
ezdxf Documentation
Release 0.8.9

Manfred Moitzi

Oct 27, 2018

Contents

1 Website 3

2 Documentation 5

3 Questions and Feedback at Google Groups 7

4 Contents 9
4.1 Introduction . 9
4.2 Tutorials . 10
4.3 Reference . 37
4.4 Add-ons . 142
4.5 Howto . 151
4.6 DXF Internals . 153

5 News 201
5.1 Indices and tables . 206

Python Module Index 207

i

ii

ezdxf Documentation, Release 0.8.9

Welcome! This is the documentation for ezdxf 0.8.9, last updated Oct 27, 2018.

Note: Python 2 support will be dropped in ezdxf v0.9.0, because Python 2 support get more and more annoying.
ezdxf v0.9.0 requires at least Python 3.6, because I want f-strings!

• ezdxf is a Python package to create new DXF files and read/modify/write existing DXF files

• the intended audience are developers

• requires at least CPython 3.6, because of more and more troubles with Python 2 support for Python 2 will be
dropped in ezdxf v0.9.0

• OS independent

• additional required packages: pyparsing

• MIT-License

• read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018

• additional read support for DXF versions R13/R14 (upgraded to R2000)

• additional read support for older DXF versions than R12 (upgraded to R12)

• preserves third-party DXF content

• additional Fast DXF R12 File/Stream Writer, that creates just an ENTITIES section with support for the basic
DXF entities

Contents 1

https://pypi.python.org/pypi/pyparsing/2.0.1

ezdxf Documentation, Release 0.8.9

2 Contents

CHAPTER 1

Website

https://ezdxf.mozman.at/

3

https://ezdxf.mozman.at/

ezdxf Documentation, Release 0.8.9

4 Chapter 1. Website

CHAPTER 2

Documentation

Documentation of development version at https://ezdxf.mozman.at/docs

Documentation of latest release at http://ezdxf.readthedocs.io/

Source Code: http://github.com/mozman/ezdxf.git

Issue Tracker at GitHub: http://github.com/mozman/ezdxf/issues

5

https://ezdxf.mozman.at/docs
http://ezdxf.readthedocs.io/
http://github.com/mozman/ezdxf.git
http://github.com/mozman/ezdxf/issues

ezdxf Documentation, Release 0.8.9

6 Chapter 2. Documentation

CHAPTER 3

Questions and Feedback at Google Groups

https://groups.google.com/d/forum/python-ezdxf

7

https://groups.google.com/d/forum/python-ezdxf

ezdxf Documentation, Release 0.8.9

8 Chapter 3. Questions and Feedback at Google Groups

CHAPTER 4

Contents

4.1 Introduction

4.1.1 What is ezdxf

ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, it allows developers
to read and modify existing DXF drawings or create new DXF drawings.

The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still
support all the possibilities of the DXF format. Nevertheless, a basic understanding of the DXF format is an advantage
(but not necessary), also to understand what is possible with the DXF file format and what is not.

Not all DXF features are supported yet, but additional features will be added in the future gradually.

ezdxf is also a replacement for my dxfwrite and my dxfgrabber packages but with different APIs, both packages are
in maintenance only mode, no new features will be added, but they stay available, getting bug fixes and will adapted
for new Python versions.

4.1.2 What ezdxf is NOT

• ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an
appropriate program, use DWG TrueView from Autodesk, but the latest version can only convert to the DWG
format, for converting between DXF versions you need at least AutoCAD LT.

• ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to ANY other format, like SVG, PDF
or DWG

• ezdxf is not a DXF renderer, it does not create a visual representation of the DXF file content (see above).

• ezdxf is not a CAD kernel, ezdxf does not provide any functionality for construction work, it is just an interface
to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD.

9

http://www.python.org
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
http://usa.autodesk.com/
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://pypi.org/project/dxfwrite/
https://pypi.org/project/dxfgrabber/
http://usa.autodesk.com/
http://www.python.org
https://www.freecadweb.org/

ezdxf Documentation, Release 0.8.9

4.1.3 Supported Python Versions

ezdxf requires at least Python 3.6. Python 2 support will be dropped in ezdxf v0.9.0, because Python 2 support get
more and more annoying. I run unit tests with the latest stable CPython 3 version and the latest stable release of pypy
during development.

ezdxf is written in pure Python and requires only pyparser as additional library beside the Python Standard Library.
pytest is required to run the provided unit and integration tests. Data to run the stress and audit test can not be provided,
because I don’t have the rights for publishing this DXF files.

4.1.4 Supported Operating Systems

ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.6).

4.1.5 Supported DXF Versions

Version AutoCAD Release
AC1009 AutoCAD R12
AC1012 AutoCAD R13 -> R2000
AC1014 AutoCAD R14 -> R2000
AC1015 AutoCAD R2000
AC1018 AutoCAD R2004
AC1021 AutoCAD R2007
AC1024 AutoCAD R2010
AC1027 AutoCAD R2013
AC1032 AutoCAD R2018

ezdxf reads also older DXF versions but saves it as DXF R12.

4.1.6 Embedded DXF Information of 3rd Party Applications

The DXF format allows third-party applications to embed application-specific information. ezdxf manages DXF data
in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF
information of third-party applications is possible and will retained on rewriting.

4.1.7 License

ezdxf is licensed under the very liberal MIT-License.

4.2 Tutorials

4.2.1 Tutorial for Getting Data from DXF Files

In this tutorial I show you how to get data from an existing DXF drawing.

At first load the drawing:

10 Chapter 4. Contents

http://opensource.org/licenses/mit-license.php

ezdxf Documentation, Release 0.8.9

import ezdxf

dwg = ezdxf.readfile("your_dxf_file.dxf")

See also:

Drawing Management

Layouts

I use the term layout as synonym for an arbitrary entity space which can contain any DXF entity like LINE, CIRCLE,
TEXT and so on. Every DXF entity can only reside in exact one layout.

There are three different layout types:

• model space: this is the common construction space

• paper space: used to to create print layouts

• block: reusable elements, every block has its own entity space

A DXF drawing consist of exact one model space and at least of one paper space. The DXF12 standard has only one
unnamed paper space the later DXF versions support more than one paper space and each paper space has a name.

Iterate over DXF Entities of a Layout

Iterate over all DXF entities in model space. Although this is a possible way to retrieve DXF entities, I would like to
point out that entity queries are the better way.:

iterate over all entities in model space
msp = dwg.modelspace()
for e in msp:

if e.dxftype() == 'LINE':
print_entity(e)

entity query for all LINE entities in model space
for e in msp.query('LINE'):

print_entity(e)

def print_entity(e):
print("LINE on layer: %s\n" % e.dxf.layer)
print("start point: %s\n" % e.dxf.start)
print("end point: %s\n" % e.dxf.end)

All layout objects supports the standard Python iterator protocol and the in operator.

Access DXF Attributes of an Entity

Check the type of an DXF entity by e.dxftype(). The DXF type is always uppercase. All DXF attributes of an
entity are grouped in the namespace e.dxf:

e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer

See common DXF attributes:

• Common DXF Attributes for DXF R12

4.2. Tutorials 11

ezdxf Documentation, Release 0.8.9

• Common DXF Attributes for DXF R13 or later

If a DXF attribute is not set (a valid DXF attribute has no value), a DXFValueError will be raised. To avoid this
use the GraphicEntity.get_dxf_attrib() method with a default value:

p = e.get_dxf_attrib('paperspace', 0) # if 'paperspace' is left off, the entity
→˓defaults to model space

An unsupported DXF attribute raises an DXFAttributeError.

Getting a Paper Space

paperspace = dwg.layout('layout0')

Retrieves the paper space named layout0, the usage of the layout object is the same as of the model space
object. The DXF12 standard provides only one paper space, therefore the paper space name in the method call
dwg.layout(‘layout0’) is ignored or can be left off. For the later standards you get a list of the names of the available
layouts by Drawing.layout_names().

Retrieve Entities by Query Language

Inspired by the wonderful jQuery framework, I created a flexible query language for DXF entities. To start a query
use the Layout.query() method, provided by all sort of layouts or use the ezdxf.query.new() function.

The query string is the combination of two queries, first the required entity query and second the optional attribute
query, enclosed in square brackets: 'EntityQuery[AttributeQuery]'

The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means all DXF
entities, all other DXF names have to be uppercase. The attribute query is used to select DXF entities by its DXF
attributes. The attribute query is an addition to the entity query and matches only if the entity already match the entity
query. The attribute query is a boolean expression, supported operators: and, or, !.

See also:

Entity Query String

Get all LINE entities from the model space:

modelspace = dwg.modelspace()
lines = modelspace.query('LINE')

The result container also provides the query() method, get all LINE entities at layer construction:

construction_lines = lines.query('*[layer=="construction"]')

The * is a wildcard for all DXF entities, in this case you could also use LINE instead of *, * works here because lines
just contains entities of DXF type LINE.

All together as one query:

lines = modelspace.query('LINE[layer=="construction"]')

The ENTITIES section also supports the query() method:

all_lines_and_circles_at_the_construction_layer = dwg.entities.query('LINE
→˓CIRCLE[layer=="construction"]')

Get all model space entities at layer construction, but no entities with the linestyle DASHED:

12 Chapter 4. Contents

http://www.jquery.com

ezdxf Documentation, Release 0.8.9

not_dashed_entities = modelspace.query('*[layer=="construction" and linestyle!="DASHED
→˓"]')

Retrieve Entities by groupby

TODO

Default Layer Settings

See also:

Tutorial for Layers and class Layer

4.2.2 Tutorial for Creating Simple DXF Drawings

Fast DXF R12 File/Stream Writer - create simple DXF R12 drawings with a restricted entities set: LINE, CIRCLE,
ARC, TEXT, POINT, SOLID, 3DFACE and POLYLINE. Advantage of the r12writer is the speed and the low memory
footprint, all entities are written direct to the file/stream without building a drawing data structure in memory.

See also:

Fast DXF R12 File/Stream Writer

Create a new DXF drawing with ezdxf.new() to use all available DXF entities:

import ezdxf

dwg = ezdxf.new('R2010') # create a new DXF R2010 drawing, official DXF version
→˓name: 'AC1024'

msp = dwg.modelspace() # add new entities to the model space
msp.add_line((0, 0), (10, 0)) # add a LINE entity
dwg.saveas('line.dxf')

New entities are always added to layouts, a layout can be the model space, a paper space layout or a block layout.

See also:

Look at the Layout factory methods to see all the available DXF entities.

4.2.3 Tutorial for Layers

Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that
stack on top of each other to create an overall image - from using drawing programs. Most CAD programs, uses layers
as the primary organizing principle for all the objects that you draw. You use layers to organize objects into logical
groups of things that belong together; for example, walls, furniture, and text notes usually belong on three separate
layers, for a couple of reasons:

• Layers give you a way to turn groups of objects on and off - both on the screen and on the plot.

• Layers provide the most efficient way of controlling object color and linetype

First you have to create layers, assigning them names and properties such as color and linetype. Then you can assign
those layers to other drawing entities. To assign a layer just use its name as string. It is not recommend but it is possible

4.2. Tutorials 13

ezdxf Documentation, Release 0.8.9

to use layers without a layer definition, just use the layer name without a definition, the layer has the default linetype
Continuous and the default color is 1.

Create a new layer definition:

import ezdxf

dwg = ezdxf.new()
msp = modelspace()
dwg.layers.new(name='MyLines', dxfattribs={'linetype': 'DASHED', 'color': 7})

The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by
using BYLAYER as linetype string and 256 as color, both values are default values for new entities so you can left off
this assignments:

msp.add_line((0, 0), (10, 0), dxfattribs={'layer': 'Lines'})

The new created line will be drawn with color 7 and linetype DASHED.

Changing Layer State

First get the layer definition object:

my_lines = dwg.layers.get('MyLines')

Now you check the state of the layer:

my_lines.is_off() # True if layer is off
my_lines.is_on() # True if layer is on
my_lines.is_locked() # True if layer is locked
layer_name = my_lines.dxf.name # get the layer name

And you can change the state of the layer:

my_lines.off() # switch layer off, will not shown in CAD programs/viewers
my_lines.lock() # layer is not editable in CAD programs

Setting/Getting the default color of the layer should be done with Layer.get_color() and Layer.
set_color() because the color value is misused for switching the layer on and off, layer is off if the color value is
negative.

Changing the default layer values:

my_lines.dxf.linetype = 'DOTTED'
my lines.set_color(13) # preserves the layer on/off state

See also:

for all methods and attributes see class Layer.

Check Available Layers

The layers object supports some standard Python protocols:

14 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

iteration
for layer in dwg.layers:

if layer.dxf.name != '0':
layer.off() # switch all layers off except layer '0'

check for existing layer definition
if 'MyLines' in dwg.layers::

layer = dwg.layers.get('MyLines')

layer_count = len(dwg.layers) # total count of layer definitions

Deleting a Layer

You can delete a layer definition:

dwg.layers.remove('MyLines')

This just deletes the layer definition, all DXF entity with the DXF attribute layer set to MyLines are still there, but if
they inherit color and/or linetype from the layer definition they will be drawn now with linetype Continuous and color
1.

4.2.4 Tutorial for Blocks

What are Blocks?

Blocks are reusable elements, you can see it as container for other DXF entities which can be placed multiply times on
different places. But instead of inserting the DXF entities of the block several times just a block reference is placed.

Create a Block

Blocks are managed by the BlocksSection class and every drawing has only one blocks section: Drawing.
blocks.

import ezdxf
import random # needed for random placing points

def get_random_point():
"""Creates random x, y coordinates."""
x = random.randint(-100, 100)
y = random.randint(-100, 100)
return x, y

Create a new drawing in the DXF format of AutoCAD 2010
dwg = ezdxf.new('ac1024')

Create a block with the name 'FLAG'
flag = dwg.blocks.new(name='FLAG')

Add DXF entities to the block 'FLAG'.
The default base point (= insertion point) of the block is (0, 0).
flag.add_polyline2d([(0, 0), (0, 5), (4, 3), (0, 3)]) # the flag as 2D polyline
flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a
→˓circle (continues on next page)

4.2. Tutorials 15

ezdxf Documentation, Release 0.8.9

(continued from previous page)

Insert a Block

A block reference is a DXF Insert entity and can be placed in any Layout: Model Space, any Paper Space or a
BlockLayout (which enables blocks in blocks). Every block reference can be scaled and rotated individually.

Lets insert some random flags into the modelspace:

Get the modelspace of the drawing.
modelspace = dwg.modelspace()

Get 50 random placing points.
placing_points = [get_random_point() for _ in range(50)]

for point in placing_points:
Every flag has a different scaling and a rotation of -15 deg.
random_scale = 0.5 + random.random() * 2.0
Add a block reference to the block named 'FLAG' at the coordinates 'point'.
modelspace.add_blockref('FLAG', point, dxfattribs={

'xscale': random_scale,
'yscale': random_scale,
'rotation': -15

})

Save the drawing.
dwg.saveas("blockref_tutorial.dxf")

What are Attributes?

An attribute (Attrib) is a text annotation to block reference with an associated tag. Attributes are often used to add
information to blocks which can be evaluated and exported by CAD programs. An attribute can be visible or hidden.
The simple way to use attributes is just to add an attribute to a block reference by Insert.add_attrib(), but the
attribute is geometrically not related to the block, so you have to calculate the insertion point, rotation and scaling of
the attribute by yourself.

Using Attribute Definitions

The second way to use attributes in block references is a two step process, first step is to create an at-
tribute definition (template) in the block definition, the second step is adding the block reference by Layout.
add_auto_blockref() (‘auto’ is for automatically filled attributes). The advantage of this method is that all
attributes are placed relative to the block base point with the same rotation and scaling as the block, but it has the dis-
advantage, that the block reference is wrapped into an anonymous block, which makes evaluation of attributes more
complex.

Using attribute definitions (Attdef):

Define some attributes for the block 'FLAG', placed relative to the base point, (0,
→˓0) in this case.
flag.add_attdef('NAME', (0.5, -0.5), {'height': 0.5, 'color': 3})
flag.add_attdef('XPOS', (0.5, -1.0), {'height': 0.25, 'color': 4})
flag.add_attdef('YPOS', (0.5, -1.5), {'height': 0.25, 'color': 4})

(continues on next page)

16 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

Get another 50 random placing points.
placing_points = [get_random_point() for _ in range(50)]

for number, point in enumerate(placing_points):
values is a dict with the attribute tag as item-key and the attribute text

→˓content as item-value.
values = {

'NAME': "P(%d)" % (number+1),
'XPOS': "x = %.3f" % point[0],
'YPOS': "y = %.3f" % point[1]

}

Every flag has a different scaling and a rotation of +15 deg.
random_scale = 0.5 + random.random() * 2.0
modelspace.add_auto_blockref('FLAG', point, values, dxfattribs={

'xscale': random_scale,
'yscale': random_scale,
'rotation': 15

})

Save the drawing.
dwg.saveas("auto_blockref_tutorial.dxf")

Get/Set Attributes of Existing Block References

See the howto: Get/Set block reference attributes

Evaluate wrapped block references

As mentioned above evaluation of block references wrapped into anonymous blocks is complex:

Collect all anonymous block references starting with '*U'
anonymous_block_refs = modelspace.query('INSERT[name ? "^*U.+"]')

Collect real references to 'FLAG'
flag_refs = []
for block_ref in anonymous_block_refs:

Get the block layout of the anonymous block
block = dwg.blocks.get(block_ref.dxf.name)
Find all block references to 'FLAG' in the anonymous block
flag_refs.extend(block.query('INSERT[name=="FLAG"]'))

Evaluation example: collect all flag names.
flag_numbers = [flag.get_attrib_text('NAME') for flag in flag_refs if flag.has_attrib(
→˓'NAME')]

print(flag_numbers)

4.2.5 Tutorial for LWPolyline

A lightweight polyline is defined as a single graphic entity. The LWPolyline differs from the old-style Polyline,
which is defined as a group of subentities. LWPolyline display faster (in AutoCAD) and consume less disk space
and RAM. LWPolylines are planar elements, therefore all coordinates have no value for the z axis.

4.2. Tutorials 17

ezdxf Documentation, Release 0.8.9

Create a simple polyline:

import ezdxf

dwg = ezdxf.new('AC1015')
msp = dwg.modelspace()

points = [(0, 0), (3, 0), (6, 3), (6, 6)]
msp.add_lwpolyline(points)

dwg.saveas("lwpolyline1.dxf")

Append points to a polyline:

dwg = ezdxf.readfile("lwpolyline1.dxf")
msp = dwg.modelspace()

line = msp.query('LWPOLYLINE')[0] # take first LWPolyline
line.append_points([(8, 7), (10, 7)])

dwg.saveas("lwpolyline2.dxf")

Getting points always returns a 5-tuple (x, y, start_width, ent_width, bulge), start_width, end_width and bulge is 0 if
not present (0 is the DXF default value if not present):

first_point = line[0]
x, y, start_width, end_width, bulge = first_point

Use context manager to edit polyline:

dwg = ezdxf.readfile("lwpolyline2.dxf")
msp = dwg.modelspace()

line = msp.query('LWPOLYLINE')[0] # take first LWPolyline

with line.points() as points:
points is a standard python list
existing points are 5-tuples, but new points can be set as (x, y, [start_width,

→˓[end_width, [bulge]]]) tuple
set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

del points[-2:] # delete last 2 points
points.extend([(4, 7), (0, 7)]) # adding 2 other points
the same as one command
points[-2:] = [(4, 7), (0, 7)]

implicit call of line.set_points(points) at context manager exit

dwg.saveas("lwpolyline3.dxf")

Each line segment can have a different start/end width, if omitted start/end width = 0:

dwg = ezdxf.new('AC1015')
msp = dwg.modelspace()

point format = (x, y, [start_width, [end_width, [bulge]]])
set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

points = [(0, 0, .1, .15), (3, 0, .2, .25), (6, 3, .3, .35), (6, 6)]

(continues on next page)

18 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

msp.add_lwpolyline(points)

dwg.saveas("lwpolyline4.dxf")

The first vertex (point) carries the start/end width of the first segment, the second vertex of the second segment and so
on, the start/end width value of the last vertex is ignored. Start/end width only works if the DXF attribute const_width
is unset, to be sure delete it:

del line.dxf.const_width # no exception will be raised if const_width is already unset

LWPolyline can also have curved elements, they are defined by the bulge value:

dwg = ezdxf.new('AC1015')
msp = dwg.modelspace()

point format = (x, y, [start_width, [end_width, [bulge]]])
set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

points = [(0, 0, 0, .05), (3, 0, .1, .2, -.5), (6, 0, .1, .05), (9, 0)]
msp.add_lwpolyline(points)

dwg.saveas("lwpolyline5.dxf")

The curved segment is drawn from the vertex with the defined bulge value to the following vertex, the curved segment
is always a circle, the diameter is relative to the vertex distance, bulge = 1.0 means the diameter equals the vertex
distance, bulge = 0.5 means the diameter is the half of the vertex distance. bulge > 0 the curve is on the right side of
the vertex connection line, bulge < 0 the curve is on the left side.

4.2.6 Tutorial for Text

TEXT - just one line

Add simple one line text with the factory function Layout.add_text().

import ezdxf

dwg = ezdxf.new('AC1009') # TEXT is a basic entity and exists in every DXF standard

msp = dwg.modelspace()

use set_pos() for proper TEXT alignment - the relations between halign, valign,
→˓insert and align_point are tricky.

(continues on next page)

4.2. Tutorials 19

ezdxf Documentation, Release 0.8.9

(continued from previous page)

msp.add_text("A Simple Text").set_pos((2, 3), align='MIDDLE_RIGHT')

using text styles
dwg.styles.new('custom', dxfattribs={'font': 'times.ttf', 'width': 0.8}) # Arial,
→˓default width factor of 0.8
msp.add_text("Text Style Example: Times New Roman", dxfattribs={'style': 'custom',
→˓'height': 0.35}).set_pos((2, 6), align='LEFT')

dwg.saveas("simple_text.dxf")

Valid text alignments for the align argument in Text.set_pos():

Vert/Horiz Left Center Right
Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

Special alignments are, ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical
alignment Baseline on the virtual line between these two points.

Align-
ment

Description

ALIGNED Text is stretched or compressed to fit exactly between p1 and p2 and the text height is also adjusted to
preserve height/width ratio.

FIT Text is stretched or compressed to fit exactly between p1 and p2 but only the text width is adjusted, the
text height is fixed by the height attribute.

MIDDLE also a special adjustment, but the result is the same as for MIDDLE_CENTER.

more is coming soon . . .

4.2.7 Tutorial for MText

coming soon . . .

4.2.8 Tutorial for Spline

Create a simple spline:

import ezdxf

dwg = ezdxf.new('AC1015') # splines requires the DXF R2000 format or later

fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]
msp = dwg.modelspace()
msp.add_spline(fit_points)

dwg.saveas("simple_spline.dxf")

Add a fit point to a spline:

20 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

import ezdxf

dwg = ezdxf.readfile("simple_spline.dxf")

msp = dwg.modelspace()
spline = msp.query('SPLINE')[0] # take the first spline

use the context manager
with spline.edit_data() as data: # data contains standard python lists

data.fit_points.append((2250, 2500, 0))

points = data.fit_points[:-1] # pitfall: this creates a new list without a
→˓connection to the spline object

points.append((3000, 3000, 0)) # has no effect for the spline object

data.fit_points = points # replace points of fp, this way it works

the context manager calls automatically spline.set_fit_points(data.fit_points)

dwg.saveas("extended_spline.dxf")

You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they will be ignored
and don’t mess around with knot values.

Solve problems of incorrect values after editing an AutoCAD generated file:

import ezdxf

dwg = ezdxf.readfile("AutoCAD_generated.dxf")

msp = dwg.modelspace()
spline = msp.query('SPLINE')[0] # take the first spline
with spline.edit_data() as data: # context manager

data.fit_points.append((2250, 2500, 0)) # data.fit_points is a standard python
→˓list

As far as I tested this works without complaints from AutoCAD, but for the case
→˓of problems

data.knot_values = [] # delete knot values, this could modify the geometry of
→˓the spline

data.weights = [] # delete weights, this could modify the geometry of the spline
data.control_points = [] # delete control points, this could modify the geometry

→˓of the spline

dwg.saveas("modified_spline.dxf")

Check if spline is closed or close/open spline, for a closed spline the last fit point is connected with the first fit point:

if spline.closed:
this spline is closed
pass

close a spline
spline.closed = True

open a spline
spline.closed = False

4.2. Tutorials 21

ezdxf Documentation, Release 0.8.9

Set start/end tangent:

spline.dxf.start_tangent = (0, 1, 0) # in y direction
spline.dxf.end_tangent = (1, 0, 0) # in x direction

Get count of fit points:

as stored in the DXF file
count = spline.dxf.n_fit_points
or count by yourself
count = len(spline.get_fit_points())

4.2.9 Tutorial for Polyface

coming soon . . .

4.2.10 Tutorial for Mesh

Create a cube mesh by direct access to base data structures:

import ezdxf

8 corner vertices
cube_vertices = [

(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),

]

6 cube faces
cube_faces = [

[0, 1, 2, 3],
[4, 5, 6, 7],
[0, 1, 5, 4],
[1, 2, 6, 5],
[3, 2, 6, 7],
[0, 3, 7, 4]

]

dwg = ezdxf.new('AC1015') # mesh requires the DXF 2000 or newer format
msp = dwg.modelspace()
mesh = msp.add_mesh()
mesh.dxf.subdivision_levels = 0 # do not subdivide cube, 0 is the default value
with mesh.edit_data() as mesh_data:

mesh_data.vertices = cube_vertices
mesh_data.faces = cube_faces

dwg.saveas("cube_mesh_1.dxf")

Create a cube mesh by method calls:

22 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

import ezdxf

8 corner vertices
p = [

(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),

]

dwg = ezdxf.new('AC1015') # mesh requires the DXF 2000 or newer format
msp = dwg.modelspace()
mesh = msp.add_mesh()

with mesh.edit_data() as mesh_data:
mesh_data.add_face([p[0], p[1], p[2], p[3]])
mesh_data.add_face([p[4], p[5], p[6], p[7]])
mesh_data.add_face([p[0], p[1], p[5], p[4]])
mesh_data.add_face([p[1], p[2], p[6], p[5]])
mesh_data.add_face([p[3], p[2], p[6], p[7]])
mesh_data.add_face([p[0], p[3], p[7], p[4]])
mesh_data.optimize() # optional, minimizes vertex count

dwg.saveas("cube_mesh_2.dxf")

4.2.11 Tutorial for Hatch

Create hatches with one boundary path

The simplest form of a hatch has one polyline path with only straight lines as boundary path:

import ezdxf

dwg = ezdxf.new('AC1015') # hatch requires the DXF R2000 (AC1015) format or later
msp = dwg.modelspace() # adding entities to the model space

hatch = msp.add_hatch(color=2) # by default a solid fill hatch with fill color=7
→˓(white/black)
with hatch.edit_boundary() as boundary: # edit boundary path (context manager)

every boundary path is always a 2D element
vertex format for the polyline path is: (x, y[, bulge])
there are no bulge values in this example
boundary.add_polyline_path([(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=1)

dwg.saveas("solid_hatch_polyline_path.dxf")

But like all polyline entities the polyline path can also have bulge values:

import ezdxf

(continues on next page)

4.2. Tutorials 23

ezdxf Documentation, Release 0.8.9

(continued from previous page)

dwg = ezdxf.new('AC1015') # hatch requires the DXF R2000 (AC1015) format or later
msp = dwg.modelspace() # adding entities to the model space

hatch = msp.add_hatch(color=2) # by default a solid fill hatch with fill color=7
→˓(white/black)
with hatch.edit_boundary() as boundary: # edit boundary path (context manager)

every boundary path is always a 2D element
vertex format for the polyline path is: (x, y[, bulge])
bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge

→˓value)
bulge value > 0 ... arc is right of line
bulge value < 0 ... arc is left of line
boundary.add_polyline_path([(0, 0, 1), (10, 0), (10, 10, -0.5), (0, 10)], is_

→˓closed=1)

dwg.saveas("solid_hatch_polyline_path_with_bulge.dxf")

The most flexible way to define a boundary path is the edge path. An edge path consist of a number of edges and each
edge can be one of the following elements:

• line EdgePath.add_line()

• arc EdgePath.add_arc()

• ellipse EdgePath.add_ellipse()

• spline EdgePath.add_spline()

Create a solid hatch with an edge path (ellipse) as boundary path:

import ezdxf

dwg = ezdxf.new('AC1015') # hatch requires the DXF R2000 (AC1015) format or later
msp = dwg.modelspace() # adding entities to the model space

important: major axis >= minor axis (ratio <= 1.)
msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) # minor axis length = major
→˓axis length * ratio

hatch = msp.add_hatch(color=2) # by default a solid fill hatch with fill color=7
→˓(white/black)
with hatch.edit_boundary() as boundary: # edit boundary path (context manager)

every boundary path is always a 2D element
edge_path = boundary.add_edge_path()
each edge path can contain line arc, ellipse and spline elements
important: major axis >= minor axis (ratio <= 1.)
edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

dwg.saveas("solid_hatch_ellipse.dxf")

Create hatches with multiple boundary paths (islands)

TODO

Create hatches with with pattern fill

TODO

24 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Create hatches with gradient fill

TODO

4.2.12 Tutorial for Hatch Pattern Definition

TODO

4.2.13 Tutorial for Image and ImageDef

Insert a raster image into a DXF drawing, the raster image is NOT embedded into the DXF file:

import ezdxf

dwg = ezdxf.new('AC1015') # image requires the DXF R2000 format or later
my_image_def = dwg.add_image_def(filename='mycat.jpg', size_in_pixel=(640, 360))
The IMAGEDEF entity is like a block definition, it just defines the image

msp = dwg.modelspace()
add first image
msp.add_image(insert=(2, 1), size_in_units=(6.4, 3.6), image_def=my_image_def,
→˓rotation=0)
The IMAGE entity is like the INSERT entity, it creates an image reference,
and there can be multiple references to the same picture in a drawing.

msp.add_image(insert=(4, 5), size_in_units=(3.2, 1.8), image_def=my_image_def,
→˓rotation=30)

get existing image definitions, Important: IMAGEDEFs resides in the objects section
image_defs = dwg.objects.query('IMAGEDEF') # get all image defs in drawing

dwg.saveas("dxf_with_cat.dxf")

4.2.14 Tutorial for Underlay and UnderlayDefinition

Insert a PDF, DWF, DWFx or DGN file as drawing underlay, the underlay file is NOT embedded into the DXF file:

import ezdxf

dwg = ezdxf.new('AC1015') # underlay requires the DXF R2000 format or later
my_underlay_def = dwg.add_underlay_def(filename='my_underlay.pdf', name='1')
The (PDF)DEFINITION entity is like a block definition, it just defines the underlay
'name' is misleading, because it defines the page/sheet to be displayed
PDF: name is the page number to display
DGN: name='default' ???
DWF: ????

msp = dwg.modelspace()
add first underlay
msp.add_underlay(my_underlay_def, insert=(2, 1, 0), scale=0.05)
The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay
→˓reference,

(continues on next page)

4.2. Tutorials 25

ezdxf Documentation, Release 0.8.9

(continued from previous page)

and there can be multiple references to the same underlay in a drawing.

msp.add_underlay(my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30)

get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects
→˓section
pdf_defs = dwg.objects.query('PDFDEFINITION') # get all pdf underlay defs in drawing

dwg.saveas("dxf_with_underlay.dxf")

4.2.15 Tutorial for Linetypes

Simple line type example:

You can define your own line types. A DXF linetype definition consists of name, description and elements:

elements = [total_pattern_length, elem1, elem2, ...]

total_pattern_length Sum of all linetype elements (absolute vaues)

elem if elem > 0 it is a line, if elem < 0 it is gap, if elem == 0.0 it is a dot

Create a new linetype definition:

import ezdxf
from ezdxf.tools.standards import linetypes # some predefined line types

dwg = ezdxf.new()
msp = modelspace()

my_line_types = [
("DOTTED", "Dotted", [0.2, 0.0, -0.

→˓2]),
("DOTTEDX2", "Dotted (2x) ", [0.4, 0.0, -0.

→˓4]),
("DOTTED2", "Dotted (.5) ", [0.1, 0.0, -0.

→˓1]),
]
for name, desc, pattern in my_line_types:

if name not in dwg.linetypes:
dwg.linetypes.new(name=name, dxfattribs={'description': desc, 'pattern':

→˓pattern})

Setup some predefined linetypes:

for name, desc, pattern in linetypes():
if name not in dwg.linetypes:

dwg.linetypes.new(name=name, dxfattribs={'description': desc, 'pattern':
→˓pattern})

Check Available Linetypes

The linetypes object supports some standard Python protocols:

26 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

iteration
print('available line types:')
for linetype in dwg.linetypes:

print('{}: {}'.format(linetype.dxf.name, linetype.dxf.description))

check for existing line type
if 'DOTTED' in dwg.linetypes:

pass

count = len(dwg.linetypes) # total count of linetypes

Removing Linetypes

Warning: Deleting of linetypes still in use generates invalid DXF files.

You can delete a linetype:

dwg.layers.remove('DASHED')

This just deletes the linetype definition, all DXF entity with the DXF attribute linetype set to DASHED still refers to
linetype DASHED and AutoCAD will not open DXF files with undefined line types.

4.2.16 Tutorial for Complex Linetypes

With DXF R13 Autodesk introduced complex line types, containing TEXT or SHAPES in line types. ezdxf v0.8.4
and later supports complex line types.

Complex line type example with text:

Complex line type example with shapes:

For simplicity the pattern string for complex line types is mostly the same string as the pattern definition strings in
AutoCAD .lin files.

Example for complex line type TEXT:

dwg = ezdxf.new('R2018') # DXF R13 or later is required

dwg.linetypes.new('GASLEITUNG2', dxfattribs={
'description': 'Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--',
'length': 1, # required for complex line types
line type definition in acadlt.lin:
'pattern': 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25',

})

The pattern always starts with an A, the following float values have the same meaning as for simple line types, a value
> 0 is a line, a value < 0 is a gap, and a 0 ist a point, the [starts the complex part of the line pattern. A following text
in quotes defines a TEXT type, a following text without quotes defines a SHAPE type, in .lin files the shape type is
a shape name, but ezdxf can not translate this name into the required shape file index, so YOU have to translate this

4.2. Tutorials 27

ezdxf Documentation, Release 0.8.9

name into the shape file index (e.g. saving the file with AutoCAD as DXF and searching for the line type definition,
see also DXF Internals: LTYPE Table).

The second parameter is the text style for a TEXT type and the shape file name for the SHAPE type, the shape file has
to be in the same directory as the DXF file. The following parameters in the scheme of S=1.0 are:

• S . . . scaling factor, always > 0, if S=0 the TEXT or SHAPE is not visible

• R or U . . . rotation relative to the line direction

• X . . . x direction offset (along the line)

• Y . . . y direction offset (perpendicular to the line)

The parameters are case insensitive.] ends the complex part of the line pattern.

The fine tuning of this parameters is still a try an error process for me, for TEXT the scaling factor (STANDARD text
style) sets the text height (S=.1 the text is .1 units in height), by shifting in y direction by half of the scaling factor, the
center of the text is on the line. For the x direction it seems to be a good practice to place a gap in front of the text and
after the text, find x shifting value and gap sizes by try and error. The overall length is at least the sum of all line and
gap definitions (absolute values).

Example for complex line type SHAPE:

dwg.linetypes.new('GRENZE2', dxfattribs={
'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--',
'length': 1.45, # required for complex line types
line type definition in acadlt.lin:
A,.25,-.1,[BOX,ltypeshp.shx,x=-.1,s=.1],-.1,1
replacing BOX by shape index 132 (got index from an AutoCAD file),
ezdxf can't get shape index from ltypeshp.shx
'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1',

})

Complex line types with shapes only work if the associated shape file (ltypeshp.shx) and the DXF file are in the same
directory.

4.2.17 Tutorial for OCS/UCS Usage

First you need an understanding of vectors, if you don’t have it, watch the YouTube tutorials of 3Blue1Brown about
Linear Algebra.

Second read the Coordinate Systems introduction please.

For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing unit can have
any real world unit you want. Autodesk added some mechanism to define a scale for dimension and text entities, but
because I am not an AutoCAD user, I am not familiar with it, and further more I think this is more an AutoCAD topic
than a DXF topic.

Object Coordinate System (OCS)

The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same plane, this is
also true if the plane is located in 3D space by an OCS. There are three basic DXF attributes that gives a 2D entity its
spatial form.

28 Chapter 4. Contents

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

ezdxf Documentation, Release 0.8.9

Extrusion

The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This base plane is
always located in the origin of the WCS. But there are some entities like Ellipse, which have an extrusion vector,
but do not establish an OCS. For this entities the extrusion vector defines only the extrusion direction and thickness
defines the extrusion distance, but all other points in WCS.

Elevation

The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and defines the
distance of the entity plane from the base plane.

This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code 38). In DXF
version R12 and later, the elevation value is supplied as z-axis value of each point. But as always in DXF, this simple
rule does not apply to all entities: LWPolyline has an elevation attribute, Hatch has an elevation point (z=elevation
, x=y=0), and so on.

Thickness

Defines the extrusion distance for an entity.

Placing 2D Circle in 3D Space

The colors for axis follow the AutoCAD standard:

• red is x-axis

• green is y-axis

• blue is z-axis

import ezdxf
from ezdxf.algebra import OCS

dwg = ezdxf.new('R2010')
msp = dwg.modelspace()

For this example the OCS is rotated around x-axis about 45 degree
OCS z-axis: x=0, y=1, z=1
extrusion vector must not normalized here
ocs = OCS((0, 1, 1))
msp.add_circle(

You can place the 2D circle in 3D space
but you have to convert WCS into OCS
center=ocs.from_wcs((0, 2, 2)),
center in OCS: (0.0, 0.0, 2.82842712474619)
radius=1,
dxfattribs={

here the extrusion vector should be normalized,
which is granted by using the ocs.uz
'extrusion': ocs.uz,
'color': 2,

})
mark center point of circle in WCS
msp.add_point((0, 2, 2), dxfattribs={'color': 2})

4.2. Tutorials 29

ezdxf Documentation, Release 0.8.9

The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows the OCS
z-axis (extrusion direction), elevation is the distance from the origin to the center of the circle in this case 2.828, and
you see that the x- and y- axis of OCS and WCS are not aligned.

Placing LWPolyline in 3D Space

For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space.

import ezdxf
from ezdxf.algebra import Vector, UCS

(continues on next page)

30 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

dwg = ezdxf.new('R2010')
msp = dwg.modelspace()

center point of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about 45 degree, to accomplish this I use an
UCS with z-axis (0, 1, 1) and an x-axis parallel to WCS x-axis.
ucs = UCS(

origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x-axis parallel to WCS x-axis
uz=(0, 1, 1), # z-axis

)
calculating corner points in local (UCS) coordinates
points = [Vector.from_deg_angle((360/5)*n) for n in range(5)]
converting UCS into OCS coordinates
ocs_points = list(ucs.points_to_ocs(points))

LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation.
All points have the same z-axis (elevation) in OCS!
elevation = ocs_points[0].z

msp.add_lwpolyline(
LWPOLYLINE point format: (x, y, [start_width, [end_width, [bulge]]])
the z-axis would be start_width, so remove it
points=[p[:2] for p in ocs_points],
dxfattribs={

'elevation': elevation,
'extrusion': ucs.uz,
'closed': True,
'color': 2,

})

The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three lines from
the center of the pentagon show the UCS, the three colored lines in the origin show the OCS the white lines in the
origin show the WCS.

The z-axis of the UCS and the OCS show the same direction (extrusion direction), and the x-axis of the UCS and the
WCS show the same direction. The elevation is the distance from the origin to the center of the pentagon and all points
of the pentagon have the same elevation, and you see that the y- axis of UCS, OCS and WCS are not aligned.

4.2. Tutorials 31

ezdxf Documentation, Release 0.8.9

32 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Using UCS to Place 3D Polyline

It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this example and all
kind of 3D operations.

import math
import ezdxf
from ezdxf.algebra import UCS, Matrix44

dwg = ezdxf.new('R2010')
msp = dwg.modelspace()

using an UCS simplifies 3D operations, but UCS definition can happen later
calculating corner points in local (UCS) coordinates without Vector class
angle = math.radians(360/5)
corners_ucs = [(math.cos(angle*n), math.sin(angle*n), 0) for n in range(5)]

let's do some transformations
tmatrix = Matrix44.chain(# creating a transformation matrix

Matrix44.z_rotate(math.radians(15)), # 1. rotation around z-axis
Matrix44.translate(0, .333, .333), # 2. translation

)
transformed_corners_ucs = tmatrix.transform_vectors(corners_ucs)

transform UCS into WCS
ucs = UCS(

origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x-axis parallel to WCS x-axis
uz=(0, 1, 1), # z-axis

)

(continues on next page)

4.2. Tutorials 33

ezdxf Documentation, Release 0.8.9

(continued from previous page)

corners_wcs = list(ucs.points_to_wcs(transformed_corners_ucs))

msp.add_polyline3d(
points=corners_wcs,
dxfattribs={

'closed': True,
'color': 2,

})

add lines from center to corners
center_wcs = ucs.to_wcs((0, .333, .333))
for corner in corners_wcs:

msp.add_line(center_wcs, corner, dxfattribs={'color': 2})

Placing 2D Text in 3D space

The problem by placing text in 3D space is the text rotation, which is always counter clockwise around the OCS z-axis,
and 0 degree is in the positive OCS x-axis, and the x-axis is calculated by the Arbitrary Axis Algorithm.

Calculate the OCS rotation angle by converting the rotation angle in UCS or WCS into a vector or start with text
direction as vector, transform this direction vector into OCS and convert the OCS vector back into an angle in the OCS
xy-plane (see example).

AutoCAD supports thickness for the TEXT entity only for shx fonts and not for true type fonts.

import ezdxf
from ezdxf.algebra import UCS, Vector

dwg = ezdxf.new('R2010')
msp = dwg.modelspace()

thickness for text works only with shx fonts not with true type fonts
dwg.styles.new('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
calculation of text direction as angle in OCS:
convert text rotation in degree into a vector in UCS
text_direction = Vector.from_deg_angle(-45)
transform vector into OCS and get angle of vector in xy-plane

(continues on next page)

34 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

rotation = ucs.to_ocs(text_direction).angle_deg

text = msp.add_text(
text="TEXT",
dxfattribs={

text rotation angle in degrees in OCS
'rotation': rotation,
'extrusion': ucs.uz,
'thickness': .333,
'color': 2,
'style': 'TXT',

})
set text position in OCS
text.set_pos(ucs.to_ocs((0, 0, 0)), align='MIDDLE_CENTER')

4.2. Tutorials 35

ezdxf Documentation, Release 0.8.9

Hint: For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed parallel to
the xy-plane of the UCS.

Placing 2D Arc in 3D space

Here we have the same problem as for placing text, you need the start and end angle of the arc in degrees in OCS, and
this example also shows a shortcut for calculating the OCS angles.

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
msp.add_arc(

center=ucs.to_ocs((0, 0)),
radius=1,
start_angle=ucs.to_ocs_angle_deg(45), # shortcut
end_angle=ucs.to_ocs_angle_deg(270), # shortcut
dxfattribs={

'extrusion': ucs.uz,
'color': 2,

})
center = ucs.to_wcs((0, 0))
msp.add_line(

start=center,
end=ucs.to_wcs(Vector.from_deg_angle(45)),
dxfattribs={'color': 2},

)
msp.add_line(

start=center,

(continues on next page)

36 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

end=ucs.to_wcs(Vector.from_deg_angle(270)),
dxfattribs={'color': 2},

)

4.3 Reference

The DXF Reference is online available at Autodesk.

Quoted from the original DXF 12 Reference which is not available on the web:

4.3. Reference 37

http://docs.autodesk.com/ACD/2014/ENU/index.html?url=files/GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3.htm,topicNumber=d30e652301
http://usa.autodesk.com/

ezdxf Documentation, Release 0.8.9

Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly
as new features are added to AutoCAD, we do not document its format and do not recommend that you
attempt to write programs to read it directly. To assist in interchanging drawings between AutoCAD and
other programs, a Drawing Interchange file format (DXF) has been defined. All implementations of Au-
toCAD accept this format and are able to convert it to and from their internal drawing file representation.

4.3.1 Drawing

The Drawing class manages all entities and tables related to a DXF drawing. You can read DXF drawings from
file-system or from a text-stream and you can also write the drawing to file-system or to a text-stream.

Drawing Management

Create New Drawings

ezdxf.new(dxfversion=’AC1009’)
Create a new drawing from a template-drawing. The template-drawings are located in a template directory,
which resides by default in the ezdxf package subfolder templates. The location of the template directory can be
changed by the global option ezdxf.options.template_dir. dxfversion can be either 'AC1009' the
official DXF version name or 'R12' the AutoCAD release name (release name works since ezdxf 0.7.4). You
can only create new drawings for the following DXF versions:

Version AutoCAD Release
AC1009 AutoCAD R12
AC1015 AutoCAD R2000
AC1018 AutoCAD R2004
AC1021 AutoCAD R2007
AC1024 AutoCAD R2010
AC1027 AutoCAD R2013
AC1032 AutoCAD R2018

Open Drawings

You can open DXF drawings from disk or from a text-stream. (byte-stream usage is not implemented yet).

ezdxf.readfile(filename, encoding=’auto’, legacy_mode=False)
This is the preferred method to open existing DXF files. Read the DXF drawing from the file-system with
auto-detection of encoding. Decoding errors will be ignored. Override encoding detection by setting parameter
encoding to the estimated encoding. (use Python encoding names like in the open() function).

If parameter legacy_mode is True, ezdxf tries to reorder the coordinates of the LINE entity in DXF files from
CAD applications which wrote the coordinates in the order: x1, x2, y1, y2. Additional fixes may be added later.
The legacy mode has a speed penalty of around 5%.

Hint: Try option legacy_mode=True if error “Missing required y coordinate near line: . . . ” occurs.

ezdxf.read(stream, legacy_mode=False)
Read DXF drawing from a text-stream, returns a Drawing object. Open the stream in text mode (mode=’rt’)
and the correct encoding has to be set at the open function (in Python 2.7 use io.open()), the stream requires
at least a readline() method. Since DXF version R2007 (AC1021) file encoding is always ‘utf-8’.

38 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

If parameter legacy_mode is True, ezdxf tries to reorder the coordinates of the LINE entity in DXF files from
CAD applications which wrote the coordinates in the order: x1, x2, y1, y2, see also readfile() method.

Save Drawings

Save the drawing to the file-system by Drawing.save() or Drawing.saveas(). Write the drawing to a text-
stream with Drawing.write(), the text-stream requires at least a write() method.

Global Options

Global options stored in ezdxf.options

ezdxf.options.compress_binary_data
If you don’t need access to binary data of DXF entities, you can compress them in memory for a lower memory
footprint, set the global ezdxf.options.compress_binary_data = True to compress binray data
for every drawing you open, but data compression cost time, so this option isn’t active by default. You can indi-
vidually compress the binary data of a drawing with the method Drawing.compress_binary_data().

ezdxf.options.templatedir
Directory where the new() function looks for its template file (AC1009.dxf, AC1015.dxf, . . .) , default is
None, which means the package subfolder templates. But if you want to use your own templates set this option
ezdxf.options.template_dir = "my_template_directory". But you don’t really need this,
just open your template file with ezdxf.readfile() and save the drawing as new file with the Drawing.
saveas() method.

This option is very useful if the ezdxf package resides in a zip archive.

ezdxf.options.check_entity_tag_structures
Check app data (Application-Defined Codes) and xdata (Extended Data) tag structures, set this option to False
for a little performance boost, default is True.

