown in blue) and navigate to where the source is on your computer.

148 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Creating a new plugin Inside a project, click the “Create new plugin” button.

This option will only be available if plugins are enabled for this project - contact support@trigger.io for more informa-

tion.

2.3. Browser add-ons - see all... 149

mailto:support@trigger.io

Forge - Cross-browser Add-on Development Tools, Release 1.4

Changing the configuration for an app Enter into an app by clicking on its name, then click on the “App config”
tab.

See Configuration for your app for more information about how to use this interface.

Running an app on an iOS device You may want to first update your Toolkit configuration to run the app on the
right device or emulator.

Enter the Local config tab (marked in pink) then update the three settings concerning running iOS apps (marked in
blue).

See Configuration for the tools for more information about how to use this interface.

150 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Then, click on “iOS” in the “Run” section to start the app running.

2.3. Browser add-ons - see all... 151

Forge - Cross-browser Add-on Development Tools, Release 1.4

Running an app on Android In the same way as iOS, extra configuration parameters are available for Android in
the Local config tab, but you normally don’t need to update these.

Just click on “Android” in the “Run” section to start the app running on a device (if one is attached) or to start the emula-

tor.

Command-line tools

The command-line tools are supplied to enable scripted usage of the Trigger.io Forge build service. For normal usage,
it is expected that the Trigger.io Toolkit will be easier and more powerful.

There are four main commands when using Trigger.io:

• forge create

• forge build

• forge run

• forge package

Reload has a number of commands which can be run from the command line:

• forge reload list

• forge reload create

• forge reload push

These are explained in more detail in Using Trigger.io Reload.

There are also some additional commands which may be used:

• forge check: Perform some sanity checks on the app, including parsing the Javascript to check for syntax
errors.

152 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

• forge migrate: Migrate to the next version of Forge, you will be prompted to run this when it is available.

Run any command with the --help argument to see more information about the particular command.

Note: All commands can be run with the --verbose parameter, to enable the display of more output.

Location of forge executable

To run forge commands use the forge executable in your Toolkit installation:

Windows

C:\> ‘‘C:\Users\<Your Username>\AppData\Local\Trigger Toolkit\forge.exe’’

Mac users

$ $HOME/Library/Trigger\ Toolkit/forge

Linux users
$ ~/TriggerToolkit/forge

Command-line parameters

Parameters to the forge commands can be given as command-line options, or stored in a file.

Command-line options are dot-separated names, like --android.sdk /path/to/android-sdk.

A complete list of command-line options, is given in Available Forge Parameters.

Configuration for your app

The configuration of your app is stored in a file called config.json. It determines basic settings for your app, such
as the name users will see, as well as module config which allows various parts of Forge to be enabled or configured
individually.

Modifying config.json

You can edit your app config through the Toolkit UI by clicking the App config tab in the top right of the app screen:

2.3. Browser add-ons - see all... 153

Forge - Cross-browser Add-on Development Tools, Release 1.4

Alternatively, you can edit config.json directly using your preferred text editor: it is located in the src directory.
Be careful to maintain correct JSON syntax whilst doing this.

Modules

Most of the configuration for apps is available in the form of modules, you can find a list of modules in these docs.
Each module your app uses needs to be included in your config.json, some modules can simply be given the
value true to be enabled, others require their own configuration options. Each modules configuration options can be
found within its documentation page.

Note: To disable a module, uncheck its checkbox in the Toolkit App Config view, or remove it from your
config.json file: setting a module’s config value to false doesn’t disable the module.

Field summary

Below is a template of a basic config.json file with links to a detailed description of each field.

{
‘‘˙0nameconfig:field0namename’’: ‘‘My App’’,
‘‘˙0authorconfig:field0authorauthor’’: ‘‘Forger’’,
‘‘˙0descriptionconfig:field0descriptiondescription’’: ‘‘My First Forge App.’’,
‘‘˙0versionconfig:field0versionversion’’: ‘‘1.0’’,
‘‘˙0platform0versionconfig:field0platform0versionplatform_version’’: ‘‘v1.3’’,
‘‘˙0homepageconfig:field0homepagehomepage’’: ‘‘http://example.com‘‘’’,
‘‘˙0modulesconfig:field0modulesmodules’’: {},
‘‘˙0partnersconfig:field0partnerspartners’’: {},
‘‘˙0config0versionconfig:field0config0versionconfig_version’’: ‘‘2’’,
‘‘˙0trusted0urlsconfig:field0trusted0urlstrusted_urls’’: [‘‘http://example.com/use_forge/*’’]

}

Fields

This section includes more detailed information on the contents of each field, with links to other documentation where
appropriate.

154 Chapter 2. Features

http://example.com
http://example.com/use_forge/

Forge - Cross-browser Add-on Development Tools, Release 1.4

name This will be the name for your app, a short, descriptive name is recommended as in some situations long
names may be cut off.

author This text will be displayed as the author or creator of the app, depending on the platform.

description Optional.

A longer description of what your app does. This description may be displayed to users during and after installation,
to let them know what the app does.

version The version of your app. It must be formatted as up to three dot-separated numbers, e.g. 1.1 or 0.99.9.

platform_version As the Forge platform grows and improves, we may deprecate and remove some functionality.
To prevent these updates from breaking your app, use this field to specify the version of the Forge platform you wish
to build on top of. See Release Notes for more information about platform versions.

homepage Optional.

Your website, or location of more information about this app.

partners Configuration for 3rd party integration. For more information check our partners.

modules Enable and optionally configure optional modules. For more information check individual modules.

config_version An internally used reference to keep track of changes to the Forge config file schema, you shouldn’t
need to change this property manually.

trusted_urls Mobile only

An array of trusted external URL match patterns. If your navigates to a URL matching one of these patterns, JavaScript
on that page will be able to use the forge APIs.

Configuration for the tools

Configuration settings concerning things like developer certificates shouldn’t be shared across a whole team. This
local configuration is stored in a file called local_config.json, and can be updated through the “Local Config”
tab in the Trigger Toolkit.

The file must be located along side the src/ directory, for example:

my-app/
development/
src/
local_config.json

If you’re using the command-line, all local config can be overriden with command-line switches too.

2.3. Browser add-ons - see all... 155

Forge - Cross-browser Add-on Development Tools, Release 1.4

Modifying local_config.json

You can edit your local configuration through the Toolkit UI by clicking the Local config tab in the top right of the app
screen:

Alternatively, edit the file directly using your preferred text editor.

Format of local_config.json

local_config.json is a JSON file which specifies various runtime parameters of the forge commands.

There is a general section, for parameters which are not linked to any particular target, and then per-target sections:
ios, android and so on:

{
‘‘˙0config:local0conf0generaltools/local0config:local0conf0-

generalgeneral’’: {
‘‘reload’’: {

‘‘external’’: true
}

},
‘‘˙0config:local0conf0iostools/local0config:local0conf0iosios’’: {

‘‘device’’: ‘‘simulator’’,
‘‘profiles’’: {

‘‘DEFAULT’’: {
‘‘provisioning_profile’’: ‘‘/home/trigger/development.mobileprovision’’

},
‘‘release’’: {

‘‘provisioning_profile’’: ‘‘/home/trigger/release.mobileprovision’’,
‘‘developer_certificate’’: ‘‘iPhone Distribution’’,
‘‘developer_certificate_path’’: ‘‘C:\developer.pfx’’,
‘‘developer_certificate_password’’: ‘‘myp4ssw0rd’’

}
}

},
‘‘˙0config:local0conf0androidtools/local0config:local0conf0-

androidandroid’’: {
‘‘sdk’’: ‘‘/opt/local/android-sdk’’,

156 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

‘‘profiles’’: {
‘‘DEFAULT’’: {

‘‘keystore’’: ‘‘/home/trigger/development.keystore’’,
‘‘keyalias’’: ‘‘trigger’’

},
‘‘release’’: {

‘‘keystore’’: ‘‘/home/trigger/release.keystore’’,
‘‘keyalias’’: ‘‘trigger’’

}
}

}
}

A note on file paths You can specify files using a path relative to the current directory, or you can use an absolute
path.

