
DynamiX Documentation
Release 0.1

Pascal Held

July 01, 2014

Contents

1 Introduction 3
1.1 Recources . 3
1.2 Requirements . 3

2 Event Management 5
2.1 Tools . 5
2.2 Twitter - Stream . 8

3 Barabasi Graph Operations 9
3.1 Barabasi Tools . 9
3.2 Barabasi Merge Operations . 13
3.3 Barabasi Divide Operations . 14

4 Indices and tables 19

Bibliography 21

Python Module Index 23

i

ii

DynamiX Documentation, Release 0.1

Contents:

Contents 1

DynamiX Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

1.1 Recources

• Git - Repository: http://bitbucket.org/paheld/dynamix

• Documentation: http://dynamix.readthedocs.org

1.2 Requirements

• SciPy

• NetworkX

• Matplotlib

• twitter

3

http://bitbucket.org/paheld/dynamix
http://dynamix.readthedocs.org

DynamiX Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Event Management

This modules provides methods for event handling.

Every event is an dictionary in the following form:

event = {
"time": [a float value],
"sender": [a single sender (int or str) or a list of senders],
"receiver": [a single receiver (int or str) or a list of receivers] (optional),

}

2.1 Tools

This file provides tools for event handling.

class dynamix.events.tools.MakeID
Converter object for sender/receiver labels.

Methods

make_id(generator)
Replaces all sender and receiver values by integer keys.

Parameters generator : iterable or single event

Events

dynamix.events.tools.event_to_string(event)
Converts the Event-Dictionary into a string representation.

Parameters event : dict

Event in dict representation

Returns line : str

String representation of the event

Notes

Example:

5

DynamiX Documentation, Release 0.1

>>> event_to_string({"time":1,"sender":[1,2,3],"receiver":[4,5,6]})
’1;1,2,3;4,5,6’

>>> event_to_string({"time":1,"sender":[1,2,3]})
’1;1,2,3’

>>> event_to_string({"time":1,"sender":1,"receiver":2})
’1;1;2’

dynamix.events.tools.jitter_equal(generator, interval=(-1, 1))
Adds noise to the event time.

This functions adds an equal distributed noise in the given interval to the time of the events.

Parameters generator : iterable or single event

Events

interval : tuple or list

2 element tuple with min and max jitter

Notes

Events could be out of order after adding jitter.

dynamix.events.tools.load(filename)
Loads events from file

Parameters filename : str

Filename which is used to load the data.

dynamix.events.tools.make_lists(event)
Converts all sender and receiver literals into lists

dynamix.events.tools.make_literals(event)
Converts all sender and receiver lists into literals if they contain only one element

dynamix.events.tools.random()→ x in the interval [0, 1).

dynamix.events.tools.save(generator, filename)
Saves events to file

Parameters generator : iterable or single event

Events

filename : str

Filename which is used to save the file.

dynamix.events.tools.simplify(generator)
Simplifies the compact representation with multiple sender and receivers.

The functions uses an iterator of events and creates for every sender-receiver combination a new event.

Parameters generator : iterable or single event

Events

dynamix.events.tools.sort(generator, window_size=5.0)
Sorts events in an event stream.

6 Chapter 2. Event Management

DynamiX Documentation, Release 0.1

Elements of an generator will be sorted in the given time window size.

Parameters generator : iterable or single event

Events

window_size : int or float

time window size

Notes

Events would be delayed until next event with timedelta > window_size arrives.

dynamix.events.tools.string_to_event(string)
Converts the string representation of an event into the dictionary representation.

Parameters string : str

Event in string representation

Returns event : dict

Dictionary representation of the event

Notes

Example:

>>> event = string_to_event(’1;1,2,3;4,5,6’)
>>> event == {’time’: 1, ’sender’: [1, 2, 3], ’receiver’: [4, 5, 6]}
True

>>> event = string_to_event(’1;1,2,3’)
>>> event == {’time’: 1, ’sender’: [1, 2, 3]}
True

>>> event = string_to_event(’1;1;2’)
>>> event == {’time’: 1, ’sender’: 1, ’receiver’: 2}
True

dynamix.events.tools.throttle(generator, factor=1.0)
Throttles event processing

The events will be repressed until the passing time from the first event to the current one is at least factor times
the event time between the first event and the current one.

Parameters generator : iterable or single event

Events

factor : float

factor of time delay, default 1.0

Notes

The time will be interpreted as seconds.