Drawing Object

class Drawing
The Drawing class manages all entities and tables related to a DXF drawing. Every drawing has its own
character encoding which is only important for saving to disk.

Drawing Attributes

Drawing.dxfversion
contains the DXF version as string like 'AC1009', set by the new() or the readfile() function. (read
only)

Drawing.acad_version
contains the AutoCAD release number string like 'R12' or 'R2000' that introduced the DXF version of this
drawing. (read only)

Drawing.encoding
DXF drawing text encoding, the default encoding for new drawings is 'cp1252'. Starting with DXF version
R2007 (AC1021) DXF files are written as UTF-8 encoded text files, regardless of the attribute Drawing.
encoding (read/write) see also: DXF File Encoding

4.3. Reference 39

ezdxf Documentation, Release 0.8.9

supported encodings
'cp874' Thai
'cp932' Japanese
'gbk' UnifiedChinese
'cp949' Korean
'cp950' TradChinese
'cp1250' CentralEurope
'cp1251' Cyrillic
'cp1252' WesternEurope
'cp1253' Greek
'cp1254' Turkish
'cp1255' Hebrew
'cp1256' Arabic
'cp1257' Baltic
'cp1258' Vietnam

Drawing.filename
Contains the drawing filename, if the drawing was opened with the readfile() function else set to None.
(read/write)

Drawing.dxffactory
DXF entity creation factory, see also DXFFactory (read only).

Drawing.sections
Collection of all existing sections of a DXF drawing.

Drawing.header
Shortcut for Drawing.sections.header

Reference to the HeaderSection of the drawing, where you can change the drawing settings.

Drawing.entities
Shortcut for Drawing.sections.entities

Reference to the EntitySection of the drawing, where all graphical entities are stored, but only from model
space and the active layout (paper space). Just for your information: Entities of other layouts are stored as
blocks in the BlocksSection.

Drawing.blocks
Shortcut for Drawing.sections.blocks

Reference to the blocks section, see also BlocksSection.

Drawing.layouts
Reference to the layout management object, see also Layouts.

Drawing.groups
requires DXF version R13 or later

Table (dict) of all groups used in this drawing, see also DXFGroupTable.

Drawing.layers
Shortcut for Drawing.sections.tables.layers

Reference to the layers table, where you can create, get and remove layers, see also Table and Layer

Drawing.styles
Shortcut for Drawing.sections.tables.styles

Reference to the styles table, see also Style.

40 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Drawing.dimstyles
Shortcut for Drawing.sections.tables.dimstyles

Reference to the dimstyles table, see also DimStyle.

Drawing.linetypes
Shortcut for Drawing.sections.tables.linetypes

Reference to the linetypes table, see also Linetype.

Drawing.views
Shortcut for Drawing.sections.tables.views

Reference to the views table, see also View .

Drawing.viewports
Shortcut for Drawing.sections.tables.viewports

Reference to the viewports table, see also Viewport.

Drawing.ucs
Shortcut for Drawing.sections.tables.ucs

Reference to the ucs table, see also UCS.

Drawing.appids
Shortcut for Drawing.sections.tables.appids

Reference to the appids table, see also AppID.

Drawing.is_binary_data_compressed
Indicates if binary data is compressed in memory. see: Drawing.compress_binary_data()

Drawing Methods

Drawing.modelspace()
Get the model space layout, see also Layout.

Drawing.layout(name)
Get a paper space layout by name, see also Layout. (DXF version AC1009, supports only one paper space
layout, so name is ignored)

Drawing.layout_names()
Get a list of available paper space layouts.

Drawing.new_layout(name, dxfattribs=None)
Create a new paper space layout name. Returns a Layout object. Available only for DXF version AC1015 or
newer, AC1009 supports only one paper space.

Drawing.delete_layout(name)
Delete paper space layout name and all its entities. Available only for DXF version AC1015 or newer, AC1009
supports only one paper space and you can’t delete it.

Drawing.layouts_and_blocks()
Iterate over all layouts (mode space and paper space) and all block definitions.

Drawing.chain_layouts_and_blocks()
Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all layouts and blocks.

Drawing.add_image_def(filename, size_in_pixel, name=None)
Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or absolute
path and size_in_pixel is the image size in pixel as (x, y) tuple. To avoid dependencies to external packages,

4.3. Reference 41

ezdxf Documentation, Release 0.8.9

ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to create an
image reference, see Tutorial for Image and ImageDef . name is the internal image name, if set to None, name
is auto-generated.

Parameters

• filename – image file name

• size_in_pixel – image size in pixel as (x, y) tuple

• name – image name for internal use, None for an auto-generated name

Drawing.add_underlay_def(filename, format=’pdf’, name=None)
Add an UnderlayDef entity to the drawing (objects section). filename is the underlay file name as relative or
absolute path and format as string (pdf, dwf, dgn). Returns a UnderlayDef entity which is needed to create an
underlay reference, see Tutorial for Underlay and UnderlayDefinition. name defines the page/sheet to display.

Parameters

• filename – underlay file name

• format – file format (pdf, dwf or dgn) or ext=get format from filename extension

• name – pdf: page number to display; dgn: ‘default’; dwf: ????

Drawing.add_xref_def(filename, name)
Add an external reference (xref) definition to the blocks section.

Add xref to a layout by Layout.add_blockref().

Parameters

• filename – external reference filename

• name – block name for the xref

Drawing.save(encoding=’auto’)
Write drawing to file-system by using the filename attribute as filename. Overwrite file encoding by argument
encoding, handle with care, but this option allows you to create DXF files for applications that handles file
encoding different than AutoCAD.

Parameters encoding – override file encoding

Drawing.saveas(filename, encoding=’auto’)
Write drawing to file-system by setting the filename attribute to filename. For argument encoding see:
save().

Parameters

• filename – file name

• encoding – override file encoding

Drawing.write(stream)
Write drawing to a text stream. For DXF version R2004 (AC1018) and prior opened stream with encoding=
Drawing.encoding and mode=’wt’. For DXF version R2007 (AC1021) and later use encoding=’utf-8’.

Drawing.cleanup(groups=True)
Cleanup drawing. Call it before saving the drawing but only if necessary, the process could take a while.

Parameters groups – removes deleted and invalid entities from groups

Drawing.compress_binary_data()
If you don’t need access to binary data of DXF entities, you can compress them in memory for a lower memory
footprint, you can set ezdxf.options.compress_binray_data = True to compress binary data for
every drawing you open, but data compression cost time, so this option isn’t active by default.

42 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Drawing.query(query=’*’)
Entity query over all layouts and blocks. (see also: Name Query String and Retrieve Entities by Query Language)

Excluding the OBJECTS section!

Parameters query – query string

Returns EntityQuery container

Drawing.qroupby(dxfattrib="", key=None)
Groups DXF entities of all layouts and blocks by an DXF attribute or a key function. (see also: Retrieve Entities
by groupby)

Excluding the OBJECTS section!

Parameters

• dxfattrib – grouping DXF attribute like ‘layer’

• key – key function, which accepts a DXFEntity as argument, returns grouping key of this
entity or None for ignore this object. Reason for ignoring: a queried DXF attribute is not
supported by this entity

Returns dict

Low Level Access to DXF entities

Drawing.get_dxf_entity(handle)
Get entity by handle from entity database. Low level access to DXF entities database. Raises DXFKeyError
if handle doesn’t exist. Returns DXFEntity or inherited.

If you just need the raw DXF tags use:

tags = Drawing.entitydb[handle] # raises DXFKeyError, if handle does not exist
tags = Drawing.entitydb.get(handle) # returns a default value, if handle does not
→˓exist (None by default)

type of tags: ExtendedTags

Drawing Header Section

The drawing settings are stored in the header section, which is accessible by the header attribute. See the online
documentation from Autodesk for available header variables.

class HeaderSection

HeaderSection.__getitem__(key)
Get drawing settings by index operator like: drawing.header['$ACADVER']

HeaderSection.__setitem__(key, value)
Set drawing settings by index operator like: drawing.header['$ANGDIR'] = 1 # Clockwise
angles

HeaderSection.custom_vars
Stores the custom drawing properties in CustomVars object.

class CustomVars
Stores custom properties in the DXF header as $CUSTOMPROPERTYTAG/$CUSTOMPROPERTY values.
Custom properties are just supported at DXF version AC1018 (AutoCAD 2004) or newer. With ezdxf you can
create custom properties on older DXF versions, but AutoCAD will not show this properties.

4.3. Reference 43

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 0.8.9

CustomVars.properties
List of custom drawing properties, stored as string tuples (tag, value). Multiple occurrence of the same
custom tag is allowed, but not well supported by the interface. This is a standard python list and it is save to
change this list as long you store just tuples of strings in the format (tag, value).

CustomVars.__len__()
Count of custom properties.

CustomVars.__iter__()
Iterate over all custom properties as (tag, value) tuples.

CustomVars.clear()
Removes all custom properties.

CustomVars.get(tag, default=None)
Returns the value of the first custom property tag.

CustomVars.has_tag(tag)
True if custom property tag exists, else False.

CustomVars.append(tag, value)
Add custom property as (tag, value) tuple.

CustomVars.replace(tag, value)
Replaces the value of the first custom property tag by a new value. Raises DXFValueError if tag does not
exist.

CustomVars.remove(tag, all=False)
Removes the first occurrence of custom property tag, removes all occurrences if all is True. Raises
DXFValueError if tag does not exist.

4.3.2 Tables

Table Class

Generic Table Class

class Table
Table entry names are case insensitive: ‘Test’ == ‘TEST’.

Table.new(name, dxfattribs=None)

param str name name of the new table-entry

param dict dxfattribs optional table-parameters, these parameters are described at the table-entry-
classes below.

returns table-entry-class, can be ignored

Table entry creation is for all tables the same procedure:

drawing.tablename.new(name, dxfattribs)

Where tablename can be: layers, styles, linetypes, views, viewports or dimstyles.

Table.get(name)

Get table-entry name. Raises DXFValueError if table-entry is not present.

Table.remove(name)

44 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Removes table-entry name. Raises DXFValueError if table-entry is not present.

Table.__len__()

Get count of table-entries.

Table.has_entry(name)

True if table contains a table-entry name.

Table.__contains__(name)

True if table contains a table-entry name.

Table.__iter__()

Iterate over all table.entries, yields table-entry-objects.

Style Table Class

class StyleTable(Table)

StyleTable.get_shx(name)

Get existing shx entry, or create a new entry.

StyleTable.find_shx(name)

Find .shx shape file table entry, by a case insensitive search. A .shx shape file table entry has no name, so you have to
search by the font attribute.

Viewport Table Class

class ViewportTable(Table)

The viewport table stores the model space viewport configurations. A viewport configuration is a tiled view of multiple
viewports or just one viewport. In contrast to other tables the viewport table can have multiple entries with the
same name, because all viewport entries of a multi-viewport configuration are having the same name - the viewport
configuration name.

The name of the actual displayed viewport configuration is “*ACTIVE”.

ViewportTable.get_config(name)

Returns a list of Viewport objects, of the multi-viewport configuration name.

ViewportTable.delete_config(name):

Delete all Viewport objects of the multi-viewport configuration name.

Layer

class Layer
Layer definition, defines attribute values for entities on this layer for their attributes set to BYLAYER.

4.3. Reference 45

ezdxf Documentation, Release 0.8.9

DXF Attributes for Layer

Layer.dxf.handle
DXF handle (feature for experts)

Layer.dxf.owner
requires DXF R13 or later

Layer.dxf.name
Layer name (str)

Layer.dxf.flags
Layer flags (feature for experts)

Layer.dxf.color
Layer color, but use Layer.get_color(), because color is negative for layer status off (int)

Layer.dxf.linetype
Name of line type (str)

Layer.dxf.plot
Plot flag (int)

• 1 = plot layer (default value)

• 0 = don’t plot layer

Layer.dxf.lineweight
Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200,
values outside this range prevents AutoCAD from loading the file.

ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight.

requires DXF R13 or later

Layer.dxf.plot_style_name
Handle to PlotStyleName (feature for experts)

requires DXF R13 or later

Layer.dxf.line_weight
requires DXF R13 or later

Layer.dxf.plot_style_name
requires DXF R13 or later

Layer.dxf.material
requires DXF R13 or later

Layer Methods

Layer.is_frozen()

Layer.freeze()

Layer.thaw()

Layer.is_locked()

Layer.lock()
Lock layer, entities on this layer are not editable - just important in CAD applications.

46 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Layer.unlock()
Unlock layer, entities on this layer are editable - just important in CAD applications.

Layer.is_off()

Layer.is_on()

Layer.on()
Switch layer on (visible).

Layer.off()
Switch layer off (invisible).

Layer.get_color()
Get layer color, preferred method for getting the layer color, because color is negative for layer status off.

Layer.set_color(color)
Set layer color to color, preferred method for setting the layer color, because color is negative for layer status
off.

Style

class Style

Defines a text style, can be used by entities: Text, Attrib and Attdef

DXF Attributes for Style

Style.dxf.handle

DXF handle (feature for experts)

Style.dxf.owner

requires DXF R13 or later

Style.dxf.name

Style name (str)

Style.dxf.flags

Style flags (feature for experts)

Style.dxf.height

Fixed height in drawing units, 0 for not fixed (float)

Style.dxf.width

Width factor (float), default is 1

Style.dxf.oblique

Oblique angle in degrees, 0 is vertical (float)

Style.dxf.text_generation_flags

Text generations flags (int)

• 2 = text is backward (mirrored in X)

• 4 = text is upside down (mirrored in Y)

Style.dxf.last_height

4.3. Reference 47

ezdxf Documentation, Release 0.8.9

Last height used in drawing units (float)

Style.dxf.font

Primary font file name (str)

Style.dxf.bigfont

Big font name, blank if none (str)

Linetype

class Linetype

Defines a linetype.

DXF Attributes for Linetype

Linetype.dxf.name

Linetype name (str)

Linetype.dxf.owner

requires DXF R13 or later

Linetype.dxf.description

Linetype description (str)

Linetype.dxf.length

Total pattern length in drawing units (float)

Linetype.dxf.items

Number of linetype elements (int)

See also:

Tutorial for Linetypes

DXF Internals: LTYPE Table

DimStyle

class DimStyle

Defines a dimension style.

DXF Attributes for DimStyle

DimStyle.dxf.handle

Handle of table entry.

DimStyle.dxf.owner

Handle to dimstyle table, requires DXF R13 or later

DimStyle.dxf.name

48 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Text style name.

DimStyle.dxf.flags

Standard flag values (bit-coded values):

• 16 = If set, table entry is externally dependent on an xref

• 32 = If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

• 64 = If set, the table entry was referenced by at least one entity in the drawing the last time the drawing was
edited. (This flag is for the benefit of AutoCAD commands. It can be ignored by most programs that read DXF
files and need not be set by programs that write DXF files)

DimStyle.dxf.dimpost

Prefix/suffix for primary units dimension values.

DimStyle.dxf.dimapost

Prefix/suffix for alternate units dimensions.

DimStyle.dxf.dimblk

Block type to use for both arrowheads. (R2000 obsolete, now object ID)

DimStyle.dxf.dimblk1(R2000 obsolete, now object ID)

Block type to use for first arrowhead.

DimStyle.dxf.dimblk2(R2000 obsolete, now object ID)

Block type to use for second arrowhead.

DimStyle.dxf.dimscale

Global dimension feature scale factor. (default=1.)

DimStyle.dxf.dimasz

Dimension line and arrowhead size. (default=0.28)

DimStyle.dxf.dimexo

Distance from origin points to extension lines. (default imperial=0.0625, default metric=0.625)

DimStyle.dxf.dimdli

Incremental spacing between baseline dimensions. (default imperial=0.38, default metric=3.75)

DimStyle.dxf.dimexe

Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25)

DimStyle.dxf.dimrnd

Rounding value for dimensions. (default=0)

DimStyle.dxf.dimdle

Dimension line extension beyond extension lines. (default=0)

DimStyle.dxf.dimtp

Upper tolerance value for tolerance dimensions. (default=0)

DimStyle.dxf.dimtm

Lower tolerance value for tolerance dimensions. (default=0)

DimStyle.dxf.dimtxt

4.3. Reference 49

ezdxf Documentation, Release 0.8.9

Size of dimension text. (default imperial=0.28, default metric=2.5)

DimStyle.dxf.dimcen

Controls placement of center marks or centerlines. (default imperial=0.09, default metric=2.5)

DimStyle.dxf.dimtsz

Controls size of dimension line tick marks drawn instead of arrowheads. (default=0)

DimStyle.dxf.dimaltf

Alternate units dimension scale factor. (default=25.4)

DimStyle.dxf.dimlfac

Scale factor for linear dimension values. (default=1)

DimStyle.dxf.dimtvp

Vertical position of text above or below dimension line. (default=0)

DimStyle.dxf.dimtfac

Scale factor for fractional or tolerance text size. (default=1)

DimStyle.dxf.dimgap

Gap size between dimension line and dimension text. (default imperial=0.09, default metric=0.625)

DimStyle.dxf.dimaltrnd

Rounding value for alternate dimension units. (default=0)

DimStyle.dxf.dimtol

Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0)

DimStyle.dxf.dimlim

Toggles creation of limits-style dimension text. (default=0)

DimStyle.dxf.dimtih

Orientation of text inside extension lines. (default imperial=1, default metric=0)

DimStyle.dxf.dimtoh

Orientation of text outside extension lines. (default imperial=1, default metric=0)

DimStyle.dxf.dimse1

Toggles suppression of first extension line. (default=0)

DimStyle.dxf.dimse2

Toggles suppression of second extension line. (default=0)

DimStyle.dxf.dimtad

Sets text placement relative to dimension line. (default imperial=0, default metric=1)

DimStyle.dxf.dimzin

Zero suppression for primary units dimensions. (default imperial=0, default metric=8) ???

DimStyle.dxf.dimazin

Controls zero suppression for angular dimensions. (default=0)

DimStyle.dxf.dimalt

50 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Enables or disables alternate units dimensioning. (default=0)

DimStyle.dxf.dimaltd

Controls decimal places for alternate units dimensions. (default imperial=2, default metric=3)

DimStyle.dxf.dimtofl

Toggles forced dimension line creation. (default imperial=0, default metric=1)

DimStyle.dxf.dimsah

Toggles appearance of arrowhead blocks. (default=0)

DimStyle.dxf.dimtix

Toggles forced placement of text between extension lines. (default=0)

DimStyle.dxf.dimsoxd

Suppresses dimension lines outside extension lines. (default=0)

DimStyle.dxf.dimclrd

Dimension line, arrowhead, and leader line color. (default=0)

DimStyle.dxf.dimclre

Dimension extension line color. (default=0)

DimStyle.dxf.dimclrt

Dimension text color. (default=0)

DimStyle.dxf.dimadec

Controls the number of decimal places for angular dimensions.

DimStyle.dxf.dimunit

Obsolete, now use DIMLUNIT AND DIMFRAC

DimStyle.dxf.dimdec

Decimal places for dimension values. (default imperial=4, default metric=2)

DimStyle.dxf.dimtdec

Decimal places for primary units tolerance values. (default imperial=4, default metric=2)

DimStyle.dxf.dimaltu

Units format for alternate units dimensions. (default=2)

DimStyle.dxf.dimalttd

Decimal places for alternate units tolerance values. (default imperial=4, default metric=2)

DimStyle.dxf.dimaunit

Unit format for angular dimension values. (default=0)

DimStyle.dxf.dimfrac

Controls the fraction format used for architectural and fractional dimensions. (default=0)

DimStyle.dxf.dimlunit

Specifies units for all nonangular dimensions. (default=2)

DimStyle.dxf.dimdsep

4.3. Reference 51

ezdxf Documentation, Release 0.8.9

Specifies a single character to use as a decimal separator. (default imperial=”.”, default metric=”,”)

DimStyle.dxf.dimtmove

Controls the format of dimension text when it is moved. (default=0)

DimStyle.dxf.dimjust

Horizontal justification of dimension text. (default=0)

DimStyle.dxf.dimsd1

Toggles suppression of first dimension line. (default=0)

DimStyle.dxf.dimsd2

Toggles suppression of second dimension line. (default=0)

DimStyle.dxf.dimtolj

Vertical justification for dimension tolerance text. (default=1)

DimStyle.dxf.dimaltz

Zero suppression for alternate units dimension values. (default=0)

DimStyle.dxf.dimalttz

Zero suppression for alternate units tolerance values. (default=0)

DimStyle.dxf.dimfit

Obsolete, now use DIMATFIT and DIMTMOVE

DimStyle.dxf.dimupt

Controls user placement of dimension line and text. (default=0)

DimStyle.dxf.dimatfit

Controls placement of text and arrowheads when there is insufficient space between the extension lines. (default=3)

DimStyle.dxf.dimtxsty_handle

Text style used for dimension text, handle of referenced style.

DimStyle.dxf.dimldrblk_handle

Controls the type of arrowhead used for leaders, handle of referenced block.

DimStyle.dxf.dimblk_handle

Block type to use for both arrowheads, handle of referenced block.

DimStyle.dxf.dimblk1_handle

Block type to use for first arrowhead, handle of referenced block.

DimStyle.dxf.dimblk2_handle

Block type to use for second arrowhead, handle of referenced block.

DimStyle.dxf.dimlwd

Lineweight value for dimension lines. (default=-2, BYBLOCK)

DimStyle.dxf.dimlwe

Lineweight value for extension lines. (default=-2, BYBLOCK)

52 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

VPort

The viewport table stores the model space viewport configurations. So this entries just model space viewports, not
paper space viewports, for paper space viewports see the Viewport entity.

class VPort

Defines a viewport to the model space.

DXF Attributes for VPort

VPort.dxf.handle

VPort.dxf.owner

requires DXF R13 or later

VPort.dxf.name

VPort.dxf.flags

VPort.dxf.lower_left

VPort.dxf.upper_right

VPort.dxf.center_point

VPort.dxf.snap_base

VPort.dxf.snap_spacing

VPort.dxf.grid_spacing

VPort.dxf.direction_point

VPort.dxf.target_point

VPort.dxf.height

VPort.dxf.aspect_ratio

VPort.dxf.lens_length

VPort.dxf.front_clipping

VPort.dxf.back_clipping

VPort.dxf.snap_rotation

VPort.dxf.view_twist

VPort.dxf.status

VPort.dxf.view_mode

VPort.dxf.circle_zoom

VPort.dxf.fast_zoom

VPort.dxf.ucs_icon

VPort.dxf.snap_on

VPort.dxf.grid_on

VPort.dxf.snap_style

VPort.dxf.snap_isopair

4.3. Reference 53

ezdxf Documentation, Release 0.8.9

See also:

DXF Internals: VPORT Configuration Table

View

The View table stores named views of the model or paper space layouts. This stored views makes parts of the drawing
or some view points of the model in a CAD applications more accessible. This views have no influence to the drawing
content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the convenience of
CAD application users.

class View

DXF Attributes for View

View.dxf.handle

View.dxf.owner

requires DXF R13 or later

View.dxf.name

View.dxf.flags

View.dxf.height

View.dxf.width

View.dxf.center_point

View.dxf.direction_point

View.dxf.target_point

View.dxf.lens_length

View.dxf.front_clipping

View.dxf.back_clipping

View.dxf.view_twist

View.dxf.view_mode

See also:

DXF Internals: VIEW Table

AppID

class AppID

Defines an AppID.

DXF Attributes for AppID

AppID.dxf.handle

AppID.dxf.owner

54 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

requires DXF R13 or later

AppID.dxf.name

AppID.dxf.flags

UCS

class UCS

Defines an user coordinate system (UCS).

DXF Attributes for UCS

UCS.dxf.handle

UCS.dxf.owner

requires DXF R13 or later

UCS.dxf.name

UCS.dxf.flags

UCS.dxf.origin

UCS.dxf.xaxis

UCS.dxf.yaxis

UCS Methods

UCS.ucs()
Returns an ezdxf.algebra.UCS object for this UCS table entry.

BlockRecord

class BlockRecord

Defines a BlockRecord, exist just in DXF version R13 and later.

DXF Attributes for BlockRecord

BlockRecord.dxf.handle

BlockRecord.dxf.owner

requires DXF R13 or later

BlockRecord.dxf.name

BlockRecord.dxf.layout

4.3. Reference 55

ezdxf Documentation, Release 0.8.9

4.3.3 Layouts

Layout Manager

The layout manager is unique to each DXF drawing, access the layout manager by Drawing.layouts.

class Layouts
The Layouts class manages paper space layouts and the model space.

Layouts.__len__()
Return the count for layouts.

Layouts.__contains__(name)
Support for the in operator

Parameters name (str) – layout name as shown in tab

Layouts.__iter__()
Iterate over model space layout and all paper space layouts as Layout objects.

Layouts.modelspace()
Returns the model space layout as Layout object.

Layouts.names()
Returns iterable of all layout names.

Layouts.get(name)
Returns layout name as Layout object.

Parameters name (str) – layout name as shown in tab

Layouts.rename(old_name, new_name)
Rename a layout. Layout Model can not renamed and the new name of a layout must not exist.

Parameters

• old_name (str) – actual layout name

• new_name (str) – new layout name

Layouts.names_in_taborder()
Returns all layout names in tab order as a list of strings.

Layouts.new(name, dxfattribs=None)
Create a new Layout.

Parameters name (str) – layout name as shown in tab

Layouts.delete(name)
Delete layout and all entities in this layout.

Parameters name (str) – layout name as shown in tab

Layout

A Layout represents and manages drawing entities, there are three different layout objects:

• Model space is the common working space, containing basic drawing entities.

• Paper spaces are arrangements of objects for printing and plotting, this layouts contains basic drawing entities
and viewports to the model-space.

56 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• BlockLayout works on an associated Block, Blocks are collections of drawing entities for reusing by block
references.

class Layout

Paper Space Layout Setup

Layout.page_setup(size=(297, 210), margins=(10, 15, 10, 15), units=’mm’, offset=(0, 0), rotation=0,
scale=16, name=’ezdxf’, device=’DWG to PDF.pc3’)

Setup plot settings and paper size and reset viewports. All parameters in given units (mm or inch). DXF R12
not supported yet.

Parameters

• size – paper size as (width, height) tuple

• margins – (top, right, bottom, left) hint: clockwise

• units – ‘mm’ or ‘inch’

• offset – plot origin offset as (x, y) tuple

• rotation – 0=no rotation, 1=90deg count-clockwise, 2=upside-down, 3=90deg clock-
wise

• scale – int 0-32 = standard scale type or tuple(numerator, denominator) e.g. (1, 50) for
1:50

• name – paper name prefix ‘{name}_({width}_x_{height}_{unit})’

• device – device .pc3 configuration file or system printer name

Layout.reset_viewports()
Delete all existing viewports, and add a new main viewport. (in page_setup() included)

Layout.reset_extends()
Reset paper space extends. (in page_setup() included)

Layout.reset_paper_limits()
Reset paper space limits. (in page_setup() included)

Layout.get_paper_limits()
Returns paper limits in plot paper units, relative to the plot origin, as tuple ((x1, y1), (x2, y2)). Lower left corner
is (x1, y1), upper right corner is (x2, y2).

The plot origin is lower left corner of printable area + plot origin offset.

Layout.set_plot_type(value=5)
Set plot type:

• 0 = last screen display

• 1 = drawing extents

• 2 = drawing limits

• 3 = view specific (defined by Layout.dxf.plot_view_name)

• 4 = window specific (defined by Layout.set_plot_window_limits())

• 5 = layout information (default)

Layout.set_plot_style(name=’ezdxf.ctb’, show=False)
Set current plot style e.g. “acad.ctb”, and show impact of plot style also on screen.

4.3. Reference 57

ezdxf Documentation, Release 0.8.9

Layout.set_plot_window(lower_left=(0, 0), upper_right=(0, 0))
Set plot window size in (scaled) paper space units, and relative to the plot origin.

Access Existing Entities

Layout.__iter__()
Iterate over all drawing entities in this layout.

Layout.__contains__(entity)
Test if the layout contains the drawing element entity (aka in operator).

Layout.query(query=’*’)
Get included DXF entities matching the Entity Query String query. Returns a sequence of type EntityQuery .

Layout.groupby(dxfattrib=”, key=None)
Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key function.

Parameters

• dxfattrib (str) – grouping DXF attribute like ‘layer’

• key (function) – key function, which accepts a DXFEntity as argument, returns group-
ing key of this entity or None for ignore this object. Reason for ignoring: a queried DXF
attribute is not supported by this entity

Create New Entities

Layout.add_point(location, dxfattribs=None)
Add a Point element at location.

Layout.add_line(start, end, dxfattribs=None)
Add a Line element, starting at 2D/3D point start and ending at the 2D/3D point end.

Layout.add_circle(center, radius, dxfattribs=None)
Add a Circle element, center is 2D/3D point, radius in drawing units.

Layout.add_ellipse(center, major_axis=(1, 0, 0), ratio=1, start_param=0, end_param=6.283185307,
dxfattribs=None)

Add an Ellipse element, center is 2D/3D point, major_axis as vector, ratio is the ratio of minor axis to major
axis, start_param and end_param defines start and end point of the ellipse, a full ellipse goes from 0 to 2*pi.
The ellipse goes from start to end param in counter clockwise direction.

Layout.add_arc(center, radius, start_angle, end_angle, is_counter_clockwise=True, dxfattribs=None)
Add an Arc element, center is 2D/3D point, radius in drawing units, start_angle and end_angle in de-
grees. The arc goes from start_angle to end_angle in counter clockwise direction by default, set parameter
is_counter_clockwise to False for clockwise orientation.

Layout.add_solid(points, dxfattribs=None)
Add a Solid element, points is list of 3 or 4 2D/3D points.

Layout.add_trace(points, dxfattribs=None)
Add a Trace element, points is list of 3 or 4 2D/3D points.

Layout.add_3dface(points, dxfattribs=None)
Add a 3DFace element, points is list of 3 or 4 2D/3D points.

Layout.add_text(text, dxfattribs=None)
Add a Text element, text is a string, see also Style.

58 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Layout.add_blockref(name, insert, dxfattribs=None)
Add an Insert element, name is the block name, insert is a 2D/3D point.

Layout.add_auto_blockref(name, insert, values, dxfattribs=None)
Add an Insert element, name is the block name, insert is a 2D/3D point. Add Attdef, defined in the block
definition, automatically as Attrib to the block reference, and set text of Attrib. values is a dict with
key=tag, value=text values. The Attrib elements are placed relative to the insert point = block base point.

Layout.add_attrib(tag, text, insert, dxfattribs=None)
Add an Attrib element, tag is the attrib-tag, text is the attrib content.

Layout.add_polyline2d(points, dxfattribs=None)
Add a Polyline element, points is list of 2D points.

Layout.add_polyline3d(points, dxfattribs=None)
Add a Polyline element, points is list of 3D points.

Layout.add_polymesh(size=(3, 3), dxfattribs=None)
Add a Polymesh element, size is a 2-tuple (mcount, ncount). A polymesh is a grid of mcount x ncount vertices
and every vertex has its own xyz-coordinates.

Layout.add_polyface(dxfattribs=None)
Add a Polyface element.

Layout.add_lwpolyline(points, dxfattribs=None)
Add a 2D polyline, points is a list of (x, y, [start_width, [end_width, [bulge]]]) tuples. Set start_width, end_width
to 0 to be ignored (x, y, 0, 0, bulge). A LWPolyline is defined as a single graphic entity and consume less
disk space and memory. (requires DXF version AC1015 or later)

Layout.add_mtext(text, dxfattribs=None)
Add a MText element, which is a multiline text element with automatic text wrapping at boundaries. The
char_height is the initial character height in drawing units, width is the width of the text boundary in drawing
units. (requires DXF version AC1015 or later)

Layout.add_shape(name, insert=(0, 0, 0), size=1.0, dxfattribs=None)
Add a Shape reference to a external stored shape.

Layout.add_ray(start, unit_vector, dxfattribs=None)
Add a Ray that starts at a point and continues to infinity (construction line). (requires DXF version AC1015 or
later)

Layout.add_xline(start, unit_vector, dxfattribs=None)
Add an infinity XLine (construction line). (requires DXF version AC1015 or later)

Layout.add_spline(fit_points=None, dxfattribs=None)
Add a Spline, fit_points has to be a list (container or generator) of (x, y, z) tuples. (requires DXF version
AC1015 or later)

AutoCAD creates a spline through fit points by a proprietary algorithm. ezdxf can not reproduce the control
point calculation.

Layout.add_open_spline(control_points, degree=3, dxfattribs=None)
Add an open uniform Spline, control_points has to be a list (container or generator) of (x, y, z) tuples, degree
specifies degree of spline. (requires DXF version AC1015 or later)

Open uniform B-splines start and end at your first and last control points.

Layout.add_closed_spline(control_points, degree=3, dxfattribs=None)
Add a closed uniform Spline, control_points has to be a list (container or generator) of (x, y, z) tuples, degree
specifies degree of spline. (requires DXF version AC1015 or later)

Closed uniform B-splines is a closed curve start and end at the first control points.

4.3. Reference 59

ezdxf Documentation, Release 0.8.9

Layout.add_rational_spline(control_points, weights, degree=3, dxfattribs=None)
Add an open rational uniform Spline, control_points has to be a list (container or generator) of (x, y, z) tuples,
weights has to be a list of values, which defines the influence of the associated control point, therefore count of
control points has to be equal to the count of weights, degree specifies degree of spline. (requires DXF version
AC1015 or later)

Open rational uniform B-splines start and end at your first and last control points, and have additional control
possibilities by weighting each control point.

Layout.add_closed_rational_spline(control_points, weights, degree=3, dxfattribs=None)
Add a closed rational uniform Spline, control_points has to be a list (container or generator) of (x, y, z) tuples,
weights has to be a list of values, which defines the influence of the associated control point, therefore count of
control points has to be equal to the count of weights, degree specifies degree of spline. (requires DXF version
AC1015 or later)

Closed rational uniform B-splines start and end at the first control point, and have additional control possibilities
by weighting each control point.

Layout.add_spline_control_frame(fit_points, degree=3, method=’distance’, power=.5, dxfat-
tribs=None)

Create and add B-spline control frame from fit points.

Supported methods are:

• uniform: creates a uniform t vector, [0 .. 1] equally spaced

• distance: creates a t vector with values proportional to the fit point distances

• centripetal: creates a t vector with values proportional to the fit point distances^power

None of this methods matches the spline created from fit points by AutoCAD.

Parameters

• fit_points – fit points of B-spline

• degree – degree of B-spline

• method – calculation method for parameter vector t

• power – power for centripetal method

• dxfattribs – DXF attributes for SPLINE entity

Returns DXF Spline object

Layout.add_spline_approx(fit_points, count, degree=3, method=’distance’, power=.5, dxfat-
tribs=None)

Approximate B-spline by a reduced count of control points, given are the fit points and the degree of the B-spline.

• uniform: creates a uniform t vector, [0 .. 1] equally spaced

• distance: creates a t vector with values proportional to the fit point distances

• centripetal: creates a t vector with values proportional to the fit point distances^power

Parameters

• fit_points – all fit points of B-spline

• count – count of designated control points

• degree – degree of B-spline

• method – calculation method for parameter vector t

• power – power for centripetal method

60 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• dxfattribs – DXF attributes for SPLINE entity

Returns DXF Spline object

Layout.add_body(acis_data="", dxfattribs=None)
Add a Body entity, acis_data has to be a list (container or generator) of text lines without line endings. (requires
DXF version AC1015 or later)

Layout.add_region(acis_data="", dxfattribs=None)
Add a Region entity, acis_data has to be a list (container or generator) of text lines without line endings.
(requires DXF version AC1015 or later)

Layout.add_3dsolid(acis_data="", dxfattribs=None)
Add a 3DSolid entity, acis_data has to be a list (container or generator) of text lines without line endings.
(requires DXF version AC1015 or later)

Layout.add_hatch(color=7, dxfattribs=None)
Add a Hatch entity, color as ACI (AutoCAD Color Index), default is 7 (black/white). (requires DXF version
AC1015 or later)

Layout.add_image(image_def, insert, size_in_units, rotation=0, dxfattribs=None)
Add an Image entity, insert is the insertion point as (x, y [,z]) tuple, size_in_units is the image size as (x, y)
tuple in drawing units, image_def is the required ImageDef, rotation is the rotation angle around the z-axis in
degrees. Create ImageDef by the Drawing factory function add_image_def(), see Tutorial for Image
and ImageDef . (requires DXF version AC1015 or later)

Layout.add_underlay(underlay_def, insert=(0, 0, 0), scale=(1, 1, 1), rotation=0, dxfattribs=None)
Add an Underlay entity, insert is the insertion point as (x, y [,z]) tuple, scale is the underlay scaling factor as
(x, y, z) tuple, underlay_def is the required UnderlayDefinition, rotation is the rotation angle around the
z-axis in degrees. Create UnderlayDef by the Drawing factory function add_underlay_def(), see
Tutorial for Underlay and UnderlayDefinition. (requires DXF version AC1015 or later)

Layout.add_entity(dxfentity)
Add an existing DXF entity to a layout, but be sure to unlink (unlink_entity()) first the entity from the
previous owner layout.

Change Redraw Order

Layout.set_redraw_order(handles)
If the header variable $SORTENTS regen flag (bit-code value 16) is set, AutoCAD regenerates entities in as-
cending handles order.

To change redraw order associate a different sort handle to this entities, this redefines the order in which the
entities are regenerated. Parameter handles can be a dict of object_handle and sort_handle as (key, value) pairs,
or an iterable of (object_handle, sort_handle) tuples.

The sort_handle doesn’t have to be unique, same or all object handles can share the same sort handle, and sort
handles can collide with existing handles too. Also the '0' handle can be used, but this sort handle will be
drawn as latest (on top of all other entities) and not as first as expected.

Changing redraw order just works for model space and paper space layouts, not for block layouts.

Parameters handles – list or dict of handle associations

Layout.get_redraw_order()
Returns iterator for all existing table entries as (object_handle, sort_handle) pairs. (see also
set_redraw_order())

4.3. Reference 61

ezdxf Documentation, Release 0.8.9

Delete Entities

Layout.unlink_entity(entity)
Unlink entity from layout but does not delete entity from the drawing database.

Layout.delete_entity(entity)
Delete entity from layout and drawing database.

Layout.delete_all_entities()
Delete all entities from layout and drawing database.

Model Space

class Modelspace(Layout)
At this time the Modelspace class is the Layout class.

Modelspace.new_geodata(dxfattribs=None)
Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS
section and NOT in the layout entity space and it is linked to the layout by an extension dictionary located in
BLOCK_RECORD of the layout.

The GEODATA entity requires DXF version R2010 (AC1024) or later. The DXF Reference does not document
if other layouts than model space supports geo referencing, so getting/setting geo data may only make sense for
the model space layout, but it is also available in paper space layouts.

Modelspace.get_geodata(dxfattribs=None)
Returns the GeoData entity associated to this layout or None.

Paper Space

class Paperspace(Layout)
At this time the Paperspace class is the Layout class.

BlockLayout

class BlockLayout(Layout)

BlockLayout.name
The name of the associated block element. (read/write)

BlockLayout.block
Get the associated DXF BLOCK entity.

BlockLayout.is_layout_block
True if block is a model space or paper space block definition.

BlockLayout.add_attdef(tag, insert=(0, 0), dxfattribs=None)
Add an Attdef element, tag is the attribute-tag, insert is the 2D/3D insertion point of the Attribute. Set
position and alignment by the idiom:

myblock.add_attdef('NAME').set_pos((2, 3), align='MIDDLE_CENTER')

BlockLayout.attdefs()
Iterator for included Attdef entities.

BlockLayout.has_attdef(tag)
Returns True if an attdef tag exists else False.

62 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

BlockLayout.get_attdef(tag)
Get the attribute definition object Attdef with object.dxf.tag == tag, returns None if not found.

BlockLayout.get_attdef_text(tag, default=None)
Get content text for attdef tag as string or return default if no attdef tag exists.

4.3.4 Entities

Graphic Base Class

class GraphicEntity
Common base class for all graphic entities.

GraphicEntity.dxf
(read only) The DXF attributes namespace, access DXF attributes by this attribute, like entity.dxf.layer
= 'MyLayer'. Just the dxf attribute is read only, the DXF attributes are read- and writeable.

GraphicEntity.drawing
(read only) Get the associated drawing.

GraphicEntity.dxffactory
(read only) Get the associated DXF factory. (feature for experts)

GraphicEntity.rgb
(read/write) Get/Set true color as RGB-Tuple. This attribute does not exist in DXF AC1009 (R12) entities, the
attribute exists in DXF AC1015 entities but does not work (raises DXFValueError), requires at least DXF
Version AC1018 (AutoCAD R2004). usage: entity.rgb = (30, 40, 50);

GraphicEntity.transparency
(read/write) Get/Set transparency value as float. This attribute does not exist in DXF AC1009 (R12) entities, the
attribute exists in DXF AC1015 entities but does not work (raises DXFValueError), requires at least DXF
Version AC1018 (AutoCAD R2004). Value range 0.0 to 1.0 where 0.0 means entity is opaque and 1.0 means
entity is 100% transparent (invisible). This is the recommend method to get/set transparency values, when ever
possible do not use the DXF low level attribute entity.dxf.transparency

GraphicEntity.dxftype()
Get the DXF type string, like LINE for the line entity.

GraphicEntity.copy()
Deep copy of DXFEntity with new handle and duplicated linked entities (VERTEX, ATTRIB, SEQEND). The
new entity is not included in any layout space, so the owner tag is set to ‘0’ for undefined owner/layout.

Use Layout.add_entity() to add the duplicated entity to a layout, layout can be the model space, a paper
space layout or a block layout.

This is not a deep copy in the meaning of Python, because handle, link and owner is changed.

GraphicEntity.copy_to_layout(layout)
Duplicate entity and add new entity to layout.

GraphicEntity.move_to_layout(layout, source=None)
Move entity from actual layout to layout. For DXF R12 providing source is faster, if the entity resides in a block
layout, because ezdxf has to search in all block layouts, else source is not required.

GraphicEntity.get_dxf_attrib(key, default=DXFValueError)
Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is
DXFValueError and no DXF default value is defined:

4.3. Reference 63

ezdxf Documentation, Release 0.8.9

layer = entity.get_dxf_attrib("layer")
same as
layer = entity.dxf.layer

GraphicEntity.set_dxf_attrib(key, value)
Set DXF attribute key to value:

entity.set_dxf_attrib("layer", "MyLayer")
same as
entity.dxf.layer = "MyLayer"

GraphicEntity.del_dxf_attrib(key)
Delete/remove DXF attribute key. Raises AttributeError if key isn’t supported.

GraphicEntity.dxf_attrib_exists(key)
Returns True if DXF attrib key really exists else False. Raises AttributeError if key isn’t supported

GraphicEntity.supported_dxf_attrib(key)
Returns True if DXF attrib key is supported by this entity else False. Does not grant that attrib key really exists.

GraphicEntity.valid_dxf_attrib_names(key)
Returns a list of supported DXF attribute names.

GraphicEntity.dxfattribs()
Create a dict() with all accessible DXF attributes and their value, not all data is accessible by dxf attributes like
definition points of LWPolyline or Spline

GraphicEntity.update_attribs(dxfattribs)
Set DXF attributes by a dict() like {'layer': 'test', 'color': 4}.

GraphicEntity.set_flag_state(flag, state=True, name=’flags’)
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to 0 (off) if state is False.

GraphicEntity.get_flag_state(flag, name=’flags’)
Returns True if any flag of DXF attribute is 1 (on), else False. Always check just one flag state at the time.

GraphicEntity.get_layout()
Returns the Layout which contains this entity, None if entity is not assigned to any layout.

GraphicEntity.get_ocs()
Returns an OCS object, see also: OCS

Common DXF Attributes for DXF R12

GraphicEntity.dxf.handle
DXF handle (feature for experts)

GraphicEntity.dxf.layer
layer name as string; default=0

GraphicEntity.dxf.linetype
linetype as string, special names BYLAYER, BYBLOCK; default=BYLAYER

GraphicEntity.dxf.color
dxf color index, 0 . . . BYBLOCK, 256 . . . BYLAYER; default=256

GraphicEntity.dxf.paperspace
0 for entity resides in model-space, 1 for paper-space, this attribute is set automatically by adding an entity to a
layout (feature for experts); default=0

64 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

GraphicEntity.dxf.extrusion
extrusion direction as 3D point; default=(0, 0, 1)

Common DXF Attributes for DXF R13 or later

GraphicEntity.dxf.handle
DXF handle (feature for experts)

GraphicEntity.dxf.owner
handle to owner, it’s a BLOCK_RECORD entry (feature for experts)

GraphicEntity.dxf.layer
layer name as string; default = 0

GraphicEntity.dxf.linetype
linetype as string, special names BYLAYER, BYBLOCK; default=BYLAYER

GraphicEntity.dxf.color
dxf color index, default = 256

• 0 = BYBLOCK

• 256 = BYLAYER

• 257 = BYOBJECT

GraphicEntity.dxf.lineweight
Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200,
values outside this range prevents AutoCAD from loading the file.

Constants defined in ezdxf.lldxf.const

• LINEWEIGHT_BYLAYER = -1

• LINEWEIGHT_BYBLOCK = -2

• LINEWEIGHT_DEFAULT = -3

GraphicEntity.dxf.ltscale
line type scale as float; default=1.0

GraphicEntity.dxf.invisible
1 for invisible, 0 for visible; default=0

GraphicEntity.dxf.paperspace
0 for entity resides in model-space, 1 for paper-space, this attribute is set automatically by adding an entity to a
layout (feature for experts); default=0

GraphicEntity.dxf.extrusion
extrusion direction as 3D point; default=(0, 0, 1)

GraphicEntity.dxf.thickness
entity thickness as float; default=0

GraphicEntity.dxf.true_color
true color value as int 0x00RRGGBB, requires DXF Version AC1018 (AutoCAD R2004)

GraphicEntity.dxf.color_name
color name as string (R2004)

GraphicEntity.dxf.transparency
transparency value as int, 0x020000TT 0x00 = 100% transparent / 0xFF = opaque (R2004)

4.3. Reference 65

ezdxf Documentation, Release 0.8.9

GraphicEntity.dxf.shadow_mode(R2007)

• 0 = casts and receives shadows

• 1 = casts shadows

• 2 = receives shadows

• 3 = ignores shadows

Point

class Point(GraphicEntity)

A point at location point, dxftype is POINT. Create points in layouts and blocks by factory function add_point().

DXF Attributes for Point

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Point.dxf.location

Location of the point (2D/3D Point in WCS)

Line

class Line(GraphicEntity)

A line form start to end, dxftype is LINE. Create lines in layouts and blocks by factory function add_line().

DXF Attributes for Line

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Line.dxf.start

start point of line (2D/3D Point in WCS)

Line.dxf.end

end point of line (2D/3D Point in WCS)

Circle

class Circle(GraphicEntity)

A circle at location center and radius, dxftype is CIRCLE. Create circles in layouts and blocks by factory function
add_circle().

66 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXF Attributes for Circle

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Circle.dxf.center

center point of circle (2D/3D Point in OCS)

Circle.dxf.radius

radius of circle (float)

Arc

class Arc(GraphicEntity)

An arc at location center and radius from start_angle to end_angle, dxftype is ARC. The arc goes from start_angle to
end_angle in counter clockwise direction. Create arcs in layouts and blocks by factory function add_arc().

DXF Attributes for Arc

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Arc.dxf.center

center point of arc (2D/3D Point in OCS)

Arc.dxf.radius

radius of arc (float)

Arc.dxf.start_angle

start angle in degrees (float)

Arc.dxf.end_angle

end angle in degrees (float)

Text

class Text(GraphicEntity)

A simple one line text, dxftype is TEXT. Text height is in drawing units and defaults to 1, but it depends on the
rendering software what you really get. Width is a scaling factor, but it is not defined what is scaled (I assume the text
height), but it also depends on the rendering software what you get. This is one reason why DXF and also DWG are
not reliable for exchanging exact styling, they are just reliable for exchanging exact geometry. Create text in layouts
and blocks by factory function add_text().