On Windows, you will need to escape the backslashes in paths for your configuration file, e.g.:

{
"andoid": {

"sdk": "C:\\Users\\Tim Monks\\android-sdk-windows"
},
"profiles": {

"DEFAULT": {
"keystore": "..\\default.keystore"

}
}

}

Profiles In the target-specific sections (e.g. ios, android), you can use profiles.

Profiles allow for quick switching between configuration settings at different phases of your development.

For example, you need to use different credentials to sign iOS apps when creating builds for testing and builds for
deployment to the App Store.

By creating a different profile in this section, you can quickly change between collections of configuration settings by
naming a profile with the --profile command-line argument.

If no --profile argument is given, Forge attempts to use a profile called DEFAULT - it’s case sensitive, so you can
create and use a profile called default if you wish, for example.

Important: When supplying command-line overrides to profile settings, they take a form like
--ios.profile.name value, where name is the setting name to be overidden, and value is the setting value.

Available Forge Parameters

general General parameters are configuration settings not related to any particular target.

There is currently only one possible setting in this section to enable Reloads from external CDNs:

"reload": {
"external": true

}

2.3. Browser add-ons - see all... 157

Forge - Cross-browser Add-on Development Tools, Release 1.4

ios This section contains settings pertaining to building and running Forge apps for iOS.

The device to use when running iOS apps is not profile-specific:

Config Option Command-line Option Meaning
device –ios.device Either simulator, device or a specific device ID
simulatorfamily –ios.simulatorfamily Either ipad or iphone
simulatorsdk –ios.simulatorsdk E.g. 5.1 or 6.0

All other settings should be placed inside a profile: available settings are shown below:

Profile Config Option Command-line Option Meaning
provisioning_profile –ios.profile.provisioning_profile Provisioning Profile to embed into your iOS

app
developer_certificate –ios.profile.developer_certificate Name of certificate to sign iOS app with (OS

X only)
devel-
oper_certificate_path

–
ios.profile.developer_certificate_path

Path to developer certificate (Windows only)

devel-
oper_certificate_password

–
ios.profile.developer_certificate_password

Password for given developer certificate
(Windows only)

For more information about creating provisioning profiles, see Creating provisioning profiles.

Note: For more information about building iOS apps on Windows, see Developing iOS apps on Windows.

android Use this section for settings relating to building and running Forge apps for Android.

The location of the Android SDK is not profile-specific:

Config Option Command-line Option Meaning
sdk –android.sdk Path to the Android SDK on your machine.
device –android.device Device identifier to run your app on, e.g. 323406C1AD9090EC
purge –android.purge Completely reset all state of the app before running.

The other settings should be in a profile:

Profile Config Option Command-line Option Meaning
keystore –android.profile.keystore Path to your keystore
keyalias –android.profile.keyalias Alias given to your key in the keystore
storepass –android.profile.storepass Password for your keystore
keypass –android.profile.keypass Password for your key

We recommend using the command-line switches for storepass and keypass, rather than placing them in a
configuration file, for security reasons.

Internet Explorer Use this section for settings relating to building and packaging Forge apps for Internet Explorer.

Profile Config Option Command-line Option Meaning
developer_certificate –ie.profile.developer_certificate Filename of your developer certificate (e.g.

cert.pfx)
developer_certificate_path –

ie.profile.developer_certificate_path
Path to your developer certificate

devel-
oper_certificate_password

–
ie.profile.developer_certificate_password

Password for given developer certificate

158 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Using Trigger.io Reload

Trigger.io Reload allows you to update the HTML, CSS and JavaScript in your app for your users without you needing
to push an App Store update or your users needing to re-install the app.

You can push your app content updates via Trigger.io’s servers for app sizes up to 250Mb. For larger content, or if you
want to host content that is to be re-used in your web app or other apps, then you can Reload with a 3rd party CDN
like Rackspace Cloud Files.

Read about the Reload module to enable it and learn about the concepts.

Once you have the module enabled you can push updates to your existing users through the Toolkit UI, command-line
tools or standalone build API.

How to reload an update with the Toolkit UI

Use the Reload tab in the Toolkit to manage your streams and push updates

In this tab, you can manage your streams of users - this allows you to push different code to different users for A/B
testing. By default there is a single stream which enables you to push to all users without any extra configuration.

You can also see your configurations here - how many unique users we have detected that are using your app built
against which minor version of the Forge platform.

Once you have built and tested new code that you wish to deploy, you can click the ‘Push to stream’ link from this
view in order to push the update.

Using reload from the command line

Some of the functionality of reload can be accessed via the command line, which allows automation of certain tasks,
such as pushing an update. The commands available are:

• forge reload list: This will list all available streams for your app

• forge reload create <streamname>: This will create a stream called <streamname> which can
then be pushed to.

2.3. Browser add-ons - see all... 159

Forge - Cross-browser Add-on Development Tools, Release 1.4

• forge reload push <streamname>: This will push the last build to <streamname>, it is likely you
will want to run forge build reload directly before this command in order to build your current src
folder.

Reloading app content from Rackspace Cloud Files or other CDN

Concepts If you are building a content-heavy app including large images or videos it is recommended that you host
the app content and Reload it from a CDN like Rackspace Cloud Files.

You must use a CDN with Reload if your app size is greater than 250Mb.

CDNs are optimized for download performance according to your users’ locations. Hosting your app content on a
CDN with Reload enables you to push large content files down to your app in the background, and link to the same
content from your web app or other mobile apps.

Using Reload with a CDN enables you to overcome the challenges of large content in mobile apps. Your app must:

• Be small to allow for fast download onto the device

• Have content local to the app for fast performance and a great offline experience

• Be able to access new content to keep the user engaged

With Reload and a CDN you can have a small app hosted on the App Store or Google Play which downloads large
content in the background.

The process When you push a Reload via a CDN the end-user experience is the same and you are able to use the
same Reload APIs in your app code.

The process for pushing the Reload has some extra steps. You can see these steps in action with our screencast tutorial
demonstrating Reload integrated with Rackspace Cloud Files.

The process is:

1. Enable Reloads from a CDN in your Local Config

2. Create a Reload manifest file

3. Upload the manifest file and files to be reloaded to your CDN and make them publicly available

4. Push your Reload using the Toolkit UI or standalone build API

You can use the standalone build API to push a Reload hosted on a CDN in which case you must perform steps 2
and 4 manually at the command-line. You can find detailed instructions for those steps by clicking through the links
against them above.

But the simplest way is to use the Toolkit UI which automates steps 1 and 4.

How to push a Reload hosted on a CDN via the Toolkit Having enabled Reloads from a CDN in your Local
Config:

• Go to the Reload tab in your Toolkit, select the config and stream you would like to push to

• Click ‘Push to stream’ and you will be prompted to provide a CDN URL and Manifest URL

160 Chapter 2. Features

http://www.rackspace.com/cloud/files/
https://vimeo.com/62121831
https://vimeo.com/62121831
https://github.com/trigger-corp/make_manifest

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Once you’ve entered the CDN URL, you can use ‘Generate Manifest’ button to automatically create the manifest
files and app files in a temporary directory. You should upload all of those files to your CDN.

• Clicking ‘Generate Manifest’ also populates the Manifest URL field. You must make sure that the url you
specified in ‘CDN URL’ is in fact the root url where your manifest and other files will be hosted.

• Finally, click the ‘Push’ button to start the Reload

Gotchas

Currently, pushing a Reload update will cause iOS devices to copy files out of the installed app bundle into a secondary
area. This is due to sandboxing rules which prevent us directly accessing files in your installed app after a Reload has
been completed. In order to avoid your app taking too much storage space on the device, it’s recommended you
distribute larger files using something like forge.file.saveURL, rather than including them in the app bundle.

We are actively looking for a way to avoid this limitation.

