ErikGraph Documentation
Release .2

Erik Gafni

December 06, 2013

Contents

CHAPTER 1

Introduction

A company asked me to write a class that implements the following specification:

A class Graph representing an undirected graph structure with weighted edges (i.e. a set of vertices with
undirected edges connecting pairs of vertices, where each edge has a nonnegative weight). In addition to

methods for adding and removing vertices, class Graph should define (at minimum) the following instance
methods

def neighbor_vertices(self, a):

mown

Return a sequence of vertices that are neighbors of vertex a (e.g. are joined by a single edge). Rai.
an exception if a is not in the graph.

mn

pass

def neighbors(self, a, b):
mmwn
Return True 1if vertices a and b are joined by an edge, and False otherwise. Raise an exception 1.
a or b are not in the graph.

mmn

pass

def minimum_weight_path(self, a, b):
mrmmn
Return a 2-tuple comprising the minimum-weight path connecting vertices a and b, and the associa

Return None 1f no such path exists. Raise an exception if a or b are not in the graph.
mrmmn

pass

def minimum_edge_path(self, a, b):
mmwmn
Return a 2-tuple comprising the minimum-edge path connecting vertices a and b, and the associate
of edges (e.g. a path comprising 3 edges is shorter than a path comprising 4 edges, regardless o.
Return None if no such path exists. Raise an exception if a or b are not in the graph.

mmn

pass

Note: This is a classic graph problem, and can be solved using Dijkstra’s algorithm. My implementation runs in
O(IVI + IEl) as all vertices and edges might have to be traversed.

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

ErikGraph Documentation, Release .2

The code is available here: https://github.com/egafni/ErikGraph.

2 Chapter 1. Introduction

https://github.com/egafni/ErikGraph

CHAPTER 2

Install

S pip install erikgraph

ErikGraph Documentation, Release .2

4 Chapter 2. Install

CHAPTER 3

Run

Doctests

From the command line, type:

S python -m doctest /path/to/erikgraph/__init__ .py -v

or from an interactive session

import doctest
import erikgraph
doctest.testmod (erikgraph, verbose=True)

Trying:
G = Graph(['a’"],[("a","b",2), ('b",’c’,1)])
Expecting nothing
ok
Trying:
"b’” in G.data
Expecting:
True
ok

10 items passed all tests:

4 tests in __init__ .Graph.__init_

3 tests in __init__ .Graph.add_edge

4 tests in __init__ .Graph.add_vertex

4 tests in __init__ .Graph.delete_edge

5 tests in __init__ .Graph.delete_vertex

3 tests in __init__ .Graph.get_edge_weight

9 tests in __init_ .Graph.minimum_edge_path

9 tests in __init__ .Graph.minimum_weight_path
4 tests in __init__ .Graph.neighbor_vertices

4 tests in __init___.Graph.neighbors

49 tests in 15 items.
49 passed and 0 failed.
Test passed.

ErikGraph Documentation, Release .2

6 Chapter 3. Run Doctests

CHAPTER 4

Using erikgraph

4.1 Shortest Path

To find the shortest path and its distance, use minimum_weight_path ().

minimum_edge_path () will ignore edge weight values, and find the path between two nodes that utilizes the
fewest number of total edges.

from erikgraph import Graph

G = Graph (edges=|
(ra”,’"c’,10), ("b","c",2), ("c", £,20),
(ra”,’d", 1y, (rd",'e",5), ("e’,"£",106),

(e’ ,'h’, 1)y, ("h", £ ,4)y,('d","h",T),

(rdr,"g",2)

]

)

print G.minimum weight_path(’a’,’£")

(11, ("a", "d’, ’'e’, 'h", "£'1])

print G.minimum_edge_path('a’,’f£’)

(2, [ra", 'c’y, TE7])

See the method’s API for details, which has plenty of examples.

4.2 API

class erikgraph.Graph (vertices:[], edges= [])
A miniature graph class. Implements the following specification:

A class Graph representing an undirected graph structure with weighted edges (i.e. a set of vertices with undi-
rected edges connecting pairs of vertices, where each edge has a nonnegative weight). In addition to methods
for adding and removing vertices, class Graph should define (at minimum) the following instance methods

Property data A dictionary who’s keys are vertices and values are another dictionary who’s keys
are neighboring nodes and values are the weight connecting them

add_edge (v, v2, weight)

Parameters

ErikGraph Documentation, Release .2

* vl — One of the vertices the edge is connecting to.
* v2 — The other vertex.
» weight — The weight associated with the edge.