DXF Attributes for Text

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

4.3. Reference 67

ezdxf Documentation, Release 0.8.9

Text.dxf.text

the content text itself (str)

Text.dxf.insert

first alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGN and FIT.

Text.dxf.align_point

second alignment point of text (2D/3D Point in OCS), if the justification is anything other than LEFT, the second
alignment point specify also the first alignment point: (or just the second alignment point for ALIGN and FIT)

Text.dxf.height

text height in drawing units (float); default=1

Text.dxf.rotation

text rotation in degrees (float); default=0

Text.dxf.oblique

text oblique angle (float); default=0

Text.dxf.style

text style name (str); default=STANDARD

Text.dxf.width

width scale factor (float); default=1

Text.dxf.halign

horizontal alignment flag (int), use Text.set_pos() and Text.get_align(); default=0

Text.dxf.valign

vertical alignment flag (int), use Text.set_pos() and Text.get_align(); default=0

Text.dxf.text_generation_flag

text generation flags (int)

• 2 = text is backward (mirrored in X)

• 4 = text is upside down (mirrored in Y)

Text Methods

Text.set_pos(p1, p2=None, align=None)

param p1 first alignment point as (x, y[, z])-tuple

param p2 second alignment point as (x, y[, z])-tuple, required for ALIGNED and FIT else ignored

param str align new alignment, None for preserve existing alignment.

Set text alignment, valid positions are:

Vert/Horiz Left Center Right
Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

68 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Special alignments are, ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical
alignment Baseline on the virtual line between these two points.

• ALIGNED: Text is stretched or compressed to fit exactly between p1 and p2 and the text height is also adjusted
to preserve height/width ratio.

• FIT: Text is stretched or compressed to fit exactly between p1 and p2 but only the text width is adjusted, the text
height is fixed by the height attribute.

• MIDDLE: also a special adjustment, but the result is the same as for MIDDLE_CENTER.

Text.get_pos()

Returns a tuple (align, p1, p2), align is the alignment method, p1 is the alignment point, p2 is only relevant if align is
ALIGNED or FIT, else it’s None.

Text.get_align()

Returns the actual text alignment as string, see tables above.

Text.set_align(align=’LEFT’)

Just for experts: Sets the text alignment without setting the alignment points, set adjustment points insert and align-
point manually.

Shape

class Shape(GraphicEntity)

Shapes (dxftype is SHAPE) are objects that you use like blocks. Shapes are stored in external shape files (*.SHX).
You can specify the scale and rotation for each shape reference as you add it. You can not create shapes with ezdxf,
you can just insert shape references.

Create a Shape reference in layouts and blocks by factory function add_shape().

DXF Attributes for Shape

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Shape.dxf.insert

Insertion point as (2D/3D Point in OCS)

Shape.dxf.name

Shape name

Shape.dxf.size

Shape size

Shape.dxf.rotation

Rotation angle in degrees; default=0

Shape.dxf.xscale

Relative X scale factor; default=1

Shape.dxf.oblique

Oblique angle; default=0

4.3. Reference 69

ezdxf Documentation, Release 0.8.9

Polyline

class Polyline(GraphicEntity)

The POLYLINE entity is very complex, it’s used to build 2D/3D polylines, 3D meshes and 3D polyfaces. For every
type exists a different wrapper class but they all have the same dxftype of POLYLINE. Detect the polyline type by
Polyline.get_mode().

Create 2D polylines in layouts and blocks by factory function add_polyline2D().

For 2D entities all points in OCS.

Create 3D polylines in layouts and blocks by factory function add_polyline3D().

For 3D entities all points in WCS.

DXF Attributes for Polyline

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Polyline.dxf.elevation

Elevation point, the X and Y values are always 0, and the Z value is the polyline’s elevation (3D Point in OCS when
2D, WCS when 3D).

Polyline.dxf.flags

Constants defined in ezdxf.const:

Polyline.dxf.flags Value Description
POLYLINE_CLOSED 1 This is a closed Polyline (or a polygon mesh closed in the M

direction)
POLYLINE_MESH_CLOSED_M_DIRECTION1 equals POLYLINE_CLOSED
POLYLINE_CURVE_FIT_VERTICES_ADDED2 Curve-fit vertices have been added
POLYLINE_SPLINE_FIT_VERTICES_ADDED4 Spline-fit vertices have been added
POLYLINE_3D_POLYLINE 8 This is a 3D Polyline
POLYLINE_3D_POLYMESH 16 This is a 3D polygon mesh
POLYLINE_MESH_CLOSED_N_DIRECTION32 The polygon mesh is closed in the N direction
POLYLINE_POLYFACE_MESH 64 This Polyline is a polyface mesh
POLYLINE_GENERATE_LINETYPE_PATTERN128 The linetype pattern is generated continuously around the ver-

tices of this Polyline

Polyline.dxf.default_start_width

Default line start width (float); default=0

Polyline.dxf.default_end_width

Default line end width (float); default=0

Polyline.dxf.m_count

Polymesh M vertex count (int); default=1

Polyline.dxf.n_count

Polymesh N vertex count (int); default=1

Polyline.dxf.m_smooth_density

70 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Smooth surface M density (int); default=0

Polyline.dxf.n_smooth_density

Smooth surface N density (int); default=0

Polyline.dxf.smooth_type

Curves and smooth surface type (int); default=0, see table below

Constants for smooth_type defined in ezdxf.const:

Polyline.dxf.smooth_type Value Description
POLYMESH_NO_SMOOTH 0 no smooth surface fitted
POLYMESH_QUADRATIC_BSPLINE 5 quadratic B-spline surface
POLYMESH_CUBIC_BSPLINE 6 cubic B-spline surface
POLYMESH_BEZIER_SURFACE 8 Bezier surface

Polyline Attributes

Polyline.is_2d_polyline

True if polyline is a 2D polyline.

Polyline.is_3d_polyline

True if polyline is a 3D polyline.

Polyline.is_polygon_mesh

True if polyline is a polygon mesh, see Polymesh

Polyline.is_poly_face_mesh

True if polyline is a poly face mesh, see Polyface

Polyline.is_closed

True if polyline is closed.

Polyline.is_m_closed

True if polyline (as polymesh) is closed in m direction.

Polyline.is_n_closed

True if polyline (as polymesh) is closed in n direction.

Polyline Methods

Polyline.get_mode()

Returns a string: AcDb2dPolyline, AcDb3dPolyline, AcDbPolygonMesh or AcDbPolyFaceMesh

Polyline.m_close()

Close mesh in M direction (also closes polylines).

Polyline.n_close()

Close mesh in N direction.

Polyline.close(m_close, n_close=False)

4.3. Reference 71

ezdxf Documentation, Release 0.8.9

Close mesh in M (if mclose is True) and/or N (if nclose is True) direction.

Polyline.__len__()

Returns count of vertices.

Polyline.__getitem__(pos)

Get Vertex object at position pos. Very slow!!!. Vertices are organized as linked list, so it is faster to work with a
temporary list of vertices: list(polyline.vertices()).

Polyline.vertices()

Iterate over all polyline vertices as Vertex objects. (replaces Polyline.__iter__())

Polyline.points()

Iterate over all polyline points as (x, y[, z])-tuples, not as Vertex objects.

Polyline.append_vertices(points, dxfattribs=None)

Append points as Vertex objects.

param points iterable polyline points, every point is a (x, y[, z])-tuple.

param dxfattribs dict of DXF attributes for the Vertex

Polyline.insert_vertices(pos, points, dxfattribs=None)

Insert points as Vertex objects at position pos.

param int pos 0-based insert position

param iterable points iterable polyline points, every point is a tuple.

param dxfattribs dict of DXF attributes for the Vertex

Polyline.delete_vertices(pos, count=1)

Delete count vertices at position pos.

param int pos 0-based insert position

param int count count of vertices to delete

Vertex

class Vertex(GraphicEntity)
A vertex represents a polyline/mesh point, dxftype is VERTEX, you don’t have to create vertices by yourself.

DXF Attributes for Vertex

Vertex.dxf.location

vertex location (2D/3D Point OCS when 2D, WCS when 3D)

Vertex.dxf.start_width

line segment start width (float); default=0

Vertex.dxf.end_width

line segment end width (float); default=0

Vertex.dxf.bulge

72 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Bulge (float); default=0. The bulge is the tangent of one fourth the included angle for an arc segment, made negative
if the arc goes clockwise from the start point to the endpoint. A bulge of 0 indicates a straight segment, and a bulge of
1 is a semicircle.

Vertex.dxf.flags

Constants defined in ezdxf.const:

Vertex.dxf.flags Value Description
VTX_EXTRA_VERTEX_CREATED1 Extra vertex created by curve-fitting
VTX_CURVE_FIT_TANGENT2 curve-fit tangent defined for this vertex. A curve-fit tangent direction of 0 may

be omitted from the DXF output, but is significant if this bit is set.
VTX_SPLINE_VERTEX_CREATED8 spline vertex created by spline-fitting
VTX_SPLINE_FRAME_CONTROL_POINT16 spline frame control point
VTX_3D_POLYLINE_VERTEX32 3D polyline vertex
VTX_3D_POLYGON_MESH_VERTEX64 3D polygon mesh
VTX_3D_POLYFACE_MESH_VERTEX128 polyface mesh vertex

Vertex.dxf.tangent

curve fit tangent direction (float)

Vertex.dxf.vtx1

index of 1st vertex, if used as face (feature for experts)

Vertex.dxf.vtx2

index of 2nd vertex, if used as face (feature for experts)

Vertex.dxf.vtx3

index of 3rd vertex, if used as face (feature for experts)

Vertex.dxf.vtx4

index of 4th vertex, if used as face (feature for experts)

Polymesh

class Polymesh(Polyline)

A polymesh is a grid of mcount x ncount vertices and every vertex has its own xyz-coordinates. The Polymesh is
an extended Polyline class, dxftype is also POLYLINE but get_mode() returns AcDbPolygonMesh. Create
polymeshes in layouts and blocks by factory function add_polymesh().

Polymesh.get_mesh_vertex(pos)

Get mesh vertex at position pos as Vertex.

param pos 0-based (row, col)-tuple

Polymesh.set_mesh_vertex(pos, point, dxfattribs=None)

Set mesh vertex at position pos to location point and update the dxf attributes of the Vertex.

param pos 0-based (row, col)-tuple

param point vertex coordinates as (x, y, z)-tuple

param dxfattribs dict of DXF attributes for the Vertex

Polymesh.get_mesh_vertex_cache()

4.3. Reference 73

ezdxf Documentation, Release 0.8.9

Get a MeshVertexCache object for this Polymesh. The caching object provides fast access to the location attributes
of the mesh vertices.

class MeshVertexCache

Cache mesh vertices in a dict, keys are 0-based (row, col)-tuples.

• set vertex location: cache[row, col] = (x, y, z)

• get vertex location: x, y, z = cache[row, col]

MeshVertexCache.vertices

Dict of mesh vertices, keys are 0-based (row, col)-tuples. Writing to this dict doesn’t change the DXF entity.

MeshVertexCache.__getitem__(pos)

Returns the location of Vertex at position pos as (x, y, z)-tuple

param tuple pos 0-based (row, col)-tuple

MeshVertexCache.__setitem__(pos, location)

Set the location of Vertex at position pos to location.

param pos 0-based (row, col)-tuple

param location (x, y, z)-tuple

Polyface

class Polyface(Polyline)

A polyface consist of multiple location independent 3D areas called faces. The Polyface is an extended Polyline
class, dxftype is also POLYLINE but get_mode() returns AcDbPolyFaceMesh. Create polyfaces in layouts and
blocks by factory function add_polyface().

Polyface.append_face(face, dxfattribs=None)

Append one face, dxfattribs is used for all vertices generated. Appending single faces is very inefficient, if possible
use append_faces() to add a list of new faces.

param face a tuple of 3 or 4 3D points, a 3D point is a (x, y, z)-tuple

param dxfattribs dict of DXF attributes for the Vertex

Polyface.append_faces(faces, dxfattribs=None)

Append a list of faces, dxfattribs is used for all vertices generated.

param tuple faces a list of faces, a face is a tuple of 3 or 4 3D points, a 3D point is a (x, y, z)-tuple

param dxfattribs dict of DXF attributes for the Vertex

Polyface.faces()

Iterate over all faces, a face is a tuple of Vertex objects; yields (vtx1, vtx2, vtx3[, vtx4], face_record)-tuples

Polyface.indexed_faces()

Returns a list of all vertices and a generator of Face() objects as tuple:

vertices, faces = polyface.indexed_faces()

Polyface.optimize(precision=6)

74 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Rebuilds Polyface with vertex optimization. Merges vertices with nearly same vertex locations. Polyfaces created
by ezdxf are optimized automatically.

param int precision decimal precision for determining identical vertex locations

See also:

Tutorial for Polyface

class Face

Represents a single face of the Polyface entity.

Face.vertices

List of all Polyface vertices (without face_records). (read only attribute)

Face.face_record

The face forming vertex of type AcDbFaceRecord, contains the indices to the face building vertices. Indices of the
DXF structure are 1-based and a negative index indicates the beginning of an invisible edge. Face.face_record.
dxf.color determines the color of the face. (read only attribute)

Face.indices

Indices to the face forming vertices as tuple. This indices are 0-base and are used to get vertices from the list Face.
vertices. (read only attribute)

Face.__iter__()

Iterate over all face vertices as Vertex objects.

Face.__len__()

Returns count of face vertices (without face_record).

Face.__getitem__(pos)

Returns Vertex at position pos.

param int pos vertex position 0-based

Face.points()

Iterate over all face vertex locations as (x, y, z)-tuples.

Face.is_edge_visible(pos)

Returns True if edge starting at vertex pos is visible else False.

param int pos vertex position 0-based

Solid

class Solid(GraphicEntity)

A solid filled triangle or quadrilateral, dxftype is SOLID. Access corner points by name (entity.dxf.vtx0 =
(1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). Create solids in layouts and blocks by factory function
add_solid().

DXF Attributes for Solid

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

4.3. Reference 75

ezdxf Documentation, Release 0.8.9

Solid.dxf.vtx0

location of the 1. point (2D/3D Point in OCS)

Solid.dxf.vtx1

location of the 2. point (2D/3D Point in OCS)

Solid.dxf.vtx2

location of the 3. point (2D/3D Point in OCS)

Solid.dxf.vtx3

location of the 4. point (2D/3D Point in OCS)

Trace

class Trace(GraphicEntity)

A Trace is solid filled triangle or quadrilateral, dxftype is TRACE. Access corner points by name (entity.
dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). I don’t know the difference between
SOLID and TRACE. Create traces in layouts and blocks by factory function add_trace().

DXF Attributes for Trace

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Trace.dxf.vtx0

location of the 1. point (2D/3D Point in OCS)

Trace.dxf.vtx1

location of the 2. point (2D/3D Point in OCS)

Trace.dxf.vtx2

location of the 3. point (2D/3D Point in OCS)

Trace.dxf.vtx3

location of the 4. point (2D/3D Point in OCS)

3DFace

class 3DFace(GraphicEntity)

(This is not a valid Python name, but it works, because all classes described here, do not exist in this simple form.)

A 3DFace is real 3D solid filled triangle or quadrilateral, dxftype is 3DFACE. Access corner points by name
(entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). Create 3DFaces in lay-
outs and blocks by factory function add_3dface().

76 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXF Attributes for 3DFace

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

3DFace.dxf.vtx0

location of the 1. point (3D Point in WCS)

3DFace.dxf.vtx1

location of the 2. point (3D Point in WCS)

3DFace.dxf.vtx2

location of the 3. point (3D Point in WCS)

3DFace.dxf.vtx3

location of the 4. point (3D Point in WCS)

3DFace.dxf.invisible_edge

invisible edge flag (int, default=0)

• 1 = first edge is invisible

• 2 = second edge is invisible

• 4 = third edge is invisible

• 8 = fourth edge is invisible

Combine values by adding them, e.g. 1+4 = first and third edge is invisible.

Ellipse

class Ellipse(GraphicEntity)

Introduced in AutoCAD R13 (DXF version AC1012), dxftype is ELLIPSE.

An ellipse with center point at location center and a major axis major_axis as vector. ratio is the ratio of minor axis
to major axis. start_param and end_param defines start and end point of the ellipse, a full ellipse goes from 0 to
2*pi. The ellipse goes from start to end param in counter clockwise direction. Create ellipses in layouts and blocks by
factory function add_ellipse().

Ellipse.dxf.extrusion is supported, but does not establish an OCS, it is used to create an 3D entity by ex-
truding the base ellipse.

DXF Attributes for Ellipse

Common DXF Attributes for DXF R13 or later

Ellipse.dxf.center

center point of circle (2D/3D Point in WCS)

Ellipse.dxf.major_axis

Endpoint of major axis, relative to the center (tuple of float)

Ellipse.dxf.ratio

4.3. Reference 77

ezdxf Documentation, Release 0.8.9

Ratio of minor axis to major axis (float)

Ellipse.dxf.start_param

Start parameter (this value is 0.0 for a full ellipse) (float)

Ellipse.dxf.end_param

End parameter (this value is 2*pi for a full ellipse) (float)

LWPolyline

class LWPolyline(GraphicEntity)
Introduced in DXF version R13 (AC1012), dxftype is LWPOLYLINE.

A lightweight polyline is defined as a single graphic entity. The LWPolyline differs from the old-
style Polyline, which is defined as a group of subentities. LWPolyline display faster (in AutoCAD)
and consume less disk space and RAM. Create LWPolyline in layouts and blocks by factory function
add_lwpolyline(). LWPolyline is a planar element, therefore all points in OCS as (x, y) tuples
(elevation is the z-axis value).

Bulge Value

The bulge value is used to create arc shaped line segments. The bulge defines the ratio of the arc sagitta
(versine) to half line segment length, a bulge value of 1 defines a semicircle.

The sign of the bulge value defines the side of the bulge:

• positive value (> 0): bulge is right of line (count clockwise)

• negative value (< 0): bulge is left of line (clockwise)

• 0 = no bulge

Start Width And End Width

The start width and end width values defines the width in drawing units for the following line segment.
To use the default width value for a line segment set value to 0.

Width and Bulge Values at Last Point

The width and bulge values of the last vertex has only a meaning if the polyline is closed, and they apply
to the last line segment from the last vertex to the first vertex.

See also:

Tutorial for LWPolyline

78 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

User Defined Point Format Codes

Code Point Component
x x coordinate
y y coordinate
s start width
e end width
b bulge value
v (x, y) as tuple

DXF Attributes for LWPolyline

Common DXF Attributes for DXF R13 or later

LWPolyline.dxf.elevation
OCS z-axis value for all polyline points, default=0

LWPolyline.dxf.flags
Constants defined in ezdxf.const:

LWPolyline.dxf.flags Value Description
LWPOLYLINE_CLOSED 1 polyline is closed
LWPOLYLINE_PLINEGEN 128 ???

LWPolyline.dxf.const_width
constant line width (float), default=0

LWPolyline.dxf.count
number of vertices (read only), same as len(polyline)

LWPolyline Attributes

LWPolyline.closed
True if polyline is closed else False. A closed polyline has a connection from the last vertex to the first vertex.
(read/write)

LWPolyline Methods

LWPolyline.get_points(format=’xyseb’)

Parameters format – format string, see format codes

Returns all polyline points as list of tuples (x, y, start_width, end_width, bulge), format specifies a user defined
point format.

start_width, end_width and bulge is 0 if not present (0 is the DXF default value if not present).

All points in OCS as (x, y) tuples (elevation is the z-axis value).

LWPolyline.set_points(points, format=’xyseb’)

Parameters format – format string, see format codes

4.3. Reference 79

ezdxf Documentation, Release 0.8.9

Replace existing polyline points by new points, points is a list of (x, y, [start_width, [end_width, [bulge]]])
tuples. Set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

All points in OCS as (x, y) tuples (elevation is the z-axis value).

LWPolyline.points(format=’xyseb’)

Parameters format – format string, see format codes

Context manager for polyline points. Returns a standard Python list of points, according to the format string.

All coordinates in OCS.

LWPolyline.vertices()
Yield all polyline points as (x, y) tuples in OCS (elevation is the z-axis value).

LWPolyline.vertices_in_wcs()
Yield all polyline points as (x, y, z) tuples in WCS.

LWPolyline.append(point, format=’xyseb’)

Parameters format – format string, see format codes

Append new point, format specifies a user defined point format.

All coordinates in OCS.

LWPolyline.append_points(points, format=’xyseb’)

Parameters

• points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]]) tuple

• format – format string, see format codes

Append new points, points is a list of (x, y, [start_width, [end_width, [bulge]]]) tuples. Set start_width,
end_width to 0 to be ignored (x, y, 0, 0, bulge).

All coordinates in OCS.

LWPolyline.insert(pos, point, format=’xyseb’)

Parameters

• pos – insertion position for new point

• point – new polyline point

• format – format string, see format codes

Insert new point in front of position pos, format specifies a user defined point format.

All coordinates in OCS.

LWPolyline.clear()
Remove all points.

LWPolyline.__len__()
Number of polyline points.

LWPolyline.__getitem__(index)
Get point at position index as (x, y, start_width, end_width, bulge) tuple. start_width, end_width and bulge is
0 if not present (0 is the DXF default value if not present), supports extended slicing. Point format is fixed as
‘xyseb’.

All coordinates in OCS.

80 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

LWPolyline.__setitem__(index, value)
Set point at position index as (x, y, [start_width, [end_width, [bulge]]]) tuple. If start_width or end_width is 0
or left off the default value is used. If the bulge value is left off, bulge is 0 by default (straight line). Does NOT
support extend slicing. Point format is fixed as ‘xyseb’.

All coordinates in OCS.

LWPolyline.__delitem__(index)
Delete point at position index, supports extended slicing.

MText

class MText(GraphicEntity)

Introduced in DXF version R13 (AC1012), extended in DXF version R2007 (AC1021), dxftype is MTEXT.

Multiline text fits a specified width but can extend vertically to an indefinite length. You can format individual words
or characters within the MText. Create MText in layouts and blocks by factory function add_mtext().

See also:

Tutorial for MText

DXF Attributes for MText

Common DXF Attributes for DXF R13 or later

MText.dxf.insert

Insertion point (3D Point in OCS)

MText.dxf.char_height

Initial text height (float); default=1.0

MText.dxf.width

Reference rectangle width (float)

MText.dxf.attachment_point

Constants defined in ezdxf.const:

MText.dxf.attachment_point Value
MTEXT_TOP_LEFT 1
MTEXT_TOP_CENTER 2
MTEXT_TOP_RIGHT 3
MTEXT_MIDDLE_LEFT 4
MTEXT_MIDDLE_CENTER 5
MTEXT_MIDDLE_RIGHT 6
MTEXT_BOTTOM_LEFT 7
MTEXT_BOTTOM_CENTER 8
MTEXT_BOTTOM_RIGHT 9

MText.dxf.flow_direction

Constants defined in ezdxf.const:

4.3. Reference 81

ezdxf Documentation, Release 0.8.9

MText.dxf.flow_direction Value Description
MTEXT_LEFT_TO_RIGHT 1 left to right
MTEXT_TOP_TO_BOTTOM 3 top to bottom
MTEXT_BY_STYLE 5 by style (the flow direction is inherited from the associated text style)

MText.dxf.style

Text style (string); default=’STANDARD’

MText.dxf.text_direction

X-axis direction vector in WCS (3D Point); default=(1, 0, 0); if rotation and text_direction are present, text_direction
wins

MText.dxf.rotation

Text rotation in degrees (float); default=0

MText.dxf.line_spacing_style

line spacing style (int), see table below

MText.dxf.line_spacing_factor

Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00 (float)

Constants defined in ezdxf.const:

MText.dxf.line_spacing_style Value Description
MTEXT_AT_LEAST 1 taller characters will override
MTEXT_EXACT 2 taller characters will not override

MText Methods

MText.get_text()

Returns content of MText as string.

MText.set_text(text)

Set text as MText content.

MText.set_location(insert, rotation=None, attachment_point=None)

Set DXF attributes insert, rotation and attachment_point, None for rotation or attachment_point preserves the existing
value.

MText.get_rotation()

Get text rotation in degrees, independent if it is defined by rotation or text_direction

MText.set_rotation(angle)

Set DXF attribute rotation to angle (in degrees) and deletes text_direction if present.

MText.edit_data()

Context manager for MText content:

82 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

with mtext.edit_data() as data:
data += "append some text" + data.NEW_LINE

or replace whole text
data.text = "Replacement for the existing text."

MTextData

class MTextData

Temporary object to manage the MText content. Create context object by MText.edit_data().

See also:

Tutorial for MText

MTextData.text

Represents the MText content, treat it like a normal string. (read/write)

MTextData.__iadd__(text)

Append text to the MTextData.text attribute.

MTextData.append(text)

Synonym for MTextData.__iadd__().

MTextData.set_font(name, bold=False, italic=False, codepage=1252, pitch=0)

Change actual font inline.

MTextData.set_color(color_name)

Set text color to red, yellow, green, cyan, blue, magenta or white.

Convenient constants defined in MTextData:

Constant Description
UNDERLINE_START start underline text (b += b.UNDERLINE_START)
UNDERLINE_STOP stop underline text (b += b.UNDERLINE_STOP)
UNDERLINE underline text (b += b.UNDERLINE % "Text")
OVERSTRIKE_START start overstrike
OVERSTRIKE_STOP stop overstrike
OVERSTRIKE overstrike text
STRIKE_START start strike trough
STRIKE_STOP stop strike trough
STRIKE strike trough text
GROUP_START start of group
GROUP_END end of group
GROUP group text
NEW_LINE start in new line (b += "Text" + b.NEW_LINE)
NBSP none breaking space (b += "Python" + b.NBSP + "3.4")

4.3. Reference 83

ezdxf Documentation, Release 0.8.9

Hatch

class Hatch

Introduced in DXF version R13 (AC1012), dxftype is HATCH.

Fills an enclosed area defined by one or more boundary paths with a hatch pattern, solid fill, or gradient fill. Create
Hatch in layouts and blocks by factory function add_hatch().

All points in OCS as (x, y) tuples (elevation is the z-axis value).

DXF Attributes for Hatch

Common DXF Attributes for DXF R13 or later

Hatch.dxf.pattern_name
pattern name as string

Hatch.dxf.solid_fill

• 1 = solid fill, better use: Hatch.set_solid_fill()

• 0 = pattern fill, better use: Hatch.set_pattern_fill()

Hatch.dxf.associative

• 1 = associative hatch

• 0 = not associative hatch

Associations not handled by ezdxf, you have to set the handles to the associated DXF entities by yourself.

Hatch.dxf.hatch_style

• 0 = normal

• 1 = outer

• 2 = ignore

(search for AutoCAD help for more information)

Hatch.dxf.pattern_type

• 0 = user

• 1 = predefined

• 2 = custom (???)

Hatch.dxf.pattern_angle
Pattern angle in degrees (360 deg = circle)

Hatch.dxf.pattern_scale

Hatch.dxf.pattern_double
1 = double else 0

Hatch.dxf.n_seed_points
Count of seed points (better user: Hatch.get_seed_points())

Hatch.dxf.elevation
Z value represents the elevation height of the OCS

84 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Hatch Attributes

Hatch.has_solid_fill
True if hatch has a solid fill else False. (read only)

Hatch.has_pattern_fill
True if hatch has a pattern fill else False. (read only)

Hatch.has_gradient_fill
True if hatch has a gradient fill else False. A hatch with gradient fill has also a solid fill. (read only)

Hatch.bgcolor
Property background color as (r, g, b) tuple, rgb values in range 0..255 (read/write/del)

usage:

color = hatch.bgcolor # get background color as (r, g, b) tuple
hatch.bgcolor = (10, 20, 30) # set background color
del hatch.bgcolor # delete background color

Hatch.edit_boundary()
Context manager to edit hatch boundary data, yields a BoundaryPathData object.

Hatch.edit_pattern()
Context manager to edit hatch pattern data, yields a PatternData object.

Hatch.set_pattern_definition(lines)
Setup hatch pattern definition by a list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items]

• angle: line angle in degrees

• base-point: (x, y) tuple

• offset: (dx, dy) tuple, added to base point for next line and so on

• dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item == 0.0 is a point)

Parameters lines (list) – list of definition lines

Hatch.set_solid_fill(color=7, style=1, rgb=None)
Set Hatch to solid fill mode and removes all gradient and pattern fill related data.

Parameters

• color (int) – ACI (AutoCAD Color Index) in range 0 to 256, (0 = BYBLOCK; 256 =
BYLAYER)

• style (int) – hatch style (0 = normal; 1 = outer; 2 = ignore)

• rgb (tuple) – true color value as (r, g, b) tuple - has higher priority than color. True color
support requires at least DXF version AC1015.

Hatch.set_gradient(color1=(0, 0, 0), color2=(255, 255, 255), rotation=0., centered=0., one_color=0,
tint=0., name=’LINEAR’)

Set Hatch to gradient fill mode and removes all pattern fill related data. Gradient support requires at least DXF
version AC1018. A gradient filled hatch is also a solid filled hatch.

Parameters

• color1 (tuple) – (r, g, b) tuple for first color, rgb values as int in range 0..255

• color2 (tuple) – (r, g, b) tuple for second color, rgb values as int in range 0..255

4.3. Reference 85

ezdxf Documentation, Release 0.8.9

• rotation (float) – rotation in degrees (360 deg = circle)

• centered (int) – determines whether the gradient is centered or not

• one_color (int) – 1 for gradient from color1 to tinted color1

• tint (float) – determines the tinted target color1 for a one color gradient. (valid range
0.0 to 1.0)

• name (str) – name of gradient type, default ‘LINEAR’

Valid gradient type names are:

• LINEAR

• CYLINDER

• INVCYLINDER

• SPHERICAL

• INVSPHERICAL

• HEMISPHERICAL

• INVHEMISPHERICAL

• CURVED

• INVCURVED

Hatch.get_gradient()
Get gradient data, returns a GradientData object.

Hatch.edit_gradient()
Context manager to edit hatch gradient data, yields a GradientData object.

Hatch.set_pattern_fill(name, color=7, angle=0., scale=1., double=0, style=1, pattern_type=1, def-
inition=None)

Set Hatch to pattern fill mode. Removes all gradient related data.

Parameters

• color (int) – AutoCAD Color Index in range 0 to 256, (0 = BYBLOCK; 256 = BY-
LAYER)

• angle (float) – angle of pattern fill in degrees (360 deg = circle)

• scale (float) – pattern scaling

• double (int) – double flag

• style (int) – hatch style (0 = normal; 1 = outer; 2 = ignore)

• pattern_type (int) – pattern type (0 = user-defined; 1 = predefined; 2 = custom) ???

• definition (list) – list of definition lines and a definition line is a 4-tuple [angle,
base_point, offset, dash_length_items], see Hatch.set_pattern_definition()

Hatch.get_seed_points()
Get seed points as list of (x, y) points, I don’t know why there can be more than one seed point. All points in
OCS (elevation is the Z value).

Hatch.set_seed_points(points)
Set seed points, points is a list of (x, y) tuples, I don’t know why there can be more than one seed point. All
points in OCS (elevation is the Z value)

86 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

See also:

Tutorial for Hatch

Hatch Boundary Helper Classes

class BoundaryPathData
Defines the borders of the hatch, a hatch can consist of more than one path.

BoundaryPathData.paths
List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write)

BoundaryPathData.add_polyline_path(path_vertices, is_closed=1, flags=1)
Create and add a new PolylinePath object.

Parameters

• path_vertices (list) – list of polyline vertices as (x, y) or (x, y, bulge) tuples.

• is_closed (int) – 1 for a closed polyline else 0

• flags (int) – external(1) or outermost(16) or default (0)

BoundaryPathData.add_edge_path(flags=1)
Create and add a new EdgePath object.

Parameters flags (int) – external(1) or outermost(16) or default (0)

BoundaryPathData.clear()
Remove all boundary paths.

class PolylinePath
A polyline as hatch boundary path.

PolylinePath.path_type_flags
(bit coded flags)

• 0 = default

• 1 = external

• 2 = polyline, will be set by ezdxf

• 16 = outermost

My interpretation of the path_type_flags, see also Tutorial for Hatch:

• external - path is part of the hatch outer border

• outermost - path is completely inside of one or more external paths

• default - path is completely inside of one or more outermost paths

If there are troubles with AutoCAD, maybe the hatch entity contains the pixel size tag (47) - delete it hatch.
AcDbHatch.remove_tags([47]) and maybe the problem is solved. ezdxf does not use the pixel size tag,
but it can occur in DXF files created by other applications.

PolylinePath.is_closed
True if polyline path is closed else False.

PolylinePath.vertices
List of path vertices as (x, y, bulge) tuples. (read/write)

4.3. Reference 87

ezdxf Documentation, Release 0.8.9

PolylinePath.source_boundary_objects
List of handles of the associated DXF entities for associative hatches. There is no support for associative hatches
by ezdxf you have to do it all by yourself. (read/write)

PolylinePath.set_vertices(vertices, is_closed=1)
Set new vertices for the polyline path, a vertex has to be a (x, y) or a (x, y, bulge) tuple.

PolylinePath.clear()
Removes all vertices and all links to associated DXF objects (PolylinePath.
source_boundary_objects).

class EdgePath
Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, EllipseEdge
of SplineEdge. Make sure there are no gaps between edges. AutoCAD in this regard is very picky. ezdxf
performs no checks on gaps between the edges.

EdgePath.path_type_flags
(bit coded flags)

• 0 = default

• 1 = external

• 16 = outermost

see PolylinePath.path_type_flags

EdgePath.edges
List of boundary edges of type LineEdge, ArcEdge, EllipseEdge of SplineEdge

EdgePath.source_boundary_objects
Required for associative hatches, list of handles to the associated DXF entities.

EdgePath.clear()
Delete all edges.

EdgePath.add_line(start, end)
Add a LineEdge from start to end.

Parameters

• start (tuple) – start point of line, (x, y) tuple

• end (tuple) – end point of line, (x, y) tuple

EdgePath.add_arc(center, radius=1., start_angle=0., end_angle=360., is_counter_clockwise=0)
Add an ArcEdge.

Parameters

• center (tuple) – center point of arc, (x, y) tuple

• radius (float) – radius of circle

• start_angle (float) – start angle of arc in degrees

• end_angle (float) – end angle of arc in degrees

• is_counter_clockwise (int) – 1 for yes 0 for no

EdgePath.add_ellipse(center, major_axis_vector=(1., 0.), minor_axis_length=1., start_angle=0.,
end_angle=360., is_counter_clockwise=0)

Add an EllipseEdge.

Parameters

• center (tuple) – center point of ellipse, (x, y) tuple

88 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• major_axis (tuple) – vector of major axis as (x, y) tuple

• ratio (float) – ratio of minor axis to major axis as float

• start_angle (float) – start angle of ellipse in degrees

• end_angle (float) – end angle of ellipse in degrees

• is_counter_clockwise (int) – 1 for yes 0 for no

EdgePath.add_spline(fit_points=None, control_points=None, knot_values=None, weights=None, de-
gree=3, rational=0, periodic=0)

Add a SplineEdge.

Parameters

• fit_points (list) – points through which the spline must go, at least 3 fit points are
required. list of (x, y) tuples

• control_points (list) – affects the shape of the spline, mandatory amd AutoCAD
crashes on invalid data. list of (x, y) tuples

• knot_values (list) – (knot vector) mandatory and AutoCAD crashes on in-
valid data. list of floats; ezdxf provides two tool functions to calculate valid
knot values: ezdxf.tools.knot_values(n_control_points, degree) and
ezdxf.tools.knot_values_uniform(n_control_points, degree)

• weights (list) – weight of control point, not mandatory, list of floats.

• degree (int) – degree of spline

• rational (int) – 1 for rational spline, 0 for none rational spline

• periodic (int) – 1 for periodic spline, 0 for none periodic spline

Warning: Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for the spline edge
itself. On the contrary, if the knot_values in the spline edge are missing or invalid AutoCAD crashes.

class LineEdge
Straight boundary edge.

LineEdge.start
Start point as (x, y) tuple. (read/write)

LineEdge.end
End point as (x, y) tuple. (read/write)

class ArcEdge
Arc as boundary edge.

ArcEdge.center
Center point of arc as (x, y) tuple. (read/write)

ArcEdge.radius
Arc radius as float. (read/write)

ArcEdge.start_angle
Arc start angle in degrees (360 deg = circle). (read/write)

ArcEdge.end_angle
Arc end angle in degrees (360 deg = circle). (read/write)

4.3. Reference 89

ezdxf Documentation, Release 0.8.9

ArcEdge.is_counter_clockwise
1 for counter clockwise arc else 0. (read/write)

class EllipseEdge
Elliptic arc as boundary edge.

EllipseEdge.major_axis_vector
Ellipse major axis vector as (x, y) tuple. (read/write)

EllipseEdge.minor_axis_length
Ellipse minor axis length as float. (read/write)

EllipseEdge.radius
Ellipse radius as float. (read/write)

EllipseEdge.start_angle
Ellipse start angle in degrees (360 deg = circle). (read/write)

EllipseEdge.end_angle
Ellipse end angle in degrees (360 deg = circle). (read/write)

EllipseEdge.is_counter_clockwise
1 for counter clockwise ellipse else 0. (read/write)

class SplineEdge
Spline as boundary edge.

SplineEdge.degree
Spline degree as int. (read/write)

SplineEdge.rational
1 for rational spline else 0. (read/write)

SplineEdge.periodic
1 for periodic spline else 0. (read/write)

SplineEdge.knot_values
List of knot values as floats. (read/write)

SplineEdge.control_points
List of control points as (x, y) tuples. (read/write)

SplineEdge.fit_points
List of fit points as (x, y) tuples. (read/write)

SplineEdge.weights
List of weights (of control points) as floats. (read/write)

SplineEdge.start_tangent
Spline start tangent (vector) as (x, y) tuple. (read/write)

SplineEdge.end_tangent
Spline end tangent (vector) as (x, y) tuple. (read/write)

Hatch Pattern Definition Helper Classes

class PatternData

PatternData.lines
List of pattern definition lines (read/write). see PatternDefinitionLine

90 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

PatternData.new_line(angle=0., base_point=(0., 0.), offset=(0., 0.), dash_length_items=None)
Create a new pattern definition line, but does not add the line to the PatternData.lines attribute.

PatternData.add_line(angle=0., base_point=(0., 0.), offset=(0., 0.), dash_length_items=None)
Create a new pattern definition line and add the line to the PatternData.lines attribute.

PatternData.clear()
Delete all pattern definition lines.

class PatternDefinitionLine
Represents a pattern definition line, use factory function PatternData.new_line() to create new pattern
definition lines.

PatternDefinitionLine.angle
Line angle in degrees (circle = 360 deg). (read/write)

PatternDefinitionLine.base_point
Base point as (x, y) tuple. (read/write)

PatternDefinitionLine..offset
Offset as (x, y) tuple. (read/write)

PatternDefinitionLine.dash_length_items
List of dash length items (item > 0 is line, < 0 is gap, 0.0 = dot). (read/write)

Hatch Gradient Fill Helper Classes

class GradientData

GradientData.color1
First rgb color as (r, g, b) tuple, rgb values in range 0 to 255. (read/write)

GradientData.color2
Second rgb color as (r, g, b) tuple, rgb values in range 0 to 255. (read/write)

GradientData.one_color
If one_color is 1 - the hatch is filled with a smooth transition between color1 and a specified tint of
color1. (read/write)

GradientData.rotation
Gradient rotation in degrees (circle = 360 deg). (read/write)

GradientData.centered
Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and to
the left, creating the illusion of a light source to the left of the object. (read/write)

GradientData.tint
Specifies the tint (color1 mixed with white) of a color to be used for a gradient fill of one color. (read/write)

See also:

Tutorial for Hatch Pattern Definition

Mesh

class Mesh(GraphicEntity)

Introduced in DXF version R13 (AC1012), dxftype is MESH.

3D mesh entity similar to the Polyface entity. Create Mesh in layouts and blocks by factory function
add_mesh().

4.3. Reference 91

ezdxf Documentation, Release 0.8.9

All points in WCS as (x, y, z) tuples

DXF Attributes for Mesh

Common DXF Attributes for DXF R13 or later

Mesh.dxf.version

Mesh.dxf.blend_crease

0 = off, 1 = on

Mesh.dxf.subdivision_levels

int >= 0, 0 = no smoothing

Mesh Methods

Mesh.edit_data()

Context manager various mesh data, returns MeshData.

See also:

Tutorial for Image and ImageDef

MeshData

class MeshData

MeshData.vertices

A standard Python list with (x, y, z) tuples (read/write)

MeshData.faces

A standard Python list with (v1, v2, v3,. . .) tuples (read/write)

Each face consist of a list of vertex indices (= index in MeshData.vertices).

MeshData.edges

A standard Python list with (v1, v2) tuples (read/write)

Each edge consist of exact two vertex indices (= index in MeshData.vertices).

MeshData.edge_crease_values

A standard Python list of float values, one value for each edge. (read/write)

MeshData.add_face(vertices)

Add a face by coordinates, vertices is a list of (x, y, z) tuples.

MeshData.add_edge(vertices)

Add an edge by coordinates, vertices is a list of two (x, y, z) tuples.

MeshData.optimize(precision=6)

92 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Tries to reduce vertex count by merging near vertices. precision defines the decimal places for coordinate be equal to
merge two vertices.

See also:

Tutorial for Mesh

Spline

class Spline(GraphicEntity)
Introduced in DXF version R13 (AC1012), dxftype is SPLINE.

A spline curve, all coordinates have to be 3D coordinates even the spline is only a 2D planar curve.

The spline curve is defined by a set of fit points, the spline curve passes all these fit points. The control points
defines a polygon which influences the form of the curve, the first control point should be identical with the first
fit point and the last control point should be identical the last fit point.

Don’t ask me about the meaning of knot values or weights and how they influence the spline curve, I don’t know
it, ask your math teacher or the internet. I think the knot values can be ignored, they will be calculated by the
CAD program that processes the DXF file and the weights determines the influence ‘strength’ of the control
points, in normal case the weights are all 1 and can be left off.

To create a Spline curve you just need a bunch of fit points, control point, knot_values and weights are optional
(tested with AutoCAD 2010). If you add additional data, be sure that you know what you do.

Create Spline in layouts and blocks by factory function add_spline().

For more information about spline mathematics go to Wikipedia.

DXF Attributes for Spline

All points in WCS as (x, y, z) tuples

Common DXF Attributes for DXF R13 or later

Spline.dxf.degree
Degree of the spline curve (int)

Spline.dxf.flags
Bit coded option flags, constants defined in ezdxf.const:

Spline.dxf.flags Value Description
CLOSED_SPLINE 1 Spline is closed
PERIODIC_SPLINE 2
RATIONAL_SPLINE 4
PLANAR_SPLINE 8
LINEAR_SPLINE 16 planar bit is also set

Spline.dxf.n_knots
Count of knot values (int), automatically set by ezdxf (read only)

Spline.dxf.n_fit_points
Count of fit points (int), automatically set by ezdxf (read only)

Spline.dxf.n_control_points
Count of control points (int), automatically set by ezdxf (read only)

4.3. Reference 93

https://en.wikipedia.org/wiki/Spline_%28mathematics%29

ezdxf Documentation, Release 0.8.9

Spline.dxf.knot_tolerance
Knot tolerance (float); default=1e-10

Spline.dxf.fit_tolerance
Fit tolerance (float); default=1e-10

Spline.dxf.control_point_tolerance
Control point tolerance (float); default=1e-10

Spline.dxf.start_tangent
Start tangent vector as (3D Point in WCS)

Spline.dxf.end_tangent
End tangent vector as (3D Point in WCS)

See also:

Tutorial for Spline

Spline Attributes

Spline.closed
True if spline is closed else False. A closed spline has a connection from the last control point to the first control
point. (read/write)

Spline.control_points
Returns the control points as ControlPoints object in WCS.

Spline.fit_points
Returns the fit points as FitPoints object in WCS.

Spline.knot_values
Returns the knot values as array.array('f').

Spline.weights
Returns the control point weights as array.array('f').

Spline Methods

Spline.set_control_points(points)
Set control points, points is a list (container or generator) of (x, y, z) tuples in WCS.

Spline.set_fit_points(points)
Set fit points, points is a list (container or generator) of (x, y, z) tuples in WCS.

Spline.set_knot_values(values)
Set knot values, values is a list (container or generator) of floats.

Spline.set_weights(values)
Set weights, values is a list (container or generator) of floats.

Spline.set_open_uniform(control_points, degree=3)
Open B-spline with uniform knot vector, start and end at your first and last control points.

Spline.set_uniform(control_points, degree=3)
B-spline with uniform knot vector, does NOT start and end at your first and last control points.

Spline.set_periodic(control_points, degree=3)
Closed B-spline with uniform knot vector, start and end at your first control point.

94 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Spline.set_open_rational(control_points, weights, degree=3)
Open rational B-spline with uniform knot vector, start and end at your first and last control points, and has
additional control possibilities by weighting each control point.

Spline.set_uniform_rational(control_points, weights, degree=3)
Rational B-spline with uniform knot vector, does NOT start and end at your first and last control points, and has
additional control possibilities by weighting each control point.

Spline.set_periodic_rational(control_points, weights, degree=3)
Closed rational B-spline with uniform knot vector, start and end at your first control point, and has additional
control possibilities by weighting each control point.

Spline.edit_data()
Context manager for all spline data, returns SplineData.

Fit points, control points, knot values and weights can be manipulated as lists by using the general context
manager Spline.edit_data():

with spline.edit_data() as spline_data:
spline_data contains list like objects: add, change or delete items as you

→˓want
fit_points and control_points have to be (x, y, z) tuples
knot_values and weights have to be numbers
spline_data.fit_points.append((200, 300, 0)) # append a fit point
on exit the context manager sets spline data automatically and updates all

→˓counters

SplineData

class SplineData

SplineData.fit_points
FitPoints object with list like behavior.

SplineData.control_points
ControlPoints object with list like behavior.

SplineData.knot_values
Spline knot values as array.array('f').

SplineData.weights
Spline weights as array.array('f').

ControlPoints

A list like object to store vertices as array.array('d') flat list.

Supports most standard list operations like indexing, iteration, insert, append, extend and so on.

class ControlPoints(VertexArray)
For attributes and methods see VertexArray

FitPoints

class FitPoints(VertexArray)
Same as ControlPoints.

4.3. Reference 95

ezdxf Documentation, Release 0.8.9

For attributes and methods see VertexArray

Image

class Image(GraphicEntity)

Introduced in DXF version R13 (AC1012), dxftype is IMAGE.

Add a raster image to the DXF file, the file itself is not embedded into the DXF file, it is always a separated file. The
IMAGE entity is like a block reference, you can use it multiple times to add the image on different locations with
different scales and rotations. But therefore you need a also a IMAGEDEF entity, see ImageDef. Create Image
in layouts and blocks by factory function add_image(). ezdxf creates only images in the XY-plan. You can place
images in the 3D space too, but then you have to set the u_pixel and the v_pixel vectors by yourself.

DXF Attributes for Image

Common DXF Attributes for DXF R13 or later

Image.dxf.insert

Insertion point, lower left corner of the image (3D Point in WCS).