Standalone Build API

Although we expect most users to interact with Trigger.io Forge through our command-line tools and browser-based
toolkit, we also offer a standlone build API to be used programmatically from other environments.

Using this build API, all of your HTML, CSS and JavaScript is uploaded to our server, along with keys and certificates
required for signing purposes. Once the build is complete, the packages can be downloaded for a limited time period.

Due to the nature of this API, builds may take longer to complete when compared to conventional usage. If you are
able to use the Trigger tooling, it is recommended to do so.

2.3. Browser add-ons - see all... 161

Forge - Cross-browser Add-on Development Tools, Release 1.4

API details

Package An example form is provided here: https://trigger.io/standalone/package

The various fields are described below:

Name Label Expected value
email email address The email address you used to sign up to Trigger.io
pass-
word

Trigger.io
password

The password you gave when you signed up for Trigger.io

src_zip src folder zip A zip file containing the contents of your src folder. The zip should not include the
src folder itself; i.e. config.json should be at the root of the zip file.

and_keystoreAndroid
keystore

The file created by the keytool utility. See Creating a keystore.

and_storepasspassword for
Android
keystore

The password needed to unlock your keystore.

and_keyaliasalias for
Android key

The name of the key in your keystore.

and_keypasspassword for
Android key

The password for the individual key in your keystore.

ios_certificateexported iOS
certificate

A .p12 file containing your exported iOS developer certificate. On Macs, use
Keychain Access; for Windows, see Creating a signing certificate.

ios_passwordpassword for
iOS certificate

Password you used when exporting your iOS developer certificate.

ios_profileiOS provision-
ing_profile

A .mobileprovision file you have downloaded from the iOS provisioning portal.

Usage:

To package your app, use the /standalone/package endpoint:

> curl \
--header ’Accept: application/json’ \
--form email=james@trigger.io \
--form password=’my password’ \
--form src_zip=@my_app.zip \
--form and_keystore=@debug.keystore \
--form and_storepass=android \
--form and_keyalias=androiddebugkey \
--form and_keypass=android \
-X POST \
’https://trigger.io/standalone/package’

{"id": "b0a05ec7-1683-40cc-b80b-716ba5d5067a", "result": "ok"}

This has started the packaging process and given you an id which you can use to track the ongoing processing:

> curl \
--header ’Accept: application/json’ \
--data email=james@trigger.io \
--data password=’my password’ \
-G \
’https://trigger.io/standalone/track/package/b0a05ec7-1683-40cc-b80b-716ba5d5067a’

{"info": {"output": ""}, "state": "BUILDING", "id": "38b63a52-a35f-49fe-932a-39db3d82951a", "result": "ok"}

At this point, the build has started; repeated calls to /standalone/track/package will show when the process-
ing has completed:

162 Chapter 2. Features

https://trigger.io/standalone/package

Forge - Cross-browser Add-on Development Tools, Release 1.4

> curl \
--header ’Accept: application/json’ \
--data email=james@trigger.io \
--data password=’my password’ \
-G \
’https://trigger.io/standalone/track/package/b0a05ec7-1683-40cc-b80b-716ba5d5067a’

{"info": {
"files": {

"android": "https://trigger.io/media/993100fe3aa844c3ad11575e11aeb9fc/demo-1338404961.apk"
},
"output": "[INFO] Forge tools running at version 3.3.0\n ..."

},
"state": "SUCCESS",
"id": "38b63a52-a35f-49fe-932a-39db3d82951a",
"result": "ok"}

We’ve formatted the last response for ease of viewing: the state property transitioning to SUCCESS is the key point.

You are able to download the generated files from the URLs specified in the files hash.

Reload An example form is provided here: https://trigger.io/standalone/reload/push

The various fields are described below:

Name Label Expected value
email email address The email address you used to sign up to Trigger.io
password Trigger.io password The password you gave when you signed up for Trigger.io
project_id ID of your project The ID of your project which you can find on your account page
uuid UUID of your app The unique identifier for your app which you can see in your app’s

src\identity.json file
stream stream to push to The name of the stream e.g. default
mani-
fest_url

URL to your
manifest file

The url to the manifest file which you generated. See the Reload tools docs
for details

con-
fig_json

config.json file The src/config.json file in your app directory

Usage:

To push a Reload to your app, use the /standalone/reload/push endpoint.

This is designed to be used with with a 3rd party CDN hosting the files to be Reloaded:

> curl \
--header ’Accept: application/json’ \
--form email=james@trigger.io \
--form password=’my password’ \
--form project_id=’18’ \
--form uuid=’362f74be8f4e11e2843012313d00dc45’ \
--form stream=’default’ \
--form manifest_url=’http://7bda29eaef66b400b7a3-f7a161a32968fd6c080a7ab168500005.r25.cf2.rackcdn.com/bb6131eb1318e34a8cd4a0f4c2e4efb8919a3f23’ \
--form config_json=’@src/config.json’ \
-X POST \
’https://trigger.io/standalone/reload/push’

{"result": "ok", "id": 6583, "manifest": "http://7bda29eaef66b400b7a3-f7a161a32968fd6c080a7ab168500005.r25.cf2.rackcdn.com/bb6131eb1318e34a8cd4a0f4c2e4efb8919a3f23"}

At this point, the Reload has been pushed successfully and end-users will see the new files being used in their app
once they have been downloaded when they next switch focus back to the app.

2.3. Browser add-ons - see all... 163

https://trigger.io/standalone/reload/push
https://trigger.io/account

Forge - Cross-browser Add-on Development Tools, Release 1.4

Working behind a proxy

With the forge command line tool

If you’re having trouble running the tools behind a proxy server, you can modify forge_build.json in the
directory where you installed the forge tools to look like:

{
"main": {

"server": "https://trigger.io/api/",
"proxies": {

"https": "my.proxy.com:8080"
}

}
}

Note: Make sure to specify the proxy for https as all traffic to our services is over https.

With the Trigger Toolkit

As above, you need to modify forge_build.json to use a proxy for all https traffic. The location of this depends
on your operating system:

On Windows Vista/7 C:\Users\<Your User>\AppData\Local\Trigger Toolkit\build-tools\forge_build.json

On Windows 2000/XP C:\Documents and Settings\<Your User>\Local Settings\Application Data\Trigger
Toolkit\build-tools\forge_build.json

On OS X <your home directory>/Applications/TriggerToolkit.app/Contents/MacOS/build-tools/forge_build.json

Using the Python distribution <path to the Trigger Toolkit>/build-tools/forge_build.json

Excluding files from your builds

To exclude files and folders in src from being included in the output of forge build, you can write a set of
exclusion rules in src/.forgeignore. The following is an example .forgeignore file:

ignoreme.txt

*.swp
./tests/
.git/
./identity.json

There are two types of exclusion rules: rules that check the filename of each file and rules that check the path of each
file (relative to the src directory).

Excluding files based on their name: Any rule without a / symbol in it is a filename rule. If you want to exclude any
files called ignoreme.txt, the correct pattern to use is just ignoreme.txt as shown above.

Ignoring files with a specific extension: Filename rules support glob syntax, so you can have rules that only consider
part of the name. For example, *.swp will ignore index.html.swp and main.js.swp.

Ignoring all folders with a certain name (but not files): To exclude folders that match a rule but not files that match
the rule, just add a trailing / symbol. E.g. .git/ will exclude any folders called .git but include individual
files with the same name.

164 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Ignoring a file at a specific path: If you want to exclude a file at a particular location in your code, just specify the
path to it. E.g. ./identity.json will exclude identity.json at the top level of your src, but any
other files with that name will be included.

Paths support globs too, so e.g. ./temp/*.js will ignore all files matching *.js inside the temp folder.

Note: Windows users should make sure to always use / symbols as the folder separator (forward slashes) in your
forgeignore file, these will ensure the exclusion rules work across different platforms

Using hooks

To allow custom steps to be added to the Forge build process the Forge tools support hooks, which are scripts controlled
by you which Forge will run at specific points in the build. These scripts are placed in the specific hook folder within
a hooks folder in the top level of your app (next to src). For example placing hook.py in hooks/prebuild
would cause hook.py to be executed at the prebuild stage. Hooks are executed in alphabetical order.