>>> G = Graph()

>>> G.add_edge(’a’,’b’,1
>>> G.data[’'b’][’a’] ==
True

)
1

add vertex (v)
Parameters v — A vertex

>>> G = Graph/()
>>> G.add_vertex("a’)
>>> G.datal[’a’]

{}
>>> G.datal[’'b’]
Traceback (most recent call last):

KeyError: 'b’
delete_edge (vl,v2)
Parameters
e vl — a vertex

* v2 —aneighbor of vl

Raises VertexDoesNotExist if a or b are not in the graph

>>> G = Graph(edges=[("a’,’b’,2)1)
>>> G.neighbors(’a’,’b’)
True

>>> G.delete_edge('b’,’a’)
>>> G.neighbors(’a’,’b’)
False

delete_vertex (v)
Parameters v — the vertex to delete

>>> G = Graph(['x"1,[("a’,'b",1)])
>>> b’ in G.data

True

>>> G.delete_vertex ('b’)

>>> b’ in G.data

False

>>> b’ in G.neighbor_vertices(’a’)
False

get_edge_weight (q, b)
Returns The weight of the edge connecting ato b

Raises VertexDoesNotExist if a or b are not in the graph

>>> G = Graph(edges=[("a’,’'b’,2)])
>>> G.get_edge_weight ("a’,’b’)
2

>>> G.get_edge_weight ("a’,’x")

8 Chapter 4. Using erikgraph

ErikGraph Documentation, Release .2

Traceback (most recent call last):
VertexDoesNotExist

minimum_ edge_path (a, b)

Returns a 2-tuple comprising the fewest number of edges required to get from vertex a to vertex
b, and the path used. Returns None of there is no path from at to b.

Raises VertexDoesNotExist if a or b are not in the graph.

>>> G = Graph(vertices=['x",’y"],edges=[("x","y’,3), (b","c’,1),(a","c",2),(c",’d,6), (d
>>> G.minimum_edge_path(’a’,’d’)
(2, [ra", 'c’, 'ad’l)
>>> G.minimum_edge_path('a’,’e’)
(2, [ra", "c', "e'])
>>> G = Graph(vertices=['x’,’y’],edges=[("x","yv",3), (b’ ,’c’", 1), ("a’",’'c",2), ('c’,’d" ,4), (" d
G.minimum_edge_path(’a’,’e
["a’, 'c’, "e’])
G.

>>>
(2,
>>> minimum_edge_path(’a’,’x")

>>> G.minimum_edge_path(’a’,’ foo’)
Traceback (most recent call last):

VertexDoesNotExist

>>> G = Graph(edges=[('a’,’c’,10), ('b","c",2),('c’"," £ ,20), ("a’,’d",1), (d ,"e" ,5),(e ",
>>> G.minimum_edge_path(’a’,’ £")

(2, [ra", "c’, "£71)

minimum weight_path (q, b)
Implementation of Single Source Shortest Path using Dijkstra’s

Returns a 2-tuple comprising the minimum weight used by the shortest path from a to b, and
the path used. Return None if no such path exists.

Raises VertexDoesNotExist if a or b are not in the graph.

>>> G = Graph(vertices=['x',"y’],edges=[("x","y’,3), ('b","'c’, 1), ("a’,"c",2),('c’,"d,6), (d
>>> G.minimum_weight_path(’a’,’d’)

(8, ["a’, 'c', "d"])

>>> G.minimum_weight_path('a’,’e’)

(10, [ra’, 'c', 'd’, 'e'])

>>> G = Graph(vertices=['x","y"],edges=[("x","y",3), ("b","c’", 1), ("a","c",2), ("c’,"d ,4), ("d
>>> G.minimum_weight_path(’a’,’e’)

(3, [Ta’", ’'c', "e'])

>>> G.minimum_weight_path('a’,’x")

>>> G.minimum_weight_path(’a’,’ foo’)
Traceback (most recent call last):

VertexDoesNotExist
>>> G = Graph(edges=([('a’,’'c’,10), ("b","c",2), ('c’","£",20), ("a","d",1),("d","e",5), (e, ',
>>> G.minimum_weight_path(’a’,’"£")
(11, [!a!’ ld!’ le!, lhl, lfl})
neighbor_vertices (a)

Returns a sequence of vertices that are neighbors of vertex a (e.g. are joined by a single edge).

Raises VertexDoesNotExist if a is not in the graph.

4.2. API 9

ErikGraph Documentation, Release .2

>>> G = Graph (vertices=["a’],edges=[('b",’c’,1),("d",’c’",2)])
>>> ns = G.neighbor_vertices(’c’)

>>> b’ in ns and 'd’ in ns and 'a’ not in ns

True

>>> G.neighbor_vertices ('x’)

Traceback (most recent call last):

VertexDoesNotExist: The vertex <x> does not exist in this graph

neighbors (a, b)
Returns True if vertices a and b are joined by an edge, and False otherwise.
Raises VertexDoesNotExist if a or b are not in the graph.

>>> G = Graph (vertices=["a’],edges=[('b",’c’,1)])
>>> G.neighbors('c’,’b’)

True

>>> G.neighbors('a’,’c’)

False

>>> G.neighbors('a’,’ x")

Traceback (most recent call last):

VertexDoesNotExist: The vertex <x> does not exist in this graph
single_source_shortest_path (qa, b, use_weights=True)
Implements Dijstra’s algorithm to determine the shortest path between vertices a and b

Returns a 2-tuple comprising the minimum weight used by the shortest path from a to b, and
the path used. Return None if no such path exists.

Raises VertexDoesNotExist if a or b are not in the graph.

vertices
A list of vertices in the graph

exception erikgraph.VertexDoesNotExist

10 Chapter 4. Using erikgraph

CHAPTER 5

Indices and tables

* genindex
* modindex

e search

11

ErikGraph Documentation, Release .2

12 Chapter 5. Indices and tables

Python Module Index

e

erikgraph, ??

13