Image.dxf.u_pixel

U-vector of a single pixel (points along the visual bottom of the image, starting at the insertion point) (x, y, z) tuple

Image.dxf.v_pixel

V-vector of a single pixel (points along the visual left side of the image, starting at the insertion point) (x, y, z) tuple

Image.dxf.image_size

Image size in pixels

Image.dxf.image_def

Handle to the image definition entity, see ImageDef

Image.dxf.flags

Image.dxf.flags Value Description
Image.SHOW_IMAGE 1 Show image
Image.SHOW_WHEN_NOT_ALIGNED 2 Show image when not aligned with screen
Image.USE_CLIPPING_BOUNDARY 4 Use clipping boundary
Image.USE_TRANSPARENCY 8 Transparency is on

Image.dxf.clipping

Clipping state: 0 = Off; 1 = On

Image.dxf.brightness

Brightness value (0-100; default = 50)

Image.dxf.contrast

Contrast value (0-100; default = 50)

Image.dxf.fade

Fade value (0-100; default = 0)

96 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Image.dxf.clipping_boundary_type

Clipping boundary type. 1 = Rectangular; 2 = Polygonal

Image.dxf.count_boundary_points

Number of clip boundary vertices

Image.dxf.clip_mode

Clip mode: 0 = Outside; 1 = Inside (R2000)

Image Methods

Image.get_boundary()

Returns a list of vertices as pixel coordinates, lower left corner is (0, 0) and upper right corner is (ImageSizeX,
ImageSizeY), independent from the absolute location of the image in WCS.

Image.reset_boundary()

Reset boundary path to the default rectangle [(0, 0), (ImageSizeX, ImageSizeY)].

Image.set_boundary(vertices)

Set boundary path to vertices. 2 points describe a rectangle (lower left and upper right corner), more than 2 points is a
polygon as clipping path. Sets clipping state to 1 and also sets the Image.USE_CLIPPING_BOUNDARY flag.

Image.get_image_def()

returns the associated IMAGEDEF entity. see ImageDef.

Ray

class Ray(GraphicEntity)

Introduced in DXF version R13 (AC1012), dxftype is RAY.

A Ray starts at a point and continues to infinity. Create Ray in layouts and blocks by factory function add_ray().

DXF Attributes for Ray

Common DXF Attributes for DXF R13 or later

Ray.dxf.start

Start point as (3D Point in WCS)

Ray.dxf.unit_vector

Unit direction vector as (3D Point in WCS)

XLine

class XLine(GraphicEntity)

Introduced in DXF version R13 (AC1012), dxftype is XLINE.

A line that extents to infinity in both directions, used as construction line. Create XLine in layouts and blocks by
factory function add_xline().

4.3. Reference 97

ezdxf Documentation, Release 0.8.9

DXF Attributes for XLine

Common DXF Attributes for DXF R13 or later

XLine.dxf.start

Location point of line as (3D Point in WCS)

XLine.dxf.unit_vector

Unit direction vector as (3D Point in WCS)

Body

class Body(GraphicEntity)

Introduced in DXF version R13 (AC1012), dxftype is BODY.

A 3D object created by an ACIS based geometry kernel provided by the Spatial Corp. Create Body objects in layouts
and blocks by factory function add_body(). ezdxf will never interpret ACIS source code, don’t ask me for this
feature.

Body.get_acis_data()

Get the ACIS source code as a list of strings.

Body.set_acis_data(test_lines)

Set the ACIS source code as a list of strings without line endings.

Body.edit_data()

Context manager for ACIS text lines, returns ModelerGeometryData:

with body_entity.edit_data as data:
data.text_lines is a standard Python list
remove, append and modify ACIS source code
data.text_lines = ['line 1', 'line 2', 'line 3'] # replaces the whole ACIS

→˓content (with invalid data)

ModelerGeometryData

ModelerGeometryData:

ModelerGeometryData.text_lines

ACIS date as list of strings. (read/write)

ModelerGeometryData.__str__()

Return concatenated text_lines as one string, lines are separated by \n.

Region

class Region(Body)

Introduced in DXF version R13 (AC1012), dxftype is REGION.

An object created by an ACIS based geometry kernel provided by the Spatial Corp. Create Region objects in layouts
and blocks by factory function add_region().

98 Chapter 4. Contents

http://www.spatial.com/products/3d-acis-modeling
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 0.8.9

Region.get_acis_data()

Get the ACIS source code as a list of strings.

Region.set_acis_data(test_lines)

Set the ACIS source code as a list of strings without line endings.

Region.edit_data()

Context manager for ACIS text lines, returns ModelerGeometryData.

3DSolid

class 3DSolid(Body)

Introduced in DXF version R13 (AC1012), dxftype is 3DSOLID.

A 3D object created by an ACIS based geometry kernel provided by the Spatial Corp. Create 3DSolid objects in
layouts and blocks by factory function add_3dsolid().

DXF Attributes for 3DSolid

Common DXF Attributes for DXF R13 or later

3DSolid.dxf.history

Handle to history object, see: Low Level Access to DXF entities

3DSolid Methods

3DSolid.get_acis_data()

Get the ACIS source code as a list of strings.

3DSolid.set_acis_data(test_lines)

Set the ACIS source code as a list of strings without line endings.

3DSolid.edit_data()

Context manager for ACIS text lines, returns ModelerGeometryData.

Surface

class Surface(Body)

Introduced in DXF version R2007 (AC1021), dxftype is SURFACE.

A 3D object created by an ACIS based geometry kernel provided by the Spatial Corp. Create Surface objects in
layouts and blocks by factory function add_surface().

DXF Attributes for Surface

Common DXF Attributes for DXF R13 or later

Surface.dxf.u_count

Number of U isolines

4.3. Reference 99

http://www.spatial.com/products/3d-acis-modeling
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 0.8.9

Surface.dxf.v_count

Number of V isolines

Surface Methods

Surface.get_acis_data()

Get the ACIS source code as a list of strings.

Surface.set_acis_data(test_lines)

Set the ACIS source code as a list of strings without line endings.

Surface.edit_data()

Context manager for ACIS text lines, returns ModelerGeometryData.

ExtrudedSurface

class ExtrudedSurface(Surface)

Introduced in DXF version R2007 (AC1021), dxftype is EXTRUDEDSURFACE.

DXF Attributes for ExtrudedSurface

ExtrudedSurface.dxf.class_id

ExtrudedSurface.dxf.sweep_vector

ExtrudedSurface.dxf.draft_angle

ExtrudedSurface.dxf.draft_start_distance

ExtrudedSurface.dxf.draft_end_distance

ExtrudedSurface.dxf.twist_angle

ExtrudedSurface.dxf.scale_factor

ExtrudedSurface.dxf.align_angle

ExtrudedSurface.dxf.solid

ExtrudedSurface.dxf.sweep_alignment_flags

• 0 = No alignment

• 1 = Align sweep entity to path

• 2 = Translate sweep entity to path

• 3 = Translate path to sweep entity

ExtrudedSurface.dxf.align_start

ExtrudedSurface.dxf.bank

ExtrudedSurface.dxf.base_point_set

ExtrudedSurface.dxf.sweep_entity_transform_computed

ExtrudedSurface.dxf.path_entity_transform_computed

100 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

ExtrudedSurface.dxf.reference_vector_for_controlling_twist

ExtrudedSurface Methods

ExtrudedSurface.set_transformation_matrix_extruded_entity(matrix)

Parameters matrix – iterable of 16 numeric values.

ExtrudedSurface.get_transformation_matrix_extruded_entity()

Returns Matrix44 object

ExtrudedSurface.set_sweep_entity_transformation_matrix(matrix)

Parameters matrix – iterable of 16 numeric values.

ExtrudedSurface.get_sweep_entity_transformation_matrix()

Returns Matrix44 object

ExtrudedSurface.set_path_entity_transformation_matrix(matrix)

Parameters matrix – iterable of 16 numeric values.

ExtrudedSurface.get_path_entity_transformation_matrix()

Returns Matrix44 object

LoftedSurface

class LoftedSurface(Surface)

Introduced in DXF version R2007 (AC1021), dxftype is LOFTEDSURFACE.

DXF Attributes for LoftedSurface

LoftedSurface.dxf.plane_normal_lofting_type

LoftedSurface.dxf.start_draft_angle

LoftedSurface.dxf.end_draft_angle

LoftedSurface.dxf.start_draft_magnitude

LoftedSurface.dxf.end_draft_magnitude

LoftedSurface.dxf.arc_length_parameterization

LoftedSurface.dxf.no_twist

LoftedSurface.dxf.align_direction

LoftedSurface.dxf.simple_surfaces

LoftedSurface.dxf.closed_surfaces

LoftedSurface.dxf.solid

LoftedSurface.dxf.ruled_surface

LoftedSurface.dxf.virtual_guide

4.3. Reference 101

ezdxf Documentation, Release 0.8.9

LoftedSurface Methods

LoftedSurface.set_transformation_matrix_lofted_entity(matrix)

Parameters matrix – iterable of 16 numeric values.

LoftedSurface.get_transformation_matrix_lofted_entity()

Returns Matrix44 object

RevolvedSurface

class RevolvedSurface(Surface)

Introduced in DXF version R2007 (AC1021), dxftype is REVOLVEDSURFACE.

DXF Attributes for RevolvedSurface

RevolvedSurface.dxf.class_id

RevolvedSurface.dxf.axis_point

RevolvedSurface.dxf.axis_vector

RevolvedSurface.dxf.revolve_angle

RevolvedSurface.dxf.start_angle

RevolvedSurface.dxf.draft_angle

RevolvedSurface.dxf.start_draft_distance

RevolvedSurface.dxf.end_draft_distance

RevolvedSurface.dxf.twist_angle

RevolvedSurface.dxf.solid

RevolvedSurface.dxf.close_to_axis

RevolvedSurface Methods

RevolvedSurface.set_transformation_matrix_revolved_entity(matrix)

Parameters matrix – iterable of 16 numeric values.

RevolvedSurface.get_transformation_matrix_revolved_entity()

Returns Matrix44 object

SweptSurface

class SweptSurface(Surface)

Introduced in DXF version R2007 (AC1021), dxftype is SWEPTSURFACE.

102 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXF Attributes for SweptSurface

SweptSurface.dxf.swept_entity_id

SweptSurface.dxf.path_entity_id

SweptSurface.dxf.draft_angle

SweptSurface.dxf.draft_start_distance

SweptSurface.dxf.draft_end_distance

SweptSurface.dxf.twist_angle

SweptSurface.dxf.scale_factor

SweptSurface.dxf.align_angle

SweptSurface.dxf.solid

SweptSurface.dxf.sweep_alignment

SweptSurface.dxf.align_start

SweptSurface.dxf.bank

SweptSurface.dxf.base_point_set

SweptSurface.dxf.sweep_entity_transform_computed

SweptSurface.dxf.path_entity_transform_computed

SweptSurface.dxf.reference_vector_for_controlling_twist

SweptSurface Methods

SweptSurface.set_transformation_matrix_sweep_entity(matrix)

Parameters matrix – iterable of 16 numeric values.

SweptSurface.get_transformation_matrix_sweep_entity()

Returns Matrix44 object

SweptSurface.set_transformation_matrix_path_entity(matrix)

Parameters matrix – iterable of 16 numeric values.

SweptSurface.get_transformation_matrix_path_entity()

Returns Matrix44 object

SweptSurface.set_sweep_entity_transformation_matrix(matrix)

Parameters matrix – iterable of 16 numeric values.

SweptSurface.get_sweep_entity_transformation_matrix()

Returns Matrix44 object

SweptSurface.set_path_entity_transformation_matrix(matrix)

Parameters matrix – iterable of 16 numeric values.

SweptSurface.get_path_entity_transformation_matrix()

Returns Matrix44 object

4.3. Reference 103

ezdxf Documentation, Release 0.8.9

Underlay

class Underlay(GraphicEntity)

Introduced in DXF version R13 (AC1012), dxftype is PDFUNDERLAY, DWFUNDERLAY or DGNUNDERLAY.

Add an underlay file to the DXF file, the file itself is not embedded into the DXF file, it is always a separated file.
The (PDF)UNDERLAY entity is like a block reference, you can use it multiple times to add the underlay on dif-
ferent locations with different scales and rotations. But therefore you need a also a (PDF)DEFINITION entity, see
UnderlayDefinition. Create Underlay in layouts and blocks by factory function add_underlay(). The
DXF standard supports three different fileformats: PDF, DWF (DWFx) and DGN. An Underlay can be clipped by a
rectangle or a polygon path. The clipping coordinates are 2D OCS/ECS coordinates and in drawing units but without
scaling.

DXF Attributes for Underlay

Common DXF Attributes for DXF R13 or later

underlay.dxf.insert

Insertion point, lower left corner of the image in OCS.

underlay.dxf.scale_x

scaling factor in x direction (float)

underlay.dxf.scale_y

scaling factor in y direction (float)

underlay.dxf.scale_z

scaling factor in z direction (float)

underlay.dxf.rotation

ccw rotation in degrees around the extrusion vector (float)

underlay.dxf.extrusion

extrusion vector (default=0, 0, 1)

underlay.dxf.underlay_def

Handle to the underlay definition entity, see UnderlayDefinition

underlay.dxf.flags

Underlay.dxf.flags Value Description
UNDERLAY_CLIPPING 1 clipping is on/off
UNDERLAY_ON 2 underlay is on/off
UNDERLAY_MONOCHROME 4 Monochrome
UNDERLAY_ADJUST_FOR_BACKGROUND 8 Adjust for background

underlay.dxf.contrast

Contrast value (20-100; default = 100)

underlay.dxf.fade

Fade value (0-80; default = 0)

104 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Underlay Attributes

Underlay.clipping

True or False (read/write)

Underlay.on

True or False (read/write)

Underlay.monochrome

True or False (read/write)

Underlay.adjust_for_background

True or False (read/write)

Underlay.scale

Scaling (x, y, z) tuple (read/write)

Underlay Methods

Underlay.get_boundary()

Returns a list of vertices as pixel coordinates, just two values represent the lower left and the upper right corners of the
clipping rectangle, more vertices describe a clipping polygon.

Underlay.reset_boundary()

Removes the clipping path.

Underlay.set_boundary(vertices)

Set boundary path to vertices. 2 points describe a rectangle (lower left and upper right corner), more than 2 points is a
polygon as clipping path. Sets clipping state to 1.

Underlay.get_underlay_def()

returns the associated (PDF)DEFINITION entity. see UnderlayDefinition.

4.3.5 Blocks

Blocks Section

The BlocksSection class manages all block definitions of a drawing document.

class BlocksSection

BlocksSection.__iter__()
Iterate over all block definitions, yielding BlockLayout objects.

BlocksSection.__contains__(entity)
Test if BlocksSection contains the block definition entity, entity can be a block name as str or the Block
definition itself.

BlocksSection.__getitem__(name)
Get the Block definition by name, raises DXFKeyError if no block name exists.

BlocksSection.get(name, default=None)
Get the Block definition by name, returns default if no block name exists.

4.3. Reference 105

ezdxf Documentation, Release 0.8.9

BlocksSection.new(name, base_point=(0, 0), dxfattribs=None)
Create and add a new Block, name is the block-name, base_point is the insertion point of the block.

BlocksSection.new_anonymous_block(type_char=’U’, base_point=(0, 0))
Create and add a new anonymous Block, type_char is the block-type,‘base_point‘ is the insertion point of the
block.

BlocksSection.rename_block(old_name, new_name)
Rename block ‘old_name’ in ‘new_name’.

BlockSection.delete_block(name, safe=True)
Delete block name. If safe is True, check if block is still referenced.

Parameters

• name – block name (case insensitive)

• safe – check if block is still referenced

Raises

• DXFKeyError – if block name does not exist

• DXFBlockInUseError – if block name is still referenced, and safe is True

BlockSection.delete_all_blocks(safe=True)
Delete all blocks except layout blocks (model space or paper space).

Parameters safe – check if block is still referenced before deleting and ignore them if so

type_char Anonymous Block Type
U *U### anonymous blocks
E *E### anonymous non-uniformly scaled blocks
X *X### anonymous hatches
D *D### anonymous dimensions
A *A### anonymous groups
T *T### anonymous block for ACAD_TABLE content

Block

class Block

Blocks are embedded into the BlockLayout object. The BLOCK entity is accessible by BlockLayout.block.

DXF Attributes for Block

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Block.dxf.name
Block name

Block.dxf.name2
The same block name a second time (meaning?)

Block.dxf.base_point
Defines the base point of the block, default=(0, 0, 0)

106 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Block.dxf.flags
Block flags (bit-coded)

1 Anonymous block generated by hatching, associative dimensioning, other internal operations, or an
application

2 Block has non-constant attribute definitions (this bit is not set if the block has any attribute definitions
that are constant, or has no attribute definitions at all)

4 Block is an external reference (xref)
8 Block is an xref overlay
16 Block is externally dependent
32 This is a resolved external reference, or dependent of an external reference (ignored on input)
64 This definition is a referenced external reference (ignored on input)

Block.dxf.xref_path
Xref path name

Block.is_layout_block
True if block is a model space or paper space block definition.

Insert

class Insert
A block reference (DXF type: INSERT) with the possibility to append attributes (Attrib).

DXF Attributes for Insert

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

TODO: influence of layer, linetype, color DXF attributes to block entities

Insert.dxf.name

Block name (str)

Insert.dxf.insert

Insertion point as (2D/3D Point in OCS)

Insert.dxf.xscale

Scale factor for x direction (float)

Insert.dxf.yscale

Scale factor for y direction (float)

Insert.dxf.zscale

Scale factor for z direction (float)

Insert.dxf.rotation

Rotation angle in degrees (float)

Insert.dxf.row_count

Count of repeated insertions in row direction (int)

Insert.dxf.row_spacing

4.3. Reference 107

ezdxf Documentation, Release 0.8.9

Distance between two insert points in row direction (float)

Insert.dxf.column_count

Count of repeated insertions in column direction (int)

Insert.dxf.column_spacing

Distance between two insert points in column direction (float)

Insert Methods

Insert.place(insert=None, scale=None, rotation=None)

Place block reference as point insert with scaling and rotation. scale has to be a (x, y, z)-tuple and rotation a rotation
angle in degrees. Parameters which are None will not be altered.

Insert.grid(size=(1, 1), spacing=(1, 1))

Place block references in a grid layout with grid size=(rows, columns)-tuple and spacing=(row_spacing,
column_spacing)-tuple. spacing is the distance from insertion point to insertion point.

Insert.attribs()

Iterate over appended Attrib objects.

Insert.has_attrib(tag, search_const=False)

Returns True if an attrib tag exists else False, for search_const doc see Insert.get_attrib().

Insert.get_attrib(tag, search_const=False)

Get the appended Attrib object with object.dxf.tag == tag, returns None if not found. Some applications
may not attach Attrib, which do represent constant values, set search_const=True and you get at least the associated
Attdef entity.

Insert.get_attrib_text(tag, default=None, search_const=False)

Get content text for attrib tag as string or return default if no attrib tag exists, for search_const doc see Insert.
get_attrib().

Insert.add_attrib(tag, text, insert=(0, 0), attribs={})

Append an Attrib to the block reference. Returns an Attrib object.

Example for appending an attribute to an INSERT entity with none standard alignment:

insert_entity.add_attrib("TAG", "example text").set_pos((3, 7), align='MIDDLE_CENTER')

Insert.delete_attrib(tag, ignore=False)

Delete an Attrib from Insert. If ignore is False, an DXFKeyError exception is raised, if Attrib tag does not
exist.

Insert.delete_all_attribs()

Delete all attached Attrib entities.

AttDef

class Attdef

The Attdef entity is a place holder in the Block definition, which will be used to create an appended Attrib
entity for an Insert entity.

108 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXF Attributes for AttDef

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

AttDef.dxf.text

The default text prompted by CAD programs (str)

AttDef.dxf.insert

First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGN and FIT.

AttDef.dxf.tag

Tag to identify the attribute (str)

AttDef.dxf.align_point

Second alignment point of text (2D/3D Point in OCS), if the justification is anything other than LEFT, the second
alignment point specify also the first alignment point: (or just the second alignment point for ALIGN and FIT)

AttDef.dxf.height

Text height in drawing units (float), default is 1

AttDef.dxf.rotation

Text rotation in degrees (float), default is 0

AttDef.dxf.oblique

Text oblique angle (float), default is 0

AttDef.dxf.style

Text style name (str), default is STANDARD

AttDef.dxf.width

Width scale factor (float), default is 1

AttDef.dxf.halign

Horizontal alignment flag (int), use Attdef.set_pos() and Attdef.set_align()

AttDef.dxf.valign

Vertical alignment flag (int), use Attdef.set_pos() and Attdef.set_align()

AttDef.dxf.text_generation_flag

Text generation flags (int)

• 2 = text is backward (mirrored in X)

• 4 = text is upside down (mirrored in Y)

AttDef.dxf.prompt

Text prompted by CAD programs at placing a block reference containing this Attdef

AttDef.dxf.field_length

Just relevant to CAD programs for validating user input

4.3. Reference 109

ezdxf Documentation, Release 0.8.9

AttDef Attributes

Attdef.is_invisible

(read/write) Attribute is invisible (does not appear).

Attdef.is_const

(read/write) This is a constant attribute.

Attdef.is_verify

(read/write) Verification is required on input of this attribute. (CAD application feature)

Attdef.is_preset

(read/write) No prompt during insertion. (CAD application feature)

AttDef Methods

Attdef.get_pos()

see method Text.get_pos().

Attdef.set_pos(p1, p2=None, align=None)

see method Text.set_pos().

Attdef.get_align()

see method Text.get_align().

Attdef.set_align(align=’LEFT’)

see method Text.set_align().

Attrib

class Attrib

The Attrib entity represents a text value associated with a tag. In most cases an Attrib is appended to an Insert
entity, but it can also appear as standalone entity.

DXF Attributes for Attrib

Common DXF Attributes for DXF R12

Common DXF Attributes for DXF R13 or later

Attrib.dxf.text

Attribute content as text (str)

Attrib.dxf.insert

First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGN and FIT.

Attrib.dxf.tag

Tag to identify the attribute (str)

Attrib.dxf.align_point

110 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Second alignment point of text (2D/3D Point in OCS), if the justification is anything other than LEFT, the second
alignment point specify also the first alignment point: (or just the second alignment point for ALIGN and FIT)

Attrib.dxf.height

Text height in drawing units (float), default is 1

Attrib.dxf.rotation

Text rotation in degrees (float), default is 0

Attrib.dxf.oblique

Text oblique angle (float), default is 0

Attrib.dxf.style

Text style name (str), default is STANDARD

Attrib.dxf.width

Width scale factor (float), default is 1

Attrib.dxf.halign

Horizontal alignment flag (int), use Attrib.set_pos() and Attrib.set_align()

Attrib.dxf.valign

Vertical alignment flag (int), use Attrib.set_pos() and Attrib.set_align()

Attrib.dxf.text_generation_flag

Text generation flags (int)

• 2 = text is backward (mirrored in X)

• 4 = text is upside down (mirrored in Y)

Attrib Attributes

Attrib.is_invisibe

(read/write) Attribute is invisible (does not appear).

Attrib.is_const

(read/write) This is a constant attribute.

Attrib.is_verify

(read/write) Verification is required on input of this attribute. (CAD application feature)

Attrib.is_preset

(read/write) No prompt during insertion. (CAD application feature)

Attrib Methods

Attrib.get_pos()

see method Text.get_pos().

Attrib.set_pos(p1, p2=None, align=None)

see method Text.set_pos().

4.3. Reference 111

ezdxf Documentation, Release 0.8.9

Attrib.get_align()

see method Text.get_align().

Attrib.set_align(align=’LEFT’)

see method Text.set_align().

4.3.6 Groups

Group

A group is just a bunch of DXF entities tied together. All entities of a group has to be on the same layout (model
space or any paper layout but not block). Groups can be named or unnamed, but in reality an unnamed groups has just
a special name like '*Annnn'. The name of a group has to be unique in the drawing. Groups are organized in the
main group table, which is an Drawing.groups of the class Drawing.

Group entities have to be in model space or any paper layout but not in a block definition!

class DXFGroup

DXFAttr Version Description
description R13 group description (string)
unnamed R13 1 for unnamed, 0 for named group (int)
selectable R13 1 for selectable, 0 for not selectable group (int)

The group name is not stored in the GROUP entity, it is stored in the DXFGroupTable object.

DXFGroup.__iter__()
Iterate over all DXF entities in this group as instances of GraphicEntity or inherited (LINE, CIRCLE, . . .).

DXFGroup.__len__()
Returns the count of DXF entities in this group.

DXFGroup.__contains__(item)
Returns True if item is in this group else False. item has to be a handle string or an object of type
GraphicEntity or inherited.

DXFGroup.handles()
Generator over all entity handles in this group.

DXFGroup.get_name()
Get name of the group as string.

DXFGroup.edit_data()
Context manager which yields all the group entities as standard Python list:

with group.edit_data() as data:
add new entities to a group
data.append(modelspace.add_line((0, 0), (3, 0)))
remove last entity from a group
data.pop()

DXFGroup.set_data(entities)
Set entities as new group content, entities should be iterable and yields instances of GraphicEntity or
inherited (LINE, CIRCLE, . . .).

DXFGroup.extend(entities)
Append entities to group content, entities should be iterable and yields instances of GraphicEntity or
inherited (LINE, CIRCLE, . . .).

112 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXFGroup.clear()
Remove all entities from group.

DXFGroup.remove_invalid_handles()
Remove invalid handles from group. Invalid handles: deleted entities, entities in a block layout (but not imple-
mented yet)

GroupTable

There only exists one group table in each drawing, which is accessible by the attribute Drawing.groups.

class DXFGroupTable

DXFGroupTable.__iter__()
Iterate over all existing groups as (name, group) tuples. name is the name of the group as string and group is an
object of type DXFGroup.

DXFGroupTable.groups()
Generator over all existing groups, yields just objects of type DXFGroup.

DXFGroupTable.__len__()
Returns the count of DXF groups.

DXFGroupTable.__contains__(name)
Returns True if a group name exists else False.

DXFGroupTable.get(name)
Returns the group name as DXFGroup object. Raises DXFKeyError if no group name exists.

DXFGroupTable.new(name=None, description="", selectable=1)
Creates a new group, returns a DXFGroup object. If name is None an unnamed group is created, which has
an automatically generated name like '*Annnn'. description is the group description as string and selectable
defines if the group is selectable (selectable=1) or not (selectable=0).

DXFGroupTable.delete(group)
Delete group. group can be an object of type DXFGroup or a group name.

DXFGroupTable.clear()
Delete all groups.

DXFGroupTable.cleanup()
Removes invalid handles in all groups and empty groups.

4.3.7 Objects

Object Base Class

class DXFObject
Common base class for all non-graphical DXF objects.

DXFObject.dxf
(read only) The DXF attributes namespace, access DXF attributes by this attribute, like entity.dxf.layer
= 'MyLayer'. Just the dxf attribute is read only, the DXF attributes are read- and writeable.

DXFObject.drawing
(read only) Get the associated drawing.

DXFObject.dxffactory
(read only) Get the associated DXF factory. (feature for experts)

4.3. Reference 113

ezdxf Documentation, Release 0.8.9

DXFObject.dxftype()
Get the DXF type string, like GEODATA for the geo data entity.

DXFObject.copy()
Deep copy of DXFObject with new handle. This is not a deep copy in the meaning of Python, because handle,
link and owner is changed.

DXFObject.get_dxf_attrib(key, default=DXFValueError)
Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is
DXFValueError and no DXF default value is defined.

DXFObject.set_dxf_attrib(key, value)

DXFObject.del_dxf_attrib(key)
Delete/remove DXF attribute key. Raises AttributeError if key isn’t supported.

DXFObject.dxf_attrib_exists(key)
Returns True if DXF attrib key really exists else False. Raises AttributeError if key isn’t supported

DXFObject.supported_dxf_attrib(key)
Returns True if DXF attrib key is supported by this entity else False. Does not grant that attrib key really exists.

DXFObject.valid_dxf_attrib_names(key)
Returns a list of supported DXF attribute names.

DXFObject.dxfattribs()
Create a dict() with all accessible DXF attributes and their value, not all data is accessible by dxf attributes like
definition points of LWPolyline or Spline

DXFObject.update_attribs(dxfattribs)
Set DXF attributes by a dict() like {'layer': 'test', 'color': 4}.

DXFObject.set_flag_state(flag, state=True, name=’flags’)
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to 0 (off) if state is False.

DXFObject.get_flag_state(flag, name=’flags’)
Returns True if any flag of DXF attribute is 1 (on), else False. Always check just one flag state at the time.

Common DXF Object Attributes

DXFObject.dxf.handle
DXF handle (feature for experts)

DXFObject.dxf.owner
handle to owner, it’s a BLOCK_RECORD entry (feature for experts)

ImageDef

class ImageDef(DXFObject)

Introduced in DXF version R13 (AC1012), dxftype is IMAGEDEF.

ImageDef defines an image, which can be placed by the Image entity. Create ImageDef by the Drawing factory
function add_image_def().

114 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXF Attributes for ImageDef

ImageDef.dxf.filename
Relative (to the DXF file) or absolute path to the image file as string

ImageDef.dxf.image_size
Image size in pixel as (x, y) tuple

ImageDef.dxf.pixel_size
Default size of one pixel in AutoCAD units (x, y) tuple

ImageDef.dxf.loaded
Default = 1

ImageDef.dxf.resolution_units

• 0 = No units

• 2 = Centimeters

• 5 = Inch

• default is 0

UnderlayDefinition

class UnderlayDefinition(DXFObject)

Introduced in DXF version R13 (AC1012), dxftype is PDFDEFINITION, DWFDEFINITION and DGNDEFINITION.

UnderlayDefinition defines an underlay, which can be placed by the Underlay entity. Create
UnderlayDefinition by the Drawing factory function add_underlay_def().

DXF Attributes for UnderlayDefinition

UnderlayDefinition.dxf.filename
Relative (to the DXF file) or absolute path to the image file as string

UnderlayDefinition.dxf.name
defines what to display

• pdf: page number

• dgn: ‘default’

• dwf: ???

GeoData

class GeoData(DXFObject)
Introduced in DXF version R2010 (AC1024), dxftype is GEODATA

The GEODATA entity is associated to the Modelspace object, create new geo data by Modelspace.
new_geodata(), or get existing geo data by Modelspace.get_geodata().

See also:

using_geodata.py

4.3. Reference 115

https://github.com/mozman/ezdxf/blob/master/examples/using_geodata.py

ezdxf Documentation, Release 0.8.9

DXF Attributes for GeoData

GeoData.dxf.version

• 1 = 2009

• 2 = 2010

GeoData.dxf.coordinate_type

• 0 = unknown

• 1 = local grid

• 2 = projected grid

• 3 = geographic (latitude/longitude)

GeoData.dxf.block_record
Handle of host block table record.

GeoData.dxf.design_point
Reference point in WCS coordinates.

GeoData.dxf.reference_point
Reference point in coordinate system coordinates, valid only when coordinate type is Local Grid.

GeoData.dxf.north_direction
North direction as 2D vector.

GeoData.dxf.horizontal_unit_scale
Horizontal unit scale, factor which converts horizontal design coordinates to meters by multiplication.

GeoData.dxf.vertical_unit_scale
Vertical unit scale, factor which converts vertical design coordinates to meters by multiplication.

GeoData.dxf.horizontal_units
Horizontal units per UnitsValue enumeration. Will be kUnitsUndefined if units specified by horizontal unit scale
is not supported by AutoCAD enumeration.

GeoData.dxf.vertical_units
Vertical units per UnitsValue enumeration. Will be kUnitsUndefined if units specified by vertical unit scale is
not supported by AutoCAD enumeration.

GeoData.dxf.up_direction
Up direction as 3D vector.

GeoData.dxf.scale_estimation_method

• 1 = none

• 2 = user specified scale factor

• 3 = grid scale at reference point

• 4 = prismoidal

GeoData.dxf.sea_level_correction
Bool flag specifying whether to do sea level correction.

GeoData.dxf.user_scale_factor

GeoData.dxf.sea_level_elevation

GeoData.dxf.coordinate_projection_radius

GeoData.dxf.geo_rss_tag

116 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

GeoData.dxf.observation_from_tag

GeoData.dxf.observation_to_tag

GeoData.dxf.mesh_faces_count

GeoData Methods

GeoData.get_coordinate_system_definition()

Returns Coordinate system definition string (always a XML string?)

GeoData.set_coordinate_system_definition(text)

GeoData.get_mesh_data()
Returns mesh as list of vertices and list of faces. Each vertex entry is a 2-tuple of source and target point, vertices
are 2D points. Each face entry is a 3-tuple of vertex indices (0 based).

Returns tuple (vertices, faces)

GeoData.set_mesh_data(vertices=None, faces=None)
Each vertex entry is a 2-tuple of source and target point, all vertices are 2D points. Each face entry is a 3-tuple
of vertex indices (0 based), faces are optional.

4.3.8 Importer

Import data from other DXF drawings

class Importer
Import definitions and entities from other DXF drawings.

• can import line-, text-, dimension-styles and layer-definitions

• can import block-definitions

• can import entities from model-space

• can’t import layouts

• can’t import entities from layouts

Compatible Drawings

• It is always possible to copy from older to newer versions (except R12).

• It is possible to copy an entity from a newer to an older versions, if the entity is defined for both versions
(like LINE, CIRCLE, . . .), but this can not be granted by default. Enable this feature by Importer(s, t,
strict_mode=False).

Incompatible Drawings

The basic DXF structure has been changed with version AC1012 (AutoCAD R13):

• can’t copy from R12 to newer versions, it’s possible if strict_mode=False, but the target drawing is invalid.

• can’t copy from newer versions to R12, it’s possible if strict_mode=False, but the target drawing is invalid.

Importer.__init__(source, target, strict_mode=True)

Parameters

• source – source drawing of type Drawing

4.3. Reference 117

ezdxf Documentation, Release 0.8.9

• target – target drawing of type Drawing

• strict_mode (bool) – import is only possible, if the drawings are compatible.

Now you can import DXF tables, like layer definitions and dimension style definitions or block definitions from the
blocks section or DXF entities from the model-space.

First create an Importer object:

import ezdxf

source_drawing = ezdxf.readfile("Source_DXF_Drawing.dxf")
target_drawing = ezdxf.new(dxfversion=source_drawing.dxfversion)
importer = ezdxf.Importer(source_drawing, target_drawing)

Import Tables

Import line-, text-, dimension-styles and layer-definitions from other DXF drawing.

Importer.import_tables(query=’*’, conflict=’discard’)
Import all tables listed by the query string, * means all tables. Valid table names are layers, linetypes,
appids, dimstyles, styles, ucs, views, viewports and block_records.

Importer.import_table(name, query=’*’, conflict=’discard’)
Import table entries from a specific table, the query string specifies the entries to import, * means all table
entries.

Parameters

• query (str) – is a Name Query String

• conflict (str) – discard | replace

• discard: already existing entries will be preserved

• replace: already existing entries will replaced by entries from the source drawing

Import Block Definitions

Import block-definitions from other DXF drawings.

Importer.import_blocks(query=’*’, conflict=’discard’)
Import block definitions, the query string specifies the blocks to import, * means all blocks.

Parameters

• query (str) – is a Name Query String

• conflict (str) – discard | replace | rename

• discard: already existing blocks will be preserved

• replace: already existing blocks will replaced by blocks from the source drawing

• rename: the imported block gets a new name, existing references in the source drawing will be resolved
if possible. Block references in the model-space will be resolved, if they are imported AFTER importing
the block definitions.

118 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Import Model-Space Entities

Import entities from model-space of other DXF drawings.

Importer.import_modelspace_entities(query=’*’)
Import DXF entities from source model-space to the target model-space, select DXF types to import by the
query string, * means all DXF types. If called after the import_blocks() method, references to renamed
blocks will be resolved.

Parameters query (str) – is an Entity Query String

Additional Methods

Importer.is_compatible()
True if drawings are compatible, else False.

Importer.import_all(table_conflict=’discard’, block_conflict=’discard’)
Import all tables, block-definitions and entities from model-space.

4.3.9 Data Query

Name Query String

A name query string is just a standard regular expression see: http://docs.python.org/3/library/re.html

A '$' will be appended to the query string.

For general usage of the query features see the tutorial: Tutorial for Getting Data from DXF Files

Entity Query String

QueryString := EntityQuery ("[" AttribQuery "]" "i"?)*

The query string is the combination of two queries, first the required entity query and second the optional attribute
query, enclosed in square brackets, append 'i' after the closing square bracket to ignore case for strings.

Entity Query

The entity query is a whitespace separated list of DXF entity names or the special name '*'. Where '*' means all
DXF entities, all other DXF names have to be uppercase.

Attribute Query

The optional attribute query is a boolean expression, supported operators are:

• not (!): !term is true, if term is false

• and (&): term & term is true, if both terms are true

• or (|): term | term is true, if one term is true

• and arbitrary nested round brackets

• append (i) after the closing square bracket to ignore case for strings

4.3. Reference 119

http://docs.python.org/3/library/re.html

ezdxf Documentation, Release 0.8.9

Attribute selection is a term: “name comparator value”, where name is a DXF entity attribute in lowercase, value is a
integer, float or double quoted string, valid comparators are:

• "==" equal “value”

• "!=" not equal “value”

• "<" lower than “value”

• "<=" lower or equal than “value”

• ">" greater than “value”

• ">=" greater or equal than “value”

• "?" match regular expression “value”

• "!?" does not match regular expression “value”

Query Result

The EntityQuery class is the return type of all query() methods. EntityQuery contains all DXF entities of
the source collection, which matches one name of the entity query AND the whole attribute query. If a DXF entity
does not have or support a required attribute, the corresponding attribute search term is false.

examples:

'LINE[text ? ".*"]' is always empty, because the LINE entity has no text attribute.

'LINE CIRCLE[layer=="construction"]' => all LINE and CIRCLE entities on layer
→˓"construction"
'*[!(layer=="construction" & color<7)]' => all entities except those on layer ==
→˓"construction" and color < 7
'*[layer=="construction"]i' => (ignore case) all entities with layer == "construction
→˓" | "Construction" | "ConStruction" ...

EntityQuery Class

class EntityQuery(Sequence)
The EntityQuery class is a result container, which is filled with dxf entities matching the query string. It is
possible to add entities to the container (extend), remove entities from the container and to filter the container.
Supports the standard sequence methods and protocols. (Python Sequence Docs)

EntityQuery.__init__(entities, query=’*’)
Setup container with entities matching the initial query.

Parameters

• entities – sequence of wrapped DXF entities (at least GraphicEntity class)

• query (str) – entity query string

EntityQuery.extend(entities, query=’*’, unique=True)
Extent the query container by entities matching an additional query.

EntityQuery.remove(query=’*’)
Remove all entities from result container matching this additional query.

EntityQuery.query(query=’*’)
Returns a new result container with all entities matching this additional query.

120 Chapter 4. Contents

http://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

ezdxf Documentation, Release 0.8.9

EntityQuery.groupby(dxfattrib=”, key=None)
Returns a mapping of this result container, where entities are grouped by a dxfattrib or a key function.

Parameters

• dxfattrib (str) – grouping DXF attribute like ‘layer’

• key (function) – key function, which accepts a DXFEntity as argument, returns group-
ing key of this entity or None for ignore this object. Reason for ignoring: a queried DXF
attribute is not supported by this entity

The new() Function

ezdxf.query.new(entities, query=’*’)
Start a new query based on a sequence entities. The sequence entities has to provide the Python iterator protocol
and has to yield at least subclasses of GenericWrapper or better GraphicEntity . Returns an object of
type EntityQuery .

4.3.10 Fast DXF R12 File/Stream Writer

Fast DXF R12 File/Stream Writer

The fast file/stream writer creates simple DXF R12 drawings with just an ENTITIES section. The HEADER, TABLES
and BLOCKS sections are not present except FIXED-TABLES are written. Only LINE, CIRCLE, ARC, TEXT,
POINT, SOLID, 3DFACE and POLYLINE entities are supported. FIXED-TABLES is a predefined TABLES section,
which will be written, if the init argument fixed_tables of R12FastStreamWriter is True.

The R12FastStreamWriter writes the DXF entities as strings direct to the stream without creating an in-memory
drawing and therefore the processing is very fast.

Because of the lack of a BLOCKS section, BLOCK/INSERT can not be used. Layers can be used, but this layers have
a default setting color=7 (black/white) and linetype=’Continuous’. If writing the FIXED-TABLES, some predefined
text styles and line types are available, else text style is always ‘STANDARD’ and line type is always ‘ByLayer’.

If using FIXED-TABLES, following predefined line types are available:

• CONTINUOUS

• CENTER ____ _ ____ _ ____ _ ____ _ ____ _ ____

• CENTERX2 ________ __ ________ __ ________

• CENTER2 ____ _ ____ _ ____ _ ____ _ ____

• DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ _

• DASHEDX2 ____ ____ ____ ____ ____ ____

• DASHED2 _ _ _ _ _ _ _ _ _ _ _ _ _ _

• PHANTOM ______ __ __ ______ __ __ ______

• PHANTOMX2 ____________ ____ ____ ____________

• PHANTOM2 ___ _ _ ___ _ _ ___ _ _ ___ _ _ ___

• DASHDOT __ . __ . __ . __ . __ . __ . __ . __

• DASHDOTX2 ____ . ____ . ____ . ____

• DASHDOT2 _ . _ . _ . _ . _ . _ . _ . _

4.3. Reference 121

ezdxf Documentation, Release 0.8.9

• DOT

• DOTX2

• DOT2

• DIVIDE __ . . __ . . __ . . __ . . __ . . __

• DIVIDEX2 ____ . . ____ . . ____ . . ____

• DIVIDE2 _ . _ . _ . _ . _ . _ . _ . _

If using FIXED-TABLES, following predefined text styles are available:

• ARIAL

• ARIAL_NARROW

• ISOCPEUR

• TIMES

Tutorial

A simple example with different DXF entities:

from random import random
from ezdxf.r12writer import r12writer

with r12writer("quick_and_dirty_dxf_r12.dxf") as dxf:
dxf.add_line((0, 0), (17, 23))
dxf.add_circle((0, 0), radius=2)
dxf.add_arc((0, 0), radius=3, start=0, end=175)
dxf.add_solid([(0, 0), (1, 0), (0, 1), (1, 1)])
dxf.add_point((1.5, 1.5))
dxf.add_polyline([(5, 5), (7, 3), (7, 6)]) # 2d polyline
dxf.add_polyline([(4, 3, 2), (8, 5, 0), (2, 4, 9)]) # 3d polyline
dxf.add_text("test the text entity", align="MIDDLE_CENTER")

A simple example of writing really many entities in a short time:

from random import random
from ezdxf.r12writer import r12writer

MAX_X_COORD = 1000.0
MAX_Y_COORD = 1000.0
CIRCLE_COUNT = 1000000

with r12writer("many_circles.dxf") as dxf:
for i in range(CIRCLE_COUNT):

dxf.add_circle((MAX_X_COORD*random(), MAX_Y_COORD*random()), radius=2)

Show all available line types:

import ezdxf

LINETYPES = [
'CONTINUOUS', 'CENTER', 'CENTERX2', 'CENTER2', 'DASHED', 'DASHEDX2', 'DASHED2',

→˓'PHANTOM', 'PHANTOMX2',
'PHANTOM2', 'DASHDOT', 'DASHDOTX2', 'DASHDOT2', 'DOT', 'DOTX2', 'DOT2', 'DIVIDE',

→˓'DIVIDEX2', 'DIVIDE2',
(continues on next page)

122 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

]

with r12writer('r12_linetypes.dxf', fixed_tables=True) as dxf:
for n, ltype in enumerate(LINETYPES):

dxf.add_line((0, n), (10, n), linetype=ltype)
dxf.add_text(ltype, (0, n+0.1), height=0.25, style='ARIAL_NARROW')

Reference

r12writer(stream, fixed_tables=False)
Context manager for writing DXF entities to a stream/file. stream can be any file like object with a write method
or just a string for writing DXF entities to the file system. If fixed_tables is True, a standard TABLES section is
written in front of the ENTITIES section and some predefined text styles and line types can be used.

class R12FastStreamWriter
Fast stream writer to create simple DXF R12 drawings.

R12FastStreamWriter.__init__(stream, fixed_tables=False)
Constructor, stream should be a file like object with a write method. If fixed_tables is True, a standard TABLES
section is written in front of the ENTITIES section and some predefined text styles and line types can be used.

R12FastStreamWriter.close()
Writes the DXF tail. Call is not necessary when using the context manager r12writer().

R12FastStreamWriter.add_line(start, end, layer="0", color=None, linetype=None)
Add a LINE entity from start to end.

Parameters

• start – start vertex 2d/3d vertex as (x, y [,z]) tuple

• end – end vertex 2d/3d vertex as (x, y [,z]) tuple

• layer – layer name as string, without a layer definition the assigned color=7 (black/white)
and line type is Continuous.

• color – color as ACI (AutoCAD Color Index) as integer in the range from 0 to 256, 0
is ByBlock and 256 is ByLayer, default is ByLayer which is always color=7 (black/white)
without a layer definition.

• linetype – line type as string, if FIXED-TABLES is written some predefined line types
are available, else line type is always ByLayer, which is always Continuous without a LAY-
ERS table.

R12FastStreamWriter.add_circle(center, radius, layer="0", color=None, linetype=None)
Add a CIRCLE entity.

Parameters

• center – circle center point as (x, y) tuple

• radius – circle radius as float

• layer – layer name as string see add_line()

• color – color as ACI see add_line()

• linetype – line type as string see add_line()

4.3. Reference 123

ezdxf Documentation, Release 0.8.9

R12FastStreamWriter.add_arc(center, radius, start=0, end=360, layer="0", color=None, line-
type=None)

Add an ARC entity. The arc goes counter clockwise from start angle to end angle.

Parameters

• center – center point of arc as (x, y) tuple

• radius – arc radius as float

• start – arc start angle in degrees as float (360 degree = circle)

• end – arc end angle in degrees as float

• layer – layer name as string, see add_line()

• color – color as ACI, see add_line()

• linetype – line type as string, see add_line()

R12FastStreamWriter.add_point(location, layer="0", color=None, linetype=None)
Add a POINT entity.

Parameters

• location – point location as (x, y [,z]) tuple

• layer – layer name as string, see add_line()

• color – color as ACI, see add_line()

• linetype – line type as string, see add_line()

R12FastStreamWriter.add_3dface(vertices, invisible=0, layer="0", color=None, linetype=None)
Add a 3DFACE entity. 3DFACE is a spatial area with 3 or 4 vertices, all vertices have to be in the same plane.

Parameters

• vertices – list of 3 or 4 (x, y, z) vertices.

• invisible – bit coded flag to define the invisible edges, 1. edge = 1, 2. edge = 2, 3. edge
= 4, 4. edge = 8; add edge values to set multiple edges invisible, 1. edge + 3. edge = 1 + 4
= 5, all edges = 15

• layer – layer name as string, see add_line()

• color – color as ACI, see add_line()

• linetype – line type as string, see add_line()

R12FastStreamWriter.add_solid(vertices, layer="0", color=None, linetype=None)
Add a SOLID entity. SOLID is a solid filled area with 3 or 4 edges and SOLID is 2d entity.

Parameters

• vertices – list of 3 or 4 (x, y [,z]) tuples, z axis will be ignored.

• layer – layer name as string, see add_line()

• color – color as ACI, see add_line()

• linetype – line type as string, see add_line()

R12FastStreamWriter.add_polyline(vertices, layer="0", color=None, linetype=None)
Add a POLYLINE entity. The first vertex (axis count) defines, if the POLYLINE is 2d or 3d.

Parameters

• vertices – list of (x, y [,z]) tuples, handles generators without building a temporary lists.

124 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• layer – layer name as string, see add_line()

• color – color as ACI, see add_line()

• linetype – line type as string, see add_line()

R12FastStreamWriter.add_text(text, insert=(0, 0), height=1., width=1., align="LEFT", rota-
tion=0., oblique=0., style=’STANDARD’, layer="0", color=None)

Add a one line TEXT entity.