Hooks types are defined by the file extension of the hook, the following hook types are currently supported:

• .py - Python hooks will be run by executing python hook.py <target>.

• .js - Node hooks will be run by executing node hook.js <target>.

• .sh - Shell hooks will be run by executing ./hook.sh <target> and will not work on Windows.

• .bat - Windows batch file hooks will be run by executing hook.bat <target> and will only work on
Windows.

Important: For .sh hooks, you must use a hashbang as the first line, or your hook will fail to execute.

Note: <target> will be replaced with the platform currently being built, i.e. ios or android.

Available hooks are:

• prebuild - The prebuild hook executes within the src directory before a build is run, however any changes
will not affect the src directory contents after the build is finished, only the built apps. This allows preprocess-
ing of files to occur.

• postbuild - The postbuild hook executes within the the development folder once a build has completed,
any changes made at this point will affect forge run and forge package until another build is run.

Examples

Below are a number of example hooks which can be pasted and either used as they are or as a starting point for creating
your own.

coffeescript.js
// Compile all coffee files in the current tree to js and delete originals

var cs = require("coffee-script");
var fs = require("fs");

files = fs.readdirSync(’.’);

var processDir = function (dir) {
fs.readdirSync(dir).forEach(function (file) {

2.3. Browser add-ons - see all... 165

http://en.wikipedia.org/wiki/Shebang_(Unix)

Forge - Cross-browser Add-on Development Tools, Release 1.4

var stat = fs.statSync(dir+"/"+file);
if (stat.isDirectory()) {

processDir(dir+"/"+file);
} else {

var fileParts = file.split(".");
if (fileParts[fileParts.length-1] == "coffee" && fileParts.length > 1) {

var script = fs.readFileSync(dir+"/"+file, "utf8");
fileParts[fileParts.length-1] = "js"
fs.writeFileSync(dir+"/"+fileParts.join("."), cs.compile(script), "utf8");
fs.unlinkSync(dir+"/"+file);
console.log("Compiled "+dir+"/"+file+" to "+dir+"/"+fileParts.join("."));

}
}

});
};

processDir(’.’);

Note: Make you have installed the coffee-script module for node: npm install coffee-script

less.js
// Compile all less files in the current tree to css and delete originals

var less = require("less");
var fs = require("fs");

files = fs.readdirSync(’.’);

var processDir = function (dir) {
fs.readdirSync(dir).forEach(function (file) {

var stat = fs.statSync(dir+"/"+file);
if (stat.isDirectory()) {

processDir(dir+"/"+file);
} else {

var fileParts = file.split(".");
if (fileParts[fileParts.length-1] == "less" && fileParts.length > 1) {

var script = fs.readFileSync(dir+"/"+file, "utf8");
fileParts[fileParts.length-1] = "css"
fs.unlinkSync(dir+"/"+file);
less.render(script, function (e, css) {

fs.writeFileSync(dir+"/"+fileParts.join("."), css, "utf8");
console.log("Compiled "+dir+"/"+file+" to "+dir+"/"+fileParts.join("."));

});
}

}
});

};

processDir(’.’);

Note: Make you have installed the less module for node: npm install less

166 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Developing iOS apps on Windows

Forge allows the development of iOS apps on Windows without the use of an OS X machine. To do this you will need
a development-enabled physical iOS device and an iOS developer account. In order to sign your application (which
is required to install it onto the device, even for testing), we provide a remote signing service, which your app will be
sent to, signed and returned as part of the forge run ios and forge package ios command.

Note: Your iOS device must be enabled for development before our Windows tools can view logging output. This
means attaching it to an OS X machine and selecting “Enable for development” in the Xcode organizer.

If you’re not able to do this, you can still install apps onto the device, and use the iPhone Configuration Utility to view
log output (http://support.apple.com/downloads/#iphone)

Setting up Forge to run iOS apps

Requirements:

• Apple iOS developer account.

• iTunes or iPhone Configuration Utility installed on the machine you are going to develop on

• An iOS device connected via USB to the machine you wish to develop on

In order to sign your application you need to provide us with the following:

• A signing certificate and password

• A provisioning profile

Both of these can be created and managed from the Apple iOS provisioning portal, which should be accessible from
the iOS developer center: https://developer.apple.com/ios/. The instructions on that site are for OS X, more detailed
instructions for creating a developer certificate on Windows are included below.

Once these are setup you should be able to use forge run ios to install the app on your device and see log output
in the terminal on your computer.

Creating a signing certificate To create a certificate you need to generate a certificate signing request, in Windows
this can be done by following these steps:

• Create a file request.txt with the following content, replacing Connor Dunn with the name registered to
your Apple Developer account:

[NewRequest]
Subject="cn=Connor Dunn,o=User"
RequestType=pkcs10
KeyLength=2048
Exportable=TRUE

• Run the following command in the same directory as request.txt: certreq -new request.txt

• On the iOS provisioning portal site choose to create a new certificate and upload the file you just created

• Your certificate request should be approved shortly: when it is, download and open the certificate file. Windows
should prompt you to install the certificate.

• Once installed, run the command certmgr.msc: this should open a certificate management tool. In this tool
browse to Personal certificates, you should see the iPhone Developer certificate you just installed.

2.3. Browser add-ons - see all... 167

http://support.apple.com/downloads/#iphone
https://developer.apple.com/ios/

Forge - Cross-browser Add-on Development Tools, Release 1.4

• You should be able to right click on the certificate and choose All tasks -> Export. Make sure you export the
private key as part of the certificate when following the wizard. The password you supply will be the one you
need to provide to Forge, and prevents unauthorized users from using the certificate if they were to come into
possession of the certificate file.

• You should now be able to configure the developer_certificate_path and
developer_certificate_password in your local_config.json file.

Note: See Configuration for the tools for more information on your local_config.json file.

Creating a provisioning profile Once you have created a certificate you need to create a provisioning profile, this
is also done via the iOS provisioning portal website:

• First make sure your device has been added to the provisioning portal, to do this you will need the device
identifier (UDID), this can be found by clicking on the device’s serial number in iTunes.

• Next create an app id, for development entering * as a Bundle Identifier is recommended, as it means multiple
apps can be signed with a single provisioning profile.

• Finally create a development provisioning profile, making sure you choose the correct app id and enable any
devices you wish to be able to test with.

• You can now download and configure the location of your provisioning profile in local_config.json.

Note: Provisioning profiles must be recreated if certificates or devices are changed.

Developing iOS apps on Linux

Forge allows the development of iOS apps on Linux without the use of an OS X machine. To do this you will need
a physical iOS device (the iOS simulator will only run on OS X), and an iOS developer account. In order to sign
your application (which is required to install it onto the device, even for testing), we provide a remote signing service,
which your app will be sent to, signed and returned as part of the forge run ios and forge package ios
command.

Setting up Forge to run iOS apps

Requirements:

• Apple iOS developer account.

• ideviceinstaller installed on the device you are going to develop with

• An iOS device connected via USB to the machine you wish to develop on

In order to sign your application you need to provide us with the following:

• A signing certificate and password

• A provisioning profile

Both of these can be created and managed from the Apple iOS provisioning portal, which should be accessible from
the iOS developer center: https://developer.apple.com/ios/. The instructions on that site are for OS X, more detailed
instructions for creating a developer certificate on Linux are included below.

Once these are setup you should be able to use forge run ios to install the app on your device.

168 Chapter 2. Features

https://developer.apple.com/ios/

Forge - Cross-browser Add-on Development Tools, Release 1.4

Creating a signing certificate To create a certificate you need to generate a certificate signing request, in Linux this
can be done by following these steps:

• Run openssl req -subj "/CN=Connor Dunn/O=User" -nodes -newkey rsa:2048
-keyout private.key -out request.csr replacing Connor Dunn with your name as registered
with your Apple ID.