2.1. Tools 7

DynamiX Documentation, Release 0.1

2.2 Twitter - Stream

8 Chapter 2. Event Management

CHAPTER 3

Barabasi Graph Operations

3.1 Barabasi Tools

dynamix.generators.barabasi.tools.add_nodes_to_barabasi_graph(g, nodes_to_add,
m)

Adds nodes to existing graph of the Barabási-Albert using the preferential attachment model.

Graph g is grown by attaching new nodes each with m edges that are preferentially attached to existing nodes
with high degree.

Parameters g : Graph

Graph where nodes will be added

nodes_to_add : List of nodelabels

nodes which will be added to graph g

m : int

number of edges per new node

Returns g : Graph

Notes

Nodes will be added in order of the list “nodes_to_add”.

dynamix.generators.barabasi.tools.barabasi_graph(nodes_prioritylist, m)
Return random graph using Barabási-Albert preferential attachment model.

A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to
existing nodes with high degree. Nodes are added in the same order as in nodes_prioritylist.

Parameters nodes_prioritylist : List, string/int

Number of nodes

m : int

Number of edges to attach from a new node to existing nodes

Returns g : Graph

9

DynamiX Documentation, Release 0.1

Notes

The initialization is a full connected graph with with m nodes.

References

[R1]

dynamix.generators.barabasi.tools.check_power_law(g)
Estimates as power law fit and returns the exponent and the rmse

Uses the degree distribution to estimate the exponent a from P(k) ~ k ^ a

Parameters graph : Graph

Graph to analyse

Returns exponent: double

Exponent of function fit.

RMSE: double

Root mean squared error

dynamix.generators.barabasi.tools.compare_merge(graph, subgraph_1, subgraph_2)
Calls calculation of rank correlation coefficients and edge similarity measure.

Compares attributes of graph g1, g2 and their merged graph g.

Parameters g1 : Subgraph 1 of g

nodes which will be added to graph g

g2 : Subgraph 2 of g

number of edges per new node

merged_graph : Graph

Graph where nodes will be added

Notes

Requirement: merged_graph.nodes() = g1.nodes + g2.nodes()

dynamix.generators.barabasi.tools.degree_rank_correlation(graph, subgraph_1,
subgraph_2)

Calculates rank correlation coefficients.

Calculates Spearmans r (with tie correction) and Kendalls tau for the node degree distribution of g1, g2 and
merged_graph

Parameters g : Graph

Initial graph

g1 : Graph

Subgraph 1 of g

g2 : Graph

Subgraph 2 of g

10 Chapter 3. Barabasi Graph Operations

DynamiX Documentation, Release 0.1

Notes

Requirement: g1.nodes + g2.nodes() = gn.nodes()

dynamix.generators.barabasi.tools.edge_similarity(graph, subgraph_1, subgraph_2)
Calculates Edge simlarity measures for graph and its subgraphs

Compares the number of edges represented in a graph and its subgraphs. Outputs the full similarity matrix for
both subgraphs.

Parameters graph : Graph

Initial graph

subgraph1 : Graph

Subgraph 1 of g

subgraph2 : Graph

Subgraph 2 of g

Returns similarity_matrix : float

Notes

G

G’ a b
c d

val Desciption index
a in G and G’ [0,0]
b only in G’ [0,1]
c only in G [1,0]
d not present in G and G’ [1,1]

dynamix.generators.barabasi.tools.estimate_m(g, g2=None, model_correction=True)
Estimates parameter m for graphs following the Barabási-Albert model.

Estimates the parameter m by counting edges and vertices of graph g. Additionally estimates a shared m if two
graphs are used as input parameters.

Parameters g : Graph

Graph for estimating m

g2 : Graph, optional

Second graph which will be included in the estimation for a shared m (default = None)

model_correction : boolean, optional

Was a model_correction used for the creation of graph g and g2. (default = True) True
= Barabási-Albert model starting with a complete graph of m nodes False = Barabási-
Albert model starting with an empty graph of m nodes

Returns m : int

3.1. Barabasi Tools 11

DynamiX Documentation, Release 0.1

Notes

Estimate will be influenced by nodes not following the Barabási-Albert model e.g. outliers connected to every
node in the graph.

dynamix.generators.barabasi.tools.get_degree_distribution(number_of_edges, num-
ber_of_nodes=None,
exponent=-2.9,
min_degree=1,
max_degree=None)

Estimates the degree distribution

Calculate estimated numbers ob nodes with the given node degree with P(k) ~ k ** exponent

Parameters number_of_edges : Integer

The number of estimated edges

number_of_nodes : Integer, optional

The number of nodes in the graph. If not given number_of_nodes = number_of_edges
+ 1. It is only used to get the maximum node degree

exponent : float, optional

The exponent used for the estimation. If not given -2.9 is used, as given in Barabasis
Paper

Returns Dict

Estimated node degree distribution

dynamix.generators.barabasi.tools.get_repeated_node_list(g)
Returns a list which contains every node repeated by the number of his degree.