Parameters

• text – the text as string

• insert – insert point as (x, y) tuple

• height – text height in drawing units

• width – text width as factor

• align – text alignment, see table below

• rotation – text rotation in degrees as float (360 degree = circle)

• oblique – oblique in degrees as float, vertical=0 (default)

• style – text style name as string, if FIXED-TABLES are written some predefined text
styles are available, else text style is always STANDARD.

• layer – layer name as string, see add_line()

• color – color as ACI, see add_line()

Vert/Horiz Left Center Right
Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

The special alignments ALIGNED and FIT are not available.

4.3.11 Algebra Utilities

This utilities located in module ezdxf.algebra:

from ezdxf.algebra import Vector

Functions

ezdxf.algebra.is_close(a, b)
Returns True if value is close to value b, uses math.isclose(a, b, abs_tol=1e-9) for Python 3, and
emulates this function for Python 2.7.

ezdxf.algebra.is_close_points(p1, p2)
Returns True if all axis of p1 and p2 are close.

ezdxf.algebra.bspline_control_frame(fit_points, degree=3, method=’distance’, power=.5)
Generates the control points for the B-spline control frame by Curve Global Interpolation. Given are the fit
points and the degree of the B-spline. The function provides 3 methods for generating the parameter vector t:

4.3. Reference 125

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html

ezdxf Documentation, Release 0.8.9

1. method = uniform, creates a uniform t vector, form 0 to 1 evenly spaced; see uniform method

2. method = distance, creates a t vector with values proportional to the fit point distances, see chord length
method

3. method = centripetal, creates a t vector with values proportional to the fit point distances^power; see
centripetal method

Parameters

• fit_points – fit points of B-spline, as list of (x, y[, z]) tuples

• degree – degree of B-spline

• method – calculation method for parameter vector t

• power – power for centripetal method

Returns a BSpline object, with BSpline.control_points containing the calculated con-
trol points, also BSpline.knot_values() returns the used knot values.

Bulge Related Functions

ezdxf.algebra.bulge_center(start_point, end_point, bulge)
Calculate center of arc described by the given bulge parameters.

Parameters

• start_point – start point as (x, y) tuple

• end_point – end point as (x, y) tuple

• bulge – bulge value as float

Returns arc center as Vector

ezdxf.algebra.bulge_radius(start_point, end_point, bulge)
Calculate radius of arc defined by the given bulge parameters.

Parameters

• start_point – start point as (x, y) tuple

• end_point – end point as (x, y) tuple

• bulge – bulge value as float

Returns arc radius as float

ezdxf.algebra.arc_to_bulge(center, start_angle, end_angle, radius)
Calculate bulge parameters from arc parameters.

Parameters

• center – circle center point as (x, y) tuple

• start_angle – start angle in radians

• end_angle – end angle in radians

• radius – circle radius

Returns (start_point, end_point, bulge)

ezdxf.algebra.bulge_to_arc(start_point, end_point, bulge)
Calculate arc parameters from bulge parameters.

126 Chapter 4. Contents

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 0.8.9

Parameters

• start_point – start point as (x, y) tuple

• end_point – end point as (x, y) tuple

• bulge – bulge value as float

Returns (center, start_angle, end_angle, radius)

ezdxf.algebra.bulge_3_points(start_point, end_point, point)
Calculate bulge value defined by three points.

Parameters

• start_point – start point of arc

• end_point – end point of arc

• point – arbitrary point on arc

Returns bulge value as float

This classes located in module ezdxf.algebra:

from ezdxf.algebra import OCS, UCS

OCS Class

class ezdxf.algebra.OCS

OCS.__init__(extrusion=(0, 0, 1))
Establish an Object Coordinate System for a given extrusion vector.

OCS.to_wcs(point)
Calculate world coordinates for point in object coordinates.

OCS.points_to_wcs(points)
Translate multiple object coordinates into world coordinates (generator).

OCS.from_wcs(point)
Calculate object coordinates for point in world coordinates.

OCS.points_from_wcs(points)
Translate multiple world coordinates into object coordinates (generator).

See also:

OCS

UCS Class

class ezdxf.algebra.UCS

UCS.__init__(origin=(0, 0, 0), ux=None, uy=None, uz=None)
Establish an User Coordinate System. The UCS is defined by the origin and two unit vectors for the x-, y- or
z-axis, all axis n WCS. The missing axis is the cross product of the given axis.

If x- and y-axis are None: ux=(1, 0, 0), uy=(0, 1, 0), uz=(0, 0, 1).

Normalization of unit vectors is not required.

Parameters

4.3. Reference 127

ezdxf Documentation, Release 0.8.9

• origin – defines the UCS origin in world coordinates

• ux – defines the UCS x-axis as vector in WCS

• uy – defines the UCS y-axis as vector in WCS

• uz – defines the UCS z-axis as vector in WCS

UCS.to_wcs(point)
Calculate world coordinates for point in UCS coordinates.

UCS.points_to_wcs(points)
Translate multiple user coordinates into world coordinates (generator).

UCS.to_ocs(point)
Calculate OCS coordinates for point in UCS coordinates.

OCS is defined by the z-axis of the UCS.

UCS.points_from_wcs(points)
Translate multiple user coordinates into OCS coordinates (generator).

OCS is defined by the z-axis of the UCS.

UCS.from_wcs(point)
Calculate UCS coordinates for point in world coordinates.

UCS.points_from_wcs(points)
Translate multiple world coordinates into user coordinates (generator).

UCS.from_x_axis_and_point_in_xy(origin, axis, point)
Returns an new UCS defined by the origin, the x-axis vector and an arbitrary point in the xy-plane. (static
method)

Parameters

• origin – UCS origin as (x, y, z) tuple in WCS

• axis – x-axis vector as (x, y, z) tuple in WCS

• point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in WCS

UCS.from_x_axis_and_point_in_xz(origin, axis, point)
Returns an new UCS defined by the origin, the x-axis vector and an arbitrary point in the xz-plane. (static
method)

Parameters

• origin – UCS origin as (x, y, z) tuple in WCS

• axis – x-axis vector as (x, y, z) tuple in WCS

• point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple in WCS

UCS.from_y_axis_and_point_in_xy(origin, axis, point)
Returns an new UCS defined by the origin, the y-axis vector and an arbitrary point in the xy-plane. (static
method)

Parameters

• origin – UCS origin as (x, y, z) tuple in WCS

• axis – y-axis vector as (x, y, z) tuple in WCS

• point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in WCS

128 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

UCS.from_y_axis_and_point_in_yz(origin, axis, point)
Returns an new UCS defined by the origin, the y-axis vector and an arbitrary point in the yz-plane. (static
method)

Parameters

• origin – UCS origin as (x, y, z) tuple in WCS

• axis – y-axis vector as (x, y, z) tuple in WCS

• point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple in WCS

UCS.from_z_axis_and_point_in_xz(origin, axis, point)
Returns an new UCS defined by the origin, the z-axis vector and an arbitrary point in the xz-plane. (static
method)

Parameters

• origin – UCS origin as (x, y, z) tuple in WCS

• axis – z-axis vector as (x, y, z) tuple in WCS

• point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple in WCS

UCS.from_z_axis_and_point_in_yz(origin, axis, point)
Returns an new UCS defined by the origin, the z-axis vector and an arbitrary point in the yz-plane. (static
method)

Parameters

• origin – UCS origin as (x, y, z) tuple in WCS

• axis – z-axis vector as (x, y, z) tuple in WCS

• point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple in WCS

See also:

UCS

This class located in module ezdxf.algebra:

from ezdxf.algebra import Vector

Vector

class ezdxf.algebra.Vector
This is an immutable universal 3d vector object. This class is optimized for universality not for speed. Immutable
means you can’t change (x, y, z) components after initialization:

v1 = Vector(1, 2, 3)
v2 = v1
v2.z = 7 # this is not possible, raises AttributeError
v2 = Vector(v2.x, v2.y, 7) # this creates a new Vector() object
assert v1.z == 3 # and v1 remains unchanged

Vector initialization:

• Vector(), returns Vector(0, 0, 0)

• Vector((x, y)), returns Vector(x, y, 0)

• Vector((x, y, z)), returns Vector(x, y, z)

4.3. Reference 129

ezdxf Documentation, Release 0.8.9

• Vecotr(x, y), returns Vector(x, y, 0)

• Vector(x, y, z), returns Vector(x, y, z)

Addition, subtraction, scalar multiplication and scalar division left and right handed are supported:

v = Vector(1, 2, 3)
v + (1, 2, 3) == Vector(2, 4, 6)
(1, 2, 3) + v == Vector(2, 4, 6)
v - (1, 2, 3) == Vector(0, 0, 0)
(1, 2, 3) - v == Vector(0, 0, 0)
v * 3 == Vector(3, 6, 9)
3 * v == Vector(3, 6, 9)
Vector(3, 6, 9) / 3 == Vector(1, 2, 3)
-Vector(1, 2, 3) == (-1, -2, -3)

Comparison between vectors and vectors to tuples is supported:

Vector(1, 2, 3) < Vector (2, 2, 2)
(1, 2, 3) < tuple(Vector(2, 2, 2)) # conversion necessary
Vector(1, 2, 3) == (1, 2, 3)

bool(Vector(1, 2, 3)) is True
bool(Vector(0, 0, 0)) is False

Vector Attributes

Vector.x

Vector.y

Vector.z

Vector.xy
Returns Vector (x, y, 0)

Vector.xyz
Returns (x, y, z) tuple

Vector.magnitude
Returns length of vector

Vector.magnitude_square
Returns square length of vector

Vector.is_null
Returns True for Vector(0, 0, 0) else False

Vector.spatial_angle_rad
Returns spatial angle between vector and x-axis in radians

Vector.spatial_angle_deg
Returns spatial angle between vector and x-axis in degrees

Vector.angle_rad
Returns angle of vector in the xy-plane in radians.

Vector.angle_deg
Returns angle of vector in the xy-plane in degrees.

130 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Vector Methods

Vector.replace(x=None, y=None, z=None)
Return new Vector() with replaced components != None.

Vector.generate(items)
Static method returns generator of Vector() objects created from items.

Vector.list(items)
Static method returns list of Vector() objects created from items.

Vector.from_rad_angle(angle, length=1.)
Static method returns Vector() from angle scaled by length, angle in radians.

Vector.from_deg_angle(angle, length=1.)
Static method returns Vector() from angle scaled by length, angle in degree.

Vector.__str__()
Return (x, y, z) as string.

Vector.__repr__()
Return Vector(x, y, z) as string.

Vector.__len__()
Returns always 3

Vector.__hash__()

Vector.copy()
Returns copy of vector.

Vector.__copy__()
Support for copy.copy().

Vector.__deepcopy__(memodict)
Support for copy.deepcopy().

Vector.__getitem__(index)
Support for indexing v[0] == v.x; v[1] == v.y; v[2] == v.z;

Vector.__iter__()
Support for the Python iterator protocol.

Vector.__abs__()
Returns length (magnitude) of vector.

Vector.orthogonal(ccw=True)
Returns orthogonal 2D vector, z value is unchanged.

Parameters ccw – counter clockwise if True else clockwise

Vector.lerp(other, factor=.5)
Linear interpolation between vector and other, returns new Vector() object.

Parameters

• other – target vector/point

• factor – interpolation factor (0==self, 1=other, 0.5=mid point)

Vector.project(other)
Project vector other onto self, returns new Vector() object.

Vector.normalize(length=1)
Returns new normalized Vector() object, optional scaled by length.

4.3. Reference 131

ezdxf Documentation, Release 0.8.9

Vector.reversed()
Returns -vector as new Vector() object

Vector.__neg__()
Returns -vector as new Vector() object

Vector.__bool__()
Returns True if vector != (0, 0, 0)

Vector.__eq__(other)

Vector.__lt__(other)

Vector.__add__(other)

Vector.__radd__(other)

Vector.__sub__(other)

Vector.__rsub__(other)

Vector.__mul__(other)

Vector.__rmul__(other)

Vector.__truediv__(other)

Vector.__div__(other)

Vector.__rtruediv__(other)

Vector.__rdiv__(other)

Vector.dot(other)
Returns ‘dot’ product of vector . other.

Vector.cross(other)
Returns ‘cross’ product of vector x other

Vector.distance(other)
Returns distance between vector and other.

Vector.angle_between(other)
Returns angle between vector and other in th xy-plane in radians. +angle is counter clockwise orientation.

Vector.rot_z_rad(angle)
Return rotated vector around z axis, angle in radians.

Vector.rot_z_deg(angle)
Return rotated vector around z axis, angle in degrees.

This utilities located in module ezdxf.algebra:

from ezdxf.algebra import Matrix44

Matrix44

class ezdxf.algebra.Matrix44
This is a pure Python implementation for 4x4 transformation matrices, to avoid dependency to big numerical
packages like numpy, and before binary wheels, installation of these packages wasn’t always easy on Windows.

Matrix44 initialization:

• Matrix44() is the identity matrix.

132 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• Matrix44(values) values is an iterable with the 16 components of the matrix.

• Matrix44(row1, row2, row3, row4) four rows, each row with four values.

Matrix44.set(*args)
Reset matrix values:

• set() creates the identity matrix.

• set(values) values is an iterable with the 16 components of the matrix.

• set(row1, row2, row3, row4) four rows, each row with four values.

Matrix44.__repr__()
Returns the representation string of the matrix:

Matrix44((col0, col1, col2, col3), (...), (...), (...))

Matrix44.get_row(row)
Get row as list of of four float values.

Matrix44.set_row(row, values)
Sets the values in a row.

Parameters

• row – row index [0..3]

• values – four column values as iterable.

Matrix44.get_col(col)
Get column as list of of four float values.

Matrix44.set_col(col, values)
Sets the values in a column.

Parameters

• col – column index [0..3]

• values – four column values as iterable.

Matrix44.copy()

Matrix44.__copy__()

Matrix44.scale(sx, sy=None, sz=None)
Class method returns a scaling transformation matrix. If sy is None, sy = sx, and if sz is None sz = sx.

Matrix44.translate(x, y, z)
Class method returns a translation matrix to (x, y, z).

Matrix44.x_rotate(angle)
Class method returns a rotation matrix about the x-axis.

Parameters angle – rotation angle in radians

Matrix44.y_rotate(angle)
Class method returns a rotation matrix about the y-axis.

Parameters angle – rotation angle in radians

Matrix44.z_rotate(angle)
Class method returns a rotation matrix about the z-axis.

param angle rotation angle in radians

4.3. Reference 133

ezdxf Documentation, Release 0.8.9

Matrix44.axis_rotate(axis, angle)
Class method returns a rotation matrix about an arbitrary axis.

Parameters

• axis – rotation axis as (x, y, z) tuple

• angle – rotation angle in radians

Matrix44.xyz_rotate(angle_x, angle_y, angle_z)
Class method returns a rotation matrix for rotation about each axis.

Parameters

• angle_x – rotation angle about x-axis in radians

• angle_y – rotation angle about y-axis in radians

• angle_z – rotation angle about z-axis in radians

Matrix44.perspective_projection(left, right, top, bottom, near, far)
Class method returns a matrix for a 2d projection.

Parameters

• left – Coordinate of left of screen

• right – Coordinate of right of screen

• top – Coordinate of the top of the screen

• bottom – Coordinate of the bottom of the screen

• near – Coordinate of the near clipping plane

• far – Coordinate of the far clipping plane

Matrix44.perspective_projection_fov(fov, aspect, near, far)
Class method returns a matrix for a 2d projection.

Parameters

• fov – The field of view (in radians)

• aspect – The aspect ratio of the screen (width / height)

• near – Coordinate of the near clipping plane

• far – Coordinate of the far clipping plane

Matrix44.chain(*matrices)
Compose a transformation matrix from one or more matrices.

Matrix44.__setitem__(coord, value)
Set (row, column) element.

Matrix44.__getitem__(coord)
Get (row, column) element.

Matrix44.__iter__()
Iterates over all matrix values.

Matrix44.__mul__(other)
Returns a new matrix as result of the matrix multiplication with another matrix.

Matrix44.__imul__(other)
Inplace multiplication with another matrix.

134 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Matrix44.fast_mul(other)
Multiplies this matrix with other matrix inplace.

Assumes that both matrices have a right column of (0, 0, 0, 1). This is True for matrices composed of rotations,
translations and scales. fast_mul is approximately 25% quicker than __imul__().

Matrix44.rows()
Iterate over rows as 4-tuples.

Matrix44.columns()
Iterate over columns as 4-tuples.

Matrix44.transform(vector)
Transforms a 3d vector and return the result as a tuple.

Matrix44.transform_vectors(vectors)
Returns a list of transformed vectors.

Matrix44.transpose()
Swaps the rows for columns inplace.

Matrix44.get_transpose()
Returns a new transposed matrix.

Matrix44.determinant()
Returns determinant.

Matrix44.inverse()
Returns the inverse of the matrix.

Raises ZeroDivisionError – if matrix has no inverse.

This classes located in module ezdxf.algebra:

from ezdxf.algebra import BSpline

BSpline

class ezdxf.algebra.BSpline
Calculate the vertices of a B-spline curve, using an uniform open knot vector (clamped curve).

BSpline.control_points
Control points as list of Vector objects

BSpline.count
Count of control points, (n + 1 in math definition).

BSpline.order
Order of B-spline = degree + 1

BSpline.degree
Degree (p) of B-spline = order - 1

BSpline.max_t
Max knot value.

BSpline.knot_values()
Returns a list of knot values as floats, the knot vector always has order+count values (n + p + 2 in math definition)

BSpline.basis_values(t)
Returns the basis vector for position t.

4.3. Reference 135

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-basis.html

ezdxf Documentation, Release 0.8.9

BSpline.approximate(segments)
Approximates the whole B-spline from 0 to max_t, by line segments as a list of vertices, vertices count =
segments + 1

BSpline.point(t)
Returns the B-spline vertex at position t as (x, y[, z]) tuple.

BSplineU

class ezdxf.algebra.BSpline(BSpline)
Calculate the points of a B-spline curve, uniform (periodic) knot vector (open curve).

BSplineClosed

class ezdxf.algebra.BSplineClosed(BSplineU)
Calculate the points of a closed uniform B-spline curve (closed curve).

DBSpline

class ezdxf.algebra.DBSpline(BSpline)
Calculate points and derivative of a B-spline curve, using an uniform open knot vector (clamped curve).

DBSpline.point(t)
Returns the B-spline vertex, 1. derivative and 2. derivative at position t as tuple (vertex, d1, d2), each value is a
(x, y, z) tuple.

DBSplineU

class ezdxf.algebra.DBSplineU(DBSpline)
Calculate points and derivative of a B-spline curve, uniform (periodic) knot vector (open curve).

DBSplineClosed

class ezdxf.algebra.DBSplineClosed(DBSplineU)
Calculate the points and derivative of a closed uniform B-spline curve (closed curve).

This class located in module ezdxf.algebra:

from ezdxf.algebra import Arc

Arc

class ezdxf.algebra.Arc
This is a helper class to create parameters for the DXF Arc class.

Arc.center
Center point as Vector

Arc.radius
Arc radius

Arc.start_angle
Start angle of arc in degrees.

136 Chapter 4. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html

ezdxf Documentation, Release 0.8.9

Arc.start_angle_rad
Start angle of arc in radians.

Arc.end_angle
End angle of arc in degrees.

Arc.end_angle_rad
End angle of arc in radians.

Class Methods

Arc.from_2p_angle(start_point, end_point, angle, ccw=True)
Create arc from two points and enclosing angle. Arc goes by default in counter clockwise orientation from
start_point to end_point, can be changed by ccw =False. Z-axis of start_point and end_point has to be 0 if given.

Parameters

• start_point – start point as (x, y [,z]) tuple

• end_point – end point as (x, y [,z]) tuple

• angle (float) – enclosing angle in degrees

• ccw (bool) – counter clockwise orientation

Return new Arc

Arc.from_2p_radius(start_point, end_point, radius, ccw=True, center_is_left=True)
Create arc from two points and arc radius. Arc goes by default in counter clockwise orientation from start_point
to end_point, can be changed by ccw =False. Z-axis of start_point and end_point has to be 0 if given.

The parameter center_is_left defines if the center of the arc is left or right of the line start point -> end point.
Parameter ccw =False swaps start- and end point, which inverts the meaning of center_is_left.

Parameters

• start_point – start point as (x, y [,z]) tuple

• end_point – end point as (x, y [,z]) tuple

• radius (float) – arc radius

• ccw (bool) – counter clockwise orientation

• center_is_left (bool) – center point of arc is left of line start point -> end point if
True, else on the right side of this line

Return new Arc

Arc.from_3p(start_point, end_point, def_point, ccw=True)
Create arc from three points. Arc goes by default in counter clockwise orientation from start_point to end_point,
can be changed by ccw =False. Z-axis of start_point, end_point and def_point has to be 0 if given.

Parameters

• start_point – start point as (x, y [,z]) tuple

• end_point – end point as (x, y [,z]) tuple

• def_point – additional definition point as (x, y [,z]) tuple

• ccw (bool) – counter clockwise orientation

Return new Arc

4.3. Reference 137

ezdxf Documentation, Release 0.8.9

Methods

Arc.add_to_layout(layout, ucs=None, dxfattribs=None)
Add arc as DXF entity to a layout.

Supports 3D arcs by using an UCS. An arc is always defined in the xy-plane, by using an arbitrary UCS, the arc
can be placed in 3D space, automatically OCS transformation included.

Parameters

• layout – destination layout (model space, paper space or block)

• ucs – UCS definition for arc properties transformation to OCS, None for 2D arcs

• dxfattribs (dict) – usual DXF attributes supported by Arc

Return DXF Arc object

4.3.12 Tag Data Structures

Tag Data Structures

Required DXF tag interface:

• property code: group code as int

• property value: tag value of unspecific type

• method dxfstr(): returns the DXF string

• method clone(): returns a deep copy of tag

DXFTag

The DXFTag is the basic DXF data type, this data type is per definition immutable (but not per imple-
mentation for sake of speed)

class ezdxf.lldxf.DXFTag

DXFTag.code
DXF group code (read only), interface definition

DXFTag.value
DXF tag value (read only)

DXFTag.__str__()

DXFTag.__repr__()

DXFTag.__getitem__()
Support for indexing.

DXFTag.__iter__()
Support for iterator protocol.

DXFTag.dxfstr()
Returns the DXF string e.g. ‘ 0nLINEn’

DXFTag.clone()
Returns a clone of itself, this method is necessary for the more complex (and not immutable) DXF tag types.

138 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

DXFBinaryTag

Represents binary data compact as binary strings. This tag is immutable.

class ezdxf.lldxf.DXFBinaryTag(DXFTag)

DXFVertex

Represents a 2D or 3D vertex, stores only the group code of the x-component of the vertex, because the
y-group-code is x-group-code + 10 and z-group-code id x-group-code+20, this is a rule that ALWAYS
applies. This tag is mutable.

class ezdxf.lldxf.DXFVertex(DXFTag)

DXFVertex.code
DXF group code for the x-component (read only)

DXFVertex.value
x, y[, z] coordinates as array.array('d') object (read/write)

DXFVertex.__str__()

DXFVertex.__repr__()

DXFVertex.__getitem__()

DXFVertex.__iter__()

DXFVertex.dxftags()
Returns all vertex components as single DXFTag objects.

DXFVertex.dxfstr()
Returns the DXF string for all vertex components.

DXFVertex.clone()
Returns a clone of itself.

Tags

A list of DXF tags, inherits from Python standard list. Unlike the statement in the DXF Reference “Do
not write programs that rely on the order given here”, tag order is sometimes essential and some group
codes may appear multiples times in one entity. At the worst case (MATERIAL: normal map shares group
codes with diffuse map) using same group codes with different meanings.

class ezdxf.lldxf.Tags(list)

Tags.from_text(text)
Constructor from DXF string.

Tags.strip(tags, codes)
Constructor from tags, strips all tags with group codes in codes from tags.

Parameters codes – iterable of group codes

Tags.get_handle()
Get DXF handle, raises DXFValueError if handle not exists.

Tags.replace_handle(new_handle)
Replace existing handle.

Parameters new_handle – new handle as hex string, e.g. ‘FFFF’

4.3. Reference 139

ezdxf Documentation, Release 0.8.9

Tags.dxftype()
Returns DXF type of entity, e.g. ‘LINE’.

Tags.has_tag(code)
Returns True if a DXF tag with group code code is present else False.

Parameters code (int) – group code

Tags.get_first_value(code, default=DXFValueError)
Returns value of first DXF tag with given group code or default if default is not DXFValueError, else raises
DXFValueError.

Parameters

• code (int) – group code

• default – default value, DXFValueError raises an exception

Tags.get_first_tag(code, default=DXFValueError)
Returns first DXF tag with given group code or default if default is not DXFValueError, else raises DXFVal-
ueError.

Parameters

• code (int) – group code

• default – default value, DXFValueError raises an exception

Tags.find_all(code)
Returns a list of DXF tag with given group code.

Parameters code (int) – group code

Tags.tag_index(code, start=0, end=None)
Return index of first DXF tag with given group code.

Parameters

• code (int) – group code

• start (int) – start index as int

• end (int) – end index as int, if None end index is length of Tags

Tags.update(tag)
Update first existing tag with same group code as tag, raises DXFValueError if tag not exists.

Parameters tag – new DXF tag with code property

Tags.set_first(tag)
Update first existing tag with same group code as tag or append tag.

Parameters tag – DXF tag

Tags.remove_tags(codes)
Remove all tags inplace with group codes specified in codes.

Parameters codes – iterable of group codes

Tags.remove_tags_except(codes)
Remove all tags inplace except those with group codes specified in codes.

Parameters codes – iterable of group codes

Tags.collect_consecutive_tags(codes, start=0, end=None)
Collect all consecutive tags with group code in codes, start and end delimits the search range. A tag code not in
codes ends the process.

140 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Parameters

• codes – iterable of group codes

• start (int) – start index

• end (int) – end index, if None end index is length of Tags

Returns collected tags as Tags object

ExtendedTags

Represents the extended DXF tag structure introduced with DXF R13.

class ezdxf.lldxf.ExtendedTags

TODO

Packed Tags

The following tag types store multiple tags in one object to reduce the memory footprint.

TagList

Stores multiple tags with the same group code in a standard Python list.

class ezdxf.lldxf.TagList

TODO

TagArray

Stores multiple tags with the same group code in a array.array() object.

class ezdxf.lldxf.TagArray

TODO

TagDict

Stores multiple key/value tags with the same group code in a standard Python dict.

class ezdxf.lldxf.TagDict

TODO

VertexArray

Stores multiple vertex tags with the same group code in a array.array('d') object.

class ezdxf.lldxf.VertexArray

TODO

4.3. Reference 141

ezdxf Documentation, Release 0.8.9

4.4 Add-ons

4.4.1 MeshBuilder

A simple Mesh builder. Stores a list of vertices, a list of edges where an edge is a list of indices into the vertices list,
and a faces list where each face is a list of indices into the vertices list.

The render() method, renders the mesh into a DXF Mesh entity. The Mesh entity supports ngons in AutoCAD,
ngons are polygons with more than 4 vertices.

Can only create new meshes.

class ezdxf.addons.MeshBuilder

MeshBuilder.add_face(vertices)
Add a face as vertices list to the mesh. A face requires at least 3 vertices, each vertex is a (x, y, z) tuple. A face
is stored as index list, which means, a face does not contain the vertex itself, but the indices of the vertices in
the vertex list.

list [index v1, index v2, index v3, . . .].

Parameters vertices – list of at least 3 vertices [(x1, y1, z1), (x2, y2, z2), (x3, y3, y3), . . .]

MeshBuilder.add_edge(vertices)
An edge consist of two vertices [v1, v2]. Each vertex is a (x, y, z) tuple and will be added to the mesh and the
resulting vertex indices will be added to the mesh edges list. The stored edge is [index v1, index v2]

Parameters vertices – list of 2 vertices : [(x1, y1, z1), (x2, y2, z2)]

MeshBuilder.add_vertices(vertices)
Add new vertices to the mesh.

e.g. adding 4 vertices to an empty mesh, returns the indices (0, 1, 2, 3), adding additional 4 vertices return s the
indices (4, 5, 6, 7)

Parameters vertices – list of vertices, vertex as (x, y, z) tuple

Returns a tuple of vertex indices.

MeshBuilder.add_mesh(vertices=None, faces=None, edges=None, mesh=None)
Add another mesh to this mesh.

Parameters

• vertices – list of vertices, a vertex is a (x, y, z)

• faces – list of faces, a face is a list of vertex indices

• edges – list of edges, an edge is a list of vertex indices

• mesh – another mesh entity, mesh overrides vertices, faces and edges

MeshBuilder.transform(matrix)
Transform actual mesh into a new mesh by applying the transformation matrix to vertices.

Parameters matrix – transformation matrix as Matrix44

Returns new ezdxf.addons.MeshBuilder object (same type as builder)

MeshBuilder.translate(x=0, y=0, z=0)
Translate mesh inplace.

MeshBuilder.scale(sx=1, sy=1, sz=1)
Scale mesh inplace.

142 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

MeshBuilder.render(layout, dxfattribs=None, matrix=None)
Render mesh as MESH entity into layout.

Parameters

• layout – ezdxf Layout object

• dxfattribs – dict of DXF attributes e.g. {‘layer’: ‘mesh’, ‘color’: 7}

• matrix – transformation matrix as Matrix44

MeshBuilder.from_mesh(cls, other)
Create new mesh from other mesh as class method.

4.4.2 MeshVertexMerger

Same functionality as MeshBuilder, but creates meshes with unique vertices. Resulting meshes have no doublets,
but MeshVertexMerger needs extra memory for bookkeeping.

Can only create new meshes.

class ezdxf.addons.MeshVertexMerger(MeshBuilder)

MeshVertexMerger.add_vertices(vertices)
Add new vertices only, if no vertex with identical x, y, z coordinates already exists, else the index of the existing
vertex is returned as index of the new (not added) vertex.

Parameters vertices – list of vertices, vertex as (x, y, z) tuple

Returns a tuple of vertex indices.

4.4.3 Forms

Basic Forms

ezdxf.addons.circle(count, radius=1, elevation=0, close=False)
Create polygon vertices for a circle with radius and count vertices.

Parameters

• count – count of polygon vertices

• radius – circle radius

• elevation – z axis for all vertices

• close – yields first vertex also as last vertex if True.

Returns yields Vector objects in counter clockwise orientation

ezdxf.addons.ellipse(count, rx=1, ry=1, start_param=0, end_param=2*pi, elevation=0)
Create polygon vertices for an ellipse with rx as x-axis radius and ry for y-axis radius with count vertices. The
curve goes from start_param to end_param in counter clockwise orientation.

Parameters

• count – count of polygon vertices

• rx – ellipse x-axis radius

• ry – ellipse y-axis radius

• start_param – start of ellipse in range 0 . . . 2*pi

4.4. Add-ons 143

ezdxf Documentation, Release 0.8.9

• end_param – end of ellipse in range 0 . . . 2*pi

• elevation – z axis for all vertices

Returns yields Vector objects

ezdxf.addons.euler_spiral(count, length=1, curvature=1, elevation=0)
Create polygon vertices for an euler spiral of a given length and radius of curvature. This is a parametric curve,
which always starts at the origin.

Parameters

• count – count of polygon vertices

• length – length of curve in drawing units

• curvature – radius of curvature

• elevation – z-axis for all vertices

Returns yields Vector objects

ezdxf.addons.cube(center=True, matrix=None)
Create a cube.

Parameters

• matrix – transformation matrix as Matrix44

• center – ‘mass’ center of cube in (0, 0, 0) if True, else first corner at (0, 0, 0)

Returns MeshBuilder

ezdxf.addons.cylinder(count, radius=1., top_radius=None, top_center=(0, 0, 1), caps=True)
Create a cylinder.

Parameters

• count – profiles edge count

• radius – radius for bottom profile

• top_radius – radius for top profile, same as radius if top_radius is None

• top_center – location vector for the center of the top profile

• caps – close hull with bottom cap and top cap (as N-gons)

Returns MeshVertexMerger

ezdxf.addons.cone(count, radius, apex=(0, 0, 1), caps=True)
Create a cone.

Parameters

• count – edge count of basis

• radius – radius of basis

• apex – apex of the cone

• caps – add a bottom face if true

Returns MeshVertexMerger

144 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Form Builder

ezdxf.addons.extrude(profile, path, close=True)
Extrude a profile polygon along a path polyline, vertices of profile should be in counter clockwise order.

Parameters

• profile – sweeping profile as list of (x, y, z) tuples in counter clock wise order

• path – extrusion path as list of (x, y, z) tuples

• close – close profile polygon if True

Returns MeshVertexMerger

ezdxf.addons.from_profiles_linear(profiles, close=True, caps=False)
Mesh by linear connected profiles.

Parameters

• profiles – list of profiles

• close – close profile polygon if True

• caps – close hull with bottom cap and top cap (as N-gons)

Returns MeshVertexMerger

ezdxf.addons.from_profiles_spline(profiles, subdivide=4, close=True, caps=False)
Mesh entity by spline interpolation between given profiles. Requires at least 4 profiles. A subdivide value of 4,
means, create 4 face loops between two profiles, without interpolation two profiles create one face loop.

Parameters

• profiles – list of profiles

• subdivide – count of face loops

• close – close profile polygon if True

• caps – close hull with bottom cap and top cap (as N-gons)

Returns MeshVertexMerger

ezdxf.addons.rotation_form(count, profile, angle=2*pi, axis=(1, 0, 0))
Mesh by rotating a profile around an axis.

Parameters

• count – count of rotated profiles

• profile – profile to rotate as list of vertices

• angle – rotation angle in radians

• axis – rotation axis

Returns MeshVertexMerger

MengerSponge

Build a 3D Menger sponge.

class ezdxf.addons.MengerSponge

MengerSponge.__init__(location=(0, 0, 0), length=1., level=1, kind=0)

4.4. Add-ons 145

https://en.wikipedia.org/wiki/Menger_sponge

ezdxf Documentation, Release 0.8.9

Parameters

• location – location of lower left corner as (x, y, z) tuple

• length – side length

• level – subdivide level

• kind – type of menger sponge:

– 0 = original menger sponge

– 1 = Variant XOX

– 2 = Variant OXO

– 3 = Jerusalem Cube

MengerSponge.render(layout, merge=False, dxfattribs=None, matrix=None)
Renders the menger sponge into layout, set merge == True for rendering the whole menger sponge into one
Mesh entity, set merge to False for rendering the individual cubes of the menger sponge as Mesh entities.

Parameters

• layout – ezdxf Layout object

• merge – True for one Mesh entity, False for individual Mesh entities per cube

• dxfattribs – dict of DXF attributes e.g. {‘layer’: ‘mesh’, ‘color’: 7}

• matrix – transformation matrix as Matrix44

MengerSponge.cubes()
Generates all cubes of the menger sponge as individual MeshBuilder objects.

MengerSponge.mesh()
Returns geometry as one MeshVertexMerger entity.

SierpinskyPyramid

Build a 3D Sierpinsky Pyramid.

class ezdxf.addons.SierpinskyPyramid

SierpinskyPyramid.__init__(location=(0, 0, 0), length=1., level=1, sides=4)

Parameters

• location – location of base center as (x, y, z) tuple

• length – side length

• level – subdivide level

• sides – sides of base geometry

SierpinskyPyramid.render(layout, merge=False, dxfattribs=None, matrix=None)
Renders the sierpinsky pyramid into layout, set merge == True for rendering the whole sierpinsky pyramid into
one Mesh entity, set merge to False for rendering the individual pyramids of the sierpinsky pyramid as Mesh
entities.

Parameters

• layout – ezdxf Layout object

• merge – True for one Mesh entity, False for individual Mesh entities per cube

146 Chapter 4. Contents

https://en.wikipedia.org/wiki/Sierpinski_triangle

ezdxf Documentation, Release 0.8.9

• dxfattribs – dict of DXF attributes e.g. {‘layer’: ‘mesh’, ‘color’: 7}

• matrix – transformation matrix as Matrix44

SierpinskyPyramid.pyramids()
Generates all pyramids of the sierpinsky pyramid as individual MeshBuilder objects.

SierpinskyPyramid.mesh()
Returns geometry as one MeshVertexMerger entity.

4.4.4 Spline

Render B-spline as 2D/3D Polyline, can be used with DXF R12. The advantage over R12Spline is the real 3D
support which means the B-spline curve vertices has not to be in a plane and no hassle with UCS for 3D placing.

class ezdxf.addons.Spline

Spline.__init__(points=None, segments=100)

Parameters

• points – spline definition points

• segments – count of line segments for approximation, vertex count is segments+1

Spline.render_as_fit_points(layout, degree=3, method=’distance’, power=.5, dxfattribs=None)
Render a B-spline as 2d/3d polyline, where the definition points are fit points.

• 2d points in -> add_polyline2d()

• 3d points in -> add_polyline3d()

To get vertices at fit points, use method=’uniform’ and use Spline.subdivide(count), where count is the sub-
segment count, count=4, means 4 line segments between two definition points.

Parameters

• layout – ezdxf Layout object

• degree – degree of B-spline

• method – ‘uniform’, ‘distance’ or ‘centripetal’, calculation method for parameter t

• power – power for ‘centripetal’, default is distance ^ .5

• dxfattribs – DXF attributes for Polyline

Spline.render_open_bspline(layout, degree=3, dxfattribs=None)
Render an open uniform BSpline as 3D Polyline. Definition points are control points.

Parameters

• layout – ezdxf Layout object

• degree – degree of B-spline, (order = degree + 1)

• dxfattribs – DXF attributes for Polyline

Spline.render_uniform_bspline(layout, degree=3, dxfattribs=None):
Render a uniform BSpline as 3D Polyline. Definition points are control points.

Parameters

• layout – ezdxf Layout object

• degree – degree of B-spline, (order = degree + 1)

4.4. Add-ons 147

ezdxf Documentation, Release 0.8.9

• dxfattribs – DXF attributes for Polyline

Spline.render_closed_bspline(layout, degree=3, dxfattribs=None)
Render a closed uniform BSpline as 3D Polyline. Definition points are control points.

Parameters

• layout – ezdxf Layout object

• degree – degree of B-spline, (order = degree + 1)

• dxfattribs – DXF attributes for Polyline

Spline.render_open_rbspline(layout, weights, degree=3, dxfattribs=None)
Render a rational open uniform BSpline as 3D Polyline. Definition points are control points.

Parameters

• layout – ezdxf Layout object

• weights – list of weights, requires a weight value for each defpoint.

• degree – degree of B-spline, (order = degree + 1)

• dxfattribs – DXF attributes for Polyline

Spline.render_uniform_rbspline(layout, weights, degree=3, dxfattribs=None)
Render a rational uniform BSpline as 3D Polyline. Definition points are control points.

Parameters

• layout – ezdxf Layout object

• weights – list of weights, requires a weight value for each defpoint.

• degree – degree of B-spline, (order = degree + 1)

• dxfattribs – DXF attributes for Polyline

Spline.render_closed_rbspline(layout, weights, degree=3, dxfattribs=None)
Render a rational BSpline as 3D Polyline. Definition points are control points.

Parameters

• layout – ezdxf Layout object

• weights – list of weights, requires a weight value for each defpoint.

• degree – degree of B-spline, (order = degree + 1)

• dxfattribs – DXF attributes for Polyline

4.4.5 R12Spline

DXF R12 supports 2D B-splines, but Autodesk do not document the usage in the DXF Reference. The base entity for
splines in DXF R12 is the POLYLINE entity. The spline itself is always in a plane, but as any 2D entity, the spline can
be transformed into the 3D object by elevation and extrusion (OCS, UCS).

The result is not better than Spline, it is also just a POLYLINE, but as with all tools, I never know if someone needs
it some day.

class R12Spline

R12Spline.__init__(control_points, degree=2, closed=True)

Parameters

148 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• control_points – B-spline control frame vertices as (x, y) tuples

• degree – degree of B-spline, 2 or 3 is valid

• closed – True for closed curve

R12Spline.render(layout, segments=40, ucs=None, dxfattribs=None)
Renders the B-spline into layout as 2D Polyline entity. Use an UCS to place the 2D spline in 3D space, see
R12Spline.approximate() for more information.

Parameters

• layout – ezdxf Layout

• segments – count of line segments to use, vertex count is segments+1

• ucs – UCS definition, control points in ucs coordinates.

• dxfattribs – DXF attributes for Polyline

Returns the Polyline object

R12Spline.approximate(segments=40, ucs=None)

Parameters

• segments – count of line segments to use, vertex count is segments+1

• ucs – UCS definition, control points in ucs coordinates.

Returns list of vertices in OCS as Vector objects

Approximate B-spline by a polyline with segments line segments. If ucs is not None, ucs defines an UCS, to
transformed the curve into OCS. The control points are placed in this UCS xy-plane, you shouldn’t use z-axis
coordinates, if so make sure all control points are a plane parallel to the OCS base plane (UCS xy-plane), else
the result is unpredictable and depends on the used CAD application (may be crash).

4.4.6 Bezier

Render bezier curve as 3D Polyline.

The Bezier class is implemented with multiple segments, each segment is an optimized 4 point bezier curve, the 4
control points of the curve are: the start point (1) and the end point (4), point (2) is start point + start vector and point
(3) is end point + end vector. Each segment has its own approximation count.

class ezdxf.addons.Bezier

Bezier.start(point, tangent)
Set start point and start tangent.

Parameters

• point – start point as (x, y, z) tuple

• tangent – start tangent as vector, also (x, y, z) tuple

Bezier.append(point, tangent1, tangent2=None, segments=20):
Append a control point with two control tangents.

Parameters

• point – the control point as (x, y, z) tuple

• tangent1 – first control tangent as vector left of point

• tangent2 – second control tangent as vector right of point, if omitted tangent2 = -tangent1

4.4. Add-ons 149

ezdxf Documentation, Release 0.8.9

• segments – count of line segments for polyline approximation, count of line segments
from previous control point to this point.

Bezier.render(layout, force3d=False, dxfattribs=None)
Render bezier curve as 2D or 3D Polyline entity into layout.

Parameters

• layout – ezdxf Layout object

• force3d – force rendering as 3D Polyline

• dxfattribs – dict of DXF attributes e.g. {‘layer’: ‘mesh’, ‘color’: 7}

4.4.7 EulerSpiral

Render euler spiral as 3D Polyline or Spline.

class ezdxf.addons.EulerSpiral

EulerSpiral.__init__(curvature=1)

Parameters curvature – Radius of curvature

EulerSpiral.render_polyline(layout, length=1, segments=100, matrix=None, dxfattribs=None)
Render euler spiral as 3D Polyline entity into layout.

Parameters

• layout – ezdxf Layout object

• length – length measured along the spiral curve from its initial position

• segments – count of line segments to use, vertex count is segments+1

• matrix – transformation matrix as Matrix44

• dxfattribs – dict of DXF attributes e.g. {‘layer’: ‘mesh’, ‘color’: 7}

EulerSpiral.render_spline(layout, length=1, fit_points=10, degree=3, matrix=None, dxfat-
tribs=None)

Render euler spiral as Spline entity into layout, DXF version R2000 or later required.

Parameters

• layout – ezdxf Layout object

• length – length measured along the spiral curve from its initial position

• fit_points – count of spline fit points to use

• degree – degree of spline

• matrix – transformation matrix as Matrix44

• dxfattribs – dict of DXF attributes e.g. {‘layer’: ‘mesh’, ‘color’: 7}

4.4.8 MText

class ezdxf.addons.MText

150 Chapter 4. Contents

https://en.wikipedia.org/wiki/Euler_spiral

ezdxf Documentation, Release 0.8.9

4.4.9 Table

class ezdxf.addons.Table

4.5 Howto

General preconditions:

import ezdxf
dwg = ezdxf.readfile("your_dxf_file.dxf")
modelspace = dwg.modelspace()

4.5.1 Get/Set block reference attributes

Block references (Insert) can have attached attributes (Attrib), these are simple text annotations with an associ-
ated tag appended to the block reference.

Iterate over all appended attributes:

blockrefs = modelspace.query('INSERT[name=="Part12"]') # get all INSERT entities
→˓with entity.dxf.name == "Part12"
if len(blockrefs):

entity = blockrefs[0] # process first entity found
for attrib in entity.attribs():

if attrib.dxf.tag == "diameter": # identify attribute by tag
attrib.dxf.text = "17mm" # change attribute content

Get attribute by tag:

diameter = entity.get_attrib('diameter')
if diameter is not None:

diameter.dxf.text = "17mm"

4.5.2 Reduce Memory Footprint

• compress binary data by Drawing.compress_binary_data()

Warning: Data compression costs time: memory usage vs run time

4.5.3 Create More Readable DXF Files (DXF Pretty Printer)

DXF files are plain text files, you can open this files with every text editor which handles bigger files. But it is not
really easy to get quick the information you want.

Create a more readable HTML file (DXF Pretty Printer):

on Windows
py -3 -m ezdxf.pp your_dxf_file.dxf

(continues on next page)

4.5. Howto 151

ezdxf Documentation, Release 0.8.9

(continued from previous page)

on Linux/Mac
python3 -m ezdxf.pp your_dxf_file.dxf

This produces a HTML file your_dxf_file.html with a nicer layout than a plain DXF file and DXF handles as links
between DXF entities, this simplifies the navigation between the DXF entities.

Since ezdxf v0.8.3, a script called dxfpp will be added to your Python script path:

usage: dxfpp [-h] [-o] [-r] [-x] [-l] FILE [FILE ...]

positional arguments:
FILE DXF files pretty print

optional arguments:
-h, --help show this help message and exit
-o, --open open generated HTML file with the default web browser
-r, --raw raw mode - just print tags, no DXF structure interpretation
-x, --nocompile don't compile points coordinates into single tags (only in

raw mode)
-l, --legacy legacy mode - reorders DXF point coordinates

Important: This does not render the graphical content of the DXF file to a HTML canvas element.

4.5.4 Adding New XDATA to Entity

Adding XDATA as list of tuples (group code, value):

dwg.appids.new('YOUR_APP_NAME') # IMPORTANT: create an APP ID entry

circle = modelspace.add_circle((10, 10), 100)
circle.tags.new_xdata('YOUR_APP_NAME',

[
(1000, 'your_web_link.org'),
(1002, '{'),
(1000, 'some text'),
(1002, '{'),
(1071, 1),
(1002, '}'),
(1002, '}')

])

For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid group
codes are in the range 1000 - 1071.

4.5.5 A360 Viewer Problems

AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps to use
the latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this lines (2018).

152 Chapter 4. Contents

https://ezdxf.mozman.at/release-v0-8-3.html
https://a360.autodesk.com/viewer/

ezdxf Documentation, Release 0.8.9

4.5.6 Show IMAGES/XREFS on Loading in AutoCAD

If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in AutoCAD
immediately, change the HEADER variable $PROJECTNAME='' to (not really) solve this problem. The ezdxf
templates for DXF R2004 and later have $PROJECTNAME='' as default value.

Thanks to David Booth:

If the filename in the IMAGEDEF contains the full path (absolute in AutoCAD) then it shows on loading,
otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager.

A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save it
as a DWG.

So far - no solution for showing IMAGES with relative paths on loading.

4.6 DXF Internals

• DXF Reference provided by Autodesk.

• DXF Developer Documentation provided by Autodesk.

4.6.1 DXF File Encoding

DXF Version R2004 and prior

Drawing files of DXF versions R2004 (AC1018) and prior are saved as ASCII files with the encoding set by the header
variable $DWGCODEPAGE, which is ANSI_1252 by default if $DWGCODEPAGE is not set.