• On the iOS provisioning portal site choose to create a new certificate and upload the file request.csr you
just created

• Your certificate request should be approved shortly: when it is, download it to the folder you ran the original
command, the next steps assume it is called ios_development.cer.

• Run openssl x509 -inform der -in ios_development.cer -out certificate.pem to
convert the certificate format

• Run openssl pkcs12 -export -in certificate.pem -inkey private.key -name
"iOS Developement Certificate" -out certificate_with_key.p12 to package the
certificate and key. The password you supply will be the one you need to provide to Forge, and prevents
unauthorized users from using the certificate if they were to come into possession of the certificate file.

• You should now be able to configure the developer_certificate_path and
developer_certificate_password in your local_config.json file.

Note: This will leave you with a few files you no longer need, you can safely delete request.csr,
ios_development.cer and certificate.pem. You can also delete private.key as it is included in
the p12 file, if you don’t delete it you should store it securely as it can be used to sign with your certificate. You should
keep certificate_with_key.p12 to use with Forge, and make sure it and the password are stored securely so
others can’t sign as you.

Creating a provisioning profile Once you have created a certificate you need to create a provisioning profile, this
is also done via the iOS provisioning portal website:

• First make sure your device has been added to the provisioning portal, to do this you will need the device
identifier (UDID), this can be found by clicking on the device’s serial number in iTunes.

• Next create an app id, for development entering * as a Bundle Identifier is recommended, as it means multiple
apps can be signed with a single provisioning profile.

• Finally create a development provisioning profile, making sure you choose the correct app id and enable any
devices you wish to be able to test with.

• You can now download and configure the location of your provisioning profile in local_config.json.

Note: Provisioning profiles must be recreated if certificates or devices are changed.

2.3.4 Recipes

Using API methods

Most API methods provided by Forge operate asynchronously (exceptions include forge.is methods and
forge.tools.UUID). This means the result of the method is not returned immediately; instead you must pro-
vide a function which will be called with the result. Care must therefore be taken when using the methods, as the order
in which code is executed can be less obvious.

Here is a simplified example:

2.3. Browser add-ons - see all... 169

Forge - Cross-browser Add-on Development Tools, Release 1.4

var url;
forge.tools.getURL("mypage.html", function (myUrl) {

url = myUrl;
});
alert(url);

In this code the alert might be undefined as you cannot be sure the callback would be fired before the next line of code.
Instead it would be better to say:

var url;
forge.tools.getURL("mypage.html", function (myUrl) {

url = myUrl;
alert(url);

});

The different callbacks which appear in Forge API methods are described below.

Callbacks

Asynchronous API methods will always have the last two parameters they take as callback functions. The first of
which will either be success or callback and the second will always be error. The way these functions are
called is described below.

success The most commonly used callback is the success callback, this is the penultimate parameter to most
Forge API methods. The success callback can be called with a variety of paramters (including none at all), depend-
ing on the particular method.

The success callback will only ever be called once, and will only be called if the API method completes successfully.

callback The callback callback is similar to success in that it appears as the penultimate parameter - how-
ever, unlike the success callback, it may be called multiple times. An example of its use it adding a listener to a
button being clicked, as the button can be clicked multiple times the callback may be called multiple times.

error The error callback is always the final parameter passed to a method. The error callback will always be
called with exactly one parameter, which will be an object containing several properties.

The returned object will always contain:

• A message property, which is a printable, human readable string describing the error which has occurred.

It will usually also contain:

• A type property, this will be one of the following strings and can be used to determine what type of error
occurred and how to appropriately deal with it.

• "BAD_INPUT" - returned when an API is given invalid parameters, this kind of error should be eliminated
before releasing your app.

• "UNEXPECTED_FAILURE" - returned when an unexpected error causes the API call to fail, this generally
means an error in the forge API and we would be grateful if you could report this kind of error to us.

• "EXPECTED_FAILURE" - returned when an expected situation occurs which means the API call is not suc-
cessful, examples could be a user cancelled action or a timeout. These types of errors should be handled
appropriately within your application.

170 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

• "UNAVAILABLE" - returned when an API method is currently unavailable, this could mean unavailable on the
current platform, in the current context, or at this time (i.e. if there is no Internet connection). Your application
may also expected some errors of this type. Also returned for non-existant API calls.

• A subtype property which will give a more precise description of the error than the type, the strings which
this may contain are documented with each API method.

It may also contain additional properties which are relevant to the API method, these properties will be documented
per method in the API reference.

When errors happen the message property will always be logged by Forge, whether a callback handler exists or not.

JavaScript Libraries

Using JavaScript libraries

It is important to remember that Forge apps are HTML5/JS based and this means they can take advantage of the vast
library of Javascript tools and libraries which are freely available. This page lists some of the libraries we find most
useful and some tips when using them.

In general (on mobile apps especially) reducing memory usage is important. Using the minimum number of frame-
works and ensuring minified versions are always used can improve performance.

jQuery/Zepto

• jQuery is one of the most popular Javascript frameworks and can simplify a number of common Javascript tasks.
On mobile however jQuery is a fairly large library and can cause performance issues, and it may be preferable
to use Zepto.

• Zepto is a lightweight version of jQuery aimed at mobile browsers. It lacks some less used jQuery features, but
is highly mobile optimised and much smaller.

• See http://zeptojs.com/

iScroll

• Creating fixed position or overflow: scroll elements is not possible in the vast majority of mobile
browsers currently. iScroll recreates this effect in Javascript.

• Unfortunately this means it can be less efficient than native scrolling would be, so this library should be used with
caution. If possible pages which are designed with no fixed header/footer will often run much more smoothly
than a more complex page.

• See http://cubiq.org/iscroll-4

Backbone

• Backbone is a lightweight and increasingly popular way of organising your Javascript code. Similar to the
concepts of MVC Backbone separates out the sections of your code and provides helpful functions for doing
common tasks to do with organising and handling data.

• See http://documentcloud.github.com/backbone/

2.3. Browser add-ons - see all... 171

http://zeptojs.com/
http://cubiq.org/iscroll-4
http://documentcloud.github.com/backbone/

Forge - Cross-browser Add-on Development Tools, Release 1.4

Example Project: backbone.js, zepto

We’ve developed a little example project, using a CSS reset, Backbone.js and a couple of pages with transitions.

This project will show you how to:

• include your JavaScript files in your app

• use Backbone.js to present a responsive interface

• use a CSS reset

• implement an example transition between views in your app

Please feel free to base your own projects on this - it’s a great springboard for a new project. The code is hosted on
github here: https://github.com/trigger-corp/Forge-Bootstrap

Included files

• Backone.js to handle history, user actions, and to structure our JavaScript in general

• HTML5 Boilerplate to reduce the impact of inconsistent rendering defaults on different platforms

• Zepto, a light-weight, mobile-focussed alternative to jQuery, for DOM manipulation

Let’s get stuck in To work with your JavaScripts and CSS in the app, just include them in your index.html as you
might in a normal website:

<link rel="stylesheet" href="css/reset.css">
<link rel="stylesheet" href="css/demo.css">

<script type="text/javascript" src="js/lib/zepto.min.js"></script>
<script type="text/javascript" src="js/lib/underscore-min.js"></script>
<script type="text/javascript" src="js/lib/backbone-min.js"></script>
<script type="text/javascript" src="js/demo.js"></script>

Here, we have simply used the HTML5 Boilerplate reset (reset.css), JavaScript libraries and two of our own files,
demo.css and demo.js.

It’s best to have one entry point for your application, with other included JavaScript files being just libraries, containing
functions and objects. When using Backbone, your entry point should set up whatever your app requires to function,
then start Backbone’s history system.