Parameters g : Graph

Graph from which the repeated_node_list should be created from

Returns _ : list

dynamix.generators.barabasi.tools.random_subset(seq, m)
Return m unique elements from seq.

Parameters seq : list

Nodelabels

m : int

number of nodes to be returned

Returns targets : list

Notes

This differs from random.sample which can return repeated elements if seq holds repeated elements.

Elements of the returned list are in order! Do not use if random order ist desired.

dynamix.generators.barabasi.tools.repair_graph(g, m)
Try to repair a given graph so it is connected and follows the barabasi model.

12 Chapter 3. Barabasi Graph Operations

DynamiX Documentation, Release 0.1

Three step process 1) connect unconnected components 2) add edges for nodes with a degree less than m 3) add
additional edges till g.edges = (g.node-m)*m + 0.5*m*(m-1)

Parameters g : Graph

Graph which will be splitted

m : int

Minimal number of edges per node

Notes

The given graph will be fixed inplace. No return needed.

dynamix.generators.barabasi.tools.sort_nodes_by_degree(g1, g2=None)
Returns a nodelist sorted by node degree in decreasing order

Parameters g1 : Graph

Graph 1

g2 : Graph, optional

Graph 2

Returns nodes : list

nodelist sorted by node degree in decreasing order

3.2 Barabasi Merge Operations

dynamix.generators.barabasi.merge.minimal_merge(g1, g2)
Connects both graphs with minimal amount of edges

Adds a minimal amount of edges to connect g1 and g2. Therefore choose one node per graph by preferential
attachment strategy and connect both.

Parameters g1 : Graph

Graph 1

g2 : Graph

Graph 2

Returns g : Graph

merged Graph

dynamix.generators.barabasi.merge.node_degree_merge(g1, g2)
Creates merged graph following the Barabási-Albert model by adding nodes in order of their node-degree.

Merged graph g is grown by attaching the nodes of g1 and g2 in order of their node degree each with m edges
that are preferentially attached to existing nodes with high degree.

Parameters g1 : Graph

Graph where nodes will be added

g2 : Graph

nodes which will be added to graph g

3.2. Barabasi Merge Operations 13

DynamiX Documentation, Release 0.1

Returns g : Graph

merged Graph

dynamix.generators.barabasi.merge.preserving_nodes_merge(g1, g2,
add_in_order=True)

Creates merged graph following the Barabási-Albert model by adding nodes of g2 to graph 1.

Merged graph g is grown by attaching the nodes of g2 to the graph g1. The estimated m of g1 will be used for
the preferential attachment process. This will result in a minimal change of g1.

Nodes of g2 are either added in order of their node degree (highest first) or in random order.

Parameters g1 : Graph

Graph will be used as basis for merged graph

g2 : Graph

Nodes of Graph 2 will be added to g1

add_in_order: boolean, optional

Should nodes be sorted befor adding them to graph g1? (default = True) True: nodes
of g2 will be added in order of their node degree False: nodes of g2 will be added in
random order

Returns g : Graph

merged Graph

dynamix.generators.barabasi.merge.random_merge(g1, g2)
Creates merged graph following the Barabási-Albert model by adding nodes in random order.

Merged graph g is grown by attaching the nodes of g1 and g2 in random order each with m edges that are
preferentially attached to existing nodes with high degree.

Parameters g1 : Graph

Graph where nodes will be added

g2 : Graph

nodes which will be added to graph g

Returns g : Graph

merged Graph

3.3 Barabasi Divide Operations

dynamix.generators.barabasi.divide.maximum_cut_split(g, n1)
not documented yet

Parameters g : Graph

Graph which will be splitted

n1 : int

Size of Subgraph 1

Returns g1 : Graph

Subgraph 1 of g

14 Chapter 3. Barabasi Graph Operations

DynamiX Documentation, Release 0.1

g2 : Graph

Subgraph 2 of g

Notes

n2 = len(g.nodes()) - n1

dynamix.generators.barabasi.divide.node_degree_divide_a(g, n1)
Splits the set of nodes by their node degree order and creates two new subgraphs following the Barabási-Albert
model.