Characters used in the drawing which do not exist in the chosen ASCII encoding are encoded as unicode characters
with the schema \U+nnnn. see Unicode table

Known $DWGCODEPAGE encodings

DXF Python Name
ANSI_874 cp874 Thai
ANSI_932 cp932 Japanese
ANSI_936 gbk UnifiedChinese
ANSI_949 cp949 Korean
ANSI_950 cp950 TradChinese
ANSI_1250 cp1250 CentralEurope
ANSI_1251 cp1251 Cyrillic
ANSI_1252 cp1252 WesternEurope
ANSI_1253 cp1253 Greek
ANSI_1254 cp1254 Turkish
ANSI_1255 cp1255 Hebrew
ANSI_1256 cp1256 Arabic
ANSI_1257 cp1257 Baltic
ANSI_1258 cp1258 Vietnam

4.6. DXF Internals 153

https://github.com/worlds6440
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
http://help.autodesk.com/view/OARX/2018/ENU/
http://unicode-table.com/en/

ezdxf Documentation, Release 0.8.9

DXF Version R2007 and later

Starting with DXF version R2007 (AC1021) the drawing file is encoded by UTF-8, the header variable $DWGCODE-
PAGE is still in use, but I don’t know, if the setting still has any meaning.

Encoding characters in the unicode schema \U+nnnn is still functional.

See also:

String Value Encoding

4.6.2 DXF Tags

A Drawing Interchange File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic
file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF
value on the following line. In the ezdxf documentation DXF tags will be written as (group code, value).

Group codes are indicating the value type:

Group Code Value Type
0-9 String (with the introduction of extended symbol names in DXF R2000, the 255-character limit has been increased to 2049 single-byte characters not including the newline at the end of the line)
10-39 Double precision 3D point value
40-59 Double-precision floating-point value
40-59 Double-precision floating-point value
60-79 16-bit integer value
90-99 32-bit integer value
100 String (255-character maximum, less for Unicode strings)
102 String (255-character maximum, less for Unicode strings)
105 String representing hexadecimal (hex) handle value
110-119 Double precision floating-point value
120-129 Double precision floating-point value
130-139 Double precision floating-point value
140-149 Double precision scalar floating-point value
160-169 64-bit integer value
170-179 16-bit integer value
210-239 Double-precision floating-point value
270-279 16-bit integer value
280-289 16-bit integer value
290-299 Boolean flag value
300-309 Arbitrary text string
310-319 String representing hex value of binary chunk
320-329 String representing hex handle value
330-369 String representing hex object IDs
370-379 16-bit integer value
380-389 16-bit integer value
390-399 String representing hex handle value
400-409 16-bit integer value
410-419 String
420-429 32-bit integer value
430-439 String
440-449 32-bit integer value
450-459 Long
460-469 Double-precision floating-point value

Continued on next page

154 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Table 1 – continued from previous page
Group Code Value Type
470-479 String
480-481 String representing hex handle value
999 Comment (string)
1000-1009 String (same limits as indicated with 0-9 code range)
1010-1059 Double-precision floating-point value
1060-1070 16-bit integer value
1071 32-bit integer value

Explanation for some important group codes:

Group
Code

Meaning

0 DXF structure tag, entity start/end or table entries
1 The primary text value for an entity
2 A name: Attribute tag, Block name, and so on. Also used to identify a DXF section or table name.
3-4 Other textual or name values
5 Entity handle expressed as a hex string (fixed)
6 Line type name (fixed)
7 Text style name (fixed)
8 Layer name (fixed)
9 Variable name identifier (used only in HEADER section of the DXF file)
10 Primary X coordinate (start point of a Line or Text entity, center of a Circle, etc.)
11-18 Other X coordinates
20 Primary Y coordinate. 2n values always correspond to 1n values and immediately follow them in the file

(expected by ezdxf!)
21-28 Other Y coordinates
30 Primary Z coordinate. 3n values always correspond to 1n and 2n values and immediately follow them in

the file (expected by ezdxf!)
31-38 Other Z coordinates
39 This entity’s thickness if nonzero (fixed)
40-48 Float values (text height, scale factors, etc.)
49 Repeated value - multiple 49 groups may appear in one entity for variable length tables (such as the dash

lengths in the LTYPE table). A 7x group always appears before the first 49 group to specify the table
length

50-58 Angles
62 Color number (fixed)
66 “Entities follow” flag (fixed), only in INSERT and POLYLINE entities
67 Identifies whether entity is in model space or paper space
68 Identifies whether viewport is on but fully off screen, is not active, or is off
69 Viewport identification number
70-78 Integer values such as repeat counts, flag bits, or modes
210,
220,
230

X, Y, and Z components of extrusion direction (fixed)

999 Comments

For explanation of all group codes see: DXF Group Codes in Numerical Order Reference provided by Autodesk

4.6. DXF Internals 155

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3F0380A5-1C15-464D-BC66-2C5F094BCFB9

ezdxf Documentation, Release 0.8.9

Extended Data

Extended data (XDATA) is created by AutoLISP or ObjectARX applications but any other application like ezdxf can
also define XDATA. If an entity contains extended data, it follows the entity’s normal definition data but ends before
Embedded Objects.

But extended group codes (>=1000) can appear before the XDATA section, an example is the BLOCKBASEPOINT-
PARAMETER entity in AutoCAD Civil 3D or AutoCAD Map 3D.

Group
Code

Description

1000 Strings in extended data can be up to 255 bytes long (with the 256th byte reserved for the null character)
1001 (fixed) Registered application name (ASCII string up to 31 bytes long) for XDATA
1002 (fixed) An extended data control string can be either “{”or “}”. These braces enable applications to

organize their data by subdividing the data into lists. Lists can be nested.
1003 Name of the layer associated with the extended data
1004 Binary data is organized into variable-length chunks. The maximum length of each chunk is 127 bytes.

In ASCII DXF files, binary data is represented as a string of hexadecimal digits, two per binary byte
1005 Database Handle of entities in the drawing database, see also: About 1005 Group Codes
1010,
1020,
1030

Three real values, in the order X, Y, Z. They can be used as a point or vector record.

1011,
1021,
1031

Unlike a simple 3D point, the world space coordinates are moved, scaled, rotated, mirrored, and
stretched along with the parent entity to which the extended data belongs.

1012,
1012,
1022

Also a 3D point that is scaled, rotated, and mirrored along with the parent (but is not moved or stretched)

1013,
1023,
1033

Also a 3D point that is scaled, rotated, and mirrored along with the parent (but is not moved or stretched)

1040 A real value
1041 Distance, a real value that is scaled along with the parent entity
1042 Scale Factor, also a real value that is scaled along with the parent. The difference between a distance

and a scale factor is application-defined
1070 A 16-bit integer (signed or unsigned)
1071 A 32-bit signed (long) integer

The (1001, ...) tag indicates the beginning of extended data. In contrast to normal entity data, with extended
data the same group code can appear multiple times, and order is important.

Extended data is grouped by registered application name. Each registered application group begins with a (1001,
APPID) tag, with the application name as APPID string value. Registered application names correspond to APPID
symbol table entries.

An application can use as many APPID names as needed. APPID names are permanent, although they can be purged
if they aren’t currently used in the drawing. Each APPID name can have no more than one data group attached to
each entity. Within an application group, the sequence of extended data groups and their meaning is defined by the
application.

String Value Encoding

String values stored in a DXF file is plain ASCII or UTF-8, AutoCAD also supports CIF (Common Interchange
Format) and MIF (Maker Interchange Format) encoding. The UTF-8 format is only supported in DXF R2007 and

156 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

later.

ezdxf on import converts all strings into Python unicode strings without encoding or decoding CIF/MIF.

String values containing Unicode characters are represented with control character sequences.

For example, ‘TESTU+7F3AU+4E4FU+89E3U+91CAU+6B63THISU+56FE’

To support the DXF unicode encoding ezdxf registers an encoding codec dxfbackslashreplace, defined in ezdxf.
lldxf.encoding().

String values can be stored with these dxf group codes:

• 0 - 9

• 100 - 101

• 300 - 309

• 410 - 419

• 430 - 439

• 470 - 479

• 999 - 1003

Multi Tag Text (MTEXT)

If the text string is less than 250 characters, all characters appear in tag (1, ...). If the text string is greater than
250 characters, the string is divided into 250-character chunks, which appear in one or more (3, ...) tags. If (3,
...) tags are used, the last group is a (1, ...) tag and has fewer than 250 characters:

3
... TwoHundredAndFifty Characters
3
... TwoHundredAndFifty Characters
1
less than TwoHundredAndFifty Characters

As far I know this is only supported by the MTEXT entity.

See also:

DXF File Encoding

Tag Structure DXF R13 and later

With the introduction of DXF R13 Autodesk added additional group codes and DXF tag structures to the DXF Stan-
dard.

Subclass Markers

Subclass markers (100, Subclass Name) divides DXF objects into several sections. Group codes can be reused
in different sections. A subclass ends with the following subclass marker or at the beginning of xdata or the end of the
object. See Subclass Marker Example in the DXF Reference.

4.6. DXF Internals 157

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CC5ACB1B-BBA3-463B-84A5-6CCD320C66E7

ezdxf Documentation, Release 0.8.9

Extension Dictionary

The extension dictionary is an optional sequence that stores the handle of a dictionary object that belongs to the current
object, which in turn may contain entries. This facility allows attachment of arbitrary database objects to any database
object. Any object or entity may have this section.

The extension dictionary tag sequence:

102
{ACAD_XDICTIONARY
360
Hard-owner ID/handle to owner dictionary
102
}

Persistent Reactors

Persistent reactors are an optional sequence that stores object handles of objects registering themselves as reactors on
the current object. Any object or entity may have this section.

The persistent reactors tag sequence:

102
{ACAD_REACTORS
330
first Soft-pointer ID/handle to owner dictionary
330
second Soft-pointer ID/handle to owner dictionary
...
102
}

Application-Defined Codes

Starting at DXF R13, DXF objects can contain application-defined codes outside of XDATA. This application-defined
codes can contain any tag except (0, ...) and (102, '{...'). “{YOURAPPID” means the APPID string with
an preceding “{“. The application defined data tag sequence:

102
{YOURAPPID
...
102
}

(102, 'YOURAPPID}') is also a valid closing tag:

102
{YOURAPPID
...
102
YOURAPPID}

All groups defined with a beginning (102, ...) appear in the DXF reference before the first subclass marker, I
don’t know if these groups can appear after the first or any subclass marker. ezdxf accepts them at any position, and
by default ezdxf adds new app data in front of the first subclass marker to the first tag section of an DXF object.

158 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

Exception XRECORD: Tags with group code 102 and a value string without a preceding “{” or the scheme
“YOURAPPID}”, should be treated as usual group codes.

Embedded Objects

The concept of embedded objects was introduced with AutoCAD 2018 (DXF version AC1032) and this is the only
information I found about it at the Autodesk knowledge base: Embedded and Encapsulated Objects

Quote from Embedded and Encapsulated Objects:

For DXF filing, the embedded object must be filed out and in after all the data of the encapsulating object
has been filed out and in.

A separator is needed between the encapsulating object’s data and the subsequent embedded object’s data.
The separator must be similar in function to the group 0 or 100 in that it must cause the filer to stop reading
data. The normal DXF group code 0 cannot be used because DXF proxies use it to determine when to
stop reading data. The group code 100 could have been used, but it might have caused confusion when
manually reading a DXF file, and there was a need to distinguish when an embedded object is about to be
written out in order to do some internal bookkeeping. Therefore, the DXF group code 101 was introduced.

Hard facts:

• Embedded object start with (101, "Embedded Object") tag

• Embedded object is appended to the encapsulated object

• (101, "Embedded Object") tag is the end of the encapsulating object, also of its Extended Data

• Embedded object tags can contain any group code except the DXF structure tag (0, ...)

Unconfirmed assumptions:

• The encapsulating object can contain more than one embedded object.

• Embedded objects separated by (101, "Embedded Object") tags

• every entity can contain embedded objects

• XDATA sections replaced by embedded objects, at least for the MTEXT entity

Real world example from an AutoCAD 2018 file:

100 <<< start of encapsulating object
AcDbMText
10
2762.148
20
2327.073
30
0.0
40
2.5
41
18.852
46
0.0
71
1
72
5
1

(continues on next page)

4.6. DXF Internals 159

https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2017/ENU/OARXMAC-DevGuide/files/GUID-C953866F-A335-4FFD-AE8C-256A76065552-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2017/ENU/OARXMAC-DevGuide/files/GUID-C953866F-A335-4FFD-AE8C-256A76065552-htm.html

ezdxf Documentation, Release 0.8.9

(continued from previous page)

{\fArial|b0|i0|c162|p34;CHANGE;\P\P\PTEXT}
73
1
44
1.0
101 <<< start of embedded object
Embedded Object
70
1
10
1.0
20
0.0
30
0.0
11
2762.148
21
2327.073
31
0.0
40
18.852
41
0.0
42
15.428
43
15.043
71
2
72
1
44
18.852
45
12.5
73
0
74
0
46
0.0

4.6.3 Handles

A handle is an arbitrary but in your DXF file unique hex value as string like ‘10FF’. It is common to to use uppercase
letters for hex numbers. Handle can have up to 16 hexadecimal digits (8 bytes).

For DXF R10 until R12 the usage of handles was optional. The header variable $HANDLING set to 1 indicate the
usage of handles, else $HANDLING is 0 or missing.

For DXF R13 and later the usage of handles is mandatory and the header variable $HANDLING was removed.

The $HANDSEED variable in the header section should be greater than the biggest handle used in the DXF file, so
a CAD application can assign handle values starting with the $HANDSEED value. But as always, don’t rely on the

160 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

header variable it could be wrong, AutoCAD ignores this value.

Handle Definition

Entity handle definition is always the (5, ...), except for entities of the DIMSTYLE table (105, ...), because
the DIMSTYLE entity has also a group code 5 tag for DIMBLK.

Handle Pointer

A pointer is a reference to a DXF object in the same DXF file. There are four types of pointers:

• Soft-pointer handle

• Hard-pointer handle

• Soft-owner handle

• Hard-owner handle

Also, a group code range for “arbitrary” handles is defined to allow convenient storage of handle values that are
unchanged at any operation (AutoCAD).

Pointer and Ownership

A pointer is a reference that indicates usage, but not possession or responsibility, for another object. A pointer reference
means that the object uses the other object in some way, and shares access to it. An ownership reference means that
an owner object is responsible for the objects for which it has an owner handle. An object can have any number of
pointer references associated with it, but it can have only one owner.

Hard and Soft References

Hard references, whether they are pointer or owner, protect an object from being purged. Soft references do not.

In AutoCAD, block definitions and complex entities are hard owners of their elements. A symbol table and dictionaries
are soft owners of their elements. Polyline entities are hard owners of their vertex and seqend entities. Insert entities
are hard owners of their attrib and seqend entities.

When establishing a reference to another object, it is recommended that you think about whether the reference should
protect an object from the PURGE command.

Arbitrary Handles

Arbitrary handles are distinct in that they are not translated to session-persistent identifiers internally, or to entity
names in AutoLISP, and so on. They are stored as handles. When handle values are translated in drawing-merge
operations, arbitrary handles are ignored.

In all environments, arbitrary handles can be exchanged for entity names of the current drawing by means of the
handent functions. A common usage of arbitrary handles is to refer to objects in external DXF and DWG files.

About 1005 Group Codes

(1005, ...) xdata have the same behavior and semantics as soft pointers, which means that they are translated
whenever the host object is merged into a different drawing. However, 1005 items are not translated to session-
persistent identifiers or internal entity names in AutoLISP and ObjectARX. They are stored as handles.

4.6. DXF Internals 161

ezdxf Documentation, Release 0.8.9

4.6.4 DXF File Structure

A DXF File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file structure
are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value on
the following line. In the ezdxf documentation DXF tags will be written as (group code, value). I know there
exists a binary DXF format, but it seems that it is not often used and for reducing file size, zipping is much more
efficient. ezdxf does not support binary encoded DXF files (yet?).

See also:

For more information about DXF tags see: DXF Tags

A usual DXF file is organized in sections, starting with the DXF tag (0, ‘SECTION’) and ending with the DXF tag (0,
‘ENDSEC’). The (0, ‘EOF’) tag signals the end of file.

1. HEADER: General information about the drawing is found in this section of the DXF file. Each parameter has
a variable name starting with ‘$’ and an associated value. Has to be the first section.

2. CLASSES: Holds the information for application defined classes. (DXF R13 and later)

3. TABLES:: Contains several tables for style and property definitions.

• Linetype table (LTYPE)

• Layer table (LAYER)

• Text Style table (STYLE)

• View table (VIEW): (IMHO) layout of the CAD working space, only interesting for interactive CAD
applications

• Viewport configuration table (VPORT): The VPORT table is unique in that it may contain several entries
with the same name (indicating a multiple-viewport configuration). The entries corresponding to the active
viewport configuration all have the name *ACTIVE. The first such entry describes the current viewport.

• Dimension Style table (DIMSTYLE)

• User Coordinate System table (UCS) (IMHO) only interesting for interactive CAD applications

• Application Identification table (APPID): Table of names for all applications registered with a drawing.

• Block Record table (BLOCK_RECORD) (DXF R13 and Later)

4. BLOCKS: Contains all block definitions. The block name *Model_Space or *MODEL_SPACE is reserved
for the drawing model space and the block name *Paper_Space or *PAPER_SPACE is reserved for the active
paper space layout. Both block definitions are empty, the content of the model space and the active paper space
is stored in the ENTITIES section. The entities of other layouts are stored in special block definitions called
*Paper_Spacennn, nnn is an arbitrary but unique number.

5. ENTITIES: Contains all graphical entities of the model space and the active paper space layout. Entities of
other layouts are stored in the BLOCKS sections.

6. OBJECTS: Contains all non-graphical objects of the drawing (DXF R13 and later)

7. THUMBNAILIMAGE: Contains a preview image of the DXF file, it is optional and can usually be ignored.
(DXF R13 and later)

8. ACDSDATA: (DXF R2013 and later) No information in the DXF reference about this section

9. END OF FILE

For further information read the original DXF Reference.

Structure of a usual DXF R12 file:

162 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 0.8.9

0 <<< Begin HEADER section, has to be the first section
SECTION
2
HEADER

<<< Header variable items go here
0 <<< End HEADER section
ENDSEC
0 <<< Begin TABLES section
SECTION
2
TABLES
0
TABLE
2
VPORT
70 <<< viewport table maximum item count

<<< viewport table items go here
0
ENDTAB
0
TABLE
2
APPID, DIMSTYLE, LTYPE, LAYER, STYLE, UCS, VIEW, or VPORT
70 <<< Table maximum item count, a not reliable value and ignored by AutoCAD

<<< Table items go here
0
ENDTAB
0 <<< End TABLES section
ENDSEC
0 <<< Begin BLOCKS section
SECTION
2
BLOCKS

<<< Block definition entities go here
0 <<< End BLOCKS section
ENDSEC
0 <<< Begin ENTITIES section
SECTION
2
ENTITIES

<<< Drawing entities go here
0 <<< End ENTITIES section
ENDSEC
0 <<< End of file marker (required)
EOF

4.6.5 Minimal DXF Content

DXF R12

Contrary to the previous chapter, the DXF R12 format (AC1009) and prior requires just the ENTITIES section:

0
SECTION
2

(continues on next page)

4.6. DXF Internals 163

ezdxf Documentation, Release 0.8.9

(continued from previous page)

ENTITIES
0
ENDSEC
0
EOF

DXF R13/R14 and later

DXF version R13/14 and later needs much more DXF content than DXF R12.

Required sections: HEADER, CLASSES, TABLES, ENTITIES, OBJECTS

The HEADER section requires two entries:

• $ACADVER

• $HANDSEED

The CLASSES section can be empty, but some DXF entities requires class definitions to work in AutoCAD.

The TABLES section requires following tables:

• VPORT entry *ACTIVE is not required! Empty table is ok for AutoCAD.

• LTYPE with at least the following line types defined:

– BYBLOCK

– BYLAYER

– CONTINUOUS

• LAYER with at least an entry for layer ‘0’

• STYLE with at least an entry for style STANDARD

• VIEW can be empty

• UCS can be empty

• APPID with at least an entry for ACAD

• DIMSTYLE with at least an entry for style STANDARD

• BLOCK_RECORDS with two entries:

– *MODEL_SPACE

– *PAPER_SPACE

The BLOCKS section requires two BLOCKS:

• *MODEL_SPACE

• *PAPER_SPACE

The ENTITIES section can be empty.

The OBJECTS section requires following entities:

• DICTIONARY - the root dict - one entry named ACAD_GROUP

• DICTONARY ACAD_GROUP can be empty

Minimal DXF to download: https://bitbucket.org/mozman/ezdxf/downloads/Minimal_DXF_AC1021.dxf

164 Chapter 4. Contents

https://bitbucket.org/mozman/ezdxf/downloads/Minimal_DXF_AC1021.dxf

ezdxf Documentation, Release 0.8.9

4.6.6 Coordinate Systems

AutoLISP Reference to Coordinate Systems provided by Autodesk.

To brush up you knowledge about vectors, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra.

WCS

World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the
WCS, which never changes. Values measured relative to the WCS are stable across changes to other coordinate
systems.

UCS

User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points
passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points
in the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS.

User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class
UCS to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS
coordinates in DXF files, because there is no method to determine which UCS was active or used to create UCS
coordinates.

See also:

• Table entry UCS

• ezdxf.algebra.UCS - converter between WCS and UCS

OCS

Object coordinate system - coordinates relative to the object itself. These points are usually converted into the WCS,
current UCS, or current DCS, according to the intended use of the object. Conversely, points must be translated into
an OCS before they are written to the database. This is also known as the entity coordinate system.

Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the
user/application. And further more, the main goal of OCS is to place 2D elements in 3D space, this may be was useful
in the beginning of CAD, I think nowadays this is an not often used feature, but I am not an AutoCAD user.

OCS differ from WCS only if extrusion != (0, 0, 1), convert OCS into WCS:

circle is an DXF entity with extrusion != (0, 0, 1)
ocs = circle.ocs()
wcs_center = ocs.to_wcs(circle.dxf.center)

See also:

• Object Coordinate System (OCS) - deeper insights into OCS

• ezdxf.algebra.OCS - converter between WCS and OCS

DCS

Display coordinate system - the coordinate system into which objects are transformed before they are displayed.
The origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its Z axis is the viewing

4.6. DXF Internals 165

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0F0B833D-78ED-4491-9918-9481793ED10B
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

ezdxf Documentation, Release 0.8.9

direction. In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine
where something will be displayed to the AutoCAD user.

4.6.7 HEADER Section

Documentation to ezdxf HeaderSection class.

In DXF R12 an prior the HEADER section was optional, but since DXF R13 the HEADER section is mandatory. The
overall structure is:

0 <<< Begin HEADER section
SECTION
2
HEADER
9
$ACADVER <<< Header variable items go here
1
AC1009
...
0
ENDSEC <<< End HEADER section

A header variable has a name defined by a (9, Name) tag and following value tags.

See also:

DXF Reference: Header Variables

4.6.8 CLASSES Section

The CLASSES section contains CLASS definitions which are only important for Autodesk products, some DXF
entities require a class definition or AutoCAD will not open the DXF file.

The CLASSES sections was introduced with DXF AC1015 (AutoCAD Release R13).

See also:

DXF Reference: About the DXF CLASSES Section

The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in
the BLOCKS, ENTITIES, and OBJECTS sections of the database. It is assumed that a class definition is permanently
fixed in the class hierarchy. All fields are required.

CLASS Entities

See also:

DXF Reference: Group Codes for the CLASS entity

CLASS entities have no handle and therefore ezdxf does not store the CLASS entity in the drawing entities database!

0
SECTION
2 <<< begin CLASSES section
CLASSES
0 <<< first CLASS entity
CLASS

(continues on next page)

166 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6160F1F1-2805-4C69-8077-CA1AEB6B1005
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-DBD5351C-E408-4CED-9336-3BD489179EF5

ezdxf Documentation, Release 0.8.9

(continued from previous page)

1 <<< class DXF entity name; always unique
ACDBDICTIONARYWDFLT
2 <<< C++ class name; always unique
AcDbDictionaryWithDefault
3 <<< application name
ObjectDBX Classes
90 <<< proxy capabilities flags
0
91 <<< instance counter for custom class, since DXF version AC1018 (R2004)
0 <<< no problem if the counter is wrong, AutoCAD doesn't care about
280 <<< was-a-proxy flag. Set to 1 if class was not loaded when this DXF file
→˓was created, and 0 otherwise
0
281 <<< is-an-entity flag. Set to 1 if class reside in the BLOCKS or ENTITIES
→˓section. If 0, instances may appear only in the OBJECTS section
0
0 <<< second CLASS entity
CLASS
...
...
0 <<< end of CLASSES section
ENDSEC

4.6.9 TABLES Section

VIEW Table

The VIEW entry stores a named view of the model or a paper space layout. This stored views makes parts of the
drawing or some view points of the model in a CAD applications more accessible. This views have no influence to
the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the
convenience of CAD application users.

Using ezdxf you have access to the views table by the attribute Drawing.views. The views table itself is not stored
in the entity database, but the table entries are stored in entity database, and can be accessed by its handle.

DXF R12

0
VIEW
2 <<< name of view
VIEWNAME
70 <<< flags bit-coded: 1st bit -> (0/1 = model space/paper space)
0 <<< model space
40 <<< view width in Display Coordinate System (DCS)
20.01
10 <<< view center point in DCS
40.36 <<< x value
20 <<< group code for y value
15.86 <<< y value
41 <<< view height in DCS
17.91
11 <<< view direction from target point, 3D vector
0.0 <<< x value

(continues on next page)

4.6. DXF Internals 167

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C

ezdxf Documentation, Release 0.8.9

(continued from previous page)

21 <<< group code for y value
0.0 <<< y value
31 <<< group code for z value
1.0 <<< z value
12 <<< target point in WCS
0.0 <<< x value
22 <<< group code for y value
0.0 <<< y value
32 <<< group code for z value
0.0 <<< z value
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping plane, offset from target
0.0
44 <<< back clipping plane, offset from target
0.0
50 <<< twist angle
0.0
71 <<< view mode
0

See also:

Coordinate Systems

DXF R2000+

Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers.

0 <<< adding the VIEW table head, just for information
TABLE
2 <<< table name
VIEW
5 <<< handle of table, see owner tag of VIEW table entry
37C
330 <<< owner tag of table, always #0
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< VIEW table (max.) count, not reliable (ignore)
9
0 <<< first VIEW table entry
VIEW
5 <<< handle
3EA
330 <<< owner, the VIEW table is the owner of the VIEW entry
37C <<< handle of the VIEW table
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbViewTableRecord
2 <<< view name, from here all the same as DXF R12
VIEWNAME
70
0

(continues on next page)

168 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

40
20.01
10
40.36
20
15.86
41
17.91
11
0.0
21
0.0
31
1.0
12
0.0
22
0.0
32
0.0
42
50.0
43
0.0
44
0.0
50
0.0
71
0
281 <<< render mode 0-6 (... too much options)
0 <<< 0= 2D optimized (classic 2D)
72 <<< UCS associated (0/1 = no/yes)
0 <<< 0 = no

DXF R2000+ supports additional features in the VIEW entry, see the VIEW table reference provided by Autodesk.

VPORT Configuration Table

The VPORT table stores the model space viewport configurations. A viewport configuration is a tiled view of multiple
viewports or just one viewport.

4.6. DXF Internals 169

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8CE7CC87-27BD-4490-89DA-C21F516415A9

ezdxf Documentation, Release 0.8.9

In contrast to other tables the VPORT table can have multiple entries with the same name, because all VPORT entries
of a multi-viewport configuration are having the same name - the viewport configuration name. The name of the
actual displayed viewport configuration is *ACTIVE, as always table entry names are case insensitive (*ACTIVE ==
*Active).

The available display area in AutoCAD has normalized coordinates, the lower-left corner is (0, 0) and the upper-right
corner is (1, 1) regardless of the true aspect ratio and available display area in pixels. A single viewport configuration
has one VPORT entry *ACTIVE with the lower-left corner (0, 0) and the upper-right corner (1, 1).

The following statements refer to a 2D plan view: the view-target-point defines the origin of the DCS (Display Co-
ordinate system), the view-direction vector defines the z-axis of the DSC, the view-center-point (in DCS) defines the
point in model space translated to the center point of the viewport, the view height and the aspect-ratio defines how
much of the model space is displayed. AutoCAD tries to fit the model space area into the available viewport space
e.g. view height is 15 units and aspect-ratio is 2.0 the model space to display is 30 units wide and 15 units high, if the
viewport has an aspect ratio of 1.0, AutoCAD displays 30x30 units of the model space in the viewport. If the model
space aspect-ratio is 1.0 the model space to display is 15x15 units and fits properly into the viewport area.

But tests show that the translation of the view-center-point to the middle of the viewport not always work as I expected.
(still digging. . .)

Note: All floating point values are rounded to 2 decimal places for better readability.

DXF R12

Multi-viewport configuration with three viewports.

170 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

0 <<< table start
TABLE
2 <<< table type
VPORT
70 <<< VPORT table (max.) count, not reliable (ignore)
3
0 <<< first VPORT entry
VPORT
2 <<< VPORT (configuration) name

*ACTIVE
70 <<< standard flags, bit-coded
0
10 <<< lower-left corner of viewport
0.45 <<< x value, virtual coordinates in range [0 - 1]
20 <<< group code for y value
0.0 <<< y value, virtual coordinates in range [0 - 1]
11 <<< upper-right corner of viewport
1.0 <<< x value, virtual coordinates in range [0 - 1]
21 <<< group code for y value
1.0 <<< y value, virtual coordinates in range [0 - 1]
12 <<< view center point (in DCS), ???
13.71 <<< x value
22 <<< group code for y value
0.02 <<< y value
13 <<< snap base point (in DCS)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing X and Y
1.0 <<< x value
24 <<< group code for y value
1.0 <<< y value
15 <<< grid spacing X and Y
0.0 <<< x value
25 <<< group code for y value
0.0 <<< y value
16 <<< view direction from target point (in WCS), defines the z-axis of the DCS
1.0 <<< x value
26 <<< group code for y value
-1.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point (in WCS), defines the origin of the DCS
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
40 <<< view height
35.22
41 <<< viewport aspect ratio
0.99
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping planes, offsets from target point
0.0
44 <<< back clipping planes, offsets from target point

(continues on next page)

4.6. DXF Internals 171

ezdxf Documentation, Release 0.8.9

(continued from previous page)

0.0
50 <<< snap rotation angle
0.0
51 <<< view twist angle
0.0
71 <<< view mode
0
72 <<< circle zoom percent
1000
73 <<< fast zoom setting
1
74 <<< UCSICON setting
3
75 <<< snap on/off
0
76 <<< grid on/off
0
77 <<< snap style
0
78 <<< snap isopair
0
0 <<< next VPORT entry
VPORT
2 <<< VPORT (configuration) name

*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.5
11
0.45
21
1.0
12
8.21
22
9.41
...
...
0 <<< next VPORT entry
VPORT
2 <<< VPORT (configuration) name

*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.0
11
0.45
21
0.5
12
2.01

(continues on next page)

172 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

22
-9.33
...
...
0
ENDTAB

DXF R2000+

Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers.

0 <<< table start
TABLE
2 <<< table type
VPORT
5 <<< table handle
151F
330 <<< owner, table has no owner - always #0
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< VPORT table (max.) count, not reliable (ignore)
3
0 <<< first VPORT entry
VPORT
5 <<< entry handle
158B
330 <<< owner, VPORT table is owner of VPORT entry
151F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbViewportTableRecord
2 <<< VPORT (configuration) name

*ACTIVE
70 <<< standard flags, bit-coded
0
10 <<< lower-left corner of viewport
0.45 <<< x value, virtual coordinates in range [0 - 1]
20 <<< group code for y value
0.0 <<< y value, virtual coordinates in range [0 - 1]
11 <<< upper-right corner of viewport
1.0 <<< x value, virtual coordinates in range [0 - 1]
21 <<< group code for y value
1.0 <<< y value, virtual coordinates in range [0 - 1]
12 <<< view center point (in DCS)
13.71 <<< x value
22 <<< group code for y value
0.38 <<< y value
13 <<< snap base point (in DCS)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing X and Y
1.0 <<< x value

(continues on next page)

4.6. DXF Internals 173

ezdxf Documentation, Release 0.8.9

(continued from previous page)

24 <<< group code for y value
1.0 <<< y value
15 <<< grid spacing X and Y
0.0 <<< x value
25 <<< group code for y value
0.0 <<< y value
16 <<< view direction from target point (in WCS)
1.0 <<< x value
26 <<< group code for y value
-1.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point (in WCS)
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
40 <<< view height
35.22
41 <<< viewport aspect ratio
0.99
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping planes, offsets from target point
0.0
44 <<< back clipping planes, offsets from target point
0.0
50 <<< snap rotation angle
0.0
51 <<< view twist angle
0.0
71 <<< view mode
0
72 <<< circle zoom percent
1000
73 <<< fast zoom setting
1
74 <<< UCSICON setting
3
75 <<< snap on/off
0
76 <<< grid on/off
0
77 <<< snap style
0
78 <<< snap isopair
0
281 <<< render mode 1-6 (... too many options)
0 <<< 0 = 2D optimized (classic 2D)
65 <<< Value of UCSVP for this viewport. (0 = UCS will not change when this
→˓viewport is activated)
1 <<< 1 = then viewport stores its own UCS which will become the current UCS
→˓whenever the viewport is activated.
110 <<< UCS origin (3D point)
0.0 <<< x value
120 <<< group code for y value

(continues on next page)

174 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

0.0 <<< y value
130 <<< group code for z value
0.0 <<< z value
111 <<< UCS X-axis (3D vector)
1.0 <<< x value
121 <<< group code for y value
0.0 <<< y value
131 <<< group code for z value
0.0 <<< z value
112 <<< UCS Y-axis (3D vector)
0.0 <<< x value
122 <<< group code for y value
1.0 <<< y value
132 <<< group code for z value
0.0 <<< z value
79 <<< Orthographic type of UCS 0-6 (... too many options)
0 <<< 0 = UCS is not orthographic
146 <<< elevation
0.0
1001 <<< extended data - undocumented
ACAD_NAV_VCDISPLAY
1070
3
0 <<< next VPORT entry
VPORT
5
158C
330
151F
100
AcDbSymbolTableRecord
100
AcDbViewportTableRecord
2 <<< VPORT (configuration) name

*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.5
11
0.45
21
1.0
12
8.21
22
9.72
...
...
0 <<< next VPORT entry
VPORT
5
158D
330
151F

(continues on next page)

4.6. DXF Internals 175

ezdxf Documentation, Release 0.8.9

(continued from previous page)

100
AcDbSymbolTableRecord
100
AcDbViewportTableRecord
2 <<< VPORT (configuration) name

*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.0
11
0.45
21
0.5
12
2.01
22
-8.97
...
...
0
ENDTAB

LTYPE Table

The LTYPE table stores all line type definitions of a DXF drawing. Every line type used in the drawing has to have a
table entry, or the DXF drawing is invalid for AutoCAD.

DXF R12 supports just simple line types, DXF R2000+ supports also complex line types with text or shapes included.

You have access to the line types table by the attribute Drawing.linetypes. The line type table itself is not stored
in the entity database, but the table entries are stored in entity database, and can be accessed by its handle.

See also:

• DXF Reference: TABLES Section

• DXF Reference: LTYPE Table

Table Structure DXF R12

0 <<< start of table
TABLE
2 <<< set table type
LTYPE
70 <<< count of line types defined in this table, AutoCAD ignores this value
9
0 <<< 1. LTYPE table entry
LTYPE

<<< LTYPE data tags
0 <<< 2. LTYPE table entry
LTYPE

<<< LTYPE data tags and so on

(continues on next page)

176 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC

ezdxf Documentation, Release 0.8.9

(continued from previous page)

0 <<< end of LTYPE table
ENDTAB

Table Structure DXF R2000+

0 <<< start of table
TABLE
2 <<< set table type
LTYPE
5 <<< LTYPE table handle
5F
330 <<< owner tag, tables has no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of line types defined in this table, AutoCAD ignores this value
9
0 <<< 1. LTYPE table entry
LTYPE

<<< LTYPE data tags
0 <<< 2. LTYPE table entry
LTYPE

<<< LTYPE data tags and so on
0 <<< end of LTYPE table
ENDTAB

Simple Line Type

ezdxf setup for line type ‘CENTER’:

dwg.linetypes.new("CENTER", dxfattribs={
description = "Center ____ _ ____ _ ____ _ ____ _ ____ _ ____",
pattern=[2.0, 1.25, -0.25, 0.25, -0.25],

})

Simple Line Type Tag Structure DXF R2000+

0 <<< line type table entry
LTYPE
5 <<< handle of line type
1B1
330 <<< owner handle, handle of LTYPE table
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2 <<< line type name
CENTER
70 <<< flags

(continues on next page)

4.6. DXF Internals 177

ezdxf Documentation, Release 0.8.9

(continued from previous page)

0
3
Center ____ _ ____ _ ____ _ ____ _ ____ _ ____
72
65
73
4
40
2.0
49
1.25
74
0
49
-0.25
74
0
49
0.25
74
0
49
-0.25
74
0

Complex Line Type TEXT

ezdxf setup for line type ‘GASLEITUNG’:

dwg.linetypes.new('GASLEITUNG', dxfattribs={
'description': 'Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--',
'length': 1,
'pattern': 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25',

})

TEXT Tag Structure

0
LTYPE
5
614
330
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2
GASLEITUNG
70
0
3

(continues on next page)

178 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--
72
65
73
3
40
1
49
0.5
74
0
49
-0.2
74
2
75
0
340
11
46
0.1
50
0.0
44
-0.1
45
-0.05
9
GAS
49
-0.25
74
0

Complex Line Type SHAPE

ezdxf setup for line type ‘GRENZE2’:

dwg.linetypes.new('GRENZE2', dxfattribs={
'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--',
'length': 1.45,
'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1',

})

SHAPE Tag Structure

0
LTYPE
5
615
330
5F
100 <<< subclass marker

(continues on next page)

4.6. DXF Internals 179

ezdxf Documentation, Release 0.8.9

(continued from previous page)

AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2
GRENZE2
70
0
3
Grenze eckig ----[]-----[]----[]-----[]----[]--
72
65
73
4
40
1.45
49
0.25
74
0
49
-0.1
74
4
75
132
340
616
46
0.1
50
0.0
44
-0.1
45
0.0
49
-0.1
74
0
49
1.0
74
0

TODO

4.6.10 BLOCKS Section

The BLOCKS section contains all BLOCK definitions, beside the ‘normal’ reusable BLOCKS used by the IN-
SERT entity, all layouts, as there are the model space and all paper space layouts, have at least a correspond-
ing BLOCK definition in the BLOCKS section. The name of the model space BLOCK is *Model_Space
(DXF R12: $MODEL_SPACE) and the name of the active paper space BLOCK is *Paper_Space (DXF R12:
$PAPER_SPACE), the entities of these two layouts are stored in the ENTITIES section, the inactive paper space lay-
outs are named by the scheme *Paper_Spacennnn, and the content of the inactive paper space layouts are stored
in their BLOCK definition in the BLOCKS section.

180 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

The content entities of blocks are stored between the BLOCK and the ENDBKL entity.

BLOCKS section structure:

0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
0 <<< start of 1. BLOCK definition
BLOCK
... <<< Block content
...
0 <<< end of 1. Block definition
ENDBLK
0 <<< start of 2. BLOCK definition
BLOCK
... <<< Block content
...
0 <<< end of 2. Block definition
ENDBLK
0 <<< end of BLOCKS section
ENDSEC

See also:

Block Management Structures Layout Management Structures

4.6.11 ENTITIES Section

TODO

4.6.12 OBJECTS Section

TODO

4.6.13 Data Model

Database Objects

(from the DXF Reference)

AutoCAD drawings consist largely of structured containers for database objects. Database objects each have the
following features:

• A handle whose value is unique to the drawing/DXF file, and is constant for the lifetime of the drawing. This
format has existed since AutoCAD Release 10, and as of AutoCAD Release 13, handles are always enabled.

• An optional xdata table, as entities have had since AutoCAD Release 11.

• An optional persistent reactor table.

• An optional ownership pointer to an extension dictionary which, in turn, owns subobjects placed in it by an
application.

Symbol tables and symbol table records are database objects and, thus, have a handle. They can also have xdata and
persistent reactors in their DXF records.

4.6. DXF Internals 181

ezdxf Documentation, Release 0.8.9

DXF R12 Data Model

The DXF R12 data model is identical to the file structure:

• HEADER section: common settings for the DXF drawing

• TABLES section: definitions for LAYERS, LINETYPE, STYLES

• BLOCKS section: block definitions and its content

• ENTITIES section: model space and paper space content

References are realized by simple names. The INSERT entity references the BLOCK definition by the BLOCK name,
a TEXT entity defines the associated STYLE and LAYER by its name and so on, handles are not needed. Layout
association of graphical entities in the ENTITIES section by the paper_space tag (67, 0 or 1), 0 or missing tag
means model space, 1 means paper space. The content of BLOCK definitions is enclosed by the BLOCK and the
ENDBLK entity, no additional references are needed.

A clean and simple file structure and data model, which seems to be the reason why the DXF R12 Reference (released
1992) is still a widely used file format and Autodesk/AutoCAD supports the format by reading and writing DXF R12
files until today (DXF R13/R14 has no writing support by AutoCAD!).

TODO: list of available entities

See also:

More information about the DXF DXF File Structure

DXF R13+ Data Model

With the DXF R13 file format, handles are mandatory and they are really used for organizing the new data structures
introduced with DXF R13.

The HEADER section is still the same with just more available settings.

The new CLASSES section contains AutoCAD specific data, has to be written like AutoCAD it does, but must not be
understood.

The TABLES section got a new BLOCK_RECORD table - see Block Management Structures for more information.

The BLOCKS sections is mostly the same, but with handles, owner tags and new ENTITY types. Not active paper
space layouts store their content also in the BLOCKS section - see Layout Management Structures for more informa-
tion.

The ENTITIES section is also mostly same, but with handles, owner tags and new ENTITY types.

TODO: list of new available entities

And the new OBJECTS section - now its getting complicated!

Most information about the OBJECTS section is just guessed or gathered by trail and error (reverse engineering),
because the documentation of the OBJECTS section and its objects in the DXF reference provided by Autodesk is
very shallow. This is also the reason why I started the DXF Internals section, may be it helps other developers to start
one or two steps above level zero.

The OBJECTS sections stores all the non-graphical entities of the DXF drawing. Non-graphical entities from now on
just called ‘objects’ to differentiate them from graphical entities, just called ‘entities’. The OBJECTS section follows
commonly the ENTITIES section, but this is not mandatory. DXF R13 introduces also several new DXF objects,
which resides exclusive in the OBJECTS section, taken from the DXF R14 reference, because I have no access to the
DXF R13 reference, the DXF R13 reference is a compiled .hlp file which can’t be read on Windows 10, a drastic real
world example why it is better to avoid closed (proprietary) data formats ;):

• DICTIONARY: a general structural entity as a <name: handle> container

182 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• ACDBDICTIONARYWDFLT: a DICTIONARY with a default value

• DICTIONARYVAR: used by AutoCAD to store named values in the database

• ACAD_PROXY_OBJECT: proxy object for entities created by other applications than AutoCAD

• GROUP: groups graphical entities without the need of a BLOCK definition

• IDBUFFER: just a list of references to objects

• IMAGEDEF: IMAGE definition structure, required by the IMAGE entity

• IMAGEDEF_REACTOR: also required by the IMAGE entity

• LAYER_INDEX: container for LAYER names

• MLINESTYLE

• OBJECT_PTR

• RASTERVARIABLES

• SPATIAL_INDEX: is always written out empty to a DXF file. This object can be ignored.

• SPATIAL_FILTER

• SORTENTSTABLE: control for regeneration/redraw order of entities

• XRECORD: used to store and manage arbitrary data. This object is similar in concept to XDATA but is not
limited by size or order. Not supported by R13c0 through R13c3.

Still missing the LAYOUT object, which is mandatory in DXF R2000 to manage multiple paper space layouts. I don’t
know how DXF R13/R14 manages multiple layouts or if they even support this feature, but I don’t care much about
DXF R13/R14, because AutoCAD has no write support for this two formats anymore. ezdxf tries to upgrade this two
DXF versions to DXF R2000 with the advantage of only two different data models to support: DXF R12 and DXF
R2000+

New objects introduced by DXF R2000:

• LAYOUT: management object for model space and multiple paper space layouts

• ACDBPLACEHOLDER: surprise - just a place holder

New objects in DXF R2004:

• DIMASSOC

• LAYER_FILTER

• MATERIAL

• PLOTSETTINGS

• VBA_PROJECT

New objects in DXF R2007:

• DATATABLE

• FIELD

• LIGHTLIST

• RENDER

• RENDERENVIRONMENT

• MENTALRAYRENDERSETTINGS

• RENDERGLOBAL

4.6. DXF Internals 183

ezdxf Documentation, Release 0.8.9

• SECTION

• SUNSTUDY

• TABLESTYLE

• UNDERLAYDEFINITION

• VISUALSTYLE

• WIPEOUTVARIABLES

New objects in DXF R2013:

• GEODATA

New objects in DXF R2018:

• ACDBNAVISWORKSMODELDEF

Undocumented objects:

• SCALE

• ACDBSECTIONVIEWSTYLE

• FIELDLIST

Objects Organisation

Many objects in the OBJECTS section are organized in a tree-like structure of DICTIONARY objects. Starting point
for this data structure is the ‘root’ DICTIONARY with several entries to other DICTIONARY objects. The root
DICTIONARY has to be the first object in the OBJECTS section. The management dicts for GROUP and LAYOUT
objects are really important, but IMHO most of the other management tables are optional and for the most use cases not
necessary. The ezdxf template for DXF R2018 contains only these entries in the root dict and most of them pointing
to an empty DICTIONARY:

• ACAD_COLOR: points to an empty DICTIONARY

• ACAD_GROUP: supported by ezdxf

• ACAD_LAYOUT: supported by ezdxf

• ACAD_MATERIAL: points to an empty DICTIONARY

• ACAD_MLEADERSTYLE: points to an empty DICTIONARY

• ACAD_MLINESTYLE: points to an empty DICTIONARY

• ACAD_PLOTSETTINGS: points to an empty DICTIONARY

• ACAD_PLOTSTYLENAME: points to ACDBDICTIONARYWDFLT with one entry: ‘Normal’

• ACAD_SCALELIST: points to an empty DICTIONARY

• ACAD_TABLESTYLE: points to an empty DICTIONARY

• ACAD_VISUALSTYLE: points to an empty DICTIONARY

Root DICTIONARY content for DXF R2018

184 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

0
SECTION
2 <<< start of the OBJECTS section
OBJECTS
0 <<< root DICTIONARY has to be the first object in the OBJECTS section
DICTIONARY
5 <<< handle
C
330 <<< owner tag
0 <<< always #0, has no owner
100
AcDbDictionary
281 <<< hard owner flag
1
3 <<< first entry
ACAD_CIP_PREVIOUS_PRODUCT_INFO
350 <<< handle to target (pointer)
78B <<< points to a XRECORD with product info about the creator application
3 <<< entry with unknown meaning, if I shoul guess: something with about colors
→˓...
ACAD_COLOR
350
4FB <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACAD_DETAILVIEWSTYLE
350
7ED <<< points to a DICTIONARY
3 <<< GROUP management, mandatory in all DXF versions
ACAD_GROUP
350
4FC <<< points to a DICTIONARY
3 <<< LAYOUT management, mandatory if more than the *active* paper space is used
ACAD_LAYOUT
350
4FD <<< points to a DICTIONARY
3 <<< MATERIAL management
ACAD_MATERIAL
350
4FE <<< points to a DICTIONARY
3 <<< MLEADERSTYLE management
ACAD_MLEADERSTYLE
350
4FF <<< points to a DICTIONARY
3 <<< MLINESTYLE management
ACAD_MLINESTYLE
350
500 <<< points to a DICTIONARY
3 <<< PLOTSETTINGS management
ACAD_PLOTSETTINGS
350
501 <<< points to a DICTIONARY
3 <<< plot style name management
ACAD_PLOTSTYLENAME
350
503 <<< points to a ACDBDICTIONARYWDFLT
3 <<< SCALE management
ACAD_SCALELIST

(continues on next page)

4.6. DXF Internals 185

ezdxf Documentation, Release 0.8.9

(continued from previous page)

350
504 <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACAD_SECTIONVIEWSTYLE
350
7EB <<< points to a DICTIONARY
3 <<< TABLESTYLE management
ACAD_TABLESTYLE
350
505 <<< points to a DICTIONARY
3 <<< VISUALSTYLE management
ACAD_VISUALSTYLE
350
506 <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACDB_RECOMPOSE_DATA
350
7F3
3 <<< entry with unknown meaning
AcDbVariableDictionary
350
7AE <<< points to a DICTIONARY with handles to DICTIONARYVAR objects
0
DICTIONARY
...
...
0
ENDSEC

4.6.14 Block Management Structures

A BLOCK is a kind of layout like the model space or a paper space, with the similarity that all these layouts are
containers for other graphical DXF entities. This block definition can be referenced in other layouts by the INSERT
entity. By using block references the same set of graphical entities can be located multiple times at different layouts,
this block references can be stretched and rotated without modifying the original entities. A block is referenced only
by its name defined by the DXF tag (2, name), there is a second DXF tag (3, name2) for the block name, which
is not further documented by Autodesk, and I haven’t tested what happens I the second name is different to the first
block name.