For example, in this project, we use $(Demo.init) to run the following function once, at app startup:

1 // Called once, at app startup
2 init: function () {
3 // Grab the Trigger twitter feed
4 forge.request.ajax({
5 url: "https://api.twitter.com/1/statuses/user_timeline.json?user_id=14972793",
6 dataType: "json",
7 success: showIndex
8 });
9

10 // to be called once we have the Trigger twitter feed
11 function showIndex(data) {
12 // Save away initial data
13 Demo.items = new Demo.Collections.Items(data);
14

15 // Set up Backbone

172 Chapter 2. Features

https://github.com/trigger-corp/Forge-Bootstrap
http://documentcloud.github.com/backbone/
http://html5boilerplate.com
http://zeptojs.com/

Forge - Cross-browser Add-on Development Tools, Release 1.4

16 Demo.router = new Demo.Router();
17 Backbone.history.start();
18 }
19 }

Here we’re using the Trigger twitter feed as example data to work with: we use our request.ajax function to retreive
our tweets, store the data into a collection then start Backbone.

Using Backbone.js Backbone.history.start() kicks off Backbone’s window.onhashchange event
subscription. When the fragment of the URL changes, the routes defined in routes.js are used:

routes: {
"" : "index", // entry point: no hash fragment or #
"item/:item_id":"item"// #item/id

},

The routes map a URL to a function. We have two routes defined here: one that matches # (or URLs with no
hash fragment) and invokes index(), and one that matches #item/[item_id]. item_id is then passed into
item() as a parameter. Routes map out the URLs for your whole app.

Using Backbone to manage views inside a Forge app is a great strategy: not only do we build URLs in the history
stack (meaning the back button works as expected on Android, for example), we are also able to take complete control
over what is displayed in the app, without having to resort to sluggish page loads.

However, especially on mobile platforms, your users will expect some form of dynamic transition from one view to
the next; to do that, you can organise your Backbone views into pages.

Page View This snippet shows how we implement pages in this project, with an animated transition as one page
becomes active. You can also see us using Zepto for DOM manipulation here.

1 Demo.Views.Page = Backbone.View.extend({
2 className: "page",
3

4 initialize: function () {
5 this.render();
6 },
7 show: function () {
8 $(’.page’).css({"position": "absolute"});
9 var direction_coefficient = this.options.back? 1 : -1;

10 if ($(’.page’).length) {
11

12 var $old = $(’.page’).not(this.el);
13

14 //This fix was hard-won, just doing .css(property, ’’) doesn’t work!
15 $old.get(0).style["margin-left"] = ""
16 $old.get(0).style["-webkit-transform"] = ""
17

18 this.$el.appendTo(’body’).hide();
19 this.$el.show().css({"margin-left": 320 * direction_coefficient});
20 this.$el.anim({translate3d: -320 * direction_coefficient +’px,0,0’}, 0.3, ’linear’);
21 $old.anim({translate3d: -320 * direction_coefficient + ’px,0,0’}, 0.3, ’linear’, function() {
22 $old.remove();
23 $(’.page’).css({"position": "static"});
24 });
25 } else {
26 this.$el.appendTo(’body’).hide();
27 this.$el.show();

2.3. Browser add-ons - see all... 173

http://twitter.com/#!/triggercorp
http://en.wikipedia.org/wiki/Fragment_identifier

Forge - Cross-browser Add-on Development Tools, Release 1.4

28 }
29 window.scrollTo(0, 0);
30 }
31 });

You can extend() this page in your own views if you wish, and use the show() method to switch from one to
another.

For example, in this project, we create a page for the initial view of all the tweets, and a page for each individual tweet
when the user selects it.

Using other parts of the Forge API We have already seen the use of forge.request.ajax to easily make a
request to a remote server. This project makes use of some other Forge APIs too.

In expand_item(), we use forge.tabs.open() to open an external page new tab in a cross-platform manner.
Our documentation for open() is here.

Lastly, we use forge.is in the click_or_tap() function so that we can listen for tap events on mobile devices,
but click events otherwise. Documentation for easy platform detection can be found here forge.is.mobile

1 click_or_tap: function(obj) {
2 //for property in obj, add "click " to property and use original value
3 var new_obj = {};
4 for(var property in obj) {
5 if (obj.hasOwnProperty(property)) {
6 if (forge.is.mobile()) {
7 new_obj["tap " + property] = obj[property];
8 }
9 else {

10 new_obj["click " + property] = obj[property];
11 }
12 }
13 }
14 return new_obj
15 }

This is important because the click event is less responsive on mobile than tap.

That’s it Play with the source for yourself, we hope everything is clear.

Still unsure? Want to ask for help? Spotted a mistake in this tutorial? Drop us a line at support@trigger.io and we’ll
be happy to help.

UI

Dealing with multiple screen sizes

When creating mobile apps it is important to consider that different devices have different resolutions, aspect ratios,
pixel densities and potential orientations. This page describes some techniques which may be used to handle these -
however none of these remove the need for testing your app on a variety of devices.

The Android developer documentation has a far more detailed document on how multiple screen types are supported
by Android: http://developer.android.com/guide/practices/screens_support.html.

174 Chapter 2. Features

mailto:support@trigger.io
http://developer.android.com/guide/practices/screens_support.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Scalable or not An important question to consider when designing your page is whether or not certain parts of the
page should be able to dynamically resize (or scale) depending on the screen they are displayed. In some situations
the width of an element needs to be fixed, but a paragaph of text may display in a perfectly readable way at several
different widths.

If your elements can be resized then it may be as simple as using a relative size when describing them in CSS, such
as width: 80%. If you required fixed size elements then you may wish to consider detecting the screen size and
render content appropriately. A way this can be done using CSS3 is using media queries, which is described in more
detail on http://css-tricks.com/6731-css-media-queries/.

Common screen sizes Some of the most common screen sizes to be considered for mobile development are given
below. All sizes are given in the number of points (or CSS pixels) which are available to the webview.

• iPhone

• Vertical: 320x460

• Horizontal: 480x300

• iPad

• Vertical: 768x1004

• Horizonal: 1024x748

Glossary Below we define some of the terms used in this page.

pixel The smallest physical square that can be displayed on a screen. Importantly a pixel in css does not always
measure a physical pixel used on the device.

aspect ratio The ratio of width to height on a screen. This can vary significantly on mobile devices and also changes
when the device is rotated.

pixel density Different devices have different sizes of physical pixels. Android devices are grouped into different
desities of pixels, so that different devices can display the same content at a similar physical size. On iOS
devices with a retina display have double the pixel density of other devices.

display independent pixel or point Both of these terms are used to describe the “pixel” size used by CSS and HTML
rather than the physical pixel size on Android and iOS devices.

Integrations

OAuth with modal views

Modal views are a mobile only feature of Forge.

Modal views allow a second webpage to be loaded “on top” of the main web view in a Forge app. This allows a second
page to be displayed without reloading the original, and also provides a dedicated button on the users screen to close
the second view when their interaction has ended.

Modal views have two main purposes. The first is to provide quick access to part of your app without breaking the
current workflow, and the second is to access an external site to perform a task such as authentication without the
chance of the user being “trapped” on the external site if their device has no back button.

Internal pages A simple use case for modal views is to display an options page at any point when users are in-
teracting with a Forge app. This means an options page can be displayed, interacted with and closed, without the
current page losing its state. To achieve this simply create a separate options page and when you want to display it use
forge.tabs.open(’options.html’) (see the API documentation).

2.3. Browser add-ons - see all... 175

http://css-tricks.com/6731-css-media-queries/

Forge - Cross-browser Add-on Development Tools, Release 1.4

External authentication A more advanced use of modal views is to send the user to an external site (potentially
your own website), to allow them to authenticate in some way. At this point there are two options, if you control the
remote server you can redirect to a forge:/// url, or whether you control the remote server or not you can watch
for a url match pattern and close the modal view when it is found.