Strategy A: Chooses n1 highest ranked nodes (by node degree) of graph g to create a new graph using the
Barabási-Albert model Nodes will be added in order of their rank. All other nodes will be used for the creation
of the second subgraph following the same procedure.

Parameters g : Graph

Graph which will be splitted

n1 : int

Number of nodes used for subgraph 1

Returns g1 : Graph

Subgraph 1 of g with n1 nodes

g2 : Graph

Subgraph 2 of g with len(g.nodes())-n1 nodes

Notes

n2 = len(g.nodes()) - n1

dynamix.generators.barabasi.divide.node_degree_divide_b(g, n1)
Splits the set of nodes by their node degree order and creates two new subgraphs following the Barabási-Albert
model.

Strategy B: Sorts nodes in order of their node degree. Chooses nodes of n1 and n2 in alternating order to create
both subgraphs using the Barabási-Albert model. Nodes will be added in order of their rank.

Parameters g : Graph

Graph which will be splitted

n1 : int

Number of nodes used for subgraph 1

Returns g1 : Graph

Subgraph 1 of g with n1 nodes

g2 : Graph

Subgraph 2 of g with len(g.nodes())-n1 nodes

3.3. Barabasi Divide Operations 15

DynamiX Documentation, Release 0.1

Notes

n2 = len(g.nodes()) - n1

dynamix.generators.barabasi.divide.random_divide(g, n1)
Splits the set of nodes randomly and creates two new subgraphs following the Barabási-Albert model.

Randomly chooses n1 nodes of graph g to create a new graph using the Barabási-Albert model. All other nodes
will be used for the creation of the second subgraph following the same procedure.

Parameters g : Graph

Graph which will be splitted

n1 : int

Number of nodes used for subgraph 1

Returns g1 : Graph

Subgraph 1 of g with n1 nodes

g2 : Graph

Subgraph 2 of g with len(g.nodes())-n1 nodes

Notes

n2 = len(g.nodes()) - n1

dynamix.generators.barabasi.divide.random_subgraph_divide(g, n1)
Splits the set of nodes randomly, preserves edges of the two groups and creates two new subgraphs following
the Barabási-Albert model.

Randomly chooses n1 nodes of graph g to create a new graph using the Barabási-Albert model through adding
edges to the induced subgraph. All other nodes and their intra-group-edges will be used for the creation of the
second subgraph following the same procedure. The repair-operator is used for completing the graphs.

Parameters g : Graph

Graph which will be splitted

n1 : int

Number of nodes used for subgraph 1

Returns g1 : Graph

Subgraph 1 of g with n1 nodes

g2 : Graph

Subgraph 2 of g with len(g.nodes())-n1 nodes

Notes

n2 = len(g.nodes()) - n1

dynamix.generators.barabasi.divide.subgraph_expansion_divide(g, n1)
Creates a new graph by choosing the node with the lowest node degree and iteratively expanding the subgraph
using the neighborhood of the current subgraph.

16 Chapter 3. Barabasi Graph Operations

DynamiX Documentation, Release 0.1

Takes the node with the lowest node degree as starting point for the subgraph creation. Iteratively extends the
subgraph by adding the neighbors of the last added node to the subgraph. Repeat this process till subgraph 1
consists of n1 nodes. All nodes not added to subgraph 1 will be used to create subgraph 2

Both graphs need to be repaired afterwards.

Parameters g : Graph

Graph which will be splitted

n1 : int

Number of nodes used for subgraph 1

Returns g1 : Graph

Subgraph 1 of g with n1 nodes

g2 : Graph

Subgraph 2 of g with len(g.nodes())-n1 nodes

Notes

n2 = len(g.nodes()) - n1

3.3. Barabasi Divide Operations 17

DynamiX Documentation, Release 0.1

18 Chapter 3. Barabasi Graph Operations

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

DynamiX Documentation, Release 0.1

20 Chapter 4. Indices and tables

Bibliography

[R1] A. L. Barabási and R. Albert “Emergence of scaling in random networks”, Science 286, pp 509-512, 1999.

21

DynamiX Documentation, Release 0.1

22 Bibliography

Python Module Index

d
dynamix.events, 5
dynamix.events.tools, 5
dynamix.generators.barabasi, 9
dynamix.generators.barabasi.divide, 14
dynamix.generators.barabasi.merge, 13
dynamix.generators.barabasi.tools, 9

23

	Introduction
	Recources
	Requirements

	Event Management
	Tools
	Twitter - Stream

	Barabasi Graph Operations
	Barabasi Tools
	Barabasi Merge Operations
	Barabasi Divide Operations

	Indices and tables
	Bibliography
	Python Module Index