The (10, base_point) tag (in BLOCK defines a insertion point of the block, by ‘inserting’ a block by the
INSERT entity, this point of the block is placed at the location defined by the (10, insert) tag in the INSERT
entity, and it is also the base point for stretching and rotation.

A block definition can contain INSERT entities, and it is possible to create cyclic block definitions (a BLOCK contains
a INSERT of itself), but this should be avoided, CAD applications will not load the DXF file at all or maybe just crash.
This is also the case for all other kinds of cyclic definitions like: BLOCK ‘A’ -> INSERT BLOCK ‘B’ and BLOCK
‘B’ -> INSERT BLOCK ‘A’.

See also:

• ezdxf DXF Internals: BLOCKS Section

• DXF Reference: BLOCKS Section

• DXF Reference: BLOCK Entity

• DXF Reference: ENDBLK Entity

186 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1D14A213-5E4D-4EA6-A6B5-8709EB925D01
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-66D32572-005A-4E23-8B8B-8726E8C14302
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-27F7CC8A-E340-4C7F-A77F-5AF139AD502D

ezdxf Documentation, Release 0.8.9

• DXF Reference: INSERT Entity

Block Names

Block names has to be unique and they are case insensitive (‘Test’ == ‘TEST’). If there are two or more block defini-
tions with the same name, AutoCAD (LT 2018) merges these blocks into a single block with unpredictable properties
of all these blocks. In my test with two blocks, the final block has the name of the first block and the base-point of the
second block, and contains all entities of both blocks.

Block Definitions in DXF R12

In DXF R12 the definition of a block is located in the BLOCKS section, no additional structures are needed. The
definition starts with a BLOCK entity and ends with a ENDBLK entity. All entities between this two entities are the
content of the block, the block is the owner of this entities like any layout.

As shown in the DXF file below (created by AutoCAD LT 2018), the BLOCK entity has no handle, but ezdxf writes
also handles for the BLOCK entity and AutoCAD doesn’t complain.

DXF R12 BLOCKS structure:

0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
... <<< model space and paper space block definitions not shown,
... <<< see layout management
...
0 <<< start of a BLOCK definition
BLOCK
8 <<< layer, what this layer definition does is another fact, I don't know
→˓(now)
0
2 <<< block name
ArchTick
70 <<< flags
1
10 <<< base point, x
0.0
20 <<< base point, y
0.0
30 <<< base point, z
0.0
3 <<< second BLOCK name, same as (2, name)
ArchTick
1 <<< xref name, if block is an external reference

<<< empty string!
0 <<< start of the first entity of the BLOCK
LINE
5
28E
8
0
62
0
10
500.0

(continues on next page)

4.6. DXF Internals 187

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-28FA4CFB-9D5E-4880-9F11-36C97578252F

ezdxf Documentation, Release 0.8.9

(continued from previous page)

20
500.0
30
0.0
11
500.0
21
511.0
31
0.0
0 <<< start of the second entity of the BLOCK
LINE
...
0.0
0 <<< ENDBLK entity, marks the end of the BLOCK definition
ENDBLK
5 <<< ENDBLK gets a handle by AutoCAD, but BLOCK didn't
2F2
8 <<< as every entity, also ENDBLK requires a layer (same as BLOCK entity!)
0
0 <<< start of next BLOCK entity
BLOCK
...
0 <<< end BLOCK entity
ENDBLK
0 <<< end of BLOCKS section
ENDSEC

Block Definitions in DXF R2000 and later

The overall organization in the BLOCKS sections remains the same, but additional tags in the BLOCK entity, have to
be maintained.

Especially the concept of ownership is important. Since DXF R13 every graphic entity is associated to a specific
layout, and a BLOCK definition is a kind of layout. So all entities in the BLOCK definition, including the BLOCK
and the ENDBLK entities, have an owner tag (330, ...), which points to a BLOCK_RECORD entry in the
BLOCK_RECORD table. As you can see in the chapter about Layout Management Structures, this concept is also
valid for model space and paper space layouts, because these layouts are also BLOCKS, with the special difference,
that entities of the model space and the active paper space are stored in the ENTITIES section.

See also:

188 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

• Tag Structure DXF R13 and later

• ezdxf DXF Internals: TABLES Section

• DXF Reference: TABLES Section

• DXF Reference: BLOCK_RECORD Entity

DXF R13 BLOCKS structure:

0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
... <<< model space and paper space block definitions not shown,
... <<< see layout management
0 <<< start of BLOCK definition
BLOCK
5 <<< even BLOCK gets a handle now ;)
23A
330 <<< owner tag, the owner of a BLOCK is a BLOCK_RECORD in the BLOCK_RECORD
→˓table
238
100 <<< subclass marker
AcDbEntity
8 <<< layer of the BLOCK definition
0
100 <<< subclass marker
AcDbBlockBegin
2 <<< BLOCK name
ArchTick
70 <<< flags
0
10 <<< base point, x
0.0
20 <<< base point, y
0.0
30 <<< base point, z
0.0
3 <<< second BLOCK name, same as (2, name)
ArchTick
1 <<< xref name, if block is an external reference

<<< empty string!
0 <<< start of the first entity of the BLOCK
LWPOLYLINE
5
239
330 <<< owner tag of LWPOLYLINE
238 <<< handle of the BLOCK_RECORD!
100
AcDbEntity
8
0
6
ByBlock
62
0
100
AcDbPolyline

(continues on next page)

4.6. DXF Internals 189

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A1FD1934-7EF5-4D35-A4B0-F8AE54A9A20A

ezdxf Documentation, Release 0.8.9

(continued from previous page)

90
2
70
0
43
0.15
10
-0.5
20
-0.5
10
0.5
20
0.5
0 <<< ENDBLK entity, marks the end of the BLOCK definition
ENDBLK
5 <<< handle
23B
330 <<< owner tag, same BLOCK_RECORD as for the BLOCK entity
238
100 <<< subclass marker
AcDbEntity
8 <<< as every entity, also ENDBLK requires a layer (same as BLOCK entity!)
0
100 <<< subclass marker
AcDbBlockEnd
0 <<< start of the next BLOCK
BLOCK
...
0
ENDBLK
...
0 <<< end of the BLOCKS section
ENDSEC

DXF R13 BLOCK_RECORD structure:

0 <<< start of a SECTION
SECTION
2 <<< start of TABLES section
TABLES
0 <<< start of a TABLE
TABLE
2 <<< start of the BLOCK_RECORD table
BLOCK_RECORD
5 <<< handle of the table (INFO: ezdxf doesn't store tables in the entities
→˓database)
1
330 <<< owner tag of the table
0 <<< is always #0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, not reliable
4
0 <<< start of first BLOCK_RECORD entry
BLOCK_RECORD
5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as 'layout key'

(continues on next page)

190 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

1F
330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table
1
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbBlockTableRecord
2 <<< name of the BLOCK or LAYOUT

*Model_Space
340 <<< pointer to the associated LAYOUT object
4AF
70 <<< AC1021 (R2007) block insertion units
0
280 <<< AC1021 (R2007) block explodability
1
281 <<< AC1021 (R2007) block scalability
0

... <<< paper space not shown

...
0 <<< next BLOCK_RECORD
BLOCK_RECORD
5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as 'layout key'
238
330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table
1
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbBlockTableRecord
2 <<< name of the BLOCK
ArchTick
340 <<< pointer to the associated LAYOUT object
0 <<< #0, because BLOCK doesn't have an associated LAYOUT object
70 <<< AC1021 (R2007) block insertion units
0
280 <<< AC1021 (R2007) block explodability
1
281 <<< AC1021 (R2007) block scalability
0
0 <<< end of BLOCK_RECORD table
ENDTAB
0 <<< next TABLE
TABLE
...
0
ENDTAB
0 <<< end of TABLES section
ENDESC

4.6.15 Layout Management Structures

Layouts are separated entity spaces, there are three different Layout types:

1. Model space contains the ‘real’ world representation of the drawing subject in real world units.

4.6. DXF Internals 191

ezdxf Documentation, Release 0.8.9

2. Paper space are used to create different drawing sheets of the subject for printing or PDF export

3. Blocks are reusable sets of graphical entities, inserted by the INSERT entity.

All layouts have at least a BLOCK definition in the BLOCKS section and since DXF R13 exists the
BLOCK_RECORD table with an entry for every BLOCK in the BLOCKS section.

See also:

Information about Block Management Structures

The name of the model space BLOCK is *Model_Space (DXF R12: $MODEL_SPACE) and the name of the active
paper space BLOCK is *Paper_Space (DXF R12: $PAPER_SPACE), the entities of these two layouts are stored
in the ENTITIES section, DXF R12 supports just one paper space layout.

DXF R13 and later supports multiple paper space layouts, the active layout is still called *Paper_Space, the
additional inactive paper space layouts are named by the scheme *Paper_Spacennnn, where the first inactive
paper space is called *Paper_Space0, the second *Paper_Space1 and so on. A none consecutive numbering is
tolerated by AutoCAD. The content of the inactive paper space layouts are stored as BLOCK content in the BLOCKS
section. These names are just the DXF internal layout names, each layout has an additional layout name which is
displayed to the user by the CAD application.

A BLOCK definition and a BLOCK_RECORD is not enough for a proper layout setup, an LAYOUT entity in the
OBJECTS section is also required. All LAYOUT entities are managed by a DICTIONARY entity, which is referenced
as ACAD_LAYOUT entity in the root DICTIONARY of the DXF file.

Note: All floating point values are rounded to 2 decimal places for better readability.

LAYOUT Entiy

Since DXF R2000 model space and paper space layouts require the DXF LAYOUT entity.

0
LAYOUT
5 <<< handle
59
102 <<< extension dictionary (ignore)
{ACAD_XDICTIONARY
360
1C3
102
}
102 <<< reactor (required?)
{ACAD_REACTORS
330
1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (layout management table)
102
}
330 <<< owner handle
1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (same as reactor pointer)
100 <<< PLOTSETTINGS
AcDbPlotSettings
1 <<< page setup name

2 <<< name of system printer or plot configuration file
none_device
4 <<< paper size, part in braces should follow the schema (width_x_height_unit)
→˓unit is 'Inches' or 'MM' (continues on next page)

192 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-433D25BF-655D-4697-834E-C666EDFD956D

ezdxf Documentation, Release 0.8.9

(continued from previous page)

Letter_(8.50_x_11.00_Inches) # the part in front of the braces is ignored by AutoCAD
6 <<< plot view name

40 <<< size of unprintable margin on left side of paper in millimeters, defines
→˓also the plot origin-x
6.35
41 <<< size of unprintable margin on bottom of paper in millimeters, defines
→˓also the plot origin-y
6.35
42 <<< size of unprintable margin on right side of paper in millimeters
6.35
43 <<< size of unprintable margin on top of paper in millimeters
6.35
44 <<< plot paper size: physical paper width in millimeters
215.90
45 <<< plot paper size: physical paper height in millimeters
279.40
46 <<< X value of plot origin offset in millimeters, moves the plot origin-x
0.0
47 <<< Y value of plot origin offset in millimeters, moves the plot origin-y
0.0
48 <<< plot window area: X value of lower-left window corner
0.0
49 <<< plot window area: Y value of lower-left window corner
0.0
140 <<< plot window area: X value of upper-right window corner
0.0
141 <<< plot window area: Y value of upper-right window corner
0.0
142 <<< numerator of custom print scale: real world (paper) units, 1.0 for scale
→˓1:50
1.0
143 <<< denominator of custom print scale: drawing units, 50.0 for scale 1:50
1.0
70 <<< plot layout flags, bit-coded (... too many options)
688 <<< b1010110000 = UseStandardScale(16)/PlotPlotStyle(32)/
→˓PrintLineweights(128)/DrawViewportsFirst(512)
72 <<< plot paper units (0/1/2 for inches/millimeters/pixels), are pixels really
→˓supported?
0
73 <<< plot rotation (0/1/2/3 for 0deg/90deg counter-cw/upside-down/90deg cw)
1 <<< 90deg clockwise
74 <<< plot type 0-5 (... too many options)
5 <<< 5 = layout information
7 <<< current plot style name, e.g. 'acad.ctb' or 'acadlt.ctb'

75 <<< standard scale type 0-31 (... too many options)
16 <<< 16 = 1:1, also 16 if user scale type is used
147 <<< unit conversion factor
1.0 <<< for plot paper units in mm, else 0.03937... (1/25.4) for inches as plot
→˓paper units
76 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered)
0 <<< as displayed
77 <<< shade plot resolution level 1-5 (... too many options)
2 <<< normal
78 <<< shade plot custom DPI: 100-32767, Only applied when shade plot resolution
→˓level is set to 5 (Custom)

(continues on next page)

4.6. DXF Internals 193

ezdxf Documentation, Release 0.8.9

(continued from previous page)

300
148 <<< paper image origin: X value
0.0
149 <<< paper image origin: Y value
0.0
100 <<< LAYOUT settings
AcDbLayout
1 <<< layout name
Layout1
70 <<< flags bit-coded
1 <<< 1 = Indicates the PSLTSCALE value for this layout when this layout is
→˓current
71 <<< Tab order ("Model" tab always appears as the first tab regardless of its
→˓tab order)
1
10 <<< minimum limits for this layout (defined by LIMMIN while this layout is
→˓current)
-0.25 <<< x value, distance of the left paper margin from the plot origin-x, in
→˓plot paper units and by scale (e.g. x50 for 1:50)
20 <<< group code for y value
-0.25 <<< y value, distance of the bottom paper margin from the plot origin-y,
→˓in plot paper units and by scale (e.g. x50 for 1:50)
11 <<< maximum limits for this layout (defined by LIMMAX while this layout is
→˓current)
10.75 <<< x value, distance of the right paper margin from the plot origin-x,
→˓in plot paper units and by scale (e.g. x50 for 1:50)
21 <<< group code for y value
8.25 <<< y value, distance of the top paper margin from the plot origin-y, in
→˓plot paper units and by scale (e.g. x50 for 1:50)
12 <<< insertion base point for this layout (defined by INSBASE while this
→˓layout is current)
0.0 <<< x value
22 <<< group code for y value
0.0 <<< y value
32 <<< group code for z value
0.0 <<< z value
14 <<< minimum extents for this layout (defined by EXTMIN while this layout is
→˓current), AutoCAD default is (1e20, 1e20, 1e20)
1.05 <<< x value
24 <<< group code for y value
0.80 <<< y value
34 <<< group code for z value
0.0 <<< z value
15 <<< maximum extents for this layout (defined by EXTMAX while this layout is
→˓current), AutoCAD default is (-1e20, -1e20, -1e20)
9.45 <<< x value
25 <<< group code for y value
7.20 <<< y value
35 <<< group code for z value
0.0 <<< z value
146 <<< elevation ???
0.0
13 <<< UCS origin (3D Point)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
33 <<< group code for z value

(continues on next page)

194 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

0.0 <<< z value
16 <<< UCS X-axis (3D vector)
1.0 <<< x value
26 <<< group code for y value
0.0 <<< y value
36 <<< group code for z value
0.0 <<< z value
17 <<< UCS Y-axis (3D vector)
0.0 <<< x value
27 <<< group code for y value
1.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
76 <<< orthographic type of UCS 0-6 (... too many options)
0 <<< 0 = UCS is not orthographic ???
330 <<< ID/handle of required block table record
58
331 <<< ID/handle to the viewport that was last active in this layout when the
→˓layout was current
1B9
1001 <<< extended data (ignore)
...

And as it seems this is also not enough for a well defined LAYOUT, at least a “main” VIEWPORT entity with ID=1 is
required for paper space layouts, located in the entity space of the layout.

The model space layout requires (?) a VPORT entity in the VPORT table (group code 331 in the AcDbLayout
subclass).

Main VIEWPORT Entity for LAYOUT

The “main” viewport for layout Layout1 shown above. This viewport is located in the associated BLOCK def-
inition called *Paper_Space0. Group code 330 in subclass AcDbLayout points to the BLOCK_RECORD of
*Paper_Space0. Remember: the entities of the active paper space layout are located in the ENTITIES section,
therefore Layout1 is not the active paper space layout.

The “main” VIEWPORT describes, how the application shows the paper space layout on the screen, and I guess only
AutoCAD needs this values. And the most values

4.6. DXF Internals 195

ezdxf Documentation, Release 0.8.9

0
VIEWPORT
5 <<< handle
1B4
102 <<< extension dictionary (ignore)
{ACAD_XDICTIONARY
360
1B5
102
}
330 <<< owner handle
58 <<< points to BLOCK_RECORD (same as group code 330 in AcDbLayout of "Layout1")
100
AcDbEntity
67 <<< paper space flag
1 <<< 0 = model space; 1 = paper space
8 <<< layer,
0
100
AcDbViewport
10 <<< Center point (in WCS)
5.25 <<< x value
20 <<< group code for y value
4.00 <<< y value
30 <<< group code for z value

(continues on next page)

196 Chapter 4. Contents

ezdxf Documentation, Release 0.8.9

(continued from previous page)

0.0 <<< z value
40 <<< width in paper space units
23.55 <<< VIEW size in AutoCAD, depends on the workstation configuration
41 <<< height in paper space units
9.00 <<< VIEW size in AutoCAD, depends on the workstation configuration
68 <<< viewport status field -1/0/n
2 <<< >0 On and active. The value indicates the order of stacking for the
→˓viewports, where 1 is the active viewport, 2 is the next, and so forth
69 <<< viewport ID
1 <<< "main" viewport has always ID=1
12 <<< view center point in Drawing Coordinate System (DCS), defines the center
→˓point of the VIEW in relation to the LAYOUT origin
5.25 <<< x value
22 <<< group code for y value
4.00 <<< y value
13 <<< snap base point in model space
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing in model space units
0.5 <<< x value
24 <<< group code for y value
0.5 <<< y value
15 <<< grid spacing in model space units
0.5 <<< x value
25 <<< group code for y value
0.5 <<< y value
16 <<< view direction vector from target (in WCS)
0.0 <<< x value
26 <<< group code for y value
0.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
42 <<< perspective lens length, focal length?
50.0 <<< 50mm
43 <<< front clip plane z value
0.0 <<< z value
44 <<< back clip plane z value
0.0 <<< z value
45 <<< view height (in model space units)
9.00
50 <<< snap angle
0.0
51 <<< view twist angle
0.0
72 <<< circle zoom percent
1000
90 <<< Viewport status bit-coded flags (... too many options)
819232 <<< b11001000000000100000
1 <<< plot style sheet name assigned to this viewport

(continues on next page)

4.6. DXF Internals 197

ezdxf Documentation, Release 0.8.9

(continued from previous page)

281 <<< render mode (... too many options)
0 <<< 0 = 2D optimized (classic 2D)
71 <<< UCS per viewport flag
1 <<< 1 = This viewport stores its own UCS which will become the current UCS
→˓whenever the viewport is activated
74 <<< Display UCS icon at UCS origin flag
0 <<< this field is currently being ignored and the icon always represents the
→˓viewport UCS
110 <<< UCS origin (3D point)
0.0 <<< x value
120 <<< group code for y value
0.0 <<< y value
130 <<< group code for z value
0.0 <<< z value
111 <<< UCS X-axis (3D vector)
1.0 <<< x value
121 <<< group code for y value
0.0 <<< y value
131 <<< group code for z value
0.0 <<< z value
112 <<< UCS Y-axis (3D vector)
0.0 <<< x value
122 <<< group code for y value
1.0 <<< y value
132 <<< group code for z value
0.0 <<< z value
79 <<< Orthographic type of UCS (... too many options)
0 <<< 0 = UCS is not orthographic
146 <<< elevation
0.0
170 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered)
0 <<< as displayed
61 <<< frequency of major grid lines compared to minor grid lines
5 <<< major grid subdivided by 5
348 <<< visual style ID/handle (optional)
9F
292 <<< default lighting flag, on when no user lights are specified.
1
282 <<< Default lighting type (0/1 = one distant light/two distant lights)
1 <<< one distant light
141 <<< view brightness
0.0
142 <<< view contrast
0.0
63 <<< ambient light color (ACI), write only if not black color
250
421 <<< ambient light color (RGB), write only if not black color
3355443

4.6.16 Object Coordinate System (OCS)

• DXF Reference for OCS provided by Autodesk.

The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The
OCS was referred to as ECS in previous releases of AutoCAD.

198 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D99F1509-E4E4-47A3-8691-92EA07DC88F5

ezdxf Documentation, Release 0.8.9

With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector
describing the Z axis of the OCS, and the elevation value.

For a given Z axis (or extrusion) direction, there are an infinite number of coordinate systems, defined by translating
the origin in 3D space and by rotating the X and Y axes around the Z axis. However, for the same Z axis direction,
there is only one OCS. It has the following properties:

• Its origin coincides with the WCS origin.

• The orientation of the X and Y axes within the XY plane are calculated in an arbitrary but consistent manner.
AutoCAD performs this calculation using the arbitrary axis algorithm.

These entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities, only
lines and points can be extruded. Their extrusion direction can differ from the world Z axis.

• Line

• Point

• 3DFace

• Polyline (3D)

• Vertex (3D)

• Polymesh

• Polyface

• Viewport

These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded.
Their extrusion direction can differ from the world Z axis.

• Circle

• Arc

• Solid

• Trace

• Text

• Attrib

• Attdef

• Shape

• Insert

• Polyline (2D)

• Vertex (2D)

• LWPolyline

• Hatch

• Image

Some of a Dimension’s points are expressed in WCS and some in OCS.

4.6. DXF Internals 199

ezdxf Documentation, Release 0.8.9

Elevation

Elevation Group code 38:

Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s
defining points.

Arbitrary Axis Algorithm

• DXF Reference for Arbitrary Axis Algorithm provided by Autodesk.

The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of
object coordinate systems for all entities that use object coordinates.

Given a unit-length vector to be used as the Z axis of a coordinate system, the arbitrary axis algorithm generates a
corresponding X axis for the coordinate system. The Y axis follows by application of the right-hand rule.

We are looking for the arbitrary X and Y axes to go with the normal Az (the arbitrary Z axis). They will be called Ax
and Ay (using Vector):

Az = Vector(entity.dxf.extrusion).normalize() # normal (extrusion) vector
Extrusion vector normalization should not be necessary, but don't rely on any DXF
→˓content
if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.):

Ax = Vector(0, 1, 0).cross(Az).normalize() # the cross-product operator
else:

Ax = Vector(0, 0, 1).cross(Az).normalize() # the cross-product operator
Ay = Az.cross(Ax).normalize()

WCS to OCS

def wcs_to_ocs(point):
px, py, pz = Vector(point) # point in WCS
x = px * Ax.x + py * Ax.y + pz * Ax.z
y = px * Ay.x + py * Ay.y + pz * Ay.z
z = px * Az.x + py * Az.y + pz * Az.z
return Vector(x, y, z)

OCS to WCS

Wx = wcs_to_ocs((1, 0, 0))
Wy = wcs_to_ocs((0, 1, 0))
Wz = wcs_to_ocs((0, 0, 1))

def ocs_to_wcs(point):
px, py, pz = Vector(point) # point in OCS
x = px * Wx.x + py * Wx.y + pz * Wx.z
y = px * Wy.x + py * Wy.y + pz * Wy.z
z = px * Wz.x + py * Wz.y + pz * Wz.z
return Vector(x, y, z)

200 Chapter 4. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E19E5B42-0CC7-4EBA-B29F-5E1D595149EE

CHAPTER 5

News

Version 0.8.9 - dev

• Release notes: https://ezdxf.mozman.at/release-v0-8-9.html

• IMPORTANT: Python 2 support will be dropped in ezdxf v0.9.0, because Python 2 support get more and more
annoying.

• tox does not succeed with pypy 2.7, package_data config in setup.py fails in pypy 2.7

• CHANGE: refactoring of internal tag representation for smaller memory footprint, but with some speed penalty

• NEW: packed data for more memory efficient data storage for some entities

• NEW: packed data for LWPOLYLINE points, faster __getitem__; added __setitem__, __delitem__, insert()
and append() methods; renamed discard_points() in clear(); removed get_rstrip_points() and ctx manager
rstrip_points(); user defined point format;

• NEW: packed data for SPLINE, knots and weights stored as 4-byte float arrays, vertices stored as 8-byte double
arrays; Spline.get_knot_values(), Spline.get_weights(), Spline.get_control_points() and Spline.get_fit_points()
are deprecated, direct access to this attributes by Spline.knot_values, Spline.weights, Spline.control_points and
Spline.fit_points all with a list-like interface. Knot, control point and fit point counter updated automatically,
therefore counters are read only now.

• NEW: packed data for MESH, vertices, faces, edges and edge crease values stored as array.array(), high level
interface unchanged

• NEW: Drawing.layouts_and_blocks(), iterate over all layouts (mode space and paper space) and all block defi-
nitions.

• NEW: Drawing.chain_layouts_and_blocks(), chain entity spaces of all layouts and blocks. Yields an iterator for
all entities in all layouts and blocks

• NEW: Drawing.query(), entity query over all layouts and blocks

• NEW: Drawing.groupby(), groups DXF entities of all layouts and blocks by an DXF attribute or a key function

• NEW: Layout.set_redraw_order() and Layout.get_redraw_order(), to change redraw order of entities in model
space and paper space layouts

201

https://ezdxf.mozman.at/release-v0-8-9.html

ezdxf Documentation, Release 0.8.9

• NEW: BlockLayout.is_layout_block, True if block is a model space or paper space block definition

• NEW: ezdxf.algebra.Arc helper class to create arcs from 2 points and an angle or radius, or from 3 points

• NEW: ezdxf.algebra.Arc.add_to_layout() with UCS support to create 3D arcs

• NEW: rename paper space layouts by Drawing.layouts.rename(old_name, new_name)

• NEW: Basic support for embedded objects (new in AutoCAD 2018), ezdxf reads and writes the embedded data
as it is, no interpretation no modification, just enough to not break DXF files with embedded objects at saving.

• CHANGE: Drawing.blocks.delete_block(name, safe=True), new parameter save, check if block is still refer-
enced (raises DXFValueError)

• CHANGE: Drawing.blocks.delete_all_blocks(safe=True), new parameter save, ignores blocks still referenced
if safe is True

• Basic read support for almost all missing DXF entities/objects

– ACAD_PROXY_GRAPHIC

– HELIX

– LEADER

– LIGHT

– MLEADER (incomplete)

– MLINE (incomplete)

– OLEFRAME

– OLE2FRAME

– SECTION

– TABLE (incomplete)

– TOLERANCE

– WIPEOUT

– ACAD_PROXY_OBJECT

– DATATABLE

– DICTIONARYVAR

– DIMASSOC

– FIELD (incomplete)

– FIELDLIST (not documented by Autodesk)

– IDBUFFER

– LAYER_FILTER

– MATERIAL

– MLEADERSTYLE

– MLINESTYLE

– RENDER (todo)

– SECTION (todo)

– SORTENTSTABLE

202 Chapter 5. News

ezdxf Documentation, Release 0.8.9

– SPATIAL_FILTER (todo)

– SUN

– SUNSTUDY (incomplete) (no real world DXF files with SUNSTUDY for testing available)

– TABLESTYLE (incomplete)

– VBA_PROJECT (no real world DXF files with embedded VBA for testing available)

– VISUALSTYLE (todo)

– WIPEOUTVARIABLES

Version 0.8.8 - 2018-04-02

• Release notes: https://ezdxf.mozman.at/release-v0-8-8.html

• NEW: read/write support for GEODATA entity

• NEW: read/(limited)write support for SURFACE, EXTRUDEDSURFACE, REVOLVEDSURFACE, LOFTED-
SURFACE and SWEPTSURFACE entity

• NEW: support for extension dictionaries

• NEW: add_spline_control_frame(), create and add B-spline control frame from fit points

• NEW: add_spline_approx(), approximate B-spline by a reduced count of control points

• NEW: ezdxf.setup_linetypes(dwg), setup standard line types

• NEW: ezdxf.setup_styles(dwg), setup standard text styles

• NEW: LWPolyline.vertices() yields all points as (x, y) tuples in OCS, LWPolyline.dxf.elevation is the z-axis
value

• NEW: LWPolyline.vertices_in_wcs() yields all points as (x, y, z) tuples in WCS

• NEW: basic __str__() and __repr__() support for DXF entities, returns just DXF type and handle

• NEW: bulge related function in module ezdxf.algebra.bulge

• NEW: Object Coordinate System support by DXFEntity.ocs() and OCS() class in module ezdxf.algebra

• NEW: User Coordinate System support by UCS() class in module ezdxf.algebra

• CHANGE: DXFEntity.set_app_data() and Entity.set_xdata accept also list of tuples as tags, DXFTag() is not
required

• BUGFIX: entity structure validator excepts group code >= 1000 before XDATA section (used in AutoCAD Civil
3D and AutoCAD Map 3D)

Version 0.8.7 - 2018-03-04

• Release notes: https://ezdxf.mozman.at/release-v0-8-7.html

• NEW: entity.get_layout() returns layout in which entity resides or None if unassigned

• NEW: copy any DXF entity by entity.copy() without associated layout, add copy to any layout you want, by
layout.add_entity().

• NEW: copy entity to another layout by entity.copy_to_layout(layout)

• NEW: move entity from actual layout to another layout by entity.move_to_layout(layout)

• NEW: support for splines by control points: add_open_spline(), add_closed_spline(), add_rational_spline(),
add_closed_rational_spline()

• NEW: bspline_control_frame() calculates B-spline control points from fit points, but not the same as AutoCAD

203

https://ezdxf.mozman.at/release-v0-8-8.html
https://ezdxf.mozman.at/release-v0-8-7.html

ezdxf Documentation, Release 0.8.9

• NEW: R12Spline add-on, 2d B-spline with control frame support by AutoCAD, but curve is just an approxi-
mated POLYLINE

• NEW: added entity.get_flag_state() and entity.set_flag_state() for easy access to binary coded flags

• NEW: set new $FINGERPRINTGUID for new drawings

• NEW: set new $VERSIONGUID on saving a drawing

• NEW: improved IMAGE support, by adding RASTERVARIABLES entity, use Draw-
ing.set_raster_variables(frame, quality, units)

• BUGFIX: closing user defined image boundary path automatically, else AutoCAD crashes

Version 0.8.6 - 2018-02-17

• Release notes: https://ezdxf.mozman.at/release-v0-8-6.html

• NEW: ezdxf project website: https://ezdxf.mozman.at/

• CHANGE: create all missing tables of the TABLES sections for DXF R12

• BUGFIX: entities on new layouts will be saved

• NEW: Layout.page_setup() and correct ‘main’ viewport for DXF R2000+; For DXF R12 page_setup() exists,
but does not provide useful results. Page setup for DXF R12 is still a mystery to me.

• NEW: Table(), MText(), Ellipse(), Spline(), Bezier(), Clothoid(), LinearDimension(), RadialDimension(), Ar-
cDimension() and AngularDimension() composite objects from dxfwrite as add-ons, these add-ons support DXF
R12

• NEW: geometry builder as add-ons: MeshBuilder(), MeshVertexMerger(), MengerSponge(), SierpinskyPyra-
mid(), these add-ons require DXF R2000+ (MESH entity)

• BUGFIX: fixed invalid implementation of context manager for r12writer

Version 0.8.5 - 2018-01-28

• Release notes: https://ezdxf.mozman.at/release-v0-8-5.html

• CHANGE: block names are case insensitive ‘TEST’ == ‘Test’ (like AutoCAD)

• CHANGE: table entry (layer, linetype, style, dimstyle, . . .) names are case insensitive ‘TEST’ == ‘Test’ (like
AutoCAD)

• CHANGE: raises DXFInvalidLayerName() for invalid characters in layer names: <>/”:;?*|=‘

• CHANGE: audit process rewritten

• CHANGE: skip all comments, group code 999

• CHANGE: removed compression for unused sections (THUMBNAILSECTION, ACDSDATA)

• NEW: write DXF R12 files without handles: set dwg.header[‘$HANDLING’]=0, default value is 1

• added subclass marker filter for R12 and prior files in legacy_mode=True (required for malformed DXF files)

• removed special check for Leica Disto Unit files, use readfile(filename, legacy_mode=True) (malformed DXF
R12 file, see previous point)

Version 0.8.4 - 2018-01-14

• Release notes: https://ezdxf.mozman.at/release-v0-8-4.html

• NEW: Support for complex line types with text or shapes

• NEW: DXF file structure validator at SECTION level, tags outside of sections will be removed

• NEW: Basic read support for DIMENSION

204 Chapter 5. News

https://ezdxf.mozman.at/release-v0-8-6.html
https://ezdxf.mozman.at/
https://ezdxf.mozman.at/release-v0-8-5.html
https://ezdxf.mozman.at/release-v0-8-4.html

ezdxf Documentation, Release 0.8.9

• CHANGE: improved exception management, in the future ezdxf should only raise exceptions inherited from
DXFError for DXF related errors, previous exception classes still work

– DXFValueError(DXFError, ValueError)

– DXFKeyError(DXFError, KeyError)

– DXFAttributeError(DXFError, AttributeError)

– DXFIndexError(DXFError, IndexError)

– DXFTableEntryError(DXFValueError)

• speedup low level tag reader around 5%, and speedup tag compiler around 5%

Version 0.8.3 - 2018-01-02

• CHANGE: Lwpolyline - suppress yielding z coordinates if they exists (DXFStructureError: z coordinates are
not defined in the DXF standard)

• NEW: setup creates a script called ‘dxfpp’ (DXF Pretty Printer) in the Python script folder

• NEW: basic support for DXF format AC1032 introduced by AutoCAD 2018

• NEW: ezdxf use logging and writes all logs to a logger called ‘ezdxf’. Logging setup is the domain of the
application!

• NEW: warns about multiple block definitions with the same name in a DXF file. (DXFStructureError)

• NEW: legacy_mode parameter in ezdxf.read() and ezdxf.readfile(): tries do fix coordinate order in LINE entities
(10, 11, 20, 21) by the cost of around 5% overall speed penalty at DXF file loading

Version 0.8.2 - 2017-05-01

• NEW: Insert.delete_attrib(tag) - delete ATTRIB entities from the INSERT entity

• NEW: Insert.delete_all_attribs() - delete all ATTRIB entities from the INSERT entity

• BUGFIX: setting attribs_follow=1 at INSERT entity before adding an attribute entity works

Version 0.8.1 - 2017-04-06

• NEW: added support for constant ATTRIB/ATTDEF to the INSERT (block reference) entity

• NEW: added ATTDEF management methods to BlockLayout (has_attdef, get_attdef, get_attdef_text)

• NEW: added (read/write) properties to ATTDEF/ATTRIB for setting flags (is_const, is_invisible, is_verify,
is_preset)

Version 0.8.0 - 2017-03-28

• added groupby(dxfattrib=’‘, key=None) entity query function, it is supported by all layouts and the query result
container: Returns a dict, where entities are grouped by a dxfattrib or the result of a key function.

• added ezdxf.audit() for DXF error checking for drawings created by ezdxf - but not very capable yet

• dxfattribs in factory functions like add_line(dxfattribs=. . .), now are copied internally and stay unchanged, so
they can be reused multiple times without getting modified by ezdxf.

• removed deprecated Drawing.create_layout() -> Drawing.new_layout()

• removed deprecated Layouts.create() -> Layout.new()

• removed deprecated Table.create() -> Table.new()

• removed deprecated DXFGroupTable.add() -> DXFGroupTable.new()

• BUFIX in EntityQuery.extend()

205

ezdxf Documentation, Release 0.8.9

5.1 Indices and tables

• genindex

• search

206 Chapter 5. News

Python Module Index

e
ezdxf.addons, 150
ezdxf.algebra, 129
ezdxf.lldxf, 138

207

ezdxf Documentation, Release 0.8.9

208 Python Module Index

Index

Symbols
__abs__() (ezdxf.algebra.Vector method), 131
__add__() (ezdxf.algebra.Vector method), 132
__bool__() (ezdxf.algebra.Vector method), 132
__contains__() (BlocksSection method), 105
__contains__() (DXFGroup method), 112
__contains__() (DXFGroupTable method), 113
__contains__() (Layout method), 58
__contains__() (Layouts method), 56
__contains__() (Table method), 45
__copy__() (ezdxf.algebra.Matrix44 method), 133
__copy__() (ezdxf.algebra.Vector method), 131
__deepcopy__() (ezdxf.algebra.Vector method), 131
__delitem__() (LWPolyline method), 81
__div__() (ezdxf.algebra.Vector method), 132
__eq__() (ezdxf.algebra.Vector method), 132
__getitem__() (BlocksSection method), 105
__getitem__() (Face method), 75
__getitem__() (HeaderSection method), 43
__getitem__() (LWPolyline method), 80
__getitem__() (MeshVertexCache method), 74
__getitem__() (Polyline method), 72
__getitem__() (ezdxf.algebra.Matrix44 method), 134
__getitem__() (ezdxf.algebra.Vector method), 131
__getitem__() (ezdxf.lldxf.DXFTag method), 138
__getitem__() (ezdxf.lldxf.DXFVertex method), 139
__hash__() (ezdxf.algebra.Vector method), 131
__iadd__() (MTextData method), 83
__imul__() (ezdxf.algebra.Matrix44 method), 134
__init__() (EntityQuery method), 120
__init__() (Importer method), 117
__init__() (R12FastStreamWriter method), 123
__init__() (ezdxf.addons.EulerSpiral method), 150
__init__() (ezdxf.addons.MengerSponge method), 145
__init__() (ezdxf.addons.R12Spline method), 148
__init__() (ezdxf.addons.SierpinskyPyramid method),

146
__init__() (ezdxf.addons.Spline method), 147
__init__() (ezdxf.algebra.OCS method), 127

__init__() (ezdxf.algebra.UCS method), 127
__iter__() (BlocksSection method), 105
__iter__() (CustomVars method), 44
__iter__() (DXFGroup method), 112
__iter__() (DXFGroupTable method), 113
__iter__() (Face method), 75
__iter__() (Layout method), 58
__iter__() (Layouts method), 56
__iter__() (Table method), 45
__iter__() (ezdxf.algebra.Matrix44 method), 134
__iter__() (ezdxf.algebra.Vector method), 131
__iter__() (ezdxf.lldxf.DXFTag method), 138
__iter__() (ezdxf.lldxf.DXFVertex method), 139
__len__() (CustomVars method), 44
__len__() (DXFGroup method), 112
__len__() (DXFGroupTable method), 113
__len__() (Face method), 75
__len__() (LWPolyline method), 80
__len__() (Layouts method), 56
__len__() (Polyline method), 72
__len__() (Table method), 45
__len__() (ezdxf.algebra.Vector method), 131
__lt__() (ezdxf.algebra.Vector method), 132
__mul__() (ezdxf.algebra.Matrix44 method), 134
__mul__() (ezdxf.algebra.Vector method), 132
__neg__() (ezdxf.algebra.Vector method), 132
__radd__() (ezdxf.algebra.Vector method), 132
__rdiv__() (ezdxf.algebra.Vector method), 132
__repr__() (ezdxf.algebra.Matrix44 method), 133
__repr__() (ezdxf.algebra.Vector method), 131
__repr__() (ezdxf.lldxf.DXFTag method), 138
__repr__() (ezdxf.lldxf.DXFVertex method), 139
__rmul__() (ezdxf.algebra.Vector method), 132
__rsub__() (ezdxf.algebra.Vector method), 132
__rtruediv__() (ezdxf.algebra.Vector method), 132
__setitem__() (HeaderSection method), 43
__setitem__() (LWPolyline method), 80
__setitem__() (MeshVertexCache method), 74
__setitem__() (ezdxf.algebra.Matrix44 method), 134
__str__() (ModelerGeometryData method), 98

209

ezdxf Documentation, Release 0.8.9

__str__() (ezdxf.algebra.Vector method), 131
__str__() (ezdxf.lldxf.DXFTag method), 138
__str__() (ezdxf.lldxf.DXFVertex method), 139
__sub__() (ezdxf.algebra.Vector method), 132
__truediv__() (ezdxf.algebra.Vector method), 132
3DFace (built-in class), 76
3DSolid (built-in class), 99

A
acad_version (Drawing attribute), 39
add_3dface() (Layout method), 58
add_3dface() (R12FastStreamWriter method), 124
add_3dsolid() (Layout method), 61
add_arc() (EdgePath method), 88
add_arc() (Layout method), 58
add_arc() (R12FastStreamWriter method), 123
add_attdef() (BlockLayout method), 62
add_attrib() (Insert method), 108
add_attrib() (Layout method), 59
add_auto_blockref() (Layout method), 59
add_blockref() (Layout method), 58
add_body() (Layout method), 61
add_circle() (Layout method), 58
add_circle() (R12FastStreamWriter method), 123
add_closed_rational_spline() (Layout method), 60
add_closed_spline() (Layout method), 59
add_edge() (ezdxf.addons.MeshBuilder method), 142
add_edge() (MeshData method), 92
add_edge_path() (BoundaryPathData method), 87
add_ellipse() (EdgePath method), 88
add_ellipse() (Layout method), 58
add_entity() (Layout method), 61
add_face() (ezdxf.addons.MeshBuilder method), 142
add_face() (MeshData method), 92
add_hatch() (Layout method), 61
add_image() (Layout method), 61
add_image_def() (Drawing method), 41
add_line() (EdgePath method), 88
add_line() (Layout method), 58
add_line() (PatternData method), 91
add_line() (R12FastStreamWriter method), 123
add_lwpolyline() (Layout method), 59
add_mesh() (ezdxf.addons.MeshBuilder method), 142
add_mtext() (Layout method), 59
add_open_spline() (Layout method), 59
add_point() (Layout method), 58
add_point() (R12FastStreamWriter method), 124
add_polyface() (Layout method), 59
add_polyline() (R12FastStreamWriter method), 124
add_polyline2d() (Layout method), 59
add_polyline3d() (Layout method), 59
add_polyline_path() (BoundaryPathData method), 87
add_polymesh() (Layout method), 59
add_rational_spline() (Layout method), 59

add_ray() (Layout method), 59
add_region() (Layout method), 61
add_shape() (Layout method), 59
add_solid() (Layout method), 58
add_solid() (R12FastStreamWriter method), 124
add_spline() (EdgePath method), 89
add_spline() (Layout method), 59
add_spline_approx() (Layout method), 60
add_spline_control_frame() (Layout method), 60
add_text() (Layout method), 58
add_text() (R12FastStreamWriter method), 125
add_to_layout() (ezdxf.algebra.Arc method), 138
add_trace() (Layout method), 58
add_underlay() (Layout method), 61
add_underlay_def() (Drawing method), 42
add_vertices() (ezdxf.addons.MeshBuilder method), 142
add_vertices() (ezdxf.addons.MeshVertexMerger

method), 143
add_xline() (Layout method), 59
add_xref_def() (Drawing method), 42
adjust_for_background (Underlay attribute), 105
align_angle (ExtrudedSurface.dxf attribute), 100
align_angle (SweptSurface.dxf attribute), 103
align_direction (LoftedSurface.dxf attribute), 101
align_point (AttDef.dxf attribute), 109
align_point (Attrib.dxf attribute), 110
align_point (Text.dxf attribute), 68
align_start (ExtrudedSurface.dxf attribute), 100
align_start (SweptSurface.dxf attribute), 103
angle (PatternDefinitionLine attribute), 91
angle_between() (ezdxf.algebra.Vector method), 132
angle_deg (ezdxf.algebra.Vector attribute), 130
angle_rad (ezdxf.algebra.Vector attribute), 130
append() (CustomVars method), 44
append() (LWPolyline method), 80
append() (MTextData method), 83
append_face() (Polyface method), 74
append_faces() (Polyface method), 74
append_points() (LWPolyline method), 80
append_vertices() (Polyline method), 72
AppID (built-in class), 54
appids (Drawing attribute), 41
approximate() (ezdxf.addons.R12Spline method), 149
approximate() (ezdxf.algebra.BSpline method), 135
Arc (built-in class), 67
Arc (class in ezdxf.algebra), 136
arc_length_parameterization (LoftedSurface.dxf at-

tribute), 101
arc_to_bulge() (in module ezdxf.algebra), 126
ArcEdge (built-in class), 89
aspect_ratio (VPort.dxf attribute), 53
associative (Hatch.dxf attribute), 84
attachment_point (MText.dxf attribute), 81
Attdef (built-in class), 108

210 Index

ezdxf Documentation, Release 0.8.9

attdefs() (BlockLayout method), 62
Attrib (built-in class), 110
attribs() (Insert method), 108
axis_point (RevolvedSurface.dxf attribute), 102
axis_rotate() (ezdxf.algebra.Matrix44 method), 133
axis_vector (RevolvedSurface.dxf attribute), 102

B
back_clipping (View.dxf attribute), 54
back_clipping (VPort.dxf attribute), 53
bank (ExtrudedSurface.dxf attribute), 100
bank (SweptSurface.dxf attribute), 103
base_point (Block.dxf attribute), 106
base_point (PatternDefinitionLine attribute), 91
base_point_set (ExtrudedSurface.dxf attribute), 100
base_point_set (SweptSurface.dxf attribute), 103
basis_values() (ezdxf.algebra.BSpline method), 135
Bezier (class in ezdxf.addons), 149
bgcolor (Hatch attribute), 85
bigfont (Style.dxf attribute), 48
blend_crease (Mesh.dxf attribute), 92
block (BlockLayout attribute), 62
Block (built-in class), 106
block_record (GeoData.dxf attribute), 116
BlockLayout (built-in class), 62
BlockRecord (built-in class), 55
blocks (Drawing attribute), 40
BlocksSection (built-in class), 105
Body (built-in class), 98
BoundaryPathData (built-in class), 87
brightness (Image.dxf attribute), 96
BSpline (class in ezdxf.algebra), 135, 136
bspline_control_frame() (in module ezdxf.algebra), 125
BSplineClosed (class in ezdxf.algebra), 136
bulge (Vertex.dxf attribute), 72
bulge_3_points() (in module ezdxf.algebra), 127
bulge_center() (in module ezdxf.algebra), 126
bulge_radius() (in module ezdxf.algebra), 126
bulge_to_arc() (in module ezdxf.algebra), 126