Remote redirect In this scenario it is possible to close the modal view and redirect the user to a new local page once
the authentication process is complete by redirecting the user to a forge:/// url. An example of how this could be
used would be:

1. Call forge.tabs.open("https://example.com/login/")

2. The user logs in to your website

3. Assuming the login is successful your website sets a cookie and redirects the user to
forge:///loggedin.html

4. The modal view will close automatically, and the original web view will load the local page loggedin.html

5. forge.request.ajax() requests made by your app will send the cookie your website set (any requests
can then be checked against the previous authentication)

Match pattern To watch for a match pattern use code similar to:

forge.tabs.openWithOptions({
url: ’http://my.server.com/login/’,
pattern: ’http://my.server.com/loggedin/*’

}, function (data) {
forge.logging.log(data.url);

});

See the openWithOptions API documentation.

See http://developer.chrome.com/extensions/match_patterns.html for documentation on the Match Pattern format and
semantics.

In this example the final url in the modal view will be logged, data could also be extracted from it and used to
authenticate the user, such as the query string (used for OAuth 1) or the hash fragment (in OAuth 2).

Offline

Referencing local resources

Forge supports building apps that work offline. The HTML, CSS and JavaScript code you write is packaged locally
with your app and you can also include image and media assets locally.

Here we discuss how to reference your local assets from your code. You can also read about how to download and
cache files after the initial install.

Relative URLs You should always use relative URLs when referencing files in your src directory. For example,
with this directory structure for your src directory:

config.json
identity.json
index.html

css/
style.css

176 Chapter 2. Features

http://developer.chrome.com/extensions/match_patterns.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

img/
trigger-io-forge-small.png

js/
jquery-1.7.1.min.js
main.js

You should reference the image from your index.html like this:

Similarly, you could set it as background image for an element by adding this to your style.css:

#background {
height: 46px;
background: url(’../img/trigger-io-forge-small.png’);

}

We’ve used an image in our examples here but you can reference other assets from the HTML (like JavaScript styles
and CSS stylesheets) in the same way.

Caching files

File caching a mobile only feature of Forge.

File caching allows you to download a remote resource (such as an image), and keep a reference to the local file.
These can then be used in the future to display to the user, even if no internet connection is available. Importantly it is
possible to save Forge file objects as Forge preferences which will be persisted between app launches.

Example This is a quick example of how we can store the logo to our site locally without having to include it in our
app when we build it. In this example we download the Forge logo from the Trigger.io site: https://trigger.io/forge-
static/css/trigger/f/logo-header-small-forge.png.

Downloading and storing file reference First we need to be able to cache the file and save the file object to use
later.

Example:

var cacheLogo = function () {
forge.file.cacheURL("https://trigger.io/forge-static/css/trigger/f/logo-header-small-forge.png", function (file) {
// File cached save the file object for later
forge.prefs.set("logo-cache", file, function () {

// Logo saved
showCachedLogo(file);

});
});

}

Checking cached file Cached files may be deleted by the operating system to free up space, you should always
check a cached file is still available before using it.

Example:

2.3. Browser add-ons - see all... 177

https://trigger.io/forge-static/css/trigger/f/logo-header-small-forge.png
https://trigger.io/forge-static/css/trigger/f/logo-header-small-forge.png

Forge - Cross-browser Add-on Development Tools, Release 1.4

var checkCachedLogo = function () {
forge.prefs.get("logo-cache", function (file) {
if (!file) {

// Logo never cached
cacheLogo();
return;

}
forge.file.isFile(file, function (isFile) {

if (!isFile) {
// File no longer available
cacheLogo();

} else {
// Logo available
showCachedLogo(file);

}
});

});
}

Using a cached file Finally we need to be able to display a cached file, to do that we can use the following code:

Example:

var showCachedLogo = function (file) {
forge.file.URL(file, function (url) {
var logo = document.createElement(’img’);
logo.src = url;
document.body.appendChild(logo);

});
}

Complete example Putting those functions together we get an example which will cache a logo and display it from
the cache:

Example:

<!DOCTYPE html>
<html>

<head>
</head>
<body>
<h1>Hello caching world!</h1>
<script>

var showCachedLogo = function (file) {
forge.file.URL(file, function (url) {
var logo = document.createElement(’img’);
logo.src = url;
document.body.appendChild(logo);

});
}

var cacheLogo = function () {
forge.file.cacheURL("https://trigger.io/forge-static/css/trigger/f/logo-header-small-forge.png", function (file) {
// File cached save the file object for later
forge.prefs.set("logo-cache", file, function () {

// Logo saved
showCachedLogo(file);

178 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

});
});

}

var checkCachedLogo = function () {
forge.prefs.get("logo-cache", function (file) {
if (!file) {
// Logo never cached
cacheLogo();
return;

}
forge.file.isFile(file, function (isFile) {
if (!isFile) {
// File no longer available
cacheLogo();

} else {
// Logo available
showCachedLogo(file);

}
});

});
}

checkCachedLogo();
</script>

</body>
</html>

Preparing your app for release

Releasing your mobile apps

After you have finished building and testing your app, the next step is to prepare packaged output ready for submission
to the app store of your choice.

We help you with this process on the Android and iOS platforms with the forge package command at the
command-line or through the Toolkit UI.

Updating existing apps If you are using Forge to update an existing app which was not built on the platform,
you will need to specify the package name manually, to match the one you had in your old app. To do this, see
package_names in the configuration documentation.

Android For Android, create an APK from the Toolkit by using the package link on your app home screen:

2.3. Browser add-ons - see all... 179

Forge - Cross-browser Add-on Development Tools, Release 1.4

If you prefer the command-line tools, use forge package android: add the --help switch to see all available
command line options.

To package Android apps, you need to have created a “keystore” with which to sign your app. You should keep this
keystore safe, and observe the normal password safety precautions to prevent others from being to update your own
apps.

Creating a keystore Full instructions on creating a keystore are available here:
http://developer.android.com/guide/publishing/app-signing.html, in the “Obtain a suitable private key” section.

You will need the keytool command, which is provided by Java.

For example, you might use a command something like this:

keytool -genkey -alias MY_KEY_NAME \
-keypass MY_KEY_PASSWORD -validity 20000 \
-keystore my_keystore.keystore \
-storepass MY_KEYSTORE_PASSWORD

Here, the uppercase parameters should be replaced with passwords and names of your choosing; the passwords can be
the same, if you wish.

That command will create a file called my_keystore.keystore in the current directory, which we will use in the
next step.

Creating an APK After you have created your keystore, you need to enter the details in the Local Config tab in your
Toolkit UI:

180 Chapter 2. Features

http://developer.android.com/guide/publishing/app-signing.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Or, if you are working at the command-line, to use the keystore we created in the previous step, we would run
something like this:

forge package android \
--android.profile.keystore my_keystore.keystore \
--android.profile.storepass MY_KEYSTORE_PASSWORD \
--android.profile.keypass MY_KEY_PASSWORD \
--android.profile.keyalias MY_KEY_NAME

Note: For a convenient way to specify and these options in a file, see Configuration for the tools.

A release directory has now been created; you will find your release-ready APK file in the android sub-directory.

iOS For the iOS devices, creating a packaged IPA file serves two purposes:

1. creating an installable IPA which you can run on your own devices, or send to testers for them to test.

2. creating a IPA which is ready to submit to the App Store.

In the first situation, you need to create and use a development provisioning profile, with all the devices for which the
IPA is enabled specified in it.

For the second situation, you need to create and use a release provisioning profile, and your IPA won’t run directly on
any devices: it is only useful for submission to the App Store.

Therefore, our recommended approach is to use a development wildcard provisioning profile (one that works for any
of your apps), right until you’re ready to release to the App Store. Only at that point should you switch to your release
provisioning profile.

Creating provisioning profiles The Apple developer center has good documentation about creating provisioning
profiles, developer certificates and app IDs that should be your main reference.

When working with Forge, you will want to use a development wildcard provisioning profile when in development
and testing phases, and a release provisioning profile when submitting to the App Store.

The result of these instructions assume you have your two provisioning profiles stored in the current directory, called
Development.mobileprovision and Release.mobileprovision respectively.

Creating an IPA After you have created your provisioning profile, use forge package ios to produce an IPA
file.

You can run this command through the Toolkit UI by using the package link on your app home screen:

2.3. Browser add-ons - see all... 181

http://developer.apple.com/library/ios/#documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

Before packaging, you will need to specify your provisioning profile. And depending on your local settings, you may
also need to know the exact name of your developer certificate: more on that below. In the Toolkit UI do this using
your Local Config tab:

At the command-line, assuming you have a provisioning profile called Development.mobileprovision in the
current directory, you would use a command like:

forge package ios --ios.profile.provisioning_profile Development.mobileprovision

The forge package ios prints out some useful configuration data as it runs, such as the devices this IPA will
work with whether you used a Release provisioning profile and the app ID.

In the release directory, there will now be an ios sub-directory, containing your IPA.

Getting the IPA onto your device If you used a development key, you can now use iTunes to install the IPA onto
your iPhone or iPod:

• drag the IPA onto the “Library” section in iTunes

• drag the app from the “Apps” section of iTunes onto your connected device

182 Chapter 2. Features

Forge - Cross-browser Add-on Development Tools, Release 1.4

Submitting the IPA to the App Store If you’ve used a Distribution (App Store) provisioning profile to create your
IPA, you can submit that IPA to the App Store for review.

Refer to Apple’s Documentation for how to do that.

You will need a Mac computer to complete this submission, because you must use Application Loader (a Mac-only
program) to upload the IPA.

Common problems If you have more than one developer certificate on your machine, you may hit errors like:

[ERROR] Something went wrong that we didn’t expect:
[ERROR] Failed when running /usr/bin/codesign

Running the forge package ios command again with the -v flag for verbose output gives more information:

[DEBUG] Running: (’/usr/bin/codesign’, ’--force’, ’--preserve-metadata’,
’--entitlements’, ’/Users/james/../.template/generate_dynamic/dev.entitlements’,
’--sign’, ’iPhone Developer’, ’--resource-rules=/myapp.app/ResourceRules.plist’,
’/myapp.app/’)

[DEBUG] iPhone Developer: ambiguous (matches
"iPhone Developer: James Brady (5W89HYT9F3)" and
"iPhone Developer: James Brady (A639RL926N)" in
/Users/james/Library/Keychains/login.keychain)

Here, there are two developer certificates for “James Brady” on the machine, and we have to specify the exact certificate
to use with:

forge package ios --ios.profile.provisioning_profile Development.mobileprovision \
--certificate "iPhone Developer: James Brady (5W89HYT9F3)"

If you encounter errors about a mismatched profile ID, e.g.:

[ERROR] Provisioning profile and application ID do not match Provisioning
profile ID: A8N4D63NB6.io.trigger.forge7faf8ebcb8a111e1910212313d1adcbe
Application ID: A8N4D63NB6.com.spiffyapp Please see "Preparing your apps
for app stores" in our docs: http://current-docs.trigger.io/releasing.html#ios

This is because when you created your provisioning profile, you didn’t use the ID automatically generated by Trigger
(io.trigger.forge7faf8ebcb8a111e1910212313d1adcbe) in this case.

This is no problem: just update your config.json to override the package name to match your provisioning profile.
In this example, you’d include:

"package_names": {
"ios": "com.spiffyapp"

}

For more information, see package_names: Built package names.

Wireless distribution on iOS

If you are using Adhoc or Enterprise distribution certificates when packaging your iOS app, you are able to wirelessly
distribute the resulting IPA file. To help you do this, a wireless distribution plist template will be generated and output
alongside your IPA file in the release/ios folder.

In order to use this plist you will need to modify 3 URLs: all URLs must be absolute and point to a downloadable file.
Once you have modified these URLs you can host the plist file and access it from the device to install the app.

The URLs that need to be modified in the plist are:

2.3. Browser add-ons - see all... 183

http://developer.apple.com/library/ios/#documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html

Forge - Cross-browser Add-on Development Tools, Release 1.4

• http://www.example.com/app.ipa: is a download URL for the IPA just generated

• http://www.example.com/image.57x57.png: is a 57x57 pixel PNG icon for your app which will
be displayed while it downloads

• http://www.example.com/image.512x512.jpg: is a high resolution image for your app

More information on wireless app distribution can be found in Apple’s documentation:
http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html

Releasing your browser add-ons

After you have finished using forge build and forge run to create your app, the next step is to prepare pack-
aged output ready for submission to the app store of your choice.

The process for this varies according to the browser platform.

Chrome Use the chrome://chrome/extensions page in your Chrome browser to package your app as a
.crx file.

Pre-reqs

• Load the extension into your Chrome browser

How to create the .crx Follow these instructions in the Chrome documentation to package your app.

Important: you must keep the .pem file that is generated by chrome in the same directory as the chrome.crx
package so that you can sign future builds with the same key to push updates to existing users

Firefox

Pre-reqs

• Firefox is a premium platform, so you will need to sign-up for a paid account. Contact us to upgrade.

How to create the .xpi Simple zip the contents of the firefox/development directory as a .xpi file to create a
Firefox installer package:

cd development/firefox
zip addon.xpi -r *

Safari

Pre-reqs

• Safari is a premium platform, so you will need to sign-up for a paid account. Contact us to upgrade.

• Create an Apple Developer Account and sign-in to the Member Center

• Sign-up for the Safari Developer Program and access the Safari Dev Center

184 Chapter 2. Features

http://developer.apple.com/library/ios/#featuredarticles/FA_Wireless_Enterprise_App_Distribution/Introduction/Introduction.html
http://code.google.com/chrome/extensions/packaging.html
mailto:support@trigger.io
mailto:support@trigger.io
https://developer.apple.com/membercenter/index.action
https://developer.apple.com/devcenter/safari/index.action

Forge - Cross-browser Add-on Development Tools, Release 1.4

• Go to the Developer Certificate Utility and create a Safari extension certificate by following the instructions
having clicked ‘Add Certificate’

• Download the certificate you just created and add it to your Keychain

How to create the .safariextz First you need to enable your browser for extension development - do this by
enabling the developer tools using these instructions.

Once you have opened up the Extension Builder in Safari, click the ‘+’ button in the bottom left and select the
development/forge.safariextension sub-directory of your app directory.

Then click the ‘Build Package...’ button to create your .safariextz package.

Internet Explorer

Pre-reqs

• IE is a premium platform, so you will need to sign-up for a paid account. Contact us to upgrade.

• Install NSIS

How to create the .exe Simply run:

forge build ie

This will create a .exe for 32-bit and 64-bit platforms in the release/ie directory. The 64-bit installer installs the
add-on in both the 64-bit and 32-bit versions of IE.

Contact us for information on how to customize the installer package.

How to sign a release First you need to obtain a Windows Code Signing Certificate. Most certificate vendors can
supply this but Microsoft also maintain a list at: http://social.technet.microsoft.com/wiki/contents/articles/2592.aspx

You will also need access to Microsoft’s signtool.exe binary. This is installed by all ver-
sions of Microsoft Visual Studio including the free Express version which can be obtained from:
http://www.microsoft.com/visualstudio/eng/downloads

Once you have a certificate you can perform the following step to sign your add-on and the installers:

forge build ie --ie.profile.developer_certificate "your_certificate_filename.pfx" \
--ie.profile.developer_certificate_path "c:\path\to\your\certificate" \
--ie.profile.developer_certificate_password "your_certificate_password"

2.3. Browser add-ons - see all... 185

https://developer.apple.com/certificates/index.action
http://developer.apple.com/library/safari/#documentation/Tools/Conceptual/SafariExtensionGuide/UsingExtensionBuilder/UsingExtensionBuilder.html
mailto:support@trigger.io
http://nsis.sourceforge.net/Main_Page
http://social.technet.microsoft.com/wiki/contents/articles/2592.aspx
http://www.microsoft.com/visualstudio/eng/downloads

	Quickstart
	Features
	Mobile - see all...
	Native plugins - learn more...
	Browser add-ons - see all...