C
center (Arc.dxf attribute), 67
center (ArcEdge attribute), 89
center (Circle.dxf attribute), 67
center (Ellipse.dxf attribute), 77
center (ezdxf.algebra.Arc attribute), 136
center_point (View.dxf attribute), 54
center_point (VPort.dxf attribute), 53
centered (GradientData attribute), 91
chain() (ezdxf.algebra.Matrix44 method), 134
chain_layouts_and_blocks() (Drawing method), 41
char_height (MText.dxf attribute), 81
check_entity_tag_structures (ezdxf.options attribute), 39
Circle (built-in class), 66

circle() (in module ezdxf.addons), 143
circle_zoom (VPort.dxf attribute), 53
class_id (ExtrudedSurface.dxf attribute), 100
class_id (RevolvedSurface.dxf attribute), 102
cleanup() (Drawing method), 42
cleanup() (DXFGroupTable method), 113
clear() (BoundaryPathData method), 87
clear() (CustomVars method), 44
clear() (DXFGroup method), 113
clear() (DXFGroupTable method), 113
clear() (EdgePath method), 88
clear() (LWPolyline method), 80
clear() (PatternData method), 91
clear() (PolylinePath method), 88
clip_mode (Image.dxf attribute), 97
clipping (Image.dxf attribute), 96
clipping (Underlay attribute), 105
clipping_boundary_type (Image.dxf attribute), 96
clone() (ezdxf.lldxf.DXFTag method), 138
clone() (ezdxf.lldxf.DXFVertex method), 139
close() (Polyline method), 71
close() (R12FastStreamWriter method), 123
close_to_axis (RevolvedSurface.dxf attribute), 102
closed (LWPolyline attribute), 79
closed (Spline attribute), 94
closed_surfaces (LoftedSurface.dxf attribute), 101
code (ezdxf.lldxf.DXFTag attribute), 138
code (ezdxf.lldxf.DXFVertex attribute), 139
collect_consecutive_tags() (ezdxf.lldxf.Tags method),

140
color (GraphicEntity.dxf attribute), 64, 65
color (Layer.dxf attribute), 46
color1 (GradientData attribute), 91
color2 (GradientData attribute), 91
color_name (GraphicEntity.dxf attribute), 65
column_count (Insert.dxf attribute), 108
column_spacing (Insert.dxf attribute), 108
columns() (ezdxf.algebra.Matrix44 method), 135
compress_binary_data (ezdxf.options attribute), 39
compress_binary_data() (Drawing method), 42
cone() (in module ezdxf.addons), 144
const_width (LWPolyline.dxf attribute), 79
contrast (Image.dxf attribute), 96
contrast (underlay.dxf attribute), 104
control_point_tolerance (Spline.dxf attribute), 94
control_points (ezdxf.algebra.BSpline attribute), 135
control_points (Spline attribute), 94
control_points (SplineData attribute), 95
control_points (SplineEdge attribute), 90
ControlPoints (built-in class), 95
coordinate_projection_radius (GeoData.dxf attribute),

116
coordinate_type (GeoData.dxf attribute), 116
copy() (DXFObject method), 114

Index 211

ezdxf Documentation, Release 0.8.9

copy() (ezdxf.algebra.Matrix44 method), 133
copy() (ezdxf.algebra.Vector method), 131
copy() (GraphicEntity method), 63
copy_to_layout() (GraphicEntity method), 63
count (ezdxf.algebra.BSpline attribute), 135
count (LWPolyline.dxf attribute), 79
count_boundary_points (Image.dxf attribute), 97
cross() (ezdxf.algebra.Vector method), 132
cube() (in module ezdxf.addons), 144
cubes() (ezdxf.addons.MengerSponge method), 146
custom_vars (HeaderSection attribute), 43
CustomVars (built-in class), 43
cylinder() (in module ezdxf.addons), 144

D
dash_length_items (PatternDefinitionLine attribute), 91
DBSpline (class in ezdxf.algebra), 136
DBSplineClosed (class in ezdxf.algebra), 136
DBSplineU (class in ezdxf.algebra), 136
default_end_width (Polyline.dxf attribute), 70
default_start_width (Polyline.dxf attribute), 70
degree (ezdxf.algebra.BSpline attribute), 135
degree (Spline.dxf attribute), 93
degree (SplineEdge attribute), 90
del_dxf_attrib() (DXFObject method), 114
del_dxf_attrib() (GraphicEntity method), 64
delete() (DXFGroupTable method), 113
delete() (Layouts method), 56
delete_all_attribs() (Insert method), 108
delete_all_blocks() (BlockSection method), 106
delete_all_entities() (Layout method), 62
delete_attrib() (Insert method), 108
delete_block() (BlockSection method), 106
delete_entity() (Layout method), 62
delete_layout() (Drawing method), 41
delete_vertices() (Polyline method), 72
description (Linetype.dxf attribute), 48
design_point (GeoData.dxf attribute), 116
determinant() (ezdxf.algebra.Matrix44 method), 135
dimadec (DimStyle.dxf attribute), 51
dimalt (DimStyle.dxf attribute), 50
dimaltd (DimStyle.dxf attribute), 51
dimaltf (DimStyle.dxf attribute), 50
dimaltrnd (DimStyle.dxf attribute), 50
dimalttd (DimStyle.dxf attribute), 51
dimalttz (DimStyle.dxf attribute), 52
dimaltu (DimStyle.dxf attribute), 51
dimaltz (DimStyle.dxf attribute), 52
dimapost (DimStyle.dxf attribute), 49
dimasz (DimStyle.dxf attribute), 49
dimatfit (DimStyle.dxf attribute), 52
dimaunit (DimStyle.dxf attribute), 51
dimazin (DimStyle.dxf attribute), 50
dimblk (DimStyle.dxf attribute), 49

dimblk1 (DimStyle.dxf attribute), 49
dimblk1_handle (DimStyle.dxf attribute), 52
dimblk2 (DimStyle.dxf attribute), 49
dimblk2_handle (DimStyle.dxf attribute), 52
dimblk_handle (DimStyle.dxf attribute), 52
dimcen (DimStyle.dxf attribute), 50
dimclrd (DimStyle.dxf attribute), 51
dimclre (DimStyle.dxf attribute), 51
dimclrt (DimStyle.dxf attribute), 51
dimdec (DimStyle.dxf attribute), 51
dimdle (DimStyle.dxf attribute), 49
dimdli (DimStyle.dxf attribute), 49
dimdsep (DimStyle.dxf attribute), 51
dimexe (DimStyle.dxf attribute), 49
dimexo (DimStyle.dxf attribute), 49
dimfit (DimStyle.dxf attribute), 52
dimfrac (DimStyle.dxf attribute), 51
dimgap (DimStyle.dxf attribute), 50
dimjust (DimStyle.dxf attribute), 52
dimldrblk_handle (DimStyle.dxf attribute), 52
dimlfac (DimStyle.dxf attribute), 50
dimlim (DimStyle.dxf attribute), 50
dimlunit (DimStyle.dxf attribute), 51
dimlwd (DimStyle.dxf attribute), 52
dimlwe (DimStyle.dxf attribute), 52
dimpost (DimStyle.dxf attribute), 49
dimrnd (DimStyle.dxf attribute), 49
dimsah (DimStyle.dxf attribute), 51
dimscale (DimStyle.dxf attribute), 49
dimsd1 (DimStyle.dxf attribute), 52
dimsd2 (DimStyle.dxf attribute), 52
dimse1 (DimStyle.dxf attribute), 50
dimse2 (DimStyle.dxf attribute), 50
dimsoxd (DimStyle.dxf attribute), 51
DimStyle (built-in class), 48
dimstyles (Drawing attribute), 40
dimtad (DimStyle.dxf attribute), 50
dimtdec (DimStyle.dxf attribute), 51
dimtfac (DimStyle.dxf attribute), 50
dimtih (DimStyle.dxf attribute), 50
dimtix (DimStyle.dxf attribute), 51
dimtm (DimStyle.dxf attribute), 49
dimtmove (DimStyle.dxf attribute), 52
dimtofl (DimStyle.dxf attribute), 51
dimtoh (DimStyle.dxf attribute), 50
dimtol (DimStyle.dxf attribute), 50
dimtolj (DimStyle.dxf attribute), 52
dimtp (DimStyle.dxf attribute), 49
dimtsz (DimStyle.dxf attribute), 50
dimtvp (DimStyle.dxf attribute), 50
dimtxsty_handle (DimStyle.dxf attribute), 52
dimtxt (DimStyle.dxf attribute), 49
dimunit (DimStyle.dxf attribute), 51
dimupt (DimStyle.dxf attribute), 52

212 Index

ezdxf Documentation, Release 0.8.9

dimzin (DimStyle.dxf attribute), 50
direction_point (View.dxf attribute), 54
direction_point (VPort.dxf attribute), 53
distance() (ezdxf.algebra.Vector method), 132
dot() (ezdxf.algebra.Vector method), 132
draft_angle (ExtrudedSurface.dxf attribute), 100
draft_angle (RevolvedSurface.dxf attribute), 102
draft_angle (SweptSurface.dxf attribute), 103
draft_end_distance (ExtrudedSurface.dxf attribute), 100
draft_end_distance (SweptSurface.dxf attribute), 103
draft_start_distance (ExtrudedSurface.dxf attribute), 100
draft_start_distance (SweptSurface.dxf attribute), 103
Drawing (built-in class), 39
drawing (DXFObject attribute), 113
drawing (GraphicEntity attribute), 63
dxf (DXFObject attribute), 113
dxf (GraphicEntity attribute), 63
dxf_attrib_exists() (DXFObject method), 114
dxf_attrib_exists() (GraphicEntity method), 64
dxfattribs() (DXFObject method), 114
dxfattribs() (GraphicEntity method), 64
DXFBinaryTag (class in ezdxf.lldxf), 139
dxffactory (Drawing attribute), 40
dxffactory (DXFObject attribute), 113
dxffactory (GraphicEntity attribute), 63
DXFGroup (built-in class), 112
DXFGroupTable (built-in class), 113
DXFObject (built-in class), 113
dxfstr() (ezdxf.lldxf.DXFTag method), 138
dxfstr() (ezdxf.lldxf.DXFVertex method), 139
DXFTag (class in ezdxf.lldxf), 138
dxftags() (ezdxf.lldxf.DXFVertex method), 139
dxftype() (DXFObject method), 113
dxftype() (ezdxf.lldxf.Tags method), 140
dxftype() (GraphicEntity method), 63
dxfversion (Drawing attribute), 39
DXFVertex (class in ezdxf.lldxf), 139

E
edge_crease_values (MeshData attribute), 92
EdgePath (built-in class), 88
edges (EdgePath attribute), 88
edges (MeshData attribute), 92
edit_boundary() (Hatch method), 85
edit_data() (3DSolid method), 99
edit_data() (Body method), 98
edit_data() (DXFGroup method), 112
edit_data() (Mesh method), 92
edit_data() (MText method), 82
edit_data() (Region method), 99
edit_data() (Spline method), 95
edit_data() (Surface method), 100
edit_gradient() (Hatch method), 86
edit_pattern() (Hatch method), 85

elevation (Hatch.dxf attribute), 84
elevation (LWPolyline.dxf attribute), 79
elevation (Polyline.dxf attribute), 70
Ellipse (built-in class), 77
ellipse() (in module ezdxf.addons), 143
EllipseEdge (built-in class), 90
encoding (Drawing attribute), 39
end (Line.dxf attribute), 66
end (LineEdge attribute), 89
end_angle (Arc.dxf attribute), 67
end_angle (ArcEdge attribute), 89
end_angle (EllipseEdge attribute), 90
end_angle (ezdxf.algebra.Arc attribute), 137
end_angle_rad (ezdxf.algebra.Arc attribute), 137
end_draft_angle (LoftedSurface.dxf attribute), 101
end_draft_distance (RevolvedSurface.dxf attribute), 102
end_draft_magnitude (LoftedSurface.dxf attribute), 101
end_param (Ellipse.dxf attribute), 78
end_tangent (Spline.dxf attribute), 94
end_tangent (SplineEdge attribute), 90
end_width (Vertex.dxf attribute), 72
entities (Drawing attribute), 40
EntityQuery (built-in class), 120
euler_spiral() (in module ezdxf.addons), 144
EulerSpiral (class in ezdxf.addons), 150
extend() (DXFGroup method), 112
extend() (EntityQuery method), 120
ExtendedTags (class in ezdxf.lldxf), 141
extrude() (in module ezdxf.addons), 145
ExtrudedSurface (built-in class), 100
extrusion (GraphicEntity.dxf attribute), 64, 65
extrusion (underlay.dxf attribute), 104
ezdxf.addons (module), 142, 143, 147, 150
ezdxf.algebra (module), 125, 127, 129, 132, 135, 136
ezdxf.lldxf (module), 138
ezdxf.new() (built-in function), 38
ezdxf.read() (built-in function), 38
ezdxf.readfile() (built-in function), 38

F
Face (built-in class), 75
face_record (Face attribute), 75
faces (MeshData attribute), 92
faces() (Polyface method), 74
fade (Image.dxf attribute), 96
fade (underlay.dxf attribute), 104
fast_mul() (ezdxf.algebra.Matrix44 method), 134
fast_zoom (VPort.dxf attribute), 53
field_length (AttDef.dxf attribute), 109
filename (Drawing attribute), 40
filename (ImageDef.dxf attribute), 115
filename (UnderlayDefinition.dxf attribute), 115
find_all() (ezdxf.lldxf.Tags method), 140
find_shx() (StyleTable method), 45

Index 213

ezdxf Documentation, Release 0.8.9

fit_points (Spline attribute), 94
fit_points (SplineData attribute), 95
fit_points (SplineEdge attribute), 90
fit_tolerance (Spline.dxf attribute), 94
FitPoints (built-in class), 95
flags (AppID.dxf attribute), 55
flags (Block.dxf attribute), 106
flags (DimStyle.dxf attribute), 49
flags (Image.dxf attribute), 96
flags (Layer.dxf attribute), 46
flags (LWPolyline.dxf attribute), 79
flags (Polyline.dxf attribute), 70
flags (Spline.dxf attribute), 93
flags (Style.dxf attribute), 47
flags (UCS.dxf attribute), 55
flags (underlay.dxf attribute), 104
flags (Vertex.dxf attribute), 73
flags (View.dxf attribute), 54
flags (VPort.dxf attribute), 53
flow_direction (MText.dxf attribute), 81
font (Style.dxf attribute), 48
freeze() (Layer method), 46
from_2p_angle() (ezdxf.algebra.Arc method), 137
from_2p_radius() (ezdxf.algebra.Arc method), 137
from_3p() (ezdxf.algebra.Arc method), 137
from_deg_angle() (ezdxf.algebra.Vector method), 131
from_mesh() (ezdxf.addons.MeshBuilder method), 143
from_profiles_linear() (in module ezdxf.addons), 145
from_profiles_spline() (in module ezdxf.addons), 145
from_rad_angle() (ezdxf.algebra.Vector method), 131
from_text() (ezdxf.lldxf.Tags method), 139
from_wcs() (ezdxf.algebra.OCS method), 127
from_wcs() (ezdxf.algebra.UCS method), 128
from_x_axis_and_point_in_xy() (ezdxf.algebra.UCS

method), 128
from_x_axis_and_point_in_xz() (ezdxf.algebra.UCS

method), 128
from_y_axis_and_point_in_xy() (ezdxf.algebra.UCS

method), 128
from_y_axis_and_point_in_yz() (ezdxf.algebra.UCS

method), 128
from_z_axis_and_point_in_xz() (ezdxf.algebra.UCS

method), 129
from_z_axis_and_point_in_yz() (ezdxf.algebra.UCS

method), 129
front_clipping (View.dxf attribute), 54
front_clipping (VPort.dxf attribute), 53

G
generate() (ezdxf.algebra.Vector method), 131
geo_rss_tag (GeoData.dxf attribute), 116
GeoData (built-in class), 115
get() (BlocksSection method), 105
get() (CustomVars method), 44

get() (DXFGroupTable method), 113
get() (Layouts method), 56
get() (Table method), 44
get_acis_data() (3DSolid method), 99
get_acis_data() (Body method), 98
get_acis_data() (Region method), 98
get_acis_data() (Surface method), 100
get_align() (Attdef method), 110
get_align() (Attrib method), 111
get_align() (Text method), 69
get_attdef() (BlockLayout method), 62
get_attdef_text() (BlockLayout method), 63
get_attrib() (Insert method), 108
get_attrib_text() (Insert method), 108
get_boundary() (Image method), 97
get_boundary() (Underlay method), 105
get_col() (ezdxf.algebra.Matrix44 method), 133
get_color() (Layer method), 47
get_config() (ViewportTable method), 45
get_coordinate_system_definition() (GeoData method),

117
get_dxf_attrib() (DXFObject method), 114
get_dxf_attrib() (GraphicEntity method), 63
get_dxf_entity() (Drawing method), 43
get_first_tag() (ezdxf.lldxf.Tags method), 140
get_first_value() (ezdxf.lldxf.Tags method), 140
get_flag_state() (DXFObject method), 114
get_flag_state() (GraphicEntity method), 64
get_geodata() (Modelspace method), 62
get_gradient() (Hatch method), 86
get_handle() (ezdxf.lldxf.Tags method), 139
get_image_def() (Image method), 97
get_layout() (GraphicEntity method), 64
get_mesh_data() (GeoData method), 117
get_mesh_vertex() (Polymesh method), 73
get_mesh_vertex_cache() (Polymesh method), 73
get_mode() (Polyline method), 71
get_name() (DXFGroup method), 112
get_ocs() (GraphicEntity method), 64
get_paper_limits() (Layout method), 57
get_path_entity_transformation_matrix() (ExtrudedSur-

face method), 101
get_path_entity_transformation_matrix() (SweptSurface

method), 103
get_points() (LWPolyline method), 79
get_pos() (Attdef method), 110
get_pos() (Attrib method), 111
get_pos() (Text method), 69
get_redraw_order() (Layout method), 61
get_rotation() (MText method), 82
get_row() (ezdxf.algebra.Matrix44 method), 133
get_seed_points() (Hatch method), 86
get_shx() (StyleTable method), 45

214 Index

ezdxf Documentation, Release 0.8.9

get_sweep_entity_transformation_matrix() (Extruded-
Surface method), 101

get_sweep_entity_transformation_matrix() (SweptSur-
face method), 103

get_text() (MText method), 82
get_transformation_matrix_extruded_entity() (Extruded-

Surface method), 101
get_transformation_matrix_lofted_entity() (LoftedSur-

face method), 102
get_transformation_matrix_path_entity() (SweptSurface

method), 103
get_transformation_matrix_revolved_entity() (Revolved-

Surface method), 102
get_transformation_matrix_sweep_entity() (SweptSur-

face method), 103
get_transpose() (ezdxf.algebra.Matrix44 method), 135
get_underlay_def() (Underlay method), 105
GradientData (built-in class), 91
GraphicEntity (built-in class), 63
grid() (Insert method), 108
grid_on (VPort.dxf attribute), 53
grid_spacing (VPort.dxf attribute), 53
groupby() (EntityQuery method), 120
groupby() (Layout method), 58
groups (Drawing attribute), 40
groups() (DXFGroupTable method), 113

H
halign (AttDef.dxf attribute), 109
halign (Attrib.dxf attribute), 111
halign (Text.dxf attribute), 68
handle (AppID.dxf attribute), 54
handle (BlockRecord.dxf attribute), 55
handle (DimStyle.dxf attribute), 48
handle (DXFObject.dxf attribute), 114
handle (GraphicEntity.dxf attribute), 64, 65
handle (Layer.dxf attribute), 46
handle (Style.dxf attribute), 47
handle (UCS.dxf attribute), 55
handle (View.dxf attribute), 54
handle (VPort.dxf attribute), 53
handles() (DXFGroup method), 112
has_attdef() (BlockLayout method), 62
has_attrib() (Insert method), 108
has_entry() (Table method), 45
has_gradient_fill (Hatch attribute), 85
has_pattern_fill (Hatch attribute), 85
has_solid_fill (Hatch attribute), 85
has_tag() (CustomVars method), 44
has_tag() (ezdxf.lldxf.Tags method), 140
Hatch (built-in class), 84
hatch_style (Hatch.dxf attribute), 84
header (Drawing attribute), 40
HeaderSection (built-in class), 43

height (AttDef.dxf attribute), 109
height (Attrib.dxf attribute), 111
height (Style.dxf attribute), 47
height (Text.dxf attribute), 68
height (View.dxf attribute), 54
height (VPort.dxf attribute), 53
history (3DSolid.dxf attribute), 99
horizontal_unit_scale (GeoData.dxf attribute), 116
horizontal_units (GeoData.dxf attribute), 116

I
Image (built-in class), 96
image_def (Image.dxf attribute), 96
image_size (Image.dxf attribute), 96
image_size (ImageDef.dxf attribute), 115
ImageDef (built-in class), 114
import_all() (Importer method), 119
import_blocks() (Importer method), 118
import_modelspace_entities() (Importer method), 119
import_table() (Importer method), 118
import_tables() (Importer method), 118
Importer (built-in class), 117
indexed_faces() (Polyface method), 74
indices (Face attribute), 75
insert (AttDef.dxf attribute), 109
insert (Attrib.dxf attribute), 110
Insert (built-in class), 107
insert (Image.dxf attribute), 96
insert (Insert.dxf attribute), 107
insert (MText.dxf attribute), 81
insert (Shape.dxf attribute), 69
insert (Text.dxf attribute), 68
insert (underlay.dxf attribute), 104
insert() (LWPolyline method), 80
insert_vertices() (Polyline method), 72
inverse() (ezdxf.algebra.Matrix44 method), 135
invisible (GraphicEntity.dxf attribute), 65
invisible_edge (3DFace.dxf attribute), 77
is_2d_polyline (Polyline attribute), 71
is_3d_polyline (Polyline attribute), 71
is_binary_data_compressed (Drawing attribute), 41
is_close() (in module ezdxf.algebra), 125
is_close_points() (in module ezdxf.algebra), 125
is_closed (Polyline attribute), 71
is_closed (PolylinePath attribute), 87
is_compatible() (Importer method), 119
is_const (Attdef attribute), 110
is_const (Attrib attribute), 111
is_counter_clockwise (ArcEdge attribute), 89
is_counter_clockwise (EllipseEdge attribute), 90
is_edge_visible() (Face method), 75
is_frozen() (Layer method), 46
is_invisibe (Attrib attribute), 111
is_invisible (Attdef attribute), 110

Index 215

ezdxf Documentation, Release 0.8.9

is_layout_block (Block attribute), 107
is_layout_block (BlockLayout attribute), 62
is_locked() (Layer method), 46
is_m_closed (Polyline attribute), 71
is_n_closed (Polyline attribute), 71
is_null (ezdxf.algebra.Vector attribute), 130
is_off() (Layer method), 47
is_on() (Layer method), 47
is_poly_face_mesh (Polyline attribute), 71
is_polygon_mesh (Polyline attribute), 71
is_preset (Attdef attribute), 110
is_preset (Attrib attribute), 111
is_verify (Attdef attribute), 110
is_verify (Attrib attribute), 111
items (Linetype.dxf attribute), 48

K
knot_tolerance (Spline.dxf attribute), 93
knot_values (Spline attribute), 94
knot_values (SplineData attribute), 95
knot_values (SplineEdge attribute), 90
knot_values() (ezdxf.algebra.BSpline method), 135

L
last_height (Style.dxf attribute), 47
Layer (built-in class), 45
layer (GraphicEntity.dxf attribute), 64, 65
layers (Drawing attribute), 40
layout (BlockRecord.dxf attribute), 55
Layout (built-in class), 57
layout() (Drawing method), 41
layout_names() (Drawing method), 41
Layouts (built-in class), 56
layouts (Drawing attribute), 40
layouts_and_blocks() (Drawing method), 41
length (Linetype.dxf attribute), 48
lens_length (View.dxf attribute), 54
lens_length (VPort.dxf attribute), 53
lerp() (ezdxf.algebra.Vector method), 131
Line (built-in class), 66
line_spacing_factor (MText.dxf attribute), 82
line_spacing_style (MText.dxf attribute), 82
line_weight (Layer.dxf attribute), 46
LineEdge (built-in class), 89
lines (PatternData attribute), 90
Linetype (built-in class), 48
linetype (GraphicEntity.dxf attribute), 64, 65
linetype (Layer.dxf attribute), 46
linetypes (Drawing attribute), 41
lineweight (GraphicEntity.dxf attribute), 65
lineweight (Layer.dxf attribute), 46
list() (ezdxf.algebra.Vector method), 131
loaded (ImageDef.dxf attribute), 115
location (Point.dxf attribute), 66

location (Vertex.dxf attribute), 72
lock() (Layer method), 46
LoftedSurface (built-in class), 101
lower_left (VPort.dxf attribute), 53
ltscale (GraphicEntity.dxf attribute), 65
LWPolyline (built-in class), 78

M
m_close() (Polyline method), 71
m_count (Polyline.dxf attribute), 70
m_smooth_density (Polyline.dxf attribute), 70
magnitude (ezdxf.algebra.Vector attribute), 130
magnitude_square (ezdxf.algebra.Vector attribute), 130
major_axis (Ellipse.dxf attribute), 77
major_axis_vector (EllipseEdge attribute), 90
material (Layer.dxf attribute), 46
Matrix44 (class in ezdxf.algebra), 132
max_t (ezdxf.algebra.BSpline attribute), 135
MengerSponge (class in ezdxf.addons), 145
Mesh (built-in class), 91
mesh() (ezdxf.addons.MengerSponge method), 146
mesh() (ezdxf.addons.SierpinskyPyramid method), 147
mesh_faces_count (GeoData.dxf attribute), 117
MeshBuilder (class in ezdxf.addons), 142
MeshData (built-in class), 92
MeshVertexCache (built-in class), 74
MeshVertexMerger (class in ezdxf.addons), 143
minor_axis_length (EllipseEdge attribute), 90
Modelspace (built-in class), 62
modelspace() (Drawing method), 41
modelspace() (Layouts method), 56
monochrome (Underlay attribute), 105
move_to_layout() (GraphicEntity method), 63
MText (built-in class), 81
MText (class in ezdxf.addons), 150
MTextData (built-in class), 83

N
n_close() (Polyline method), 71
n_control_points (Spline.dxf attribute), 93
n_count (Polyline.dxf attribute), 70
n_fit_points (Spline.dxf attribute), 93
n_knots (Spline.dxf attribute), 93
n_seed_points (Hatch.dxf attribute), 84
n_smooth_density (Polyline.dxf attribute), 71
name (AppID.dxf attribute), 55
name (Block.dxf attribute), 106
name (BlockLayout attribute), 62
name (BlockRecord.dxf attribute), 55
name (DimStyle.dxf attribute), 48
name (Insert.dxf attribute), 107
name (Layer.dxf attribute), 46
name (Linetype.dxf attribute), 48
name (Shape.dxf attribute), 69

216 Index

ezdxf Documentation, Release 0.8.9

name (Style.dxf attribute), 47
name (UCS.dxf attribute), 55
name (UnderlayDefinition.dxf attribute), 115
name (View.dxf attribute), 54
name (VPort.dxf attribute), 53
name2 (Block.dxf attribute), 106
names() (Layouts method), 56
names_in_taborder() (Layouts method), 56
new() (BlocksSection method), 105
new() (DXFGroupTable method), 113
new() (ezdxf.query method), 121
new() (Layouts method), 56
new() (Table method), 44
new_anonymous_block() (BlocksSection method), 106
new_geodata() (Modelspace method), 62
new_layout() (Drawing method), 41
new_line() (PatternData method), 90
no_twist (LoftedSurface.dxf attribute), 101
normalize() (ezdxf.algebra.Vector method), 131
north_direction (GeoData.dxf attribute), 116

O
oblique (AttDef.dxf attribute), 109
oblique (Attrib.dxf attribute), 111
oblique (Shape.dxf attribute), 69
oblique (Style.dxf attribute), 47
oblique (Text.dxf attribute), 68
observation_from_tag (GeoData.dxf attribute), 117
observation_to_tag (GeoData.dxf attribute), 117
OCS (class in ezdxf.algebra), 127
off() (Layer method), 47
offset (PatternDefinitionLine. attribute), 91
on (Underlay attribute), 105
on() (Layer method), 47
one_color (GradientData attribute), 91
optimize() (MeshData method), 92
optimize() (Polyface method), 74
order (ezdxf.algebra.BSpline attribute), 135
origin (UCS.dxf attribute), 55
orthogonal() (ezdxf.algebra.Vector method), 131
owner (AppID.dxf attribute), 54
owner (BlockRecord.dxf attribute), 55
owner (DimStyle.dxf attribute), 48
owner (DXFObject.dxf attribute), 114
owner (GraphicEntity.dxf attribute), 65
owner (Layer.dxf attribute), 46
owner (Linetype.dxf attribute), 48
owner (Style.dxf attribute), 47
owner (UCS.dxf attribute), 55
owner (View.dxf attribute), 54
owner (VPort.dxf attribute), 53

P
page_setup() (Layout method), 57

Paperspace (built-in class), 62
paperspace (GraphicEntity.dxf attribute), 64, 65
path_entity_id (SweptSurface.dxf attribute), 103
path_entity_transform_computed (ExtrudedSurface.dxf

attribute), 100
path_entity_transform_computed (SweptSurface.dxf at-

tribute), 103
path_type_flags (EdgePath attribute), 88
path_type_flags (PolylinePath attribute), 87
paths (BoundaryPathData attribute), 87
pattern_angle (Hatch.dxf attribute), 84
pattern_double (Hatch.dxf attribute), 84
pattern_name (Hatch.dxf attribute), 84
pattern_scale (Hatch.dxf attribute), 84
pattern_type (Hatch.dxf attribute), 84
PatternData (built-in class), 90
PatternDefinitionLine (built-in class), 91
periodic (SplineEdge attribute), 90
perspective_projection() (ezdxf.algebra.Matrix44

method), 134
perspective_projection_fov() (ezdxf.algebra.Matrix44

method), 134
pixel_size (ImageDef.dxf attribute), 115
place() (Insert method), 108
plane_normal_lofting_type (LoftedSurface.dxf attribute),

101
plot (Layer.dxf attribute), 46
plot_style_name (Layer.dxf attribute), 46
Point (built-in class), 66
point() (ezdxf.algebra.BSpline method), 136
point() (ezdxf.algebra.DBSpline method), 136
points() (Face method), 75
points() (LWPolyline method), 80
points() (Polyline method), 72
points_from_wcs() (ezdxf.algebra.OCS method), 127
points_from_wcs() (ezdxf.algebra.UCS method), 128
points_to_wcs() (ezdxf.algebra.OCS method), 127
points_to_wcs() (ezdxf.algebra.UCS method), 128
Polyface (built-in class), 74
Polyline (built-in class), 70
PolylinePath (built-in class), 87
Polymesh (built-in class), 73
project() (ezdxf.algebra.Vector method), 131
prompt (AttDef.dxf attribute), 109
properties (CustomVars attribute), 43
pyramids() (ezdxf.addons.SierpinskyPyramid method),

147

Q
qroupby() (Drawing method), 43
query() (Drawing method), 42
query() (EntityQuery method), 120
query() (Layout method), 58

Index 217

ezdxf Documentation, Release 0.8.9

R
R12FastStreamWriter (built-in class), 123
r12writer() (built-in function), 123
radius (Arc.dxf attribute), 67
radius (ArcEdge attribute), 89
radius (Circle.dxf attribute), 67
radius (EllipseEdge attribute), 90
radius (ezdxf.algebra.Arc attribute), 136
ratio (Ellipse.dxf attribute), 77
rational (SplineEdge attribute), 90
Ray (built-in class), 97
reference_point (GeoData.dxf attribute), 116
reference_vector_for_controlling_twist (ExtrudedSur-

face.dxf attribute), 100
reference_vector_for_controlling_twist (SweptSur-

face.dxf attribute), 103
Region (built-in class), 98
remove() (CustomVars method), 44
remove() (EntityQuery method), 120
remove() (Table method), 44
remove_invalid_handles() (DXFGroup method), 113
remove_tags() (ezdxf.lldxf.Tags method), 140
remove_tags_except() (ezdxf.lldxf.Tags method), 140
rename() (Layouts method), 56
rename_block() (BlocksSection method), 106
render() (ezdxf.addons.Bezier method), 150
render() (ezdxf.addons.MengerSponge method), 146
render() (ezdxf.addons.MeshBuilder method), 142
render() (ezdxf.addons.R12Spline method), 149
render() (ezdxf.addons.SierpinskyPyramid method), 146
render_as_fit_points() (ezdxf.addons.Spline method), 147
render_closed_bspline() (ezdxf.addons.Spline method),

148
render_closed_rbspline() (ezdxf.addons.Spline method),

148
render_open_bspline() (ezdxf.addons.Spline method),

147
render_open_rbspline() (ezdxf.addons.Spline method),

148
render_polyline() (ezdxf.addons.EulerSpiral method),

150
render_spline() (ezdxf.addons.EulerSpiral method), 150
render_uniform_rbspline() (ezdxf.addons.Spline

method), 148
replace() (CustomVars method), 44
replace() (ezdxf.algebra.Vector method), 131
replace_handle() (ezdxf.lldxf.Tags method), 139
reset_boundary() (Image method), 97
reset_boundary() (Underlay method), 105
reset_extends() (Layout method), 57
reset_paper_limits() (Layout method), 57
reset_viewports() (Layout method), 57
resolution_units (ImageDef.dxf attribute), 115
reversed() (ezdxf.algebra.Vector method), 132

revolve_angle (RevolvedSurface.dxf attribute), 102
RevolvedSurface (built-in class), 102
rgb (GraphicEntity attribute), 63
rot_z_deg() (ezdxf.algebra.Vector method), 132
rot_z_rad() (ezdxf.algebra.Vector method), 132
rotation (AttDef.dxf attribute), 109
rotation (Attrib.dxf attribute), 111
rotation (GradientData attribute), 91
rotation (Insert.dxf attribute), 107
rotation (MText.dxf attribute), 82
rotation (Shape.dxf attribute), 69
rotation (Text.dxf attribute), 68
rotation (underlay.dxf attribute), 104
rotation_form() (in module ezdxf.addons), 145
row_count (Insert.dxf attribute), 107
row_spacing (Insert.dxf attribute), 107
rows() (ezdxf.algebra.Matrix44 method), 135
ruled_surface (LoftedSurface.dxf attribute), 101

S
save() (Drawing method), 42
saveas() (Drawing method), 42
scale (Underlay attribute), 105
scale() (ezdxf.addons.MeshBuilder method), 142
scale() (ezdxf.algebra.Matrix44 method), 133
scale_estimation_method (GeoData.dxf attribute), 116
scale_factor (ExtrudedSurface.dxf attribute), 100
scale_factor (SweptSurface.dxf attribute), 103
scale_x (underlay.dxf attribute), 104
scale_y (underlay.dxf attribute), 104
scale_z (underlay.dxf attribute), 104
sea_level_correction (GeoData.dxf attribute), 116
sea_level_elevation (GeoData.dxf attribute), 116
sections (Drawing attribute), 40
set() (ezdxf.algebra.Matrix44 method), 133
set_acis_data() (3DSolid method), 99
set_acis_data() (Body method), 98
set_acis_data() (Region method), 99
set_acis_data() (Surface method), 100
set_align() (Attdef method), 110
set_align() (Attrib method), 112
set_align() (Text method), 69
set_boundary() (Image method), 97
set_boundary() (Underlay method), 105
set_col() (ezdxf.algebra.Matrix44 method), 133
set_color() (Layer method), 47
set_color() (MTextData method), 83
set_control_points() (Spline method), 94
set_coordinate_system_definition() (GeoData method),

117
set_data() (DXFGroup method), 112
set_dxf_attrib() (DXFObject method), 114
set_dxf_attrib() (GraphicEntity method), 64
set_first() (ezdxf.lldxf.Tags method), 140

218 Index

ezdxf Documentation, Release 0.8.9

set_fit_points() (Spline method), 94
set_flag_state() (DXFObject method), 114
set_flag_state() (GraphicEntity method), 64
set_font() (MTextData method), 83
set_gradient() (Hatch method), 85
set_knot_values() (Spline method), 94
set_location() (MText method), 82
set_mesh_data() (GeoData method), 117
set_mesh_vertex() (Polymesh method), 73
set_open_rational() (Spline method), 94
set_open_uniform() (Spline method), 94
set_path_entity_transformation_matrix() (ExtrudedSur-

face method), 101
set_path_entity_transformation_matrix() (SweptSurface

method), 103
set_pattern_definition() (Hatch method), 85
set_pattern_fill() (Hatch method), 86
set_periodic() (Spline method), 94
set_periodic_rational() (Spline method), 95
set_plot_style() (Layout method), 57
set_plot_type() (Layout method), 57
set_plot_window() (Layout method), 57
set_points() (LWPolyline method), 79
set_pos() (Attdef method), 110
set_pos() (Attrib method), 111
set_pos() (Text method), 68
set_redraw_order() (Layout method), 61
set_rotation() (MText method), 82
set_row() (ezdxf.algebra.Matrix44 method), 133
set_seed_points() (Hatch method), 86
set_solid_fill() (Hatch method), 85
set_sweep_entity_transformation_matrix() (ExtrudedSur-

face method), 101
set_sweep_entity_transformation_matrix() (SweptSur-

face method), 103
set_text() (MText method), 82
set_transformation_matrix_extruded_entity() (Extruded-

Surface method), 101
set_transformation_matrix_lofted_entity() (LoftedSur-

face method), 102
set_transformation_matrix_path_entity() (SweptSurface

method), 103
set_transformation_matrix_revolved_entity() (Revolved-

Surface method), 102
set_transformation_matrix_sweep_entity() (SweptSur-

face method), 103
set_uniform() (Spline method), 94
set_uniform_rational() (Spline method), 95
set_vertices() (PolylinePath method), 88
set_weights() (Spline method), 94
shadow_mode (GraphicEntity.dxf attribute), 65
Shape (built-in class), 69
SierpinskyPyramid (class in ezdxf.addons), 146
simple_surfaces (LoftedSurface.dxf attribute), 101

size (Shape.dxf attribute), 69
smooth_type (Polyline.dxf attribute), 71
snap_base (VPort.dxf attribute), 53
snap_isopair (VPort.dxf attribute), 53
snap_on (VPort.dxf attribute), 53
snap_rotation (VPort.dxf attribute), 53
snap_spacing (VPort.dxf attribute), 53
snap_style (VPort.dxf attribute), 53
Solid (built-in class), 75
solid (ExtrudedSurface.dxf attribute), 100
solid (LoftedSurface.dxf attribute), 101
solid (RevolvedSurface.dxf attribute), 102
solid (SweptSurface.dxf attribute), 103
solid_fill (Hatch.dxf attribute), 84
source_boundary_objects (EdgePath attribute), 88
source_boundary_objects (PolylinePath attribute), 87
spatial_angle_deg (ezdxf.algebra.Vector attribute), 130
spatial_angle_rad (ezdxf.algebra.Vector attribute), 130
Spline (built-in class), 93
Spline (class in ezdxf.addons), 147
SplineData (built-in class), 95
SplineEdge (built-in class), 90
start (Line.dxf attribute), 66
start (LineEdge attribute), 89
start (Ray.dxf attribute), 97
start (XLine.dxf attribute), 98
start() (ezdxf.addons.Bezier method), 149
start_angle (Arc.dxf attribute), 67
start_angle (ArcEdge attribute), 89
start_angle (EllipseEdge attribute), 90
start_angle (ezdxf.algebra.Arc attribute), 136
start_angle (RevolvedSurface.dxf attribute), 102
start_angle_rad (ezdxf.algebra.Arc attribute), 137
start_draft_angle (LoftedSurface.dxf attribute), 101
start_draft_distance (RevolvedSurface.dxf attribute), 102
start_draft_magnitude (LoftedSurface.dxf attribute), 101
start_param (Ellipse.dxf attribute), 78
start_tangent (Spline.dxf attribute), 94
start_tangent (SplineEdge attribute), 90
start_width (Vertex.dxf attribute), 72
status (VPort.dxf attribute), 53
strip() (ezdxf.lldxf.Tags method), 139
style (AttDef.dxf attribute), 109
style (Attrib.dxf attribute), 111
Style (built-in class), 47
style (MText.dxf attribute), 82
style (Text.dxf attribute), 68
styles (Drawing attribute), 40
StyleTable (built-in class), 45
subdivision_levels (Mesh.dxf attribute), 92
supported_dxf_attrib() (DXFObject method), 114
supported_dxf_attrib() (GraphicEntity method), 64
Surface (built-in class), 99
sweep_alignment (SweptSurface.dxf attribute), 103

Index 219

ezdxf Documentation, Release 0.8.9

sweep_alignment_flags (ExtrudedSurface.dxf attribute),
100

sweep_entity_transform_computed (ExtrudedSurface.dxf
attribute), 100

sweep_entity_transform_computed (SweptSurface.dxf
attribute), 103

sweep_vector (ExtrudedSurface.dxf attribute), 100
swept_entity_id (SweptSurface.dxf attribute), 103
SweptSurface (built-in class), 102

T
Table (built-in class), 44
Table (class in ezdxf.addons), 151
tag (AttDef.dxf attribute), 109
tag (Attrib.dxf attribute), 110
tag_index() (ezdxf.lldxf.Tags method), 140
TagArray (class in ezdxf.lldxf), 141
TagDict (class in ezdxf.lldxf), 141
TagList (class in ezdxf.lldxf), 141
Tags (class in ezdxf.lldxf), 139
tangent (Vertex.dxf attribute), 73
target_point (View.dxf attribute), 54
target_point (VPort.dxf attribute), 53
templatedir (ezdxf.options attribute), 39
text (AttDef.dxf attribute), 109
text (Attrib.dxf attribute), 110
Text (built-in class), 67
text (MTextData attribute), 83
text (Text.dxf attribute), 67
text_direction (MText.dxf attribute), 82
text_generation_flag (AttDef.dxf attribute), 109
text_generation_flag (Attrib.dxf attribute), 111
text_generation_flag (Text.dxf attribute), 68
text_generation_flags (Style.dxf attribute), 47
text_lines (ModelerGeometryData attribute), 98
thaw() (Layer method), 46
thickness (GraphicEntity.dxf attribute), 65
tint (GradientData attribute), 91
to_ocs() (ezdxf.algebra.UCS method), 128
to_wcs() (ezdxf.algebra.OCS method), 127
to_wcs() (ezdxf.algebra.UCS method), 128
Trace (built-in class), 76
transform() (ezdxf.addons.MeshBuilder method), 142
transform() (ezdxf.algebra.Matrix44 method), 135
transform_vectors() (ezdxf.algebra.Matrix44 method),

135
translate() (ezdxf.addons.MeshBuilder method), 142
translate() (ezdxf.algebra.Matrix44 method), 133
transparency (GraphicEntity attribute), 63
transparency (GraphicEntity.dxf attribute), 65
transpose() (ezdxf.algebra.Matrix44 method), 135
true_color (GraphicEntity.dxf attribute), 65
twist_angle (ExtrudedSurface.dxf attribute), 100
twist_angle (RevolvedSurface.dxf attribute), 102

twist_angle (SweptSurface.dxf attribute), 103

U
u_count (Surface.dxf attribute), 99
u_pixel (Image.dxf attribute), 96
UCS (built-in class), 55
UCS (class in ezdxf.algebra), 127
ucs (Drawing attribute), 41
ucs() (UCS method), 55
ucs_icon (VPort.dxf attribute), 53
Underlay (built-in class), 104
underlay_def (underlay.dxf attribute), 104
UnderlayDefinition (built-in class), 115
unit_vector (Ray.dxf attribute), 97
unit_vector (XLine.dxf attribute), 98
unlink_entity() (Layout method), 62
unlock() (Layer method), 46
up_direction (GeoData.dxf attribute), 116
update() (ezdxf.lldxf.Tags method), 140
update_attribs() (DXFObject method), 114
update_attribs() (GraphicEntity method), 64
upper_right (VPort.dxf attribute), 53
user_scale_factor (GeoData.dxf attribute), 116

V
v_count (Surface.dxf attribute), 99
v_pixel (Image.dxf attribute), 96
valid_dxf_attrib_names() (DXFObject method), 114
valid_dxf_attrib_names() (GraphicEntity method), 64
valign (AttDef.dxf attribute), 109
valign (Attrib.dxf attribute), 111
valign (Text.dxf attribute), 68
value (ezdxf.lldxf.DXFTag attribute), 138
value (ezdxf.lldxf.DXFVertex attribute), 139
Vector (class in ezdxf.algebra), 129
version (GeoData.dxf attribute), 116
version (Mesh.dxf attribute), 92
Vertex (built-in class), 72
VertexArray (class in ezdxf.lldxf), 141
vertical_unit_scale (GeoData.dxf attribute), 116
vertical_units (GeoData.dxf attribute), 116
vertices (Face attribute), 75
vertices (MeshData attribute), 92
vertices (MeshVertexCache attribute), 74
vertices (PolylinePath attribute), 87
vertices() (LWPolyline method), 80
vertices() (Polyline method), 72
vertices_in_wcs() (LWPolyline method), 80
View (built-in class), 54
view_mode (View.dxf attribute), 54
view_mode (VPort.dxf attribute), 53
view_twist (View.dxf attribute), 54
view_twist (VPort.dxf attribute), 53
viewports (Drawing attribute), 41

220 Index

ezdxf Documentation, Release 0.8.9

ViewportTable (built-in class), 45
views (Drawing attribute), 41
virtual_guide (LoftedSurface.dxf attribute), 101
VPort (built-in class), 53
vtx0 (3DFace.dxf attribute), 77
vtx0 (Solid.dxf attribute), 75
vtx0 (Trace.dxf attribute), 76
vtx1 (3DFace.dxf attribute), 77
vtx1 (Solid.dxf attribute), 76
vtx1 (Trace.dxf attribute), 76
vtx1 (Vertex.dxf attribute), 73
vtx2 (3DFace.dxf attribute), 77
vtx2 (Solid.dxf attribute), 76
vtx2 (Trace.dxf attribute), 76
vtx2 (Vertex.dxf attribute), 73
vtx3 (3DFace.dxf attribute), 77
vtx3 (Solid.dxf attribute), 76
vtx3 (Trace.dxf attribute), 76
vtx3 (Vertex.dxf attribute), 73
vtx4 (Vertex.dxf attribute), 73

W
weights (Spline attribute), 94
weights (SplineData attribute), 95
weights (SplineEdge attribute), 90
width (AttDef.dxf attribute), 109
width (Attrib.dxf attribute), 111
width (MText.dxf attribute), 81
width (Style.dxf attribute), 47
width (Text.dxf attribute), 68
width (View.dxf attribute), 54
write() (Drawing method), 42

X
x (ezdxf.algebra.Vector attribute), 130
x_rotate() (ezdxf.algebra.Matrix44 method), 133
xaxis (UCS.dxf attribute), 55
XLine (built-in class), 97
xref_path (Block.dxf attribute), 107
xscale (Insert.dxf attribute), 107
xscale (Shape.dxf attribute), 69
xy (ezdxf.algebra.Vector attribute), 130
xyz (ezdxf.algebra.Vector attribute), 130
xyz_rotate() (ezdxf.algebra.Matrix44 method), 134

Y
y (ezdxf.algebra.Vector attribute), 130
y_rotate() (ezdxf.algebra.Matrix44 method), 133
yaxis (UCS.dxf attribute), 55
yscale (Insert.dxf attribute), 107

Z
z (ezdxf.algebra.Vector attribute), 130

z_rotate() (ezdxf.algebra.Matrix44 method), 133
zscale (Insert.dxf attribute), 107

Index 221

	Website
	Documentation
	Questions and Feedback at Google Groups
	Contents
	Introduction
	Tutorials
	Reference
	Add-ons
	Howto
	DXF Internals

	News
	Indices and tables

	Python Module Index

